FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Charlton, P Chassande-Mottin, E Chelkowski, S Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, HS Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Feroz, F Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil-Casanova, S Gill, C Gleason, J Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Hardt, A Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kranz, O Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Liu, Y Liu, Z Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA McWilliams, S Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Neri, I Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sainathan, P Salemi, F Sammut, L Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schreiber, E Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Stein, LC Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Tseng, K Tucker, E Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wang, Z Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Feroz, F. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil-Casanova, S. Gill, C. Gleason, J. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Hardt, A. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kranz, O. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McWilliams, S. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Neri, I. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sainathan, P. Salemi, F. Sammut, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Stein, L. C. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tseng, K. Tucker, E. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run SO PHYSICAL REVIEW D LA English DT Article ID SCIENCE RUN; DETECTORS; COLLAPSE AB We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration less than or similar to 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc(3) for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range similar to 5 x 10(-22) Hz(-1/2) to similar to 1 x 10(-20) Hz(-1/2). The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-84084 Salerno, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, NL-1081 HV Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; Ochsner, E.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, M.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S. M.; Aylott, B. E.; Carbone, L.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Mandel, I.; Page, A.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Smith-Lefebvre, N. D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Kelley, D.; Lough, J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Shapiro, B.; Shoemaker, D. H.; Soto, J.; Stein, A. J.; Stein, L. C.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, APC, CNRS, IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; McWilliams, S.; Murphy, D.; Redwine, K.; Wade, L.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-53100 Siena, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-53100 Siena, Italy. [Beck, D.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Markosyan, A.; Tseng, K.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] Polish Acad Sci, IM, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.] Polish Acad Sci, CAMK, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.; Rosinska, D.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Lundgren, A. P.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote dAzur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, LMA, IN2P3, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Cagnoli, G.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, Lab Kastler Brossel, ENS, CNRS, F-75005 Paris, France. [Buonanno, A.; Kanner, J. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.; Jang, Y. J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Geng, R.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Hardt, A.; Isogai, T.; Tucker, E.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, WIGNER RCP, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Povo, Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.] Northwestern Univ, Evanston, IL 60208 USA. [Feroz, F.; Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Vitale, S.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kandhasamy, S.; Mandic, V.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Howell, Eric/H-5072-2014; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri, Igor/F-1482-2010; Shaddock, Daniel/A-7534-2011; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Lam, Ping Koy/A-5276-2008; Parisi, Maria/D-2817-2013; Ciani, Giacomo/G-1036-2011; Marchesoni, Fabio/A-1920-2008; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; Costa, Cesar/G-7588-2012; Bell, Angus/E-7312-2011; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; OI Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Vocca, Helios/0000-0002-1200-3917; Gray, Norman/0000-0002-1941-9202; Fairhurst, Stephen/0000-0001-8480-1961; Granata, Massimo/0000-0003-3275-1186; Husa, Sascha/0000-0002-0445-1971; Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Milano, Leopoldo/0000-0001-9487-5876; Papa, M.Alessandra/0000-0002-1007-5298; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Aulbert, Carsten/0000-0002-1481-8319; Stein, Leo/0000-0001-7559-9597; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Kanner, Jonah/0000-0001-8115-0577; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Lam, Ping Koy/0000-0002-4421-601X; Ciani, Giacomo/0000-0003-4258-9338; Marchesoni, Fabio/0000-0001-9240-6793; prodi, giovanni/0000-0001-5256-915X; Bell, Angus/0000-0003-1523-0821; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X FU United States National Science Foundation; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Royal Society; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society and the State of Niedersachsen/Germany for support of the construction and operation of the GEO 600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P1100118-v16. NR 43 TC 68 Z9 68 U1 5 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 20 PY 2012 VL 85 IS 12 AR 122007 DI 10.1103/PhysRevD.85.122007 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 962RV UT WOS:000305563600001 ER PT J AU Shaposhnikov, N AF Shaposhnikov, Nikolai TI ON THE NATURE OF QUASI-PERIODIC OSCILLATION PHASE LAGS IN BLACK HOLE CANDIDATES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; stars: individual (XTE J1550-564); X-rays: binaries ID XTE J1550-564; BINARIES; STATES; COMPONENTS; ACCRETION; BEHAVIOR AB Observations of quasi-periodic oscillations (QPOs) in X-ray binaries hold a key to understanding many aspects of these enigmatic systems. Complex appearance of the Fourier phase lags related to QPOs is one of the most puzzling observational effects in accreting black holes (BHs). In this Letter we show that QPO properties, including phase lags, can be explained in a framework of a simple scenario, where the oscillating media provide feedback on the emerging spectrum. We demonstrate that the QPO waveform is presented by the product of a perturbation and time-delayed response factors, where the response is energy dependent. The essential property of this effect is its nonlinear and multiplicative nature. Our multiplicative reverberation model successfully describes the QPO components in energy-dependent power spectra as well as the appearance of the phase lags between signals in different energy bands. We apply our model to QPOs observed by the Rossi X-Ray Timing Explorer in BH candidate XTE J1550-564. We briefly discuss the implications of the observed energy dependence of the QPO reverberation times and amplitudes on the nature of the power-law spectral component and its variability. C1 [Shaposhnikov, Nikolai] Univ Maryland, Dept Astron, CRESST, College Pk, MD 20742 USA. [Shaposhnikov, Nikolai] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Shaposhnikov, N (reprint author), Univ Maryland, Dept Astron, CRESST, College Pk, MD 20742 USA. EM nikolai.v.shaposhnikov@nasa.gov FU NASA [NNX09AF02G] FX The author thanks C. Shrader and L. Titarchuk for productive discussions. This work was supported by NASA grant NNX09AF02G. NR 19 TC 6 Z9 6 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2012 VL 752 IS 2 AR L25 DI 10.1088/2041-8205/752/2/L25 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961JV UT WOS:000305461600008 ER PT J AU Sridharan, DM Whalen, MK Almendrala, D Cucinotta, FA Kawahara, M Yannone, SM Pluth, JM AF Sridharan, Deepa M. Whalen, Mary K. Almendrala, Donna Cucinotta, Francis A. Kawahara, Misako Yannone, Steven M. Pluth, Janice M. TI Increased Artemis levels confer radioresistance to both high and low LET radiation exposures SO RADIATION ONCOLOGY LA English DT Article DE Artemis; Radioresistance; High LET radiation ID DEPENDENT PROTEIN-KINASE; CLASS SWITCH RECOMBINATION; STRAND BREAK REPAIR; DNA-DAMAGE; CELL-CYCLE; LINKS ATM; PHOSPHORYLATION; GAMMA-H2AX; DEFICIENT; REVEALS AB Background: Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. Results: Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. Conclusions: These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies. C1 [Sridharan, Deepa M.; Whalen, Mary K.; Almendrala, Donna; Kawahara, Misako; Yannone, Steven M.; Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Pluth, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM jmpluth@lbl.gov FU NASA [NNJ08ZSA001N]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to acknowledge Hengameh Zahed who performed some of the initial proliferation assay studies and was involved in helpful discussions at the onset of this work. We gratefully acknowledge financial support provided by NASA (NNJ08ZSA001N). This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 6 Z9 8 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1748-717X J9 RADIAT ONCOL JI Radiat. Oncol. PD JUN 19 PY 2012 VL 7 AR 96 DI 10.1186/1748-717X-7-96 PG 12 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 099OW UT WOS:000315632100001 PM 22713703 ER PT J AU Morgan, JLL Skulan, JL Gordon, GW Romaniello, SJ Smith, SM Anbar, AD AF Morgan, Jennifer L. L. Skulan, Joseph L. Gordon, Gwyneth W. Romaniello, Stephen J. Smith, Scott M. Anbar, Ariel D. TI Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE osteopenia; biomarker; medical geology; biosignature; spaceflight ID DURATION SPACE-FLIGHT; X-RAY ABSORPTIOMETRY; DOWN BED REST; FRACTIONATION; OSTEOPOROSIS; METABOLISM; KINETICS; MARKERS; RATIOS; URINE AB The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. C1 [Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Anbar, Ariel D.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Morgan, Jennifer L. L.; Anbar, Ariel D.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Morgan, Jennifer L. L.; Smith, Scott M.] NASA, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. RP Skulan, JL (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. EM jlskulan@geology.wisc.edu FU National Aeronautics and Space Administration [07-HRP-2-0042, NNX-08Aq38G]; Human Health and Countermeasures Element; Flight Analogs Project; National Center for Research Resources, National Institutes of Health [1UL1RR029876-01] FX We thank Carina Arrua for help with developing the Ca method and processing samples; Thomas Crenshaw for supplying sow urine and blood samples; Thomas Owens for measuring their Ca isotope composition; Michael Whitaker and Yu-Hui Chang for assistance with statistics; Jane Krauhs for editorial assistance; and Michael Anbar for helpful discussions. The studies described here were funded by National Aeronautics and Space Administration Human Research Program Grants 07-HRP-2-0042 and NNX-08Aq38G and specifically, the Human Health and Countermeasures Element and the Flight Analogs Project. Bed rest studies were conducted at the University of Texas Medical Branch at Galveston's Institute for Translational Sciences-Clinical Research Center, and they were supported in part by National Center for Research Resources, National Institutes of Health Grant 1UL1RR029876-01. NR 36 TC 35 Z9 37 U1 3 U2 41 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 19 PY 2012 VL 109 IS 25 BP 9989 EP 9994 DI 10.1073/pnas.1119587109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 969NC UT WOS:000306061400067 PM 22652567 ER PT J AU Komarevskiy, N Shklover, V Braginsky, L Hafner, C Lawson, J AF Komarevskiy, Nikolay Shklover, Valery Braginsky, Leonid Hafner, Christian Lawson, John TI Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry SO OPTICS EXPRESS LA English DT Article AB During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range. (C) 2012 Optical Society of America C1 [Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian] Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland. [Lawson, John] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Komarevskiy, N (reprint author), Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland. EM n.komarevskiy@ifh.ee.ethz.ch RI Braginsky, Leonid/B-5278-2008 OI Braginsky, Leonid/0000-0002-2508-8876 FU ETH [0-20590-09] FX The authors are grateful to the colleagues from NASA Ames Research Center, namely to Brett Cruden and Dinesh Prabhu for discussions and to Aaron Brandis for providing the experimental data of radiative spectra, obtained in the NASA Ames Research Center's EAST facility. This work was supported by ETH project 0-20590-09, Materials for Infra Red Protection. NR 19 TC 2 Z9 2 U1 1 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 18 PY 2012 VL 20 IS 13 BP 14189 EP 14200 DI 10.1364/OE.20.014189 PG 12 WC Optics SC Optics GA 961NV UT WOS:000305473000058 PM 22714482 ER PT J AU Numata, K Chen, JR Wu, ST AF Numata, Kenji Chen, Jeffrey R. Wu, Stewart T. TI Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser SO OPTICS EXPRESS LA English DT Article ID DISTRIBUTED-BRAGG-REFLECTOR; DBR LASER; FREQUENCY STABILIZATION; CARBON-DIOXIDE; PERFORMANCE; LOCKING; BAND AB We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a similar to 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than similar to 40 mu s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning. (C) 2012 Optical Society of America C1 [Numata, Kenji] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Numata, K (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM kenji.numata@nasa.gov FU NASA Earth Science Technology Office; NASA FX The authors gratefully acknowledge Dr. G. Yang of NASA Goddard for fruitful discussions and his help with RF electronics. They are also indebted to Drs. S. Chandani and P. Mitchell of Oclaro Inc. for their technical support on the DS-DBR lasers, and Dr. J. B. Abshire and other members of the NASA Goddard CO2 Sounder team for their support. In addition, thanks are due to Dr. Jeffrey Livas of NASA Goddard for his excellent comments on the manuscript. This work was supported by the NASA Earth Science Technology Office Instrument Incubator Program and the NASA Goddard Internal Research and Development Program. NR 22 TC 12 Z9 12 U1 4 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 18 PY 2012 VL 20 IS 13 BP 14234 EP 14243 DI 10.1364/OE.20.014234 PG 10 WC Optics SC Optics GA 961NV UT WOS:000305473000062 PM 22714486 ER PT J AU Malone, CP Johnson, PV Liu, XM Ajdari, B Kanik, I Khakoo, MA AF Malone, Charles P. Johnson, Paul V. Liu, Xianming Ajdari, Bahar Kanik, Isik Khakoo, Murtadha A. TI Integral cross sections for the electron-impact excitation of the b (1)Pi(u), c(3) (1)Pi(u), o(3) (1)Pi(u), b ' (1)Sigma(+)(u), c '(4) (1)Sigma(+)(u), G (3)Pi(u), and F (3)Pi(u) states of N-2 SO PHYSICAL REVIEW A LA English DT Article ID VACUUM-ULTRAVIOLET EMISSION; LOW-ENERGY ELECTRONS; MOLECULAR NITROGEN; HIGH-RESOLUTION; EXTREME-ULTRAVIOLET; INCIDENT ENERGIES; 124.2 NM; DISSOCIATIVE EXCITATION; DIATOMIC-MOLECULES; RYDBERG STATES AB Integral cross sections for electron-impact excitation out of the ground-state level X (1)Sigma(+)(g) (nu '' = 0) to the b (1)Pi(u), c(3) (1)Pi(u), o(3) (1)Pi(u), b' (1)Sigma(+)(u), c'(1)(4)Sigma(+)(u), G (3)Pi(u), and F (3)Pi(u) electronic states in N-2 are reported at incident energies ranging between 17.5 and 100 eV. We also provide excitation cross sections using emission-based excitation shape functions and optical oscillator strengths. These cross-section results are of great importance to planetary atmospheric modeling of the emissions observed in Earth's atmosphere as well as those of Titan and Triton, the largest moons of Saturn and Neptune, respectively. Critical comparisons of the present cross sections with previous values are presented in an effort to provide improved cross sections for electron excitation of this fundamental molecule's important transitions. C1 [Malone, Charles P.; Johnson, Paul V.; Kanik, Isik] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Malone, Charles P.; Ajdari, Bahar; Khakoo, Murtadha A.] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92831 USA. [Liu, Xianming] Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. RP Malone, CP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Malone, Charles/A-6294-2010; Johnson, Paul/D-4001-2009 OI Malone, Charles/0000-0001-8418-1539; Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration (NASA); NASA's Outer Planets Research (OPR); Planetary Atmospheres (PATM); National Science Foundation [NSF-AGS-0938223, NSF-PHY-RUI-0096808, NSF-PHY-RUI-0965793] FX This work was performed at the California State University, Fullerton (CSUF) and at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with the National Aeronautics and Space Administration (NASA). We gratefully acknowledge financial support through NASA's Outer Planets Research (OPR) and Planetary Atmospheres (PATM) programs and the National Science Foundation, under Grants No. NSF-AGS-0938223, No. NSF-PHY-RUI-0096808, and No. NSF-PHY-RUI-0965793. We are grateful to Dr. B. R. Lewis and Dr. A. N. Heays for supplying data prior to publication. NR 101 TC 6 Z9 6 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 18 PY 2012 VL 85 IS 6 AR 062704 DI 10.1103/PhysRevA.85.062704 PG 17 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 962EU UT WOS:000305524500004 ER PT J AU Schwenzer, SP Abramov, O Allen, CC Clifford, SM Cockell, CS Filiberto, J Kring, DA Lasue, J McGovern, PJ Newsom, HE Treiman, AH Vaniman, DT Wiens, RC AF Schwenzer, S. P. Abramov, O. Allen, C. C. Clifford, S. M. Cockell, C. S. Filiberto, J. Kring, D. A. Lasue, J. McGovern, P. J. Newsom, H. E. Treiman, A. H. Vaniman, D. T. Wiens, R. C. TI Puncturing Mars: How impact craters interact with the Martian cryosphere SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE astrobiology; cratering; impact processes; Mars surface; search for extraterrestrial life ID HYDROTHERMAL SYSTEMS; STARTING CONDITIONS; RAMPART CRATERS; CLAY-MINERALS; GROUND ICE; EVOLUTION; DEPOSITS; EJECTA; WATER; PHYLLOSILICATES AB Geologic evidence suggests that the Martian surface and atmospheric conditions underwent major changes in the late Noachian, with a decline in observable water-related surface features, suggestive of a transition to a dryer and colder climate. Based on that assumption, we have modeled the consequences of impacts into a similar to 2-6 km-thick cryosphere. We calculate that medium-sized (few 10 s of km diameter) impact craters can physically andlor thermally penetrate through this cryosphere, creating liquid water through the melting of subsurface ice in an otherwise dry and frozen environment. The interaction of liquid water with the target rock produces alteration phases that thermochemical modeling predicts will include hydrous silicates (e.g., nontronite, chlorite, serpentine). Thus, even small impact craters are environments that combine liquid water and the presence of alteration minerals that make them potential sites for life to proliferate. Expanding on the well-known effects of large impact craters on target sites, we conclude that craters as small as similar to 5-20 km (depending on latitude) excavate large volumes of material from the subsurface while delivering sufficient heat to create liquid water (through the melting of ground ice) and drive hydrothermal activity. This connection between the surface and subsurface made by the formation of these small, and thus more frequent, impact craters may also represent the most favorable sites to test the hypothesis of life on early Mars. (C) 2012 Elsevier B.V. All rights reserved. C1 [Schwenzer, S. P.; Clifford, S. M.; Kring, D. A.; Lasue, J.; McGovern, P. J.; Treiman, A. H.] USRA, Lunar & Planetary Inst, Houston, TX 77058 USA. [Abramov, O.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Allen, C. C.] NASA JSC, ARES, Houston, TX 77058 USA. [Cockell, C. S.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Filiberto, J.] So Illinois Univ, Dept Geol, MC 4234, Carbondale, IL 62901 USA. [Lasue, J.; Wiens, R. C.] Los Alamos Natl Lab, ISR 2, Los Alamos, NM 87545 USA. [Lasue, J.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Newsom, H. E.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Newsom, H. E.] Univ New Mexico, Dept Earth & Planetary Sci, MSC03 2050, Albuquerque, NM 87131 USA. [Vaniman, D. T.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Schwenzer, S. P.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Schwenzer, SP (reprint author), USRA, Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM s.p.schwenzer@open.ac.uk; oabramov@usgs.gov; carlton.c.allen@nasa.gov; clifford@lpi.usra.edu; c.s.cockell@ed.ac.uk; Filiberto@siu.edu; kring@lpi.usra.edu; lasue@lpi.usra.edu; mcgovern@lpi.usra.edu; newsom@unm.edu; treiman@lpi.usra.edu; dvaniman@psi.edu; rwiens@lanl.gov OI Schwenzer, Susanne Petra/0000-0002-9608-0759; McGovern, Patrick/0000-0001-9647-3096 FU NASA [NNX07AK42G, NNX09AL25G, NNH07DA001N]; NASA MDAP [NNX09AI42G]; NASA Mars Science Laboratory; Mars Fundamental Research Grant [NNH10AO831]; NASA Astrobiology Institute FX This work was supported, in part, by NASA Mars Fundamental Research grants NNX07AK42G (D.A.K., S.P.S.) and NNX09AL25G (A.H.T., J.F.); by NASA MDAP grant number NNX09AI42G (P.J.M.); by NASA Planetary Geology and Geophysics grant NNH07DA001N (H.E.N.); by NASA Mars Science Laboratory project (R.C.W.) and Mars Fundamental Research Grant NNH10AO831 (D.V.); and a NASA Astrobiology Institute Director's Discretionary Fund award to O.A. We thank Bethany Ehlman, Bob Craddock and an anonymous reviewer for thoughtful reviews. This is Lunar and Planetary Institute (LPI) contribution #1668. NR 94 TC 22 Z9 22 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 15 PY 2012 VL 335 BP 9 EP 17 DI 10.1016/j.epsl.2012.04.031 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 981PM UT WOS:000306981600002 ER PT J AU Wang, L Shum, CK Simons, FJ Tassara, A Erkan, K Jekeli, C Braun, A Kuo, CY Lee, HK Yuan, DN AF Wang, Lei Shum, C. K. Simons, Frederik J. Tassara, Andres Erkan, Kamil Jekeli, Christopher Braun, Alexander Kuo, Chungyen Lee, Hyongki Yuan, Dah-Ning TI Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Maule earthquake; Geodynamics; GRACE ID SUMATRA-ANDAMAN EARTHQUAKE; INTERSEISMIC STRAIN ACCUMULATION; SOUTH-CENTRAL CHILE; SEISMIC GAP; SUBDUCTION ZONE; GRAVITY; GPS; OPTIMIZATION; VARIABILITY; MEGATHRUST AB The 27 February 2010 Mw 8.8 Maule, Chile, earthquake ruptured over 500 km along a mature seismic gap between 34 degrees S and 38 degrees S-the Concepcion-Constitucion gap, where no large megathrust earthquakes had occurred since the 1835 Mw similar to 8.5 event. Notable discrepancies exist in slip distribution and moment magnitude estimated by various models inverted using traditional observations such as teleseismic networks, coastal/river markers, tsunami sensors, Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR). We conduct a spatio-spectral localization analysis, based on Slepian basis functions, of data from Gravity Recovery And Climate Experiment (GRACE) to extract coseismic gravity change signals of the Maule earthquake with improved spatial resolution (350 km half-wavelength). Our results reveal discernible differences in the average slip between the GRACE observation and predictions from various coseismic models. The sensitivity analysis reveals that GRACE observation is sensitive to the size of the fault, but unable to separate depth and slip. Here we assume the depth of the fault is known, and simultaneously invert for the fault-plane area and the average slip using the simulated annealing algorithm. Our GRACE-inverted fault plane length and width are 429 +/- 6 km, 146 +/- 5 km, respectively. The estimated slip is 8.1 +/- 1.2 m, indicating that most of the strain accumulated since 1835 in the Concepcion-Constitucion gap was released by the 2010 Maule earthquake. Published by Elsevier B.V. C1 [Wang, Lei; Shum, C. K.; Erkan, Kamil; Jekeli, Christopher] Ohio State Univ, Sch Earth Sci, Div Geodet Sci, Columbus, OH 43210 USA. [Simons, Frederik J.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Tassara, Andres] Univ Concepcion, Dept Ciencias Tierra, Concepcion, Chile. [Braun, Alexander] Univ Texas Dallas, Dept Geosci, Richardson, TX 75083 USA. [Kuo, Chungyen] Natl Cheng Kung Univ, Dept Geomat, Tainan 70101, Taiwan. [Lee, Hyongki] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Yuan, Dah-Ning] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Wang, L (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Div Seismol Geol & Tectonophys, Palisades, NY 10964 USA. EM leiwang@ldeo.columbia.edu RI Simons, Frederik/A-3427-2008; Wang, Lei/L-5187-2013; OI Simons, Frederik/0000-0003-2021-6645; Tassara, Andres/0000-0002-7448-2474 FU U.S. National Science Foundation [EAR-1013333, EAR-1014606]; Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams FX This research was supported by the U.S. National Science Foundation under Grants EAR-1013333 and EAR-1014606, and partially supported under the Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams. GRACE data products are from NASA via the University of Texas Center for Space Research and JPL-PODAAC. We thank Chen Ji, UCSB, for providing his coseismic model and also his comments and suggestions, which have enhanced the quality of the manuscript. We thank the modelers for providing their coseismic slip models used in the study. We thank the Editor and three anonymous reviewers for providing constructive comments, which resulted in the improvement of the manuscript. NR 40 TC 22 Z9 25 U1 1 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 15 PY 2012 VL 335 BP 167 EP 179 DI 10.1016/j.epsl.2012.04.044 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 981PM UT WOS:000306981600017 ER PT J AU Stabeno, PJ Farley, EV Kachel, NB Moore, S Mordy, CW Napp, JM Overland, JE Pinchuk, AI Sigler, MF AF Stabeno, Phyllis J. Farley, Edward V., Jr. Kachel, Nancy B. Moore, Sue Mordy, Calvin W. Napp, Jeffrey M. Overland, James E. Pinchuk, Alexei I. Sigler, Michael F. TI A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Bering Sea; Ecosystem; Climate; Hydrography; Sea ice; Zooplankton; Whales; Fish ID POLLOCK THERAGRA-CHALCOGRAMMA; CLIMATE-CHANGE; CHUKCHI SEAS; OCEANOGRAPHIC DOMAINS; CETACEAN DISTRIBUTION; MARINE ECOSYSTEM; SOUTHEASTERN; CIRCULATION; COMMUNITY; ABUNDANCE AB Sufficient oceanographic measurements have been made in recent years to describe the latitudinal variation in the physics of the eastern Bering Sea shelf and the potential impact of climate change on the species assemblages in the two ecosystems (north and south). Many of the predicted ecosystem changes will result from alterations in the timing and extent of sea ice. It is predicted that the sea ice in the northern Bering Sea will be less common in May, but will continue to be extensive through April. In contrast, the southern shelf will have, on average, much less sea ice than currently observed, but with large interannual and multiyear variability until at least 2050. Thus, even under current climate warming scenarios, bottom temperatures on the northern shelf will remain cold. Based on biophysical measurements, the southern and northern ecosystems were divided by a North South Transition at similar to 60 degrees N. The northern middle shelf was characterized by a freshwater lens at the surface, cold bottom temperatures, and a thicker pycnocline than found on the southern shelf. Subsurface phytoplankton blooms were common. In contrast, the southern shelf stratification was largely determined by temperature alone; the pycnocline was thin (often <3 m) and subsurface blooms were uncommon. Biological responses to climate warming could include greater north south differences in zooplankton community structure, the transport of large Outer Shelf Domain crustacean zooplankton to the middle shelf, and the disappearance of two principal prey taxa (Calanus spp. and Thysanoessa spp.) of planktivorous fish, seabirds and whales. The response of commercially and ecologically important fish species is predicted to vary. Some species of fish (e.g., juvenile sockeye salmon, Oncorhynchus nerka) may expand their summer range into the northern Bering Sea; some (e.g., pink salmon, O. gorbuscha) may increase in abundance while still other species (e.g., walleye pollock and arrowtooth flounder; Theragra chalcogramma and Atheresthes stomias, respectively) are unlikely to become common in the north. The projected warming of the southern shelf will limit the distribution of arctic species (e.g., snow crab, Chionoecetes opilio) to the northern shelf and will likely permit expansion of subarctic species into the southern Bering Sea. The distribution and abundance of baleen whales will respond to shifts in prey availability; for instance, if prey are advected northward from the southeastern Bering Sea, an extension of range and an increase in seasonally migratory baleen whale numbers is anticipated. Thus, alteration of this ecosystem in response to climate change is expected to result in something other than a simple northward shift in the distribution of all species. Published by Elsevier Ltd. C1 [Stabeno, Phyllis J.; Overland, James E.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Farley, Edward V., Jr.; Sigler, Michael F.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK USA. [Kachel, Nancy B.; Mordy, Calvin W.] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA. [Moore, Sue] NOAA, Off Sci & Technol, Natl Marine Fisheries Serv, Seattle, WA USA. [Napp, Jeffrey M.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA USA. [Pinchuk, Alexei I.] Univ Alaska, Seward Marine Ctr, Fairbanks, AK 99701 USA. RP Stabeno, PJ (reprint author), NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM Phyllis.stabeno@noaa.gov NR 66 TC 96 Z9 96 U1 7 U2 71 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 14 EP 30 DI 10.1016/j.dsr2.2012.02.019 PG 17 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200003 ER PT J AU Smart, TI Duffy-Anderson, JT Horne, JK Farley, EV Wilson, CD Napp, JM AF Smart, Tracey I. Duffy-Anderson, Janet T. Horne, John K. Farley, Edward V. Wilson, Christopher D. Napp, Jeffrey M. TI Influence of environment on walleye pollock eggs, larvae, and juveniles in the southeastern Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Walleye pollock; Early life stages; Environmental conditions; Generalized additive models; Theragra chalcogramma; Bering Sea ID SMALL-SCALE TURBULENCE; THERAGRA-CHALCOGRAMMA; SHELIKOF STRAIT; FEEDING CONDITIONS; PHASE-TRANSITIONS; CLIMATE-CHANGE; ALASKA; GULF; FISH; RECRUITMENT AB We examined the influence of environmental conditions on walleye pollock (Theragra chalcogramma) early life history in discrete stages at two ecological scales using a 17-year time series from the southeastern Bering Sea. Generalized additive models (GAMs) were used to quantify relationships between walleye pollock stages (eggs, yolksac larvae, preflexion larvae, late larvae, and juveniles), the fine-resolution environment (temperature, wind speed, salinity, and copepod concentration), and the broad-resolution environment (annual spawning stock biomass, temperature, zooplankton biomass, and wind mixing). Early stages (eggs, yolksac larvae, and preflexion larvae) were associated with high spawning stock biomass, while late stages (late larvae and juveniles) were not associated with spawning stock biomass. The influence of temperature increased with ontogeny: high egg abundance was associated with temperatures from -2 to 7 degrees C and negative annual temperature anomalies and high juvenile abundance was associated with temperatures from 4 to 12 degrees C and positive temperature anomalies. Winds enhanced the transport of early stages from spawning locations to shallower sampling depths, but did not affect feeding stages (preflexion larvae, late larvae, and juveniles) in a manner consistent with the encounter-turbulence hypothesis. Feeding stages were positively associated with localized copepod concentrations but not zooplankton biomass anomaly, suggesting that the localized measurements of potential prey is a better indicator compared to broad-scale conditions measured in areas where these stages do not necessarily occur. Broad-resolution covariates, however, explained a greater portion of the overall variation than did fine-resolution models. Of the environmental conditions examined, temperature explained more variation in abundance of walleye pollock early life stages than any other covariate. Temperature is likely a major driving force structuring variability in populations of walleye pollock in their first year of life, acting directly upon them and indirectly upon their physical habitat and prey community. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Smart, Tracey I.; Horne, John K.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Duffy-Anderson, Janet T.; Wilson, Christopher D.; Napp, Jeffrey M.] NOAA, RACE Div, Recruitment Proc Program, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Seattle, WA 98115 USA. [Farley, Edward V.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. RP Smart, TI (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. EM tis@u.washington.edu; janet.duffy-anderson@noaa.gov; jhorne@u.washington.edu; ed.farley@noaa.gov; chris.wilson@noaa.gov; jeff.napp@noaa.gov NR 52 TC 20 Z9 20 U1 3 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 196 EP 207 DI 10.1016/j.dsr2.2012.02.018 PG 12 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200016 ER PT J AU Hollowed, AB Barbeaux, SJ Cokelet, ED Farley, E Kotwicki, S Ressler, PH Spital, C Wilson, CD AF Hollowed, Anne B. Barbeaux, Steven J. Cokelet, Edward D. Farley, Ed Kotwicki, Stan Ressler, Patrick H. Spital, Cliff Wilson, Christopher D. TI Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Forage fish; Zoogeography; Bering Sea; Climate change; Cold pool ID POLLOCK THERAGRA-CHALCOGRAMMA; CAPELIN MALLOTUS-VILLOSUS; WALLEYE POLLOCK; SPATIAL-DISTRIBUTION; INTERSPECIFIC COMPETITION; PRIBILOF ISLANDS; FOOD-HABITS; SHELF; VARIABILITY; ECOSYSTEM AB This paper examines how climate variations influence the boundaries of suitable ocean habitat, and how these changes affect the spatial distribution and interactions between forage fishes in the southeastern Bering Sea shelf. The study focuses on the summer distributions of forage fish age-0 and age-1 walleye pollock. Theragra chalcogramma, and capelin, Mallotus villosus, observed during National Marine Fisheries Service summer acoustic trawl, surface trawl and bottom trawl surveys conducted in the Bering Sea between 2004 and 2009. We compare the responses of these forage fish to climate-induced shifts in ocean habitats. Habitat boundaries were defined using key explanatory variables including depth, bottom temperature and surface temperature, using general additive models. Bathymetry, bottom temperature and frontal zones formed boundaries between different groups of forage fishes. Age-0 pollock were dispersed throughout the middle domain (50-100 m depth) in well-stratified regions. In cold years the highest densities of age-Os were found in the southern regions of the middle domain waters in waters warmer than approximately 1 degrees C. In contrast, age-1 pollock were observed on the sea floor over the middle domain and in midwater in the northern outer domain in cold years and more broadly dispersed across the middle and outer domain in warm years. The demersal concentrations of age-1 pollock in the middle domain shows age-1 pollock tolerate a wide range of bottom temperatures. Midwater and demersal distributions of age-1 pollock exhibited a patchier distribution than age-0 pollock. Midwater concentrations of age-1 pollock tended to be associated with the outer domain and regions where higher levels of lower trophic level production are expected. Capelin were concentrated in the inner domain, a well-mixed region. The overlap of age-1 pollock and capelin was higher in cold years than in warm years. Published by Elsevier Ltd. C1 [Hollowed, Anne B.; Barbeaux, Steven J.; Kotwicki, Stan; Ressler, Patrick H.; Spital, Cliff; Wilson, Christopher D.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Farley, Ed; Spital, Cliff] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Auke Bay Lab, Juneau, AK 99801 USA. [Cokelet, Edward D.; Spital, Cliff] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Hollowed, AB (reprint author), NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM Anne.Hollowed@noaa.gov; Steve.Barbeaux@noaa.gov; Edward.D.Cokelet@noaa.gov; Ed.Farley@noaa.gov; Stan.Kotwicki@noaa.gov; Patrick.Ressier@noaa.gov; Chris.Wilson@noaa.gov NR 63 TC 41 Z9 41 U1 8 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 230 EP 250 DI 10.1016/j.dsr2.2012.02.008 PG 21 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200019 ER PT J AU Sigler, MF Kuletz, KJ Ressler, PH Friday, NA Wilson, CD Zerbini, AN AF Sigler, Michael F. Kuletz, Kathy J. Ressler, Patrick H. Friday, Nancy A. Wilson, Christopher D. Zerbini, Alexandre N. TI Marine predators and persistent prey in the southeast Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Seabirds; Whales; Prey; Persistence; Hot spots ID PRIBILOF ISLANDS; WALLEYE POLLOCK; SCHOOLING FISH; SEABIRDS; ABUNDANCE; ECOSYSTEM; AVAILABILITY; PATTERNS; FORAGE; AGGREGATIONS AB Predictable prey locations reduce search time and energetic costs of foraging; thus marine predators often exploit locations where prey concentrations persist. In our study, we examined whether this association is influenced by differences among predator species in foraging modes (travel cost, surface feeder or diver) or whether the predator species is a central place forager or not. We examined distributions of two seabird species during their nesting period, the surface-feeding black-legged kittiwake (Rissa tridactyla) and the pursuit-diving thick-billed murre (Uria lomvia), and two baleen whale species, the humpback whale (Megaptera novaeangliae) and the fin whale (Balaenoptera physalus), in relation to two key prey, age-1 walleye pollock (Theragra chalcogramma) and euphausiids (Euphausiidae). Prey surveys were conducted once each year during 2004 and 2006-2010. Concurrent predator surveys were conducted in 2006-2010 (seabirds) and 2008 and 2010 (whales). We compared the seabird and whale foraging locations to where age-1 pollock and euphausiids were concentrated and considered the persistence of these concentrations, where the time-scale of persistence is year (i.e., a comparison among surveys that are conducted once each year). Euphausiids were widespread and concentrations often were reliably found within specific 37 km x 37 km blocks ('persistent hot spots of prey'). In contrast, age-1 pollock were more concentrated and their hot spots were persistent only on coarser scales (> 37 km). Both seabird species, regardless of foraging mode, were associated with age-1 pollock but not with euphausiids, even though age-1 pollock were less persistent than euphausiids. The higher travel cost central place foragers, thick-billed murres, foraged at prey concentrations nearer their island colonies than black-legged kittiwakes, which were more widespread foragers. Humpback whales were not tied to a central place and mostly were located only where euphausiids were concentrated, and further, often in locations where these concentrations were persistent. Fin whales were associated with locations where age-1 pollock were more likely, similar to black-legged kittiwakes and thick-billed murres, but their association with euphausiids was unclear. Our results suggest that a predator's foraging mode and their restrictions during breeding affect their response to prey persistence. Published by Elsevier Ltd. C1 [Sigler, Michael F.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Kuletz, Kathy J.] US Fish & Wildlife Serv, Anchorage, AK 99503 USA. [Ressler, Patrick H.; Friday, Nancy A.; Wilson, Christopher D.; Zerbini, Alexandre N.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. RP Sigler, MF (reprint author), NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM Mike.Sigler@noaa.gov; Kathy_Kuletz@fws.gov; Patrick.Ressler@noaa.gov; Nancy.Friday@noaa.gov; Chris.Wilson@noaa.gov; Alex.Zerbini@noaa.gov RI Zerbini, Alexandre/G-4138-2012 NR 50 TC 29 Z9 29 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 292 EP 303 DI 10.1016/j.dsr2.2012.02.017 PG 12 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200023 ER PT J AU Peteet, DM Beh, M Orr, C Kurdyla, D Nichols, J Guilderson, T AF Peteet, D. M. Beh, M. Orr, C. Kurdyla, D. Nichols, J. Guilderson, T. TI Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATIC CHANGES; NORTH-AMERICA; NEW-ENGLAND; ATLANTIC; CIRCULATION; CALIBRATION; VEGETATION; USA AB The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26-21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28-23 cal. kyr (varve estimates). Utilizing accelerator mass spectrometry (AMS) C-14 dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 1615 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9-5 cal kyr; a landscape with no ice, yet no deposition in lakes. Our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt. Citation: Peteet, D. M., M. Beh, C. Orr, D. Kurdyla, J. Nichols, and T. Guilderson (2012), Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin?, Geophys. Res. Lett., 39, L11706, doi:10.1029/2012GL051884. C1 [Peteet, D. M.; Beh, M.; Orr, C.; Kurdyla, D.; Nichols, J.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Peteet, D. M.; Nichols, J.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Guilderson, T.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Peteet, DM (reprint author), Lamont Doherty Earth Observ, 61 Rte 9W, Palisades, NY 10964 USA. EM peteet@ldeo.columbia.edu FU NASA/GISS; Gary Comer Science and Education Foundation; NSF [ARC-1022979, OCE06-475574]; NASA; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX This research was supported by NASA/GISS, the Gary Comer Science and Education Foundation, partial support from the NSF (grant ARC-1022979) and an internship to Calder Orr. We thank Nicole Davi, Miriam Jones, Jennifer Levy, Beate Liepert, Argie Miller, Mike Previdi, Sanpisa Sritrairat, and Tamika Tannis for their arduous field effort. Thoughtful comments/edits were supplied by Patrick Applegate, Linda Heusser, Beate Liepert, Kirsten Menking, Pierre Richard, Emily Southgate, Ellen Thomas, Johan Varekamp, Debra Willard, and Daniel Wolff and two anonymous reviewers. Cores used in this project were stored in the LDEO Sample Repository, supported by the NSF (grant OCE06-475574). J. Nichols is supported by the NASA Postdoctoral Program. LDEO contribution 7554. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contracts W-7405-Eng-48 and DE-AC52-07NA27344. NR 33 TC 8 Z9 8 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 15 PY 2012 VL 39 AR L11706 DI 10.1029/2012GL051884 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 959WD UT WOS:000305347500001 ER PT J AU Sanin, AB Mitrofanov, IG Litvak, ML Malakhov, A Boynton, WV Chin, G Droege, G Evans, LG Garvin, J Golovin, DV Harshman, K McClanahan, TP Mokrousov, MI Mazarico, E Milikh, G Neumann, G Sagdeev, R Smith, DE Starr, RD Zuber, MT AF Sanin, A. B. Mitrofanov, I. G. Litvak, M. L. Malakhov, A. Boynton, W. V. Chin, G. Droege, G. Evans, L. G. Garvin, J. Golovin, D. V. Harshman, K. McClanahan, T. P. Mokrousov, M. I. Mazarico, E. Milikh, G. Neumann, G. Sagdeev, R. Smith, D. E. Starr, R. D. Zuber, M. T. TI Testing lunar permanently shadowed regions for water ice: LEND results from LRO SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID POLAR HYDROGEN DEPOSITS; RECONNAISSANCE ORBITER; SOUTH-POLE; SPATIAL-DISTRIBUTION; NEUTRON DETECTOR; MOON; PROSPECTOR; SURFACE AB We use measurements from the Lunar Exploration Neutron Detector (LEND) collimated sensors during more than one year of the mapping phase of NASA's Lunar Reconnaissance Orbiter (LRO) mission to make estimates of the epithermal neutron flux within known large Permanently Shadowed Regions (PSRs). These are compared with the local neutron background measured outside PSRs in sunlit regions. Individual and collective analyses of PSR properties have been performed. Only three large PSRs, Shoemaker and Cabeus in the south and Rozhdestvensky U in the north, have been found to manifest significant neutron suppression. All other PSRs have much smaller suppression, only a few percent, if at all. Some even display an excess of neutron emission in comparison to the sunlit vicinity around them. Testing PSRs collectively, we have not found any average suppression for them. Only the group of 18 large PSRs, with area >200 km(2), show a marginal effect of small average suppression, similar to 2%, with low statistical confidence. A similar to 2% suppression corresponds to similar to 125 ppm of hydrogen taking into account the global neutron suppression near the lunar poles and assuming a homogeneous H distribution in depth in the regolith. This means that all PSRs, except those in Shoemaker, Cabeus and Rozhdestvensky U craters, do not contain any significant amount of hydrogen in comparison with sunlit areas around them at the same latitude. C1 [Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Malakhov, A.; Golovin, D. V.; Mokrousov, M. I.] RAS, Inst Space Res, Moscow 117997, Russia. [Boynton, W. V.; Droege, G.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Chin, G.; Garvin, J.; McClanahan, T. P.; Mazarico, E.; Neumann, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Evans, L. G.] Comp Sci Corp, Lanham, MD USA. [Milikh, G.; Sagdeev, R.] Univ Maryland, Space Phys Dept, College Pk, MD 20742 USA. [Smith, D. E.; Zuber, M. T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Starr, R. D.] Catholic Univ Amer, Washington, DC 20064 USA. RP Sanin, AB (reprint author), RAS, Inst Space Res, Moscow 117997, Russia. EM sanin@mx.iki.rssi.ru RI Evans, Larry/F-7462-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU International Space Science Institute (ISSI, Bern, Switzerland) FX We wish to thank the International Space Science Institute (ISSI, Bern, Switzerland) for the support of research (included in the framework of international team " Nuclear Planetology" in 2007- 2010) presented in this paper. NR 31 TC 20 Z9 20 U1 2 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 15 PY 2012 VL 117 AR E00H26 DI 10.1029/2011JE003971 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 960JV UT WOS:000305384700001 ER PT J AU Aggarwal, M Joshi, HP Iyer, KN Kwak, YS Lee, JJ Chandra, H Cho, KS AF Aggarwal, Malini Joshi, H. P. Iyer, K. N. Kwak, Y. -S. Lee, J. J. Chandra, H. Cho, K. S. TI Day-to-day variability of equatorial anomaly in GPS-TEC during low solar activity period SO ADVANCES IN SPACE RESEARCH LA English DT Article DE GPS-total electron content (TEC); Equatorial ionization anomaly (EIA); Equatorial electrojet (EEJ) ID TOTAL ELECTRON-CONTENT; LATITUDE IONOSPHERE; ION TEMPERATURES; CREST REGION; F-LAYER; NORTHERN; MODEL; EUV; THERMOSPHERE; IONIZATION AB The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionization anomaly (EIA) crest region is investigated by using dual-frequency signals of the Global Positioning System (GPS) acquired from Rajkot (Geog. Lat. 22.29 degrees N, Geog. Long. 70.74 degrees E; Geom. Lat. 14.21 degrees N, Geom. Long.144.90 degrees E), India. The day-to-day variability of EIA characteristics is examined during low solar activity period (F10.7 similar to 83 sfu). It is found that the daily maximum TEC at EIA crest exhibits a day-to-day and strong semi-annual variability. The seasonal anomaly and equinoctial asymmetry in TEC at EIA is found non-existent and weaker, respectively. We found a moderate and positive correlation of daily magnitude of crest, Ic with daily F10.7 and EUV fluxes with a correlation coefficient of 0.43 and 0.33, respectively indicating an existence of a short-term relation between TEC at EIA and the solar radiation even during low solar activity period. The correlation of daily Ic with Dst index is also moderate (r = -0.35), whereas no correlation is found with the daily Kp index (r = 0.14) respectively. We found that the magnitude of EIA crest is moderately correlated with solar flux in all seasons except winter where it is weakly related (0.27). The magnitude of EIA crest is also found highly related with EEJ strength in spring (r = 0.69) and summer (r = 0.65) than autumn (0.5) and winter (r = 0.47), though EEJ is stronger in autumn than spring. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Aggarwal, Malini; Lee, J. J.; Cho, K. S.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Joshi, H. P.; Iyer, K. N.] Saurashtra Univ, Dept Phys, Rajkot 360005, Gujarat, India. [Chandra, H.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Cho, K. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cho, K. S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Aggarwal, M (reprint author), Korea Astron & Space Sci Inst, Taejon 305348, South Korea. EM asmalini@rediffmail.com; hp.joshi.hp@gmail.com; iyerkn@yahoo.com; yskwak@kasi.re.kr; jjlee@kasi.re.kr; chandra@prl.res.in; kscho@kasi.re.kr RI Aggarwal, Malini/O-1612-2014 FU KASI, Korea; ISRO, India; UGC-SAP FX MA is grateful to KASI, Korea for providing the fellowship to carry out this work. She is also grateful to ISRO, India for providing the fellowship during the collection of GPS-TEC data. The GPS receiver at Saurashtra University, Rajkot was procured under the UGC-SAP grant. We acknowledge Indian Institute of Geomagnetism (IIG), Mumbai, India and WDC Kyoto University, NGDC, Boulder and SOHO websites for the geomagnetic and solar data. The authors are grateful to the reviewers for their very careful corrections, comments and suggestions in improving the manuscript. NR 52 TC 8 Z9 9 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 15 PY 2012 VL 49 IS 12 BP 1709 EP 1720 DI 10.1016/j.asr.2012.03.005 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 952JD UT WOS:000304787900008 ER PT J AU Joy, KH Zolensky, ME Nagashima, K Huss, GR Ross, DK McKay, DS Kring, DA AF Joy, Katherine H. Zolensky, Michael E. Nagashima, Kazuhide Huss, Gary R. Ross, D. Kent McKay, David S. Kring, David A. TI Direct Detection of Projectile Relics from the End of the Lunar Basin-Forming Epoch SO SCIENCE LA English DT Article ID LATE HEAVY BOMBARDMENT; TERRESTRIAL PLANETS; MELT BRECCIAS; IMPACT; MOON; METEORITES; CHONDRITE; ORIGIN; PERIOD; PETROGENESIS AB The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch. C1 [Joy, Katherine H.; Kring, David A.] Univ Space Res Assoc, Ctr Lunar Sci & Explorat, Lunar & Planetary Inst, Houston, TX 77058 USA. [Joy, Katherine H.; Zolensky, Michael E.; McKay, David S.; Kring, David A.] NASA, Lunar Sci Inst, Houston, TX 77058 USA. [Zolensky, Michael E.; Ross, D. Kent; McKay, David S.] NASA, Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Nagashima, Kazuhide; Huss, Gary R.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Ross, D. Kent] Jacobs Technol, Engn & Sci Contract Grp, Houston, TX 77058 USA. RP Joy, KH (reprint author), Univ Space Res Assoc, Ctr Lunar Sci & Explorat, Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM joy@lpi.usra.edu OI Joy, Katherine/0000-0003-4992-8750 FU NASA Lunar Science Institute [NNA09DB33A]; NASA [NNX11AG78G, NNX08AH77G] FX The data reported in this paper are tabulated in the supplementary materials. This research was funded by NASA Lunar Science Institute contract NNA09DB33A (D.A.K.), NASA Cosmochemistry grant NNX11AG78G (G.R.H.), and NASA Cosmochemistry grant NNX08AH77G (K.N.). This is Lunar and Planetary Institute contribution number 1665. We thank the three reviewers for helpful comments and D. Mittlefehldt, J. Berlin, R. Jones, and H. McSween for sharing meteorite data sets. NR 41 TC 40 Z9 41 U1 0 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 15 PY 2012 VL 336 IS 6087 BP 1426 EP 1429 DI 10.1126/science.1219633 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 958BT UT WOS:000305211700041 PM 22604725 ER PT J AU Casey, T Zakrzewska, EI Maple, RL Lintault, L Wade, CE Baer, LA Ronca, AE Plaut, K AF Casey, Theresa Zakrzewska, Elzbieta I. Maple, Rhonda L. Lintault, Laura Wade, Charles E. Baer, Lisa A. Ronca, April E. Plaut, Karen TI Hypergravity disruption of homeorhetic adaptations to lactation in rat dams include changes in circadian clocks SO BIOLOGY OPEN LA English DT Article DE Circadian; Hypergravity; Homeorhesis; Lactation; Mammary; Pregnancy AB Altered gravity load induced by spaceflight (microgravity) and centrifugation (hypergravity) is associated with changes in circadian, metabolic, and reproductive systems. Exposure to 2-g hypergravity (HG) during pregnancy and lactation decreased rate of mammary metabolic activity and increased pup mortality. We hypothesize HG disrupted maternal homeorhetic responses to pregnancy and lactation are due to changes in maternal metabolism, hormone concentrations, and maternal behavior related to gravity induced alterations in circadian clocks. Effect of HG exposure on mammary, liver and adipose tissue metabolism, plasma hormones and maternal behavior were analyzed in rat dams from mid-pregnancy (Gestational day [G] 11) through early lactation (Postnatal day [P] 3); comparisons were made across five time-points: G20, G21, P0 (labor and delivery), P1 and P3. Blood, mammary, liver, and adipose tissue were collected for analyzing plasma hormones, glucose oxidation to CO2 and incorporation into lipids, or gene expression. Maternal behavioral phenotyping was conducted using time-lapse videographic analyses. Dam and fetal-pup body mass were significantly reduced in HG in all age groups. HG did not affect labor and delivery; however, HG pups experienced a greater rate of mortality. PRL, corticosterone, and insulin levels and receptor genes were altered by HG. Mammary, liver and adipose tissue metabolism and expression of genes that regulate lipid metabolism were altered by HG exposure. Exposure to HG significantly changed expression of core clock genes in mammary and liver and circadian rhythms of maternal behavior. Gravity load alterations in dam's circadian system may have impacted homeorhetic adaptations needed for a successful lactation. (C) 2012. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License. C1 [Casey, Theresa; Plaut, Karen] Purdue Univ, Dept Anim Sci, W Lafayette, IN 47907 USA. [Zakrzewska, Elzbieta I.; Maple, Rhonda L.; Lintault, Laura] Univ Vermont, Dept Anim Sci, Burlington, VT 05405 USA. [Wade, Charles E.; Baer, Lisa A.; Ronca, April E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ronca, April E.] Wake Forest Univ, Bowman Gray Sch Med, Dept Obstet & Gynecol, Winston Salem, NC 27101 USA. RP Casey, T (reprint author), Purdue Univ, Dept Anim Sci, W Lafayette, IN 47907 USA. EM theresa-casey@purdue.edu FU NASA [NCC2-1373, NCC5-581, NNA04CK83]; NIH [HD50201] FX In terms of funding, this project was supported by NASA NCC2-1373, NASA EPSCoR NCC5-581, NASA Grant NNA04CK83, and NIH Grant HD50201. NR 76 TC 6 Z9 6 U1 0 U2 7 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 2046-6390 J9 BIOL OPEN JI Biol. Open PD JUN 15 PY 2012 VL 1 IS 6 BP 570 EP 581 DI 10.1242/bio.2012687 PG 12 WC Biology SC Life Sciences & Biomedicine - Other Topics GA V36ID UT WOS:000209205100008 PM 23213450 ER PT J AU Velbel, MA Tonui, EK Zolensky, ME AF Velbel, Michael A. Tonui, Eric K. Zolensky, Michael E. TI Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2) SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FINE-GRAINED RIMS; ROCK-FORMING MINERALS; EARLY SOLAR-SYSTEM; X-RAY-DIFFRACTION; AQUEOUS ALTERATION; PARENT BODIES; DISSOLUTION KINETICS; WEATHERING PRODUCTS; SURFACE CONDITIONS; MODAL MINERALOGY AB Coarse (chondrule and isolated) olivine in some CM chondrites is replaced by serpentine in both centripetal and meshwork replacement textures. Locally preserved textures formed by partial replacement of coarse olivine by serpentine in the carbonaceous chondrite Nogoya (CM2) establish unique associations between each individual mass of serpentine and the specific olivine from which that serpentine formed. Electron probe microanalyses show that the composition of serpentine replacing coarse olivine is uniform throughout all analyzed volumes of Nogoya, and is independent of the composition of the olivine being replaced. If, as previously proposed, late-stage alteration fluids were Mg-rich because Fe-source minerals were depleted in earlier stages, then the uniform Mg-rich composition of the serpentine replacing large silicate grains during advanced stages of alteration may indicate diffusional homogenization of the aqueous solutions over progressively larger spatial scales, enabled by long timescales and previously proposed stagnant or slow-moving fluids. The range of olivine compositions replaced in Nogoya is even larger than previously reported from ALH 81002 (CM2). This militates against hypotheses of strong primary-mineral control on the compositions of alteration products, at least at advanced stages of alteration. The serpentine formed by olivine replacement in Nogoya is more magnesian than the counterpart serpentine replacing all anhydrous primary silicates in ALH 81002. This intermeteorite heterogeneity of replacement-serpentine composition between ALH 81002 and Nogoya indicates that the aqueous solutions in which the olivine-serpentine replacement reactions occurred were of different compositions in the two different CM parent-body volumes sampled by ALH 81002 and Nogoya. The more magnesian character of serpentines in Nogoya than in ALH 81002 indicates that the Nogoya aqueous-alteration environment was even more highly evolved toward Mg-rich solutions than the environment indicated by the composition of the serpentine in ALH 81002. Persistence of primary-silicate remnants within centripetal and meshwork serpentine indicates that either the aqueous alteration episodes in the parent-body volumes represented by individual meteorites were too short to allow complete replacement of olivine by serpentine, or one or more reactants (most likely water) were completely consumed before the coarse primary silicate was completely replaced. Seemingly incompatible arguments for and against primary-mineral control of serpentine composition during CM chondrite alteration may be reconciled by considering the different grain sizes and reaction timescales that likely existed in different textural settings. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Velbel, Michael A.] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA. [Tonui, Eric K.] BP Amer Inc, Upstream Technol, Houston, TX 77079 USA. [Zolensky, Michael E.] NASA, KT Astromat Res & Explorat Sci, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Velbel, MA (reprint author), Michigan State Univ, Dept Geol Sci, 206 Nat Sci Bldg, E Lansing, MI 48824 USA. EM velbel@msu.edu FU Michigan Space Grant Consortium; Michigan State University Honors College; NASA/ASEE; NASA [NAG 9-1211] FX We thank our colleagues Hap McSween, Adrian Brearley, Frans Rietmeijer, Bob Clayton, Alan Rubin, Jeff Grossman, Anton Kearsley, and Ed Young for helpful discussions; current and former MSU students Jason Price, Cari Corrigan, Amy McAdam, Angela Donatelle, Dan Snyder, Anna Losiak, Kathleen Jeffery, Gabrielle Tepp, Laurel Eibach, and Mike Wright for assistance in the laboratory and stimulating discussions; Craig Schwandt and Loan Le at NASA-JSC for assistance with the electron probe microanalysis; Ewa Danielewicz and Abigail Tirrell (Michigan State University Center for Advanced Microscopy) for assistance with the scanning electron microscopy; Kurt Stepnitz for assembling the digital photomosaics; and Harley Seeley for preparation of the final images. Thorough reviews by Adrian Brearley, Phil Bland, and Neyda Abreu, and comments by Associate Editor Alexander Krot, were most helpful in preparing the final draft, and are greatly appreciated. This research was supported by two Michigan Space Grant Consortium Research Seed Grants, a Michigan State University Honors College Honors Research Seminar, a NASA/ASEE Summer Faculty Fellowship, and NASA Grant NAG 9-1211. NR 107 TC 16 Z9 16 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2012 VL 87 BP 117 EP 135 DI 10.1016/j.gca.2012.03.016 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 944LI UT WOS:000304202900008 ER PT J AU Walter, F Decarli, R Carilli, C Bertoldi, F Cox, P Da Cunha, E Daddi, E Dickinson, M Downes, D Elbaz, D Ellis, R Hodge, J Neri, R Riechers, DA Weiss, A Bell, E Dannerbauer, H Krips, M Krumholz, M Lentati, L Maiolino, R Menten, K Rix, HW Robertson, B Spinrad, H Stark, DP Stern, D AF Walter, Fabian Decarli, Roberto Carilli, Chris Bertoldi, Frank Cox, Pierre Da Cunha, Elisabete Daddi, Emanuele Dickinson, Mark Downes, Dennis Elbaz, David Ellis, Richard Hodge, Jacqueline Neri, Roberto Riechers, Dominik A. Weiss, Axel Bell, Eric Dannerbauer, Helmut Krips, Melanie Krumholz, Mark Lentati, Lindley Maiolino, Roberto Menten, Karl Rix, Hans-Walter Robertson, Brant Spinrad, Hyron Stark, Dan P. Stern, Daniel TI The intense starburst HDF 850.1 in a galaxy overdensity at z approximate to 5.2 in the Hubble Deep Field SO NATURE LA English DT Article ID BRIGHTEST SUBMILLIMETER SOURCE; MOLECULAR GAS; HIGH-REDSHIFT; STAR-FORMATION; BIG-BANG; NORTH; IDENTIFICATION; CONSTRAINTS; INDICATOR; OBJECT AB The Hubble Deep Field provides one of the deepest multiwave-length views of the distant Universe and has led to the detection of thousands of galaxies seen throughout cosmic time(1). An early map of the Hubble Deep Field at a wavelength of 850 micrometres, which is sensitive to dust emission powered by star formation, revealed the brightest source in the field, dubbed HDF 850.1 (ref. 2). For more than a decade, and despite significant efforts, no counterpart was found at shorter wavelengths, and it was not possible to determine its redshift, size or mass(3-7). Here we report a redshift of z = 5.183 for HDF 850.1, from a millimetre-wave molecular line scan. This places HDF 850.1 in a galaxy overdensity at z approximate to 5.2, corresponding to a cosmic age of only 1.1 billion years after the Big Bang. This redshift is significantly higher than earlier estimates(3,4,6,8) and higher than those of most of the hundreds of submillimetre-bright galaxies identified so far. The source has a star-formation rate of 850 solar masses per year and is spatially resolved on scales of 5 kiloparsecs, with an implied dynamical mass of about 1.3 x 10(11) solar masses, a significant fraction of which is present in the form of molecular gas. Despite our accurate determination of redshift and position, a counterpart emitting starlight remains elusive. C1 [Walter, Fabian; Decarli, Roberto; Da Cunha, Elisabete; Hodge, Jacqueline; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Walter, Fabian; Carilli, Chris] Natl Radio Astron Observ, Pete V Domenici Array Sci Ctr, Socorro, NM 87801 USA. [Carilli, Chris; Lentati, Lindley; Maiolino, Roberto] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bertoldi, Frank] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Cox, Pierre; Downes, Dennis; Neri, Roberto; Krips, Melanie] IRAM, F-38406 St Martin Dheres, France. [Da Cunha, Elisabete; Elbaz, David] Univ Paris Diderot, Lab AIM, CEA, DSM,CNRS,Irfu Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Ellis, Richard; Riechers, Dominik A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Weiss, Axel; Menten, Karl] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Bell, Eric] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Dannerbauer, Helmut] Univ Vienna, Inst Astron, A-1080 Vienna, Austria. [Krumholz, Mark] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Maiolino, Roberto] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Robertson, Brant; Stark, Dan P.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Spinrad, Hyron] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Walter, F (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM walter@mpia.de RI Daddi, Emanuele/D-1649-2012 OI Daddi, Emanuele/0000-0002-3331-9590 FU MPG (Germany); INSU/CNRS (France); IGN (Spain); NASA; DLR [FKZ 50OR1004] FX This work is based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by MPG (Germany), INSU/CNRS (France) and IGN (Spain). The Jansky Very Large Array of NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. D. A. R. acknowledges support from NASA through a Spitzer Space Telescope grant. R. D. acknowledges funding through DLR project FKZ 50OR1004. NR 30 TC 95 Z9 95 U1 1 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 14 PY 2012 VL 486 IS 7402 BP 233 EP 236 DI 10.1038/nature11073 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 957UH UT WOS:000305189000029 PM 22699613 ER PT J AU Reuveni, Y Kedar, S Owen, SE Moore, AW Webb, FH AF Reuveni, Yuval Kedar, Sharon Owen, Susan E. Moore, Angelyn W. Webb, Frank H. TI Improving sub-daily strain estimates using GPS measurements SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GLOBAL POSITIONING SYSTEM; EARTHQUAKE SEQUENCE; MAPPING FUNCTIONS; KILAUEA VOLCANO; DELAY; DEFORMATION; ATMOSPHERE; GRADIENTS AB We present an improved GPS analysis strategy that reduces the noise level of GPS-based sub-daily strain measurements by a factor of similar to 5 or more and improves sub-daily resolution of positions and baseline estimates by a factor of similar to 2-5. These improvements are accomplished by reducing the key sources of error due to diurnal effects from path delays caused by reflections and refractions of the GPS signal near the receiver (multipath), and from tropospheric delays. Errors due to poorly determined tropospheric path delays are mitigated by using the tropospheric parameters estimated in static positioning runs as fixed values. The multipath effects are treated as periodic errors and are mitigated by a modified sidereal filter applied to the phase prior to processing. This combination of path error modeling results in sub-daily strain resolution on the order of similar to 0.1 mu strain for a similar to 100 k mbaseline. Citation: Reuveni, Y., S. Kedar, S. E. Owen, A. W. Moore, and F. H. Webb (2012), Improving sub-daily strain estimates using GPS measurements, Geophys. Res. Lett., 39, L11311, doi:10.1029/2012GL051927. C1 [Reuveni, Yuval; Kedar, Sharon; Owen, Susan E.; Moore, Angelyn W.; Webb, Frank H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Reuveni, Y (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 238-634, Pasadena, CA 91109 USA. EM yuval.reuveni@jpl.nasa.gov RI Reuveni, Yuval/J-8287-2015 FU National Aeronautics and Space Administration FX The authors wish to thank the editor, reviewers and Duncan Agnew for their thoughtful and constructive critique of the manuscript. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 36 TC 7 Z9 7 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 12 PY 2012 VL 39 AR L11311 DI 10.1029/2012GL051927 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 959VX UT WOS:000305346700001 ER PT J AU Turyshev, SG Toth, VT Kinsella, G Lee, SC Lok, SM Ellis, J AF Turyshev, Slava G. Toth, Viktor T. Kinsella, Gary Lee, Siu-Chun Lok, Shing M. Ellis, Jordan TI Support for the Thermal Origin of the Pioneer Anomaly SO PHYSICAL REVIEW LETTERS LA English DT Article ID LONG-RANGE ACCELERATION; ULYSSES DATA; GALILEO; WEAK AB We investigate the possibility that the anomalous acceleration of the Pioneer 10 and 11 spacecraft is due to the recoil force associated with an anisotropic emission of thermal radiation off the vehicles. To this end, relying on the project and spacecraft design documentation, we constructed a comprehensive finite-element thermal model of the two spacecraft. Then, we numerically solve thermal conduction and radiation equations using the actual flight telemetry as boundary conditions. We use the results of this model to evaluate the effect of the thermal recoil force on the Pioneer 10 spacecraft at various heliocentric distances. We found that the magnitude, temporal behavior, and direction of the resulting thermal acceleration are all similar to the properties of the observed anomaly. As a novel element of our investigation, we develop a parametrized model for the thermal recoil force and estimate the coefficients of this model independently from navigational Doppler data. We find no statistically significant difference between the two estimates and conclude that, once the thermal recoil force is properly accounted for, no anomalous acceleration remains. C1 [Turyshev, Slava G.; Kinsella, Gary; Ellis, Jordan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lee, Siu-Chun; Lok, Shing M.] Appl Sci Lab, Baldwin Pk, CA 91706 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Ellis, John/J-2222-2012; Toth, Viktor/D-3502-2009 OI Ellis, John/0000-0002-7399-0813; Toth, Viktor/0000-0003-3651-9843 FU Planetary Society; National Aeronautics and Space Administration FX We thank G. L. Goltz, K. J. Lee, and N. A. Mottinger of JPL for their indispensable help with the Pioneer Doppler data recovery. We thank W. M. Folkner, T. P. McElrath, M. M. Watkins, and J. G. Williams of JPL for their interest, support, and encouragement. We also thank L. K. Scheffer and C. B. Markwardt for many helpful conversations. We thank The Planetary Society for their long-lasting interest and support. This work in part was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 15 TC 46 Z9 46 U1 4 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2012 VL 108 IS 24 AR 241101 DI 10.1103/PhysRevLett.108.241101 PG 5 WC Physics, Multidisciplinary SC Physics GA 956UV UT WOS:000305115700003 PM 23004253 ER PT J AU Myneni, K Smith, DD Odutola, JA Schambeau, CA AF Myneni, Krishna Smith, David D. Odutola, Jamiu A. Schambeau, Charles A. TI Tuning the scale factor and sensitivity of a passive cavity with optical pumping SO PHYSICAL REVIEW A LA English DT Article AB The pushing of the Fabry-Perot cavity modes by an intracavity medium of Rb vapor may be tuned with optical pumping. A second laser, propagating through the Rb vapor orthogonal to the intracavity beam, is used to modify the optical transmission of the Rb vapor. We demonstrate that the cavity scale factor may be switched from S > 1, on one side of its pole along the gain axis, to the other side of the pole, where mode splitting occurs, simply by changing the pumping transition. Continuous tuning of the cavity scale factor and sensitivity may be realized by varying the intensity and/or frequency of the pump beam. C1 [Myneni, Krishna] USA, RDMR WSS, Res Dev & Engn Command, Redstone Arsenal, AL 35898 USA. [Smith, David D.] NASA, George C Marshall Space Flight Ctr, Spacecraft & Vehicle Syst Dept, Huntsville, AL 35812 USA. [Odutola, Jamiu A.] Alabama A&M Univ, Dept Nat & Phys Sci Chem, Normal, AL 35762 USA. [Schambeau, Charles A.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. RP Myneni, K (reprint author), USA, RDMR WSS, Res Dev & Engn Command, Redstone Arsenal, AL 35898 USA. EM krishna.myneni@us.army.mil NR 17 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JUN 11 PY 2012 VL 85 IS 6 AR 063813 DI 10.1103/PhysRevA.85.063813 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 956KG UT WOS:000305087900012 ER PT J AU Martin, S Booth, A Liewer, K Raouf, N Loya, F Tang, H AF Martin, Stefan Booth, Andrew Liewer, Kurt Raouf, Nasrat Loya, Frank Tang, Hong TI High performance testbed for four-beam infrared interferometric nulling and exoplanet detection SO APPLIED OPTICS LA English DT Article ID STARLIGHT SUPPRESSION; BROAD-BAND; MISSION; PLANETS; SEARCH; PHASE AB Technology development for a space-based infrared nulling interferometer capable of earthlike exoplanet detection and characterization started in earnest in the last 10 years. At the Jet Propulsion Laboratory, the planet detection testbed was developed to demonstrate the principal components of the beam combiner train for a high performance four-beam nulling interferometer. Early in the development of the testbed, the importance of "instability noise" for nulling interferometer sensitivity was recognized, and the four-beam testbed would produce this noise, allowing investigation of methods for mitigating this noise source. The testbed contains the required features of a four-beam combiner for a space interferometer and performs at a level matching that needed for the space mission. This paper describes in detail the design, functions, and controls of the testbed. (C) 2012 Optical Society of America C1 [Martin, Stefan; Booth, Andrew; Liewer, Kurt; Raouf, Nasrat; Loya, Frank; Tang, Hong] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Booth, Andrew] Sigma Space Corp, Lanham, MD 20706 USA. RP Martin, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM stefan.r.martin@jpl.nasa.gov FU NASA FX Many people participated in testbed development over several years, including Piotr Szwaykowski (optical engineering), Oliver Lay (analysis and traceability to flight), Randall Bartos (engineering), Boris Lurie (controls systems), Santos Felipe Fregoso (software), Francisco Aguayo (engineering), Martin Marcin (optical engineering), Ray Lam (software), Andrew Lowman (optical engineering), Steve Monacos (electronics engineering), Robert Peters (optical engineering), and Muthu Jeganathan (optical engineering). The authors are also grateful to Mike Devirian and to Peter Lawson for their tireless support of the testbed. The work reported here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The mention of any commercial product herein does not constitute an endorsement. NR 24 TC 5 Z9 5 U1 1 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 10 PY 2012 VL 51 IS 17 BP 3907 EP 3921 DI 10.1364/AO.51.003907 PG 15 WC Optics SC Optics GA 958XN UT WOS:000305274400025 PM 22695670 ER PT J AU Dall'Ora, M Kinemuchi, K Ripepi, V Rodgers, CT Clementini, G Di Fabrizio, L Smith, HA Marconi, M Musella, I Greco, C Kuehn, CA Catelan, M Pritzl, BJ Beers, TC AF Dall'Ora, M. Kinemuchi, Karen Ripepi, Vincenzo Rodgers, Christopher T. Clementini, Gisella Di Fabrizio, Luca Smith, Horace A. Marconi, Marcella Musella, Ilaria Greco, Claudia Kuehn, Charles A. Catelan, Marcio Pritzl, Barton J. Beers, Timothy C. TI STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: individual (Ursa Major II); stars: distances; stars: variables: RR Lyrae; techniques: photometric ID MILKY-WAY SATELLITE; METAL-POOR STARS; RR-LYRAE STARS; COLOR-MAGNITUDE DIAGRAM; LARGE-MAGELLANIC-CLOUD; VARIABLE-STARS; COMA BERENICES; ORPHAN STREAM; LOCAL GROUP; SPECTROSCOPIC SURVEY AB We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V similar to 15 to V similar to 23.5 mag and extending over an 18 x 18 arcmin(2) area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V similar to 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m-M) 0 = 17.70 +/- 0.04 +/- 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7(-0.7)(+0.6)((+2.0)(-1.9))kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 +/- 0.04 dex and -1.33 +/- 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II. C1 [Dall'Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Kinemuchi, Karen] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Rodgers, Christopher T.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Clementini, Gisella] Osservatorio Astron Bologna, INAF, Bologna, Italy. [Di Fabrizio, Luca] Ctr Galileo Galilei & Telescopio Nazl Galileo, INAF, S Cruz De La Palma, Spain. [Smith, Horace A.; Kuehn, Charles A.; Beers, Timothy C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Greco, Claudia] Observ Geneva, CH-1290 Sauverny, Switzerland. [Catelan, Marcio] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Pritzl, Barton J.] Univ Wisconsin, Dept Phys & Astron, Oshkosh, WI 54901 USA. [Beers, Timothy C.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Dall'Ora, M (reprint author), Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. EM dallora@na.astro.it; karen.kinemuchi@nasa.gov; ripepi@na.astro.it; crodgers@uwyo.edu; gisella.clementini@oabo.inaf.it; difabrizio@tng.iac.es; smith@pa.msu.edu; marcella@na.astro.it; ilaria@na.astro.it; claudia.greco@obs.unige.ch; kuehncha@msu.edu; mcatelan@astro.puc.cl; pritzlb@uwosh.edu; beers@pa.msu.edu OI Musella, Ilaria/0000-0001-5909-6615; Marconi, Marcella/0000-0002-1330-2927 FU NSF [AST-0079541, AST-0607249, AST-0707756]; Italian PRIN MUR; COFIS ASI-INAF [I/016/07/0]; ASI-INAF [I/009/10/0]; Chilean Ministry for the Economy, Development, and Tourisms Programa Iniciativa Cientifica Milenio [P07-021-F]; BASAL Center for Astrophysics and Associated Technologies [PFB-06]; FONDAP Center for Astrophysics [15010003]; Proyecto Fondecyt Regular [1110326]; Proyecto Anillo [ACT-86]; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), U.S. National Science Foundation [PHY 02-16783, PHY 08-22648] FX We thank an anonymous referee for helpful comments, which greatly improved both the scientific accuracy and the readability of this paper. We warmly thank Evan Kirby and Joshua Simon for providing us identification and individual metallicities for member stars of the UMa IIUFD. PRISM was developed with support from NSF (AST-0079541, PI: K. A. Janes) with additional support from Boston University and Lowell Observatory. We also thank Benjamin Kelly and Laura Portscheller for having joined us in the first phase of this project. We acknowledge financial contribution from the Italian PRIN MUR 2007 "Multiple stellar populations in globular clusters: census, characterization and origin," PI: G. Piotto, from COFIS ASI-INAF I/016/07/0, and from the agreement ASI-INAF I/009/10/0. H. A. S. thanks the NSF for support under grants AST-0607249 and AST-0707756. M. C. acknowledges support by the Chilean Ministry for the Economy, Development, and Tourisms Programa Iniciativa Cientifica Milenio through grant P07-021-F, awarded to The Milky Way Millennium Nucleus; by the BASAL Center for Astrophysics and Associated Technologies (PFB-06); by the FONDAP Center for Astrophysics (15010003); by Proyecto Fondecyt Regular 1110326; and by Proyecto Anillo ACT-86. T. C. B. acknowledges partial funding of this work from grants PHY 02-16783 and PHY 08-22648: Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. NR 63 TC 19 Z9 19 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 42 DI 10.1088/0004-637X/752/1/42 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400042 ER PT J AU Godet, O Plazolles, B Kawaguchi, T Lasota, JP Barret, D Farrell, SA Braito, V Servillat, M Webb, N Gehrels, N AF Godet, O. Plazolles, B. Kawaguchi, T. Lasota, J. -P. Barret, D. Farrell, S. A. Braito, V. Servillat, M. Webb, N. Gehrels, N. TI INVESTIGATING SLIM DISK SOLUTIONS FOR HLX-1 IN ESO 243-49 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; galaxies: individual (ESO 243-49); methods: data analysis; X-rays: individuals (HLX-1) ID X-RAY SOURCES; MASS BLACK-HOLE; SPECTRAL STATE TRANSITIONS; NOVA MUSCAE 1991; ACCRETION DISKS; VARIABILITY; BINARIES; MODEL; IRRADIATION; EVOLUTION AB The hyperluminous X-ray source HLX-1 in the galaxy ESO 243-49, currently the best intermediate-mass black hole (BH) candidate, displays spectral transitions similar to those observed in Galactic BH binaries, but with a luminosity 100-1000 times higher. We investigated the X-ray properties of this unique source by fitting multiepoch data collected by Swift, XMM-Newton, and Chandra with a disk model computing spectra for a wide range of sub- and super-Eddington accretion rates assuming a non-spinning BH and a face-on disk (i = 0 degrees). Under these assumptions we find that the BH in HLX-1 is in the intermediate-mass range (similar to 2 x 10(4) M-circle dot) and the accretion flow is in the sub-Eddington regime. The disk radiation efficiency is eta = 0.11 +/- 0.03. We also show that the source does follow the L-X alpha T-4 relation for our mass estimate. At the outburst peaks, the source radiates near the Eddington limit. The accretion rate then stays constant around 4 x 10(-4) M-circle dot yr(-1) for several days and then decreases exponentially. Such "plateaus" in the accretion rate could be evidence that enhanced mass-transfer rate is the driving outburst mechanism in HLX-1. We also report on the new outburst observed in 2011 August by the Swift X-Ray Telescope. The time of this new outburst further strengthens the similar to 1 year recurrence timescale. C1 [Godet, O.; Plazolles, B.; Barret, D.; Webb, N.] Univ Toulouse, UPS, IRAP, F-31028 Toulouse 4, France. [Godet, O.; Plazolles, B.; Barret, D.; Webb, N.] CNRS, UMR5277, F-31028 Toulouse, France. [Kawaguchi, T.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Lasota, J. -P.] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Lasota, J. -P.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Farrell, S. A.; Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Farrell, S. A.] Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Servillat, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Godet, O (reprint author), Univ Toulouse, UPS, IRAP, 9 Ave Colonel Roche, F-31028 Toulouse 4, France. OI Braito, Valentina/0000-0002-2629-4989 FU NASA [GO0-11063X, DD0-11050X]; NSF [AST-0909073]; UK Science and Technology Funding Council; Australian Research Council [DP110102889]; UK STFC research council; French Space Agency CNES FX We thank the anonymous referee for his useful comments that helped to improve the paper. We are grateful to Ken Ebisawa and Takashi Okajima for creating a new fits model for XSPEC incorporating the extended black hole mass ranges. We thank Shane Davis for his useful suggestions during the writing of this paper. M.S. acknowledges supports from NASA/Chandra Grants GO0-11063X, DD0-11050X and NSF Grant AST-0909073. S.A.F. acknowledges funding from the UK Science and Technology Funding Council. S.A.F. is the recipient of an Australian Research Council Postdoctoral Fellowship, funded by grant DP110102889. V.B. acknowledge support from the UK STFC research council. J.P.L. acknowledges support from the French Space Agency CNES. NR 60 TC 28 Z9 28 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 34 DI 10.1088/0004-637X/752/1/34 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400034 ER PT J AU Hu, RY Ehlmann, BL Seager, S AF Hu, Renyu Ehlmann, Bethany L. Seager, Sara TI THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES SO ASTROPHYSICAL JOURNAL LA English DT Article DE atmospheric effects; planets and satellites: general; techniques: photometric; techniques: spectroscopic ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; THERMAL EMISSION-SPECTROSCOPY; SUN-LIKE STAR; PLANETARY SURFACES; WARM-SPITZER; MU-M; MERCURY; MARS; MOON; SPACE AB We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 mu m and 15-25 mu m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A(g)(K) - A(g)(J)): A(g)(K) - A(g)(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A(g)(K) - A(g)(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice. C1 [Hu, Renyu; Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hu, RY (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM hury@mit.edu FU NASA Earth and Space Science Fellowship [NESSF/NNX11AP47H] FX Thanks to P. Isaacson for providing M3 lunar spectra and W. Calvin for providing modeled water ice spectra. R.H. is supported by NASA Earth and Space Science Fellowship (NESSF/NNX11AP47H). NR 80 TC 16 Z9 16 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 7 DI 10.1088/0004-637X/752/1/7 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400007 ER PT J AU Kelly, BC Shetty, R Stutz, AM Kauffmann, J Goodman, AA Launhardt, R AF Kelly, Brandon C. Shetty, Rahul Stutz, Amelia M. Kauffmann, Jens Goodman, Alyssa A. Launhardt, Ralf TI DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: ISM; ISM: structure; methods: data analysis; methods: statistical; stars: formation ID STAR-FORMING CORES; T-TAURI STARS; TEMPERATURE-DEPENDENCE; PROTOPLANETARY DISKS; INFRARED GALAXIES; SILICATE GRAINS; SUBMILLIMETER; INDEX; MASS; EMISSIVITY AB We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index beta. The traditional non-hierarchical approaches, typically based on chi(2) minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi(2) fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated-in contradiction with the chi(2) fits, which indicate a T-beta anti-correlation from the same data set. Additionally, in comparison to the chi(2) fits the Bayesian SED parameter estimates exhibit a reduced range in values. C1 [Kelly, Brandon C.; Goodman, Alyssa A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kelly, Brandon C.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Shetty, Rahul] Univ Heidelberg, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Stutz, Amelia M.; Launhardt, Ralf] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kauffmann, Jens] NASA JPL, Pasadena, CA 91109 USA. RP Kelly, BC (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Goodman, Alyssa/A-6007-2010; OI Goodman, Alyssa/0000-0003-1312-0477; Stutz, Amelia/0000-0003-2300-8200 FU National Science Foundation [AST-0908159]; NASA through Space Telescope Science Institute [HF-01220.01, HF-51243.01]; Southern California Center for Galaxy Evolution; University of California Office of Research; German Bundesministerium fur Bildung und Forschung via the ASTRONET project STAR FORMAT [05A09VHA]; NASA [NAS 5-26555]; The Milky Way System [SFB 881] FX We are grateful to Scott Schnee, David Hogg, Karin Sandstrom, Cornelis Dullemond, Chris Beaumont, Paul Clark, Ralf Klessen, Bruce Draine, Jonathan Foster, Xiao-Li Meng, Alexander Blocker, and Chris Hayward for useful discussions regarding dust emission and Bayesian inference. We are also grateful to an anonymous referee whose suggestions for additional tests helped improve the paper. This material is based upon work supported by the National Science Foundation under grant No. AST-0908159. B. K. acknowledges support by NASA through Hubble Fellowship grants HF-01220.01 and HF-51243.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and from the Southern California Center for Galaxy Evolution, a multi-campus research program funded by the University of California Office of Research. R.S. is supported by the German Bundesministerium fur Bildung und Forschung via the ASTRONET project STAR FORMAT (grant 05A09VHA), and the SFB 881 "The Milky Way System." NR 53 TC 57 Z9 57 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 55 DI 10.1088/0004-637X/752/1/55 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400055 ER PT J AU Lehmer, BD Xue, YQ Brandt, WN Alexander, DM Bauer, FE Brusa, M Comastri, A Gilli, R Hornschemeier, AE Luo, B Paolillo, M Ptak, A Shemmer, O Schneider, DP Tozzi, P Vignali, C AF Lehmer, B. D. Xue, Y. Q. Brandt, W. N. Alexander, D. M. Bauer, F. E. Brusa, M. Comastri, A. Gilli, R. Hornschemeier, A. E. Luo, B. Paolillo, M. Ptak, A. Shemmer, O. Schneider, D. P. Tozzi, P. Vignali, C. TI THE 4 Ms CHANDRA DEEP FIELD-SOUTH NUMBER COUNTS APPORTIONED BY SOURCE CLASS: PERVASIVE ACTIVE GALACTIC NUCLEI AND THE ASCENT OF NORMAL GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: active; galaxies: starburst; X-rays: galaxies ID X-RAY-EMISSION; STAR-FORMATION HISTORY; LUMINOUS INFRARED GALAXIES; LYMAN BREAK GALAXIES; SIMILAR-TO 1; XMM-NEWTON; SOURCE CATALOG; STELLAR-MASS; MULTIWAVELENGTH PROJECT; HIGH-REDSHIFT AB We present 0.5-2 keV, 2-8 keV, 4-8 keV, and 0.5-8 keV (hereafter soft, hard, ultra-hard, and full bands, respectively) cumulative and differential number-count (log N-log S) measurements for the recently completed approximate to 4 Ms Chandra Deep Field-South (CDF-S) survey, the deepest X-ray survey to date. We implement a new Bayesian approach, which allows reliable calculation of number counts down to flux limits that are factors of approximate to 1.9-4.3 times fainter than the previously deepest number-count investigations. In the soft band (SB), the most sensitive bandpass in our analysis, the approximate to 4 Ms CDF-S reaches a maximum source density of approximate to 27,800 deg(-2). By virtue of the exquisite X-ray and multiwavelength data available in the CDF-S, we are able to measure the number counts from a variety of source populations (active galactic nuclei (AGNs), normal galaxies, and Galactic stars) and subpopulations (as a function of redshift, AGN absorption, luminosity, and galaxy morphology) and test models that describe their evolution. We find that AGNs still dominate the X-ray number counts down to the faintest flux levels for all bands and reach a limiting SB source density of approximate to 14,900 deg(-2), the highest reliable AGN source density measured at any wavelength. We find that the normal-galaxy counts rise rapidly near the flux limits and, at the limiting SB flux, reach source densities of approximate to 12,700 deg(-2) and make up 46% +/- 5% of the total number counts. The rapid rise of the galaxy counts toward faint fluxes, as well as significant normal-galaxy contributions to the overall number counts, indicates that normal galaxies will overtake AGNs just below the approximate to 4 Ms SB flux limit and will provide a numerically significant new X-ray source population in future surveys that reach below the approximate to 4 Ms sensitivity limit. We show that a future approximate to 10 Ms CDF-S would allow for a significant increase in X-ray-detected sources, with many of the new sources being cosmologically distant (z greater than or similar to 0.6) normal galaxies. C1 [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.; Hornschemeier, A. E.; Ptak, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Xue, Y. Q.; Brandt, W. N.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Xue, Y. Q.; Brandt, W. N.; Schneider, D. P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Brusa, M.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Comastri, A.; Gilli, R.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Luo, B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Paolillo, M.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Shemmer, O.] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Tozzi, P.] INAF Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Vignali, C.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. RP Lehmer, BD (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. RI Paolillo, Maurizio/J-1733-2012; Vignali, Cristian/J-4974-2012; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; Gilli, Roberto/P-1110-2015; OI Paolillo, Maurizio/0000-0003-4210-7693; Vignali, Cristian/0000-0002-8853-9611; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Gilli, Roberto/0000-0001-8121-6177; Shemmer, Ohad/0000-0003-4327-1460; Alexander, David/0000-0002-5896-6313; Brusa, Marcella/0000-0002-5059-6848 FU Einstein Fellowship Program; CXC [SP1-12007A, SAO SP1-12007B]; NASA ADP [NNX10AC99G]; Science and Technology Facilities Council; Financiamento Basal; CONICYT-Chile FONDECYT [1101024]; FONDAP-CATA [15010003]; ASI-INAF [I/088/06, I/009/10/0] FX We thank the anonymous referee for reviewing the manuscript and providing useful suggestions. We thank Andy Fabian for useful discussions and acknowledge James Aird, Hermann Brunner, Fabrizio Fiore, Simonetta Puccetti, and Shaji Vattakunnel for sharing data; these contributions have helped the quality of this paper. We gratefully acknowledge financial support from the Einstein Fellowship Program (B.D.L.), CXC grant SP1-12007A and NASA ADP grant NNX10AC99G (Y.Q.X. and W.N.B.), the Science and Technology Facilities Council (D.M.A.), Financiamento Basal, CONICYT-Chile FONDECYT 1101024 and FONDAP-CATA 15010003, and CXC grant SAO SP1-12007B (F.E.B.), and ASI-INAF grants I/088/06 and I/009/10/0 (A.C., R.G., C.V.). NR 98 TC 84 Z9 84 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 46 DI 10.1088/0004-637X/752/1/46 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400046 ER PT J AU Melnick, GJ Tolls, V Goldsmith, PF Kaufman, MJ Hollenbach, DJ Black, JH Encrenaz, P Falgarone, E Gerin, M Hjalmarson, A Li, D Lis, DC Liseau, R Neufeld, DA Pagani, L Snell, RL van der Tak, F van Dishoeck, EF AF Melnick, Gary J. Tolls, Volker Goldsmith, Paul F. Kaufman, Michael J. Hollenbach, David J. Black, John H. Encrenaz, Pierre Falgarone, Edith Gerin, Maryvonne Hjalmarson, Ake Li, Di Lis, Dariusz C. Liseau, Rene Neufeld, David A. Pagani, Laurent Snell, Ronald L. van der Tak, Floris van Dishoeck, Ewine F. TI HERSCHEL SEARCH FOR O-2 TOWARD THE ORION BAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: abundances; ISM: individual objects (Orion); ISM: molecules; submillimeter: ISM ID SUBMILLIMETER OBSERVATIONS; MOLECULAR CLOUDS; WATER ICE; INTERSTELLAR CHLORONIUM; THERMAL BALANCE; CHEMICAL-MODELS; PHOTODESORPTION; EMISSION; MILLIMETER; REGION AB We report the results of a search for molecular oxygen (O-2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the HII region created by the luminous Trapezium stars. We observed the spectral region around the frequency of the O-2 N-J = 3(3)-1(2) transition at 487 GHz and the 5(4)-3(4) transition at 774 GHz using the Heterodyne Instrument for the Far-Infrared on the Herschel Space Observatory. Neither line was detected, but the 3 sigma upper limits established here translate to a total line-of-sight O-2 column density <1.5 x 10(16) cm(-2) for an emitting region whose temperature is between 30 K and 250 K, or <1 x 10(16) cm(-2) if the O-2 emitting region is primarily at a temperature of less than or similar to 100 K. Because the Orion Bar is oriented nearly edge-on relative to our line of sight, the observed column density is enhanced by a factor estimated to be between 4 and 20 relative to the face-on value. Our upper limits imply that the face-on O-2 column density is less than 4 x 10(15) cm(-2), a value that is below, and possibly well below, model predictions for gas with a density of 10(4)-10(5) cm-(3) exposed to a far-ultraviolet flux 10(4) times the local value, conditions inferred from previous observations of the Orion Bar. The discrepancy might be resolved if (1) the adsorption energy of O atoms to ice is greater than 800 K; (2) the total face-on AV of the Bar is less than required for O-2 to reach peak abundance; (3) the O-2 emission arises within dense clumps with a small beam filling factor; or (4) the face-on depth into the Bar where O-2 reaches its peak abundance, which is density dependent, corresponds to a sky position different from that sampled by our Herschel beams. C1 [Melnick, Gary J.; Tolls, Volker] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Goldsmith, Paul F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kaufman, Michael J.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Hollenbach, David J.] SETI Inst, Mountain View, CA 94043 USA. [Black, John H.; Hjalmarson, Ake; Liseau, Rene] Chalmers, Dept Earth & Space Sci, Onsala Space Observ, SE-43992 Onsala, Sweden. [Encrenaz, Pierre; Pagani, Laurent] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, Pierre; Pagani, Laurent] Observ Paris, CNRS, UMR8112, LRA LERMA, F-75014 Paris, France. [Falgarone, Edith; Gerin, Maryvonne] Observ Paris, CNRS, UMR8112, LRA LERMA, F-75231 Paris 05, France. [Falgarone, Edith; Gerin, Maryvonne] Ecole Normale Super, F-75231 Paris 05, France. [Li, Di] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Lis, Dariusz C.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Neufeld, David A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Snell, Ronald L.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [van der Tak, Floris] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van der Tak, Floris] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands. [van Dishoeck, Ewine F.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, Ewine F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Melnick, GJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 66, Cambridge, MA 02138 USA. RI Goldsmith, Paul/H-3159-2016 FU NASA through JPL/Caltech FX Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 46 TC 19 Z9 19 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 26 DI 10.1088/0004-637X/752/1/26 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400026 ER PT J AU Rappaport, S Levine, A Chiang, E El Mellah, I Jenkins, J Kalomeni, B Kite, ES Kotson, M Nelson, L Rousseau-Nepton, L Tran, K AF Rappaport, S. Levine, A. Chiang, E. El Mellah, I. Jenkins, J. Kalomeni, B. Kite, E. S. Kotson, M. Nelson, L. Rousseau-Nepton, L. Tran, K. TI POSSIBLE DISINTEGRATING SHORT-PERIOD SUPER-MERCURY ORBITING KIC 12557548 SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; occultations; planetary systems; planets and satellites: general ID EXTRASOLAR PLANETS; TERRESTRIAL PLANETS; ATMOSPHERIC ESCAPE; MANTLE CONVECTION; HOT JUPITERS; MASS-LOSS; STARS; EARTHS; CANDIDATES; EVOLUTION AB We report on the discovery of stellar occultations, observed with Kepler, which recur periodically at 15.685 hr intervals, but which vary in depth from a maximum of 1.3% to a minimum that can be less than 0.2%. The star that is apparently being occulted is KIC 12557548, a V = 16 mag K dwarf with T-eff,T-s similar or equal to 4400 K. The out-of-occultation behavior shows no evidence for ellipsoidal light variations, indicating that the mass of the orbiting object is less than similar to 3 M-J (for an orbital period of 15.7 hr). Because the eclipse depths are highly variable, they cannot be due solely to transits of a single planet with a fixed size. We discuss but dismiss a scenario involving a binary giant planet whose mutual orbit plane precesses, bringing one of the planets into and out of a grazing transit. This scenario seems ruled out by the dynamical instability that would result from such a configuration. We also briefly consider an eclipsing binary, possibly containing an accretion disk, that either orbits KIC 12557548 in a hierarchical triple configuration or is nearby on the sky, but we find such a scenario inadequate to reproduce the observations. The much more likely explanation-but one which still requires more quantitative development-involves macroscopic particles escaping the atmosphere of a slowly disintegrating planet not much larger than Mercury in size. The particles could take the form of micron-sized pyroxene or aluminum oxide dust grains. The planetary surface is hot enough to sublimate and create a high-Z atmosphere; this atmosphere may be loaded with dust via cloud condensation or explosive volcanism. Atmospheric gas escapes the planet via a Parker-type thermal wind, dragging dust grains with it. We infer a mass-loss rate from the observations of order 1 M-circle plus Gyr(-1), with a dust-to-gas ratio possibly of order unity. For our fiducial 0.1 M-circle plus planet (twice the mass of Mercury), the evaporation timescale may be similar to 0.2 Gyr. Smaller mass planets are disfavored because they evaporate still more quickly, as are larger mass planets because they have surface gravities too strong to sustain outflows with the requisite mass-loss rates. The occultation profile evinces an ingress-egress asymmetry that could reflect a comet-like dust tail trailing the planet; we present simulations of such a tail. C1 [Rappaport, S.; El Mellah, I.; Kotson, M.; Tran, K.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Levine, A.; Kalomeni, B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Chiang, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Chiang, E.; Kite, E. S.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [El Mellah, I.] ENS Cachan, F-94235 Cachan, France. [Jenkins, J.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kalomeni, B.] Univ Ege, Dept Astron & Space Sci, TR-35100 Bornova, Turkey. [Kalomeni, B.] Izmir Inst Technol, Dept Phys, Izmir, Turkey. [Kite, E. S.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Nelson, L.] Bishops Univ, Dept Phys, Sherbrooke, PQ J1M 1Z7, Canada. [Rousseau-Nepton, L.] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ G1K 7P4, Canada. RP Rappaport, S (reprint author), MIT, Dept Phys, 37-602B,70 Vassar St, Cambridge, MA 02139 USA. EM sar@mit.edu; aml@space.mit.edu; echiang@astro.berkeley.edu; ielmelah@ens-cachan.fr; Jon.M.Jenkins@nasa.gov; belinda.kalomeni@ege.edu.tr; ekite@caltech.edu; lnelson@ubishops.ca; laurie.r-nepton.1@ulaval.ca FU National Science Foundation; Natural Sciences and Engineering Research Council (NSERC) of Canada; Turkish Council of Higher Education FX We thank the anonymous referee for an encouraging and incisive report that motivated us to consider volcanic activity and to examine more quantitatively the ability of the atmosphere to entrain solids; Raymond Jeanloz and Michael Manga for instructive exchanges about vaporizing silicates and volcano ejecta speeds; Josh Carter for discussions about data validations and the viability of a dynamically stable binary planet; Ruth Murray-Clay for input about thermal winds; Robert Szabo for information about properties of RR Lyrae stars; and Bryce Croll, Dan Fabrycky, Ron Gilliland, Meredith Hughes, John Johnson, Heather Knutson, Tim Morton, Margaret Pan, Erik Petigura, and Josh Winn for stimulating discussions about follow-up observations. We consulted with Ron Remillard, Rob Simcoe, and Adam Burgasser about spectral classifications. We also thank Robert Lamontagne and the staff at the Observatoire Astronomique du Mont-Megantic for their assistance. E. C. is grateful for support from the National Science Foundation, and for useful and encouraging feedback from participants of the Berkeley Planet and Star Formation Seminar, including Ryan O'Leary and Geoff Marcy who shared their own analyses of the Kepler data on KIC 12557548. L.N. thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support. B. K. is grateful to the MIT Kavli Institute for Astrophysics and Space Research for the hospitality they extended during her visit and the support provided by the Turkish Council of Higher Education. NR 55 TC 73 Z9 73 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 1 DI 10.1088/0004-637X/752/1/1 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400001 ER PT J AU Rodigas, TJ Hinz, PM Leisenring, J Vaitheeswaran, V Skemer, AJ Skrutskie, M Su, KYL Bailey, V Schneider, G Close, L Mannucci, F Esposito, S Arcidiacono, C Pinna, E Argomedo, J Agapito, G Apai, D Bono, G Boutsia, K Briguglio, R Brusa, G Busoni, L Cresci, G Currie, T Desidera, S Eisner, J Falomo, R Fini, L Follette, K Fontana, A Garnavich, P Gratton, R Green, R Guerra, JC Hill, JM Hoffmann, WF Jones, TJ Krejny, M Kulesa, C Males, J Masciadri, E Mesa, D McCarthy, D Meyer, M Miller, D Nelson, MJ Puglisi, A Quiros-Pacheco, F Riccardi, A Sani, E Stefanini, P Testa, V Wilson, J Woodward, CE Xompero, M AF Rodigas, Timothy J. Hinz, Philip M. Leisenring, Jarron Vaitheeswaran, Vidhya Skemer, Andrew J. Skrutskie, Michael Su, Kate Y. L. Bailey, Vanessa Schneider, Glenn Close, Laird Mannucci, Filippo Esposito, Simone Arcidiacono, Carmelo Pinna, Enrico Argomedo, Javier Agapito, Guido Apai, Daniel Bono, Giuseppe Boutsia, Kostantina Briguglio, Runa Brusa, Guido Busoni, Lorenzo Cresci, Giovanni Currie, Thayne Desidera, Silvano Eisner, Josh Falomo, Renato Fini, Luca Follette, Kate Fontana, Adriano Garnavich, Peter Gratton, Raffaele Green, Richard Guerra, Juan Carlos Hill, J. M. Hoffmann, William F. Jones, Terry J. Krejny, Megan Kulesa, Craig Males, Jared Masciadri, Elena Mesa, Dino McCarthy, Don Meyer, Michael Miller, Doug Nelson, Matthew J. Puglisi, Alfio Quiros-Pacheco, Fernando Riccardi, Armando Sani, Eleonora Stefanini, Paolo Testa, Vincenzo Wilson, John Woodward, Charles E. Xompero, Marco TI THE GRAY NEEDLE: LARGE GRAINS IN THE HD 15115 DEBRIS DISK FROM LBT/PISCES/Ks AND LBTI/LMIRcam/L ' ADAPTIVE OPTICS IMAGING SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; instrumentation: adaptive optics; planetary systems; stars: individual (HD 15115); techniques: high angular resolution ID ORBITING HR 8799; CIRCUMSTELLAR DISK; SCATTERED-LIGHT; SPACE-TELESCOPE; AU MICROSCOPII; BROWN DWARFS; PLANETS; SYSTEM; DUST; IMAGES AB We present diffraction-limited Ks band and L' adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At the Ks band, the disk is detected at signal-to-noise per resolution element (SNRE) similar to 3-8 from similar to 1 to 2 ''.5 (45-113 AU) on the western side and from similar to 1 ''.2 to 2 ''.1 (63-90 AU) on the east. At L' the disk is detected at SNRE similar to 2.5 from similar to 1 to 1 ''.45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 mu m. At both wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at the Ks band, but not at L'. The surface brightness at the Ks band declines inside 1 ''(similar to 45 AU), which may be indicative of a gap in the disk near 1 ''. The Ks - L' disk color, after removal of the stellar color, is mostly gray for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 mu m sized grains on the east side and 1-10 mu m dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium. C1 [Rodigas, Timothy J.; Hinz, Philip M.; Vaitheeswaran, Vidhya; Skemer, Andrew J.; Su, Kate Y. L.; Bailey, Vanessa; Schneider, Glenn; Close, Laird; Apai, Daniel; Eisner, Josh; Follette, Kate; Hoffmann, William F.; Kulesa, Craig; Males, Jared; McCarthy, Don] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Leisenring, Jarron; Skrutskie, Michael; Nelson, Matthew J.; Wilson, John] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Leisenring, Jarron; Meyer, Michael] ETH Zrich, Inst Astron, CH-8093 Zurich, Switzerland. [Mannucci, Filippo; Esposito, Simone; Arcidiacono, Carmelo; Pinna, Enrico; Argomedo, Javier; Agapito, Guido; Bono, Giuseppe; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Cresci, Giovanni; Fini, Luca; Fontana, Adriano; Masciadri, Elena; Puglisi, Alfio; Quiros-Pacheco, Fernando; Riccardi, Armando; Sani, Eleonora; Stefanini, Paolo; Testa, Vincenzo; Xompero, Marco] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Boutsia, Kostantina; Fontana, Adriano] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Boutsia, Kostantina; Desidera, Silvano; Falomo, Renato; Gratton, Raffaele; Mesa, Dino] Astron Observ Padova, INAF, I-35122 Padua, Italy. [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Garnavich, Peter] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Green, Richard; Guerra, Juan Carlos; Hill, J. M.; Miller, Doug] Univ Arizona, LBT Observ, Tucson, AZ 85721 USA. [Jones, Terry J.; Krejny, Megan; Woodward, Charles E.] Univ Minnesota, Inst Astrophys, Minneapolis, MN 55455 USA. RP Rodigas, TJ (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM rodigas@as.arizona.edu OI Desidera, Silvano/0000-0001-8613-2589; Pinna, Enrico/0000-0002-6243-5697; Skemer, Andrew/0000-0001-6098-3924; Rodigas, Timothy/0000-0002-7535-2997; Cresci, Giovanni/0000-0002-5281-1417; Su, Kate/0000-0002-3532-5580; fontana, adriano/0000-0003-3820-2823; Testa, Vincenzo/0000-0003-1033-1340; Riccardi, Armando/0000-0001-5460-2929; Busoni, Lorenzo/0000-0002-2074-0458; Arcidiacono, Carmelo/0000-0003-0142-8108; Bailey, Vanessa/0000-0002-5407-2806; Gratton, Raffaele/0000-0003-2195-6805 FU National Science Foundation [NSF AST-0705296]; NASA Earth and Space Science Graduate Fellowship FX We thank Piero Salinari for his insight, leadership, and persistence which made the development of the LBT adaptive secondaries possible. We thank the LBTO staff and telescope operators for their hard work facilitating use of the telescope and instruments. We are grateful to Elliott Solheid, the lead mechanical engineer on the PISCES project. Roland Sarlot and Andrew Rakich provided support in the PISCES optical design and engineering, respectively. We acknowledge support for LMIRcam from the National Science Foundation under grant NSF AST-0705296. We thank A. K. Inoue and M. Honda for sharing their disk modeling data and for helpful discussions. We thank John Debes, the referee, for helpful discussions and for his careful review of the manuscript. T.J.R. acknowledges support from the NASA Earth and Space Science Graduate Fellowship. NR 42 TC 38 Z9 38 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 57 DI 10.1088/0004-637X/752/1/57 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400057 ER PT J AU Rouillard, AP Sheeley, NR Tylka, A Vourlidas, A Ng, CK Rakowski, C Cohen, CMS Mewaldt, RA Mason, GM Reames, D Savani, NP StCyr, OC Szabo, A AF Rouillard, A. P. Sheeley, N. R., Jr. Tylka, A. Vourlidas, A. Ng, C. K. Rakowski, C. Cohen, C. M. S. Mewaldt, R. A. Mason, G. M. Reames, D. Savani, N. P. StCyr, O. C. Szabo, A. TI THE LONGITUDINAL PROPERTIES OF A SOLAR ENERGETIC PARTICLE EVENT INVESTIGATED USING MODERN SOLAR IMAGING SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; shock waves; Sun: coronal mass ejections (CMEs); Sun: radio radiation ID CORONAL MASS EJECTION; GROUND-LEVEL EVENTS; INTERPLANETARY SHOCKS; LASCO OBSERVATIONS; ELECTRON EVENTS; EIT WAVES; MORETON WAVES; RELEASE TIMES; HIGH-ENERGIES; ONSET TIMES AB We use combined high-cadence, high-resolution, and multi-point imaging by the Solar-Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory to investigate the hour-long eruption of a fast and wide coronal mass ejection (CME) on 2011 March 21 when the twin STEREO spacecraft were located beyond the solar limbs. We analyze the relation between the eruption of the CME, the evolution of an Extreme Ultraviolet (EUV) wave, and the onset of a solar energetic particle (SEP) event measured in situ by the STEREO and near-Earth orbiting spacecraft. Combined ultraviolet and white-light images of the lower corona reveal that in an initial CME lateral "expansion phase," the EUV disturbance tracks the laterally expanding flanks of the CME, both moving parallel to the solar surface with speeds of similar to 450 km s(-1). When the lateral expansion of the ejecta ceases, the EUV disturbance carries on propagating parallel to the solar surface but devolves rapidly into a less coherent structure. Multi-point tracking of the CME leading edge and the effects of the launched compression waves (e.g., pushed streamers) give anti-sunward speeds that initially exceed 900 km s(-1) at all measured position angles. We combine our analysis of ultraviolet and white-light images with a comprehensive study of the velocity dispersion of energetic particles measured in situ by particle detectors located at STEREO-A (STA) and first Lagrange point (L1), to demonstrate that the delayed solar particle release times at STA and L1 are consistent with the time required (30-40 minutes) for the CME to perturb the corona over a wide range of longitudes. This study finds an association between the longitudinal extent of the perturbed corona (in EUV and white light) and the longitudinal extent of the SEP event in the heliosphere. C1 [Rouillard, A. P.] Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France. [Rouillard, A. P.] CNRS, UMR 5187, Toulouse, France. [Rouillard, A. P.; Ng, C. K.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Sheeley, N. R., Jr.; Tylka, A.; Vourlidas, A.; Rakowski, C.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Ng, C. K.; StCyr, O. C.; Szabo, A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Cohen, C. M. S.; Mewaldt, R. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Mason, G. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Reames, D.] Univ Maryland, Inst Phys Sci & Technol, Greenbelt, MD 20742 USA. [Savani, N. P.] Univ Corp Atmospher Res, Boulder, CO 80307 USA. RP Rouillard, AP (reprint author), Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France. RI Savani, Neel/G-4066-2014; Tylka, Allan/G-9592-2014; Vourlidas, Angelos/C-8231-2009 OI Savani, Neel/0000-0002-1916-7877; Vourlidas, Angelos/0000-0002-8164-5948 FU NASA [NNX08AI11G, NNX11AD40G-45527, NNXIOAT06G, NNX09AU98G, NMX07AN45G, NNH09AK79I]; Caltech [SA2715-26309]; NASA (UC Berkeley) [NAS5-0313]; NASA from University of Berkeley (STEREO SIT) [SA4889-26309]; Office of Naval Research FX We thank Dennis Haggerty for providing the EPAM ion data plotted in Figure 13. We thank Dr. Valtonen for making the ERNE data available online. The SECCHI images were obtained from the World Data Center, Chilton, UK and the Naval Research Laboratory, Washington, DC, USA. We thank Yi-Ming Wang and Judith Lean for their continual support. We also acknowledge constructive exchanges with Ed Cliver and Raul Gomez Herrero. The STEREO SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). The ACE data were obtained from the ACE science center. The Wind data were obtained from the Space Physics Data Facility. The work of C.M.S.C. and R.A.M. on ACE data was partly funded by the NASA contract NNX08AI11G. The Caltech subcontract SA2715-26309 was funded with NASA contract NAS5-0313 (UC Berkeley). The work of A. P. R. was partly funded by NASA contracts NNX11AD40G-45527 and NNXIOAT06G and that of C.K.N. was partially supported by NASA grant NNX09AU98G. NASA contract SA4889-26309 from University of Berkeley (STEREO SIT) and NASA grant NMX07AN45G permitted the preparation and calibration of the ULEIS and SIT data. A.J.T. was supported in part by NASA grant NNH09AK79I. The NRL employees acknowledge support from the Office of Naval Research and NASA. NR 85 TC 63 Z9 63 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 44 DI 10.1088/0004-637X/752/1/44 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400044 ER PT J AU Giacomazzo, B Baker, JG Miller, MC Reynolds, CS van Meter, JR AF Giacomazzo, Bruno Baker, John G. Miller, M. Coleman Reynolds, Christopher S. van Meter, James R. TI GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; gravitational waves; magnetohydrodynamics (MHD); methods: numerical ID ELECTROMAGNETIC COUNTERPARTS; NUMERICAL RELATIVITY; NEUTRON-STARS; MASS-LOSS; MERGERS; BINARY; MAGNETOHYDRODYNAMICS; ACCRETION; AFTERGLOW; DISKS AB Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of similar to 2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10(4) larger than comparable calculations done in the force-free regime where such amplifications are not possible. C1 [Giacomazzo, Bruno] Univ Colorado, JILA, Boulder, CO 80309 USA. [Giacomazzo, Bruno] NIST, Boulder, CO 80309 USA. [Giacomazzo, Bruno; Miller, M. Coleman; Reynolds, Christopher S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno; Baker, John G.; van Meter, James R.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 21114 USA. [Miller, M. Coleman; Reynolds, Christopher S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. RP Giacomazzo, B (reprint author), Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA. RI Giacomazzo, Bruno/I-8088-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023 FU NASA through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; XSEDE [TG-PHY110027]; NASA [NNX09AI75G, 09-ATP09-0136]; NSF [AST 1009396] FX We thank Phil Armitage, Tamara Bogdanovic, Bernard Kelly, Krzysztof Nalewajko, Carlos Palenzuela, Luciano Rezzolla, Jeremy Schnittman, and Roman Shcherbakov for useful comments and suggestions. We also thank Philip Cowperthwaite for help in visualizing some of the numerical data. Resources supporting this work were provided by the NASA High-End Computing (HEC) program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center and NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Numerical simulations were also performed on the cluster RANGER at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin through XSEDE grant No. TG-PHY110027. B.G. acknowledges support from NASA grant No. NNX09AI75G and NSF grant No. AST 1009396. J.B. and J.v.M. acknowledge support from NASA grant 09-ATP09-0136. NR 49 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2012 VL 752 IS 1 AR L15 DI 10.1088/2041-8205/752//L15 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 948FL UT WOS:000304488900015 ER PT J AU Meyer, ET Fossati, G Georganopoulos, M Lister, ML AF Meyer, Eileen T. Fossati, Giovanni Georganopoulos, Markos Lister, Matthew L. TI COLLECTIVE EVIDENCE FOR INVERSE COMPTON EMISSION FROM EXTERNAL PHOTONS IN HIGH-POWER BLAZARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; quasars: general; radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; ENERGY GAMMA-RADIATION; SPECTRUM RADIO QUASARS; LARGE-AREA TELESCOPE; BL LACERTAE OBJECTS; RAY BRIGHT BLAZARS; BASE-LINE ARRAY; RELATIVISTIC JET; KINEMATICS; UNIFICATION AB We present the first collective evidence that Fermi-detected jets of high kinetic power (L-kin) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L-kin > 10(45.5) erg s(-1)) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self-Compton (SSC) emission. For the lowest power jets (L-kin < 10(43.5) erg s(-1)), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets. C1 [Meyer, Eileen T.; Fossati, Giovanni] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Georganopoulos, Markos] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Dept Phys, Baltimore, MD 21250 USA. [Georganopoulos, Markos] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lister, Matthew L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. RP Meyer, ET (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. FU NASA [NNX11AO15G, NNX10AO42G, NNX09AR04G, NNX06AE92G, NNX08AG77G, NNX12AF01G]; National Science Foundation [0807860-AST] FX E.M. and G.F. acknowledge support from NASA Fermi grants NNX11AO15G and NNX10AO42G, Swift grant NNX09AR04G, and XMM grant NNX06AE92G. M.G. acknowledges support from NASA ATFP grant NNX08AG77G and Fermi grant NNX12AF01G. M.L. and the MOJAVE project is supported under National Science Foundation grant 0807860-AST. NR 37 TC 17 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2012 VL 752 IS 1 AR L4 DI 10.1088/2041-8205/752/1/L4 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 948FL UT WOS:000304488900004 ER PT J AU Walter, D Heue, KP Rauthe-Schoch, A Brenninkmeijer, CAM Lamsal, LN Krotkov, NA Platt, U AF Walter, D. Heue, K. -P. Rauthe-Schoech, A. Brenninkmeijer, C. A. M. Lamsal, L. N. Krotkov, N. A. Platt, U. TI Flux calculation using CARIBIC DOAS aircraft measurements: SO2 emission of Norilsk SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DIFFERENTIAL OPTICAL-ABSORPTION; GAS-PHASE REACTIONS; ATMOSPHERIC CHEMISTRY; PHOTOCHEMICAL DATA; CROSS-SECTIONS; NM REGION; SULFUR; OZONE; SPECTROSCOPY; PLUMES AB Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities. C1 [Walter, D.; Heue, K. -P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.] Max Planck Inst Chem, DE-55128 Mainz, Germany. [Walter, D.; Platt, U.] Heidelberg Univ, Inst Environm Phys, Heidelberg, Germany. [Lamsal, L. N.; Krotkov, N. A.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Lamsal, L. N.] Univ Space Res Assoc, Columbia, MD USA. RP Walter, D (reprint author), Max Planck Inst Chem, Hahn Meitner Weg 1, DE-55128 Mainz, Germany. EM david.walter@mpic.de RI Lamsal, Lok/G-4781-2012; Brenninkmeijer, Carl/B-6860-2013; Rauthe-Schoch, Armin/C-8208-2011; Krotkov, Nickolay/E-1541-2012; OI Rauthe-Schoch, Armin/0000-0001-5738-8112; Krotkov, Nickolay/0000-0001-6170-6750; Heue, Klaus-Peter/0000-0001-8823-7712 FU Lufthansa Airlines; Lufthansa Technik; German Ministry of Education and Science (AFO); European Commission's DGXII Environment RTD; Max Planck Society; Frankfurt Airport FX The authors thank Lufthansa Airlines and Lufthansa Technik for their commitment and support, especially Andreas Waibel and Thomas Dauer. We would also like to thank Angela Baker and all members of the CARIBIC team. Further thanks go to the MPI-C satellite group, especially Christoph Hormann and Steffen Dorner for the support concerning the wind data, which were kindly provided by ECMWF (http://www.ecmwf.int). The DOAS system was built and operated by the Institut fur Umweltphysik of the Universitat Heidelberg. The development and operation of the CARIBIC system has been financially supported by the German Ministry of Education and Science (AFO 2000), by the European Commission's DGXII Environment RTD 4th, 5th and 6th Framework programs, by the Max Planck Society and Frankfurt Airport. Data are available upon request; please visit http://www.caribic-atmospheric.com/ for more information. The service charges for this publication have been covered by the Max Planck Society. NR 46 TC 16 Z9 16 U1 3 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 8 PY 2012 VL 117 AR D11305 DI 10.1029/2011JD017335 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GM UT WOS:000305147900003 ER PT J AU Stefanescu, ER Bursik, M Cordoba, G Dalbey, K Jones, MD Patra, AK Pieri, DC Pitman, EB Sheridan, MF AF Stefanescu, E. R. Bursik, M. Cordoba, G. Dalbey, K. Jones, M. D. Patra, A. K. Pieri, D. C. Pitman, E. B. Sheridan, M. F. TI Digital elevation model uncertainty and hazard analysis using a geophysical flow model SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE digital elevation model uncertainty; modelling; digital elevation model realizations ID GALERAS VOLCANO; COMPUTER-MODELS; VARIABLES; COLOMBIA; ERROR; SIMULATION; COMPLEX; VALLEY; CODE AB This paper describes a new methodology to quantify the variation in the output of a computational fluid dynamics model for block and ash flows, when the digital elevation model (DEM) of the terrain and other inputs are given as a range of possible values with a prescribed uncertainty. Integrating these variations in the possible flows as a function of input uncertainties provides well-defined hazard probabilities at specific locations, i.e. a hazard map. Earlier work provided a methodology for assessing hazards based on variations in flow initiation and friction parameters. This paper extends this approach to include the effect of terrain error and uncertainty. The results are based on potential flows at Mammoth Mountain, CA, and Galeras Volcano, Colombia. The analysis establishes the soundness of the approach and the effect of including the uncertainty in DEMs in the construction of probabilistic hazard maps. C1 [Stefanescu, E. R.; Patra, A. K.; Pitman, E. B.] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA. [Bursik, M.; Sheridan, M. F.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Jones, M. D.] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14260 USA. [Cordoba, G.] Univ Narino, Dept Civil Engn, Narino, Colombia. [Dalbey, K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Pieri, D. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stefanescu, ER (reprint author), SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA. EM ers32@buffalo.edu OI Cordoba, Gustavo/0000-0002-1104-0249 FU NASA [NNX08AF75G] FX This work was supported by NASA grant NNX08AF75G. The work and opinions expressed herein are those of the authors alone and do not reflect the opinion of NASA. We are grateful to JPL for the construction and distribution of the TOPSAR dataset. NR 52 TC 5 Z9 5 U1 0 U2 9 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD JUN 8 PY 2012 VL 468 IS 2142 BP 1543 EP 1563 DI 10.1098/rspa.2011.0711 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 932SQ UT WOS:000303311200002 ER PT J AU Guzman, MI Athalye, RR Rodriguez, JM AF Guzman, Marcelo I. Athalye, Richa R. Rodriguez, Jose M. TI Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GENERATION VIBRATIONAL SPECTROSCOPY; AIR/WATER INTERFACE; ARTIFICIAL SEAWATER; ARCTIC ATMOSPHERE; WATER MIXTURES; OZONE; SURFACE; ADSORPTION; CHEMISTRY; HALOGENS AB During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f(x)-) and their correlation with ion properties. Although no correlation exists between f(x)- and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R-x-, dehydration free-energy Delta G(dehyd), and polarizability alpha, follows the order: R-x-(-2) > R-x-(-1) > R-x- > Delta G(dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f(x)- does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol- and ethanol-water mixtures (0 <= x(H2O) <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation. C1 [Guzman, Marcelo I.; Athalye, Richa R.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Rodriguez, Jose M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guzman, MI (reprint author), Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. EM marcelo.guzman@uky.edu RI Guzman, Marcelo/C-5966-2008; Rodriguez, Jose/G-3751-2013 OI Guzman, Marcelo/0000-0002-6730-7766; Rodriguez, Jose/0000-0002-1902-4649 FU University of Kentucky FX We thank research funding from the University of Kentucky. NR 47 TC 10 Z9 10 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 7 PY 2012 VL 116 IS 22 BP 5428 EP 5435 DI 10.1021/jp3011316 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 953QW UT WOS:000304888300018 PM 22591185 ER PT J AU Ehlmann, BL Mustard, JF AF Ehlmann, Bethany L. Mustard, John F. TI An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NILI FOSSAE REGION; MERIDIANI-PLANUM; DEPOSITS; OLIVINE; IDENTIFICATION; CONSTRAINTS; EVOLUTION; MINERALS; JAROSITE AB The Noachian-Hesperian transition on Mars was a period marked by changes in volcanic processes and styles of aqueous alteration. Understanding the timing and nature of environmental change requires the exploration of units recording both sets of processes. Herein, we report the compositional stratigraphy of distinctive Noachian to Hesperian units along the northeastern margin of the Syrtis Major volcanic flows. A layered, polyhydrated sulfate-bearing unit with jarosite ridges has been discovered beneath the Syrtis Major lava flows and above the regionally-extensive stratigraphy of Noachian plains units reported previously. Sequential clay-, carbonate-, and sulfate-bearing units formed in-situ and record a transition from alkaline pH to acidic pH waters. The sequence is chronologically bookended by the Isidis impact and Syrtis Major flows, and is one of the most temporally-constrained and well-preserved stratigraphic sections from early Mars available for landed exploration. Citation: Ehlmann, B. L., and J. F. Mustard (2012), An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major, Geophys. Res. Lett., 39, L11202, doi: 10.1029/2012GL051594. C1 [Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mustard, John F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. RP Ehlmann, BL (reprint author), CALTECH, Div Geol & Planetary Sci, MC 170-25,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM ehlmann@caltech.edu NR 45 TC 18 Z9 18 U1 4 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 6 PY 2012 VL 39 AR L11202 DI 10.1029/2012GL051594 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 957FQ UT WOS:000305145300001 ER PT J AU Noel, V Pitts, M AF Noel, V. Pitts, M. TI Gravity wave events from mesoscale simulations, compared to polar stratospheric clouds observed from spaceborne lidar over the Antarctic Peninsula SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WATER-VAPOR; ICE; CALIPSO; TEMPERATURES; PRESSURE; LIFETIME; IMPACT; SEASON AB We compare Gravity Waves (GW) and Polar Stratospheric Clouds (PSC) above the Antarctic Peninsula for winters (June to September) between 2006 and 2010. GW activity is inferred from stratospheric temperature and vertical winds from the Weather and Research Forecast mesoscale model (WRF), and documented as a function of time and geography for the studied period. Significant GW activity affects 36% of days and follows the Peninsula orography closely. Volumes of PSC, composed of ice and Nitric Acid Trihydrate (NAT), are retrieved using observations from the spaceborne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). They are documented against GW activity as a function of time and longitude. Sixty-three percent of ice PSC are observed during GW events, when the average volume of PSC per profile doubles. Maximum ice PSC volumes are seen directly over the Peninsula (65 degrees W), while maximum NAT PSC volumes appear downstream further East (similar to 35 degrees W). Effects of GW events on NAT PSC are felt as far East as 40 degrees E. Our results support the importance of gravity waves as a major mechanism driving the evolution of ice PSC in the area, but the effects on NAT PSC are harder to detect. After a GW event ends, volumes of ice PSC get back to their usual levels in less than 24 h, while this process takes more than 48 h for NAT PSC. Daily profiles of H2O and HNO3 mixing ratios, retrieved from MLS observations, are used to derive ice and NAT frost points with altitude and time. Combining these frost points with modeled stratospheric temperatures, the volumes of air able to support ice and NAT crystals are quantified and compared with PSC volumes. Correlation is high for ice crystals, but not for NAT, consistent with their much slower nucleation mechanisms. Observations of ice PSC over the domain are followed by a strong increase (+50-100%) in NAT PSC formation efficiency 2 to 6 h later. This increase is followed by a steep drop (6-10 h later) and a longer period of slow decline (10-24 h later), at the end of which the NAT PSC formation efficiency is less than half its initial value. The fact that these effects tend to cancel each other out, coupled to the important lag in NAT PSC reaction to GW activity, suggest why it is especially difficult to quantify how GW activity impacts NAT PSC cover. C1 [Noel, V.] Ecole Polytech, Meteorol Dynam Lab, CNRS, IPSL, FR-91128 Palaiseau, France. [Pitts, M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Noel, V (reprint author), Ecole Polytech, Meteorol Dynam Lab, CNRS, IPSL, FR-91128 Palaiseau, France. EM vincent.noel@lmd.polytechnique.fr RI Noel, Vincent/C-3702-2013 OI Noel, Vincent/0000-0001-9494-0340 NR 41 TC 7 Z9 8 U1 3 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 6 PY 2012 VL 117 AR D11207 DI 10.1029/2011JD017318 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GH UT WOS:000305147400002 ER PT J AU Zhu, P Dudhia, J Field, PR Wapler, K Fridlind, A Varble, A Zipser, E Petch, J Chen, M Zhu, ZD AF Zhu, Ping Dudhia, Jim Field, Paul R. Wapler, Kathrin Fridlind, Ann Varble, Adam Zipser, Ed Petch, Jon Chen, Ming Zhu, Zhenduo TI A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PART I; SCHEME; PARAMETERIZATION; PRECIPITATION; IMPLEMENTATION; REPRESENTATION; MICROPHYSICS; SENSITIVITY; ATMOSPHERE; FORECASTS AB A limited area model (LAM) intercomparison study is conducted based on a tropical monsoonal deep convection case observed during the Tropical Warm Pool - International Cloud Experiment (TWP-ICE). The LAM simulations are compared with the variational analyses (VA) based on the Atmospheric Radiation Measurement (ARM) observations and the cloud resolving model (CRM) simulations forced by the VA. Driven by the ECMWF analyses or global model forecasts, LAMs are able to produce the large-scale thermodynamic field reasonably well compared with the VA. However, the LAM simulated dynamic fields, such as the large-scale horizontal divergence, vertical velocity, and cyclogenesis in the monsoonal trough, have a large inter-model spread and deviate substantially from observations. Despite the differences in large-scale forcing, there is certain consistency between the CRM and LAM simulations: stratiform (w <= 1 m s(-1)) ice clouds dominate the cloud fraction and convective (w > 3 m s(-1)) clouds occupy less than 3 percent of the total cloudy area. But the hydrometeor content of stratiform ice clouds is only one tenth of that of convective and transitional (1 m s(-1) < w <= 3 m s(-1)) ice clouds. However, there is a large inter-LAM spread in the simulated cloud fraction and hydrometeor mixing ratios. The inter-LAM difference in solid phase hydrometeors (cloud ice, snow, and graupel) can be up to nearly a factor of 10. Among all the hydrometeor types, the stratiform ice clouds are simulated least consistently by the LAMs. The large inter-LAM spread suggests that obtaining consistent and reliable dynamic and cloud fields remains a challenge for the LAM approach. C1 [Zhu, Ping; Zhu, Zhenduo] Florida Int Univ, Dept Earth & Environm, Miami, FL 33199 USA. [Dudhia, Jim; Chen, Ming] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Field, Paul R.; Petch, Jon] Met Off, Exeter, Devon, England. [Wapler, Kathrin] Deutsch Wetterdienst, Offenbach, Germany. [Fridlind, Ann] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Varble, Adam; Zipser, Ed] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT USA. RP Zhu, P (reprint author), Florida Int Univ, Dept Earth & Environm, MARC 360,11200 SW 8th St, Miami, FL 33199 USA. EM zhup@fiu.edu RI Dudhia, Jimy/B-1287-2008; Field, Paul/B-1692-2009 OI Dudhia, Jimy/0000-0002-2394-6232; Field, Paul/0000-0001-8528-0088 FU DOE ASR [DE-FG02-09ER64737, DE-FG02-08ER64575]; National Science Foundation (NSF) [ATM-0735954]; DOE ARM [DE-AI02-06ER64173, DE-AI02-08ER64547, DE-FG03-02ER63337, DEFG0208ER64557]; DOE Office of Science, Office of Biological and Environmental Research, Environmental Science Division; ECMWF FX Ping Zhu wishes to acknowledge his support for this work by the DOE ASR program under grant DE-FG02-09ER64737 and National Science Foundation (NSF) under grant ATM-0735954. Jim Dudhia acknowledges his support by DOE ASR grant DE-FG02-08ER64575 and NSF support for computational resource for his simulation. Ann Fridlind acknowledges her support from DOE ARM program grants DE-AI02-06ER64173, DE-AI02-08ER64547, and DE-FG03-02ER63337. Support for A. Varble and E. Zipser is acknowledged from DOE ARM grant DEFG0208ER64557. The CRM computational support was provided by the DOE National Energy Scientific Computing Center and the NASA Advanced Supercomputing Division. We thank the TWP-ICE field campaign team led by Peter May. TWP-ICE data were obtained from the ARM program archive, sponsored by the DOE Office of Science, Office of Biological and Environmental Research, Environmental Science Division. We thank ECMWF for kindly providing their analyses data to support the TWP-ICE modeling studies. We are very grateful to the three anonymous reviewers for their constructive comments. Their helpful suggestions led to substantial improvement of this paper. NR 41 TC 16 Z9 16 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 6 PY 2012 VL 117 AR D11208 DI 10.1029/2011JD016447 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GH UT WOS:000305147400001 ER PT J AU Jensen, EJ Pfister, L Bui, TP AF Jensen, E. J. Pfister, L. Bui, T. P. TI Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID METEOROLOGICAL MEASUREMENT SYSTEM; SUBVISIBLE CIRRUS; UPPER TROPOSPHERE; CLOUD FORMATION; NUCLEATION; AEROSOLS; LAYER; PARAMETERIZATION; STRATOSPHERE; TEMPERATURE AB Previous ice nucleation calculations have suggested that in the presence of wave-driven temperature perturbations typical of the tropical tropopause layer (TTL), homogeneous freezing should produce ice concentrations well in excess of measured values. A statistical ice cloud parameterization that includes effects of sedimentation was recently used to show that if the wave amplitudes are not too large, a quasi steady state may be established wherein loss of ice crystals by sedimentation is balanced by nucleation of new ice crystals, and the resulting cloud ice concentrations agree well with observations. Here, we use numerical models to further evaluate the evolution of ice concentrations in TTL cirrus, including a range of cloud physical processes (homogeneous and heterogeneous ice nucleation, sedimentation, and radiatively driven dynamics). We use a one-dimensional microphysical model with bin microphysics to show that as a result of gravitational size sorting, the mean ice concentrations over the life cycle of the clouds are considerably smaller than the peak ice concentrations produced by ice nucleation events. However, the mean ice concentrations predicted here are considerably higher than either those reported based on the statistical model or those indicated by the observations. With the baseline wave amplitudes, ice crystals nucleated heterogeneously do not quench rising supersaturation in cooling air parcels and prevent homogeneous nucleation that produces high ice concentrations. We also use a three-dimensional cloud resolving model to show that radiatively driven internal circulations and entrainment do slowly shift the ice concentrations toward lower values, but the time required to dilute ice concentrations produced by homogeneous freezing to values comparable to measured ice concentrations is of the order of 12-24 h, which may be longer than typical TTL cirrus lifetimes. C1 [Jensen, E. J.; Pfister, L.; Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, MS 245-4, Moffett Field, CA 94035 USA. EM eric.j.jensen@nasa.gov FU NASA FX This work was supported by NASA's Radiation Science Program. NR 28 TC 18 Z9 18 U1 3 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 5 PY 2012 VL 117 AR D11205 DI 10.1029/2011JD017319 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GF UT WOS:000305147200003 ER PT J AU Lintner, BR Biasutti, M Diffenbaugh, NS Lee, JE Niznik, MJ Findell, KL AF Lintner, Benjamin R. Biasutti, Michela Diffenbaugh, Noah S. Lee, Jung-Eun Niznik, Matthew J. Findell, Kirsten L. TI Amplification of wet and dry month occurrence over tropical land regions in response to global warming SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE-CHANGE; EL-NINO; PRECIPITATION; RAINFALL; SATELLITE; TRENDS; VARIABILITY; MODELS; GPCP AB Quantifying how global warming impacts the spatiotemporal distribution of precipitation represents a key scientific challenge with profound implications for human welfare. Utilizing monthly precipitation data from Coupled Model Intercomparison Project (CMIP3) climate change simulations, the results here show that the occurrence of very dry (<0.5 mm/day) and very wet (>10 mm/day) months comprises a straightforward, robust metric of anthropogenic warming on tropical land region rainfall. In particular, differencing tropics-wide precipitation frequency histograms for 25-year periods over the late 21st and 20th centuries shows increased late-21st-century occurrence of histogram extremes both in the model ensemble and across individual models. Mechanistically, such differences are consistent with the view of enhanced tropical precipitation spatial gradients. Similar diagnostics are calculated for two 15-year subperiods over 1979-2008 for the CMIP3 models and three observational precipitation products to assess whether the signature of late-21st-century warming has already emerged in response to recent warming. While both the observations and CMIP3 ensemble-mean hint at similar amplification in the warmer (1994-2008) subinterval, the changes are not robust, as substantial differences are evident among the observational products and the intraensemble spread is large. Comparing histograms computed from the warmest and coolest years of the observational period further demonstrates effects of internal variability, notably the El Nino/Southern Oscillation, which appear to oppose the impact of quasi-uniform anthropogenic warming on the wet tail of the monthly precipitation distribution. These results identify the increase of very dry and wet occurrences in monthly precipitation as a potential signature of anthropogenic global warming but also highlight the continuing dominance of internal climate variability on even bulk measures of tropical rainfall. C1 [Lintner, Benjamin R.; Niznik, Matthew J.] State Univ New Jersey, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Biasutti, Michela] Lamont Doherty Earth Observ, Palisades, NY USA. [Diffenbaugh, Noah S.] Stanford Univ, Dept Environm Earth Syst Sci, Woods Inst Environm, Stanford, CA 94305 USA. [Lee, Jung-Eun] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Findell, Kirsten L.] Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Lintner, BR (reprint author), State Univ New Jersey, Dept Environm Sci, 14 Coll Farm Rd, New Brunswick, NJ 08901 USA. EM lintner@envsci.rutgers.edu RI Lee, Jung-Eun/F-8981-2012; Findell, Kirsten/D-4430-2014; Diffenbaugh, Noah/I-5920-2014; Biasutti, Michela/G-3804-2012; OI Diffenbaugh, Noah/0000-0002-8856-4964; Biasutti, Michela/0000-0001-6681-1533; Niznik, Matthew/0000-0003-2904-3146 FU Office of Science, U.S. Department of Energy; NSF [AGS-1103209]; New Jersey Agricultural Experiment Station Hatch [NJ07102]; DOE; Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX B.R.L. and M.B. contributed equally to this work. We thank the British Atmospheric Data Centre for providing access to the CRU data and thank Anthony DeAngelis for useful comments on the text. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multimodel data set. Support for this data set is provided by the Office of Science, U.S. Department of Energy. Our work was supported by NSF AGS-1103209 and New Jersey Agricultural Experiment Station Hatch grant NJ07102. N.S.D. acknowledges support from DOE's program in Integrated Assessment of Global Climate Change. J.-E.L. acknowledges that part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 30 TC 17 Z9 17 U1 2 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 5 PY 2012 VL 117 AR D11106 DI 10.1029/2012JD017499 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GF UT WOS:000305147200005 ER PT J AU Litvak, ML Mitrofanov, IG Sanin, A Malakhov, A Boynton, WV Chin, G Droege, G Evans, LG Garvin, J Golovin, DV Harshman, K McClanahan, TP Mokrousov, MI Mazarico, E Milikh, G Neumann, G Sagdeev, R Smith, DE Starr, R Zuber, MT AF Litvak, M. L. Mitrofanov, I. G. Sanin, A. Malakhov, A. Boynton, W. V. Chin, G. Droege, G. Evans, L. G. Garvin, J. Golovin, D. V. Harshman, K. McClanahan, T. P. Mokrousov, M. I. Mazarico, E. Milikh, G. Neumann, G. Sagdeev, R. Smith, D. E. Starr, R. Zuber, M. T. TI Global maps of lunar neutron fluxes from the LEND instrument SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID DETECTOR EXPERIMENT LEND; POLAR HYDROGEN DEPOSITS; RECONNAISSANCE ORBITER; GAMMA-RAY; WATER ICE; PROSPECTOR; MOON; POLES; ABUNDANCES; SURFACE AB The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data. C1 [Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Golovin, D. V.; Mokrousov, M. I.] RAS, Inst Space Res, Moscow 117997, Russia. [Boynton, W. V.; Droege, G.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Chin, G.; Garvin, J.; McClanahan, T. P.; Mazarico, E.; Neumann, G.; Smith, D. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Evans, L. G.] Comp Sci Corp, Lanham, MD USA. [Milikh, G.; Sagdeev, R.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Starr, R.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Zuber, M. T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. RP Litvak, ML (reprint author), RAS, Inst Space Res, Moscow 117997, Russia. EM mlitvak.iki@gmail.com RI Evans, Larry/F-7462-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU International Space Science Institute (ISSI, Bern, Switzerland) FX We wish to thank the International Space Science Institute (ISSI, Bern, Switzerland) for the support of research (included in the framework of international team "Nuclear Planetology" in 2007-2010) presented in this paper. NR 29 TC 20 Z9 20 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 5 PY 2012 VL 117 AR E00H22 DI 10.1029/2011JE003949 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 957IS UT WOS:000305155700002 ER PT J AU Jolivet, R Lasserre, C Doin, MP Guillaso, S Peltzer, G Dailu, R Sun, J Shen, ZK Xu, X AF Jolivet, R. Lasserre, C. Doin, M-P Guillaso, S. Peltzer, G. Dailu, R. Sun, J. Shen, Z-K Xu, X. TI Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SYNTHETIC-APERTURE RADAR; NORTH ANATOLIAN FAULT; ALTYN-TAGH FAULT; ANDREAS FAULT; SURFACE DEFORMATION; STRAIN ACCUMULATION; SLIP RATE; M-W; PERMANENT SCATTERERS; INTERSEISMIC STRAIN AB Interferometric synthetic aperture radar data are used to map the interseismic velocity field along the Haiyuan fault system (HFS), at the north-eastern boundary of the Tibetan plateau. Two M similar to 8 earthquakes ruptured the HFS in 1920 and 1927, but its 260 km-long central section, known as the Tianzhu seismic gap, remains unbroken since similar to 1000 years. The Envisat SAR data, spanning the 2003-2009 period, cover about 200 x 300 km(2) along three descending and two ascending tracks. Interferograms are processed using an adapted version of ROI_PAC. The signal due to stratified atmospheric phase delay is empirically corrected together with orbital residuals. Mean line-of-sight velocity maps are computed using a constrained time series analysis after selection of interferograms with low atmospheric noise. These maps show a dominant left-lateral motion across the HFS, and reveal a narrow, 35 km-long zone of high velocity gradient across the fault in between the Tianzhu gap and the 1920 rupture. We model the observed velocity field using a discretized fault creeping at shallow depth and a least squares inversion. The inferred shallow slip rate distribution reveals aseismic slip in between two fully locked segments. The average creep rate is similar to 5 mm yr(-1), comparable in magnitude with the estimated loading rate at depth, suggesting no strain accumulation on this segment. The modeled creep rate locally exceeds the long term rate, reaching 8 mm yr(-1), suggesting transient creep episodes. The present study emphasizes the need for continuous monitoring of the surface velocity in the vicinity of major seismic gaps in terms of seismic hazard assessment. C1 [Jolivet, R.; Lasserre, C.] Univ Grenoble 1, CNRS, UMR 5275, Inst Sci Terre, Grenoble, France. [Doin, M-P; Guillaso, S.] Ecole Normale Super, CNRS, UMR 8538, Geol Lab, Paris, France. [Peltzer, G.; Shen, Z-K] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Peltzer, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dailu, R.] Chinese Earthquake Adm, Lanzhou Seismol Inst, Lanzhou, Peoples R China. [Sun, J.; Xu, X.] Chinese Earthquake Adm, Inst Geol, Beijing, Peoples R China. RP Jolivet, R (reprint author), CALTECH, Tecton Observ, Pasadena, CA 90125 USA. EM romain.jolivet@ujf-grenoble.fr RI Lasserre, Cecile/D-7073-2017; OI Lasserre, Cecile/0000-0002-0582-0775; Jolivet, Romain/0000-0002-9896-3651 FU Young Scientist fellowship; EFIDIR, ANR, France; CNES; NASA FX The SAR data set was provided by the European Space Agency (ESA) in the framework of the Dragon 2 program (ID 2509 and 5305). This program also supported R. Jolivet's work, through the Young Scientist fellowship. Funding was provided by the French "Extraction et Fusion d'Information et de Donnees d'Interferometrie Radar" program (EFIDIR, ANR, France) and Programme National de Teledection Spatiale (CNES). Part of G. Peltzer's contribution was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Figures and map were prepared using Generic Mapping Tools software [Wessel and Smith, 1995]. The authors thank Gareth Funning, an anonymous reviewer, and the Associate Editor for their constructive comments and suggestions. NR 89 TC 33 Z9 33 U1 0 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN 5 PY 2012 VL 117 AR B06401 DI 10.1029/2011JB008732 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 957IW UT WOS:000305156100001 ER PT J AU Cook, BI Wolkovich, EM Parmesan, C AF Cook, Benjamin I. Wolkovich, Elizabeth M. Parmesan, Camille TI Divergent responses to spring and winter warming drive community level flowering trends SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE growing season; ecological forecasting ID GROWING DEGREE-DAYS; CLIMATE-CHANGE; PHENOLOGICAL RESPONSE; GROWTH CESSATION; LEAF PHENOLOGY; TEMPERATURE; PLANTS; PHOTOPERIOD; DIVERSITY; BUDBURST AB Analyses of datasets throughout the temperate midlatitude regions show a widespread tendency for species to advance their springtime phenology, consistent with warming trends over the past 20-50 y. Within these general trends toward earlier spring, however, are species that either have insignificant trends or have delayed their timing. Various explanations have been offered to explain this apparent nonresponsiveness to warming, including the influence of other abiotic cues (e. g., photoperiod) or reductions in fall/winter chilling (vernalization). Few studies, however, have explicitly attributed the historical trends of nonresponding species to any specific factor. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that (i) apparent nonresponders are indeed responding to warming, but their responses to fall/winter and spring warming are opposite in sign and of similar magnitude; (ii) observed trends in first flowering date depend strongly on the magnitude of a given species' response to fall/winter vs. spring warming; and (iii) inclusion of fall/winter temperature cues strongly improves hindcast model predictions of long-term flowering trends compared with models with spring warming only. With a few notable exceptions, climate change research has focused on the overall mean trend toward phenological advance, minimizing discussion of apparently nonresponding species. Our results illuminate an understudied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues to improve predictability of community level responses to anthropogenic climate change. C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Wolkovich, Elizabeth M.] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92103 USA. [Parmesan, Camille] Univ Plymouth, Inst Marine, Plymouth PL9 OBL, Devon, England. [Parmesan, Camille] Univ Montpellier, Inst Sci Evolut, F-34095 Montpellier, France. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM bc9z@ldeo.columbia.edu RI Cook, Benjamin/H-2265-2012 FU National Center for Ecological Analysis and Synthesis; National Science Foundation [EF-0553768, DBI-0905806]; University of California, Santa Barbara; State of California FX We thank R. S. R. Fitter and A. H. Fitter for previous work, including data and theories, which provided much of the background for this study. Additional support came from the National Phenology Network (United States). We thank three anonymous reviewers and the editor for providing comments and critiques that significantly improved the manuscript. This work was conducted as a part of the "Forecasting Phenology" Working Group supported by the National Center for Ecological Analysis and Synthesis, a center funded by National Science Foundation Grant EF-0553768; the University of California, Santa Barbara; and the State of California. Support for E. M. W. came from the National Science Foundation Postdoctoral Fellow program Grant DBI-0905806. This is publication ISEM-2012-050 of the Institut des Sciences de l'Evolution de Montpellier Lamont contribution #7548. NR 44 TC 104 Z9 110 U1 10 U2 151 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 5 PY 2012 VL 109 IS 23 BP 9000 EP 9005 DI 10.1073/pnas.1118364109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 955BC UT WOS:000304991100049 PM 22615406 ER PT J AU Moore, DC Golwala, SR Bumble, B Cornell, B Day, PK LeDuc, HG Zmuidzinas, J AF Moore, D. C. Golwala, S. R. Bumble, B. Cornell, B. Day, P. K. LeDuc, H. G. Zmuidzinas, J. TI Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID DARK-MATTER SEARCH; QUASI-PARTICLE AB We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with <= 1 mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of sigma(E) - 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for similar to 1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726279] C1 [Moore, D. C.; Golwala, S. R.; Cornell, B.; Zmuidzinas, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bumble, B.; Day, P. K.; LeDuc, H. G.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Moore, DC (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM davidm@caltech.edu FU National Aeronautics and Space Administration; Gordon and Betty Moore Foundation FX This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The devices used in this work were fabricated at the JPL Microdevices Laboratory. We gratefully acknowledge support from the Gordon and Betty Moore Foundation. This work benefited significantly from interactions with and simulation software developed by the CDMS/SuperCDMS collaborations, as well as from useful insights from B. Mazin and O. Noroozian. B. Cornell has been partially supported by a NASA Space Technology Research Fellowship. NR 25 TC 24 Z9 24 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 4 PY 2012 VL 100 IS 23 AR 232601 DI 10.1063/1.4726279 PG 4 WC Physics, Applied SC Physics GA 956LA UT WOS:000305089900057 ER PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Charlton, P Chassande-Mottin, E Chelkowski, S Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, HS Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Feroz, F Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil-Casanova, S Gill, C Gleason, J Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kranz, O Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Liu, Y Liu, Z Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA McWilliams, S Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Neri, I Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sainathan, P Salemi, F Sammut, L Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schreiber, E Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Stein, LC Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Tseng, K Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wang, Z Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Feroz, F. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil-Casanova, S. Gill, C. Gleason, J. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kranz, O. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McWilliams, S. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Neri, I. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sainathan, P. Salemi, F. Sammut, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Stein, L. C. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tseng, K. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz SO PHYSICAL REVIEW D LA English DT Article ID RADIATION; BBN AB A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of Omega(GW)(f) = Omega(3)(f/900 Hz)(3), of Omega(3) < 0.32, assuming a value of the Hubble parameter of h(100) = 0.71. These new limits are a factor of seven better than the previous best in this frequency band. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Pichot, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Neri, I.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Napoli Federico II, Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S. M.; Aylott, B. E.; Carbone, L.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Page, A.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Smith-Lefebvre, N. D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Kelley, D.; Lough, J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Shapiro, B.; Shoemaker, D. H.; Soto, J.; Stein, A. J.; Stein, L. C.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, Lab AstroParticule & Cosmol APC, CNRS, IN2P3,CEA,DSM,IRFU,Observ Paris, F-75013 Paris, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; McWilliams, S.; Murphy, D.; Redwine, K.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Beck, D.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Markosyan, A.; Tseng, K.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Lundgren, A. P.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, Lab Mat Avances LMA, IN2P3, F-69622 Villeurbanne, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Cagnoli, G.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, Lab Kastler Brossel, ENS, CNRS, F-75005 Paris, France. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Geng, R.; Jang, Y. J.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Povo, Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Drever, R. W. P.; Harms, J.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.] Northwestern Univ, Evanston, IL 60208 USA. [Feroz, F.; Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kandhasamy, S.; Mandic, V.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Howell, Eric/H-5072-2014; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri, Igor/F-1482-2010; Shaddock, Daniel/A-7534-2011; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Lam, Ping Koy/A-5276-2008; Parisi, Maria/D-2817-2013; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Ciani, Giacomo/G-1036-2011; Mitrofanov, Valery/D-8501-2012; Marchesoni, Fabio/A-1920-2008; Bell, Angus/E-7312-2011; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; OI Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Vocca, Helios/0000-0002-1200-3917; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Lam, Ping Koy/0000-0002-4421-601X; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Ciani, Giacomo/0000-0003-4258-9338; Marchesoni, Fabio/0000-0001-9240-6793; Bell, Angus/0000-0003-1523-0821; prodi, giovanni/0000-0001-5256-915X; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; O'Shaughnessy, Richard/0000-0001-5832-8517; Gray, Norman/0000-0002-1941-9202; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767 FU United States National Science Foundation; LIGO Laboratory; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; GEO600 detector; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Virgo detector; Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This is LIGO document LIGO-P1000128. NR 36 TC 33 Z9 33 U1 3 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 4 PY 2012 VL 85 IS 12 AR 122001 DI 10.1103/PhysRevD.85.122001 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 951WE UT WOS:000304750000001 ER PT J AU Liemohn, MW Dupre, A Bougher, SW Trantham, M Mitchell, DL Smith, MD AF Liemohn, Michael W. Dupre, Ava Bougher, Stephen W. Trantham, Matthew Mitchell, David L. Smith, Michael D. TI Time-history influence of global dust storms on the upper atmosphere at Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THERMAL EMISSION SPECTROMETER; INTERANNUAL VARIABILITY; MAGNETIC-FIELD; SURVEYOR; ACCELEROMETER; THERMOSPHERE; IONOSPHERE; MISSION AB A recent survey of the Mars Global Surveyor (MGS) electron data for dayside photoelectron observations over regions of strong crustal fields revealed an unusual bimodal solar flux dependence. The elevated-flux population was associated with the timing of a large global dust storm in late 2001. The results of a systematic study parameterizing the photoelectron flux intensities against a solar flux proxy and MGS-observed atmospheric dust opacity are presented here. Instantaneous dust opacities were used as well as time-history averages and maximal values. The result is a functional form for the photoelectron fluxes against these parameters. The inclusion of instantaneous dust opacity values in the function do not improve the correlation, but a time-history window significantly enhances the correlation and explains the bimodal distribution in the electron fluxes. The best relationship was obtained with 7-Earth-month time-history dust opacity variables included in the function. The most likely explanation for this long-lived influence of dust storms is a composition and/or density change in the upper atmosphere. Citation: Liemohn, M. W., A. Dupre, S. W. Bougher, M. Trantham, D. L. Mitchell, and M. D. Smith (2012), Time-history influence of global dust storms on the upper atmosphere at Mars, Geophys. Res. Lett., 39, L11201, doi:10.1029/2012GL051994. C1 [Liemohn, Michael W.; Dupre, Ava; Bougher, Stephen W.; Trantham, Matthew] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Mitchell, David L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Liemohn, MW (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM liemohn@umich.edu RI Liemohn, Michael/H-8703-2012; Bougher, Stephen/C-1913-2013 OI Liemohn, Michael/0000-0002-7039-2631; Bougher, Stephen/0000-0002-4178-2729 FU NASA [NNX07AN98G, NNX11AD80G]; NSF [AST-0908311] FX The authors thank NASA and NSF for supporting this work, particularly under NASA grants NNX07AN98G and NNX11AD80G and NSF grant AST-0908311. NR 24 TC 10 Z9 10 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 2 PY 2012 VL 39 AR L11201 DI 10.1029/2012GL051994 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 952EN UT WOS:000304773400004 ER PT J AU Rignot, E Mouginot, J AF Rignot, E. Mouginot, J. TI Ice flow in Greenland for the International Polar Year 2008-2009 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADAR INTERFEROMETRY; SHEET; BASAL; SURFACE AB A digital representation of ice surface velocity is essential for a variety of glaciological, geologic and geophysical analyses and modeling. Here, we present a new, reference, comprehensive, high-resolution, digital mosaic of ice motion in Greenland assembled from satellite radar interferometry data acquired during the International Polar Year 2008 to 2009 by the Envisat Advanced Synthetic-Aperture Radar (ASAR), the Advanced Land Observation System (ALOS)'s Phase-Array L-band SAR (PALSAR) and the RADARSAT-1 SAR that covers 99% of the ice sheet in area. The best mapping performance is obtained using ALOS PALSAR data due to higher levels of temporal coherence at the L-band frequency; but C-band frequency SAR data are less affected by the ionosphere. The ice motion map reveals various flow regimes, ranging from patterned enhanced flow into a few large glaciers in the cold, low precipitation areas of north Greenland; to diffuse, enhanced flow into numerous, narrow, fast-moving glaciers in the warmer, high precipitation sectors of northwest and southeast Greenland. We find that the 100 fastest glaciers (v > 800 m/yr) drain 66% of the ice sheet in area, marine-terminating glaciers drain 88% of Greenland, and basal-sliding motion dominates internal deformation over more than 50% of the ice sheet. This view of ice sheet motion provides significant new constraints on ice flow modeling. Citation: Rignot, E., and J. Mouginot (2012), Ice flow in Greenland for the International Polar Year 2008-2009, Geophys. Res. Lett., 39, L11501, doi:10.1029/2012GL051634. C1 [Rignot, E.; Mouginot, J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Rignot, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Rignot, E (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 3202 Croul Hall, Irvine, CA 92697 USA. EM erignot@uci.edu RI Rignot, Eric/A-4560-2014; Mouginot, Jeremie/G-7045-2015; OI Rignot, Eric/0000-0002-3366-0481; Mouginot, Jeremie/0000-0001-9155-5455 FU National Aeronautics and Space Administration FX The authors thank Joanne Shimada, at JPL, for her assistance in processing RADARSAT-1 data and Anker Weidick, at GEUS, for his thorough review of glacier names employed in this study. This work was performed at the Department of Earth System Science of the School of Physical Sciences, University of California Irvine and at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryospheric Science Program. NR 20 TC 55 Z9 55 U1 1 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 2 PY 2012 VL 39 AR L11501 DI 10.1029/2012GL051634 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 952EN UT WOS:000304773400001 ER PT J AU Christensen, MW Stephens, GL AF Christensen, Matthew W. Stephens, Graeme L. TI Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHEAST PACIFIC STRATOCUMULUS; BOUNDARY-LAYER STRUCTURE; CELLULAR STRUCTURES; STRATIFORM CLOUDS; VOCALS-REX; WARM RAIN; PART II; TRACKS; DRIZZLE; ALBEDO AB The 94-GHz cloud profiling radar on the CloudSat satellite was used to examine the precipitation response of marine stratocumulus clouds to the increased aerosol burden from oceangoing vessels. Aerosol plumes generated by ships sometimes influence cloud microphysics and, to a largely undetermined extent, precipitation. To assess this response, the locations of over one thousand ship tracks coinciding with the radar were meticulously logged by hand from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Although precipitation detectable by the radar was infrequent, drizzle rates were often suppressed (72% of cases) and lighter in the ship tracks compared to the clouds adjacent to them. Ship plumes primarily decreased average rain rates through reducing the spatial coverage of precipitation. However, larger liquid water paths in ship tracks seldom coincided with the reduced cloud water sink from the suppression of precipitation (in less than 20% of cases). The sign and strength of the precipitation response was primarily tied to the mesoscale convective structure of the clouds. When closed cellular clouds were identified, significant decreases in the relative average liquid water path, rain rate (an average relative decrease of 68%), and rain cover fraction were observed in ship tracks compared to the surrounding clouds. The opposite occurred in the open cell regime where it was more common to find enhanced precipitation in the perturbed clouds. Ship plumes ingested into this regime resulted in significantly deeper and brighter clouds with higher liquid water amounts and rain rates (an average relative increase of 89%). C1 [Christensen, Matthew W.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Stephens, Graeme L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Christensen, MW (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM chrismat@atmos.colostate.edu RI Christensen, Matthew/C-5733-2013 FU NASA [NNX07AR11G, NAS5-99237, NNX09AK02G] FX We would like to thank reviewers: Bruce Albrecht, Jim Coakley, Robert Wood, and the other anonymous reviewers for their helpful input and comments in writing this paper. This work was supported by NASA grants NNX07AR11G, NAS5-99237, and NNX09AK02G. NR 50 TC 11 Z9 11 U1 3 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 2 PY 2012 VL 117 AR D11203 DI 10.1029/2011JD017125 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CG UT WOS:000304766700003 ER PT J AU Ekman, AML Hermann, M Gross, P Heintzenberg, J Kim, D Wang, C AF Ekman, Annica M. L. Hermann, Markus Gross, Peter Heintzenberg, Jost Kim, Dongchul Wang, Chien TI Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IN-SITU MEASUREMENTS; SULFURIC-ACID; CIVIL AIRCRAFT; NORTH-ATLANTIC; TRACE GASES; CLOUDS; NUCLEATION; DISTRIBUTIONS; TROPOPAUSE; TRANSPORT AB In this study, we compare modeled (MIT-CAM3) and observed (CARIBIC) sub-micrometer nucleation (N4-12, 4 <= d <= 12 nm) and Aitken mode (N-12, d > 12 nm) particle number concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). Modeled and observed global median N4-12 and N-12 agree fairly well (within a factor of two) indicating that the relatively simplified binary H2SO4-H2O nucleation parameterization applied in the model produces reasonable results in the UT/LMS. However, a comparison of the spatiotemporal distribution of sub-micrometer particles displays a number of discrepancies between MIT-CAM3 and CARIBIC data: N4-12 is underestimated by the model in the tropics and overestimated in the extra-topics. N-12 is in general overestimated by the model, in particular in the tropics and during summer months. The modeled seasonal variability of N4-12 is in poor agreement with CARIBIC data whereas it agrees rather well for N-12. Modeled particle frequency distributions are in general narrower than the observed ones. The model biases indicate an insufficient diffusive mixing in MIT-CAM3 and a too large vertical transport of carbonaceous aerosols. The overestimated transport is most likely caused by the constant supersaturation threshold applied in the model for the activation of particles into cloud droplets. The annually constant SO2 emissions in the model may also partly explain the poor representation of the N4-12 seasonal cycle. Comparing the MIT-CAM3 with CARIBIC data, it is also clear that care has to be taken regarding the representativeness of the measurement data and the time frequency of the model output. C1 [Ekman, Annica M. L.] Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, Sweden. [Ekman, Annica M. L.] Stockholm Univ, Bert Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden. [Hermann, Markus; Gross, Peter; Heintzenberg, Jost] Leibniz Inst Tropospher Res, Leipzig, Germany. [Kim, Dongchul; Wang, Chien] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Kim, Dongchul] Univ Space Res Assoc, Columbia, MD USA. [Kim, Dongchul] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ekman, AML (reprint author), Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, Sweden. EM annica@misu.su.se RI Kim, Dongchul/H-2256-2012; Hermann, Markus/B-7527-2013; OI Kim, Dongchul/0000-0002-5659-1394; Hermann, Markus/0000-0002-5124-1571; , /0000-0002-3979-4747 FU German Ministry of Education and Science (AFO); German Academic Exchange Service (DAAD); U.S. NSF [ATM-0329759, AGS-0944121] FX A. Ekman would like to thank the Bert Bolin Centre for Climate Research and the Vinnova-VINNMER program for financial support. M. Hermann and the CARIBIC team are deeply grateful to the airlines LTU and Lufthansa for their strong support of CARIBIC. The development of the CARIBIC system was financially supported by the German Ministry of Education and Science (AFO 2000 program) and its operation benefited and benefits from the European Commission's DGXII Environment RTD 4th, 5th, 6th, and 7th Framework programs. P. Gross would like to thank the German Academic Exchange Service (DAAD) for the financial support of his stay in Stockholm. C. Wang thanks the U.S. NSF (ATM-0329759 and AGS-0944121) for supporting the development of MIT-NCAR aerosol-climate model. NR 59 TC 2 Z9 2 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 2 PY 2012 VL 117 AR D11202 DI 10.1029/2011JD016777 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CG UT WOS:000304766700001 ER PT J AU Voll, P Samoska, L Church, S Lau, JM Sieth, M Gaier, T Kangaslahti, P Soria, M Tantawi, S Van Winkle, D AF Voll, Patricia Samoska, Lorene Church, Sarah Lau, Judy M. Sieth, Matthew Gaier, Todd Kangaslahti, Pekka Soria, Mary Tantawi, Sami Van Winkle, Dan TI A G-band cryogenic MMIC heterodyne receiver module for astronomical applications SO INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES LA English DT Article DE Multi-Chip Modules; Low Noise Amplifier (LNA); Low Noise Receiver; MMIC; HEMT ID PROBE AB We report cryogenic noise temperature and gain measurements of a prototype heterodyne receiver module designed to operate in the atmospheric window centered on 150 GHz. The module utilizes monolithic microwave integrated circuit (MMIC) InP high electron mobility transistor (HEMT) amplifiers, a second harmonic mixer, and bandpass filters. Swept local oscillator (LO) measurements show an average gain of 22 dB and an average noise temperature of 87 K over a 40 GHz band from 140 to 180 GHz when the module is cooled to 22 K. A spot noise temperature of 58 K was measured at 166 GHz and is a record for cryogenic noise from HEMT amplifiers at this frequency. Intermediate frequency (IF) sweep measurements show a 20 GHz IF band with less than 94 K receiver noise temperature for a fixed LO of 83 GHz. The compact housing features a split-block design that facilitates quick assembly and a condensed arrangement of the MMIC components and bias circuitry. DC feedthroughs and nano-miniature connectors also contribute to the compact design, so that the dimensions of the moduleare approximately 2.5 cm per side. C1 [Voll, Patricia; Church, Sarah; Lau, Judy M.; Sieth, Matthew] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Voll, Patricia; Church, Sarah; Lau, Judy M.; Sieth, Matthew] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Samoska, Lorene; Gaier, Todd; Kangaslahti, Pekka; Soria, Mary] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tantawi, Sami; Van Winkle, Dan] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Voll, P (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM pvoll@stanford.edu FU JPL Strategic University Research Partnership Program; SLAC Laboratory Directed Research and Development Program, Department of Energy [DE-AC03-76SF00515]; Harriett G. Jenkins Pre-doctoral Fellowship Program FX The authors would like to acknowledge Richard Lai and Gerry Mei of the Northrop Grumman Corporation for development of the HEMT MMIC process used for the LNA. This research was carried out in part at the JPL, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work is supported by the JPL Strategic University Research Partnership Program and the SLAC Laboratory Directed Research and Development Program, Department of Energy contract DE-AC03-76SF00515. P. V. thanks the Harriett G. Jenkins Pre-doctoral Fellowship Program for their support. NR 20 TC 1 Z9 1 U1 1 U2 3 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1759-0787 J9 INT J MICROW WIREL T JI Int. J. Microw. Wirel. Technol. PD JUN PY 2012 VL 4 IS 3 SI SI BP 283 EP 289 DI 10.1017/S1759078712000189 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 071XM UT WOS:000313630900005 ER PT J AU Sieth, M Church, S Lau, JM Voll, P Gaier, T Kangaslahti, P Samoska, L Soria, M Cleary, K Gawande, R Readhead, ACS Reeves, R Harris, A Neilson, J Tantawi, S Van Winkle, D AF Sieth, Matthew Church, Sarah Lau, Judy M. Voll, Patricia Gaier, Todd Kangaslahti, Pekka Samoska, Lorene Soria, Mary Cleary, Kieran Gawande, Rohit Readhead, Anthony C. S. Reeves, Rodrigo Harris, Andrew Neilson, Jeffrey Tantawi, Sami Van Winkle, Dan TI Technology developments for a large-format heterodyne MMIC array at W-band SO INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES LA English DT Article DE Hybrid and Multi-chip Modules; Low Noise and Communication Receivers AB We report on the development of W-band (75-110 GHz) heterodyne receiver technology for large-format astronomical arrays. The receiver system is designed to be both mass producible, so that the designs could be scaled to thousands of receiver elements, and modular. Most of the receiver functionality is integrated into compact monolithic microwave integrated circuit (MMIC) amplifier-based multichip modules. The MMIC modules include a chain of InP MMIC low-noise amplifiers, coupled-line bandpass filters, and sub-harmonic Schottky diode mixers. The receiver signals will be routed to and from the MMIC modules on a multilayer high-frequency laminate, which includes splitters, amplifiers, and frequency triplers. A prototype MMIC module has exhibited a band-averaged noise temperature of 41 K from 82 to 100 GHz and a gain of 29 dB at 15 K, which is the state-of-the-art for heterodyne multichip modules. C1 [Sieth, Matthew; Church, Sarah; Lau, Judy M.; Voll, Patricia] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Sieth, Matthew; Church, Sarah; Lau, Judy M.; Voll, Patricia] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Gaier, Todd; Kangaslahti, Pekka; Samoska, Lorene; Soria, Mary] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cleary, Kieran; Gawande, Rohit; Readhead, Anthony C. S.; Reeves, Rodrigo] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Harris, Andrew] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Neilson, Jeffrey; Tantawi, Sami; Van Winkle, Dan] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Sieth, M (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM mmsieth@stanford.edu RI Reeves, Rodrigo/H-2812-2014 OI Reeves, Rodrigo/0000-0001-5704-271X FU JPL Strategic University Partnership Program; National Science Foundation [AST-0905855]; Department of Energy [DE-AC03-76SF00515]; Harriett G. Jenkins Pre-doctoral Fellowship Program FX This research was carried out in part by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported by the JPL Strategic University Partnership Program, the National Science Foundation under grant AST-0905855, and Department of Energy contract DE-AC03-76SF00515. P.V. thanks the Harriett G. Jenkins Pre-doctoral Fellowship Program for their support. NR 15 TC 1 Z9 1 U1 0 U2 7 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1759-0787 J9 INT J MICROW WIREL T JI Int. J. Microw. Wirel. Technol. PD JUN PY 2012 VL 4 IS 3 SI SI BP 299 EP 307 DI 10.1017/S1759078712000293 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 071XM UT WOS:000313630900007 ER PT J AU Lall, P Lowe, R Goebel, K AF Lall, Pradeep Lowe, Ryan Goebel, Kai TI Prognostication Based on Resistance-Spectroscopy and Phase-Sensitive Detection for Electronics Subjected to Shock-Impact SO JOURNAL OF ELECTRONIC PACKAGING LA English DT Article ID HARSH ENVIRONMENTS; RELIABILITY; VIBRATION; BIST AB Leading indicators of failure have been developed based on high-frequency characteristics, and system-transfer function derived from resistance spectroscopy measurements during shock and vibration. The technique is intended for condition-monitoring in high-reliability applications where the knowledge of impending failure is critical and the risks in terms of loss-of-functionality are too high to bear. Previously, resistance spectroscopy measurements have been used during thermal cycling tests to monitor damage progression due to thermomechanical stresses. The development of resistance spectroscopy based damage precursors for prognostication under shock and vibration is new. In this paper, the high-frequency characteristics and system-transfer function based on resistance spectroscopy measurements have been correlated to the damage progression in electronics during shock and vibration. Packages being examined include ceramic area-array packages. Second level interconnect technologies examined include copper-reinforced solder column, SAC305 solder ball, and 90Pb10Sn high-lead solder ball. Assemblies have been subjected to 1500 g, 0.5 ms pulse (JESD-B2111). Continuity has been monitored in situ during the shock test for identification of part-failure. Resistance spectroscopy based damage precursors have been correlated to the optically measured transient strain based feature vectors. High speed cameras have been used to capture the transient strain histories during shock-impact. Statistical pattern recognition techniques have been used to identify damage initiation and progression and determine the statistical significance in variance between healthy and damaged assemblies. Models for healthy and damaged packages have been developed based on package characteristics. Data presented show that high-frequency characteristics and system-transfer characteristics based on resistance spectroscopy measurements can be used for condition-monitoring, damage initiation, and progression in electronic systems. A positive prognostic distance has been demonstrated for each of the interconnect technologies tested. [DOI: 10.1115/1.4006706] C1 [Lall, Pradeep; Lowe, Ryan] Auburn Univ, Dept Mech Engn, NSF Ctr Adv Vehicle & Extreme Environm Elect CAVE, Auburn, AL 36849 USA. [Goebel, Kai] NASA, Ames Res Ctr, Prognost Ctr Excellence, Moffett Field, CA 94035 USA. RP Lall, P (reprint author), Auburn Univ, Dept Mech Engn, NSF Ctr Adv Vehicle & Extreme Environm Elect CAVE, Auburn, AL 36849 USA. EM lall@eng.auburn.edu FU NASA-IVHM Program from the National Aeronautics and Space Administration [NNA08BA21C] FX The research presented in this paper has been supported by NASA-IVHM Program Grant NNA08BA21C from the National Aeronautics and Space Administration. NR 46 TC 0 Z9 0 U1 1 U2 3 PU ASME PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1043-7398 J9 J ELECTRON PACKAGING JI J. Electron. Packag. PD JUN PY 2012 VL 134 IS 2 AR 021001 DI 10.1115/1.4006706 PG 10 WC Engineering, Electrical & Electronic; Engineering, Mechanical SC Engineering GA 063VR UT WOS:000313030600009 ER PT J AU Miles, JH AF Miles, Jeffrey Hilton TI Spatial correlation in the ambient core noise field of a turbofan engine SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID INDIRECT COMBUSTION NOISE; JET ENGINE; PHASE DATA; COHERENCE; CHAMBERS; ENTROPY AB An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine. [http://dx.doi.org/10.1121/1.4714359] C1 NASA, John H Glenn Res Ctr, Lewis Field, Cleveland, OH 44135 USA. RP Miles, JH (reprint author), NASA, John H Glenn Res Ctr, Lewis Field, Cleveland, OH 44135 USA. EM Jeffrey.H.Miles@nasa.gov FU NASA Glenn Research Center Fast Track Center Innovation Fund; NASA Fundamental Aeronautics Subsonic Fixed Wing program FX The data used in this paper were provided with funding from the NASA Fundamental Aeronautics Subsonic Fixed Wing program. This work was supported by the NASA Glenn Research Center Fast Track Center Innovation Fund. NR 41 TC 1 Z9 1 U1 0 U2 2 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JUN PY 2012 VL 131 IS 6 BP 4625 EP 4639 DI 10.1121/1.4714359 PG 15 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 010ZQ UT WOS:000309133500053 PM 22712936 ER PT J AU Kandula, M AF Kandula, Max TI Sound propagation in saturated gas-vapor-droplet suspensions with droplet evaporation and nonlinear relaxation SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID ATTENUATION AB The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson [J. Atmos. Sci. 32(11), 2201-2205 (1975)] to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration. (C) 2012 Acoustical Society of America C1 NASA Kennedy Space Ctr, ESC Team QNA, Kennedy Space Ctr, FL 32899 USA. RP Kandula, M (reprint author), NASA Kennedy Space Ctr, ESC Team QNA, Kennedy Space Ctr, FL 32899 USA. EM max.kandula-1@nasa.gov NR 15 TC 1 Z9 1 U1 0 U2 2 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JUN PY 2012 VL 131 IS 6 BP EL434 EP EL440 DI 10.1121/1.4710835 PG 7 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 010ZQ UT WOS:000309133500003 PM 22713018 ER PT J AU Musenich, R Becker, R Bollweg, K Burger, J Capell, M Datskov, VI Gallilee, MA Gargiulo, C Kounine, A Koutsenko, V Lebedev, A McInturff, A Schinzel, D Siemko, A Stiff, KJ Zeigler, J AF Musenich, Riccardo Becker, Robert Bollweg, Kenneth Burger, Joseph Capell, Michael Datskov, Vladimir Ivanovich Gallilee, Mark Antony Gargiulo, Corrado Kounine, Andrej Koutsenko, Vladimir Lebedev, Alexei McInturff, Al Schinzel, Dietrich Siemko, Andrzej Stiff, Kerry John Zeigler, John TI Results From the Testing of the AMS Space Superconducting Magnet SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article; Proceedings Paper CT 22nd International Conference on Magnet Technology (MT) CY SEP 12-16, 2011 CL ITER Org, Marseille, FRANCE SP PACA Reg, CEA, IEEE CSC, Iberdrola Ingenieria & Construcc, SAU, Oxford Superconducting Technol, R KIND, Super Power Inc, Western Superconducting Technol Co Ltd HO ITER Org DE Space technology; spectrometer; superconducting magnets AB The Alpha Magnetic Spectrometer (AMS) is a particle detector designed to search for anti-matter, dark matter and the origin of cosmic rays in space. A superconducting magnet has been developed to generate 0.78 T field at the center. The magnet system consists of a pair of large "dipole" coils together with two series of six racetrack coils, arranged circumferentially in order to minimize the stray field. The coils, series connected, are wound with an aluminum-stabilized mono-strand NbTi conductor and are cooled by a superfluid helium circuit. The superconducting magnet was successfully tested up to the operating current of 410 A, however the decision was taken to equip the spectrometer with a NdFeB permanent magnet in order to maximize the experiment life. The paper describes the results of the superconducting magnet tests and in particular analyses an anomalous increasing of the coil temperature during magnet charging. C1 [Musenich, Riccardo] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Becker, Robert; Burger, Joseph; Capell, Michael; Gallilee, Mark Antony; Kounine, Andrej; Koutsenko, Vladimir; Lebedev, Alexei; Schinzel, Dietrich; Stiff, Kerry John] MIT, Cambridge, MA 02139 USA. [Bollweg, Kenneth] NASA, Washington, DC USA. [Datskov, Vladimir Ivanovich; Gargiulo, Corrado] Ist Nazl Fis Nucl, Rome, Italy. [McInturff, Al] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Siemko, Andrzej] CERN, Geneva, Switzerland. [Zeigler, John] Sensor Design Grp LLC, Houston, TX USA. RP Musenich, R (reprint author), Ist Nazl Fis Nucl, Via Dodecaneso 33, I-16146 Genoa, Italy. EM riccardo.musenich@ge.infn.it NR 10 TC 2 Z9 2 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2012 VL 22 IS 3 AR 4500204 DI 10.1109/TASC.2011.2176450 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 986SK UT WOS:000307364700164 ER PT J AU Qi, JG Bobushev, TS Kulmatov, R Groisman, P Gutman, G AF Qi, Jiaguo Bobushev, Temirbek S. Kulmatov, Rashid Groisman, Pavel Gutman, Garik TI Addressing global change challenges for Central Asian socio-ecosystems SO FRONTIERS OF EARTH SCIENCE LA English DT Article DE Central Asia; climate change; land use and land cover change; water and food security ID CLIMATE-CHANGE; ARAL SEA; WATER-RESOURCES; POPULATION; DISASTER; IMPACTS; GROWTH; BASIN AB Central Asia is one of the most vulnerable regions on the planet earth to global climate change, depending on very fragile natural resources. The Soviet legacy has left the five countries (Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan, and Uzbekistan) with a highly integrated system but they are facing great challenges with tensions that hinder regional coordination of food and water resources. With increasing climate variability and warming trend in the region, food and water security issues become even more crucial now and, if not addressed properly, could affect the regional stability. The long-term drivers of these two most critical elements, food and water, are climate change; the immediate and probably more drastic factors affecting the food and water security are land uses driven by institutional change and economic incentives. As a feedback, changes in land use and land cover have directly implications on water uses, food production, and lifestyles of the rural community in the region. Regional and international efforts have been made to holistically understand the cause, extent, rate and societal implications of land use changes in the region. Much of these have been understood, or under investigation by various projects, but solutions or research effort to develop solutions, to these urgent regional issues are lacking. This article, serves as an introduction to the special issue, provides a brief overview of the challenges facing the Central Asian countries and various international efforts in place that resulted in the publications of this special issue. C1 [Qi, Jiaguo] Michigan State Univ, E Lansing, MI 48823 USA. [Bobushev, Temirbek S.] Amer Univ Cent Asia, Bishkek 720040, Kyrgyzstan. [Kulmatov, Rashid] Natl Univ Uzbekistan, Tashkent 100027, Uzbekistan. [Groisman, Pavel] NOAA, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Gutman, Garik] NASA, Land Use & Land Cover Change Program, Washington, DC 20546 USA. RP Qi, JG (reprint author), Michigan State Univ, E Lansing, MI 48823 USA. EM qi@msu.edu FU NASA Land Cover and Land Use Change Program [NNX08AH50G]; MAIRS Program of Chinese Academy of Science FX This work was partially supported by NASA Land Cover and Land Use Change Program (No. NNX08AH50G) and the MAIRS Program of Chinese Academy of Science. NR 23 TC 3 Z9 4 U1 3 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 2095-0195 J9 FRONT EARTH SCI-PRC JI Front. Earth Sci. PD JUN PY 2012 VL 6 IS 2 BP 115 EP 121 DI 10.1007/s11707-012-0320-4 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 002TB UT WOS:000308557100001 ER PT J AU Li, X Brinckerhoff, WB Managadze, GG Pugel, DE Corrigan, CM Doty, JH AF Li, X. Brinckerhoff, W. B. Managadze, G. G. Pugel, D. E. Corrigan, C. M. Doty, J. H. TI Laser ablation mass spectrometer (LAMS) as a standoff analyzer in space missions for airless bodies SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Laser ablation mass spectrometer (LAMS); Time-of-flight; Standoff analyzer ID ION AB A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm and 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore. LAMS should be able to be mounted on a platform or robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, X.] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Brinckerhoff, W. B.; Pugel, D. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Managadze, G. G.] Space Res Inst IKI, Moscow, Russia. [Corrigan, C. M.] Natl Museum Nat Hist, Smithsonian Inst, Washington, DC 20560 USA. [Doty, J. H.] Rice Univ, Houston, TX USA. RP Li, X (reprint author), Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM xiang.li@nasa.gov RI Li, Xiang/F-4539-2012; Brinckerhoff, William/F-3453-2012 OI Brinckerhoff, William/0000-0001-5121-2634 FU NASA Planetary Instrument Definition and Development (PIDDP) program; Goddard Internal Research and Development program FX This work was supported by the NASA Planetary Instrument Definition and Development (PIDDP) program and by the Goddard Internal Research and Development program. NR 17 TC 4 Z9 4 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD JUN 1 PY 2012 VL 323 BP 63 EP 67 DI 10.1016/j.ijms.2012.06.020 PG 5 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 005RU UT WOS:000308768400011 ER PT J AU Fricker, GA Saatchi, SS Meyer, V Gillespie, TW Sheng, YW AF Fricker, Geoffrey A. Saatchi, Sassan S. Meyer, Victoria Gillespie, Thomas W. Sheng, Yongwei TI Application of Semi-Automated Filter to Improve Waveform Lidar Sub-Canopy Elevation Model SO REMOTE SENSING LA English DT Article DE laser vegetation imaging sensor; lidar; discrete return lidar; large footprint lidar; sub-canopy topography; point filtering; terrain slope; moist tropical rainforest; Barro Colorado Island ID TROPICAL RAIN-FOREST; LARGE-FOOTPRINT LIDAR; ABOVEGROUND BIOMASS; CANOPY; TOPOGRAPHY; VEGETATION; LANDSCAPE; HEIGHT; VALIDATION; ALGORITHMS AB Modeling sub-canopy elevation is an important step in the processing of waveform lidar data to measure three dimensional forest structure. Here, we present a methodology based on high resolution discrete-return lidar (DRL) to correct the ground elevation derived from large-footprint Laser Vegetation Imaging Sensor (LVIS) and to improve measurement of forest structure. We use data acquired over Barro Colorado Island, Panama by LVIS large-footprint lidar (LFL) in 1998 and DRL in 2009. The study found an average vertical difference of 28.7 cm between 98,040 LVIS last-return points and the discrete-return lidar ground surface across the island. The majority (82.3%) of all LVIS points matched discrete return elevations to 2 m or less. Using a multi-step process, the LVIS last-return data is filtered using an iterative approach, expanding window filter to identify outlier points which are not part of the ground surface, as well as applying vertical corrections based on terrain slope within the individual LVIS footprints. The results of the experiment demonstrate that LFL ground surfaces can be effectively filtered using methods adapted from discrete-return lidar point filtering, reducing the average vertical error by 15 cm and reducing the variance in LVIS last-return data by 70 cm. The filters also reduced the largest vertical estimations caused by sensor saturation in the upper reaches of the forest canopy by 14.35 m, which improve forest canopy structure measurement by increasing accuracy in the sub-canopy digital elevation model. C1 [Fricker, Geoffrey A.; Gillespie, Thomas W.; Sheng, Yongwei] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA. [Saatchi, Sassan S.; Meyer, Victoria] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Fricker, GA (reprint author), Univ Calif Los Angeles, Dept Geog, 1255 Bunche Hall,Box 951524, Los Angeles, CA 90095 USA. EM africker@ucla.edu; Sasan.S.Saatchi@jpl.nasa.gov; vic.meyer@gmail.com; tg@geog.ucla.edu; ysheng@geog.ucla.edu RI Beckley, Matthew/D-4547-2013 FU Vegetation Canopy Lidar (VCL) Science team (NASA) [NAS597160]; NASA [NNG04GO05G] FX Funding for the collection and processing of the 1998 Central America data were provided by the Vegetation Canopy Lidar (VCL) Science team (NASA grant number NAS597160) and NASA's Interdisciplinary Science Program (IDS) (NASA grant number NNG04GO05G). Publisher: Code 694 NASA Goddard Space Flight Center. ESRI world map data (Figure 1). NR 47 TC 5 Z9 5 U1 0 U2 20 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2012 VL 4 IS 6 BP 1494 EP 1518 DI 10.3390/rs4061494 PG 25 WC Remote Sensing SC Remote Sensing GA 978QB UT WOS:000306759100001 ER PT J AU Watts, AC Ambrosia, VG Hinkley, EA AF Watts, Adam C. Ambrosia, Vincent G. Hinkley, Everett A. TI Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use SO REMOTE SENSING LA English DT Article DE Unmanned Aircraft System (UAS); UAV; drone; aerial survey ID IMAGERY AB Unmanned Aircraft Systems (UAS) have evolved rapidly over the past decade driven primarily by military uses, and have begun finding application among civilian users for earth sensing reconnaissance and scientific data collection purposes. Among UAS, promising characteristics are long flight duration, improved mission safety, flight repeatability due to improving autopilots, and reduced operational costs when compared to manned aircraft. The potential advantages of an unmanned platform, however, depend on many factors, such as aircraft, sensor types, mission objectives, and the current UAS regulatory requirements for operations of the particular platform. The regulations concerning UAS operation are still in the early development stages and currently present significant barriers to entry for scientific users. In this article we describe a variety of platforms, as well as sensor capabilities, and identify advantages of each as relevant to the demands of users in the scientific research sector. We also briefly discuss the current state of regulations affecting UAS operations, with the purpose of informing the scientific community about this developing technology whose potential for revolutionizing natural science observations is similar to those transformations that GIS and GPS brought to the community two decades ago. C1 [Watts, Adam C.] Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA. [Ambrosia, Vincent G.] Calif State Univ, Monterey Bay NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hinkley, Everett A.] US Forest Serv, USDA, Arlington, VA 22209 USA. RP Watts, AC (reprint author), Univ Florida, Sch Nat Resources & Environm, POB 110410, Gainesville, FL 32611 USA. EM acwatts@ufl.edu; vincent.g.ambrosia@nasa.gov; ehinkley@fs.fed.us NR 21 TC 129 Z9 135 U1 29 U2 210 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2012 VL 4 IS 6 BP 1671 EP 1692 DI 10.3390/rs4061671 PG 22 WC Remote Sensing SC Remote Sensing GA 978QB UT WOS:000306759100009 ER PT J AU Peduzzi, A Wynne, RH Thomas, VA Nelson, RF Reis, JJ Sanford, M AF Peduzzi, Alicia Wynne, Randolph H. Thomas, Valerie A. Nelson, Ross F. Reis, James J. Sanford, Mark TI Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests SO REMOTE SENSING LA English DT Article DE deciduous forests; coniferous forests; silviculture; leaf area index; remote sensing; laser scanning; InSAR; dual band single pass interferometric synthetic aperture radar ID LEAF-AREA INDEX; STAND CHARACTERISTICS; CANOPY-HEIGHT; LASER SCANNER; PREDICTION; BACKSCATTER; DEFOLIATION; REGRESSION; VARIABLES; CONIFER AB The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X-and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R-2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests. C1 [Peduzzi, Alicia; Wynne, Randolph H.; Thomas, Valerie A.] Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, Blacksburg, VA 24061 USA. [Nelson, Ross F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reis, James J.] IEEE, Baltimore, MD 21201 USA. [Sanford, Mark] Fugro EarthData Inc, Frederick, MD 21704 USA. RP Peduzzi, A (reprint author), Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, 319 Cheatham Hall,Mail Code 0324, Blacksburg, VA 24061 USA. EM apeduzzi@vt.edu; wynne@vt.edu; thomasv@vt.edu; ross.f.nelson@nasa.gov; jamesjreis@comcast.net; msanford@earthdata.com RI Beckley, Matthew/D-4547-2013; Nelson, Ross/H-8266-2014 FU Virginia Tech Department of Forest Resources and Environmental Conservation FX This research was possible thanks to support from the Virginia Tech Department of Forest Resources and Environmental Conservation and the help in field data collection provided by Jessica Walker (Virginia Tech), Rupesh Shrestha (Boise State University), Nilam Kayastha (Virginia Tech), Asim Banskota (Conservation International), Wayne Bowman (Virginia Department of Forestry), and John Scrivani (Virginia Information Technology Agency). NR 51 TC 10 Z9 10 U1 0 U2 23 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2012 VL 4 IS 6 BP 1758 EP 1780 DI 10.3390/rs4061758 PG 23 WC Remote Sensing SC Remote Sensing GA 978QB UT WOS:000306759100013 ER PT J AU Devi, VM Benner, DC Smith, MAH Mantz, AW Sung, K Brown, LR AF Devi, V. Malathy Benner, D. Chris Smith, Mary Ann H. Mantz, Arlan W. Sung, Keeyoon Brown, Linda R. TI Spectral line parameters including temperature dependences of air-broadening for the 2 <- 0 bands of (CO)-C-13-O-60 and (CO)-C-12-O-18 at 2.3 mu.m SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE CO; Lorentz widths; Pressure shifts; Line mixing; Speed dependence; Intensities; Temperature dependences of widths and shifts ID MOLECULAR SPECTROSCOPIC DATABASE; SUB-DOPPLER MEASUREMENTS; CARBON-MONOXIDE; CO; ACCURATE; FREQUENCIES; EDITION; STATE AB The first air broadening line shape parameters were determined for the 2 <- 0 bands of (CO)-C-13-O-16 near 4166.8 cm(-1) and (CO)-C-12-O-18 near 4159.0 cm(-1). Air-broadened Lorentz half-width coefficients, their temperature dependence exponents; air-induced pressure shift coefficients, their temperature dependences; and air line mixing coefficients were measured. Additionally, speed-dependent line shapes with line mixing employing the off-diagonal relaxation matrix element coefficients were applied to minimize the fit residuals. Finally, individual line positions and line intensities of the two isotopologues were constrained to the well-known theoretical quantum mechanical expressions in order to obtain the rovibrational (G, B, D and H) and band intensity parameters (including Herman-Wallis coefficients). For this, laboratory spectra were recorded at 0.005 cm(-1) resolution using a temperature-controlled coolable absorption cell configured inside a Bruker IFS 125HR Fourier transform spectrometer. Gas temperatures and pressures for the spectra varied from 150 to 298 K and 20 to 700 Torr, respectively. Results were obtained from broad-band multispectrum least-squares fitting of the 4000-4360 cm(-1) spectral region. Four isotope-enriched pure sample spectra and twelve spectra with air + CO samples ((CO)-C-13-O-16 or (CO)-C-12-O-18, as appropriate) were fitted simultaneously. The results obtained for (CO)-C-13-O-16 and (CO)-C-12-O-18 are compared and discussed. (C) 2012 Elsevier Inc. All rights reserved. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Smith, Mary Ann H.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Mantz, Arlan W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Sung, Keeyoon; Brown, Linda R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM malathy.d.venkataraman@nasa.gov RI Sung, Keeyoon/I-6533-2015 FU NASA's Atmospheric Composition Laboratory; National Aeronautics and Space Administration FX The research performed at the College of William and Mary, NASA Langley Research Center and Connecticut College is supported by NASA's Atmospheric Composition Laboratory Research Program. The research at the Jet Propulsion Laboratory, California Institute of Technology is performed under contract with National Aeronautics and Space Administration. The authors thank R.R. Gamache for providing the rotational quantum partition function for all the three CO isotopologues. NR 26 TC 7 Z9 7 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUN-JUL PY 2012 VL 276 BP 33 EP 48 DI 10.1016/j.jms.2012.05.005 PG 16 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 990DX UT WOS:000307612300007 ER PT J AU Sasgen, I van den Broeke, M Bamber, JL Rignot, E Sorensen, LS Wouters, B Martinec, Z Velicogna, I Simonsen, SB AF Sasgen, Ingo van den Broeke, Michiel Bamber, Jonathan L. Rignot, Eric Sorensen, Louise Sandberg Wouters, Bert Martinec, Zdenek Velicogna, Isabella Simonsen, Sebastian B. TI Timing and origin of recent regional ice-mass loss in Greenland SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE mass balance; Greenland; GRACE; InSAR; RACMO; ICESat ID GLACIAL-ISOSTATIC-ADJUSTMENT; REBOUND MODELS; GRACE DATA; SHEET; BALANCE; ACCELERATION; DRAINAGE; SURFACE; VARIABILITY; VALIDATION AB Within the last decade, the Greenland ice sheet (GrIS) and its surroundings have experienced record high surface temperatures (Mote, 2007; Box et al., 2010), ice sheet melt extent (Fettweis et al., 2011) and record-low summer sea-ice extent (Nghiem et al., 2007). Using three independent data sets, we derive, for the first time, consistent ice-mass trends and temporal variations within seven major drainage basins from gravity fields from the Gravity Recovery and Climate Experiment (GRACE; Tapley et al., 2004), surface-ice velocities from Inteferometric Synthetic Aperture Radar (InSAR; Rignot and Kanagaratnam, 2006) together with output of the regional atmospheric climate modelling (RACMO2/GR; Ettema et al., 2009), and surface-elevation changes from the Ice, cloud and land elevation satellite (ICESat; Sorensen et al., 2011). We show that changing ice discharge (D), surface melting and subsequent run-off (M/R) and precipitation (P) all contribute, in a complex and regionally variable interplay, to the increasingly negative mass balance of the GrIS observed within the last decade. Interannual variability in P along the northwest and west coasts of the GrIS largely explains the apparent regional mass loss increase during 2002-2010, and obscures increasing M/R and D since the 1990s. In winter 2002/2003 and 2008/2009, accumulation anomalies in the east and southeast temporarily outweighed the losses by M/R and D that prevailed during 2003-2008, and after summer 2010. Overall, for all basins of the GrIS, the decadal variability of anomalies in P, M/R and D between 1958 and 2010 (w.r.t. 1961-1990) was significantly exceeded by the regional trends observed during the GRACE period (2002-2011). (C) 2012 Elsevier B.V. All rights reserved. C1 [Sasgen, Ingo] Geoforschungszentrum Potsdam, German Res Ctr Geosci, Dept Geodesy & Remote Sensing, D-14473 Potsdam, Germany. [van den Broeke, Michiel] Univ Utrecht, Inst Marine & Atmospher Res, NL-3508 TA Utrecht, Netherlands. [Bamber, Jonathan L.] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. [Rignot, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rignot, Eric; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Sorensen, Louise Sandberg] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Wouters, Bert] Royal Netherlands Meteorol Inst, NL-3732 GK De Bilt, Netherlands. [Martinec, Zdenek] Dublin Inst Adv Studies, Sch Theoret Phys, Dublin 4, Ireland. [Simonsen, Sebastian B.] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen, Denmark. [Simonsen, Sebastian B.] DMI, Danish Climate Centre, DK-2100 Copenhagen, Denmark. RP Sasgen, I (reprint author), Geoforschungszentrum Potsdam, German Res Ctr Geosci, Dept Geodesy & Remote Sensing, Telegrafenberg A20, D-14473 Potsdam, Germany. EM sasgen@gfz-potsdam.de RI Simonsen, Sebastian /F-4791-2013; Bamber, Jonathan/C-7608-2011; Rignot, Eric/A-4560-2014; Van den Broeke, Michiel/F-7867-2011; Sorensen, Louise/E-5282-2014; OI Simonsen, Sebastian /0000-0001-9569-1294; Bamber, Jonathan/0000-0002-2280-2819; Rignot, Eric/0000-0002-3366-0481; Van den Broeke, Michiel/0000-0003-4662-7565; Sorensen, Louise/0000-0002-3771-4061; Wouters, Bert/0000-0002-1086-2435 FU Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [SA 1734/2-2 (SPP1257)]; Utrecht University; RAPID international project; Netherlands Polar Programme; European Union [226375] FX Ingo Sasgen would like to acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Grant SA 1734/2-2 (SPP1257). We would like to thank the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100% of the raw telemetry data of the twin GRACE satellites. This work is a contribution to the "Helmholtz Climate Initiative REKLIM" (Regional Climate Change), a joint research project of the Helmholtz Association of German research centres (HGF). Michiel van den Broeke acknowledges support from Utrecht University, the RAPID international project and the Netherlands Polar Programme. This work was supported by funding from the ice2sea programme from the European Union 7th Framework Programme, Grant no. 226375. Ice2sea contribution number ice2sea039. We would like to thank Philippe Lucas-Picher for the high resolution HIRHAM5 data. We would like to thank four anonymous reviewers for their helpful comments. NR 62 TC 90 Z9 91 U1 9 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 1 PY 2012 VL 333 BP 293 EP 303 DI 10.1016/j.epsl.2012.03.033 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 980HK UT WOS:000306884000029 ER PT J AU Li, WQ Chakraborty, S Beard, BL Romanek, CS Johnson, CM AF Li, Weiqiang Chakraborty, Suvankar Beard, Brian L. Romanek, Christopher S. Johnson, Clark M. TI Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mg isotope; Mg-calcite; carbonate; isotope fractionation; free-drift experiment; vital effect ID COCCOLITHOPHORES EMILIANIA-HUXLEYI; EQUILIBRIUM FRACTIONATION; BIOLOGICAL CARBONATES; SYNTHETIC ARAGONITE; BIOGENIC CALCITE; CHLOROPHYLL-A; PLANT-GROWTH; MG ISOTOPES; PORE-FLUID; ICP-MS AB The Mg isotope composition of biogenic and inorganic carbonate bears on paleoclimate and paleooceanography studies because of the potential for constraining temperatures, so-called "vital" effects, and marine Mg fluxes. Previous work has shown that marine organisms produce a wide range of Mg isotope compositions that are species dependent, where Delta Mg-26/24(carb-sol) fractionations vary from -1 parts per thousand to -5 parts per thousand (e.g., Hippler et al., 2009, GCA). Constraining Mg isotope fractionation during inorganic carbonate precipitation is important because this serves as a baseline with which to compare biogenic samples, as well as constrain Mg cycling in natural environments. We report Mg isotope fractionation factors between Mg-bearing calcite and aqueous Mg (Mg/Ca molar ratio between 3:1 and 13:1) from 20 free-drift and one chemo-stat experiment conducted at temperatures between 4 degrees C and 45 degrees C, for solutions buffered at P-CO2 between 0.038% and 3%. Pure CaCO3 seed crystals were used to promote the heterogeneous growth of carbonate from solution, and to minimize kinetic isotope effects associated with nucleation and rapid precipitation from strongly super-saturated solutions. Under these conditions, calcite overgrowths that contained 0.8-14.9 mol% MgCO3 precipitated on the seed crystals. The measured Mg-62/Mg-24 fractionation factors between Mg-calcite and solution ( Delta Mg-26(cal-sol)) are modestly correlated with temperature, changing from -2.70 parts per thousand at 4 degrees C to -2.22 parts per thousand, at 45 degrees C. The fractionation factors are not correlated with experimental conditions (chemo-stat vs. free drift), Mg content of the overgrowth, P-CO2, or the Mg/Ca ratio of the solution. The temperature-dependence of the Mg isotope fractionation is: Delta Mg-26(cal-sol)=(-0.158 +/- 0.051) x 10(6)/T-2 - (0.74 +/- 0.56), where T is temperature in Kelvin. Fractionation of Mg isotopes in calcite is much less sensitive to temperature than oxygen isotope fractionation, which limits its application as a geothermometer. In contrast, the Mg isotope fractionations for biogenically precipitated Mg calcite vary greatly, suggesting its potential to discern "vital" effects in natural samples. Finally, the relatively small temperature effect on Mg isotope fractionation greatly simplifies use of Mg isotopes in modern or ancient marine systems to constrain Mg fluxes, including continental weathering. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Chakraborty, Suvankar; Romanek, Christopher S.] Univ Kentucky, Dept Earth & Environm Sci, Lexington, KY 40506 USA. [Li, Weiqiang; Chakraborty, Suvankar; Beard, Brian L.; Romanek, Christopher S.; Johnson, Clark M.] NASA, Astrobiol Inst, Washington, DC USA. RP Li, WQ (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM liweiq@gmail.com RI Li, Weiqiang/D-2975-2011 OI Li, Weiqiang/0000-0003-2648-7630 FU NASA Astrobiology Institute FX We thank Dr. Andrew Czaja for discussion on taxonomy of marine species. Prof. Huifang Xu provided Hawaiian seawater. This paper benefited from constructive comments from A. Immenhauser, E Tipper, and M. Fantle, as well as editorial comments by G. Henderson. This study was supported by the NASA Astrobiology Institute. NR 74 TC 40 Z9 45 U1 5 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 1 PY 2012 VL 333 BP 304 EP 316 DI 10.1016/j.epsl.2012.04.010 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 980HK UT WOS:000306884000030 ER PT J AU Canan, JW Gerstenmaier, WH AF Canan, James W. Gerstenmaier, William H. TI Converstaions with William H. Gerstenmaier SO AEROSPACE AMERICA LA English DT Editorial Material C1 [Gerstenmaier, William H.] NASA Headquarters, Human Explorat & Operat Directorate, Washington, DC USA. [Gerstenmaier, William H.] NASA, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD JUN PY 2012 VL 50 IS 6 BP 16 EP 19 PG 4 WC Engineering, Aerospace SC Engineering GA 981JD UT WOS:000306962000007 ER PT J AU Oehler, DZ Allen, CC AF Oehler, Dorothy Z. Allen, Carlton C. TI Giant Polygons and Mounds in the Lowlands of Mars: Signatures of an Ancient Ocean? SO ASTROBIOLOGY LA English DT Article DE Mars; Ocean; Giant polygons; Mounds; Lowlands; Chryse; Acidalia; Mud volcano ID LOWER CONGO BASIN; SUBSURFACE SEDIMENT MOBILIZATION; MID-NORWEGIAN MARGIN; SEA-FLOOR POCKMARKS; MUD VOLCANO FIELD; FAULT SYSTEMS; NORTHERN PLAINS; FLUID-FLOW; IMPACT CRATERS; UPPER MIOCENE AB This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this hypothesis. C1 [Oehler, Dorothy Z.; Allen, Carlton C.] NASA, Astromat Res & Explorat Sci Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Oehler, DZ (reprint author), NASA, Astromat Res & Explorat Sci Directorate, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM dorothy.z.oehler@nasa.gov FU Astromaterials Research and Exploration Science (ARES) Directorate at Johnson Space Center (JSC); Innovative Research and Development program at JSC FX We are grateful to Dr. P. Van Rensbergen (Shell International Exploration and Technology, Rijswijk, The Netherlands) for discussions regarding the occurrence of giant polygons and mud volcanoes in offshore settings. We also are grateful to Drs. K.L. Tanaka, S.M. Clifford, and T.J. Parker for many helpful comments and suggestions. Support for this work was provided by the Astromaterials Research and Exploration Science (ARES) Directorate at Johnson Space Center (JSC) and by a grant from the Innovative Research and Development program at JSC. We thank the American Geophysical Union, the Geological Society of London, and John Wiley and Sons for granting permission to use portions of published images in Fig. 7 of this paper. NR 107 TC 8 Z9 8 U1 3 U2 8 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2012 VL 12 IS 6 BP 601 EP 615 DI 10.1089/ast.2011.0803 PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 973QC UT WOS:000306373900007 PM 22731685 ER PT J AU Ansari, RR Nyeo, SL AF Ansari, Rafat R. Nyeo, Su-Long TI Submicron Particle Size Distributions by Dynamic Light Scattering with Non-Negative Least-Squares Algorithm SO CHINESE JOURNAL OF PHYSICS LA English DT Article ID MAXIMUM-ENTROPY ANALYSIS; CORRELATION SPECTROSCOPY DATA; POLYDISPERSITY; PROGRAM AB A method is proposed using the non-negative least-squares (NNLS) algorithm of Lawson and Hanson to analyze dynamic light scattering (DLS) data for the size distribution of particles in a colloidal dispersion. The NNLS algorithm gives sparse solutions, which are sensitive to the domains used for reconstructing the solutions. The method uses the algorithm to construct an optimal solution from a set of sparse solutions of different domains but of the same dimension. The sparse solutions are superimposed to give a general solution with its dimension being treated as a regularization parameter. An optimal solution is specified by a suitable value for the dimension, which is determined by either Morozov's criterion or the L-curve method. Simulated DLS data are generated from a unimodal and a bimodal distribution for evaluating the performance of the method, which is then applied to analyze experimental DLS data from the ocular lenses of a fetal calf and a Rhesus monkey to obtain optimal size distributions of the alpha-crystallins and crystallin aggregates in the ocular lenses. C1 [Ansari, Rafat R.] NASA, Biosci & Technol Branch, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. [Nyeo, Su-Long] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan. RP Ansari, RR (reprint author), NASA, Biosci & Technol Branch, John H Glenn Res Ctr Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Rafat.R.Ansari@nasa.gov; t14269@mail.ncku.edu.tw FU National Science Council of the Republic of China [NSC 98-2112-M-006-009] FX Dr. Ansari would like to acknowledge the support from the Research and Technology Directorate of the NASA Glenn Research Center, and Dr. Nyeo would like to acknowledge the support from the National Science Council of the Republic of China under the Contract No. NSC 98-2112-M-006-009. NR 21 TC 1 Z9 1 U1 1 U2 3 PU PHYSICAL SOC REPUBLIC CHINA PI TAIPEI PA CHINESE JOURNAL PHYSICS PO BOX 23-30, TAIPEI 10764, TAIWAN SN 0577-9073 J9 CHINESE J PHYS JI Chin. J. Phys. PD JUN PY 2012 VL 50 IS 3 BP 459 EP 477 PG 19 WC Physics, Multidisciplinary SC Physics GA 973MP UT WOS:000306364500010 ER PT J AU Johnson, NM Elsila, JE Kopstein, M Nuth, JA AF Johnson, Natasha M. Elsila, Jamie E. Kopstein, Mickey Nuth, Joseph A., III TI Carbon isotopic fractionation in Fischer-Tropsch-type reactions and relevance to meteorite organics SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID PRIMITIVE SOLAR NEBULA; MONOCARBOXYLIC ACIDS; MURCHISON METEORITE; HYDROCARBONS; ORIGIN; SYSTEM; MATTER; CONDENSATION; CATALYSIS; CHEMISTRY AB Fischer-Tropsch-type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend toward lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain. C1 [Johnson, Natasha M.; Elsila, Jamie E.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Kopstein, Mickey] Coll William & Mary, NAI Summer Intern, Williamsburg, VA 23187 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Johnson, NM (reprint author), NASA, Goddard Space Flight Ctr, Astrochem Lab, Code 691, Greenbelt, MD 20771 USA. EM natasha.m.johnson@nasa.gov RI Elsila, Jamie/C-9952-2012; Johnson, Natasha/E-3093-2012 FU NASA; Goddard Center for Astrobiology FX The authors thank F. Ferguson and J. Dworkin for both their assistance and comments. This manuscript was also improved thanks to comments by an anonymous reviewer and by I. Gilmour. This work was supported by NASA's Exobiology Research and Analysis program and the Goddard Center for Astrobiology. NR 31 TC 2 Z9 3 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2012 VL 47 IS 6 BP 1029 EP 1034 DI 10.1111/j.1945-5100.2012.01370.x PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 971BR UT WOS:000306177400004 ER PT J AU Lim, T Kim, H Meyyappan, M Ju, S AF Lim, Taekyung Kim, Hwansoo Meyyappan, M. Ju, Sanghyun TI Photostable Zn2SnO4 Nanowire Transistors for Transparent Displays SO ACS NANO LA English DT Article DE photostability; Zn2SnO4; nanowire; transistors; display ID ACTIVE-MATRIX DISPLAYS; THIN-FILM TRANSISTORS; LIGHT-EMITTING-DIODE; OPTICAL-PROPERTIES; ZNO NANOWIRES; PHOTOLUMINESCENCE PROPERTIES; OXIDE NANOWIRES; SINGLE-CRYSTAL; PHOTO-LEAKAGE; PIXEL CIRCUIT AB Although oxide nanowires offer advantages for next-generation transparent display applications, they are also one of the most challenging materials for this purpose. Exposure of semiconducting channel areas of oxide nanowire transistors produces an undesirable increase in the photocurrent, which may result in unstable device operation. In this study, we have developed a Zn2SnO4 nanowire transistor that operates stably regardless of changes in the external illumination. In particular, after exposure to a light source of 2100 lx, the threshold voltage (V-th) showed a negative shift of less than 0.4 V, and the subthreshold slope (SS) changed by similar to 0.1 V/dec. ZnO or SnO2 nanowire transistors, in contrast, showed 1.5-2.0 V negative shift in V-th and an SS change of similar to 0.3 V/dec under the same conditions. Furthermore, the Zn2SnO4 nanowire transistors returned to their initial state immediately after the light source was turned off, unlike those using the other two nanowires. Thus, Zn2SnO4 nanowires achieve photostability without the application of a black material or additional processing, minimizing the photocurrent effect for display devices. C1 [Lim, Taekyung; Kim, Hwansoo; Ju, Sanghyun] Kyonggi Univ, Dept Phys, Suwon 443760, Gyeonggi Do, South Korea. [Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Meyyappan, M.] POSTECH, Div IT Convergence Eng, Pohang, South Korea. RP Ju, S (reprint author), Kyonggi Univ, Dept Phys, Suwon 443760, Gyeonggi Do, South Korea. EM shju@kgu.ac.kr FU National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2011-0023219, 2011-0019133, 2011K000627]; Ministry of Education, Science and Technology through National Research Foundation of Korea [R31-10100] FX This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0023219, 2011-0019133, and 2011K000627). The World Class University program at POSTECH funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31-10100) is also acknowledged. NR 45 TC 13 Z9 13 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2012 VL 6 IS 6 BP 4912 EP 4920 DI 10.1021/nn300401w PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 963YQ UT WOS:000305661300038 PM 22578094 ER PT J AU Rauscher, BJ Stahle, C Hill, RJ Greenhouse, M Beletic, J Babu, S Blake, P Cleveland, K Cofie, E Eegholm, B Engelbracht, CW Hall, DNB Hoffman, A Jeffers, B Jhabvala, C Kimble, RA Kohn, S Kopp, R Lee, D Leidecker, H Lindler, D McMurray, RE Misselt, K Mott, DB Ohl, R Pipher, JL Piquette, E Polis, D Pontius, J Rieke, M Smith, R Tennant, WE Wang, LQ Wen, YT Willmer, CNA Zandian, M AF Rauscher, Bernard J. Stahle, Carl Hill, Robert J. Greenhouse, Matthew Beletic, James Babu, Sachidananda Blake, Peter Cleveland, Keith Cofie, Emmanuel Eegholm, Bente Engelbracht, C. W. Hall, Donald N. B. Hoffman, Alan Jeffers, Basil Jhabvala, Christine Kimble, Randy A. Kohn, Stanley Kopp, Robert Lee, Don Leidecker, Henning Lindler, Don McMurray, Robert E., Jr. Misselt, Karl Mott, D. Brent Ohl, Raymond Pipher, Judith L. Piquette, Eric Polis, Dan Pontius, Jim Rieke, Marcia Smith, Roger Tennant, W. E. Wang, Liqin Wen, Yiting Willmer, Christopher N. A. Zandian, Majid TI Commentary: JWST near-infrared detector degradation-finding the problem, fixing the problem, and moving forward SO AIP ADVANCES LA English DT Editorial Material ID WEBB-SPACE-TELESCOPE AB The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared-optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 mu m cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article, we present the two public DD-FRB "Executive Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, some recent measurements showing that the performance of the improved design meets JWST requirements, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4733534] C1 [Rauscher, Bernard J.] NASA, Goddard Space Flight Ctr, NIRSpec Detector, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Stahle, Carl] NASA, Goddard Space Flight Ctr, Detector Degradat Failure Review Board, Instrument Syst & Technol Div, Greenbelt, MD 20771 USA. [Hill, Robert J.] NASA, Goddard Space Flight Ctr, Detector Degradat Failure Review Board, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Greenhouse, Matthew] NASA, Goddard Space Flight Ctr, Integrated Sci Instruments Module Project, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Beletic, James; Kopp, Robert; Lee, Don; Piquette, Eric; Tennant, W. E.; Zandian, Majid] Teledyne Imaging Sensors, Camarillo, CA 93012 USA. [Babu, Sachidananda; Jhabvala, Christine; Mott, D. Brent; Wen, Yiting] NASA, Goddard Space Flight Ctr, Detector Syst Branch, Greenbelt, MD 20771 USA. [Blake, Peter; Eegholm, Bente; Ohl, Raymond] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. [Cleveland, Keith] NASA, Goddard Space Flight Ctr, Mission Assurance Branch, Greenbelt, MD 20771 USA. [Cofie, Emmanuel; Pontius, Jim] NASA, Goddard Space Flight Ctr, Mech Syst Anal & Simulat Branch, Greenbelt, MD 20771 USA. [Engelbracht, C. W.; Misselt, Karl; Willmer, Christopher N. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Hall, Donald N. B.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Hoffman, Alan] Acumen Sci, Goleta, CA 93117 USA. [Jeffers, Basil] NASA, Goddard Space Flight Ctr, Parts Engn Branch, Greenbelt, MD 20771 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Integrat & Test Project, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Kohn, Stanley] Aerosp Corp, El Segundo, CA 90245 USA. [Leidecker, Henning] NASA, Goddard Space Flight Ctr, Elect Engn Div, Greenbelt, MD 20771 USA. [McMurray, Robert E., Jr.] NASA, Ames Res Ctr, Instrument Technol Branch, Moffett Field, CA 94035 USA. [Pipher, Judith L.] Univ Rochester, Dept Phys & Astron, FGS Detector, Rochester, NY 14627 USA. [Polis, Dan; Wang, Liqin] NASA, Goddard Space Flight Ctr, Mat Engn Branch, Greenbelt, MD 20771 USA. [Rieke, Marcia] Univ Arizona, Steward Observ, NIRCam, Tucson, AZ 85721 USA. [Smith, Roger] CALTECH, Pasadena, CA 91125 USA. [Hill, Robert J.] Conceptual Analyt LLC, Glenn Dale, MD USA. [Eegholm, Bente; Lindler, Don] Sigma Space Corp, Lanham, MD 20706 USA. [Wang, Liqin] Ball Aerosp, Boulder, CO 80301 USA. RP Rauscher, BJ (reprint author), NASA, Goddard Space Flight Ctr, NIRSpec Detector, Observat Cosmol Lab, Greenbelt, MD 20771 USA. EM Bernard.J.Rauscher@nasa.gov NR 13 TC 17 Z9 17 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUN PY 2012 VL 2 IS 2 AR 021901 DI 10.1063/1.4733534 PG 18 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 966IO UT WOS:000305831300001 ER PT J AU Bernardini, F de Martino, D Falanga, M Mukai, K Matt, G Bonnet-Bidaud, JM Masetti, N Mouchet, M AF Bernardini, F. de Martino, D. Falanga, M. Mukai, K. Matt, G. Bonnet-Bidaud, J. -M. Masetti, N. Mouchet, M. TI Characterization of new hard X-ray cataclysmic variables SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: close; X-rays: binaries; accretion, accretion disks; novae, cataclysmic variables ID STATIONARY RADIATION HYDRODYNAMICS; PHOTON IMAGING CAMERA; BG-CANIS-MINORIS; INTERMEDIATE POLARS; WHITE-DWARF; XMM-NEWTON; CIRCULAR-POLARIZATION; LUMINOSITY FUNCTION; XSS J12270-4859; ACCRETION FLOWS AB Aims. We aim at characterizing a sample of nine new hard X-ray selected cataclysmic variable (CVs), to unambiguously identify them as magnetic systems of the intermediate polar (IP) type. Methods. We performed detailed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The broad band X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Results. Strong X-ray pulses at the white dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGR J08390-4833, IGR J18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 posses a soft X-ray optically thick component at kT similar to 80 eV. An intense K-alpha Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are also estimated. Conclusions. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs, a feature that needs future exploration. The addition of two systems to the subgroup of soft X-ray IPs confirms a relatively large (similar to 30%) incidence. C1 [Bernardini, F.; de Martino, D.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Falanga, M.] ISSI, CH-3012 Bern, Switzerland. [Mukai, K.] NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, X Ray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Matt, G.] Univ Roma III, Dipartimento Fis, I-00146 Rome, Italy. [Bonnet-Bidaud, J. -M.] CEA Saclay, DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Masetti, N.] INAF Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Mouchet, M.] Univ Paris 07, Lab APC, F-75005 Paris, France. [Mouchet, M.] Observ Paris, Sect Meudon, LUTH, F-92195 Meudon, France. RP Bernardini, F (reprint author), INAF Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy. EM federico.bernardini@oa-roma.inaf.it; demartino@oacn.inaf.it; mfalanga@issibern.ch; koji.mukai@nasa.gov; matt@fis.uniroma3.it; bonnetbidaud@cea.fr; nicola.masetti@iasfbo.inaf.it; martine.mouchet@obspm.fr OI Bernardini, Federico/0000-0001-5326-2010; de Martino, Domitilla/0000-0002-5069-4202; Masetti, Nicola/0000-0001-9487-7740 FU NASA; National Science Foundation; ASI [ASI/INAF I/009/10/0] FX This publication also makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (California Institute of Technology), funded by NASA and National Science Foundation. F.B. and D.d.M. acknowledge financial support from ASI under contract ASI/INAF I/009/10/0. NR 72 TC 20 Z9 20 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A22 DI 10.1051/0004-6361/201219233 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300149 ER PT J AU Bethermin, M Le Floc'h, E Ilbert, O Conley, A Lagache, G Amblard, A Arumugam, V Aussel, H Berta, S Bock, J Boselli, A Buat, V Casey, CM Castro-Rodriguez, N Cava, A Clements, DL Cooray, A Dowell, CD Eales, S Farrah, D Franceschini, A Glenn, J Griffin, M Hatziminaoglou, E Heinis, S Ibar, E Ivison, RJ Kartaltepe, JS Levenson, L Magdis, G Marchetti, L Marsden, G Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Roseboom, IG Rowan-Robinson, M Salvato, M Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Viero, M Wang, L Xu, CK Zemcov, M AF Bethermin, M. Le Floc'h, E. Ilbert, O. Conley, A. Lagache, G. Amblard, A. Arumugam, V. Aussel, H. Berta, S. Bock, J. Boselli, A. Buat, V. Casey, C. M. Castro-Rodriguez, N. Cava, A. Clements, D. L. Cooray, A. Dowell, C. D. Eales, S. Farrah, D. Franceschini, A. Glenn, J. Griffin, M. Hatziminaoglou, E. Heinis, S. Ibar, E. Ivison, R. J. Kartaltepe, J. S. Levenson, L. Magdis, G. Marchetti, L. Marsden, G. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Roseboom, I. G. Rowan-Robinson, M. Salvato, M. Schulz, B. Scott, D. Seymour, N. Shupe, D. L. Smith, A. J. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Viero, M. Wang, L. Xu, C. K. Zemcov, M. TI HerMES: deep number counts at 250 mu m, 350 mu m and 500 mu m in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; diffuse radiation; galaxies: statistics; galaxies: photometry; submillimeter: galaxies; submillimeter: diffuse background ID HERSCHEL-SPIRE INSTRUMENT; LESS-THAN 2; STAR-FORMATION; LUMINOSITY FUNCTION; DUSTY GALAXIES; SCUBA GALAXIES; SUBMILLIMETER; EVOLUTION; SPITZER; BLAST AB Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 mu m, 350 mu m, and 500 mu m, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (similar to 20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 mu m sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 mu m catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to similar to 2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5s confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-sigma. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1 (+2.6)(2.3) nW m(-2) sr(-1), 6.5 (+1.7)(1.6) nW m(-2) sr(-1), and 2.8 (+0.9)(0.8) nW m(-2) sr(-1) at 250 mu m, 350 mu m, and 500 mu m, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 mu m and 1000 mu m: 26(-3)(+7) nW m(-2) sr(-1). C1 [Bethermin, M.; Le Floc'h, E.; Aussel, H.; Magdis, G.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu,CNRS, F-91191 Gif Sur Yvette, France. [Bethermin, M.; Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Bethermin, M.; Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Ilbert, O.; Boselli, A.; Buat, V.; Heinis, S.] Univ Aix Marseille, Lab Astrophys Marseille, OAMP, CNRS, F-13388 Marseille 13, France. [Conley, A.; Glenn, J.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA. [Amblard, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Arumugam, V.; Ivison, R. J.; Roseboom, I. G.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Berta, S.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany. [Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J. D.; Viero, M.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Casey, C. M.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Castro-Rodriguez, N.; Perez-Fournon, I.] IAC, Tenerife 38200, Spain. [Castro-Rodriguez, N.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Cava, A.] Univ Complutense Madrid, Fac CC, Dept Astrofis, E-28040 Madrid, Spain. [Clements, D. L.; O'Halloran, B.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Eales, S.; Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Kartaltepe, J. S.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Marsden, G.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Omont, A.] UPMC Univ Paris 6, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Salvato, M.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Salvato, M.] Excellence Cluster, D-85748 Garching, Germany. [Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Seymour, N.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Trichas, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Vaccari, M.] Univ Western Cape, Dept Phys, Astrophys Grp, ZA-7535 Cape Town, South Africa. RP Bethermin, M (reprint author), Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu,CNRS, Pt Courrier 131, F-91191 Gif Sur Yvette, France. EM matthieu.bethermin@cea.fr RI Magdis, Georgios/C-7295-2014; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; OI Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Bethermin, Matthieu/0000-0002-3915-2015 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA); ERC-StG [UPGAL 240039]; Science and Technology Facilities Council [ST/F002858/1, ST/I000976/1]; Italian Space Agency (ASI Herschel Science Contract) [I/005/07/0] FX We thank the COSMOS and GOODS teams for releasing publicly their data. Thanks to Georges Helou for suggesting that the distribution of the colors is more likely log-normal than normal. MB thank Herve Dole for his advices about stacking, and Elizabeth Fernandez for providing a mock catalog from the Bethermin et al. model. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). MB acknowledge financial support from ERC-StG grant UPGAL 240039. SJO acknowledge support from the Science and Technology Facilities Council [grant number ST/F002858/1] and [grant number ST/I000976/1]. M. V. was supported by the Italian Space Agency (ASI Herschel Science Contract I/005/07/0). The data presented in this paper will be released through the Herschel Database in Marseille HeDaM (hedam.oamp.fr/HerMES). NR 73 TC 72 Z9 72 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A58 DI 10.1051/0004-6361/201118698 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300063 ER PT J AU Gicquel, A Bockelee-Morvan, D Zakharov, VV Kelley, MS Woodward, CE Wooden, DH AF Gicquel, A. Bockelee-Morvan, D. Zakharov, V. V. Kelley, M. S. Woodward, C. E. Wooden, D. H. TI Investigation of dust and water ice in comet 9P/Tempel 1 from Spitzer observations of the Deep Impact event SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: comet 9P/Tempel 1; methods: data analysis; methods: numerical; infrared: general ID TELESCOPE OBSERVATIONS; SPACE-TELESCOPE; IR OBSERVATIONS; EJECTA PLUME; GRAINS; COMET-9P/TEMPEL-1; ENCOUNTER; SPECTRA; NUCLEUS; COMET-TEMPEL-1 AB Context. The Spitzer spacecraft monitored the Deep Impact event on 2005 July 4 providing unique infrared spectrophotometric data that enabled exploration of comet 9P/Tempel 1's activity and coma properties prior to and after the collision of the impactor. Aims. The time series of spectra take with the Spitzer Infrared Spectrograph (IRS) show fluorescence emission of the H2O nu(2) band at 6.4 mu m superimposed on the dust thermal continuum. These data provide constraints on the properties of the dust ejecta cloud (dust size distribution, velocity, and mass), as well as on the water component (origin and mass). Our goal is to determine the dust-to-ice ratio of the material ejected from the impact site. Methods. The temporal evolution of the continuum was analyzed using a dust thermal model which considers amorphous carbon and intimate silicate-carbon mixtures. The water emission was extracted from the spectra and the water columns within the Spitzer extraction aperture were inferred using a fluorescence excitation model. Time-dependent models simulating the development of the ejecta cloud and the sublimation of icy grains were developed to interpret the temporal evolution of both dust and water emissions within the field of view. Results. Both the color temperature of the grains in the ejecta cloud (375 +/- 5 K) and their size distribution show that a large quantity of submicron grains were ejected by the impact. The velocity of the smallest grains is 230 m s(-1), with a power index for the size dependence of 0.3-0.5, in agreement with gas loading. The total mass of dust is (0.7-1.2) x 10(5) kg for grain sizes 0.1-1 mu m and (0.5-2.1) x 10(6) kg for sizes 0.1-100 mu m. A sustained production of water is observed, which can be explained by the sublimation of pure ice grains with sizes less than 1 mu m and comprising a mass of ice of (0.8-1.8) x 10(7) kg. The contribution of dirty ice grains to the ice budget is negligible. Assuming that water was essentially produced by icy grains present in the ejecta cloud, our measurements suggest a very high ice-to-dust ratio of about 10 in the excavated material, which greatly exceeds the gas-to-dust production rate ratio of similar to 0.5 measured for the background coma. Alternately, if a large amount of material felt back to the surface and sublimated, ice-to-dust ratios of 1-3 are not excluded. A better understanding of the cratering event on 9P/Tempel 1 is required to disentangle between the two hypotheses. Evidence for grain fragmentation in the ejecta cloud is found in the data. The pre-impact water production rate is measured to be (4.7 +/- 0.7) x 10(27) mol s(-1). C1 [Gicquel, A.; Bockelee-Morvan, D.; Zakharov, V. V.] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Kelley, M. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Woodward, C. E.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Wooden, D. H.] NASA, Ames Res Ctr, Div Space Sci, Washington, DC USA. RP Gicquel, A (reprint author), Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM adeline.gicquel@obspm.fr; dominique.bockelee@obspm.fr; vladimir.zakharov@obspm.fr; msk@astro.umd.edu; chelsea@astro.umn.edu; dwooden@me.com OI Kelley, Michael/0000-0002-6702-7676 FU National Science Foundation [AST-0706980]; NASA [NNX09AW16A, 08-PATM08-0080] FX We thank D. Harker for enlightening discussions, and E. Lellouch for providing us the Mie code. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research made use of Tiny Tim/Spitzer, developed by John Krist for the Spitzer Science Center. The Center is managed by the California Institute of Technology under a contract with NASA. C. E. Woodward also acknowledges support from National Science Foundation grant AST-0706980. M. S. Kelley acknowledges support from NASA Planetary Atmospheres grant NNX09AW16A. D. H. Wooden acknowledges support from NASA Planetary Atmospheres grant 08-PATM08-0080. NR 59 TC 5 Z9 5 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A119 DI 10.1051/0004-6361/201118718 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300067 ER PT J AU Graf, UU Simon, R Stutzki, J Colgan, SWJ Guan, X Gusten, R Hartogh, P Honingh, CE Hubers, HW AF Graf, U. U. Simon, R. Stutzki, J. Colgan, S. W. J. Guan, X. Guesten, R. Hartogh, P. Honingh, C. E. Huebers, H. -W. TI [(CII)-C-12] and [(CII)-C-13] 158 mu m emission from NGC 2024: Large column densities of ionized carbon SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: atoms; ISM: clouds; ISM: individual objects: NGC 2024; photon-dominated region (PDR) ID PHOTON-DOMINATED REGIONS; ORION-B; PROTOSTELLAR CONDENSATIONS; MOLECULAR CLOUDS; LINE EMISSION; NGC-2024 AB Context. We analyze the NGC 2024 HII region and molecular cloud interface using [(CII)-C-12] and [(CII)-C-13] observations. Aims. We attempt to gain insight into the physical structure of the interface layer between the molecular cloud and the HII region. Methods. Observations of [(CII)-C-12] and [(CII)-C-13] emission at 158 mu m with high spatial and spectral resolution allow us to study the detailed structure of the ionization front and estimate the column densities and temperatures of the ionized carbon layer in the photon-dominated region. Results. The [(CII)-C-12] emission closely follows the distribution of the 8 mu m continuum. Across most of the source, the spectral lines have two velocity peaks similar to lines of rare CO isotopes. The [(CII)-C-13] emission is detected near the edge-on ionization front. It has only a single velocity component, which implies that the [(CII)-C-12] line shape is caused by self-absorption. An anomalous hyperfine line-intensity ratio observed in [(CII)-C-13] cannot yet be explained. Conclusions. Our analysis of the two isotopes results in a total column density of N(H) approximate to 1.6 x 10(23) cm(-2) in the gas emitting the [CII] line. A large fraction of this gas has to be at a temperature of several hundred K. The self-absorption is caused by a cooler (T <= 100 K) foreground component containing a column density of N(H) approximate to 10(22) cm(-2). C1 [Graf, U. U.; Simon, R.; Stutzki, J.; Guan, X.; Honingh, C. E.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Colgan, S. W. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Huebers, H. -W.] Inst Planetenforsch, Deutsch Zentrum Luft & Raumfahrt, D-12489 Berlin, Germany. [Huebers, H. -W.] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany. RP Graf, UU (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. EM graf@ph1.uni-koeln.de RI Colgan, Sean/M-4742-2014 FU NASA [NAS2-97001]; DLR [50 OK 0901] FX We thank Volker Ossenkopf and Markus Rollig for useful discussions. We also thank the SOFIA engineering and operations teams whose tireless support and good-spirit teamwork has been essential for the GREAT accomplishments during Early Science, and say Herzlichen Dank to the DSI telescope engineering team. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. NR 25 TC 13 Z9 13 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L16 DI 10.1051/0004-6361/201218930 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300113 ER PT J AU Khanzadyan, T Davis, CJ Aspin, C Froebrich, D Smith, MD Magakian, TY Movsessian, T Moriarty-Schieven, GH Nikogossian, EH Pyo, TS Beck, TL AF Khanzadyan, T. Davis, C. J. Aspin, C. Froebrich, D. Smith, M. D. Magakian, T. Yu. Movsessian, T. Moriarty-Schieven, G. H. Nikogossian, E. H. Pyo, T. -S. Beck, T. L. TI A wide-field near-infrared H-2 2.122 mu m line survey of the Braid Nebula star formation region in Cygnus OB7 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: jets and outflows; ISM: clouds ID FU-ORIONIS OBJECTS; T TAURI STARS; MOLECULAR CLOUDS; SKY SURVEY; PROTOSTELLAR JETS; YOUNG STARS; BURST MODE; MILKY-WAY; ACCRETION; EVOLUTION AB Context. Outflows and jets are the first signposts of ongoing star formation processes in any molecular cloud, yet their study in optical bands provides limited results due to the large extinction present. Near-infrared unbiased wide-field observations in the H-2 1-0 S(1) line at 2.122 mu m alleviates the problem, enabling us to detect more outflows and trace them closer to their driving sources. Aims. As part of a large-scale multi-waveband study of ongoing star formation in the Braid Nebula star formation region, we focus on a one square degree region that includes Lynds Dark Nebula 1003 and 1004. Our goal is to find all of the near-infrared outflows, uncover their driving sources and estimate their evolutionary phase. Methods. We use near-infrared wide-field observations obtained with WFCAM on UKIRT, in conjunction with previously-published optical and archival MM data, to search for outflows and identify their driving sources; we subsequently use colour colour analysis to determine the evolutionary phase of each source. Results. Within a one square degree field we have identified 37 complex MHOs, most of which are new. After combining our findings with other wide-field, multi-waveband observations of the same region we were able to discern 28 outflows and at least 18 protostars. Our analysis suggests that these protostars are younger and/or more energetic than those of the Taurus-Auriga region. The outflow data enable us to suggest connection between outflow ejection and repetitive FU Ori outburst events. We also find that star formation progresses from W to E across the investigated region. C1 [Khanzadyan, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Davis, C. J.] Joint Astron Ctr, Hilo, HI 96720 USA. [Davis, C. J.] NASA HQ, Div Astrophys, Washington, DC 20546 USA. [Aspin, C.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Froebrich, D.; Smith, M. D.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Magakian, T. Yu.; Movsessian, T.; Nikogossian, E. H.] VA Ambartsumyan Byurakan Astrophys Observ, Aragatsotn Reg 0213, Armenia. [Moriarty-Schieven, G. H.] NRC Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Pyo, T. -S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Beck, T. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Khanzadyan, T (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM tkhanzadyan@mpifr-bonn.mpg.de FU Science and Technology Facilities Council; EU; National Aeronautics and Space Administration FX This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France as well as software provided by the UK's AstroGrid Virtual Observatory Project, which is funded by the Science and Technology Facilities Council and through the EU's Framework 6 programme. This research has made use of the NASA/ IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. In particular data from IRAS, MSX, AKARI and 2MASS missions were used. The authors wish to recognise and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this sacred mountain. NR 74 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A111 DI 10.1051/0004-6361/201219124 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300138 ER PT J AU Klochkov, D Doroshenko, V Santangelo, A Staubert, R Ferrigno, C Kretschmar, P Caballero, I Wilms, J Kreykenbohm, I Pottschmidt, K Rothschild, RE Wilson-Hodge, CA Puhlhofer, G AF Klochkov, D. Doroshenko, V. Santangelo, A. Staubert, R. Ferrigno, C. Kretschmar, P. Caballero, I. Wilms, J. Kreykenbohm, I. Pottschmidt, K. Rothschild, R. E. Wilson-Hodge, C. A. Puehlhofer, G. TI Outburst of GX 304-1 monitored with INTEGRAL: positive correlation between the cyclotron line energy and flux SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: binaries; stars: neutron; accretion, accretion disks ID X-RAY-SPECTRUM; DISCOVERY; ACCRETION; GX-304-1; PULSARS; IMAGER; RXTE AB Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-ray spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source. C1 [Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Puehlhofer, G.] Univ Tubingen IAAT, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Ferrigno, C.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Kretschmar, P.] ESAC, ESA, Sci Operat Dept, Madrid, Spain. [Caballero, I.] Univ P Diderot, CEA Saclay, DSM IRFU SAp, UMR AIM CNRS CEA 7158, F-91191 Gif Sur Yvette, France. [Wilms, J.; Kreykenbohm, I.] Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Wilms, J.; Kreykenbohm, I.] Erlangen Ctr Astroparticle Phys, D-96049 Bamberg, Germany. [Pottschmidt, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Wilson-Hodge, C. A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. RP Klochkov, D (reprint author), Univ Tubingen IAAT, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM klochkov@astro.uni-tuebingen.de RI Ferrigno, Carlo/H-4139-2012; Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013; OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803; Doroshenko, Victor/0000-0001-8162-1105; Kretschmar, Peter/0000-0001-9840-2048 FU Carl-Zeiss-Stiftung; BMWi under DLR [50 OR 1007]; ESA FX The work was supported by the Carl-Zeiss-Stiftung. J.W. and I. K. were partially supported by BMWi under DLR grant 50 OR 1007. This research is based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states. We thank the INTEGRAL team for the prompt scheduling of the TOO observations and support with the data reduction and calibration. We thank ISSI (Bern, Switzerland) for its hospitality during the collaboration meetings of our team. NR 23 TC 29 Z9 30 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L28 DI 10.1051/0004-6361/201219385 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300159 ER PT J AU Rizzo, JR Pedreira, A Bustos, MG Sotuela, I Larranaga, JR Ojalvo, L Franco, M Cernicharo, J Garcia-Miro, C Ceron, JMC Kuiper, TBH Vazquez, M Calvo, J Baquero, A AF Rizzo, J. R. Pedreira, A. Gutierrez Bustos, M. Sotuela, I. Larranaga, J. R. Ojalvo, L. Franco, M. Cernicharo, J. Garcia-Miro, C. Castro Ceron, J. M. Kuiper, T. B. H. Vazquez, M. Calvo, J. Baquero, A. TI The wideband backend at the MDSCC in Robledo A new facility for radio astronomy at Q- and K-bands SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: miscellaneous; instrumentation: spectrographs; techniques: spectroscopic; ISM: lines and bands; ISM: molecules; radio lines: general ID H2O MASERS; TMC-1; GHZ; ANTENNA; HC5N; LINE AB Context. The antennas of NASA's Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela are available as single-dish radio astronomical facilities during a significant percentage of their operational time. Current instrumentation includes two antennas of 70 and 34m in diameter, equipped with dual-polarization receivers in K (18-26 GHz) and Q (38-50 GHz) bands, respectively. Until mid-2011, the only backend available in MDSCC was a single spectral autocorrelator, which provides bandwidths from 2 to 16MHz. The limited bandwidth available with this autocorrelator seriously limited the science one could carry out at Robledo. Aims. We have developed and built a new wideband backend for the Robledo antennas, with the objectives (1) to optimize the available time and enhance the efficiency of radio astronomy in MDSCC; and (2) to tackle new scientific cases that were impossible to investigate with the existing autocorrelator. Methods. The features required for the new backend include (1) a broad instantaneous bandwidth of at least 1.5 GHz; (2) high-quality and stable baselines, with small variations in frequency along the whole band; (3) easy upgradability; and (4) usability for at least the antennas that host the K-and Q-band receivers. Results. The backend consists of an intermediate frequency (IF) processor, a fast Fourier transform spectrometer (FFTS), and the software that interfaces and manages the events among the observing program, antenna control, the IF processor, the FFTS operation, and data recording. The whole system was end-to-end assembled in August 2011, at the start of commissioning activities, and the results are reported in this paper. Frequency tunings and line intensities are stable over hours, even when using different synthesizers and IF channels; no aliasing effects have been measured, and the rejection of the image sideband was characterized. Conclusions. The new wideband backend fulfills the requirements and makes better use of the available time for radio astronomy, which opens new possibilities to potential users. The first setup provides 1.5 GHz of instantaneous bandwidth in a single polarization, using 8192 channels and a frequency resolution of 212 kHz; upgrades under way include a second FFTS card, and two high-resolution cores providing 100MHz and 500MHz of bandwidth, and 16 384 channels. These upgrades will permit simultaneous observations of the two polarizations with instantaneous bandwidths from 100MHz to 3GHz, and spectral resolutions from 7 to 212 kHz. C1 [Rizzo, J. R.; Gutierrez Bustos, M.; Cernicharo, J.] Ctr Astrobiol INTA CSIC, Madrid 28850, Spain. [Pedreira, A.; Larranaga, J. R.; Ojalvo, L.; Baquero, A.] Inst Nacl Tecn Aeroespacial, Madrid 28850, Spain. [Sotuela, I.; Garcia-Miro, C.; Castro Ceron, J. M.; Vazquez, M.; Calvo, J.] Madrid Deep Space Commun Complex, Madrid 28294, Spain. [Franco, M.; Kuiper, T. B. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rizzo, JR (reprint author), Ctr Astrobiol INTA CSIC, Ctra M-108,Km 4, Madrid 28850, Spain. EM ricardo@cab.inta-csic.es RI Rizzo, J. Ricardo/N-5879-2014 OI Rizzo, J. Ricardo/0000-0002-8443-6631 FU INTA [2009/PC0002CAB]; MICINN [AYA2006-14876, AYA2009-07304]; program CONSOLIDER INGENIO under grant Molecular Astrophysics: The Herschel and ALMA Era ASTROMOL [CSD2009-00038] FX The backend was funded mostly through INTA grant 2009/PC0002CAB. This paper has been partially supported by MICINN under grants AYA2006-14876 and AYA2009-07304, and by the program CONSOLIDER INGENIO 2010, under grant Molecular Astrophysics: The Herschel and ALMA Era ASTROMOL (Ref.: CSD2009-00038). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J.R.R. wishes to thank Clemens Thum and Salvador Sanchez (IRAM Granada) for their guidance in the first stages of the project. We are also indebted to Andreas Bell and Bernd Klein (MPIfR), and Ralf Henneberger (RPG), for their kind support about the FFTS and its libraries. We acknowledge our referee, Dr. Jeff Mangum, for thoroughly reading the manuscript, and for comments and suggestions that allowed us to greatly improve this paper. NR 15 TC 2 Z9 2 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A63 DI 10.1051/0004-6361/201218833 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300087 ER PT J AU Sahai, R Morris, MR Werner, MW Gusten, R Wiesemeyer, H Sandell, G AF Sahai, R. Morris, M. R. Werner, M. W. Guesten, R. Wiesemeyer, H. Sandell, G. TI Probing the mass and structure of the Ring Nebula in Lyra with SOFIA/GREAT observations of the [CII] 158 micron line SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary nebulae: individual: NGC 6720; stars: winds, outflows; photon-dominated region (PDR); circumstellar matter; planetary nebulae: general ID YOUNG PLANETARY-NEBULAE; KINEMATICS; NGC-6720; GALAXIES; CARBON; HALOS AB We have obtained new velocity-resolved spectra of the [CII] 158 mu m line towards the Ring Nebula in Lyra (NGC 6720), one of the best-studied planetary nebulae, in order to probe its controversial 3-dimensional structure and to estimate the mass of circumstellar material in this object. We used the terahertz receiver GREAT aboard the SOFIA airborne telescope to obtain the [CII] spectra at eight locations within and outside the bright optical ring of NGC 6720. Emission was detected at all positions except for the most distant position along the nebula's minor axis, and generally covers a broad velocity range, Delta V similar to 50 km s(-1) (FWZI), except at a position along the major axis located just outside the optical ring, where it is significantly narrower (Delta V similar to 25 km s(-1)). The one narrow spectrum appears to be probing circumstellar material lying outside the main nebular shell that has not been accelerated by past fast wind episodes from the central star, and therefore most likely comes from equatorial and/or low-latitude regions of this multipolar nebula. Along lines-of-sight passing within about 10 '' of the nebular center, the CII column density is a factor 46 higher than the CO column density. The total mass of gas associated with the [CII] emission inside a circular region of diameter 87 ''.5 is at least 0.11 M-circle dot. A significant amount of [CII] flux arises from a photodissociation region immediately outside the bright optical ring, where we find a CII to CO ratio of >6.5, lower than that seen towards the central region. Comparing our data with lower-quality CI spectra, which indicate similarly large CI/CO ratios in NGC 6720, we conclude that the bulk of elemental carbon in NGC 6720 is divided roughly equally between CII and CI, and that the emissions from these species are far more robust tracers of circumstellar material than CO in this object and other evolved planetary nebulae. C1 [Sahai, R.; Werner, M. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astrophys, Los Angeles, CA 90095 USA. [Guesten, R.; Wiesemeyer, H.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Sandell, G.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sahai, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM raghvendra.sahai@jpl.nasa.gov FU Universities Space Research Association, Inc., under NASA [NAS2-97001]; Deutsches SOFIA Institut under DLR [50 OK 0901]; SOFIA; California Institute of Technology, under NASA; NASA through Long Term Space Astrophysics award FX This study is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA Science Mission Operations is operated by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. R.S.'s contribution to the research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Financial support was provided by NASA through a Long Term Space Astrophysics award to R.S. and M.M., and a SOFIA award to R.S. NR 20 TC 5 Z9 5 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L20 DI 10.1051/0004-6361/201219021 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300128 ER PT J AU Sandell, G Wiesemeyer, H Requena-Torres, MA Heyminck, S Gusten, R Stutzki, J Simon, R Graf, UU AF Sandell, G. Wiesemeyer, H. Requena-Torres, M. A. Heyminck, S. Guesten, R. Stutzki, J. Simon, R. Graf, U. U. TI GREAT [C II] and CO observations of the BD+40 degrees 4124 region SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE circumstellar matter; ISM: molecules; stars: pre-main sequence; photon-dominated region (PDR); stars: variables: T Tauri, Herbig Ae/Be ID HERBIG-AE/BE STARS; AEBE STARS; ISO-LWS; SPECTROSCOPY; CLOUDS; GAS AB The BD+40 degrees 4124 region was observed with high angular and spectral resolution with the German heterodyne instrument GREAT in CO J = 13 -> 12 and [C II] on SOFIA. These observations show that the [C II] emission is very strong in the reflection nebula surrounding the young Herbig Ae/Be star BD+40 degrees 4124. A strip map over the nebula shows that the [C II] emission approximately coincides with the optical nebulosity. The strongest [C II] emission is centered on the B2 star and a deep spectrum shows that it has faint wings, which suggests that the ionized gas is expanding. We also see faint CO J = 13 -> 12 at the position of BD+40 degrees 4124, which suggests that the star may still be surrounded by an accretion disk. We also detected [C II] emission and strong CO J = 13 -> 12 toward V1318 Cyg. Here the [C I] emission is fainter than in BD+40 degrees 4124 and appears to come from the outflow, since it shows red and blue wings with very little emission at the systemic velocity, where the CO emission is quite strong. It therefore appears that in the broad ISO beam the [C II] emission was dominated by the reflection nebula surrounding BD+40 degrees 4124, while the high J CO lines originated from the adjacent younger and more deeply embedded binary system V1318 Cyg. C1 [Sandell, G.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wiesemeyer, H.; Requena-Torres, M. A.; Heyminck, S.; Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Stutzki, J.; Simon, R.; Graf, U. U.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. RP Sandell, G (reprint author), NASA, SOFIA USRA, Ames Res Ctr, MS 232-12,Bldg N232,Rm 146,POB 1, Moffett Field, CA 94035 USA. EM Goran.H.Sandell@nasa.gov FU NASA [NAS2-97001]; DLR [50 OK 0901] FX Based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. We also thank Hans Zinnecker for a critical reading of the paper. NR 20 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L14 DI 10.1051/0004-6361/201218920 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300107 ER PT J AU Schneider, N Gusten, R Tremblin, P Hennemann, M Minier, V Hill, T Comeron, F Requena-Torres, MA Kraemer, KE Simon, R Rollig, M Stutzki, J Djupvik, AA Zinnecker, H Marston, A Csengeri, T Cormier, D Lebouteiller, V Audit, E Motte, F Bontemps, S Sandell, G Allen, L Megeath, T Gutermuth, RA AF Schneider, N. Guesten, R. Tremblin, P. Hennemann, M. Minier, V. Hill, T. Comeron, F. Requena-Torres, M. A. Kraemer, K. E. Simon, R. Roellig, M. Stutzki, J. Djupvik, A. A. Zinnecker, H. Marston, A. Csengeri, T. Cormier, D. Lebouteiller, V. Audit, E. Motte, F. Bontemps, S. Sandell, G. Allen, L. Megeath, T. Gutermuth, R. A. TI Globules and pillars seen in the [CII] 158 mu m line with SOFIA SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: individual objects: Cygnus; ISM: molecules; ISM: kinematics and dynamics; radio lines: ISM ID COMPACT HII-REGIONS; STAR-FORMATION; PROTOSTELLAR CANDIDATES; CYGNUS OB2; RADIATION; EMISSION; CLUSTERS; OBJECTS; CLOUDS AB Molecular globules and pillars are spectacular features, found only in the interface region between a molecular cloud and an H II-region. Impacting far-ultraviolet (FUV) radiation creates photon-dominated regions (PDRs) on their surfaces that can be traced by typical cooling lines. With the GREAT receiver onboard SOFIA we mapped and spectrally resolved the [CII] 158 mu m atomic fine-structure line and the highly excited (CO)-C-12 J = 11 -> 10 molecular line from three objects in Cygnus X (a pillar, a globule, and a strong IRAS source). We focus here on the globule and compare our data with existing Spitzer data and recent Herschel open-time PACS data. Extended [CII] emission and more compact CO-emission was found in the globule. We ascribe this emission mainly to an internal PDR, created by a possibly embedded star-cluster with at least one early B-star. However, external PDR emission caused by the excitation by the Cyg OB2 association cannot be fully excluded. The velocity-resolved [CII] emission traces the emission of PDR surfaces, possible rotation of the globule, and high-velocity outflowing gas. The globule shows a velocity shift of similar to 2 kms(-1) with respect to the expanding HII-region, which can be understood as the residual turbulence of the molecular cloud from which the globule arose. This scenario is compatible with recent numerical simulations that emphazise the effect of turbulence. It is remarkable that an isolated globule shows these strong dynamical features traced by the [CII]-line, but it demands more observational studies to verify if there is indeed an embedded cluster of B-stars. C1 [Schneider, N.; Tremblin, P.; Hennemann, M.; Minier, V.; Hill, T.; Cormier, D.; Lebouteiller, V.; Audit, E.; Motte, F.] Univ Paris Diderot, Lab AIM CNRS, IRFU SAp CEA DSM, F-91191 Gif Sur Yvette, France. [Guesten, R.; Requena-Torres, M. A.; Csengeri, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Comeron, F.] ESO, D-85748 Garching, Germany. [Kraemer, K. E.] Boston Coll, Inst Sci Res, Boston, MA 02467 USA. [Simon, R.; Roellig, M.; Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Djupvik, A. A.] NOT, Santa Cruz De La Palma 38700, Spain. [Zinnecker, H.; Sandell, G.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Zinnecker, H.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Marston, A.] ESA, ESAC, Herschel Sci Ctr, Madrid 28040, Spain. [Bontemps, S.] Univ Bordeaux, LAB, UMR 5804, F-33270 Floirac, France. [Bontemps, S.] CNRS, LAB, UMR 5804, F-33270 Floirac, France. [Allen, L.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Megeath, T.] Univ Toledo, Dep Phys & Astron, Toledo, OH 43606 USA. [Gutermuth, R. A.] Univ Massachusetts, Dep Astron, Amherst, MA 01003 USA. RP Schneider, N (reprint author), Univ Paris Diderot, Lab AIM CNRS, IRFU SAp CEA DSM, F-91191 Gif Sur Yvette, France. EM nschneid@cea.fr FU NASA [NAS2-97001]; DLR [50 OK 0901] FX Based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. NR 34 TC 16 Z9 16 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L18 DI 10.1051/0004-6361/201218917 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300106 ER PT J AU Simon, R Schneider, N Stutzki, J Gusten, R Graf, UU Hartogh, P Guan, X Staguhn, JG Benford, DJ AF Simon, R. Schneider, N. Stutzki, J. Guesten, R. Graf, U. U. Hartogh, P. Guan, X. Staguhn, J. G. Benford, D. J. TI SOFIA observations of S106: dynamics of the warm gas SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE HII regions; ISM: individual objects: S106; ISM: kinematics and dynamics; photon-dominated region (PDR); ISM: clouds ID FAR-INFRARED SPECTROSCOPY; YOUNG STELLAR OBJECTS; H-II REGION; MOLECULAR GAS; MULTIWAVELENGTH; CLOUDS; MICRON; S-106; DISK; H2O AB Context. The HII region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm, partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. We disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas, and we investigate the nature of the dark lane. Methods. We used the heterodyne receiver GREAT onboard on SOFIA to observe velocity resolved spectral lines of [CII] and CO 11 -> 10 in comparison with so far unpublished submm continuum data at 350 mu m (SHARC-II) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [CII] lines are found to be bright and very broad, tracing high velocity gas close to the interface of molecular cloud and HII region. CO 11 -> 10 emission is more confined, both spatially and in velocity, to the immediate surroundings of S106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and HII region. C1 [Simon, R.; Stutzki, J.; Graf, U. U.; Guan, X.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Schneider, N.] Univ Paris Diderot, CNRS, Ctr Etud Saclay, Lab AIM Paris Saclay,CEA Irfu, F-91191 Gif Sur Yvette, France. [Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Staguhn, J. G.; Benford, D. J.] NASA, Observ Cosmol Lab Code 665, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Staguhn, J. G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Simon, R (reprint author), Univ Cologne, Inst Phys 1, KOSMA, Zulpicher Str 77, D-50937 Cologne, Germany. EM simonr@ph1.uni-koeln.de; nicola.schneider-bontemps@cea.fr RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU NASA [NAS2-97001]; DLR [50 OK 0901] FX Based in part on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. We thank the SOFIA engineering and operations teams and the DSI telescope engineering team for their tireless support and good-spirit teamwork, which has been essential for the GREAT accomplishments during Early Science. NR 25 TC 8 Z9 8 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L12 DI 10.1051/0004-6361/201218931 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300114 ER PT J AU Han, JW Choi, YK Meyyappan, M AF Han, Jin-Woo Choi, Yang-Kyu Meyyappan, M. TI A Gate-Dielectric-Last Process via Photosolidification of Liquid Resin SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Gate-dielectric-last process; photopolymer; replacement of gate dielectric; ultraviolet (UV) curing AB A gate-dielectric-last process is demonstrated on an independent double-gate FinFET as a test vehicle. After the source/drain (S/D) process, the dummy gate dielectric is selectively replaced with a liquid monomer that can be cured by ultraviolet treatment. The present scheme provides the benefits from both gate-first and gate-last processes. The replacement of the gate dielectric is a minor modification of the baseline of the gate-first process. Compared to the gate-last process, the gate dielectric last does not introduce process complexity or alter the design rule. As the gate dielectric is formed after the S/D, the thermal-budget issue can be mitigated. C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. [Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea. RP Han, JW (reprint author), NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov FU Smart IT Convergence System Research Center; Ministry of Education, Science and Technology [SIRC-2011-0031845] FX This work was supported in part by the Smart IT Convergence System Research Center funded by the Ministry of Education, Science and Technology (SIRC-2011-0031845). The review of this letter was arranged by Editor A. Chin. NR 10 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD JUN PY 2012 VL 33 IS 6 BP 746 EP 748 DI 10.1109/LED.2012.2189866 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 966JX UT WOS:000305835000002 ER PT J AU Schwerdt, HN Miranda, FA Chae, J AF Schwerdt, Helen N. Miranda, Felix A. Chae, Junseok TI A Fully Passive Wireless Backscattering Neurorecording Microsystem Embedded in Dispersive Human-Head Phantom Medium SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Biological microelectromechanical systems (bio-MEMS); electromagnetic (EM) backscattering; neural recording AB This letter reports a microfabricated fully passive circuit for extracting and transmitting targeted neuropotentials wirelessly via the backscattering effect without any internal power source or harvester. Radiating electromagnetic waves experience attenuation, phase and wavelength alteration, and random scattering effects when propagating through dispersive biological media (i.e., human head), and these effects are augmented at microwave frequencies required for practical miniaturization of the integrated microsystem antenna. The authors examine the fully passive microsystem for wireless recording of emulated neuropotentials as implanted in a phantom mimicking the human head. The wireless measurements of emulated neuropotentials acquired by the microsystem demonstrate its promising capabilities for neurological applications. C1 [Schwerdt, Helen N.; Chae, Junseok] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Miranda, Felix A.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Schwerdt, HN (reprint author), Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. EM hschwerd@asu.edu; felix.a.miranda@nasa.gov; junseok.chae@asu.edu FU U.S. National Science Foundation [ECCS-0702227]; National Institutes of Health [5R21NS059815-02]; NASA [NNX09AK93H] FX This work was supported in part by the U.S. National Science Foundation under Grant ECCS-0702227, by the National Institutes of Health under Grant 5R21NS059815-02, and by the NASA Graduate Student Research Program fellowship under Grant NNX09AK93H. The review of this letter was arranged by Editor W. T. Ng. NR 13 TC 7 Z9 7 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD JUN PY 2012 VL 33 IS 6 BP 908 EP 910 DI 10.1109/LED.2012.2190967 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 966JX UT WOS:000305835000056 ER PT J AU Xu, F Deshpande, M AF Xu, Feng Deshpande, Manohar TI Iterative Nonlinear Tikhonov Algorithm With Constraints for Electromagnetic Tomography SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Capacitance tomography; INTAC; two-phase system ID ELECTRICAL-CAPACITANCE TOMOGRAPHY; IMAGE-RECONSTRUCTION AB Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high-resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov-regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution. C1 [Xu, Feng; Deshpande, Manohar] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Xu, Feng] Intelligent Automat Inc, Rockville, MD 20855 USA. RP Xu, F (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM fynn.xu@gmail.com RI XU, Feng/A-4582-2010 OI XU, Feng/0000-0002-7015-1467 FU NASA Goddard Space Flight Center [NNG10LY34P] FX This work was supported by NASA Goddard Space Flight Center under Contract No. NNG10LY34P. NR 22 TC 2 Z9 2 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2012 VL 5 IS 3 SI SI BP 707 EP 716 DI 10.1109/JSTARS.2012.2193117 PG 10 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 968KB UT WOS:000305978200005 ER PT J AU Xu, XL Tsang, L Yueh, S AF Xu, Xiaolan Tsang, Leung Yueh, Simon TI Electromagnetic Models of Co/Cross Polarization of Bicontinuous/DMRT in Radar Remote Sensing of Terrestrial Snow at X- and Ku-band for CoReH2O and SCLP Applications SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Active remote sensing; bi-continuous media; CLPX II experiments; dense media; NMM3D; snow properties; surface scattering; volume scattering ID QUASI-CRYSTALLINE APPROXIMATION; SCATTERING; SIMULATIONS AB In this paper, we study the scattering properties of the terrestrial dry snow by modeling the snow structure as Bi-continuous media. The model is applied to study the snow scattering characteristics at X-band and Ku-band that are two frequencies in the proposed Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission by ESA and the proposed Snow and Cold Land Process (SCLP) mission by NASA. There are two variables in the Bi-continuous media that can be adjusted to generate various snow microstructures. The different snow structures are illustrated. The extinction properties and phase matrices are studied through the Monte Carlo simulations. For each realization, the Maxwell Equations are solved numerically to take into account the coherent wave interactions among the inhomogeneties. We demonstrated the frequency dependences of scattering coefficients, which can vary depending on the setup parameters of the bicontinuous media. The power law are compared with experiment data of extinction coefficients of terrestrial snow. The calculated extinction and phase matrices are combined in the Dense Media Radiative Transfer theory (DMRT). We obtain the 1st order solution by using the iterative method. The surface scattering from the snow-ground interface is included by searching the look up table of NMM3D. The results of co-polarization and cross polarization are compared with the POLSCAT Ku-band airborne data and X-band TerraSAR-X satellite data in North Slope, Alaska. C1 [Xu, Xiaolan; Tsang, Leung] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Yueh, Simon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xu, XL (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. EM xlxu@uw.edu FU National Aeronautics and Space Administration FX Manuscript received October 01, 2011; revised February 06, 2012; accepted March 03, 2012. Date of publication April 17, 2012; date of current version June 28, 2012. This work was supported in part by the National Aeronautics and Space Administration. NR 31 TC 14 Z9 15 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2012 VL 5 IS 3 SI SI BP 1024 EP 1032 DI 10.1109/JSTARS.2012.2190719 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 968KB UT WOS:000305978200039 ER PT J AU Thurai, M Bringi, VN Carey, LD Gatlin, P Schultz, E Petersen, WA AF Thurai, M. Bringi, V. N. Carey, L. D. Gatlin, P. Schultz, E. Petersen, W. A. TI Estimating the Accuracy of Polarimetric Radar-Based Retrievals of Drop-Size Distribution Parameters and Rain Rate: An Application of Error Variance Separation Using Radar-Derived Spatial Correlations SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SMALL-SCALE VARIABILITY; 2D VIDEO DISDROMETER; C-BAND RADAR; POLARIZATION RADAR; SAMPLING ERRORS; WEATHER RADAR; REFLECTIVITY; VALIDATION; PROFILER; NETWORK AB The accuracy of retrieving the two drop size distribution (DSD) parameters, median volume diameter (D-0), and normalized intercept parameter (N-W), as well as rain rate (R), from polarimetric C-band radar data obtained during a cool-season, long-duration precipitation event in Huntsville, Alabama, is examined. The radar was operated in a special "near-dwelling" mode over two video disdrometers (2DVD) located 15 km away. The polarimetric radar based retrieval algorithms for the DSD parameters and rain rate were obtained from simulations using the 2DVD measurements of the DSD. A unique feature of this paper is the radar-based estimation of the spatial correlation functions of the two DSD parameters and rain rate that are used to estimate the "point-to-area" variance. A detailed error variance separation is performed, including the aforementioned point-to-area variance, along with variance components due to the retrieval algorithm error, radar measurement error, and disdrometer sampling error. The spatial decorrelation distance was found to be smallest for the R (4.5 km) and largest for D-0 (8.24 km). For log(10)(N-W), it was 7.22 km. The proportion of the variance of the difference between radar-based estimates and 2DVD measurements that could be explained by the aforementioned errors was 100%, 57%, and 73% for D-0, log(10)(N-W), and R, respectively. The overall accuracy of the radar-based retrievals for the particular precipitation event quantified in terms of the fractional standard deviation were estimated to be 6.8%, 6%, and 21% for D-0, log(10)(N-W), and R, respectively. The normalized bias was <1%. These correspond to time resolution of similar to 3 min and spatial resolution of similar to 1.5 km. C1 [Thurai, M.; Bringi, V. N.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Carey, L. D.; Gatlin, P.; Schultz, E.] Univ Alabama, NSSTC, Huntsville, AL 35899 USA. [Petersen, W. A.] NASA MSFC, Huntsville, AL USA. RP Thurai, M (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM merhala@engr.colostate.edu RI Measurement, Global/C-4698-2015; OI Gatlin, Patrick/0000-0001-9345-1457 FU NASA [NNX10AJ12G]; National Science Foundation [AGS-0924622] FX MT/VNB acknowledge support from NASA Grant Award NNX10AJ12G. MT also acknowledges support from the National Science Foundation via AGS-0924622. WAP/LDC/ES/PG acknowledge NASA Precipitation Measurements Missions Science Team research support provided by Dr. Ramesh Kakar, and also NASA Global Precipitation Measurement Mission Project Office support provided by Dr. Mathew Schwaller. NR 49 TC 10 Z9 10 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2012 VL 13 IS 3 BP 1066 EP 1079 DI 10.1175/JHM-D-11-070.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 965OH UT WOS:000305776600018 ER PT J AU Maggioni, V Reichle, RH Anagnostou, EN AF Maggioni, Viviana Reichle, Rolf H. Anagnostou, Emmanouil N. TI The Impact of Rainfall Error Characterization on the Estimation of Soil Moisture Fields in a Land Data Assimilation System SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LATITUDE HYDROLOGICAL PROCESSES; TORNE-KALIX BASIN; SURFACE MODEL; PILPS PHASE-2(E); PRECIPITATION; RETRIEVALS; SIMULATION; MICROWAVE; SCALE; SKILL AB This study presents a numerical experiment to assess the impact of satellite rainfall error structure on the efficiency of assimilating near-surface soil moisture observations. Specifically, the study contrasts a multidimensional satellite rainfall error model (SREM2D) to a simpler rainfall error model (CTRL) currently used to generate rainfall ensembles as part of the ensemble-based land data assimilation system developed at the NASA Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region using rainfall data from a NOAA multisatellite global rainfall product [the Climate Prediction Center (CPC) morphing technique (CMORPH)] and the National Weather Service rain gauge-calibrated radar rainfall product [Weather Surveillance Radar-1988 Doppler (WSR-88D)] representing the "uncertain" and "reference" model rainfall forcing, respectively. Soil moisture simulations using the Catchment land surface model (CLSM), obtained by forcing the model with reference rainfall, are randomly perturbed to represent satellite retrieval uncertainty, and assimilated into CLSM as synthetic near-surface soil moisture observations. The assimilation estimates show improved performance metrics, exhibiting higher anomaly correlation coefficients (e.g., similar to 0.79 and similar to 0.90 in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively) and lower root-mean-square errors (e.g., similar to 0.034 m(3) m(-3) and similar to 0.024 m(3) m(-3) in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively). The more elaborate rainfall error model in the assimilation system leads to slightly improved assimilation estimates. In particular, the relative enhancement due to SREM2D over CTRL is larger for root zone soil moisture and in wetter rainfall conditions. C1 [Maggioni, Viviana; Anagnostou, Emmanouil N.] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. [Reichle, Rolf H.] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. RP Maggioni, V (reprint author), Univ Connecticut, Dept Civil & Environm Engn, 261 Glenbrook Rd,Unit 2037, Storrs, CT 06269 USA. EM viviana@engr.uconn.edu RI Reichle, Rolf/E-1419-2012 FU NASA [NNX07AE31G]; SMAP Science Definition Team FX V. Maggioni was supported by a NASA Earth System Science Graduate Fellowship. R. Reichle was supported by the NASA research program "The Science of Terra and Aqua" and the SMAP Science Definition Team. E. Anagnostou was supported by NASA Precipitation Science Team Grant NNX07AE31G. Computing was supported by the NASA High End Computing Program. NR 35 TC 4 Z9 4 U1 2 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2012 VL 13 IS 3 BP 1107 EP 1118 DI 10.1175/JHM-D-11-0115.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 965OH UT WOS:000305776600021 ER PT J AU Kafka, S AF Kafka, Stella TI Forecasting Life: A Study of Activity Cycles in Low-Mass Stars Lessons from Long-Term Stellar Light Curves SO ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES LA English DT Article; Proceedings Paper CT 11th European Workshop on Astrobiology of the European-Astrobiology-Network-Association (EANA) CY JUL 11-14, 2011 CL German Aerosp Ctr, Cologne, GERMANY SP Helmholtz Alliance, European Astrobiol Network Assoc (EANA), European Space Agcy HO German Aerosp Ctr DE Active stars; Magnetic activity; Activity cycles; Low-mass stars; Habitable zone; Space weather ID SKY AUTOMATED SURVEY; MAGNETIC-FLUX TUBES; CLOSE BINARY STARS; PLANETS; HABITABILITY; STABILITY; DYNAMICS; SYSTEMS; CATALOG; EARTH AB Magnetic activity cycles are indirect traces of magnetic fields and can provide an insight on the nature and action of stellar dynamos and stellar magnetic activity. This, in turn, can determine local space weather and activity effects on stellar habitable zones. Using photometric monitoring of low-mass stars, we study the presence and properties of their magnetic activity cycles. We introduce long-term light curves of our sample stars, and discuss the properties of the observed trends, especially at spectral types where stars are fully convective (later than M3). C1 Carnegie Inst Sci, Dept Terr Magnetism, NASA Astrobiol Inst, Washington, DC 20015 USA. RP Kafka, S (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, NASA Astrobiol Inst, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM skafka@dtm.ciw.edu NR 25 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-6149 J9 ORIGINS LIFE EVOL B JI Orig. Life Evol. Biosph. PD JUN PY 2012 VL 42 IS 2-3 BP 143 EP 152 DI 10.1007/s11084-012-9283-4 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 968MM UT WOS:000305985800006 PM 22729352 ER PT J AU Anglada-Escude, G Plavchan, P Mills, S Gao, P Garcia-Berrios, E Lewis, NS Sung, K Ciardi, D Beichman, C Brinkworth, C Johnson, J Davison, C White, R Prato, L AF Anglada-Escude, Guillem Plavchan, Peter Mills, Sean Gao, Peter Garcia-Berrios, Edgardo Lewis, Nathan S. Sung, Keeyoon Ciardi, David Beichman, Chas Brinkworth, Carolyn Johnson, John Davison, Cassy White, Russel Prato, Lisa TI Design and Construction of Absorption Cells for Precision Radial Velocities in the K Band Using Methane Isotopologues SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID CARNEGIE EXOPLANET SURVEY; ECHELLE SPECTROGRAPH; GAS CELL; MASS; PLANET; STAR AB We present a method to optimize absorption cells for precise wavelength calibration in the near-infrared. We apply it to design and optimize methane isotopologue cells for precision radial velocity measurements in the K band. We also describe the construction and installation of two such cells for the CSHELL spectrograph at NASA's IRTF. We have obtained their high-resolution laboratory spectra, which we can then use in precision radial velocity measurements and which can also have other applications. In terms of obtainable RV precision, methane should outperform other proposed cells, such as the ammonia cell ((NH3)-N-14) recently demonstrated on CRIRES/VLT. The laboratory spectra of the ammonia and methane cells show strong absorption features in the H band that could also be exploited for precision Doppler measurements. We present spectra and preliminary radial velocity measurements obtained during our first-light run. These initial results show that a precision down to 20-30 m s(-1) can be obtained using a wavelength interval of only 5 nm in the K band and S/N similar to 150. This supports the prediction that a precision down to a few meters per second can be achieved on late-M dwarfs using the new generation of NIR spectrographs, thus enabling the detection of terrestrial planets in their habitable zones. Doppler measurements in the NIR can also be used to mitigate the radial velocity jitter due to stellar activity, enabling more efficient surveys on young active stars. C1 [Anglada-Escude, Guillem] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Plavchan, Peter; Ciardi, David; Beichman, Chas; Brinkworth, Carolyn] NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Mills, Sean; Gao, Peter; Johnson, John] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Garcia-Berrios, Edgardo; Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Noyes Lab 210, Pasadena, CA 91125 USA. [Sung, Keeyoon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davison, Cassy; White, Russel] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Prato, Lisa] Lowell Observ, Flagstaff, AZ 86001 USA. RP Anglada-Escude, G (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM anglada@dtm.ciw.edu; plavchan@ipac.caltech.edu RI Sung, Keeyoon/I-6533-2015; OI Anglada Escude, Guillem/0000-0002-3645-5977; Ciardi, David/0000-0002-5741-3047 FU NASA Astrobiology Institute [NNA09DA81A]; Jet Propulsion Laboratory's (JPL's) Center for Exoplanet Science; NASA Exoplanet Science Institute; National Aeronautics and Space Administration FX Both G. Anglada-Escude and P. Plavchan contributed equally to this work. G. A. would like to acknowledge the Carnegie Postdoctoral Fellowship Program and the support provided by the NASA Astrobiology Institute grant NNA09DA81A. Peter Plavchan would like acknowledge Wes Traub and Stephen Unwin for funding provided by the Jet Propulsion Laboratory's (JPL's) Center for Exoplanet Science and NASA Exoplanet Science Institute. K. Sung acknowledges the Planetary Atmospheric Research Program to support the laboratory spectroscopic calibrations. Part of the research at the JPL and California Institute of Technology was performed under contracts with National Aeronautics and Space Administration. We thank Anu Dudhia for making the Reference Forward Model code available to us and for his assistance with adapting it for gas cell spectral calculations. The stellar synthetic spectra were graciously provided by Peter Hauschildt (University of Hamburg) and the PHOENIX group. We also thank Linda Brown from JPL's Laboratory Studies and Modeling group and Pin Chen from the Planetary Chemistry and Astrobiology group for their advice and support using the Fourier-transformed infrared spectrometer. We would like to thank Paul Butler (Carnegie Institution of Washington) and Gilian Nave (NIST) for their advice in gas optimization parameters and molecular spectroscopy in general. We would like to thank Stephen Kane (NExScI), Kaspar von Braun (NExScI), and Steve Osterman (University of Colorado) for their valuable discussions. We also thank John Rayner, Morgan Bonnet, George Koenig, and Alan Tokunaga from IfA, Hawaii, for their support during the CSHELL/IRTF cell design review, integration, and commissioning. We thank Rick Gerhart (California Institute of Technology), Scot Howell (Mindrum Precision), and Thurston Levy (Glass Instruments, Inc.) for their work in helping construct and fill the gas cells, as well as Joeff Zolkower (California Institute of Technology) for mechanical engineering advise. NR 33 TC 9 Z9 9 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUN PY 2012 VL 124 IS 916 BP 586 EP 597 DI 10.1086/666489 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 966LT UT WOS:000305839900008 ER PT J AU Pfaff, RF AF Pfaff, Robert F., Jr. TI The Near-Earth Plasma Environment SO SPACE SCIENCE REVIEWS LA English DT Review DE Ionosphere; Upper atmosphere; Electric fields ID INTERPLANETARY MAGNETIC-FIELD; EQUATORIAL-SPREAD-F; INCOHERENT-SCATTER RADAR; MIDLATITUDE SPORADIC-E; SUBAURORAL ION DRIFTS; TRAVELING IONOSPHERIC DISTURBANCES; GENERAL-CIRCULATION MODEL; HIGH-LATITUDE IONOSPHERE; INTENSE ELECTRIC-FIELDS; PITCH-ANGLE DIFFUSION AB An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pfaff, RF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Robert.F.Pfaff@nasa.gov RI Pfaff, Robert/F-5703-2012 OI Pfaff, Robert/0000-0002-4881-9715 NR 256 TC 3 Z9 3 U1 1 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2012 VL 168 IS 1-4 BP 23 EP 112 DI 10.1007/s11214-012-9872-6 PG 90 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 967KY UT WOS:000305907900002 ER PT J AU Simoes, F Pfaff, R Berthelier, JJ Klenzing, J AF Simoes, Fernando Pfaff, Robert Berthelier, Jean-Jacques Klenzing, Jeffrey TI A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms SO SPACE SCIENCE REVIEWS LA English DT Review DE Wave propagation; Lightning; Ionosphere dynamics; Aeronomy; Troposphere-ionosphere coupling ID ATMOSPHERIC ELECTRIC-CIRCUIT; RADIATION BELT ELECTRONS; SCHUMANN RESONANCE PARAMETERS; GLOBAL LIGHTNING ACTIVITY; COSMIC-RAY INTENSITY; EXPLOSIVE SPREAD-F; SOLAR PROTON EVENT; ENERGY PARTICLE-PRECIPITATION; KELVIN-HELMHOLTZ INSTABILITY; D-REGION IONOSPHERE AB Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave observations in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review ionospheric processes as well as surface and space weather phenomena that drive the coupling between the troposphere and the ionosphere. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface perturbations and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and to solve inverse problems and outline in a final section a few challenging subjects that are important to advance our understanding of tropospheric-ionospheric coupling. C1 [Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey] NASA, GSFC Heliophys Sci Div, Space Weather Lab, Greenbelt, MD 20771 USA. [Berthelier, Jean-Jacques] UPMC, LATMOS IPSL, F-75005 Paris, France. RP Simoes, F (reprint author), NASA, GSFC Heliophys Sci Div, Space Weather Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM fernando.a.simoes@nasa.gov; robert.f.pfaff@nasa.gov; jean-jacques.berthelier@latmos.ipsl.fr; jeffrey.klenzing@nasa.gov RI Klenzing, Jeff/E-2406-2011; Pfaff, Robert/F-5703-2012 OI Klenzing, Jeff/0000-0001-8321-6074; Pfaff, Robert/0000-0002-4881-9715 FU Goddard Space Flight Center FX FS and JK are supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 299 TC 14 Z9 15 U1 4 U2 32 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2012 VL 168 IS 1-4 BP 551 EP 593 DI 10.1007/s11214-011-9854-0 PG 43 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 967KY UT WOS:000305907900020 ER PT J AU Xu, F Davis, AB Sanghavi, SV Martonchik, JV Diner, DJ AF Xu, Feng Davis, Anthony B. Sanghavi, Suniti V. Martonchik, John V. Diner, David J. TI Linearization of Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere/surface system SO APPLIED OPTICS LA English DT Article ID POLARIZED-LIGHT; TRANSFER MODEL; SCATTERING; INSTRUMENT; RETRIEVAL; AEROSOLS; MISSION; SURFACE AB The Markov chain formalism for polarized radiative transfer through a vertically inhomogeneous atmosphere is linearized comprehensively with respect to the aerosol and polarizing surface properties. For verification, numerical results are compared to those obtained by the finite difference method. We demonstrate the use of the linearized code as part of a retrieval of aerosol and surface properties for an atmosphere overlying a black and Fresnel-reflecting ocean surface. (C) 2012 Optical Society of America C1 [Xu, Feng; Davis, Anthony B.; Sanghavi, Suniti V.; Martonchik, John V.; Diner, David J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xu, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Feng.Xu@jpl.nasa.gov RI Xu, Feng/G-3673-2013 NR 37 TC 8 Z9 8 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 1 PY 2012 VL 51 IS 16 BP 3491 EP 3507 DI 10.1364/AO.51.003491 PG 17 WC Optics SC Optics GA 955JT UT WOS:000305015300049 PM 22695587 ER PT J AU Vogelmann, AM McFarquhar, GM Ogren, JA Turner, DD Comstock, JM Feingold, G Long, CN Jonsson, HH Bucholtz, A Collins, DR Diskin, GS Gerber, H Lawson, RP Woods, RK Andrews, E Yang, HJ Chiu, JC Hartsock, D Hubbe, JM Lo, CM Marshak, A Monroe, JW McFarlane, SA Schmid, B Tomlinson, JM Toto, T AF Vogelmann, Andrew M. McFarquhar, Greg M. Ogren, John A. Turner, David D. Comstock, Jennifer M. Feingold, Graham Long, Charles N. Jonsson, Haflidi H. Bucholtz, Anthony Collins, Don R. Diskin, Glenn S. Gerber, Hermann Lawson, R. Paul Woods, Roy K. Andrews, Elisabeth Yang, Hee-Jung Chiu, J. Christine Hartsock, Daniel Hubbe, John M. Lo, Chaomei Marshak, Alexander Monroe, Justin W. McFarlane, Sally A. Schmid, Beat Tomlinson, Jason M. Toto, Tami TI RACORO EXTENDED-TERM AIRCRAFT OBSERVATIONS OF BOUNDARY LAYER CLOUDS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID LIQUID WATER PATH; GROUND-BASED MEASUREMENTS; DIURNAL CYCLE; MICROWAVE RADIOMETERS; CONVECTION OVERLAND; CONDENSATION NUCLEI; STRATIFORM CLOUDS; INDIAN-OCEAN; ARM CART; IN-SITU C1 [Vogelmann, Andrew M.; Toto, Tami] Brookhaven Natl Lab, Upton, NY 11973 USA. [McFarquhar, Greg M.; Yang, Hee-Jung] Univ Illinois, Urbana, IL USA. [Ogren, John A.; Feingold, Graham; Andrews, Elisabeth] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Turner, David D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Turner, David D.] Univ Wisconsin, Madison, WI USA. [Comstock, Jennifer M.; Long, Charles N.; Hubbe, John M.; Lo, Chaomei; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jonsson, Haflidi H.; Woods, Roy K.] USN, Postgrad Sch, Monterey, CA USA. [Bucholtz, Anthony] USN, Res Lab, Monterey, CA USA. [Collins, Don R.] Texas A&M Univ, College Stn, TX USA. [Diskin, Glenn S.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Gerber, Hermann] Gerber Sci Inc, Reston, VA USA. [Lawson, R. Paul] SPEC Inc, Boulder, CO USA. [Andrews, Elisabeth] Univ Colorado, Boulder, CO 80309 USA. [Chiu, J. Christine] Univ Reading, Reading, Berks, England. [Hartsock, Daniel; Monroe, Justin W.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Marshak, Alexander] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Vogelmann, AM (reprint author), Brookhaven Natl Lab, Bldg 490D, Upton, NY 11973 USA. EM vogelmann@bnl.gov RI Collins, Don/F-9617-2012; Tomlinson, Jason/C-6566-2009; Feingold, Graham/B-6152-2009; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012; Vogelmann, Andrew/M-8779-2014; Ogren, John/M-8255-2015; Manager, CSD Publications/B-2789-2015; OI Chiu, Christine/0000-0002-8951-6913; Vogelmann, Andrew/0000-0003-1918-5423; Ogren, John/0000-0002-7895-9583; McFarquhar, Greg/0000-0003-0950-0135 FU U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research; Earth System Modeling Program via the FASTER Project [DE-AC06-76RLO 1,830, DE-FG02-05ER64062, DE-AI05-09OR23371, DE-SC0000543, DE-AI-02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564]; Office of Science, Office of Biological and Environmental Research [DE-AC02-98CH10886] FX We gratefully acknowledge the many contributions by Debbie Ronfeld (AAF logistics point of contact), pilots Mike Hubbell and Chris McGuire, copilot Dave McSwaggan, Jesse Barge (cabin instrument operations), and Greg Cooper (CIRPAS aircraft operations) and the web and media support by Sherman Beus and Lynne Roeder, respectively. We are delighted to acknowledge the NASA King Air team for their collaborative participation and excellent flight coordination (PIs Rich Ferrare, Chris Hostetler, and Brian Cairns). Data used in this article are from the U.S. Department of Energy AAF RACORO campaign and from the SGP ARM Climate Research Facility. This research was supported by the U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under the following grants/contracts: DE-AC02-98CH10886 and the Earth System Modeling Program via the FASTER Project (AMV, TT); DE-SC0005008 (JAO, EA); DE-FG02-08ER64538 (DDT); DE-FG02-02ER63337 (GM, HJY); DE-FG02-07ER64378 (GM, HJY); DE-FG02-09ER64770 (GM, HJY); DE-SC0001279 (GM, HJY); DE-SC0005507 (GM, HJY); DE-SC0002037 (GF); DE-AC06-76RLO 1,830 (CNL, SAM); DE-FG02-05ER64062 (DH, JWM); DE-AI05-09OR23371 (AB); DE-SC0000543 (GSD); DE-AI-02-08ER64562 (AM); DE-FG02-08ER64563 (AM, JCC); and DE-FG02-08ER54564 (AM). NR 56 TC 31 Z9 31 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2012 VL 93 IS 6 BP 861 EP 878 DI 10.1175/BAMS-D-11-00189.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 964VI UT WOS:000305724400013 ER PT J AU Ali, Z Norsk, P Ulrik, CS AF Ali, Zarqa Norsk, Peter Ulrik, Charlotte Suppli TI Mechanisms and Management of Exercise-Induced Asthma in Elite Athletes SO JOURNAL OF ASTHMA LA English DT Article DE asthma; doping; elite athletes; management; mechanisms ID CROSS-COUNTRY SKIERS; EUCAPNIC VOLUNTARY HYPERVENTILATION; FISH-OIL SUPPLEMENTATION; INDUCED BRONCHOCONSTRICTION; INDUCED BRONCHOSPASM; INHALED CORTICOSTEROIDS; AIRWAY INFLAMMATION; COLD-AIR; BRONCHIAL HYPERRESPONSIVENESS; REFRACTORY PERIOD AB Objective and methods. Asthma is often reported by elite athletes, especially endurance athletes. The aim of this article is to review current knowledge of mechanisms and management of exercise-induced asthma (EIA) in adult elite athletes. Results. The mechanisms underlying EIA is incompletely understood, but the two prevailing hypotheses are the hyper-osmolarity and the thermal hypothesis. Both hypotheses consider inflammation and activation of mast cells as being crucial for the development of EIA, although the assumed mechanisms triggering the inflammatory response differ. Objective testing is of utmost importance in the diagnosis of EIA in elite athletes. Management of EIA can be divided into pharmacologic and non-pharmacologic treatment. The basic principles for the treatment of EIA in elite athletes should be as for any asthmatic individual, including use of inhaled corticosteroids (ICS), beta(2)-agonists, and leukotriene antagonists. However, evidence suggests that daily use of beta(2)-agonists might lead to the development of tolerance. ICS therapy is, due to its anti-inflammatory effects, the recommended primary therapy for EIA also in elite athletes. All doctors treating individuals with asthma, especially elite athletes, should remain updated on doping aspects of asthma therapy. Non-pharmacologic management of EIA in elite athletes includes physical warm-up, which takes advantage of the refractory period following an attack of EIA, whereas high intake of antioxidants may reduce airway inflammation. Wearing heat masks, specially designed for outdoor winter athletes, might protect against bronchoconstriction triggered by inhalation of cold and dry air. Conclusion. EIA in elite athletes should be managed as in any individual with asthma, but the risk of developing tolerance to bronchodilators as well as doping aspects should always be taken into account. C1 [Ulrik, Charlotte Suppli] Univ Copenhagen, Hvidovre Hosp, Internal Med Unit, Resp Sect, DK-2830 Copenhagen, Denmark. [Ali, Zarqa] Univ Copenhagen, DK-2830 Copenhagen, Denmark. [Norsk, Peter] USRA NASA, Lyndon B Johnson Space Ctr, Houston, TX USA. RP Ulrik, CS (reprint author), Univ Copenhagen, Hvidovre Hosp, Internal Med Unit, Resp Sect, Virum Overdrevsvej 13, DK-2830 Copenhagen, Denmark. EM csulrik@dadlnet.dk NR 95 TC 10 Z9 10 U1 2 U2 20 PU INFORMA HEALTHCARE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0277-0903 J9 J ASTHMA JI J. Asthma PD JUN PY 2012 VL 49 IS 5 BP 480 EP 486 DI 10.3109/02770903.2012.676123 PG 7 WC Allergy; Respiratory System SC Allergy; Respiratory System GA 962IS UT WOS:000305537900006 PM 22515573 ER PT J AU Ponomarev, AL George, K Cucinotta, FA AF Ponomarev, Artem L. George, Kerry Cucinotta, Francis A. TI Computational Model of Chromosome Aberration Yield Induced by High- and Low-LET Radiation Exposures SO RADIATION RESEARCH LA English DT Article ID DOUBLE-STRAND BREAKS; HUMAN-LYMPHOCYTES; BIOLOGICAL EFFECTIVENESS; INTERPHASE CHROMOSOMES; ACCELERATED PARTICLES; EXCHANGE ABERRATIONS; HEAVY-IONS; DNA; INDUCTION; KINETICS AB Ponomarev, A. L., George, K. and Cucinotta, F. A. Computational Model of Chromosome Aberration Yield Induced by High- and Low-LET Radiation Exposures. Radiat. Res. 177, 727-737 (2012). We present a computational model for calculating the yield of radiation-induced chromosomal aberrations in human cells based on a stochastic Monte Carlo approach and calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. A previously developed DNA-fragmentation model for high- and low-LET radiation called the NASA Radiation Track- Image model was enhanced to simulate a stochastic process of the formation of chromosomal aberrations from DNA fragments. The current version of the model gives predictions of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G(0)/G(1), cell cycle phase during the first cell division after irradiation. As the model can predict smaller-sized deletions and rings (<3 Mbp) that are below the resolution limits of current cytogenetic analysis techniques, we present predictions of hypothesized small deletions that may be produced as a byproduct of properly repaired DNA double-strand breaks (DSB) by nonhomologous end-joining. Additionally, the model was used to scale chromosomal exchanges in two or three chromosomes that were obtained from whole-chromosome FISH painting analysis techniques to whole-genome equivalent values. (C) 2012 by Radiation Research Society C1 [Ponomarev, Artem L.; George, Kerry; Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ponomarev, Artem L.] Univ Space Res Assoc, Houston, TX 77058 USA. [George, Kerry] Wyle, Houston, TX 77058 USA. RP Ponomarev, AL (reprint author), NASA, Lyndon B Johnson Space Ctr, ATTN Mail Code SK,2101 NASA Pkwy, Houston, TX 77058 USA. EM artem.l.ponomarev@nasa.gov FU NASA Space Radiation Risk Assessment Project FX Funding was provided through the NASA Space Radiation Risk Assessment Project. Many thanks to M. Cornforth and B. Loucas for fruitful discussions. NR 34 TC 7 Z9 7 U1 0 U2 7 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUN PY 2012 VL 177 IS 6 BP 727 EP 737 DI 10.1667/RR2659.1 PG 11 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 966NN UT WOS:000305844800002 PM 22490019 ER PT J AU Barkstrom, BR Mattmann, CA AF Barkstrom, Bruce R. Mattmann, Chris A. TI A simple model illustrating the virtue of replication for long-term information preservation SO EARTH SCIENCE INFORMATICS LA English DT Article DE Information loss rates; Parameterizations of rates of storage volume increases and costs AB Each year destructive events might cause loss of data in members of an archival federation. This paper provides a 'back-of-the-envelope' model for the fraction of the federated data collection that survives after a certain number of years. It also discusses some simple parameterizations of factors that contribute to the trade offs between cost and survival of information. C1 [Mattmann, Chris A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mattmann, Chris A.] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. RP Barkstrom, BR (reprint author), 15 Josie Lane, Asheville, NC 28804 USA. EM brbarkstrom@gmail.com; chris.a.mattmann@nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology FX Support for Dr. Mattmann's effort was provided by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2012 VL 5 IS 2 BP 105 EP 109 DI 10.1007/s12145-012-0100-4 PG 5 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 961JQ UT WOS:000305461100004 ER PT J AU Lohne, T Eiroa, C Augereau, JC Ertel, S Marshall, JP Mora, A Absil, O Stapelfeldt, K Thebault, P Bayo, A del Burgo, C Danchi, W Krivov, AV Lebreton, J Letawe, G Magain, P Maldonado, J Montesinos, B Pilbratt, GL White, GJ Wolf, S AF Loehne, T. Eiroa, C. Augereau, J-C. Ertel, S. Marshall, J. P. Mora, A. Absil, O. Stapelfeldt, K. Thebault, P. Bayo, A. del Burgo, C. Danchi, W. Krivov, A. V. Lebreton, J. Letawe, G. Magain, P. Maldonado, J. Montesinos, B. Pilbratt, G. L. White, G. J. Wolf, S. TI Debris disks as seen by Herschel/DUNES SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE interplanetary medium; planetary systems; space vehicles; stars: individual (HD 207129) ID KUIPER-BELT; BETA-PICTORIS; HD 207129; NEARBY STARS; DUST; VEGA; POPULATION; SPITZER; SYSTEM; COLD AB The far-infrared excesses produced by debris disks are common features of stellar systems. These disks are thought to contain solids ranging from micron-sized dust to planetesimals. Naturally, their formation and evolution are linked to those of potential planets. With this motivation, the Herschel open time key programme DUNES (DUst around NEarby Stars) aims at further characterising known debris disks and discovering new ones in the regime explored by the Herschel space observatory. On the one hand, in their survey of 133 nearby FGK stars, DUNES discovered a class of extremely cold and faint debris disks, different from well-known disks such as the one around Vega in that their inferred typical grain sizes are rather large, indicating low dynamical excitation and low collision rates. On the other hand, for the more massive disk around the sun-like star HD 207129, well-resolved PACS images confirmed the ring-liked structure seen in HST images and provided valuable information for an in-depth study and benchmark for models. Employing both models for power-law fitting and collisional evolution we found the disk around HD 207129 to feature low collision rates and large grains, as well. Transport by means of Poynting-Robertson drag likely plays a role in replenishing the dust seen closer to the star, inside of the ring. The inner edge is therefore rather smooth and the contribution from the extended halo of barely bound grains is small. Both slowly self-stirring and planetary perturbations could potentially have formed and shaped this disk ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) C1 [Loehne, T.; Krivov, A. V.] Univ Jena, Inst Astrophys, D-07745 Jena, Germany. [Loehne, T.; Krivov, A. V.] Univ Jena, Univ Sternwarte, D-07745 Jena, Germany. [Eiroa, C.; Marshall, J. P.; Maldonado, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain. [Augereau, J-C.; Lebreton, J.] UJF Grenoble 1, CNRS INSU, IPAG UMR 5274, F-38041 Grenoble, France. [Ertel, S.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. [Mora, A.] ESA ESAC Gaia SOC, Madrid 28691, Spain. [Absil, O.; Letawe, G.; Magain, P.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Montesinos, B.] CSIC INTA, Ctr Astrobiol CAB, Dept Astrofis, Madrid, Spain. [Stapelfeldt, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thebault, P.] Observ Paris, LESIA, F-92195 Meudon, France. [Bayo, A.] European So Observ, Santiago 19, Chile. [del Burgo, C.] UNINOVA CA3, P-2825149 Caparica, Portugal. [Pilbratt, G. L.] ESTEC SRE SA, ESA Astrophys & Fundamental Phys Miss Div, NL-2201 AZ Noordwijk, Netherlands. [White, G. J.] Open Univ, Dept Phys & Astrophys, Milton Keynes MK7 6AA, Bucks, England. Rutherford Appleton Lab, Chilton OX11 0QX, England. [Danchi, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lohne, T (reprint author), Univ Jena, Inst Astrophys, Schillergasschen 2-3, D-07745 Jena, Germany. EM tloehne@astro.uni-jena.de RI Montesinos, Benjamin/C-3493-2017; OI Montesinos, Benjamin/0000-0002-7982-2095; Marshall, Jonathan/0000-0001-6208-1801; Absil, Olivier/0000-0002-4006-6237 NR 36 TC 3 Z9 3 U1 2 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD JUN PY 2012 VL 333 IS 5-6 SI SI BP 441 EP 446 DI 10.1002/asna.201211686 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 959SA UT WOS:000305331900008 ER PT J AU Guyon, O Bendek, EA Eisner, JA Angel, R Woolf, NJ Milster, TD Ammons, SM Shao, M Shaklan, S Levine, M Nemati, B Pitman, J Woodruff, RA Belikov, R AF Guyon, Olivier Bendek, Eduardo A. Eisner, Josh A. Angel, Roger Woolf, Neville J. Milster, Thomas D. Ammons, S. Mark Shao, Michael Shaklan, Stuart Levine, Marie Nemati, Bijan Pitman, Joe Woodruff, Robert A. Belikov, Ruslan TI HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astrometry; planets and satellites: detection; techniques: high angular resolution; telescopes ID PHOTOMETRY AB Astrometric detection and mass determination of Earth-mass exoplanets require sub-mu as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg(2) field we adopt as a baseline design achieves 0.2 mu as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-mu as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts. C1 [Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Guyon, Olivier] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Bendek, Eduardo A.; Milster, Thomas D.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Ammons, S. Mark] Lawrence Livermore Natl Lab, Phys Div L 210, Livermore, CA 94550 USA. [Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pitman, Joe] Explorat Sci, Pine, CO 80470 USA. [Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Guyon, O (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM guyon@naoj.org FU NASA Astronomy and Physics Research and Analysis (APRA); State of Arizona Technology Research Initiative Fund (TRIF) FX This work is funded by the NASA Astronomy and Physics Research and Analysis (APRA) program and the State of Arizona Technology Research Initiative Fund (TRIF). NR 13 TC 17 Z9 17 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2012 VL 200 IS 2 AR 11 DI 10.1088/0067-0049/200/2/11 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956KH UT WOS:000305088000001 ER PT J AU Hicken, M Challis, P Kirshner, RP Rest, A Cramer, CE Wood-Vasey, WM Bakos, G Berlind, P Brown, WR Caldwell, N Calkins, M Currie, T de Kleer, K Esquerdo, G Everett, M Falco, E Fernandez, J Friedman, AS Groner, T Hartman, J Holman, MJ Hutchins, R Keys, S Kipping, D Latham, D Marion, GH Narayan, G Pahre, M Pal, A Peters, W Perumpilly, G Ripman, B Sipocz, B Szentgyorgyi, A Tang, SM Torres, MAP Vaz, A Wolk, S Zezas, A AF Hicken, Malcolm Challis, Peter Kirshner, Robert P. Rest, Armin Cramer, Claire E. Wood-Vasey, W. Michael Bakos, Gaspar Berlind, Perry Brown, Warren R. Caldwell, Nelson Calkins, Mike Currie, Thayne de Kleer, Kathy Esquerdo, Gil Everett, Mark Falco, Emilio Fernandez, Jose Friedman, Andrew S. Groner, Ted Hartman, Joel Holman, Matthew J. Hutchins, Robert Keys, Sonia Kipping, David Latham, Dave Marion, George H. Narayan, Gautham Pahre, Michael Pal, Andras Peters, Wayne Perumpilly, Gopakumar Ripman, Ben Sipocz, Brigitta Szentgyorgyi, Andrew Tang, Sumin Torres, Manuel A. P. Vaz, Amali Wolk, Scott Zezas, Andreas TI CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE supernovae: general ID HUBBLE-SPACE-TELESCOPE; DARK-ENERGY CONSTRAINTS; PHOTOMETRY DATA RELEASE; INFRARED PHOTOMETRY; LUMINOSITY INDICATORS; IMAGE SUBTRACTION; HOST GALAXIES; CONSTANT; MAGNITUDES; UNIVERSE AB We present multi-band optical photometry of 94 spectroscopically confirmed Type Ia supernovae (SNe Ia) in the redshift range 0.0055-0.073, obtained between 2006 and 2011. There are a total of 5522 light-curve points. We show that our natural-system SN photometry has a precision of less than or similar to 0.03 mag in BV r'i', less than or similar to 0.06 mag in u', and less than or similar to 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BV r'i'u'U, respectively. Comparisons of our standard-system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of similar to 0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al. This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SNe Ia is now sufficiently large to remove most of the statistical sampling error from the dark-energy error budget. But pursuing the dark-energy systematic errors by determining highly accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SNe Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples. C1 [Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S.; Groner, Ted; Hartman, Joel; Holman, Matthew J.; Hutchins, Robert; Keys, Sonia; Kipping, David; Latham, Dave; Marion, George H.; Narayan, Gautham; Pahre, Michael; Pal, Andras; Peters, Wayne; Ripman, Ben; Sipocz, Brigitta; Szentgyorgyi, Andrew; Tang, Sumin; Torres, Manuel A. P.; Wolk, Scott; Zezas, Andreas] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rest, Armin] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Cramer, Claire E.] NIST, Gaithersburg, MD 20899 USA. [Wood-Vasey, W. Michael] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Bakos, Gaspar; Hartman, Joel] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08542 USA. [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [de Kleer, Kathy] MIT, Dept Phys, Cambridge, MA 02139 USA. [Esquerdo, Gil; Everett, Mark] Planetary Sci Inst, Tucson, AZ 85719 USA. [Perumpilly, Gopakumar] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Vaz, Amali] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Hicken, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM mhicken@cfa.harvard.edu RI Friedman, Andrew/I-4691-2013; Zezas, Andreas/C-7543-2011; OI Friedman, Andrew/0000-0003-1334-039X; Zezas, Andreas/0000-0001-8952-676X; Wolk, Scott/0000-0002-0826-9261; Narayan, Gautham/0000-0001-6022-0484; Hartman, Joel/0000-0001-8732-6166 FU NSF [AST0606772, AST0907903] FX We thank the staff at FLWO for their dedicated work in maintaining the 1.2 m telescope and instruments. We also thank M. Stritzinger, W. Li, and M. Ganeshalingam for help in comparing the CfA4 sample with the CSP2 and LOSS samples. Finally, we appreciate discussions with K. Mandel. This work has been supported, in part, by NSF grants AST0606772 and AST0907903 to Harvard University. NR 72 TC 45 Z9 45 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2012 VL 200 IS 2 AR 12 DI 10.1088/0067-0049/200/2/12 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956KH UT WOS:000305088000002 ER PT J AU Trichas, M Green, PJ Silverman, JD Aldcroft, T Barkhouse, W Cameron, RA Constantin, A Ellison, SL Foltz, C Haggard, D Jannuzi, BT Kim, DW Marshall, HL Mossman, A Perez, LM Romero-Colmenero, E Ruiz, A Smith, MG Smith, PS Torres, G Wik, DR Wilkes, BJ Wolfgang, A AF Trichas, Markos Green, Paul J. Silverman, John D. Aldcroft, Tom Barkhouse, Wayne Cameron, Robert A. Constantin, Anca Ellison, Sara L. Foltz, Craig Haggard, Daryl Jannuzi, Buell T. Kim, Dong-Woo Marshall, Herman L. Mossman, Amy Perez, Laura M. Romero-Colmenero, Encarni Ruiz, Angel Smith, Malcolm G. Smith, Paul S. Torres, Guillermo Wik, Daniel R. Wilkes, Belinda J. Wolfgang, Angie TI THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: evolution; galaxies: Seyfert; galaxies: starburst; quasars: general; techniques: spectroscopic; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; DEEP FIELD-SOUTH; DIGITAL-SKY-SURVEY; ULTRALUMINOUS INFRARED GALAXIES; QUASAR LUMINOSITY FUNCTION; STAR-FORMATION; BLACK-HOLES; HELLAS2XMM SURVEY; REDSHIFT SURVEY; SOURCE CATALOGS AB From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z similar to 5.5 and galaxies out to z similar to 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While similar to 58% of X-ray Seyferts (10(42) erg s(-1) < L2-10 keV < 10(44) erg s(-1)) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L2-10 keV > 10(44) erg s(-1)) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 X-ray Bright Optically inactive Galaxies, 78 z > 3 X-ray sources, and eight Type-2 QSO candidates. Also, we have identified the highest redshift (z = 5.4135) X-ray-selected QSO with optical spectroscopy. C1 [Trichas, Markos; Green, Paul J.; Aldcroft, Tom; Kim, Dong-Woo; Mossman, Amy; Torres, Guillermo; Wilkes, Belinda J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Silverman, John D.] Univ Tokyo, Inst Phys & Math Universe IPMU, Kashiwa, Chiba 2778568, Japan. [Barkhouse, Wayne] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Cameron, Robert A.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Cameron, Robert A.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Constantin, Anca] James Madison Univ, Dept Phys & Astron, PHCH, Harrisonburg, VA 22807 USA. [Ellison, Sara L.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Foltz, Craig] Natl Sci Fdn, Div Astron Sci, Arlington, VA 22230 USA. [Haggard, Daryl] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys, Evanston, IL 60208 USA. [Jannuzi, Buell T.] Kitt Peak Natl Observ, NOAO, Tucson, AZ 85726 USA. [Marshall, Herman L.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Perez, Laura M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Romero-Colmenero, Encarni] S African Astron Observ, ZA-7935 Observatory, South Africa. [Ruiz, Angel] Osservatorio Astron Brera INAF, Milan, Italy. [Smith, Malcolm G.] Cerro Tololo Interamer Observ, La Serena, Chile. [Smith, Paul S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wik, Daniel R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wolfgang, Angie] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Trichas, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM mtrichas@cfa.harvard.edu RI Ruiz, Angel/B-4914-2008; OI Ruiz, Angel/0000-0002-3352-4383; Constantin, Anca/0000-0002-2441-1619; Wilkes, Belinda/0000-0003-1809-2364 FU National Aeronautics and Space Administration [AR9-0020X, AR1-12016X, NAS8-03060] FX The authors thank Francesca Civano and Hagai Netzer for their useful comments. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award nos. AR9-0020X and AR1-12016X, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. NR 92 TC 26 Z9 26 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2012 VL 200 IS 2 AR 17 DI 10.1088/0067-0049/200/2/17 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956KH UT WOS:000305088000007 ER PT J AU Anenberg, SC Schwartz, J Shindell, D Amann, M Faluvegi, G Klimont, Z Janssens-Maenhout, G Pozzoli, L Van Dingenen, R Vignati, E Emberson, L Muller, NZ West, JJ Williams, M Demkine, V Hicks, WK Kuylenstierna, J Raes, F Ramanathan, V AF Anenberg, Susan C. Schwartz, Joel Shindell, Drew Amann, Markus Faluvegi, Greg Klimont, Zbigniew Janssens-Maenhout, Greet Pozzoli, Luca Van Dingenen, Rita Vignati, Elisabetta Emberson, Lisa Muller, Nicholas Z. West, J. Jason Williams, Martin Demkine, Volodymyr Hicks, W. Kevin Kuylenstierna, Johan Raes, Frank Ramanathan, Veerabhadran TI Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE air quality; climate change; health impact analysis; outdoor air; particulate matter ID MORTALITY; POLLUTION; EXPOSURE; OZONE; STRATEGIES; MATTER; MODEL AB BACKGROUND: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM <= 2.5 mu m in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. METHODS: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. RESULTS: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health bene-fits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of non-methane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. CONCLUSIONS: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are under-estimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution. C1 [Anenberg, Susan C.] US EPA, Washington, DC 20460 USA. [Schwartz, Joel] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. [Shindell, Drew; Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, Drew; Faluvegi, Greg] Columbia Univ, Columbia Earth Inst, New York, NY USA. [Amann, Markus; Klimont, Zbigniew] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Raes, Frank] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. [Emberson, Lisa; Hicks, W. Kevin; Kuylenstierna, Johan] Univ York, Dept Environm, Stockholm Environm Inst, York YO10 5DD, N Yorkshire, England. [Muller, Nicholas Z.] Middlebury Coll, Dept Econ, Middlebury, VT 05753 USA. [West, J. Jason] Univ N Carolina, Dept Environm Sci & Engn, Gillings Sch Global Publ Hlth, Chapel Hill, NC USA. [Williams, Martin] Kings Coll London, Environm Res Grp, London WC2R 2LS, England. [Demkine, Volodymyr] United Nations Environm Programme, Nairobi, Kenya. [Ramanathan, Veerabhadran] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. RP Anenberg, SC (reprint author), US EPA, 1200 Penn Ave NW,MC-6301A, Washington, DC 20460 USA. EM anenberg.susan@epa.gov RI Shindell, Drew/D-4636-2012; West, Jason/J-2322-2015; Klimont, Zbigniew/P-7641-2015; OI West, Jason/0000-0001-5652-4987; Klimont, Zbigniew/0000-0003-2630-198X; Pozzoli, Luca/0000-0003-0485-9624 NR 39 TC 84 Z9 86 U1 16 U2 140 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD JUN PY 2012 VL 120 IS 6 BP 831 EP 839 DI 10.1289/ehp.1104301 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 952BW UT WOS:000304765700023 PM 22418651 ER PT J AU Teverovsky, A AF Teverovsky, Alexander TI Thermal-Shock Testing and Fracturing of MLCCs Under Manual-Soldering Conditions SO IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY LA English DT Article DE Ceramic capacitors; crack; failure; thermal shock (TS) ID MULTILAYER CERAMIC CAPACITORS; RESISTANCE AB The fracturing and failures of multilayer ceramic capacitors (MLCCs) after manual soldering onto printed wiring boards are often associated with a soldering-induced thermal shock that results in substantial mechanical stresses in the parts. Recommendations and guidelines for safe soldering conditions are well developed and documented; however, there is a lack of adequate testing for the selection of MLCCs that are robust enough to sustain stresses related to manual soldering. In this paper, various lots of X7R-type material MLCCs with different size have been subjected to three types of thermal-shock testing: terminal solder-dip test, ice-water test, and liquid-nitrogen drop test. The electrical characteristics of the parts were measured through various test conditions to determine critical temperatures that resulted in fracturing and electrical failures. Optical examinations and cross-sectional analysis were used to confirm the presence of cracks. The mechanisms of fracturing, factors affecting crack formation, and the effectiveness of different thermal-shock methods are discussed. C1 NASA, Dell Serv Fed Govt Inc, GSFC, Greenbelt, MD 20771 USA. RP Teverovsky, A (reprint author), NASA, Dell Serv Fed Govt Inc, GSFC, Code 562, Greenbelt, MD 20771 USA. EM Alexander.A.Teverovsky@nasa.gov FU NASA FX Manuscript received January 3, 2012; revised February 18, 2012 and February 21, 2012; accepted February 21, 2012. Date of publication February 28, 2012; date of current version June 6, 2012. This work was supported by the NASA Electronic Parts and Packaging Program. NR 24 TC 3 Z9 3 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-4388 J9 IEEE T DEVICE MAT RE JI IEEE Trans. Device Mater. Reliab. PD JUN PY 2012 VL 12 IS 2 BP 413 EP 419 DI 10.1109/TDMR.2012.2189213 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 956JE UT WOS:000305085100030 ER PT J AU Wasylkiwskyj, W Shiri, S AF Wasylkiwskyj, Wasyl Shiri, Shahram TI Limits on achievable intensity reduction with an optical occulter: reply to comment SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Editorial Material AB External occulters for NASA exoplanet missions have been proposed as the means to suppressing the Poisson spot intensity by at least 10 orders of magnitude. The leading proposed external occulter shapes adhere to the binary petaled occulters with sharp petal tips. In a recent paper, Wasylkiwskyj and Shiri [J. Opt. Soc. Am. A 28, 1668 (2011)] (WS2011) investigated two forms of occulters: a binary petaled occulter and a circular partially transparent occulter. They showed that the achievable intensity reduction for a petal-style occulter is limited by the radii of curvature at the petal tips. For a partially transparent occulter they derived the optimum transparency function that minimizes the intensity on the optic axis within a prescribed wavelength range and provides the required intensity suppression. Since the publication of WS2011, a paper by Cash describes the analytical model of the occulter [Astrophys. J. 738, 76 (2011)] and recent commentary by Cash and Lo [J. Opt. Soc. Am. A 29, 913 (2012)] (CL2011) compares the intensity reduction of petal shape functions and concludes prematurely against the petal shapes in WS2011. In this correspondence, we analyze the performance of a petal shaped occulter with petals tips of 0.1 mm width (following the prescription of CL2011) and show that its suppression performance is compatible with the calculations reported in WS2011 and measured intensity reduction reported in [Proc. SPIE 6687, 66871B (2007)] and [Proc. SPIE 6693, 669305 (2007)]. (c) 2012 Optical Society of America C1 [Wasylkiwskyj, Wasyl] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. [Shiri, Shahram] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. RP Wasylkiwskyj, W (reprint author), George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. EM wasylkiw@gwu.edu NR 7 TC 0 Z9 0 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 EI 1520-8532 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD JUN PY 2012 VL 29 IS 6 BP 918 EP 920 PG 3 WC Optics SC Optics GA 956KS UT WOS:000305089100012 ER PT J AU Pang, XY Fischer, DG Visser, TD AF Pang, Xiaoyan Fischer, David G. Visser, Taco D. TI Generalized Gouy phase for focused partially coherent light and its implications for interferometry SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID SPATIAL COHERENCE; INTENSITY DISTRIBUTION; SYSTEMS; FIELDS; STATE AB The Gouy phase, sometimes called the phase anomaly, is the remarkable effect that in the region of focus a converging wave field undergoes a rapid phase change by an amount of p, compared to the phase of a plane wave of the same frequency. This phenomenon plays a crucial role in any application where fields are focused, such as optical coherence tomography, mode selection in laser resonators, and interference microscopy. However, when the field is spatially partially coherent, as is often the case, its phase is a random quantity. When such a field is focused, the Gouy phase is therefore undefined. The correlation properties of partially coherent fields are described by their so-called spectral degree of coherence. We demonstrate that this coherence function does exhibit a generalized Gouy phase. Its precise behavior in the focal region depends on the transverse coherence length. We show that this effect influences the fringe spacing in interference experiments in a nontrivial manner. (c) 2012 Optical Society of America C1 [Pang, Xiaoyan; Visser, Taco D.] Delft Univ Technol, Dept Elect Engn, Delft, Netherlands. [Fischer, David G.] NASA Glenn Res Ctr, Res & Technol Directorate, Cleveland, OH 44135 USA. [Visser, Taco D.] Vrije Univ Amsterdam, Dept Phys & Astron, Amsterdam, Netherlands. RP Visser, TD (reprint author), Delft Univ Technol, Dept Elect Engn, Delft, Netherlands. EM T.D.Visser@tudelft.nl RI Pang, Xiaoyan/M-9413-2013 NR 24 TC 18 Z9 18 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD JUN PY 2012 VL 29 IS 6 BP 989 EP 993 PG 5 WC Optics SC Optics GA 956KS UT WOS:000305089100020 PM 22673430 ER PT J AU Alexandroff, R Overzier, RA Paragi, Z Basu-Zych, A Heckman, T Kauffmann, G Bourke, S Lobanov, A Ptak, A Schiminovich, D AF Alexandroff, R. Overzier, R. A. Paragi, Zsolt Basu-Zych, Antara Heckman, Tim Kauffmann, Guinevere Bourke, Stephen Lobanov, Andrei Ptak, Andy Schiminovich, David TI A search for active galactic nuclei in the most extreme UV-selected starbursts using the European VLBI Network SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: interferometric; galaxies: active; galaxies: ISM; galaxies: starburst; radio continuum: galaxies ID ULTRAVIOLET-LUMINOUS GALAXIES; LYMAN BREAK GALAXIES; STAR-FORMATION RATE; LY-ALPHA EMITTERS; X-RAY-PROPERTIES; INFRARED GALAXIES; BLACK-HOLE; RADIO-EMISSION; HOST GALAXIES; DEEP FIELD AB We have used the European very long baseline interferometry (VLBI) Network (EVN) to observe a sample of Lyman break analogues (LBAs), nearby (z < 0.3) galaxies with properties similar to the more distant Lyman break galaxies (LBGs). The study of LBGs may help define the feedback relationship between black holes (BHs) and their host galaxies. Previous Very Large Array (VLA) observations have shown that the kpc-scale radio emission from LBAs is dominated by starbursts. The main targets of this VLBI experiment were selected because they possessed emission-line properties between starbursts and Type 2 (obscured) active galactic nuclei (AGN). Eight targets (three star-forming LBAs, four composite LBAs and one Type 1 AGN) were observed at 5 GHz, four of which (one star-forming LBA and three composite LBAs) were also observed at 1.7 GHz. One star-forming LBA and one composite LBA were detected above 5s at 1.7 GHz (only), while the AGN was detected at 5 GHz. In both LBAs, the radio luminosity (LR) exceeds that expected from supernovae (remnants) based on a comparison with Arp 220, Arp 229A and Mrk 273, by factors of . The composite LBA exhibits a compact core emitting around 10 per cent of the VLA flux density. The high Tb of 3.5 x 10(7) K and excess core LR with respect to the LR/LX relation of radio-quiet AGN indicate that this LBA possesses an obscured AGN (MBH similar to 105 - 7 M?). In three other composite LBAs detected previously in the X-ray, no radio sources were detected, indicating either variability or the presence of an obscured AGN below our radio sensitivity. While weak AGN may coexist with the starbursts as shown in at least one of the LBAs, their contribution to the total radio flux is fairly minimal. Our results show that the detection of such weak AGN presents a challenge at radio, X-ray and optical emission-line wavelengths at z similar to 0.2, indicating the great difficulties that need to be overcome in order to study similar processes at high redshift when these types of galaxies were common. C1 [Alexandroff, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Overzier, R. A.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Paragi, Zsolt; Bourke, Stephen] JIVE, NL-7990 AA Dwingeloo, Netherlands. [Paragi, Zsolt] MTA Res Grp Phys Geodesy & Geodynam, H-1521 Budapest, Hungary. [Basu-Zych, Antara; Ptak, Andy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Heckman, Tim] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Kauffmann, Guinevere] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Lobanov, Andrei] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. RP Alexandroff, R (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. EM rmalexan@princeton.edu OI Paragi, Zsolt/0000-0002-5195-335X NR 58 TC 16 Z9 16 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 2 BP 1325 EP 1334 DI 10.1111/j.1365-2966.2012.20959.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956DU UT WOS:000305070900026 ER PT J AU Burke-Spolaor, S Johnston, S Bailes, M Bates, SD Bhat, NDR Burgay, M Champion, DJ D'Amico, N Keith, MJ Kramer, M Levin, L Milia, S Possenti, A Stappers, B van Straten, W AF Burke-Spolaor, S. Johnston, S. Bailes, M. Bates, S. D. Bhat, N. D. R. Burgay, M. Champion, D. J. D'Amico, N. Keith, M. J. Kramer, M. Levin, L. Milia, S. Possenti, A. Stappers, B. van Straten, W. TI The High Time Resolution Universe Pulsar Survey - V. Single-pulse energetics and modulation properties of 315 pulsars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astronomical databases: miscellaneous; pulsars general ID VELA PULSAR; INTRINSIC VARIABILITY; SUBPULSE MODULATION; FIELD STATISTICS; GIANT PULSES; NEUTRON-STARS; CRAB NEBULA; RADIO; EMISSION; CONFIGURATION AB We report on the pulse-to-pulse energy distributions and phase-resolved modulation properties for catalogued pulsars in the southern High Time Resolution Universe intermediate-latitude survey. We selected the 315 pulsars detected in a single-pulse search of this survey, allowing a large sample unbiased regarding any rotational parameters of neutron stars. We found that the energy distribution of many pulsars is well described by a log-normal distribution, with few deviating from a small range in log-normal scale and location parameters. Some pulsars exhibited multiple energy states corresponding to mode changes, and implying that some observed nulling may actually be a mode-change effect. PSR J1900-2600 was found to emit weakly in its previously identified null state. We found evidence for another state-change effect in two pulsars, which show bimodality in their nulling time-scales; that is, they switch between a continuous-emission state and a single-pulse-emitting state. Large modulation occurs in many pulsars across the full integrated profile, with increased sporadic bursts at leading and trailing sub-beam edges. Some of these high-energy outbursts may indicate the presence of giant pulse phenomena. We found no correlation with modulation and pulsar period, age or other parameters. Finally, the deviation of integrated pulse energy from its average value was generally quite small, despite the significant phase-resolved modulation in some pulsars; we interpret this as tenuous evidence of energy regulation between distinct pulsar sub-beams. C1 [Burke-Spolaor, S.; Johnston, S.; Keith, M. J.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Burke-Spolaor, S.] NASA, Jet Prop Lab, Pasadena, CA 91106 USA. [Bailes, M.; Bhat, N. D. R.; Levin, L.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Bates, S. D.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Bates, S. D.; Stappers, B.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Burgay, M.; D'Amico, N.; Milia, S.; Possenti, A.] INAF Osservatorio Astron Cagliari, I-09012 Capoterra, Italy. [Champion, D. J.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Milia, S.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy. RP Burke-Spolaor, S (reprint author), CSIRO, Australia Telescope Natl Facil, POB 76, Epping, NSW 1710, Australia. EM sarah.burke-spolaor@jpl.nasa.gov RI Bhat, Ramesh/B-7396-2013; OI Champion, David/0000-0003-1361-7723; Burgay, Marta/0000-0002-8265-4344; van Straten, Willem/0000-0003-2519-7375 FU Commonwealth of Australia FX The Parkes radio telescope is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. A portion of research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 42 TC 16 Z9 16 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 2 BP 1351 EP 1367 DI 10.1111/j.1365-2966.2012.20998.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956DU UT WOS:000305070900028 ER PT J AU Cuylle, SH Tenenbaum, ED Bouwman, J Linnartz, H Allamandola, LJ AF Cuylle, Steven H. Tenenbaum, Emily D. Bouwman, Jordy Linnartz, Harold Allamandola, Louis J. TI Ly alpha-induced charge effects of polycyclic aromatic hydrocarbons embedded in ammonia and ammonia:water ice SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astrochemistry; molecular processes; methods: laboratory; ISM: molecules ID YOUNG STELLAR OBJECTS; INTERSTELLAR ICE; ASTROPHYSICAL ICES; ABSORPTION-SPECTRA; WATER ICES; ANALOGS; SPECTROSCOPY; JUPITER; H2O; OCN AB Infrared emission features assigned to gas phase polycyclic aromatic hydrocarbons (PAHs) are observed in space along many lines of sight. In regions where interstellar ices are present, these emissions are largely quenched. It is here that PAHs form agglomerates covered by ice or freeze out on to dust grains, together with volatile species such as H2O, CO, CO2 and NH3. Upon exposure to the Lya-dominated interstellar radiation field, PAHs are expected to participate in photo-induced chemical reactions, explicitly also involving the surrounding ice matrix. In this paper, a systematic laboratory-based study is presented for the solid-state behaviour of the PAHs pyrene and benzo[ghi]perylene upon Lya irradiation in ammonia and mixed NH3:H2O astronomical ice analogues. The results are compared to recently published work focusing on a pure water ice environment. It is found that the ice matrix acts as an electronic solid-state switch in which the relative amount of water and ammonia determines whether positively or negatively charged PAHs form. In pure water ice, cations are generated through direct ionization, whereas in pure ammonia ice, anions form through electron donation from ammonia-related photoproducts. The solid-state process controlling this latter channel involves electron transfer, rather than acidbase type proton transfer. In the mixed ice, the resulting products depend on the mixing ratio. The astronomical consequences of these laboratory findings are discussed. C1 [Cuylle, Steven H.; Tenenbaum, Emily D.; Bouwman, Jordy; Linnartz, Harold] Leiden Univ, Leiden Observ, Raymond & Beverly Sackler Lab Astrophys, NL-2300 RA Leiden, Netherlands. [Allamandola, Louis J.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Linnartz, H (reprint author), Leiden Univ, Leiden Observ, Raymond & Beverly Sackler Lab Astrophys, POB 9513, NL-2300 RA Leiden, Netherlands. EM linnartz@strw.leidenuniv.nl FU Netherlands School for Astronomy; Dutch Organization for Fundamental Research (FOM); NWO-VICI; Dutch Organization for Science; European Community [238258]; NWO; NASA FX This research is financially supported by the Netherlands School for Astronomy, the Dutch Organization for Fundamental Research (FOM), NWO-VICI, the Dutch Organization for Science and the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 238258. EDT acknowledges support from an NWO Rubicon Fellowship. LJA gratefully acknowledges support from NASA's laboratory astrophysics and astrobiology programmes. NR 43 TC 8 Z9 8 U1 2 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 2 BP 1825 EP 1830 DI 10.1111/j.1365-2966.2012.21006.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956DU UT WOS:000305070900064 ER PT J AU Yue, Y Zhang, L Yan, Y Ahmed, N Yang, JY Huang, H Ren, YX Dolinar, S Tur, M Willner, AE AF Yue, Yang Zhang, Lin Yan, Yan Ahmed, Nisar Yang, Jeng-Yuan Huang, Hao Ren, Yongxiong Dolinar, Sam Tur, Moshe Willner, Alan E. TI Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber SO OPTICS LETTERS LA English DT Article ID POLARIZED BEAMS AB We propose As2S3 ring photonic crystal fiber (PCF) for supercontinuum generation of optical vortex modes. Due to the large material index contrast between As2S3 and air holes in the designed ring PCF, there is a two-orders-of- magnitude improvement of the difference between the effective refractive indices of different vortex modes compared with regular ring fiber. The design freedom of PCFs enables a low dispersion (< 60 ps/nm/km variation in total) over a 522 nm optical bandwidth. Moreover, the vortex mode has a large nonlinear coefficient of 11.7/W/m at 1550 nm with a small confinement loss of < 0.03 dB/m up to 2000 nm. An octave-spanning supercontinuum spectrum of the vortex mode is generated from 1196 to 2418 nm at -20 dB by launching a 120 fs pulse with a 60 W peak power at 1710 nm into a 1 cm long As2S3 ring PCF. (C) 2012 Optical Society of America C1 [Yue, Yang; Zhang, Lin; Yan, Yan; Ahmed, Nisar; Yang, Jeng-Yuan; Huang, Hao; Ren, Yongxiong; Willner, Alan E.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Dolinar, Sam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tur, Moshe] Tel Aviv Univ, Sch Elect Engn, IL-69978 Ramat Aviv, Israel. RP Yue, Y (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. EM yyue@usc.edu RI Yue, Yang/A-3357-2012; Zhang, Lin/E-7913-2011 OI Zhang, Lin/0000-0003-0545-1110 FU Defense Advanced Research Projects Agency (DARPA) FX We acknowledge the support of the Defense Advanced Research Projects Agency (DARPA) under InPho (Information in a Photon) program. NR 20 TC 20 Z9 20 U1 0 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 1 PY 2012 VL 37 IS 11 BP 1889 EP 1891 PG 3 WC Optics SC Optics GA 956JD UT WOS:000305085000037 PM 22660063 ER PT J AU Potter, C Li, S Huang, SL Crabtree, RL AF Potter, Christopher Li, Shuang Huang, Shengli Crabtree, Robert L. TI Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Sapling density; Post-fire ecosystems; AVIRIS; Hyperspectral; Fire ecology; Northern Rocky Mountains; Yellowstone National Park ID VEGETATION INDEXES; AVIRIS DATA; POSTFIRE; FIRES; REFLECTANCE; FORESTS; RED; USA; HETEROGENEITY; ECOSYSTEMS AB The density of lodgepole pine (Pinus contorta) sapling regeneration was mapped in areas burned during the 1988 wildfires across Yellowstone National Park (YNP), Wyoming, USA. Hyperspectral image analysis and field measurements were combined across the entire YNP extent. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image data from 2006 were used to compute ten different vegetation indices (VI). The ten VIs were combined to build multiple regression models for predicting and mapping post-fire sapling density. Four different forms of regression modeling were applied to derive the highest possible prediction accuracy (correlation coefficient of R-2 = 0.83). Pine sapling regeneration 19 years after large-scale wildfires showed a high level of variability in patch density (ranging from 14/100 ha to 57/100 ha), whereas sapling density measured previously from the first decade following wildfire was more uniform (10/100 ha to 21/100 ha). The ecosystem-level dumpiness index showed major shifts in aggregation of different sapling density classes, and was consistent with an overall decrease in estimated sapling density of nearly 50% between 1998 and 2007. This analysis revealed important succession patterns and processes in post-fire forest regeneration for the Greater Yellowstone Area (GYA). Published by Elsevier Inc. C1 [Potter, Christopher; Li, Shuang; Huang, Shengli] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Li, Shuang] Henan Univ, Coll Environm & Planning, Kaifeng 475001, Henan, Peoples R China. [Huang, Shengli; Crabtree, Robert L.] Yellowstone Ecol Res Ctr, Bozeman, MT 59718 USA. [Crabtree, Robert L.] HyPerspectives Inc, Bozeman, MT 59718 USA. RP Potter, C (reprint author), NASA, Ames Res Ctr, Mail Stop 242-4, Moffett Field, CA 94035 USA. EM Chris.Potter@nasa.gov FU NASA Ames Research Center; NASA FX The authors thank the many field crews, especially Jamie Robertson, Nate Emery, Amelia Hagen-Dillon, and Jeanine Moy, of the Yellowstone Ecological Research Center for their dedicated field survey work. We thank Alan Swanson on his assistance on statistical analysis. We are grateful to Ann Rodman, PJ White, and Roy Renkin of the Yellowstone Center for Resources, National Park Service, for their guidance on data usage and research planning. This research was supported by appointments to the NASA Postdoctoral Program at the NASA Ames Research Center (for both authors Shuang Li and Shengli Huang) administered by Oak Ridge Associated Universities through a contract with NASA. NR 47 TC 6 Z9 7 U1 1 U2 33 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 61 EP 68 DI 10.1016/j.rse.2012.01.019 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700006 ER PT J AU Yu, HB Zhang, Y Chin, M Liu, ZY Omar, A Remer, LA Yang, YK Yuan, TL Zhang, JL AF Yu, Hongbin Zhang, Yan Chin, Mian Liu, Zhaoyan Omar, Ali Remer, Lorraine A. Yang, Yuekui Yuan, Tianle Zhang, Jianglong TI An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Aerosols; Clouds ID OPTICAL DEPTH; ABSORBING AEROSOLS; RETRIEVALS; THICKNESS; PRODUCTS; AEROCOM; MISSION; TOMS AB Quantifying above-cloud aerosol can help improve the assessment of aerosol intercontinental transport and climate impacts. In this study we conduct an integrated analysis of aerosols above clouds by using multi-sensor A-Train measurements, including above-cloud aerosol optical depth at 532 nm (AOD(532)) from CALIPSO lidar, the UV aerosol index (AI) from OMI, and cloud fraction and cloud optical depth (COD) from MOD'S. The analysis of Saharan dust outflow and Southwest African smoke outflow regions shows that the above-cloud AOD correlates positively with AI in an approximately linear manner, and that the AOD(532)/AI ratio decreases with increasing COD. The dependence of AOD(532)/AI ratio on COD doesn't depend on aerosol type when potential biases in the CALIOP AOD measurements are empirically accounted for. Our results may suggest the potential of combining OMI AI and MODIS cloud measurements to empirically derive above-cloud AOD with a spatial coverage much more extensive than CALIPSO measurements, which needs 10 be further explored in the future. (c) 2012 Elsevier Inc. All rights reserved. C1 [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Yu, Hongbin; Zhang, Yan; Remer, Lorraine A.; Yang, Yuekui; Yuan, Tianle] NASA Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD USA. [Zhang, Yan] Morgan State Univ, Baltimore, MD 21239 USA. [Chin, Mian] NASA Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Liu, Zhaoyan] Natl Inst Aerosp, Hampton, VA USA. [Liu, Zhaoyan; Omar, Ali] NASA Langley Res Ctr, Hampton, VA USA. [Yang, Yuekui] Univ Space Res Assoc, Columbia, MD USA. [Yuan, Tianle] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Zhang, Jianglong] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND USA. RP Yu, HB (reprint author), NASA, GSFC, Code 613, Greenbelt, MD 20771 USA. EM Hongbin.Yu@nasa.gov RI Yu, Hongbin/C-6485-2008; Liu, Zhaoyan/B-1783-2010; Chin, Mian/J-8354-2012; Yuan, Tianle/D-3323-2011; Zhang, Yan/C-4792-2012; Yang, Yuekui/B-4326-2015; Omar, Ali/D-7102-2017 OI Yu, Hongbin/0000-0003-4706-1575; Liu, Zhaoyan/0000-0003-4996-5738; Omar, Ali/0000-0003-1871-9235 FU NASA; Atmospheric Composition Modeling and Analysis Program (ACMAP) FX The work was sponsored by NASA through its Radiation Science program, and Atmospheric Composition Modeling and Analysis Program (ACMAP), managed by Richard Eckman. We are grateful to Omar Torres, Tom Eck, Jeffery Reid, and Zhibo Zhang for helpful discussions. We thank three anonymous reviewers for comments. The MODIS data were obtained from the NASA Level 1 and Atmosphere Archive and Distribution System (LAADS). The OMI data were obtained from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. NR 42 TC 22 Z9 23 U1 2 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 125 EP 131 DI 10.1016/j.rse.2012.01.011 PG 7 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700012 ER PT J AU Fensholt, R Langanke, T Rasmussen, K Reenberg, A Prince, SD Tucker, C Scholes, RJ Le, QB Bondeau, A Eastman, R Epstein, H Gaughan, AE Hellden, U Mbow, C Olsson, L Paruelo, J Schweitzer, C Seaquist, J Wessels, K AF Fensholt, Rasmus Langanke, Tobias Rasmussen, Kjeld Reenberg, Anette Prince, Stephen D. Tucker, Compton Scholes, Robert J. Le, Quang Bao Bondeau, Alberte Eastman, Ron Epstein, Howard Gaughan, Andrea E. Hellden, Ulf Mbow, Cheikh Olsson, Lennart Paruelo, Jose Schweitzer, Christian Seaquist, Jonathan Wessels, Konrad TI Greenness in semi-arid areas across the globe 1981-2007 - an Earth Observing Satellite based analysis of trends and drivers SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE AVHRR GIMMS NDVI; MODIS NDVI; Semi-arid; Vegetation greenness; Phenology; Precipitation; Air temperature; Incoming shortwave radiation ID NDVI TIME-SERIES; TERM VEGETATION TRENDS; SPOT-VEGETATION; SOUTH-AMERICA; DATA SETS; AVHRR; MODIS; SAHEL; DYNAMICS; CLIMATE AB Semi-arid areas, defined as those areas of the world where water is an important limitation for plant growth, have become the subject of increased interest due to the impacts of current global changes and sustainability of human lifestyles. While many ground-based reports of declining vegetation productivity have been published over the last decades, a number of recent publications have shown a nuanced and, for some regions, positive picture. With this background, the paper provides an analysis of trends in vegetation greenness of semi-arid areas using AVHRR GIMMS from 1981 to 2007. The vegetation index dataset is used as a proxy for vegetation productivity and trends are analyzed for characterization of changes in semi-arid vegetation greenness. Calculated vegetation trends are analyzed with gridded data on potential climatic constraints to plant growth to explore possible causes of the observed changes. An analysis of changes in the seasonal variation of vegetation greenness and climatic drivers is conducted for selected regions to further understand the causes of observed inter-annual vegetation changes in semi-arid areas across the globe. It is concluded that semi-arid areas, across the globe, on average experience an increase in greenness (0.015 NDVI units over the period of analysis). Further it is observed that increases in greenness are found both in semi-arid areas where precipitation is the dominating limiting factor for plant production (0.019 NDVI units) and in semi-arid areas where air temperature is the primarily growth constraint (0.013 NDVI units). Finally, in the analysis of changes in the intra-annual variation of greenness it is found that seemingly similar increases in greenness over the study period may have widely different explanations. This implies that current generalizations, claiming that land degradation is ongoing in semi-arid areas worldwide, are not supported by the satellite based analysis of vegetation greenness. (c) 2012 Elsevier Inc. All rights reserved. C1 [Fensholt, Rasmus; Langanke, Tobias; Rasmussen, Kjeld; Reenberg, Anette] Univ Copenhagen, Dept Geog & Geol, DK-1350 Copenhagen, Denmark. [Prince, Stephen D.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Tucker, Compton] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Scholes, Robert J.; Wessels, Konrad] CSIR, ZA-0001 Pretoria, South Africa. [Le, Quang Bao] Univ Bonn, Ctr Dev Res ZEF, D-53113 Bonn, Germany. [Le, Quang Bao] ETH, Inst F Umweltentscheidungen, CH-8092 Zurich, Switzerland. [Bondeau, Alberte] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany. [Eastman, Ron] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA. [Epstein, Howard] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Gaughan, Andrea E.] Univ Florida, Dept Geog, Gainesville, FL 32611 USA. [Mbow, Cheikh] Univ Cheikh Anta Diop Dakar, Inst Sci Environm, Dakar, Senegal. [Paruelo, Jose] Univ Buenos Aires, Fac Agron IFEVA, RA-1417 Buenos Aires, DF, Argentina. [Paruelo, Jose] Consejo Nacl Invest Cient & Tecn, RA-1417 Buenos Aires, DF, Argentina. [Schweitzer, Christian] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol CLE, D-04318 Leipzig, Germany. [Hellden, Ulf; Olsson, Lennart; Seaquist, Jonathan] Lund Univ, Dept Earth & Ecosyst Sci, S-22362 Lund, Sweden. [Bondeau, Alberte] CNRS, Inst Mediterraneen Biodivers & Ecol Marine & Cont, Mediterranean Inst Biodivers & Ecol, IRD 237,UMR 7263, F-13545 Aix En Provence 04, France. RP Fensholt, R (reprint author), Univ Copenhagen, Dept Geog & Geol, Oster Voldgade 10, DK-1350 Copenhagen, Denmark. EM rf@geo.ku.dk RI Bondeau, Alberte/E-9909-2012; Fensholt, Rasmus/L-7951-2014; Rasmussen, Kjeld/A-4212-2015; Reenberg, Anette/E-1476-2015; OI Fensholt, Rasmus/0000-0003-3067-4527; Rasmussen, Kjeld/0000-0003-3111-584X; Reenberg, Anette/0000-0003-2676-380X; Le, Quang Bao/0000-0001-8514-1088; Scholes, Robert/0000-0001-5537-6935 FU Global Land Project, International Project Office (GLP-IPO) FX The current paper was initiated by the Global Land Project, a joint project under the International Geosphere Biosphere Program (IGBP) and the International Human Dimension Program (IHDP). The authors are grateful to the Global Land Project, International Project Office (GLP-IPO) for preparing, funding and facilitating the workshop held in Copenhagen. The authors would like to thank R. Nemani for providing the potential climatic plant growth constraints data used in the analyses. Finally the authors are grateful to the anonymous reviewers for their many detailed and constructive comments that considerably improved the manuscript. NR 66 TC 128 Z9 146 U1 17 U2 147 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 144 EP 158 DI 10.1016/j.rse.2012.01.017 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700014 ER PT J AU Wulder, MA White, JC Nelson, RF Naesset, E Orka, HO Coops, NC Hilker, T Bater, CW Gobakken, T AF Wulder, Michael A. White, Joanne C. Nelson, Ross F. Naesset, Erik Orka, Hans Ole Coops, Nicholas C. Hilker, Thomas Bater, Christopher W. Gobakken, Terje TI Lidar sampling for large-area forest characterization: A review SO REMOTE SENSING OF ENVIRONMENT LA English DT Review DE Light detection and ranging; Lidar; Sampling; Extrapolation; Forest; Large area; Stratification; Satellite; Monitoring ID AIRBORNE SCANNING LASER; MODEL-BASED INFERENCE; WAVE-FORM LIDAR; STAND CHARACTERISTICS; BIOMASS ESTIMATION; FLYING ALTITUDES; PROFILING LIDAR; LIGHT DETECTION; HEDMARK COUNTY; CANOPY HEIGHT AB The ability to use digital remotely sensed data for forest inventory is often limited by the nature of the measures, which, with the exception of multi-angular or stereo observations, are largely insensitive to vertically distributed attributes. As a result, empirical estimates are typically made to characterize attributes such as height, volume, or biomass, with known asymptotic relationships as signal saturation occurs. Lidar (light detection and ranging) has emerged as a robust means to collect and subsequently characterize vertically distributed attributes. Lidar has been established as an appropriate data source for forest inventory purposes; however, large area monitoring and mapping activities with lidar remain challenging due to the logistics, costs, and data volumes involved. The use of lidar as a sampling tool for large-area estimation may mitigate some or all of these problems. A number of factors drive, and are common to, the use of airborne profiling, airborne scanning, and spaceborne lidar systems as sampling tools for measuring and monitoring forest resources across areas that range in size from tens of thousands to millions of square kilometers. In this communication, we present the case for lidar sampling as a means to enable timely and robust large-area characterizations. We briefly outline the nature of different lidar systems and data, followed by the theoretical and statistical underpinnings for lidar sampling. Current applications are presented and the future potential of using lidar in an integrated sampling framework for large area ecosystem characterization and monitoring is presented. We also include recommendations regarding statistics, lidar sampling schemes, applications (including data integration and stratification), and subsequent information generation. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved. C1 [Wulder, Michael A.; White, Joanne C.] Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC V8Z 1M5, Canada. [Nelson, Ross F.; Hilker, Thomas] NASAs Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Naesset, Erik; Orka, Hans Ole; Gobakken, Terje] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, NO-1432 As, Norway. [Coops, Nicholas C.; Bater, Christopher W.] Univ British Columbia, Dept Forest Resources Management, Fac Forestry, Vancouver, BC V6T 1Z4, Canada. RP Wulder, MA (reprint author), Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, 506 W Burnside Rd, Victoria, BC V8Z 1M5, Canada. EM mwulder@nrcan.gc.ca RI Coops, Nicholas/J-1543-2012; Orka, Hans Ole/A-8142-2014; Beckley, Matthew/D-4547-2013; Nelson, Ross/H-8266-2014; Wulder, Michael/J-5597-2016; OI Coops, Nicholas/0000-0002-0151-9037; Wulder, Michael/0000-0002-6942-1896; White, Joanne/0000-0003-4674-0373 FU Research Council of Norway [192792/199]; CFS FX The contributions of Dr. Hans Ole Orka to this manuscript were made possible by a travel grant (#192792/199) from the Research Council of Norway supporting a research visit to the Canadian Forest Service (CFS) - Pacific Forestry Center. Funding support from the CFS Innovative Ideas program also aided in making this research possible. Dr. Gang Chen, of the Canadian Forest Service, is thanked for aiding with the development of Tables 1 and 2. NR 106 TC 146 Z9 149 U1 14 U2 159 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 196 EP 209 DI 10.1016/j.rse.2012.02.001 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700018 ER PT J AU Guanter, L Frankenberg, C Dudhia, A Lewis, PE Gomez-Dans, J Kuze, A Suto, H Grainger, RG AF Guanter, Luis Frankenberg, Christian Dudhia, Anu Lewis, Philip E. Gomez-Dans, Jose Kuze, Akihiko Suto, Hiroshi Grainger, Roy G. TI Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Fluorescence retrieval; GOSAT-FTS; Fraunhofer-line approach; Singular vector decomposition; Gross primary production; Vegetation indices ID RADIATIVE-TRANSFER; SATELLITE; MODIS; PHOTOSYNTHESIS; REFLECTANCE; ECOSYSTEM; ENERGY AB The recent advent of very high spectral resolution measurements by the Fourier Transform Spectrometer (FTS) on board the Greenhouse gases Observing SATellite (GOSAT) platform has made possible the retrieval of sun-induced terrestrial chlorophyll fluorescence (F-s) on a global scale. The basis for this retrieval is the modeling of the in-filling of solar Fraunhofer lines by fluorescence. This contribution to the field of space-based carbon cycle science presents an alternative method for the retrieval of Fs from the Fraunhofer lines resolved by GOSAT-FTS measurements. The method is based on a linear forward model derived by a singular vector decomposition technique, which enables a fast and robust inversion of top-of-atmosphere radiance spectra. Retrievals are performed in two spectral micro-windows (similar to 2-3 nm width) containing several strong Fraunhofer lines. The statistical nature of this approach allows to avoid potential retrieval errors associated with the modeling of the instrument line shape or with a given extraterrestrial solar irradiance data set. The method has been tested on 22 consecutive months of global GOSAT-FTS measurements. The fundamental basis of this F-s retrieval approach and the results from the analysis of the global F-s data set produced with it are described in this work. Among other findings, the data analysis has shown (i) a very good comparison of F-s intensity levels and spatial patterns with the state-of-the-art physically-based F-s retrieval approach described in Frankenberg et al. (2011a), (ii) the overall good agreement between F-s annual and seasonal patterns and other space-based vegetation parameters, (iii) the need for a biome-dependent scaling from F-s to gross primary production, and (iv) the apparent existence of strong directional effects in the F-s emission from forest canopies. These results reinforce the confidence in the feasibility of F-s retrievals with GOSAT-FTS and open several points for future research in this emerging field. (c) 2012 Elsevier Inc. All rights reserved. C1 [Guanter, Luis] Free Univ Berlin, Inst Space Sci, D-12165 Berlin, Germany. [Guanter, Luis; Dudhia, Anu; Grainger, Roy G.] Univ Oxford, Oxford OX1 2JD, England. [Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lewis, Philip E.; Gomez-Dans, Jose] UCL, Dept Geog, London WC1E 6BT, England. [Lewis, Philip E.; Gomez-Dans, Jose] UCL, Natl Ctr Earth Observat, London WC1E 6BT, England. [Kuze, Akihiko; Suto, Hiroshi] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki, Japan. RP Guanter, L (reprint author), Free Univ Berlin, Inst Space Sci, Carl Heinrich Becker Weg 6-10, D-12165 Berlin, Germany. EM guanter@atm.ox.ac.uk RI Lewis, Philip/C-1588-2008; Guanter, Luis/B-2108-2013; Grainger, Roy/E-8823-2011; Guanter, Luis/I-1588-2015; KUZE, AKIHIKO/J-2074-2016; Frankenberg, Christian/A-2944-2013; OI Lewis, Philip/0000-0002-8562-0633; Grainger, Roy/0000-0003-0709-1315; Guanter, Luis/0000-0002-8389-5764; KUZE, AKIHIKO/0000-0001-5415-3377; Frankenberg, Christian/0000-0002-0546-5857; Gomez-Dans, Jose/0000-0003-4787-8307 FU European Commission FX We would like to acknowledge JAXA, NIES and MOE for making GOSAT data available to the scientific community. Dr. H. Watanabe and NIES are especially thanked for opening the large volume GOSAT data distribution server to PIs. The MPI-BGC GPP was kindly provided by Martin Jung from the Max Planck Institute for Biogeochemistry, MODIS MOD17 GPP data were downloaded from the server of the Numerical Terradynamic Simulation Group at the University of Montana, MODIS MOD13 EVI/NDVI data were obtained from the MODIS LP DAAC archive, and MERIS-MTCI from the Infoterra Ltd server. H. Boesch and R. Parker from the University of Leicester are thanked for initial help with GOSAT data handling. C. Van der Tol from ITC is also thanked for useful comments on the manuscript. The research of LG has been funded by the European Commission through the 7th Framework Marie Curie Actions Programme. We thank three anonymous reviewers for their constructive comments to improve the quality of this manuscript. NR 34 TC 89 Z9 90 U1 15 U2 98 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 236 EP 251 DI 10.1016/j.rse.2012.02.006 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700021 ER PT J AU Hilker, T Hall, FG Tucker, CJ Coops, NC Black, TA Nichol, CJ Sellers, PJ Barr, A Hollinger, DY Munger, JW AF Hilker, Thomas Hall, Forrest G. Tucker, Compton J. Coops, Nicholas C. Black, T. Andrew Nichol, Caroline J. Sellers, Piers J. Barr, Alan Hollinger, David Y. Munger, J. W. TI Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II Model implementation and validation SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Data assimilation; Photosynthesis; Eddy-flux; Multivariate function; Epsilon; Epsilon max; Global carbon cycle; Carbon modeling; Vegetation carbon cycle; Downregulation; CHRIS/Proba; PRI'; Multi-angular ID CARBON-DIOXIDE FLUXES; GROSS PRIMARY PRODUCTION; DOUGLAS-FIR FOREST; LEAF-AREA INDEX; DECIDUOUS FOREST; BOREAL; MODIS; CANOPY; CANADA; VARIABILITY AB Spatially explicit and temporally continuous estimates of photosynthesis will be of great importance for increasing our understanding of and ultimately closing the terrestrial carbon cycle. Current capabilities to model photosynthesis, however, are limited by accurate enough representations of the complexity of the underlying biochemical processes and the numerous environmental constraints imposed upon plant primary production. A potentially powerful alternative to model photosynthesis through these indirect observations is the use of multi-angular satellite data to infer light-use efficiency (epsilon) directly from spectral reflectance properties in connection with canopy shadow fractions. Hall et al. (this issue) introduced a new approach for predicting gross ecosystem production that would allow the use of such observations in a data assimilation mode to obtain spatially explicit variations in epsilon from infrequent polar-orbiting satellite observations, while meteorological data are used to account for the more dynamic responses of epsilon to variations in environmental conditions caused by changes in weather and illumination. In this second part of the study we implement and validate the approach of Hall et al. (this issue) across an ecologically diverse array of eight flux-tower sites in North America using data acquired from the Compact High Resolution Imaging Spectroradiometer (CHRIS) and eddy-flux observations. Our results show significantly enhanced estimates of epsilon and therefore cumulative gross ecosystem production (GEP) over the course of one year at all examined sites. We also demonstrate that epsilon is greatly heterogeneous even across small study areas. Data assimilation and direct inference of GEP from space using a new, proposed sensor could therefore be a significant step towards closing the terrestrial carbon cycle. (c) 2012 Elsevier Inc. All rights reserved. C1 [Hilker, Thomas; Hall, Forrest G.; Tucker, Compton J.; Sellers, Piers J.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. [Black, T. Andrew] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. [Nichol, Caroline J.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Barr, Alan] Environm Canada, Saskatoon, SK, Canada. [Hollinger, David Y.] US Forest Serv, No Res Stn, Durham, NH USA. [Munger, J. W.] Harvard Univ, Cambridge, MA 02138 USA. RP Hilker, T (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Code 618, Greenbelt, MD 20771 USA. EM thomas.hilker@nasa.gov RI Coops, Nicholas/J-1543-2012; Hollinger, David/G-7185-2012; Barr, Alan/H-9939-2014; Munger, J/H-4502-2013 OI Coops, Nicholas/0000-0002-0151-9037; Munger, J/0000-0002-1042-8452 FU NASA; Canadian Carbon Program; Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP FX The ESA CHRIS/Proba images were provided by Dr. David G. Goodenough, Dr. Ray Merton, and Dr. Mathias Kneubuhler, all principal investigators of the Evaluation and Validation of CHRIS (EVC) Project. The Center for Remote Sensing and Department of Geography at Boston University are thanked for provision of the GOMS model. Partial funding for this study was provided by NASA's Terrestrial Ecology Program managed by Dr. Diane Wickland. This research is also partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP, and an NSERC-Accelerator grant to NCC. NR 48 TC 19 Z9 21 U1 3 U2 40 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 287 EP 300 DI 10.1016/j.rse.2012.02.008 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700025 ER PT J AU Hall, FG Hilker, T Coops, NC AF Hall, Forrest G. Hilker, Thomas Coops, Nicholas C. TI Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Photosynthesis; Light-use efficiency; Data assimilation; Multivariate model; CHRIS/Proba; Eddy covariance; Carbon cycle ID NET PRIMARY PRODUCTION; MESOPHYLL CONDUCTANCE; TEMPERATURE RESPONSE; STOMATAL CONDUCTANCE; DECIDUOUS FOREST; IN-VIVO; PRODUCTIVITY; KINETICS; CLIMATE; LEAVES AB Forest photosynthetic exchange rates at landscape scales have proven difficult to either accurately measure or estimate. Recent developments (Hall et al., 2011, 2008: Hilker et al., 2011a, 2010a) permit us to infer photosynthetic forest light use efficiency (epsilon) using multi-angle measurements of photochemical reflectance index (PRI) from the CHRIS/PROBA satellite imaging spectrometer, thus completing a long sought-after capability to remotely sense the major inputs driving gross primary production GPP i.e., epsilon and absorbed photosynthetically active radiation (APAR). In this first of two companion papers we introduce the theoretical underpinnings of an innovative approach that utilizes our recent developments to produce remotely sensed and spatially explicit maps of epsilon and GPP from space, and a data assimilation approach to extend the spatially explicit maps to diurnal, daily and annual time scales. We quantify GPP using the traditional radiation-limited approach of Monteith (1972); however we apply it in an innovative way. [I] Using CHRIS/PROBA we quantify epsilon at each satellite overpass for a 625 km(2) area at 30 m resolution. [II] We use a novel physiologically-based multivariate function of APAR, temperature and water vapor pressure deficit model (described herein) and use it to down-regulate epsilon at 30 minute intervals. [III] We use the CHRIS/PROBA images of spatial variation in epsilon, and NDVI to quantify APAR, hence produce snapshots of GPP. We use a data assimilation approach to extend epsilon and GPP to temporally continuous and spatially contiguous maps of vegetation carbon uptake. In the second part of this study (Hilker et al., 2011b) we demonstrate and validate our approach over eight different forest flux tower sites in North America. (c) 2012 Elsevier Inc. All rights reserved. C1 [Hall, Forrest G.; Hilker, Thomas] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. RP Hilker, T (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Code 614-4, Greenbelt, MD 20771 USA. EM Forrest.G.Hall@nasa.gov; thomas.hilker@nasa.gov RI Coops, Nicholas/J-1543-2012 OI Coops, Nicholas/0000-0002-0151-9037 FU NASA; Canadian Carbon Program; Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP FX Partial funding for this study was provided by NASA's Terrestrial Ecology Program managed by Dr. Diane Wickland. This research is also partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP. NR 39 TC 17 Z9 18 U1 4 U2 47 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 301 EP 308 DI 10.1016/j.rse.2012.02.007 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700026 ER PT J AU Colliander, A Chan, S Kim, SB Das, N Yueh, S Cosh, M Bindlish, R Jackson, T Njoku, E AF Colliander, Andreas Chan, Steven Kim, Seung-bum Das, Narendra Yueh, Simon Cosh, Michael Bindlish, Rajat Jackson, Thomas Njoku, Eni TI Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Soil moisture; SMAP (Soil Moisture Active and Passive); SGP99; SMEX02; CLASIC; SMAPVEX08; PALS ID MICROWAVE DIELECTRIC BEHAVIOR; L-BAND RADIOMETER; SURFACE-ROUGHNESS; OCEAN SURFACE; WET SOIL; RETRIEVAL; MODEL; SMOS; EMISSION; MISSION AB An important component of satellite-based soil moisture algorithm development and validation is the comparison of coincident remote sensing and in situ observations that are typically provided by intensive field campaigns. The planned NASA Soil Moisture Active Passive (SMAP) mission has unique requirements compared to previous soil moisture satellite programs because both active and passive microwave observations are needed. The primary source of these combined observations has been an aircraft-based SMAP simulator called PALS (Passive and Active L-band System). This paper presents an overview of the field experiment data collected using PALS that spans 10 years. Data from the various campaigns were merged to form a single data set. Analyses showed that the data set contains an extensive range of soil moisture values collected under a variety of conditions and that the quality of both the PALS and ground truth data meets the needs of SMAP algorithm development and validation. The study suggests that the data set should be expanded in order to achieve globally representative land cover diversity and that more observations under dense vegetation conditions and longer time series would be desirable. (c) 2012 Elsevier Inc. All rights reserved. C1 [Colliander, Andreas; Chan, Steven; Kim, Seung-bum; Das, Narendra; Yueh, Simon; Njoku, Eni] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cosh, Michael; Bindlish, Rajat; Jackson, Thomas] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. RP Colliander, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM andreas.colliander@jpl.nasa.gov RI Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 NR 68 TC 18 Z9 18 U1 1 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 309 EP 322 DI 10.1016/j.rse.2012.02.002 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700027 ER PT J AU Cescatti, A Marcolla, B Vannan, SKS Pan, JY Roman, MO Yang, XY Ciais, P Cook, RB Law, BE Matteucci, G Migliavacca, M Moors, E Richardson, AD Seufert, G Schaaf, CB AF Cescatti, Alessandro Marcolla, Barbara Vannan, Suresh K. Santhana Pan, Jerry Yun Roman, Miguel O. Yang, Xiaoyuan Ciais, Philippe Cook, Robert B. Law, Beverly E. Matteucci, Giorgio Migliavacca, Mirco Moors, Eddy Richardson, Andrew D. Seufert, Guenther Schaaf, Crystal B. TI Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS; Surface albedo; Validation; FLUXNET; Terrestrial ecosystems; Plant functional types; Remote sensing ID REFLECTANCE DISTRIBUTION FUNCTION; BROAD-BAND ALBEDO; SURFACE ALBEDO; BOREAL FORESTS; CLIMATE-CHANGE; VEGETATION; PRODUCTS; FEEDBACKS; VALIDATION; INSTRUMENT AB Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (r(2) = 0.82). The mismatch is correlated with the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo are considered for different plant functional types, the match,. with surface observations is extremely good at all forest sites. On the contrary, satellite retrievals at non-forested sites (grasslands, savannas, croplands) underestimate in situ measurements across the seasonal cycle. The mismatch observed at grassland and cropland sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes. (c) 2012 Elsevier Inc. All rights reserved. C1 [Cescatti, Alessandro; Migliavacca, Mirco; Seufert, Guenther] Commiss European Communities, DG Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, I-21027 Ispra, VA, Italy. [Marcolla, Barbara] Fdn Edmund Mach, IASMA Res & Innovat Ctr, Sustainable Agroecosyst & Bioresources Dept, I-38010 San Michele All Adige, Italy. [Vannan, Suresh K. Santhana; Pan, Jerry Yun; Cook, Robert B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Lab, Greenbelt, MD 20771 USA. [Yang, Xiaoyuan; Schaaf, Crystal B.] Boston Univ, Dept Geog & Environm, Ctr Remote Sensing, Boston, MA 02215 USA. [Ciais, Philippe] Joint Unit CEA CNRS UVSQ, Lab Sci Climat & Environm LSCE, Gif Sur Yvette, France. [Law, Beverly E.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Matteucci, Giorgio] CNR ISAFOM, I-87036 Arcavacata Di Rende, CS, Italy. [Moors, Eddy] Alterra Wageningen UR, ESS CC, Wageningen, Netherlands. [Richardson, Andrew D.] Harvard Univ Hebaria, Dept Organism & Evolutionary Biol, Harvard Univ, Cambridge, MA 02138 USA. [Schaaf, Crystal B.] Univ Massachusetts, Boston, MA 02125 USA. RP Cescatti, A (reprint author), Commiss European Communities, DG Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, TP290,Via E Fermi 2749, I-21027 Ispra, VA, Italy. EM alessandro.cescatti@jrc.ec.europa.eu RI Law, Beverly/G-3882-2010; Migliavacca, mirco/C-1260-2011; Moors, Eddy/J-5165-2012; Richardson, Andrew/F-5691-2011; Roman, Miguel/D-4764-2012; Seufert, Gunther/J-9918-2013; Matteucci, Giorgio/N-3526-2015 OI Cook, Robert/0000-0001-7393-7302; Law, Beverly/0000-0002-1605-1203; Marcolla, Barbara/0000-0001-6357-4616; Moors, Eddy/0000-0003-2309-2887; Richardson, Andrew/0000-0002-0148-6714; Roman, Miguel/0000-0003-3953-319X; Seufert, Gunther/0000-0002-6019-6688; Matteucci, Giorgio/0000-0002-4790-9540 FU CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval and Environment Canada and US Department of Energy; Berkeley Water Center; Lawrence Berkeley National Laboratory; Microsoft Research eScience; Oak Ridge National Laboratory; University of California - Berkeley; University of Virginia; NASA [NNX08AE94A] FX This work is based on radiometric measurements acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, FLUXNET - Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), Green-Grass, KoFlux, LBA, NECC, OzFlux, TCOS - Siberia, and USCCC. We acknowledge the support to data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS (the Integrated Land Ecosystem-Atmosphere Processes Study, a core project of IGBP), Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California - Berkeley, and University of Virginia. The processing of MODIS data has been supported by NASA grant NNX08AE94A. Support for C. Schaaf and X. Yang was provided by NASA grant NNX08AE94A. NR 58 TC 98 Z9 103 U1 5 U2 58 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 323 EP 334 DI 10.1016/j.rse.2012.02.019 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700028 ER PT J AU Ottaviani, M Cairns, B Chowdhary, J Van Diedenhoven, B Knobelspiesse, K Hostetler, C Ferrare, R Burton, S Hair, J Obland, MD Rogers, R AF Ottaviani, Matteo Cairns, Brian Chowdhary, Jacek Van Diedenhoven, Bastiaan Knobelspiesse, Kirk Hostetler, Chris Ferrare, Rich Burton, Sharon Hair, John Obland, Michael D. Rogers, Raymond TI Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing; Polarization; Sunglint; Oil spill; Cirrus; Thin-film interference ID RESEARCH SCANNING POLARIMETER; LANGMUIR CIRCULATION; MULTIPLE-SCATTERING; OPTICAL-PROPERTIES; REFRACTIVE-INDEX; LIGHT-SCATTERING; ICE CRYSTALS; CRUDE-OIL; REFLECTION; ABSORPTION AB In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley 13200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by prohibitive variability in atmospheric conditions (very inhomogeneous aerosol distribution and cloud cover). Although the results presented for the surface are essentially unaffected, we discuss the results obtained by typing algorithms in sorting the complex mix of aerosol types, and show evidence of oriented ice in cirrus clouds present in the area. In this context, polarization measurements at 1880 nm were used to infer ice habit and cirrus optical depth, which was found in the subvisual/threshold-visible regime, confirming the utility of the aforementioned RSP channel for the remote sensing of even thin cold clouds. (c) 2012 Elsevier Inc. All rights reserved. C1 [Ottaviani, Matteo; Cairns, Brian; Knobelspiesse, Kirk] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Chowdhary, Jacek] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Van Diedenhoven, Bastiaan] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.; Rogers, Raymond] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Ottaviani, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM mottaviani@giss.nasa.gov RI van Diedenhoven, Bastiaan/A-2002-2013; Knobelspiesse, Kirk/S-5902-2016; OI Knobelspiesse, Kirk/0000-0001-5986-1751; van Diedenhoven, Bastiaan/0000-0001-5622-8619; Cairns, Brian/0000-0002-1980-1022 FU NASA at the NASA Goddard Institute for Space Studies; NASA FX Matteo Ottaviani was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA. A special mention must be given to the pilots (Mike Wusk, Rick Yasky, Les Kagey) and the ground crew (Rob White, Dale Bowser) of the B200 for their outstanding dedication, not limited to the research flights described in the present work. M. Ottaviani also thanks Misha Alexandrov for his insightful feedback on the analysis of the data. Mark Dix, Bill Lehr and CJ Beegle-Krause at NOAA need be mentioned, together with A. Stelmaszewski and T. Krol, for the interest they demonstrated in the RSP measurements and for their contribution on "missing" refractive index data for crude oil. The NOAA Air Resources Laboratory (ARL) is gratefully acknowledged for the provision of the HYSPLIT transport and dispersion model through the READY website (http://www.arl.noaa.gov/ready.php), together with the NASA/GSFC, MODIS Rapid Response team (Jeff Schmaltz especially) for the MODIS imagery available at http://rapidfire.sci.gsfc.nasa.gov. These two portals are excellent examples of user-friendliness and were of great value in building scene context for this publication. NR 67 TC 12 Z9 12 U1 0 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 389 EP 403 DI 10.1016/j.rse.2012.02.016 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700033 ER PT J AU Gitelson, AA Peng, Y Masek, JG Rundquist, DC Verma, S Suyker, A Baker, JM Hatfield, JL Meyers, T AF Gitelson, Anatoly A. Peng, Yi Masek, Jeffery G. Rundquist, Donald C. Verma, Shashi Suyker, Andrew Baker, John M. Hatfield, Jerry L. Meyers, Tilden TI Remote estimation of crop gross primary production with Landsat data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Gross primary production; Landsat; Chlorophyll content; Vegetation index; Potential incident photosynthetically active radiation ID CANOPY CHLOROPHYLL CONTENT; LIGHT-USE-EFFICIENCY; LEAF-AREA INDEX; RADIATIVE-TRANSFER; ATMOSPHERIC CORRECTION; INTERANNUAL VARIATION; VEGETATION INDEXES; TERRESTRIAL GROSS; MAIZE; CARBON AB An accurate and synoptic quantification of gross primary production (GPP) in crops is essential for studies of carbon budgets at regional and global scales. In this study, we tested a model, relating crop GPP to a product of total canopy chlorophyll (Chl) content and potential incident photosynthetically active radiation (PAR(potential)). The approach is based on remotely sensed data; specifically, vegetation indices (VI) that are proxies for total Chl content and PAR(potential), which is incident PAR under a condition of minimal atmospheric aerosol loading. Using VI retrieved from surface reflectance Landsat data, we found that the model is capable of accurately estimating GPP in maize, with coefficient of variation (CV) below 23%, and in soybean with CV below 30%. The algorithms established and calibrated over three Mead, Nebraska AmeriFlux sites were able to estimate maize and soybean GPP at tower flux sites in Minnesota, Iowa and Illinois with acceptable accuracy. (c) 2012 Elsevier Inc. All rights reserved. C1 [Gitelson, Anatoly A.; Peng, Yi; Rundquist, Donald C.; Verma, Shashi; Suyker, Andrew] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68588 USA. [Masek, Jeffery G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Baker, John M.] USDA, Soil & Water Management Res Unit, Minneapolis, MN USA. [Hatfield, Jerry L.] USDA, Natl Lab Agr & Environm, Ames, IA USA. [Meyers, Tilden] Natl Ocean & Atmospher Adm, Oak Ridge, TN USA. RP Gitelson, AA (reprint author), Univ Nebraska, Sch Nat Resources, Lincoln, NE 68588 USA. EM agitelson2@unl.edu RI Gitelson, Anatoly/G-3452-2012; Masek, Jeffrey/D-7673-2012; Meyers, Tilden/C-6633-2016 FU NASA NACP [NNX08AI75G]; U.S. Department of Energy [DE-FG-02-00ER45827]; Office of Science (BER) [DE-FG03-00ER62996]; Center for Advanced Land Management Information Technologies (CALMIT); University of Nebraska-Lincoln FX This research was supported by NASA NACP grant no. NNX08AI75G and partially by the U.S. Department of Energy: (a) EPSCoR program, grant no. DE-FG-02-00ER45827 and (b) Office of Science (BER), grant no. DE-FG03-00ER62996. We sincerely appreciate the support and the use of facilities and equipment provided by the Center for Advanced Land Management Information Technologies (CALMIT) and Carbon Sequestration Program, University of Nebraska-Lincoln. NR 63 TC 59 Z9 64 U1 6 U2 77 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 404 EP 414 DI 10.1016/j.rse.2012.02.017 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700034 ER PT J AU Kim, Y Kimball, JS Zhang, K McDonald, KC AF Kim, Youngwook Kimball, J. S. Zhang, K. McDonald, K. C. TI Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Freeze thaw; SMMR; SSM/I; Climate change; Global warming; MODIS; NDVI; Vegetation growing season; Phenology; ESDR; CDR; NASA MEaSUREs ID NET PRIMARY PRODUCTION; SOIL THERMAL DYNAMICS; CLIMATE-CHANGE; HIGH-LATITUDES; PHOTOSYNTHETIC TRENDS; FOREST PRODUCTIVITY; BOREAL FORESTS; TIME-SERIES; DATA RECORD; AVHRR DATA AB The landscape freeze-thaw (FT) signal from satellite microwave remote sensing is closely linked to vegetation phenology and land-atmosphere trace gas exchange where seasonal frozen temperatures are a major constraint to plant growth. We applied a temporal change classification of 37 GHz brightness temperature (T-b) series from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) to classify daily FT status over global land areas where seasonal frozen temperatures influence ecosystem processes. A temporally consistent, long-term (30 year) FT record was created, ensuring cross-sensor consistency through pixel-wise adjustment of the SMMR T-b record based on empirical analyses of overlapping SMMR and SSM/I measurements. The resulting FT record showed mean annual spatial classification accuracies of 91 (+/-8.6) and 84 ( +/-9.3) percent for PM and AM overpass retrievals relative to in situ air temperature measurements from the global weather station network. The FT results were compared against other measures of biosphere activity including CO2 eddy flux tower measurements and satellite (MODIS) vegetation greenness (NDVI). The FT defined non-frozen season largely bounds the period of active vegetation growth and net ecosystem CO2 uptake for tower sites representing major biomes. Earlier spring thawing and longer non-frozen seasons generally benefit vegetation growth inferred from NDVI spring and summer growth anomalies where the non-frozen season is less than approximately 6 months, with greater benefits at higher (>45 degrees N) latitudes. A strong (P<0.001) increasing (0.189 days yr(-1)) trend in the Northern Hemisphere mean annual non-frozen season is largely driven by an earlier (-0.149 days yr(-1)) spring thaw trend and coincides with a 0.033 degrees C yr(-1) regional warming trend. The FT record also shows a positive (0.199 days yr(-1)) trend in the number of transitional (AM frozen and PM non-frozen) frost days, which coincide with reduced vegetation productivity inferred from tower CO2 and MODIS NDVI measurements. The relative benefits of earlier and longer non-frozen seasons for vegetation growth under global warming may be declining due to opposing increases in disturbance, drought and frost damage related impacts. (c) 2012 Elsevier Inc. All rights reserved. C1 [Kim, Youngwook; Kimball, J. S.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Kim, Youngwook; Kimball, J. S.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Zhang, K.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [McDonald, K. C.] CUNY, New York, NY 10031 USA. [McDonald, K. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kim, Y (reprint author), Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. EM youngwook.kim@ntsg.umt.edu RI Zhang, Ke/B-3227-2012 OI Zhang, Ke/0000-0001-5288-9372 FU NASA; SMMR; SSM/I; National Snow and Ice Data Center (NSIDC); NCEP/NCAR; National Climate Data Center FX This work was conducted at the University of Montana and Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. This work was supported under the NASA Making Earth Science Data Records for Use in Research Environments (MEaSUREs) program; SMMR and SSM/I data were provided by the National Snow and Ice Data Center (NSIDC), while in situ and reanalysis meteorology datasets were provided by NCEP/NCAR and the National Climate Data Center. This work used CO2 eddy covariance data acquired by the FLUXNET community and in particular by the following Pls: Christian Bernhofer (DE_Tha), Torbjorn Johansson (SE_Abi), Hank A. Margolis (CA_Qfo) and Lawrence B. Flanagan (CA_Let). NR 113 TC 63 Z9 64 U1 9 U2 79 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 472 EP 487 DI 10.1016/j.rse.2012.02.014 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700039 ER PT J AU Balla, RJ Everhart, JL AF Balla, R. Jeffrey Everhart, Joel L. TI Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands SO AIAA JOURNAL LA English DT Article ID LASER-INDUCED FLUORESCENCE; FLOW VISUALIZATION; BLUNT-BODY; GAS-FLOWS; I-2 AB An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(wake)/rho(freestream) of 0.145 +/- 0.010, independent of freestream air density. Average offbody results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow. C1 [Balla, R. Jeffrey] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Balla, R. Jeffrey] NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, Hampton, VA 23681 USA. [Everhart, Joel L.] NASA, Langley Res Ctr, Aerothermodynamies Branch, Hampton, VA 23681 USA. RP Balla, RJ (reprint author), NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, Mail Stop 493, Hampton, VA 23681 USA. EM Robert.j.balla@nasa.gov NR 27 TC 2 Z9 2 U1 0 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2012 VL 50 IS 6 BP 1388 EP 1397 DI 10.2514/1.J051523 PG 10 WC Engineering, Aerospace SC Engineering GA 952JB UT WOS:000304787700015 ER PT J AU Luu, L Roman, PA Mathews, SA Ramella-Roman, JC AF Luu, Long Roman, Patrick A. Mathews, Scott A. Ramella-Roman, Jessica C. TI Microfluidics based phantoms of superficial vascular network SO BIOMEDICAL OPTICS EXPRESS LA English DT Article ID CEREBRAL-BLOOD-FLOW; LASER DOPPLER MEASUREMENTS; FLUORESCENCE-SPECTRA; SPECKLE; POLY(DIMETHYLSILOXANE); VELOCITY; SYSTEMS; FABRICATION; ULTRASOUND; DEVICES AB Several new bio-photonic techniques aim to measure flow in the human vasculature non-destructively. Some of these tools, such as laser speckle imaging or Doppler optical coherence tomography, are now reaching the clinical stage. Therefore appropriate calibration and validation techniques dedicated to these particular measurements are therefore of paramount importance. In this paper we introduce a fast prototyping technique based on laser micromachining for the fabrication of dynamic flow phantoms. Micro-channels smaller than 20 mu m in width can be formed in a variety of materials such as epoxies, plastics, and household tape. Vasculature geometries can be easily and quickly modified to accommodate a particular experimental scenario. (C) 2012 Optical Society of America C1 [Luu, Long; Ramella-Roman, Jessica C.] Catholic Univ Amer, Dept Biomed Engn, Washington, DC 20064 USA. [Mathews, Scott A.] Catholic Univ Amer, Dept Elect Engn, Washington, DC 20064 USA. [Roman, Patrick A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Luu, L (reprint author), Catholic Univ Amer, Dept Biomed Engn, Washington, DC 20064 USA. EM ramella@cua.edu NR 53 TC 16 Z9 16 U1 4 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2156-7085 J9 BIOMED OPT EXPRESS JI Biomed. Opt. Express PD JUN 1 PY 2012 VL 3 IS 6 BP 1350 EP 1364 PG 15 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 954RY UT WOS:000304965700019 PM 22741081 ER PT J AU Ham, YG Kang, IS Kim, D Kug, JS AF Ham, Yoo-Geun Kang, In-Sik Kim, Daehyun Kug, Jong-Seong TI El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs SO CLIMATE DYNAMICS LA English DT Article ID SEASONAL CLIMATE PREDICTABILITY; SURFACE TEMPERATURE ANOMALIES; ZONAL ADVECTIVE FEEDBACKS; GENERAL-CIRCULATION MODEL; OCEAN-ATMOSPHERE MODELS; EQUATORIAL PACIFIC; INTRASEASONAL VARIABILITY; INTERCOMPARISON PROJECT; TROPICAL OCEAN; TOGA COARE AB The characteristics of the El-Nino Southern Oscillation (ENSO) simulated in free integrations using two versions of the Seoul National University (SNU) ocean-atmosphere coupled global climate model (CGCM) are examined. A revised version of the SNU CGCM is developed by incorporating a reduced air-sea coupling interval (from 1 day to 2 h), a parameterization for cumulus momentum transport, a minimum entrainment rate threshold for convective plumes, and a shortened auto-conversion time scale of cloud water to raindrops. With the revised physical processes, lower tropospheric zonal wind anomalies associated with the ENSO-related sea surface temperature anomalies (SSTA) are represented with more realism than those in the original version. From too weak, the standard deviation of SST over the eastern Pacific becomes too strong in the revised version due to the enhanced air-sea coupling strength and intraseasonal variability associated with ENSO. From the oceanic side, the stronger stratification and the shallower-than-observed thermocline over the eastern Pacific also contribute to the excessive ENSO. The impacts of the revised physical processes on the seasonal predictability are investigated in two sets of the hindcast experiment performed using the two versions of CGCMs. The prediction skill measured by anomaly correlation coefficients of monthly-mean SSTA shows that the new version has a higher skill over the tropical Pacific regions compared to the old version. The better atmospheric responses to the ENSO-related SSTA in the revised version lead to the basin-wide SSTA maintained and developed in a manner that is closer to observations. The symptom of an excessively strong ENSO of the new version in the free integration is not prominent in the hindcast experiment because the thermocline depth over the eastern Pacific is maintained as initialized over the arc of time of the hindcast (7 months). C1 [Ham, Yoo-Geun] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr NASA GSFC, Greenbelt, MD 20771 USA. [Ham, Yoo-Geun] Univ Space Res Assoc, Goddard Earth Sci Technol & Res Studies & Invest, Greenbelt, MD USA. [Kang, In-Sik] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea. [Kim, Daehyun] Columbia Univ, Lamont Doherty Earth Observ, New York, NY USA. [Kug, Jong-Seong] Korea Ocean Res & Dev Inst, Ansan, South Korea. RP Ham, YG (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr NASA GSFC, Greenbelt, MD 20771 USA. EM yoo-geun.ham@nasa.gov RI KUG, JONG-SEONG/A-8053-2013; 안, 민섭/D-9972-2015 FU National Research Foundation of Korea (NRF); Korean Government (MEST) [NRF-2009-C1AAA001-2009-0093042]; Brain Korea 21; NASA [NNX09AK34G] FX ISK was supported by the National Research Foundation of Korea (NRF) Grant Funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042) and second phase of the Brain Korea 21. And, DK was supported by NASA grant NNX09AK34G. NR 58 TC 5 Z9 6 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD JUN PY 2012 VL 38 IS 11-12 BP 2227 EP 2242 DI 10.1007/s00382-011-1171-5 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951BS UT WOS:000304696300006 ER PT J AU Loeffler, MJ Hudson, RL AF Loeffler, Mark J. Hudson, Reggie L. TI Thermal regeneration of sulfuric acid hydrates after irradiation SO ICARUS LA English DT Article DE Europa; Ices, IR spectroscopy; Jupiter, Satellites; Impact processes; Cosmic rays ID SOLAR-SYSTEM SURFACES; WATER ICE; GALILEAN SATELLITES; ION IRRADIATION; PROTON IRRADIATION; HYDROGEN-PEROXIDE; THIN-FILMS; EUROPA; CRYSTALLINE; CALLISTO AB In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 center dot 4H(2)O and H2SO4 center dot H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System. Published by Elsevier Inc. C1 [Loeffler, Mark J.; Hudson, Reggie L.] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Loeffler, MJ (reprint author), NASA, Astrochem Lab, Goddard Space Flight Ctr, Mail Code 691, Greenbelt, MD 20771 USA. EM mark.loeffler@nasa.gov RI Loeffler, Mark/C-9477-2012 FU NASA; NASA Astrobiology Institute through the Goddard Center for Astrobiology FX The support of NASA's Planetary Geology and Geophysics program is gratefully acknowledged. RLH also acknowledges support from the NASA Astrobiology Institute through the Goddard Center for Astrobiology. In addition, we thank Steve Brown, Tom Ward, and Eugene Gerashchenko, members of the Radiation Laboratory at NASA Goddard, for operation of the proton accelerator. NR 44 TC 8 Z9 8 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 561 EP 566 DI 10.1016/j.icarus.2012.03.023 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200005 ER PT J AU Line, MR Mierkiewicz, EJ Oliversen, RJ Wilson, JK Haffner, LM Roesler, FL AF Line, Michael R. Mierkiewicz, E. J. Oliversen, R. J. Wilson, J. K. Haffner, L. M. Roesler, F. L. TI Sodium atoms in the lunar exotail: Observed velocity and spatial distributions SO ICARUS LA English DT Article DE Moon; Aeronomy; Spectroscopy; Satellites, Atmospheres; Solar wind ID LEONID METEOR-SHOWER; ATMOSPHERE; ENHANCEMENT; DISCOVERY; MOON; TAIL AB The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be similar to 12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 degrees x 15 degrees region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 30 degrees east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days. (c) 2012 Elsevier Inc. All rights reserved. C1 [Line, Michael R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91106 USA. [Mierkiewicz, E. J.; Roesler, F. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Oliversen, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20706 USA. [Wilson, J. K.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Haffner, L. M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. RP Line, MR (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91106 USA. EM mrl@gps.caltech.edu RI Mierkiewicz, Edwin/N-7926-2016; OI Mierkiewicz, Edwin/0000-0002-4283-3751; Haffner, Lawrence/0000-0002-9947-6396 FU National Solar Observatory mountain; UW; NASA [NNX11AE38G]; National Science Foundation; [AST-0607512]; [AST-1108911] FX The authors thank M. Mendillo and It Reynolds for their valuable assistance as well as K. Nordsieck for providing the sodium filter. We thank all the members of the WHAM collaboration, in particular K. Jaehnig, A. Hill, G. Madsen and K. Barger. Finally, we thank the National Solar Observatory mountain support staff, C. Plymate and E. Galayda for their support and hosting us during the WHAM observations. M. Line's involvement as an undergraduate at Wisconsin was partially supported by a UW-Madison Hilldale Undergraduate Fellowship. This work was also funded by NASA Award NNX11AE38G. WHAM construction and operations were primarily supported by the National Science Foundation: in particular, the use of WHAM described here was partially supported by Awards AST-0607512 and AST-1108911. NR 14 TC 3 Z9 3 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 609 EP 617 DI 10.1016/j.icarus.2012.04.001 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200008 ER PT J AU Del Genio, AD Barbara, JM AF Del Genio, Anthony D. Barbara, John M. TI Constraints on Saturn's tropospheric general circulation from Cassini ISS images SO ICARUS LA English DT Article DE Atmospheres, Dynamics; Meteorology; Saturn, Atmosphere ID JUPITERS ATMOSPHERE; IMAGING SCIENCE; ROTATION PERIOD; CLOUD STRUCTURE; EQUATORIAL JET; GIANT PLANETS; WINDS; CONVECTION; EVOLUTION; TRANSPORT AB An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are similar to 10m s(-1) weaker than cloud level winds in the cores of eastward jets and similar to 5 m s(-1) stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 x 10(-5) m(2) s(-3)) and smaller in westward jet regions (1.6 x 10(-5) m(2) s(-3)) than the global mean value (4.1 x 10(-5) m(2) s(-3)). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level. Published by Elsevier Inc. C1 [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Barbara, John M.] Inst Space Studies, New York, NY 10025 USA. RP Del Genio, AD (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM anthony.d.delgenio@nasa.gov; john.m.barbara@nasa.gov RI Del Genio, Anthony/D-4663-2012 OI Del Genio, Anthony/0000-0001-7450-1359 FU NASA of the Imaging Science Subsystem team FX This research was supported by NASA Cassini Project funding of the Imaging Science Subsystem team. We thank the reviewers for constructive comments that helped improve the manuscript. NR 43 TC 11 Z9 11 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 689 EP 700 DI 10.1016/j.icarus.2012.03.035 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200015 ER PT J AU Veeder, GJ Davies, AG Matson, DL Johnson, TV Williams, DA Radebaugh, J AF Veeder, Glenn J. Davies, Ashley Gerard Matson, Dennis L. Johnson, Torrence V. Williams, David A. Radebaugh, Jani TI Io: Volcanic thermal sources and global heat flow SO ICARUS LA English DT Article DE Io; Jupiter, Satellites; Volcanism; Geophysics ID INFRARED MAPPING SPECTROMETER; GALILEO PHOTOPOLARIMETER-RADIOMETER; JUPITERS MOON IO; SILICATE VOLCANISM; HOT-SPOTS; TIDAL DISSIPATION; ACTIVE VOLCANISM; IMAGING DATA; NIMS DATA; TEMPERATURE AB We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for "outburst" eruptions and for a multitude of very small ("myriad") hot spots, we account for similar to 62 x 10(12) W (similar to 59 +/- 7% of Io's total thermal emission). Loki Patera contributes, on average, 9.6 x 10(12) W (similar to 9.1 +/- 1%). All dark paterae contribute 45.3 x 10(12) W (similar to 43 +/- 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 x 10(12) W (similar to 5.3 +/- 0.6%). Bright paterae contribute similar to 2.6 x 10(12) W (similar to 2.5 +/- 0.3%). Outburst eruption phases and very small hot spots contribute no more than similar to 4% of Io's total thermal emission: this is probably a maximum value. About 50% of Io's volcanic heat flow emanates from only 1.2% of Io's surface. Of Io's heat flow, 41 +/- 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at similar to 315 degrees W and similar to 105 degrees W (using 30 degrees bins). There is a minimum in thermal emission at around 200 degrees W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from predicted global heat flow patterns resulting from tidal heating in an asthenosphere. Global volcanic heat flow is dominated by thermal emission from paterae, especially from Loki Patera (312 degrees W, 12 degrees N). Thermal emission from dark flows maximises between 165 degrees W and 225 degrees W. Finally, it is possible that a multitude of very small hot spots, smaller than the present angular resolution detection limits, and/or cooler, secondary volcanic processes involving sulphurous compounds, may be responsible for at least part of the heat flow that is not associated with known sources. Such activity should be sought out during the next mission to Io. (c) 2012 Elsevier Inc. All rights reserved. C1 [Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Veeder, Glenn J.] Bear Fight Inst, Winthrop, WA 98862 USA. [Williams, David A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Radebaugh, Jani] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, MS 183-401,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ashley.Davies@jpl.nasa.gov FU Jet Propulsion Laboratory; California Institute of Technology under NASA; NASA PGG; OPR FX We thank Laszlo Keszthelyi for his detailed and insightful review of this paper and Julie Castillo-Rogez for discussions about global heat flow patterns. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. G.J.V. A.G.D. and D.L.M. are supported by grants from the NASA PGG and OPR programs. 2012 Caltech. All rights reserved. NR 97 TC 24 Z9 24 U1 0 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 701 EP 722 DI 10.1016/j.icarus.2012.04.004 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200016 ER PT J AU Del Genio, AD Chen, YH Kim, D Yao, MS AF Del Genio, Anthony D. Chen, Yonghua Kim, Daehyun Yao, Mao-Sung TI The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations SO JOURNAL OF CLIMATE LA English DT Article ID MADDEN-JULIAN OSCILLATION; TROPICAL INTRASEASONAL OSCILLATIONS; GENERAL-CIRCULATION MODELS; HIGH-RESOLUTION SIMULATION; TRIMODAL CHARACTERISTICS; VERTICAL STRUCTURE; CLIMATE MODELS; COUPLED WAVES; WATER-VAPOR; TOGA COARE AB The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10 MJO events show the following anticipated MJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) column water vapor (CWV) increases by similar to 5 mm during the shallow-deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between similar to 46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. C1 [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Chen, Yonghua] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Kim, Daehyun] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Yao, Mao-Sung] Sigma Space Partners, Inst Space Studies, New York, NY USA. RP Del Genio, AD (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM anthony.d.delgenio@nasa.gov RI Del Genio, Anthony/D-4663-2012 OI Del Genio, Anthony/0000-0001-7450-1359 FU NASA [NNX09AK34G]; American Recovery and Reinvestment Act FX The authors thank Brian Mapes and two anonymous reviewers for constructive comments that helped improve the manuscript. This research was supported by the NASA CloudSat/CALIPSO and Precipitation Measurement Missions and the NASA Modeling and Analysis Program. DK was supported by NASA Grant NNX09AK34G. Some of the ISCCP data products used in this paper were produced with support from the American Recovery and Reinvestment Act as part of the Metrics for General Circulation Model Evaluation project (http://gcss-dime.giss.nasa.gov/ARRA/arra.html). NR 76 TC 80 Z9 80 U1 2 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2012 VL 25 IS 11 BP 3755 EP 3770 DI 10.1175/JCLI-D-11-00384.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951RC UT WOS:000304736700006 ER PT J AU Chang, YH Schubert, S Suarez, M AF Chang, Yehui Schubert, Siegfried Suarez, Max TI Attribution of the Extreme U.S. East Coast Snowstorm Activity of 2010 SO JOURNAL OF CLIMATE LA English DT Article ID UNITED-STATES; PATTERNS; ENSO; COMPONENTS; CONVECTION; SNOWFALL; MODELS AB This study examines the cause of the extreme snowstorm activity along the U.S. East Coast during the winter of 2009/10 with a focus on the role of sea surface temperature (SST) anomalies. The study employs the Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model (AGCM) run at high resolution and forced with specified observed or idealized SST. Comparisons are made with the winter of 1999/2000, a period that is characterized by SST anomalies that are largely of opposite sign. When forced with observed SSTs, the AGCM response consists of a band of enhanced storminess extending from the central subtropical North Pacific, across the southern United States, across the North Atlantic, and across southern Eurasia, with reduced storminess to the north of these regions. Positive precipitation and cold temperature anomalies occur over the eastern United States, reflecting a propensity for enhanced snowstorm activity. Additional idealized SST experiments show that the anomalies over the United States are, to a large extent, driven by the ENSO-related Pacific SST. The North Atlantic SSTs contribute to the cooler temperatures along the East Coast of the United States, while the Indian Ocean SSTs act primarily to warm the central part of the country. It is further shown that the observed upper-tropospheric height anomalies have a large noise (unforced) component over the Northern Hemisphere, represented over the North Atlantic by a North Atlantic Oscillation (NAO)-like structure. The signal-to-noise ratios of the temperature and precipitation fields nevertheless indicate a potential for predicting the unusual storm activity along the U.S. East Coast several months in advance. C1 [Chang, Yehui; Schubert, Siegfried; Suarez, Max] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Chang, Yehui] Morgan State Univ, Baltimore, MD 21239 USA. RP Schubert, S (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, NASA GSFC Code 610-1, Greenbelt, MD 20771 USA. EM siegfried.d.schubert@nasa.gov FU NASA FX We wish to thank Martin Hoerling, Richard Seager, two anonymous reviewers, and the editor for their very constructive and helpful comments. Support for this work was provided by the NASA Modeling, Analysis, and Prediction (MAP) Program. NR 23 TC 2 Z9 2 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2012 VL 25 IS 11 BP 3771 EP 3791 DI 10.1175/JCLI-D-11-00353.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951RC UT WOS:000304736700007 ER PT J AU Parson, LE Swafford, R AF Parson, Larry E. Swafford, Russell TI Beneficial Use of Sediments from Dredging Activities in the Gulf of Mexico SO JOURNAL OF COASTAL RESEARCH LA English DT Article AB Parson, L.E. and Swafford, R., 2012. Beneficial use of sediments from dredging activities in the Gulf of Mexico. In: Khalil, S.M., Parson, L.E., and Waters, J.P. (eds.), Technical Framework for the Gulf Regional Sediment Management Master Plan (GRSMMP), Journal of Coastal Research, Special Issue No. 60, 45-50. Dredging activities are a potential source of sediment and should be considered in any conservation and restoration planning process. Wise use of sediment resources from dredging is integral to accomplishing the conservation and restoration initiatives and objectives being recommended under the Gulf of Mexico Alliance. Keeping dredged sediments within the natural system or using it in the construction of restoration projects can improve environmental conditions, provide storm damage protection, and contribute to habitat creation and restoration goals. Hundreds of millions of cubic yards of sediments are dredged each year from Gulf ports, harbors, and waterways, much of which could be used beneficially. Currently it is estimated that about 30% of all material dredged from federal channels in the Gulf states is used beneficially and very little of the privately funded dredging is used for beneficial purposes. The U.S. Army Corps of Engineers (USACE) conducts dredging under its navigation maintenance program and much of the dredging conducted is typically done on a scheduled and routine basis. Successful planning of beneficial-use projects utilizing USACE dredging necessitates the early coordination and work of multidisciplinary interagency teams on a regular basis. There is also a need to improve data access and management for dredging activities for use by project managers and planners. C1 [Parson, Larry E.] USA, Corps Engineers, Mobile, AL 36602 USA. [Swafford, Russell] Natl Marine Fisheries Serv, Galveston, TX 77551 USA. RP Parson, LE (reprint author), USA, Corps Engineers, Mobile, AL 36602 USA. EM larry.e.parson@usace.army.mil NR 9 TC 5 Z9 5 U1 1 U2 16 PU COASTAL EDUCATION & RESEARCH FOUNDATION PI LAWRENCE PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA SN 0749-0208 J9 J COASTAL RES JI J. Coast. Res. PD SUM PY 2012 SI 60 BP 45 EP 50 DI 10.2112/SI_60_5 PG 6 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 950XH UT WOS:000304684700006 ER PT J AU Zhou, TH Geller, MA Lin, WY AF Zhou, Tiehan Geller, Marvin A. Lin, Wuyin TI An Observational Study on the Latitudes Where Wave Forcing Drives Brewer-Dobson Upwelling SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID QUASI-BIENNIAL OSCILLATION; TROPICAL TROPOPAUSE TEMPERATURES; LOWER-STRATOSPHERIC TEMPERATURES; CLIMATE MODEL SIMULATIONS; DOUBLED CO2 CLIMATE; MIDDLE-ATMOSPHERE; ANNUAL CYCLE; INTERANNUAL VARIABILITY; DIABATIC CIRCULATION; DOWNWARD CONTROL AB The 40-yr ECMWF Re-Analysis (ERA-40) data are analyzed to demonstrate that wave forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer-Dobson circulation. It is shown that subtropical wave forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient waves are taken into account, and that tropical wave forcing exerts its influence on tropical upwelling via its body force on the zonal mean flow. C1 [Zhou, Tiehan] Columbia Univ, NASA Goddard Inst Space Studies, New York, NY 10025 USA. [Zhou, Tiehan] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Geller, Marvin A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Lin, Wuyin] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Zhou, TH (reprint author), Columbia Univ, NASA Goddard Inst Space Studies, New York, NY 10025 USA. EM tz2131@columbia.edu FU NASA FX This work was supported by NASA's Modeling and Analysis and Atmospheric Composition, Modeling and Analysis programs. We also acknowledge helpful suggestions from two anonymous reviewers. NR 105 TC 9 Z9 9 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUN PY 2012 VL 69 IS 6 BP 1916 EP 1935 DI 10.1175/JAS-D-11-0197.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951RA UT WOS:000304736500011 ER PT J AU Huber, D Ireland, MJ Bedding, TR Howell, SB Maestro, V Merand, A Tuthill, PG White, TR Farrington, CD Goldfinger, PJ McAlister, HA Schaefer, GH Sturmann, J Sturmann, L ten Brummelaar, TA Turner, NH AF Huber, Daniel Ireland, Michael J. Bedding, Timothy R. Howell, Steve B. Maestro, Vicente Merand, Antoine Tuthill, Peter G. White, Timothy R. Farrington, Christopher D. Goldfinger, P. J. McAlister, Harold A. Schaefer, Gail H. Sturmann, Judit Sturmann, Laszlo ten Brummelaar, Theo A. Turner, Nils H. TI Validation of the exoplanet Kepler-21b using PAVO/CHARA long-baseline interferometry SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: interferometric; planets and satellites: individual: Kepler-2lb; stars: individual: HD 179070 ID TRANSITING PLANET; MULTIPLE SYSTEM; CHARA ARRAY; STARS; CANDIDATES; HIPPARCOS AB We present long-baseline interferometry of the Kepler exoplanet host star HD 179070 (Kepler-21) using the Precision Astronomical Visible Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array. The visibility data are consistent with a single star and exclude stellar companions at separations similar to 11000 mas (similar to 0.1113 au) and contrasts <3.5 mag. This result supports the validation of the 1.6 R ? exoplanet Kepler-21b by Howell et al. and complements the constraints set by adaptive optics imaging, speckle interferometry and radial-velocity observations to rule out false positives due to stellar companions. We conclude that long-baseline interferometry has strong potential to validate transiting extrasolar planets, particularly for future projects aimed at brighter stars and for host stars where radial-velocity follow-up is not available. C1 [Huber, Daniel; Ireland, Michael J.; Bedding, Timothy R.; Maestro, Vicente; Tuthill, Peter G.; White, Timothy R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Huber, Daniel; Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ireland, Michael J.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia. [Ireland, Michael J.] Australian Astron Observ, Epping, NSW 1710, Australia. [Merand, Antoine] European So Observ, Santiago 19, Chile. [Farrington, Christopher D.; Goldfinger, P. J.; McAlister, Harold A.; Schaefer, Gail H.; Sturmann, Judit; Sturmann, Laszlo; ten Brummelaar, Theo A.; Turner, Nils H.] Georgia State Univ, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. RP Huber, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. EM daniel.huber@nasa.gov OI Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661 FU NASA; National Science Foundation [AST-0606958]; Georgia State University through the College of Arts and Sciences; W. M. Keck Foundation FX DH, TRB and VM acknowledge support from the Access to Major Research Facilities Programme, administered by the Australian Nuclear Science and Technology Organisation (ANSTO). DH is supported by an appointment to the NASA Postdoctoral Program at Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. The CHARA Array is funded by the National Science Foundation through NSF grant AST-0606958, by Georgia State University through the College of Arts and Sciences, and by the W. M. Keck Foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. NR 37 TC 8 Z9 8 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 1 BP L16 EP L20 DI 10.1111/j.1745-3933.2012.01242.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 952SU UT WOS:000304813500004 ER PT J AU McCarty, W Errico, RM Gelaro, R AF McCarty, Will Errico, Ronald M. Gelaro, Ronald TI Cloud Coverage in the Joint OSSE Nature Run SO MONTHLY WEATHER REVIEW LA English DT Article ID SYSTEM SIMULATION EXPERIMENT; DOPPLER WIND LIDAR; INFRARED SOUNDERS; STATISTICS; HIRS; TROPOPAUSE AB A successful observing system simulation experiment (OSSE) is fundamentally dependent on the simulation of the global observing system used in the experiment. In many applications, a free-running numerical model simulation, called a nature run, is used as the meteorological truth from which the observations are simulated. To accurately and realistically simulate observations from any nature run, the simulated observations must contain realistic cloud effects representative of the meteorological regimes being sampled. This study provides a validation of the clouds in the Joint OSSE nature run generated at ECMWF. Presented is the methodology used to validate the nature run cloud fraction fields with seasonally aggregated combined CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud geometric profile retrievals and the Wisconsin High Resolution Infrared Radiation Sounder (HIRS) cloud climatology. The results show that the Joint OSSE nature run has a correct vertical distribution of clouds but lacks globally in cloud amount compared to the validation data. The differences between the nature run and validation datasets shown in this study should be considered and accounted for in the generation of the global observing system for use in full OSSE studies. C1 [McCarty, Will; Errico, Ronald M.; Gelaro, Ronald] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Errico, Ronald M.] Morgan State Univ, Goddard Earth Sci Technol & Res Ctr, Baltimore, MD 21239 USA. RP McCarty, W (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Mail Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM will.mccarty@nasa.gov RI McCarty, Will/E-9359-2012 FU NASA WBS [281945.02.19.01.12] FX The research presented benefitted greatly from discussions with Gert-Jan Marseille and Ad Stoffelen of KNMI. This work was supported under NASA WBS 281945.02.19.01.12. NR 31 TC 11 Z9 11 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2012 VL 140 IS 6 BP 1863 EP 1871 DI 10.1175/MWR-D-11-00131.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 953BC UT WOS:000304840900009 ER PT J AU Gulkis, S Keihm, S Kamp, L Lee, S Hartogh, P Crovisier, J Lellouch, E Encrenaz, P Bockelee-Morvan, D Hofstadter, M Beaudin, G Janssen, M Weissman, P von Allmen, PA Encrenaz, T Backus, CR Ip, WH Schloerb, PF Biver, N Spilker, T Mann, I AF Gulkis, S. Keihm, S. Kamp, L. Lee, S. Hartogh, P. Crovisier, J. Lellouch, E. Encrenaz, P. Bockelee-Morvan, D. Hofstadter, M. Beaudin, G. Janssen, M. Weissman, P. von Allmen, P. A. Encrenaz, T. Backus, C. R. Ip, W. -H. Schloerb, P. F. Biver, N. Spilker, T. Mann, I. TI Continuum and spectroscopic observations of asteroid (21) Lutetia at millimeter and submillimeter wavelengths with the MIRO instrument on the Rosetta spacecraft SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Rosetta spacecraft; Asteroid; Asteroid (21) Lutetia; Astronomy; Thermal emission; Submillimeter and millimeter radiometer/spectrometer ID PHYSICAL-PROPERTIES; SOLAR-SYSTEM; 2867 STEINS; WATER; TEMPERATURE; EVOLUTION; REGOLITH; ORIGIN; ICE AB The European Space Agency's Rosetta spacecraft made a close flyby of asteroid (21) Lutetia on July 10, 2010. The spacecraft carries a dual-band radiometer/spectrometer instrument, named MIRO, which operates at 190 GHz (1.6 mm) and 560 GHz (0.5 mm). During the flyby, the MIRO instrument measured the temperature of Lutetia in both the northern and southern hemispheres. At the time of the flyby, the northern hemisphere was seasonally sun-lit and warmer than the southern hemisphere. Subsurface (depths from similar to 2 mm to similar to 2 cm) temperatures ranged from similar to 200 K on the northern hemisphere to similar to 60 K on the southern hemisphere. A lunar-like regolith - very low thermal inertia < 20 J/(K m(2) S-0.5) in the upper 1-3 cm overlaying a layer of rapidly increasing density and thermal conductivity - is required to explain the observations. A spectroscopic search was made for H2O, CO, CH3OH, and NH3 in Lutetia's exosphere but none of the molecules were detected. An upper limit to the water column density was estimated to be <5 x 10(11) molecules/cm(2) at the time of the flyby. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gulkis, S.; Keihm, S.; Kamp, L.; Lee, S.; Encrenaz, P.; Hofstadter, M.; Janssen, M.; Weissman, P.; von Allmen, P. A.; Encrenaz, T.; Backus, C. R.; Spilker, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hartogh, P.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Encrenaz, P.; Beaudin, G.] Observ Paris, LERMA, F-75014 Paris, France. [Ip, W. -H.] Natl Cent Univ, Inst Astron, Chungli 320, Taiwan. [Schloerb, P. F.] Univ Massachusetts, Coll Radio Astron Observ 5, Amherst, MA 01003 USA. [Mann, I.] Belgium Inst Space Aeron, B-1180 Brussels, Belgium. [Crovisier, J.; Lellouch, E.; Bockelee-Morvan, D.; Encrenaz, T.; Biver, N.] Univ Paris Diderot, LESIA, Observ Paris, CNRS,UPMC, Meudon, France. RP Gulkis, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM samuel.gulkis@jpl.nasa.gov; Stephen.J.Keihm@jpl.nasa.gov; lucas.kamp@jpl.nasa.gov; Seungwon.lee@jpl.nasa.gov; paul@linmpi.mpg.de; Jacques.Crovisier@obspm.fr; emmanuel.lellouch@obspm.fr; Pierre.encrenaz@obspm.fr; Dominique.Bockelee@obspm.fr; Mark.Hofstadter@jpl.nasa.gov; Gerard.Beaudin@obspm.fr; Michael.A.Janssen@jpl.nasa.gov; paul.r.weissman@jpl.nasa.gov; Paul.A.Vonallmen@jpl.nasa.gov; Therese.Encrenaz@obspm.fr; Charles.R.Backus@jpl.nasa.gov; wingip@astro.ncu.edu.tw; schloerb@astro.umass.edu; Nicolas.Biver@obspm.fr; Thomas.R.Spilker@jpl.nasa.gov; ingrid.mann@aeronomie.be FU NASA; DLR; CNES/CNRS; Rosetta Science Operations Centre; Rosetta Mission Operations Centre FX MIRO is one of four remote sensing instruments on the ESA Rosetta spacecraft. It was constructed at the Jet Propulsion Laboratory (JPL) under the direction of a US-France-Germany science-instrument team. A part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The Observatoire de Paris, France supplied the Ultra Stable Oscillator (USO). The Max Planck Institute in Lindau, Germany supplied the Chirp Transform Spectrometer (CTS). Funding was supplied by NASA, DLR, and CNES/CNRS for the US, German, and French contributions respectively. We thank the named individuals in Jorda et al. (2010, 2011) and the entire OSIRIS Team for making their Lutetia shape model available to us prior to publication, and for allowing us to reference it in this paper. We thank Nat Bachmann of JPL/NAIF for his support in processing the shape models as DSK (Digital Shape Kernel) files. The MIRO team thanks the Rosetta Science Operations Centre and the Rosetta Mission Operations Centre for their support. NR 38 TC 22 Z9 22 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2012 VL 66 IS 1 SI SI BP 31 EP 42 DI 10.1016/j.pss.2011.12.004 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 953SG UT WOS:000304892900005 ER PT J AU Weiss, BP Elkins-Tanton, LT Barucci, MA Sierks, H Snodgrass, C Vincent, JB Marchi, S Weissman, PR Patzold, M Richter, I Fulchignoni, M Binzel, RP Schulz, R AF Weiss, Benjamin P. Elkins-Tanton, Linda T. Barucci, M. Antonietta Sierks, Holger Snodgrass, Colin Vincent, Jean-Baptiste Marchi, Simone Weissman, Paul R. Paetzold, Martin Richter, Ingo Fulchignoni, Marcello Binzel, Richard P. Schulz, Rita TI Possible evidence for partial differentiation of asteroid Lutetia from Rosetta SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Rosetta; Lutetia; Asteroids; Planetesimals; Metamorphism; Differentiation; Chondrites; Planetary evolution ID PARENT BODIES; ORDINARY CHONDRITES; CARBONACEOUS CHONDRITES; REFLECTANCE SPECTRA; SURFACE-COMPOSITION; IRON-METEORITES; SOLAR-SYSTEM; 2867 STEINS; MAIN-BELT; MU-M AB The petrologic diversity of meteorites demonstrates that planetesimals ranged from unmelted, variably metamorphosed aggregates to fully molten, differentiated bodies. However, partially differentiated bodies have not been unambiguously identified in the asteroid belt. New constraints on the density, composition, and morphology of 21 Lutetia from the Rosetta spacecraft indicate that the asteroid's high bulk density exceeds that of most known chondritic meteorite groups, yet its surface properties resemble those of some carbonaceous and enstatite chondrite groups. This indicates that Lutetia likely experienced early compaction processes like metamorphic sintering. It may have also partially differentiated, forming a metallic core overlain by a primitive chondritic crust (C) 2011 Elsevier Ltd. All rights reserved. C1 [Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Binzel, Richard P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Barucci, M. Antonietta; Fulchignoni, Marcello] Observ Paris LESIA, Paris, France. [Sierks, Holger; Snodgrass, Colin; Vincent, Jean-Baptiste] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Marchi, Simone] Univ Nice Sophia Antipolis, Dept Cassiopee, Observ Cote dAzur, CNRS, Nice, France. [Weissman, Paul R.] CALTECH, Jet Prop Lab, Planetary Ices Sect, Pasadena, CA USA. [Paetzold, Martin] Univ Cologne, Rhein Inst Umweltforsch, Abt Planetenforsch, D-50931 Cologne, Germany. [Richter, Ingo] TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany. [Schulz, Rita] European Space Agcy, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. RP Weiss, BP (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM bpweiss@mit.edu RI Elkins-Tanton, Linda/C-5508-2008; OI Elkins-Tanton, Linda/0000-0003-4008-1098; Snodgrass, Colin/0000-0001-9328-2905 FU NASA; NASA U.S. at the Jet Propulsion Laboratory FX BPW thanks the Rosetta team for their generous collaboration, the NASA Origins Program for support, A. Rubin, I. Sanders and other anonymous reviewers for helpful suggestions about the manuscript, and Y. Bernabe, W. Durham, and B. Evans for discussions about rock mechanics. PRW was supported by the NASA U.S. Rosetta Project at the Jet Propulsion Laboratory under contract with NASA. NR 98 TC 21 Z9 21 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2012 VL 66 IS 1 SI SI BP 137 EP 146 DI 10.1016/j.pss.2011.09.012 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 953SG UT WOS:000304892900014 ER PT J AU Morse, AD Altwegg, K Andrews, DJ Auster, HU Carr, CM Galand, M Goesmann, F Gulkis, S Lee, S Richter, I Sheridan, S Stern, SA A'Hearn, MF Feldman, P Parker, J Retherford, KD Weaver, HA Wright, IP AF Morse, A. D. Altwegg, K. Andrews, D. J. Auster, H. U. Carr, C. M. Galand, M. Goesmann, F. Gulkis, S. Lee, S. Richter, I. Sheridan, S. Stern, S. A. A'Hearn, M. F. Feldman, P. Parker, J. Retherford, K. D. Weaver, H. A. Wright, I. P. TI The Rosetta campaign to detect an exosphere at Lutetia SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Rosetta; Lutetia; Exosphere; Asteroid; Comet ID ASTEROID 21 LUTETIA; P/2010 A2; FLYBY; 133P/ELST-PIZARRO; INSTRUMENT; ORGANICS; SURFACE; ORIGIN; COMET; MIRO AB On 10th July 2010 the Rosetta spacecraft passed within 3160 km of asteroid 21 Lutetia during which seven instruments attempted to detect an exosphere. A comparison of the sensitivity is made between the different instruments based on a simple spherical out-gassing point source model, which was used to infer that the Lutetia exosphere production rate was determined by MIRO to be <4.3 x 10(23) molecules s(-1) for water and by ROSINA RTOF to be <1.7 x 10(25) molecules s(-1) for carbon monoxide. Consideration of the flyby geometry and combined instrument operations places further constraints on the exosphere structure and gas production rate. Experience gained during the flyby will prove invaluable for operations planning during Rosetta's approach and orbit of comet 67P/Churyumov-Gerasimenko in 2014. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Morse, A. D.; Andrews, D. J.; Sheridan, S.; Wright, I. P.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Altwegg, K.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Auster, H. U.; Richter, I.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Carr, C. M.; Galand, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 28W, England. [Goesmann, F.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Gulkis, S.; Lee, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stern, S. A.] Natl Aeronaut & Space Adm, Washington, DC USA. [A'Hearn, M. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Feldman, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Parker, J.; Retherford, K. D.] SW Res Inst, Boulder, CO 80302 USA. [Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Morse, AD (reprint author), Open Univ, Planetary & Space Sci Res Inst, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. EM A.D.Morse@open.ac.uk RI Weaver, Harold/D-9188-2016 NR 41 TC 6 Z9 6 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2012 VL 66 IS 1 SI SI BP 165 EP 172 DI 10.1016/j.pss.2012.01.003 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 953SG UT WOS:000304892900017 ER PT J AU Ramanathan, R James, JT McCoy, T AF Ramanathan, Raghupathy James, John T. McCoy, Torin TI Acceptable Levels for Ingestion of Dimethylsilanediol in Water on the International Space Station SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE drinking water; total organic carbon; acceptable concentration; SWEG; DMSD AB Introduction: Water is recovered aboard the International Space Station (ISS) from humidity condensate and treated urine. The product water is monitored for total organic carbon (TOC). In 2010 the TOC readings indicated that a new contaminant had entered the potable water and was steadily increasing toward the TOC screening limit of 3 mg (.) L-1. In a ground-based laboratory, chemists discovered that dimethylsilanediol (DMSD) was the principal new contaminant. As no standard existed for safe levels of DMSD in water, the Toxicology Office at Johnson Space Center was asked to set such a standard. Methods: The Toxicology Office used methods developed over the past decade, in collaboration with the National Research Council Committee on Toxicology, for setting Spacecraft Water Exposure Guidelines (SWEGs). These methods require a thorough literature search and development of an acceptable concentration (AC) for each potential toxic effect, keeping in mind that the adverse effects that accompany spaceflight could increase toxicity for certain end points. Benchmark close modeling was encouraged if sufficient data were available. The most sensitive AC becomes the driver for the SWEG. Results: Hematotoxicity, hepatotoxicity, and possibly neurotoxicity were the most sensitive toxicological endpoints for DMSD. Conclusions: The SWEG for DMSD for 100 d of ingestion was set at 35 mg (.) L-1, which is equivalent to 9 mg (.) L-1 as TOC. This is well above the TOC SWEG of 3 mg (.) L-1 and the peak DMSD level of processed water observed on orbit, which was 2.2 mg (.) L-1 as TOC (8.5 mg (.) L-1 of DMSD). C1 [James, John T.; McCoy, Torin] NASA, Habitabil & Environm Factors Branch, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP James, JT (reprint author), NASA, Habitabil & Environm Factors Branch, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy,Mail Stop SF2, Houston, TX 77058 USA. EM john.t.james@nasa.gov NR 13 TC 3 Z9 3 U1 1 U2 14 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUN PY 2012 VL 83 IS 6 BP 598 EP 603 DI 10.3357/ASEM.3198.2012 PG 6 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 951MB UT WOS:000304723600008 PM 22764615 ER PT J AU Carra, C Cucinotta, FA AF Carra, Claudio Cucinotta, Francis A. TI Accurate prediction of the binding free energy and analysis of the mechanism of the interaction of replication protein A (RPA) with ssDNA SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE Amber; Binding; MM-PBSA; Molecular dynamics; Replication protein; RPA ID SINGLE-STRANDED-DNA; MOLECULAR-DYNAMICS SIMULATIONS; NUCLEOTIDE EXCISION-REPAIR; CONTINUUM SOLVENT MODELS; ABSOLUTE FREE-ENERGIES; 70 KDA SUBUNIT; CONFIGURATIONAL ENTROPY; LIGAND-BINDING; DAMAGED DNA; DIHYDROFOLATE-REDUCTASE AB The eukaryotic replication protein A (RPA) has several pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Moreover, RPA seems to have a crucial role in organizing the sequential assembly of DNA processing proteins along single stranded DNA (ssDNA). The strong RPA affinity for ssDNA, K-A between 10(-9) -aEuro parts per thousand 10(-10) M, is characterized by a low cooperativity with minor variation for changes on the nucleotide sequence. Recently, new data on RPA interactions was reported, including the binding free energy of the complex RPA70AB with dC(8) and dC(5), which has been estimated to be -10 +/- 0.4 kcal mol(-1) and -7 +/- 1 kcal mol(-1), respectively. In view of these results we performed a study based on molecular dynamics aimed to reproduce the absolute binding free energy of RPA70AB with the dC(5) and dC(8) oligonucleotides. We used several tools to analyze the binding free energy, rigidity, and time evolution of the complex. The results obtained by MM-PBSA method, with the use of ligand free geometry as a reference for the receptor in the separate trajectory approach, are in excellent agreement with the experimental data, with +/- 4 kcal mol(-1) error. This result shows that the MM-PB(GB)SA methods can provide accurate quantitative estimates of the binding free energy for interacting complexes when appropriate geometries are used for the receptor, ligand and complex. The decomposition of the MM-GBSA energy for each residue in the receptor allowed us to correlate the change of the affinity of the mutated protein with the Delta G(gas+sol) contribution of the residue considered in the mutation. The agreement with experiment is optimal and a strong change in the binding free energy can be considered as the dominant factor in the loss for the binding affinity resulting from mutation. C1 [Carra, Claudio] Univ Space Res Assoc, Houston, TX 77058 USA. [Cucinotta, Francis A.] NASA JSC Space Radiat Hlth Project, Houston, TX 77058 USA. RP Carra, C (reprint author), Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM claudio.carra-1@nasa.gov FU NASA FX We gratefully acknowledge support for this work from the NASA Space Radiation Risk Assessment Project. NR 141 TC 4 Z9 4 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 J9 J MOL MODEL JI J. Mol. Model. PD JUN PY 2012 VL 18 IS 6 BP 2761 EP 2783 DI 10.1007/s00894-011-1288-9 PG 23 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA 950AQ UT WOS:000304621400047 PM 22116609 ER PT J AU Bruntt, H Basu, S Smalley, B Chaplin, WJ Verner, GA Bedding, TR Catala, C Gazzano, JC Molenda-Zakowicz, J Thygesen, AO Uytterhoeven, K Hekker, S Huber, D Karoff, C Mathur, S Mosser, B Appourchaux, T Campante, TL Elsworth, Y Garcia, RA Handberg, R Metcalfe, TS Quirion, PO Regulo, C Roxburgh, IW Stello, D Christensen-Dalsgaard, J Kawaler, SD Kjeldsen, H Morris, RL Quintana, EV Sanderfer, DT AF Bruntt, H. Basu, S. Smalley, B. Chaplin, W. J. Verner, G. A. Bedding, T. R. Catala, C. Gazzano, J. -C. Molenda-Zakowicz, J. Thygesen, A. O. Uytterhoeven, K. Hekker, S. Huber, D. Karoff, C. Mathur, S. Mosser, B. Appourchaux, T. Campante, T. L. Elsworth, Y. Garcia, R. A. Handberg, R. Metcalfe, T. S. Quirion, P. -O. Regulo, C. Roxburgh, I. W. Stello, D. Christensen-Dalsgaard, J. Kawaler, S. D. Kjeldsen, H. Morris, R. L. Quintana, E. V. Sanderfer, D. T. TI Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: abundances; stars: atmospheres; stars: fundamental parameters; stars: solar-type ID INITIAL CHARACTERISTICS; CHEMICAL-COMPOSITION; INPUT CATALOG; CADENCE DATA; STARS; ASTEROSEISMOLOGY; OSCILLATIONS; MISSION; SUN; PLANETS AB We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well represented by Fe lines. Relative abundances of light elements (CNO) and a elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The accuracy on the log g parameter is better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of VT-KS [TYCHO V magnitude minus Two Micron All Sky Survey (2MASS) KS magnitude] and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets, this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe iFe ii balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, a elements and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where a-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars. C1 [Bruntt, H.; Thygesen, A. O.; Karoff, C.; Campante, T. L.; Handberg, R.; Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Bruntt, H.; Catala, C.; Mosser, B.] Univ Paris 07, Univ Paris 06, Observ Paris, LESIA,CNRS, F-92195 Meudon, France. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Smalley, B.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Chaplin, W. J.; Verner, G. A.; Hekker, S.; Elsworth, Y.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Verner, G. A.; Roxburgh, I. W.] Univ London, Astron Unit, London E1 4NS, England. [Bedding, T. R.; Huber, D.; Stello, D.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Gazzano, J. -C.] Univ Aix Marseille, OAMP, Lab Astrophys Marseille, UMR 6110, F-13388 Marseille 13, France. [Gazzano, J. -C.] CNRS, F-13388 Marseille 13, France. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Uytterhoeven, K.; Regulo, C.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Uytterhoeven, K.; Regulo, C.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Mathur, S.; Metcalfe, T. S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Appourchaux, T.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Campante, T. L.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Garcia, R. A.] Univ Paris Diderot, IRFU SAp, CNRS, Lab AIM,CEA DSM, F-91191 Gif Sur Yvette, France. [Quirion, P. -O.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Morris, R. L.; Quintana, E. V.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Bruntt, H (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM bruntt@gmail.com RI Basu, Sarbani/B-8015-2014; Karoff, Christoffer/L-1007-2013; OI Basu, Sarbani/0000-0002-6163-3472; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Timothy/0000-0001-5943-1460; Metcalfe, Travis/0000-0003-4034-0416; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Handberg, Rasmus/0000-0001-8725-4502; Kawaler, Steven/0000-0002-6536-6367 FU NASA's Science Mission Directorate; Polish Ministry [N N203 405 139]; Spanish National Plan of RD [AYA2010-17803]; Netherlands Organization for Scientific Research (NWO); White Dwarf Research Corporation; US National Science Foundation; UK Science and Technology Facilities Council (STFC); NSF [ATM-1105930] FX We are thankful for the efficient service observing teams at the CFHT and Pic du Midi observatories. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. JM-Z acknowledges the Polish Ministry grant no. N N203 405 139. KU acknowledges financial support by the Spanish National Plan of R&D for 2010, project AYA2010-17803. SH acknowledges financial support from the Netherlands Organization for Scientific Research (NWO). TSM and HB are supported in part by White Dwarf Research Corporation through the Pale Blue Dot project. NCAR is sponsored by the US National Science Foundation. WJC, GAV, YE and IWR all acknowledge the financial support of the UK Science and Technology Facilities Council (STFC). SB acknowledges NSF grant ATM-1105930. NR 42 TC 108 Z9 108 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 1 BP 122 EP 131 DI 10.1111/j.1365-2966.2012.20686.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949TP UT WOS:000304599100010 ER PT J AU Bailey, JD Grunhut, J Shultz, M Wade, G Landstreet, JD Bohlender, D Lim, J Wong, K Drake, S Linsky, J AF Bailey, J. D. Grunhut, J. Shultz, M. Wade, G. Landstreet, J. D. Bohlender, D. Lim, J. Wong, K. Drake, S. Linsky, J. CA MiMeS Collaboration TI An analysis of the rapidly rotating Bp star HD 133880 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: stars: abundances; chemically peculiar; stars: magnetic field ID ABUNDANCE DISTRIBUTION GEOMETRY; CHEMICALLY PECULIAR STARS; DRIVEN STELLAR WINDS; LINE-DATA-BASE; MAGNETIC-FIELD; AP-STARS; EFFECTIVE TEMPERATURE; DYNAMICAL SIMULATIONS; SPECTRUM SYNTHESIS; GENEVA PHOTOMETRY AB HD 133880 is a rapidly rotating chemically peculiar B-type (Bp) star (v sin i? 103 km s-1) and is host to one of the strongest magnetic fields of any Ap/Bp star. A member of the Upper Centaurus Lupus association, it is a star with a well-determined age of 16 Myr. 12 new spectra, four of which are polarimetric, obtained from the FEROS, ESPaDOnS and HARPS instruments, provide sufficient material from which to re-evaluate the magnetic field and obtain a first approximation to the atmospheric abundance distributions of He, O, Mg, Si, Ti, Cr, Fe, Ni, Pr and Nd. An abundance analysis was carried out using zeeman, a program which synthesizes spectral line profiles for stars with permeating magnetic fields. The magnetic field structure was characterized by a colinear multipole expansion from the observed variations of the longitudinal and surface fields with rotational phase. Both magnetic hemispheres are clearly visible during the stellar rotation, and thus a three-ring abundance distribution model encompassing both magnetic poles and magnetic equator with equal spans in colatitude was adopted. Using the new magnetic field measurements and optical photometry together with previously published data, we refine the period of HD 133880 to P= 0.877 476 +/- 0.000 009 d. Our simple axisymmetric magnetic field model is based on a predominantly quadrupolar component that roughly describes the field variations. Using spectrum synthesis, we derived mean abundances for O, Mg, Si, Ti, Cr, Fe and Pr. All elements, except Mg, are overabundant compared to the Sun. Mg appears to be approximately uniform over the stellar surface, while all other elements are more abundant in the negative magnetic hemisphere than in the positive magnetic hemisphere. In contrast to most Ap/Bp stars which show an underabundance in O, in HD 133880 this element is clearly overabundant compared to the solar abundance ratio. In studying the Ha and Paschen lines in the optical spectra, we could not unambiguously detect information about the magnetosphere of HD 133880. However, radio emission data at both 3 and 6 cm suggest that the magnetospheric plasma is held in rigid rotation with the star by the magnetic field and further supported against collapse by the rapid rotation. Subtle differences in the shapes of the optically thick radio light curves at 3 and 6 cm suggest that the large-scale magnetic field is not fully axisymmetric at large distances from the star. C1 [Bailey, J. D.; Landstreet, J. D.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Grunhut, J.; Shultz, M.; Wade, G.] Royal Mil Coll Canada, Dept Phys, Kingston, ON K7K 7B4, Canada. [Landstreet, J. D.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Bohlender, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Lim, J.; Wong, K.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Lim, J.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Drake, S.] USRA, Greenbelt, MD 20771 USA. [Drake, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Linsky, J.] Univ Colorado, JILA, Boulder, CO 80309 USA. RP Bailey, JD (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM jbaile33@uwo.ca OI Wong, Ka Tat/0000-0002-4579-6546; Landstreet, John/0000-0001-8218-8542 FU Natural Sciences and Engineering Research Council of Canada; European Southern Observatory (ESO) from the ESO/ST-ECF Science Archive Facility [082.D-0061(A), 083.D-0034(A), 085.D-0296(A), 086.D-0449(A)] FX JDB, JDL and GW are grateful for support by the Natural Sciences and Engineering Research Council of Canada. We thank Veronique Petit for communicating calculations of the magnetospheric parameters for HD 133880 prior to publication. We thank the HARPSpol team for generously providing a spectrum for HD 133880 used in this analysis. We thank the referee, Dr Evelyne Alecian, for her useful comments and suggestions.; Based in part on observations made with the European Southern Observatory (ESO) telescopes under ESO programmes 082.D-0061(A), 083.D-0034(A), 085.D-0296(A) and 086.D-0449(A), obtained from the ESO/ST-ECF Science Archive Facility. It is also based in part on observations carried out at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. NR 51 TC 14 Z9 14 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 1 BP 328 EP 343 DI 10.1111/j.1365-2966.2012.20881.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949TP UT WOS:000304599100026 ER PT J AU Kramer, LA Sargsyan, AE Hasan, KM Polk, JD Hamilton, DR AF Kramer, Larry A. Sargsyan, Ashot E. Hasan, Khader M. Polk, James D. Hamilton, Douglas R. TI Orbital and Intracranial Effects of Microgravity: Findings at 3-T MR Imaging SO RADIOLOGY LA English DT Article ID OPTIC-NERVE SHEATH; SUBARACHNOID SPACE; CHOROIDAL FOLDS; DISK EDEMA; EXPERIMENTAL PAPILLEDEMA; PRESSURE; HYPERTENSION; FLUID; FLIGHT; ULTRASOUND AB Purpose: To identify intraorbital and intracranial abnormalities in astronauts previously exposed to microgravity by using quantitative and qualitative magnetic resonance (MR) techniques. Materials and Methods: The institutional review board approved this HIPAA-compliant, retrospective review and waived the requirement for informed consent. Twenty-seven astronauts (mean age 6 standard deviation, 48 years +/- 4.5) underwent 3-T MR imaging with use of thin-section, three-dimensional, axial T2-weighted orbital and conventional brain sequences. Eight astronauts underwent repeat imaging after an additional mission in space. Optic nerve sheath diameter (ONSD) and optic nerve diameter (OND) were quantified in the retrolaminar optic nerve. OND and central optic nerve T2 hyperintensity were quantified at mid orbit. Qualitative analysis of the optic nerve sheath, optic disc, posterior globe, and pituitary gland morphology was performed and correlated for association with intracranial evidence of hydrocephalus, vasogenic edema, central venous thrombosis, and/or mass lesion. Statistical analyses included the paired t test, Mann-Whitney nonparametric test for group comparisons, Cronbach alpha coefficient for reproducibility, and Pearson correlation coefficient. Results: All astronauts had previous exposure to microgravity and, thus, control data were not available for comparison. The ONSD and OND ranged from 4.7 to 10.8 mm (mean, 6.2 mm +/- 1.1) and from 2.4 to 4.5 mm (mean, 3.0 mm +/- 0.5), respectively. Posterior globe flattening was seen in seven of the 27 astronauts (26%), optic nerve protrusion in four (15%), and moderate concavity of the pituitary dome with posterior stalk deviation in three (11%) without additional intracranial abnormalities. Retrolaminar OND increased linearly relative to ONSD (r = 0.797, Pearson correlation). A central area of T2 hyperintensity was identifiable in 26 of the 27 astronauts (96%) and increased in diameter in association with kinking of the optic nerve sheath. Conclusion: Exposure to microgravity can result in a spectrum of intraorbital and intracranial findings similar to those in idiopathic intracranial hypertension. (c) RSNA, 2012 C1 [Kramer, Larry A.; Hasan, Khader M.] Univ Texas Hlth Sci Ctr Houston, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA. [Sargsyan, Ashot E.; Hamilton, Douglas R.] Wyle Integrated Sci & Engn, Houston, TX USA. [Polk, James D.] NASA, Lyndon B Johnson Space Ctr, Dept Space Med, Houston, TX 77058 USA. RP Kramer, LA (reprint author), Univ Texas Hlth Sci Ctr Houston, Dept Diagnost & Intervent Imaging, 6431 Fannin St,MSB 2-100, Houston, TX 77030 USA. EM Larry.A.Kramer@uth.tmc.edu NR 55 TC 43 Z9 45 U1 1 U2 12 PU RADIOLOGICAL SOC NORTH AMERICA PI OAK BROOK PA 820 JORIE BLVD, OAK BROOK, IL 60523 USA SN 0033-8419 J9 RADIOLOGY JI Radiology PD JUN PY 2012 VL 263 IS 3 BP 819 EP 827 DI 10.1148/radiol.12111986 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 947GK UT WOS:000304416900024 PM 22416248 ER PT J AU Li, NC Raskin, R Goodchild, M Janowicz, K AF Li, Naicong Raskin, Robert Goodchild, Michael Janowicz, Krzysztof TI An Ontology-Driven Framework and Web Portal for Spatial Decision Support SO TRANSACTIONS IN GIS LA English DT Article ID GEOGRAPHIC INFORMATION; SEMANTIC WEB AB Numerous systems and tools have been developed for spatial decision support (SDS), but they generally suffer from a lack of re-usability, inconsistent terminology, and weak conceptualization. We introduce a collaborative effort by the SDS Consortium to build a SDS knowledge portal. We present the formal representation of knowledge about SDS, the various ontologies captured and made accessible by the portal, and the processes used to create them. We describe the portal in action, and the ways in which users can search, browse, and make use of its content. Finally, we discuss the lessons learned from this effort, and future development directions. Our work demonstrates how ontologies and semantic technologies can support the documentation and retrieval of dynamic knowledge in GIScience by offering flexible schemata instead of fixed data structures. C1 [Li, Naicong] Univ Redlands, Redlands Inst, Redlands, CA 92373 USA. [Raskin, Robert] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Li, NC (reprint author), Univ Redlands, Redlands Inst, 1200 E Colton Ave,POB 3080, Redlands, CA 92373 USA. EM naicong_li@spatial.redlands.edu NR 27 TC 8 Z9 8 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1361-1682 J9 T GIS JI Trans. GIS PD JUN PY 2012 VL 16 IS 3 BP 313 EP 329 DI 10.1111/j.1467-9671.2012.01325.x PG 17 WC Geography SC Geography GA 947YO UT WOS:000304470800004 ER PT J AU Madrinan, MJM Al-Hamdan, MZ Rickman, DL Ye, J AF Madrinan, Max J. Moreno Al-Hamdan, Mohammad Z. Rickman, Douglas L. Ye, Jun TI Relationship Between Watershed Land-Cover/Land-Use Change and Water Turbidity Status of Tampa Bay Major Tributaries, Florida, USA SO WATER AIR AND SOIL POLLUTION LA English DT Article DE Remote sensing; Geographical information systems; Water quality; Developed; Agriculture; Wetland; Bare land; Scrub/shrub; Forest; SAS; Urbanization ID HILLSBOROUGH COUNTY; METROPOLITAN-AREA; COASTAL WATERS; SURFACE WATERS; QUALITY; PHOSPHORUS; NITROGEN; EUTROPHICATION; URBAN; PERSPECTIVE AB The extent and change of land cover/land use (LCLU) across the Tampa Bay watershed, Florida, was characterized for the time period between 1996 and 2006. Likewise, the water turbidity trend was determined at a site near the Bay for each of four major tributaries to Tampa Bay (Hillsborough River, the Alafia River, the Little Manatee River, and the Manatee River). This study identifies consistent changes in LCLU across the Tampa Bay watershed and a decrease in water turbidity. LCLU change analysis as a percent of the total Tampa Bay watershed revealed an increase of 2.6% in developed area followed by a 0.9% in bare land and a 0.6% in water cover. A decrease of 1.8% of the total Tampa Bay watershed was found in agriculture, followed in order by 1.1% in wetland and 1.4% in scrub/shrub. Other land classes changed less than 0.2% of the total watershed. A linear mixed model (SAS procedure PROC MIXED) revealed an overall decreasing trend in water turbidity (p = 0.003, slope estimate = -0.02) across the four major Tampa Bay tributaries considered. This study suggests that development (urbanization) could be associated with decreasing water turbidity in Tampa Bay. Finally, although these results may help explain similar effects on other water bodies with similar conditions of adjacent urbanization and low slope, more analysis are needed considering a larger number of watersheds with similar scales and longer time period in order to confirm that the findings of this study are generally evident. C1 [Madrinan, Max J. Moreno] NASA Global Hydrol & Climate Ctr, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Al-Hamdan, Mohammad Z.] Univ Space Res Assoc, NASA Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, NASA Global Hydrol & Climate Ctr, Huntsville, AL 35805 USA. [Rickman, Douglas L.] NASA Global Hydrol & Climate Ctr, Natl Space Sci & Technol Ctr, NASA Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Ye, Jun] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA. RP Madrinan, MJM (reprint author), NASA Global Hydrol & Climate Ctr, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. EM max.j.moreno-madrinan@nasa.gov; mohammad.alhamdan@nasa.gov; douglas.l.rickman@nasa.gov; jun.ye@sdstate.edu OI Rickman, Doug/0000-0003-3409-2882 FU NASA; Marshall Space Flight Center/Global Hydrology and Climate Center in Huntsville, AL FX This research was supported by an appointment to the NASA Postdoctoral Program at the Marshall Space Flight Center/Global Hydrology and Climate Center in Huntsville, AL. This program is administered by Oak Ridge Associated Universities through a contract with NASA. We acknowledge the contribution of the Environmental Protection Commission of Hillsborough County (EPCHC) and the Manatee County Environmental Management Department (MCEMD) by sharing water quality data. We wish to thank Dr. Rick Garrity and Mr. Richard Boler for their collaboration. NR 65 TC 5 Z9 5 U1 5 U2 42 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD JUN PY 2012 VL 223 IS 5 BP 2093 EP 2109 DI 10.1007/s11270-011-1007-2 PG 17 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 947XF UT WOS:000304467000014 ER PT J AU Rastatter, L Kuznetsova, MM Sibeck, DG Berrios, DH AF Rastaetter, Lutz Kuznetsova, Maria M. Sibeck, David G. Berrios, David H. TI Scientific visualization to study Flux Transfer Events at the Community Coordinated Modeling Center SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Scientific visualization; Flux Transfer Events; Magnetopause; Magnetic reconnection ID DAYSIDE MAGNETOPAUSE; RECONNECTION AB In this paper we present recent additions to the visualization toolset offered by the Community Coordinated Modeling Center (CCMC). Two suites of visualization tools are available that can address different needs during the analysis of model simulations of the magnetosphere that are provided by the CCMC. The online, server-side visualization allows the user to quickly browse through simulation runs and now can create maps of magnetic field line topology in the magnetosphere. The second tool, SWX, can be used on the client computer after data have been downloaded. With this second tool the user can interact directly with the three-dimensional objects that are being rendered. We present results from a simulation of a Flux Transfer Event that was performed at the CCMC using a magnetohydrodynamic model of the Earth's magnetosphere with a high resolution grid focused on the dayside magnetosheath and dayside magnetopause. The simulation shows that the FTE that results from localized magnetic reconnection is a complicated three-dimensional structure that requires modern visualization techniques. Visualization techniques that are presented here allow the researcher to fully appreciate the complexity contained in magnetospheric simulation results. Published by Elsevier Ltd. on behalf of COSPA C1 [Rastaetter, Lutz; Kuznetsova, Maria M.; Sibeck, David G.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Berrios, David H.] NASA, Goddard Space Flight Ctr, Sci Data Proc Branch, Greenbelt, MD 20771 USA. RP Rastatter, L (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Mail Code 674, Greenbelt, MD 20771 USA. EM lutz.sastaetter@nasa.gov; maria.m.kuznetsova@nasa.gov; david.g.sibeck@nasa.gov; david.h.berrios@nasa.gov RI Sibeck, David/D-4424-2012; Rastaetter, Lutz/D-4715-2012 OI Rastaetter, Lutz/0000-0002-7343-4147 FU Community Coordinated Modeling Center; NASA FX This work was funded as part of the Community Coordinated Modeling Center's operation. Work by D.G. Sibeck and M.M. Kuznetsova was supported in part by funding from the NASA Heliophysics Guest Investigator Program. NR 13 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 1 PY 2012 VL 49 IS 11 BP 1623 EP 1632 DI 10.1016/j.asr.2011.12.034 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 948KL UT WOS:000304502000013 ER PT J AU Tamppari, LK Anderson, RM Archer, PD Douglas, S Kounaves, SP McKay, CP Ming, DW Moore, Q Quinn, JE Smith, PH Stroble, S Zent, AP AF Tamppari, L. K. Anderson, R. M. Archer, P. D., Jr. Douglas, S. Kounaves, S. P. McKay, C. P. Ming, D. W. Moore, Q. Quinn, J. E. Smith, P. H. Stroble, S. Zent, A. P. TI Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site SO ANTARCTIC SCIENCE LA English DT Article DE dry permafrost; habitability; Taylor Valley; University Valley ID MICROBIAL BIOMASS; ROSS SEA; ANTARCTICA; ICE; CLASSIFICATION; PERMAFROST; COMPONENTS; DESERT; SNOW; TIME AB The McMurdo Dry Valleys are among the driest, coldest environments on Earth and are excellent analogues for the Martian northern plains. In preparation for the 2008 Phoenix Mars mission, we conducted an interdisciplinary investigation comparing the biological, mineralogical, chemical, and physical properties of wetter lower Taylor Valley (TV) soils to colder, drier University Valley (UV) soils. Our analyses were performed for each horizon from the surface to the ice table. In TV, clay-sized particle distribution and less abundant soluble salts both suggested vertical and possible horizontal transport by water, and microbial biomass was higher. Alteration of mica to short-order phyllosilicates suggested aqueous weathering. In UV, salts, clay-sized materials, and biomass were more abundant near the surface, suggesting minimal downward translocation by water. The presence of microorganisms in each horizon was established for the first time in an ultraxerous zone. Higher biomass numbers were seen near the surface and ice table, perhaps representing locally more clement environments. Currently, water activity is too low to support metabolism at the Phoenix site, but obliquity changes may produce higher temperatures and sufficient water activity to permit microbial growth, if the populations could survive long dormancy periods (similar to 10(6) years). C1 [Tamppari, L. K.; Douglas, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Anderson, R. M.; Kounaves, S. P.; Moore, Q.; Stroble, S.] Tufts Univ, Medford, MA 02155 USA. [Archer, P. D., Jr.; Ming, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [McKay, C. P.; Zent, A. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Quinn, J. E.] ESCG NASA, Houston, TX USA. [Smith, P. H.] Univ Arizona, Tucson, AZ USA. RP Tamppari, LK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM leslie.tamppari@jpl.nasa.gov OI Kounaves, Samuel/0000-0002-2629-4831 FU NASA; International Polar Year research opportunity FX The authors would like to thank two anonymous reviewers for very thorough reviews of this paper that helped substantially improve it. Part of this work was conducted at the Jet Propulsion Laboratory/Caltech under a grant funded through the International Polar Year research opportunity with NASA. We thank the NSF Office of Polar Programs and the men and women of the US Antarctic Program for outstanding support of field operations. NR 50 TC 13 Z9 13 U1 1 U2 24 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2012 VL 24 IS 3 BP 211 EP 228 DI 10.1017/S0954102011000800 PG 18 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 947OZ UT WOS:000304440700002 ER PT J AU McKay, CP AF McKay, Christopher P. TI Full solar spectrum measurements of absorption of light in a sample of the Beacon Sandstone containing the Antarctic cryptoendolithic microbial community SO ANTARCTIC SCIENCE LA English DT Article DE habitability; IR light; UV light; wet transmissivity ID FIBEROPTIC MICROPROBES; MARINE-SEDIMENTS; COLD DESERT; CYANOBACTERIA; PENETRATION; TRANSMISSION; ATTENUATION; TEMPERATURE; ENVIRONMENT; REFLECTION AB We report measures of absorption (negative log10 of the transmissivity) of a collimated beam through a 2.27mm surface layer of Beacon Sandstone that harbours a cryptoendolithic microbial community. Consistent with the findings of previous work in the visible light range with these rocks, and in analogous sediments, blue wavelengths are more strongly attenuated than red. At wavelengths from 2400-1200 nm the absorption of the dry rock layer is roughly constant at 3.1 except in the water bands at 2000 nm and 1600 nm. From 1200-300 nm the absorption increases from 3.1 to 6.4, below 300-190 nm (the lowest wavelength measured) the absorption exceeds 6.4. When the rock is saturated with water the absorption uniformly decreases by about 0.1-0.2 over the 700-400 nm region but decreases sharply for lower wavelengths, with the decrease equal to 0.5 at 300 nm. Thus, the relative protection against UV is attenuated when the rock is wet. Even with this decreased absorption the UV absorption is still greater than that for the visible. The absorption at wavelengths less than 300 nm was too large to measure (>6.4) for both the wet and dry rocks. C1 NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP McKay, CP (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM chris.mckay@nasa.gov FU NASA FX Field support was provided by the US Antarctic Research Program. Laboratory work and analysis was supported by the NASA Astrobiology program. I thank two high school students, Lisa Lockyer and Terence Lung, for assistance with the measurements and analysis. I thank the two reviewers for their constructive comments. This paper is dedicated to the memory of Imre Friedmann, who recruited me to the study of endoliths and hypoliths. NR 28 TC 3 Z9 3 U1 5 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2012 VL 24 IS 3 BP 243 EP 248 DI 10.1017/S0954102011000915 PG 6 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 947OZ UT WOS:000304440700004 ER PT J AU Heldmann, JL Marinova, M Williams, KE Lacelle, D McKay, CP Davila, A Pollard, W Andersen, DT AF Heldmann, J. L. Marinova, M. Williams, K. E. Lacelle, D. McKay, C. P. Davila, A. Pollard, W. Andersen, D. T. TI Formation and evolution of buried snowpack deposits in Pearse Valley, Antarctica, and implications for Mars SO ANTARCTIC SCIENCE LA English DT Article DE McMurdo Dry Valleys; Polar Regions; snow ablation ID MCMURDO DRY VALLEYS; MIDLATITUDE SNOWPACKS; THERMAL-CONDUCTIVITY; DUST STORMS; ICE; WATER; STABILITY; SURFACE; SITE; TRANSPORT AB Buried snowpack deposits are found within the McMurdo Dry Valleys of Antarctica, which offers the opportunity to study these layered structures of sand and ice within a polar desert environment. Four discrete buried snowpacks are studied within Pearse Valley, Antarctica, through in situ observations, sample analyses, O-H isotope measurements and numerical modelling of snowpack stability and evolution. The buried snowpack deposits evolve throughout the year and undergo deposition, melt, refreeze, and sublimation. We demonstrate how the deposition and subsequent burial of snow can preserve the snowpacks in the Dry Valleys. The modelled lifetimes of the buried snowpacks are dependent upon subsurface stratigraphy but are typically less than one year if the lag thickness is less than c. 7 cm and snow thickness is less than c. 10 cm, indicating that some of the Antarctic buried snowpacks form annually. Buried snowpacks in the Antarctic polar desert may serve as analogues for similar deposits on Mars and may be applicable to observations of the north polar erg, buried ice at the Mars Phoenix landing site, and observations of buried ice throughout the martian Arctic. Numerical modelling suggests that seasonal snows and subsequent burial are not required to preserve the snow and ice on Mars. C1 [Heldmann, J. L.; Marinova, M.; Williams, K. E.; McKay, C. P.; Davila, A.] NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA. [Marinova, M.; Williams, K. E.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Lacelle, D.] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. [Davila, A.; Andersen, D. T.] Carl Sagan Ctr Study Life Universe, SETI Inst, Mountain View, CA 94041 USA. [Pollard, W.] McGill Univ, Dept Geog, Montreal, PQ H3A 2T5, Canada. RP Heldmann, JL (reprint author), NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA. EM Jennifer.heldmann@nasa.gov RI Davila, Alfonso/A-2198-2013; OI Davila, Alfonso/0000-0002-0977-9909; Lacelle, Denis/0000-0002-6691-8717 FU NASA; NSF; NASA ASTEP FX The authors acknowledge funding and support from both NASA and NSF to enable the Antarctic fieldwork and data analysis (NASA ASTEP grant to CPM, NASA Exobiology grant to DTA, and logistical support for Antarctic fieldwork through NSF and Raytheon Polar Services). We appreciate support from the Crary Lab at McMurdo Station, Antarctica for laboratory and field equipment assistance. Special thanks to Jon Rask of Dynamac Corp at NASA Ames Research Center for use of laboratory facilities to enable the particle size measurements. We thank Janice Bishop and Adrian Brown of the SETI Institute for use of the visible to near-infrared spectrometer and the use of laboratory facilities at SETI. We also thank Joe Levy and an anonymous reviewer for their thoughtful comments which have helped improve the quality of this paper. NR 42 TC 6 Z9 6 U1 0 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2012 VL 24 IS 3 BP 299 EP 316 DI 10.1017/S0954102011000903 PG 18 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 947OZ UT WOS:000304440700010 ER PT J AU Ackermann, M Ajello, M Ballet, J Barbiellini, G Bastieri, D Bellazzini, R Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bottacini, E Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cutini, S D'Ammando, F de Palma, F Dermer, CD Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Fuhrmann, L Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guiriec, S Hadasch, D Hayashida, M Hughes, RE Itoh, R Johannesson, G Johnson, AS Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Larsson, S Lee, SH Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nishino, S Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ozaki, M Paneque, D Panetta, JH Pelassa, V Pesce-Rollins, M Pierbattista, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Rastawicki, D Razzano, M Readhead, A Reimer, A Reimer, O Reyes, LC Richards, JL Sbarra, C Sgro, C Siskind, EJ Spandre, G Spinelli, P Szostek, A Takahashi, H Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tinivella, M Torres, DF Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Winer, BL Wood, KS Yang, Z Zimmer, S Moderski, R Nalewajko, K Sikora, M Villata, M Raiteri, CM Aller, HD Aller, MF Arkharov, AA Benitez, E Berdyugin, A Blinov, DA Boettcher, M Calle, OJAB Buemi, CS Carosati, D Chen, WP Diltz, C Di Paola, A Dolci, M Efimova, NV Forne, E Gurwell, MA Heidt, J Hiriart, D Jordan, B Kimeridze, G Konstantinova, TS Kopatskaya, EN Koptelova, E Kurtanidze, OM Lahteenmaki, A Larionova, EG Larionova, LV Larionov, VM Leto, P Lindfors, E Lin, HC Morozova, DA Nikolashvili, MG Nilsson, K Oksman, M Roustazadeh, P Sievers, A Sigua, LA Sillanpaa, A Takahashi, T Takalo, LO Tornikoski, M Trigilio, C Troitsky, IS Umana, G Angelakis, E Krichbaum, TP Nestoras, I Riquelme, D Krips, M Trippe, S Arai, A Kawabata, KS Sakimoto, K Sasada, M Sato, S Uemura, M Yamanaka, M Yoshida, M Belloni, T Tagliaferri, G Bonning, EW Isler, J Urry, CM Hoversten, E Falcone, A Pagani, C Stroh, M AF Ackermann, M. Ajello, M. Ballet, J. Barbiellini, G. Bastieri, D. Bellazzini, R. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bottacini, E. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cutini, S. D'Ammando, F. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Fuhrmann, L. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Hadasch, D. Hayashida, M. Hughes, R. E. Itoh, R. Johannesson, G. Johnson, A. S. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nishino, S. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ozaki, M. Paneque, D. Panetta, J. H. Pelassa, V. Pesce-Rollins, M. Pierbattista, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Rastawicki, D. Razzano, M. Readhead, A. Reimer, A. Reimer, O. Reyes, L. C. Richards, J. L. Sbarra, C. Sgro, C. Siskind, E. J. Spandre, G. Spinelli, P. Szostek, A. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Winer, B. L. Wood, K. S. Yang, Z. Zimmer, S. Moderski, R. Nalewajko, K. Sikora, M. Villata, M. Raiteri, C. M. Aller, H. D. Aller, M. F. Arkharov, A. A. Benitez, E. Berdyugin, A. Blinov, D. A. Boettcher, M. Calle, O. J. A. Bravo Buemi, C. S. Carosati, D. Chen, W. P. Diltz, C. Di Paola, A. Dolci, M. Efimova, N. V. Forne, E. Gurwell, M. A. Heidt, J. Hiriart, D. Jordan, B. Kimeridze, G. Konstantinova, T. S. Kopatskaya, E. N. Koptelova, E. Kurtanidze, O. M. Lahteenmaki, A. Larionova, E. G. Larionova, L. V. Larionov, V. M. Leto, P. Lindfors, E. Lin, H. C. Morozova, D. A. Nikolashvili, M. G. Nilsson, K. Oksman, M. Roustazadeh, P. Sievers, A. Sigua, L. A. Sillanpaa, A. Takahashi, T. Takalo, L. O. Tornikoski, M. Trigilio, C. Troitsky, I. S. Umana, G. Angelakis, E. Krichbaum, T. P. Nestoras, I. Riquelme, D. Krips, M. Trippe, S. Arai, A. Kawabata, K. S. Sakimoto, K. Sasada, M. Sato, S. Uemura, M. Yamanaka, M. Yoshida, M. Belloni, T. Tagliaferri, G. Bonning, E. W. Isler, J. Urry, C. M. Hoversten, E. Falcone, A. Pagani, C. Stroh, M. CA Fermi-LAT Collaboration GASP-WEBT Consortium F-GAMMA Iram-PdBI Kanata RXTE SMARTS Swift-XRT TI MULTI-WAVELENGTH OBSERVATIONS OF BLAZAR AO 0235+164 IN THE 2008-2009 FLARING STATE SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (AO 0235+164); galaxies: active; galaxies: jets; gamma rays: galaxies; radiation mechanisms: non-thermal ID BL-LACERTAE OBJECT; ACTIVE GALACTIC NUCLEI; SOUTHERN SPECTROPHOTOMETRIC STANDARDS; RELATIVISTIC RECONFINEMENT SHOCKS; SPECTRAL ENERGY-DISTRIBUTIONS; LARGE-AREA TELESCOPE; GAMMA-RAY OUTBURST; SOFT-X-RAY; RADIO-SOURCES; ABSORPTION-LINE AB The blazarAO 0235+164 (z=0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to gamma-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the gamma-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R-g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Rastawicki, D.; Reimer, A.; Reimer, O.; Szostek, A.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ajello, M.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Raino, S.; Rastawicki, D.; Reimer, A.; Reimer, O.; Szostek, A.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ballet, J.; Casandjian, J. M.; Charles, E.; Grenier, I. A.; Naumann-Godo, M.] CEA IRFU CNRS Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. [Barbiellini, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Sbarra, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bonamente, E.; Cecchi, C.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEE CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS IN2P3, Lab Univ & Particules Montpellier, Montpellier, France. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Dermer, C. D.; Lovellette, M. N.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ferrara, E. C.; Gehrels, N.; McEnery, J. E.; Thompson, D. J.; Troja, E.; Wood, K. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fuhrmann, L.; Angelakis, E.; Krichbaum, T. P.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Itoh, R.; Mizuno, T.; Nishino, S.; Sakimoto, K.; Sasada, M.; Yamanaka, M.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.; Pelassa, V.] Univ Alabama Huntsville, CSPAR, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Katagiri, H.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Larsson, S.; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden. [Larsson, S.; Yang, Z.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Larsson, S.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lee, S. -H.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. [Lott, B.] Univ Bordeaux 1, CEN Bordeaux Gradignan, CNRS IN2p3, F-33175 Gradignan, France. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohsugi, T.; Takahashi, H.; Kawabata, K. S.; Uemura, M.; Yoshida, M.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Takahashi, T.] Inst Space & Astronaut Sci, JAXA, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzano, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Razzano, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Readhead, A.; Richards, J. L.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93401 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.; Vitale, V.] CIFS, I-10133 Turin, Italy. Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Moderski, R.; Nalewajko, K.; Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Nalewajko, K.] Univ Colorado, Boulder, CO 80309 USA. [Villata, M.; Raiteri, C. M.] INAF, Osservatorio Astron Torino, I-10025 Pino Torinese, TO, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Arkharov, A. A.; Blinov, D. A.; Efimova, N. V.; Larionov, V. M.] Pulkovo Observ, St Petersburg 196140, Russia. [Benitez, E.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City, DF, Mexico. [Berdyugin, A.; Lindfors, E.; Roustazadeh, P.; Sillanpaa, A.; Takalo, L. O.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Diltz, C.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Boettcher, M.; Calle, O. J. A. Bravo; Efimova, N. V.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionova, E. G.; Larionova, L. V.; Larionov, V. M.; Morozova, D. A.; Troitsky, I. S.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.] Osserv Astrofis Catania, I-95123 Catania, Italy. [Carosati, D.] EPT Observ, Tijarafe, La Palma, Spain. [Carosati, D.] INAF, TNG Fdn Galileo Galilei, La Palma, Spain. [Chen, W. P.; Kopatskaya, E. N.; Koptelova, E.; Lin, H. C.] Natl Cent Univ, Grad Inst Astron, Jhongli 32054, Taiwan. [Di Paola, A.] Osserv Astron Roma, I-00040 Monte Porzio Catone, Roma, Italy. [Dolci, M.] Osservatorio Astron Collurania Vincenzo Cerruli, I-64100 Teramo, Italy. [Forne, E.] Agrupacio Astron Sabadell, Sabadell 08206, Spain. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Heidt, J.] Heidelberg Univ, Konigstuhl, Landessternwarte, D-69117 Heidelberg, Germany. [Hiriart, D.] Univ Nacl Autonoma Mexico, Inst Astron, Ensenada, Baja California, Mexico. [Jordan, B.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Kimeridze, G.; Kurtanidze, O. M.; Nikolashvili, M. G.; Sigua, L. A.] Abastumani Observ, GE-0301 Abastumani, Rep of Georgia. [Koptelova, E.] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. [Torres, D. F.; Lahteenmaki, A.; Oksman, M.] Aalto Univ, Metsahovi Radio Observ, FIN-02540 Kylmala, Finland. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikio, Finland. [Sievers, A.; Riquelme, D.] Inst Radio Astron Millimetr, Granada 18012, Spain. [Krips, M.] Domaine Univ, Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. [Trippe, S.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Arai, A.] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto, Japan. [Sato, S.] Nagoya Univ, Dept Phys & Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Belloni, T.; Tagliaferri, G.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Bonning, E. W.; Isler, J.; Urry, C. M.] Yale Univ, Dept Astron, Dept Phys, New Haven, CT 06520 USA. [Bonning, E. W.; Isler, J.; Urry, C. M.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Hoversten, E.; Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM eduardo@slac.stanford.edu; fabio.gargano@ba.infn.it; madejski@slac.stanford.edu; silvia.raino@ba.infn.it; lreyes04@calpoly.edu; knalew@colorado.edu; sikora@camk.edu.pl RI Urry, Claudia/G-7381-2011; Lahteenmaki, Anne/L-5987-2013; Kurtanidze, Omar/J-6237-2014; Morozova, Daria/H-1298-2013; Troitskiy, Ivan/K-7979-2013; Grishina, Tatiana/H-6873-2013; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Larionov, Valeri/H-1349-2013; Kopatskaya, Evgenia/H-4720-2013; Larionova, Elena/H-7287-2013; Efimova, Natalia/I-2196-2013; Blinov, Dmitry/G-9925-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Orlando, E/R-5594-2016; OI Urry, Claudia/0000-0002-0745-9792; Morozova, Daria/0000-0002-9407-7804; Troitskiy, Ivan/0000-0002-4218-0148; Grishina, Tatiana/0000-0002-3953-6676; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Larionov, Valeri/0000-0002-4640-4356; Kopatskaya, Evgenia/0000-0001-9518-337X; Larionova, Elena/0000-0002-2471-6500; Efimova, Natalia/0000-0002-8071-4753; Blinov, Dmitry/0000-0003-0611-5784; Dolci, Mauro/0000-0001-8000-5642; Buemi, Carla Simona/0000-0002-7288-4613; Villata, Massimo/0000-0003-1743-6946; Larionova, Liudmila/0000-0002-0274-1481; giommi, paolo/0000-0002-2265-5003; Umana, Grazia/0000-0002-6972-8388; Caraveo, Patrizia/0000-0003-2478-8018; Leto, Paolo/0000-0003-4864-2806; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Raiteri, Claudia Maria/0000-0003-1784-2784; Sasada, Mahito/0000-0001-5946-9960; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Angelakis, Emmanouil/0000-0001-7327-5441; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tagliaferri, Gianpiero/0000-0003-0121-0723 FU National Aeronautics and Space Administration [NNX10AJ70G]; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Polish MNiSW [N N203 301635]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Georgian National Science Foundation [GNSF/ST08/4-404]; Academy of Finland [212656, 210338, 121148]; Smithsonian Institution; Academia Sinica; Fermi GI [011283, 31155, NNX10AP16G, NNX11AO13G]; Fermi Guest Investigator [NNX08AW56G, NNX09AU10G]; University of Michigan; [AST-0607523] FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; We acknowledge the support by the Polish MNiSW grant N N203 301635.; L. C. Reyes acknowledges support from NASA through Swift Guest Investigator Grant NNX10AJ70G; as well as support by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli.; The Abastumani team acknowledges financial support by the Georgian National Science Foundation through grant GNSF/ST08/4-404.; The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (numbers 212656, 210338, 121148, and others).; The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica.; The acquisition and analysis of the SMARTS data are supported by Fermi GI grants 011283 and 31155 (PI:C. Bailyn).; Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G and NNX09AU10G.; UMRAO research is supported by a series of grants from the NSF and NASA, most recently AST-0607523 and Fermi GI grants NNX10AP16G and NNX11AO13G, respectively; funds for telescope operation are provided by the University of Michigan. NR 112 TC 25 Z9 25 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 159 DI 10.1088/0004-637X/751/2/159 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600080 ER PT J AU Beirao, P Armus, L Helou, G Appleton, PN Smith, JDT Croxall, KV Murphy, EJ Dale, DA Draine, BT Wolfire, MG Sandstrom, KM Aniano, G Bolatto, AD Groves, B Brandl, BR Schinnerer, E Crocker, AF Hinz, JL Rix, HW Kennicutt, RC Calzetti, D de Paz, AG Dumas, G Galametz, M Gordon, KD Hao, CN Johnson, B Koda, J Krause, O van der Laan, T Leroy, AK Li, Y Meidt, SE Meyer, JD Rahman, N Roussel, H Sauvage, M Srinivasan, S Vigroux, L Walter, F Warren, BE AF Beirao, P. Armus, L. Helou, G. Appleton, P. N. Smith, J. -D. T. Croxall, K. V. Murphy, E. J. Dale, D. A. Draine, B. T. Wolfire, M. G. Sandstrom, K. M. Aniano, G. Bolatto, A. D. Groves, B. Brandl, B. R. Schinnerer, E. Crocker, A. F. Hinz, J. L. Rix, H. -W. Kennicutt, R. C. Calzetti, D. Gil de Paz, A. Dumas, G. Galametz, M. Gordon, K. D. Hao, C. -N. Johnson, B. Koda, J. Krause, O. van der Laan, T. Leroy, A. K. Li, Y. Meidt, S. E. Meyer, J. D. Rahman, N. Roussel, H. Sauvage, M. Srinivasan, S. Vigroux, L. Walter, F. Warren, B. E. TI A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (NGC 1097); galaxies: ISM; galaxies: starburst; infrared: galaxies ID FAR-INFRARED SPECTROSCOPY; NEARBY GALAXIES SURVEY; STAR-FORMING GALAXIES; INTERSTELLAR-MEDIUM; C-II; PHOTODISSOCIATION REGIONS; MOLECULAR-HYDROGEN; TRANSLUCENT CLOUDS; SEYFERT-GALAXIES; IRON PROJECT AB NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [CII]158 mu m and [OI]63 mu m lines and mid-infrared H-2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158 mu m+[OI]63 mu m)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 mu m PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158 mu m/PAH(5.5-14 mu m) is found. PAHs in the ring are responsible for a factor of two more [CII]158 mu m and [OI]63 mu m emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G(0) similar to 10(2.3) and n(H) similar to 10(3.5) cm(-3) in the ring. For these values of G(0) and n(H), PDR models cannot reproduce the observed H-2 emission. Much of the H-2 emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks. C1 [Beirao, P.; Armus, L.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Helou, G.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Appleton, P. N.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Smith, J. -D. T.; Croxall, K. V.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Murphy, E. J.] Carnegie Observ, Pasadena, CA 91101 USA. [Dale, D. A.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Draine, B. T.; Aniano, G.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Wolfire, M. G.; Bolatto, A. D.; Rahman, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H. -W.; Dumas, G.; Krause, O.; van der Laan, T.; Meidt, S. E.; Walter, F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Brandl, B. R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Crocker, A. F.; Calzetti, D.; Li, Y.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Hinz, J. L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Kennicutt, R. C.; Galametz, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gil de Paz, A.] Univ Complutense Madrid, Dept Astrofis, Fac Ciencias Fis, E-28040 Madrid, Spain. [Gordon, K. D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hao, C. -N.] Tianjin Normal Univ, Tianjin Astrophys Ctr, Tianjin 300387, Peoples R China. [Johnson, B.; Roussel, H.; Sauvage, M.; Srinivasan, S.] Univ Paris 06, Inst Astrophys Paris, UMR7095, CNRS, F-75014 Paris, France. [Koda, J.; Meyer, J. D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Leroy, A. K.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Vigroux, L.] CE Saclay, CEA, DSM, DAPNIA,Serv Astrophys,UMR, F-91191 Gif Sur Yvette, France. [Warren, B. E.] Univ Western Australia, ICRAR, M468, Crawley, WA 6009, Australia. RP Beirao, P (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. EM pedro@ipac.caltech.edu RI Gil de Paz, Armando/J-2874-2016; OI Gil de Paz, Armando/0000-0001-6150-2854; Draine, Bruce/0000-0002-0846-936X; Appleton, Philip/0000-0002-7607-8766; Schinnerer, Eva/0000-0002-3933-7677 FU NASA through JPL/Caltech; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain) FX We thank Gregory Brunner and Sebastian Haan for the code used to construct the Spitzer-IRS maps. We also thank Dario Fadda and Jeff Jacobson for software support. This work is partially based on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); and IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). Data presented in this paper were analyzed using The Herschel Interactive Processing Environment (HIPE), a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia. NR 67 TC 18 Z9 18 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 144 DI 10.1088/0004-637X/751/2/144 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600065 ER PT J AU Johnson, RE Zuhone, J Jones, C Forman, WR Markevitch, M AF Johnson, Ryan E. Zuhone, John Jones, Christine Forman, William R. Markevitch, Maxim TI SLOSHING GAS IN THE CORE OF THE MOST LUMINOUS GALAXY CLUSTER RXJ1347.5-1145 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: interactions; X-rays: galaxies: clusters ID SUNYAEV-ZELDOVICH MAP; X-RAY-CLUSTER; RX J1347.5-1145; COLD FRONTS; CHANDRA OBSERVATION; DARK-MATTER; XMM-NEWTON; J1347-1145; MASS; CONSTRAINTS AB We present new constraints on the merger history of the most X-ray luminous cluster of galaxies, RXJ1347.5-1145, based on its unique multiwavelength morphology. Our X-ray analysis confirms that the core gas is undergoing "sloshing" resulting from a prior, large-scale, gravitational perturbation. In combination with multiwavelength observations, the sloshing gas points to the primary and secondary clusters having had at least two prior strong gravitational interactions. The evidence supports a model in which the secondary subcluster with mass M = 4.8 +/- 2.4 x 10(14) M-circle dot has previously (greater than or similar to 0.6 Gyr ago) passed by the primary cluster, and has now returned for a subsequent crossing where the subcluster's gas has been completely stripped from its dark matter halo. RXJ1347 is a prime example of how core gas sloshing may be used to constrain the merger histories of galaxy clusters through multiwavelength analyses. C1 [Johnson, Ryan E.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Johnson, Ryan E.; Zuhone, John; Jones, Christine; Forman, William R.; Markevitch, Maxim] Harvard Smithsonian Ctr Astrophys, Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Zuhone, John; Markevitch, Maxim] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP Johnson, RE (reprint author), Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. EM johnsonr@denison.edu; jzuhone@cfa.harvard.edu; cjf@cfa.harvard.edu; wrf@cfa.harvard.edu; maxim@head.cfa.harvard.edu OI Forman, William/0000-0002-9478-1682 FU NASA; ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago; SAO; CFD; Chandra grant [GO8-9128X] FX This research has made extensive use of SAOImager DS9, in addition to software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The simulation software used in this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. R.E.J. was supported by an SAO predoctoral fellowship and a CFD fellowship during this work. J.A.Z. was supported by Chandra grant GO8-9128X, as well as by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 47 TC 10 Z9 10 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 95 DI 10.1088/0004-637X/751/2/95 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600016 ER PT J AU Loewenstein, M Kusenko, A AF Loewenstein, Michael Kusenko, Alexander TI DARK MATTER SEARCH USING XMM-NEWTON OBSERVATIONS OF WILLMAN 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: dwarf; galaxies: individual (Willman 1); X-rays: galaxies ID STERILE NEUTRINOS; DWARF GALAXY; X-RAY; COSMOLOGY; SUPERNOVA; UNIVERSE AB We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1 that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keV feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allows us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line. C1 [Loewenstein, Michael] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Kusenko, Alexander] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kusenko, Alexander] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. RP Loewenstein, M (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. FU NASA ADAP [NNX11AD36G]; DOE [DE-FG03-91ER40662]; ESA Member States; USA (NASA) FX We thank Steve Snowden and Dave Davis for their advice on XMM-Newton data analysis issues, Beth Willman for comments on the draft manuscript and input on observing and funding proposals, and an anonymous referee for feedback. This work was supported by NASA ADAP grant NNX11AD36G. A.K. acknowledges additional support from DOE grant DE-FG03-91ER40662.; This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), and utilized software integrated and maintained at the XMM-Newton Science Operations Center. Additionally, we made use of data and/or software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. Finally, we made use of NASA's Astrophysics Data System, and the arXiv e-print service operated by Cornell University. NR 57 TC 28 Z9 28 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 82 DI 10.1088/0004-637X/751/2/82 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600003 ER PT J AU Margutti, R Soderberg, AM Chomiuk, L Chevalier, R Hurley, K Milisavljevic, D Foley, RJ Hughes, JP Slane, P Fransson, C Moe, M Barthelmy, S Boynton, W Briggs, M Connaughton, V Costa, E Cummings, J Del Monte, E Enos, H Fellows, C Feroci, M Fukazawa, Y Gehrels, N Goldsten, J Golovin, D Hanabata, Y Harshman, K Krimm, H Litvak, ML Makishima, K Marisaldi, M Mitrofanov, IG Murakami, T Ohno, M Palmer, DM Sanin, AB Starr, R Svinkin, D Takahashi, T Tashiro, M Terada, Y Yamaoka, K AF Margutti, R. Soderberg, A. M. Chomiuk, L. Chevalier, R. Hurley, K. Milisavljevic, D. Foley, R. J. Hughes, J. P. Slane, P. Fransson, C. Moe, M. Barthelmy, S. Boynton, W. Briggs, M. Connaughton, V. Costa, E. Cummings, J. Del Monte, E. Enos, H. Fellows, C. Feroci, M. Fukazawa, Y. Gehrels, N. Goldsten, J. Golovin, D. Hanabata, Y. Harshman, K. Krimm, H. Litvak, M. L. Makishima, K. Marisaldi, M. Mitrofanov, I. G. Murakami, T. Ohno, M. Palmer, D. M. Sanin, A. B. Starr, R. Svinkin, D. Takahashi, T. Tashiro, M. Terada, Y. Yamaoka, K. TI INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe SO ASTROPHYSICAL JOURNAL LA English DT Article DE radiation mechanisms: non-thermal; supernovae: individual (SN2011fe) ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; SYMBIOTIC-STAR PROGENITOR; WHITE-DWARF MODELS; IA SUPERNOVAE; RADIO-EMISSION; LIGHT CURVES; SN 2011FE; CIRCUMSTELLAR MATERIAL; SODIUM-ABSORPTION; BURST AFTERGLOWS AB We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a "normal" SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate (M) over dot < 2 x 10(-9) M-circle dot yr(-1) (3 sigma c.l.) for wind velocity v(w) = 100 km s(-1). Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if greater than or similar to 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n(CSM) < 150 cm(-3)) for 2 x 10(15) less than or similar to R less than or similar to 5 x 10(16) cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites. C1 [Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chomiuk, L.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Chevalier, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Hughes, J. P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Fransson, C.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Starr, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boynton, W.; Enos, H.; Fellows, C.; Harshman, K.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Briggs, M.; Connaughton, V.] Univ Alabama, Dept Phys, Huntsville, AL 35809 USA. [Costa, E.; Del Monte, E.; Feroci, M.] INAF IASF Roma, I-00133 Rome, Italy. [Fukazawa, Y.; Hanabata, Y.; Ohno, M.; Takahashi, T.] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. [Goldsten, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Golovin, D.; Litvak, M. L.; Mitrofanov, I. G.; Murakami, T.; Sanin, A. B.] Moscow Space Res Inst, Moscow 117997, Russia. [Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Marisaldi, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Svinkin, D.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Tashiro, M.; Terada, Y.] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2298558, Japan. RP Margutti, R (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; Svinkin, Dmitry/C-1934-2014; OI Terada, Yukikatsu/0000-0002-2359-1857; Feroci, Marco/0000-0002-7617-3421; Costa, Enrico/0000-0003-4925-8523; Marisaldi, Martino/0000-0002-4000-3789 FU Clay Fellowship; NASA [NNX10AR12G, NNX12AD68G, NNX07AR71G, NNX10AU34G, NAS8-03060]; Russian Space Agency; RFBR [11-02-12082-ofi_m] FX We thank Harvey Tananbaum and Neil Gehrels for making Chandra and Swift observations possible. We thank Re'em Sari, Bob Kirshner, Sayan Chakraborti, Stephan Immler, Brosk Russell, and Rodolfo Barniol Duran for helpful discussions. L. C. is a Jansky Fellow of the National Radio Astronomy Observatory. R.J.F. is supported by a Clay Fellowship. K.H. is grateful for IPN support under the following NASA grants: NNX10AR12G (Suzaku), NNX12AD68G (Swift), NNX07AR71G (MESSENGER), and NNX10AU34G (Fermi). The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR Grant 11-02-12082-ofi_m. P.O.S. acknowledges partial support from NASA Contract NAS8-03060. NR 79 TC 49 Z9 49 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 134 DI 10.1088/0004-637X/751/2/134 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600055 ER PT J AU Opher, M Drake, JF Velli, M Decker, RB Toth, G AF Opher, M. Drake, J. F. Velli, M. Decker, R. B. Toth, G. TI NEAR THE BOUNDARY OF THE HELIOSPHERE: A FLOW TRANSITION REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE interplanetary medium; magnetic fields; solar wind ID INTERSTELLAR MAGNETIC-FIELD; TERMINATION SHOCK; SOLAR-WIND; HELIOSHEATH; PLASMA; VOYAGER-1; HYDROGEN; VELOCITY AB Since April of 2010, Voyager 1 has been immersed in a region of near zero radial flows, where the solar wind seems to have stopped. The existence of this region contradicts current models that predict that the radial flows will go to zero only at the heliopause. These models, however, do not include the sector region (or include it in a kinematic fashion), where the solar magnetic field periodically reverses polarity. Here we show that the presence of the sector region in the heliosheath, where reconnection occurs, fundamentally alters the flows, giving rise to a Flow Transition Region (FTR), where the flow abruptly turns and the radial velocity becomes near zero or negative. We estimate, based on a simulation, that at the Voyager 1 location, the thickness of the FTR is around 7-11 AU. C1 [Opher, M.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Drake, J. F.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Decker, R. B.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Toth, G.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Opher, M (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM mopher@bu.edu RI Toth, Gabor/B-7977-2013 OI Toth, Gabor/0000-0002-5654-9823 FU NSF CAREER [0747654]; NASA Voyager Interstellar Mission [NNX07AB02G] FX We thank E. C. Stone for first noticing the difference in the flows. We acknowledge valuable discussions with Matthew E. Hill. M.O. acknowledges the support of the NSF CAREER grant ATM-0747654. Work at JHU/APL was supported by the NASA Voyager Interstellar Mission, contract NNX07AB02G. NR 21 TC 13 Z9 13 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 80 DI 10.1088/0004-637X/751/2/80 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600001 ER PT J AU Penev, K Jackson, B Spada, F Thom, N AF Penev, Kaloyan Jackson, Brian Spada, Federico Thom, Nicole TI CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; planet-star interactions; stars: interiors; stars: rotation; stars: winds, outflows; turbulence ID TRANSITING HOT JUPITER; SPIN-ORBIT ALIGNMENT; LOW-MASS STARS; ROTATING CONVECTIVE ENVELOPES; HIGH-PRECISION PHOTOMETRY; EXTRASOLAR GIANT PLANETS; CLOSE BINARY STARS; METAL-POOR STAR; SOUTHERN-HEMISPHERE; K DWARF AB We use the distribution of extrasolar planets in circular orbits around stars with surface convective zones detected by ground-based transit searches to constrain how efficiently tides raised by the planet are dissipated on the parent star. We parameterize this efficiency as a tidal quality factor (Q(*)). We conclude that the population of currently known planets is inconsistent with Q(*) < 10(7) at the 99% level. Previous studies show that values of Q(*) between 10(5) and 10(7) are required in order to explain the orbital circularization of main-sequence low-mass binary stars in clusters, suggesting that different dissipation mechanisms might be acting in the two cases, most likely due to the very different tidal forcing frequencies relative to the stellar rotation frequency occurring for star-star versus planet-star systems. C1 [Penev, Kaloyan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Jackson, Brian] Carnegie DTM, Washington, DC 20015 USA. [Spada, Federico] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Thom, Nicole] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Penev, K (reprint author), Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane,Peyton Hall, Princeton, NJ 08544 USA. OI Spada, Federico/0000-0001-6948-4259; Penev, Kaloyan/0000-0003-4464-1371 FU NASA [NNX09AB29G]; Yale Institute for Biospheric Studies FX The authors gratefully acknowledge useful input from Joleen Carlberg. K.P. acknowledges support from NASA grant NNX09AB29G. F.S. acknowledges support from the Yale Institute for Biospheric Studies through the YIBS Postdoctoral Fellowship. NR 125 TC 24 Z9 25 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 96 DI 10.1088/0004-637X/751/2/96 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600017 ER PT J AU Pillai, T Caselli, P Kauffmann, J Zhang, Q Thompson, MA Lis, DC AF Pillai, T. Caselli, P. Kauffmann, J. Zhang, Q. Thompson, M. A. Lis, D. C. TI H2D+ IN THE HIGH-MASS STAR-FORMING REGION CYGNUS X SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; ISM: clouds; ISM: individual objects (Cygnus X); ISM: molecules; ISM: structure; radio lines: ISM; stars: formation ID INFRARED DARK CLOUDS; DEUTERIUM FRACTIONATION; PRESTELLAR CORES; INITIAL CONDITIONS; MOLECULAR-IONS; PROTOSTELLAR CANDIDATES; L1544; DEUTERATION; CLUMPS; IONIZATION AB H2D+ is a primary ion that dominates the gas-phase chemistry of cold dense gas. Therefore, it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is, however, just beginning to be understood in low-mass prestellar and cluster-forming cores. In high-mass star-forming regions, H2D+ has been detected only in two cores, and its spatial distribution remains unknown. Here, we present the first map of the ortho-H2D+ J(k+, k-) = 1(1,0) -> 1(1,1) and N2H+ 4-3 transition in the DR21 filament of Cygnus X with the James Clerk Maxwell Telescope, and N2D+ 3-2 and dust continuum with the Submillimeter Array. We have discovered five very extended (<= 34,000 AU diameter) weak structures in H2D+ in the vicinity of, but distinctly offset from, embedded protostars. More surprisingly, the H2D+ peak is not associated with either a dust continuum or N2D+ peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster-forming cores and needs to be refined: neither dust continuum with existing capabilities nor emission in tracers like N2D+ can provide a complete census of the total prestellar gas in such regions. Sensitive H2D+ mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high-mass star-forming region. C1 [Pillai, T.; Lis, D. C.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Kauffmann, J.; Zhang, Q.] Ctr Astrophys, Cambridge, MA 02138 USA. [Kauffmann, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thompson, M. A.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. RP Pillai, T (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. EM tpillai@astro.caltech.edu FU Jet Propulsion Laboratory; Combined Array for Research in Millimeter-wave Astronomy (CARMA); National Science Foundation [AST 05-40399]; SMA FX We are grateful to Dr. Iain Coulson and the JCMT staff for their kind support with observations and data handling. The James Clerk Maxwell Telescope is operated by The Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada. The JCMT data were obtained under the program ID M07BU14. This research was supported by an appointment of J.K. to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. It was executed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. T. P. acknowledges support from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), which is supported by the National Science Foundation through grant AST 05-40399. T. P. acknowledges support from the SMA Fellowship Program while working on this project. Asignificant part of this work was done at the Center for Astrophysics, MA, USA. NR 54 TC 5 Z9 5 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 135 DI 10.1088/0004-637X/751/2/135 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600056 ER PT J AU Provencal, JL Montgomery, MH Kanaan, A Thompson, SE Dalessio, J Shipman, HL Childers, D Clemens, JC Rosen, R Henrique, P Bischoff-Kim, A Strickland, W Chandler, D Walter, B Watson, TK Castanheira, B Wang, S Handler, G Wood, M Vennes, S Nemeth, P Kepler, SO Reed, M Nitta, A Kleinman, SJ Brown, T Kim, SL Sullivan, D Chen, WP Yang, M Shih, CY Jiang, XJ Sergeev, AV Maksim, A Janulis, R Baliyan, KS Vats, HO Zola, S Baran, A Winiarski, M Ogloza, W Paparo, M Bognar, Z Papics, P Kilkenny, D Sefako, R Buckley, D Loaring, N Kniazev, A Silvotti, R Galleti, S Nagel, T Vauclair, G Dolez, N Fremy, JR Perez, J Almenara, JM Fraga, L AF Provencal, J. L. Montgomery, M. H. Kanaan, A. Thompson, S. E. Dalessio, J. Shipman, H. L. Childers, D. Clemens, J. C. Rosen, R. Henrique, P. Bischoff-Kim, A. Strickland, W. Chandler, D. Walter, B. Watson, T. K. Castanheira, B. Wang, S. Handler, G. Wood, M. Vennes, S. Nemeth, P. Kepler, S. O. Reed, M. Nitta, A. Kleinman, S. J. Brown, T. Kim, S. -L. Sullivan, D. Chen, W. P. Yang, M. Shih, C. Y. Jiang, X. J. Sergeev, A. V. Maksim, A. Janulis, R. Baliyan, K. S. Vats, H. O. Zola, S. Baran, A. Winiarski, M. Ogloza, W. Paparo, M. Bognar, Z. Papics, P. Kilkenny, D. Sefako, R. Buckley, D. Loaring, N. Kniazev, A. Silvotti, R. Galleti, S. Nagel, T. Vauclair, G. Dolez, N. Fremy, J. R. Perez, J. Almenara, J. M. Fraga, L. TI EMPIRICAL DETERMINATION OF CONVECTION PARAMETERS IN WHITE DWARFS. I. WHOLE EARTH TELESCOPE OBSERVATIONS OF EC14012-1446 SO ASTROPHYSICAL JOURNAL LA English DT Article DE asteroseismology; stars: evolution; stars: individual (EC14012-1446); stars: oscillations; white dwarfs ID ZZ-CETI STARS; DIGITAL-SKY-SURVEY; LIGHT CURVES; EVOLUTIONARY MODELS; GRAVITY MODES; ASTEROSEISMOLOGY; PULSATIONS; DBV; IDENTIFICATION; SIMULATIONS AB We report on an analysis of 308.3 hr of high-speed photometry targeting the pulsating DA white dwarf EC14012-1446. The data were acquired with the Whole Earth Telescope during the 2008 international observing run XCOV26. The Fourier transform of the light curve contains 19 independent frequencies and numerous combination frequencies. The dominant peaks are 1633.907, 1887.404, and 2504.897 mu Hz. Our analysis of the combination amplitudes reveals that the parent frequencies are consistent with modes of spherical degree l = 1. The combination amplitudes also provide m identifications for the largest amplitude parent frequencies. Our seismology analysis, which includes 2004-2007 archival data, confirms these identifications, provides constraints on additional frequencies, and finds an average period spacing of 41 s. Building on this foundation, we present nonlinear fits to high signal-to-noise light curves from the SOAR 4.1 m, McDonald 2.1 m, and KPNO 2 m telescopes. The fits indicate a time-averaged convective response timescale of tau(0) = 99.4 +/- 17 s, a temperature exponent N = 85 +/- 6.2, and an inclination angle of theta(i) = 32 degrees.9 +/- 3 degrees.2. We present our current empirical map of the convective response timescale across the DA instability strip. C1 [Provencal, J. L.; Thompson, S. E.; Dalessio, J.; Shipman, H. L.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Provencal, J. L.; Montgomery, M. H.; Thompson, S. E.; Dalessio, J.; Shipman, H. L.; Childers, D.] Mt Cuba Observ, Delaware Asteroseism Res Ctr, Greenville, DE 19807 USA. [Montgomery, M. H.; Wang, S.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Kanaan, A.; Henrique, P.] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil. [Thompson, S. E.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Childers, D.] Delaware Cty Community Coll, Dept Math & Sci, Media, PA 19063 USA. [Clemens, J. C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Rosen, R.] NRAO, Green Bank, WV 24944 USA. [Bischoff-Kim, A.] Georgia Coll & State Univ, Dept Chem & Phys, Milledgeville, GA 31061 USA. [Strickland, W.; Chandler, D.; Walter, B.] Meyer Observ, Waco, TX 76705 USA. [Strickland, W.; Chandler, D.; Walter, B.] Cent Texas Astron Soc, Waco, TX 76705 USA. [Watson, T. K.] Southwestern Univ, Inst Astron, Georgetown, TX USA. [Castanheira, B.; Handler, G.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Wood, M.; Vennes, S.; Nemeth, P.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL USA. [Kepler, S. O.; Fraga, L.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Reed, M.] Missouri State Univ, Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [Reed, M.] Baker Observ, Springfield, MO 65897 USA. [Nitta, A.; Kleinman, S. J.] Gemini Observ, No Operat Ctr, Hilo, HI 96720 USA. [Brown, T.] Cumbres Observ Global Telescope Network Inc, Santa Barbara, CA 93117 USA. [Kim, S. -L.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Sullivan, D.] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington, New Zealand. [Chen, W. P.; Yang, M.; Shih, C. Y.] Natl Cent Univ, Lulin Observ, Jhongli, Taoyuan County, Taiwan. [Jiang, X. J.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Sergeev, A. V.; Maksim, A.] Ukrainian Natl Acad Sci, Main Astron Observ, UA-02225265 Kiev, Ukraine. [Janulis, R.] Vilnius Univ, Inst Theoret Phys & Astron, Vilnius, Lithuania. [Baliyan, K. S.; Vats, H. O.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Zola, S.; Baran, A.; Winiarski, M.; Ogloza, W.] Cracow Pedag Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. [Zola, S.; Winiarski, M.; Ogloza, W.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Paparo, M.; Bognar, Z.; Papics, P.] Konkoly Observ Budapest, H-1525 Budapest 12, Hungary. [Kilkenny, D.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. [Sefako, R.; Buckley, D.; Loaring, N.; Kniazev, A.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Silvotti, R.; Galleti, S.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Nagel, T.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Vauclair, G.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-314000 Toulouse, France. [Dolez, N.; Fremy, J. R.] Observ Paris, LESIA, F-92195 Meudon, France. [Perez, J.; Almenara, J. M.] Inst Astrofis Canarias, Tenerife 38200, Spain. RP Provencal, JL (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM jlp@udel.edu; mikemon@rocky.as.utexas.edu; ankanaan@gmail.com; dpc@udel.edu; clemens@physics.unc.edu; rachel.rosen@gmail.com; agnes.kim@gcsu.edu; chandler@vvm.com; tkw@sousthwestern.edu; gerald@camk.edu.pl; wood@fit.edu; kepler@if.ufrgs.br; MikeReed@missouristate.edu; atsuko.nittakleinman1@gmail.com; tbrown@lcogt.com; slkim@kasi.re.kr; denis.sullivan@vuw.ac.nz; wchen@astro.ncu.edu.tw; xjjiang@bao.ac.cn; sergeev@terskol.com; jr@itpa.lt; zola@astro1.as.ap.krakow.pl; paparo@konkoly.hu; nagel@astro.uni-tuebingen.de; gerardv@srvdec.obs-mip.fr RI Kepler, S. O. /H-5901-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Vennes, Stephane/G-9903-2014; OI Kepler, S. O. /0000-0002-7470-5703; Silvotti, Roberto/0000-0002-1295-8174; /0000-0003-0180-8231 FU Crystal Trust Foundation; Mt. Cuba Observatory; University of Delaware; NSF [AST-0909107]; Norman Hackerman Advanced Research Program [003658-0252-2009]; KASI (Korea Astronomy and Space Science Institute) [2012-1-410-02]; Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P18339-N08] FX The Delaware Asteroseismic Research Association (DARC) is grateful for the support of the Crystal Trust Foundation and Mt. Cuba Observatory. DARC also acknowledges the support of the University of Delaware, through their participation in the SMARTS consortium. M.H.M. gratefully acknowledges the support of the NSF under grant AST-0909107 and the Norman Hackerman Advanced Research Program under grant 003658-0252-2009. S.L.K. acknowledges partial support by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02. This paper uses observations made at the South African Astronomical Observatory (SAAO). This work is further supported by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung under grant P18339-N08. We thank the various Telescope Allocation Committees for the awards of telescope time. NR 55 TC 18 Z9 18 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 91 DI 10.1088/0004-637X/751/2/91 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600012 ER PT J AU Roming, PWA Pritchard, TA Prieto, JL Kochanek, CS Fryer, CL Davidson, K Humphreys, RM Bayless, AJ Beacom, JF Brown, PJ Holland, ST Immler, S Kuin, NPM Oates, SR Pogge, RW Pojmanski, G Stoll, R Shappee, BJ Stanek, KZ Szczygiel, DM AF Roming, P. W. A. Pritchard, T. A. Prieto, J. L. Kochanek, C. S. Fryer, C. L. Davidson, K. Humphreys, R. M. Bayless, A. J. Beacom, J. F. Brown, P. J. Holland, S. T. Immler, S. Kuin, N. P. M. Oates, S. R. Pogge, R. W. Pojmanski, G. Stoll, R. Shappee, B. J. Stanek, K. Z. Szczygiel, D. M. TI THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA 2011ht SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: individual (SN 2011ht) ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; ULTRA-VIOLET/OPTICAL TELESCOPE; HOBBY-EBERLY TELESCOPE; ETA-CARINAE; SN 2008S; CIRCUMSTELLAR INTERACTION; OPTICAL TRANSIENT; DUST FORMATION; IA SUPERNOVAE; LIGHT CURVES AB We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of M-V similar to -17 in similar to 55 days. In contrast to the similar to 2 mag increase in the upsilon-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated by strong, Balmer emission with narrow peaks (FWHM similar to 600 km s(-1)), very broad asymmetric wings (FWHM similar to 4200 km s(-1)), and blueshifted absorption (similar to 300 km s(-1)) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by similar to 1500 km s(-1). Merged X-ray observations reveal a L0.2-10 = (1.0 +/- 0.2) x 10(39) erg s(-1). Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics (similar to 2.5 x 10(49) erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN. C1 [Roming, P. W. A.; Bayless, A. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. [Roming, P. W. A.; Pritchard, T. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Prieto, J. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stoll, R.; Shappee, B. J.; Stanek, K. Z.; Szczygiel, D. M.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stanek, K. Z.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Fryer, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Fryer, C. L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Fryer, C. L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Davidson, K.; Humphreys, R. M.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Beacom, J. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Brown, P. J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Holland, S. T.] Space Telescope Sci Ctr, Baltimore, MD 21218 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Immler, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kuin, N. P. M.; Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pojmanski, G.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. RP Roming, PWA (reprint author), SW Res Inst, Space Sci & Engn Div, PO Drawer 28510, San Antonio, TX 78228 USA. EM proming@swri.edu OI Beacom, John/0000-0002-0005-2631 FU NASA [HF-51261.01-A, NAS 5-2655, NAS5-00136]; STScI; NSF [AST-0908816, AST-1108687, PHY-1101216, AST-9987045]; Science and Technology Facilities Council (STFC); UK Space Agency; NSF Telescope System Instrumentation Program (TSIP); Ohio Board of Regents; The Ohio State University Office of Research FX J.L.P. acknowledges support from NASA through the Hubble Fellowship Grant HF-51261.01-A awarded by STScI, which is operated by AURA, Inc. for NASA, under the contract NAS 5-2655. C.S.K., B.J.S., D.M.S., and K.Z.S. are supported by the NSF grant AST-0908816. K.Z.S. and R.S. are also supported by the NSF grant AST-1108687. J.F.B. was supported by the NSF grant PHY-1101216. We gratefully acknowledge the contributions from members of the Swift UVOT team at the Pennsylvania State University (PSU), University College London/Mullard Space Science Laboratory (MSSL), and NASA/Goddard Space Flight Center. This work is sponsored at PSU by the NASA contract NAS5-00136 and at MSSL by funding from the Science and Technology Facilities Council (STFC) and the UK Space Agency. The ASAS-SN commissioning observations were only possible due to help and support of the Las Cumbres Observatory, especially W. Rosing, E. Hawkins, R. Ross, M. Elphick, D. Mullins, and Z. Walker. We thank R. McMillan and G. Bakos for obtaining a spectrum with the APO 3.5 m telescope, and the APO director S. Hawley for granting DD time for this observation. This paper used data taken with the LBT/MODS1 spectrographs built with funding from the NSF grant AST-9987045 and the NSF Telescope System Instrumentation Program (TSIP), with additional funds from the Ohio Board of Regents and The Ohio State University Office of Research. The Hobby Eberly Telescope (HET) is a joint project of the University of Texas at Austin, PSU, Stanford University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low Resolution Spectrograph (LRS) is named for Mike Marcario of High Lonesome Optics who fabricated several optics for the instrument but died before its completion. The LRS is a joint project of the HET partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. Based in part on observations made with the Large Binocular Telescope. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. The LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; the Istituto Nazionale di Astrofisica, Italy; the LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and this research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 99 TC 29 Z9 29 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 92 DI 10.1088/0004-637X/751/2/92 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600013 ER PT J AU Stothers, RB AF Stothers, Richard B. TI YELLOW HYPERGIANTS SHOW LONG SECONDARY PERIODS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; stars: interiors; stars: oscillations; stars: variables: general; supergiants ID RED SUPERGIANT STARS; LUMINOUS BLUE VARIABLES; RHO-CASSIOPEIAE; MASS-LOSS; HR 8752; SPECTROSCOPIC OBSERVATIONS; SEMIREGULAR VARIABLES; CIRCUMSTELLAR EJECTA; STELLAR ENVELOPES; COOL HYPERGIANT AB There is observational evidence that intermittent long secondary periods of similar to 1000 days are present in the well-observed yellow hypergiants rho Cas and HR 8752. The long secondary period is interpreted here as the turnover time of giant convection cells in the convective envelope, as has been already suggested in the case of red giants and supergiants of high luminosity. The observed secondary periods and surface radial velocities of rho Cas and HR 8752 agree with the theoretical predictions, within the expected errors. These results support a theoretical interpretation that now covers the entire initial mass range from 1 to 50M(circle dot) for luminous cool stars. C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Stothers, RB (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. NR 51 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 151 DI 10.1088/0004-637X/751/2/151 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600072 ER PT J AU Zheng, W Shen, RF Sakamoto, T Beardmore, AP De Pasquale, M Wu, XF Gorosabel, J Urata, Y Sugita, S Zhang, B Pozanenko, A Nissinen, M Sahu, DK Im, M Ukwatta, TN Andreev, M Klunko, E Volnova, A Akerlof, CW Anto, P Barthelmy, SD Breeveld, A Carsenty, U Castillo-Carrion, S Castro-Tirado, AJ Chester, MM Chuang, CJ Cunniffe, R Postigo, AD Duffard, R Flewelling, H Gehrels, N Guver, T Guziy, S Hentunen, VP Huang, KY Jelinek, M Koch, TS Kubanek, P Kuin, P McKay, TA Mottola, S Oates, SR O'Brien, P Ohno, M Page, MJ Pandey, SB del Pulgar, CP Rujopakarn, W Rykoff, E Salmi, T Sanchez-Ramirez, R Schaefer, BE Sergeev, A Sonbas, E Sota, A Tello, JC Yamaoka, K Yost, SA Yuan, F AF Zheng, W. Shen, R. F. Sakamoto, T. Beardmore, A. P. De Pasquale, M. Wu, X. F. Gorosabel, J. Urata, Y. Sugita, S. Zhang, B. Pozanenko, A. Nissinen, M. Sahu, D. K. Im, M. Ukwatta, T. N. Andreev, M. Klunko, E. Volnova, A. Akerlof, C. W. Anto, P. Barthelmy, S. D. Breeveld, A. Carsenty, U. Castillo-Carrion, S. Castro-Tirado, A. J. Chester, M. M. Chuang, C. J. Cunniffe, R. Postigo, A. De Ugarte Duffard, R. Flewelling, H. Gehrels, N. Guever, T. Guziy, S. Hentunen, V. P. Huang, K. Y. Jelinek, M. Koch, T. S. Kubanek, P. Kuin, P. McKay, T. A. Mottola, S. Oates, S. R. O'Brien, P. Ohno, M. Page, M. J. Pandey, S. B. Perez del Pulgar, C. Rujopakarn, W. Rykoff, E. Salmi, T. Sanchez-Ramirez, R. Schaefer, B. E. Sergeev, A. Sonbas, E. Sota, A. Tello, J. C. Yamaoka, K. Yost, S. A. Yuan, F. TI PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB 110205A) ID GAMMA-RAY BURST; INITIAL LORENTZ FACTOR; INTERNAL-SHOCK MODEL; X-RAY; LIGHT CURVES; OPTICAL-EMISSION; MAGNETIC-FIELDS; REVERSE SHOCK; RELATIVISTIC SHOCK; DENSITY-JUMP AB We present a comprehensive analysis of a bright, long-duration (T-90 similar to 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the gamma-ray band, with optical light curve showing correlation with gamma-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to gamma-ray (1 eV to 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission (similar to 1100 s), a bright (R = 14.0) optical emission hump with very steep rise (alpha similar to 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R-GRB similar to 3 x 10(13) cm), initial Lorentz factor of the outflow (Gamma(0) similar to 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget. C1 [Zheng, W.; Akerlof, C. W.; McKay, T. A.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Shen, R. F.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Sakamoto, T.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Beardmore, A. P.; O'Brien, P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [De Pasquale, M.; Breeveld, A.; Kuin, P.; Oates, S. R.; Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Wu, X. F.; Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Gorosabel, J.; Castro-Tirado, A. J.; Cunniffe, R.; Duffard, R.; Guziy, S.; Jelinek, M.; Kubanek, P.; Sanchez-Ramirez, R.; Sota, A.; Tello, J. C.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Urata, Y.; Chuang, C. J.] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Sugita, S.] Nagoya Univ, EcoTopia Sci Inst, Chikusa Ku, Nagoya, Aichi 4648603, Japan. [Pozanenko, A.] Space Res Inst IKI, Moscow 117997, Russia. [Nissinen, M.; Hentunen, V. P.; Salmi, T.] Taurus Hill Observ, Kangaslampi 79480, Finland. [Sahu, D. K.; Anto, P.] Indian Inst Astrophys, CREST, Bangalore 560034, Karnataka, India. [Im, M.] Seoul Natl Univ, FPRD, Dept Phys & Astron, Ctr Explorat Origin Universe, Seoul, South Korea. [Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Andreev, M.; Sergeev, A.] RAS, Inst Astron, Terskol Branch, Kabardino Balkaria Repub 361605, Russia. [Andreev, M.; Sergeev, A.] NASU, Int Ctr Astron & Medicoecol Res, UA-03680 Kiev, Ukraine. [Klunko, E.] Inst Solar Terr Phys, Irkutsk 664033, Russia. [Volnova, A.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Carsenty, U.; Mottola, S.] DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Castillo-Carrion, S.; Perez del Pulgar, C.] Univ Malaga, Dept EVLT, E-29071 Malaga, Spain. [Chester, M. M.; Koch, T. S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Postigo, A. De Ugarte] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Flewelling, H.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Guever, T.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Huang, K. Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Ohno, M.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Pandey, S. B.] Aryabhatta Res Inst Observat Sci ARIES, Manora Peak 263129, Nainital, India. [Rujopakarn, W.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Rykoff, E.] EO Lawrence Berkeley Natl Laboratoy, Berkeley, CA 94720 USA. [Schaefer, B. E.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Sonbas, E.] Adiyaman Univ, Dept Phys, TR-02040 Adiyaman, Turkey. [Sonbas, E.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan. [Yost, S. A.] Coll St Benedict, Dept Phys, Collegeville, MN 56321 USA. [Yuan, F.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. RP Zheng, W (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM zwk@umich.edu; rfshen@astro.utoronto.ca; zhang@physics.unlv.edu RI Rujopakarn, Wiphu/E-7849-2012; Im, Myungshin/B-3436-2013; Duffard, Rene/A-2233-2009; McKay, Timothy/C-1501-2009; Guver, Tolga/B-1039-2014; Kubanek, Petr/G-7209-2014; Jelinek, Martin/E-5290-2016; Wu, Xuefeng/G-5316-2015; OI de Ugarte Postigo, Antonio/0000-0001-7717-5085; Rujopakarn, Wiphu/0000-0002-0303-499X; Flewelling, Heather/0000-0002-1050-4056; Sanchez-Ramirez, Ruben/0000-0002-7158-5099; Im, Myungshin/0000-0002-8537-6714; McKay, Timothy/0000-0001-9036-6150; Guver, Tolga/0000-0002-3531-9842; Jelinek, Martin/0000-0003-3922-7416; Wu, Xuefeng/0000-0002-6299-1263; Castro-Tirado, A. J./0000-0003-2999-3563 FU NASA [NNX08AV63G, NNX10AD48G]; NSF [PHY-0801007, AST-0908362]; NSERC; UK Space Agency; CRI [2009-0063616]; MEST of the Korean government; Spanish Junta de Andalucia [FQM-02192]; Spanish Ministry of Science and Innovation [AYA 2009-14000-C03-01, AYA2008-03467/ESP]; UK STFC; [CE11E0090] FX We thank the anonymous referee for helpful comments and suggestions to improve the manuscript. This research is supported by the NASA grant NNX08AV63G and the NSF grant PHY-0801007. R.F.S. is supported by an NSERC Discovery grant. A.P.B., A.A.B., N.P.K., M.J.P., and S.R.O. acknowledge the support from the UK Space Agency. B.Z. acknowledges NASA NNX10AD48G and NSF AST-0908362 for support. M.I. acknowledges support from the CRI grant 2009-0063616, funded by MEST of the Korean government. The Centre for All-sky Astrophysics is an Australian Research Council Centre of Excellence, funded by grant CE11E0090. This research made use of public data supplied by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center. This work has been supported by Spanish Junta de Andalucia through program FQM-02192 and from the Spanish Ministry of Science and Innovation through Projects (including FEDER funds) AYA 2009-14000-C03-01 and AYA2008-03467/ESP. We thank INTA and EELM-CSIC for hosting the BOOTES observatories. The work is based partly on data acquired at the Centro Astronomico Hispano Aleman (CAHA) de Calar Alto and Observatorio de Sierra Nevada (OSN). This research was also supported by the UK STFC. NR 148 TC 18 Z9 18 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 90 DI 10.1088/0004-637X/751/2/90 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600011 ER PT J AU De Luca, M Gupta, H Neufeld, D Gerin, M Teyssier, D Drouin, BJ Pearson, JC Lis, DC Monje, R Phillips, TG Goicoechea, JR Godard, B Falgarone, E Coutens, A Bell, TA AF De Luca, M. Gupta, H. Neufeld, D. Gerin, M. Teyssier, D. Drouin, B. J. Pearson, J. C. Lis, D. C. Monje, R. Phillips, T. G. Goicoechea, J. R. Godard, B. Falgarone, E. Coutens, A. Bell, T. A. TI HERSCHEL/HIFI DISCOVERY OF HCL+ IN THE INTERSTELLAR MEDIUM SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; ISM: abundances; ISM: molecules; line: identification; molecular processes; radio lines: ISM ID CLOUDS; CHLORINE; MOLECULES; OMC-1 AB The radical ion HCl+, a key intermediate in the chlorine chemistry of the interstellar gas, has been identified for the first time in the interstellar medium with the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared. The ground-state rotational transition of (HCl+)-Cl-35, (2)Pi(3/2)J = 5/2-3/2, showing.-doubling and hyperfine structure, is detected in absorption toward the Galactic star-forming regions W31C (G10.6-0.4) and W49N. The complex interstellar absorption features are modeled by convolving in velocity space the opacity profiles of other molecular tracers toward the same sources with the fine and hyperfine structure of HCl+. This structure is derived from a combined analysis of optical data from the literature and new laboratory measurements of pure rotational transitions, reported in the accompanying Letter by Gupta et al. The models reproduce well the interstellar absorption, and the frequencies inferred from the astronomical observations are in exact agreement with those calculated using spectroscopic constants derived from the laboratory data. The detection of (HCl+)-Cl-37 toward W31C, with a column density consistent with the expected Cl-35/Cl-37 isotopic ratio, provides additional evidence for the identification. A comparison with the chemically related molecules HCl and H2Cl+ yields an abundance ratio of unity with both species (HCl+ : H2Cl+ : HCl similar to 1). These observations also yield the unexpected result that HCl+ accounts for 3%-5% of the gas-phase chlorine toward W49N and W31C, values several times larger than the maximum fraction (similar to 1%) predicted by chemical models. C1 [De Luca, M.; Gerin, M.; Falgarone, E.] UPMC, LERMA LRA, UMR 8112, CNRS,Observ Paris,Ecole Normale Super, F-75231 Paris 05, France. [De Luca, M.; Gerin, M.; Falgarone, E.] UCP, F-75231 Paris 05, France. [Gupta, H.; Drouin, B. J.; Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Teyssier, D.] ESA, European Space Astron Ctr, E-28691 Madrid, Spain. [Lis, D. C.; Monje, R.; Phillips, T. G.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Goicoechea, J. R.; Godard, B.; Bell, T. A.] Ctr Astrobiol CSIC INTA, Madrid 28850, Spain. [Coutens, A.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. RP De Luca, M (reprint author), UPMC, LERMA LRA, UMR 8112, CNRS,Observ Paris,Ecole Normale Super, 24 Rue Lhomond, F-75231 Paris 05, France. RI Coutens, Audrey/M-4533-2014 OI Coutens, Audrey/0000-0003-1805-3920 FU Centre National de Recherche Spatiale (CNES); SCHISM [ANR-09-BLAN-0231-01]; NASA through JPL/Caltech; Spanish MICINN [AYA2009-07304, CSD2009-00038] FX We are indebted to I. Avruch, R. Higgins, and the OBerlin group for helpful discussions on spectroscopy and support on data reduction. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States (NASA) under the leadership of SRON, Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France and the US. Consortium members are Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia; Sweden: Chalmers University of Technology-MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University-Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: CalTech, JPL, NHSC. Support for this work was provided by the Centre National de Recherche Spatiale (CNES), by the SCHISM project (grant ANR-09-BLAN-0231-01), by NASA through an award issued by JPL/Caltech, and by the Spanish MICINN (grants AYA2009-07304 and CSD2009-00038). NR 37 TC 30 Z9 30 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L37 DI 10.1088/2041-8205/751/2/L37 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000015 ER PT J AU Gupta, H Drouin, BJ Pearson, JC AF Gupta, H. Drouin, B. J. Pearson, J. C. TI THE ROTATIONAL SPECTRUM OF HCl+ SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; ISM: molecules; line: identification; molecular data ID DIATOMIC-MOLECULES; STATES; PARAMETERS AB The rotational spectrum of the radical ion HCl+ has been detected at high resolution in the laboratory, confirming the identification reported in the accompanying Letter by De Luca et al., in diffuse clouds toward W31C and W49N. Three rotational transitions, one in the ground-state (2)Pi(3/2) ladder and two in the (2)Pi(1/2) ladder (643 cm(-1) above ground), were observed in a microwave discharge of He and HCl. Well-resolved chlorine hyperfine structure and.-doubling, and the detection of lines of (HCl+)-Cl-37 at precisely the expected isotopic shift, provide conclusive evidence for the laboratory identification. Detection of rotational transitions in the (2)Pi(1/2) ladder of HCl+ for the first time allows an experimental determination of the individual hyperfine coupling constants of chlorine and yields a precise value of eQq(2). The spectroscopic constants obtained by fitting a Hamiltonian simultaneously to our data and more than 8000 optical transitions are so precise that they allow us to calculate the frequencies of the (2)Pi(3/2)J = 5/2-3/2 transition observed in space to within 0.2 km s(-1), and indeed, those of the strongest rotational transitions below 7.5 THz, to better than 1 km s(-1). C1 [Gupta, H.; Drouin, B. J.; Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gupta, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Harshal.Gupta@jpl.nasa.gov FU National Aeronautics and Space Administration FX We thank E. A. Cohen for helpful advice on the spectroscopy of HCl+. We are grateful to S. Sander and K. D. Bayes for providing dry ice and an HCl regulator. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 23 TC 11 Z9 11 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L38 DI 10.1088/2041-8205/751/2/L38 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000016 ER PT J AU Wang, TJ Ofman, L Davila, JM Su, Y AF Wang, Tongjiang Ofman, Leon Davila, Joseph M. Su, Yang TI GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY SDO/AIA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: corona; Sun: flares; Sun: oscillations; Sun: UV radiation; waves ID CORONAL MASS EJECTION; REGION; WAVES; TRACE; KINK; SEISMOLOGY; DENSITY; MODELS; ARCADE AB The first evidence of transverse oscillations of a multistranded loop with growing amplitudes and internal coupling observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory is presented. The loop oscillation event occurred on 2011 March 8, triggered by a coronal mass ejection (CME). The multiwavelength analysis reveals the presence of multithermal strands in the oscillating loop, whose dynamic behaviors are temperature-dependent, showing differences in their oscillation amplitudes, phases, and emission evolution. The physical parameters of growing oscillations of two strands in 171 angstrom are measured and the three-dimensional loop geometry is determined using STEREO-A/EUVI data. These strands have very similar frequencies, and between two 193 angstrom strands a quarter-period phase delay sets up. These features suggest the coupling between kink oscillations of neighboring strands and the interpretation by the collective kink mode as predicted by some models. However, the temperature dependence of the multistranded loop oscillations was not studied previously and needs further investigation. The transverse loop oscillations are associated with intensity and loop width variations. We suggest that the amplitude-growing kink oscillations may be a result of continuous non-periodic driving by magnetic deformation of the CME, which deposits energy into the loop system at a rate faster than its loss. C1 [Wang, Tongjiang; Ofman, Leon; Su, Yang] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.; Su, Yang] NASA Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Su, Yang] Graz Univ, IGAM Dept Phys, A-8010 Graz, Austria. RP Wang, TJ (reprint author), Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE, Washington, DC 20064 USA. EM tongjiang.wang@nasa.gov RI Su, Yang/J-5381-2014 FU NASA [NNX08AE44G, NNX12AB34G, NNX09AG10G, NNX10AN10G] FX The authors are grateful to Drs. Jaume Terradas and Manuel Luna for their valuable comments. The work of T. W. was supported by NASA grants NNX08AE44G, NNX10AN10G, and NNX12AB34G. L.O. acknowledges support from NASA grants NNX09AG10G, NNX10AN10G, and NNX12AB34G. NR 35 TC 36 Z9 37 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L27 DI 10.1088/2041-8205/751/2/L27 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000005 ER PT J AU White, TR Bedding, TR Gruberbauer, M Benomar, O Stello, D Appourchaux, T Chaplin, WJ Christensen-Dalsgaard, J Elsworth, YP Garcia, RA Hekker, S Huber, D Kjeldsen, H Mosser, B Kinemuchi, K Mullally, F Still, M AF White, Timothy R. Bedding, Timothy R. Gruberbauer, Michael Benomar, Othman Stello, Dennis Appourchaux, Thierry Chaplin, William J. Christensen-Dalsgaard, Jorgen Elsworth, Yvonne P. Garcia, Rafael A. Hekker, Saskia Huber, Daniel Kjeldsen, Hans Mosser, Benoit Kinemuchi, Karen Mullally, Fergal Still, Martin TI SOLVING THE MODE IDENTIFICATION PROBLEM IN ASTEROSEISMOLOGY OF F STARS OBSERVED WITH KEPLER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: fundamental parameters; stars: interiors; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; STELLAR OSCILLATIONS; RED GIANTS; COROT; FREQUENCIES; SUN; GRANULATION; PARAMETERS; DIAGRAMS; SCIENCE AB Asteroseismology of F-type stars has been hindered by an ambiguity in identification of their oscillation modes. The regular mode pattern that makes this task trivial in cooler stars is masked by increased line widths. The absolute mode frequencies, encapsulated in the asteroseismic variable epsilon, can help solve this impasse because the values of epsilon implied by the two possible mode identifications are distinct. We find that the correct epsilon can be deduced from the effective temperature and the line widths and we apply these methods to a sample of solar-like oscillators observed with Kepler. C1 [White, Timothy R.; Bedding, Timothy R.; Benomar, Othman; Stello, Dennis; Huber, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [White, Timothy R.] Australian Astron Observ, Epping, NSW 1710, Australia. [Gruberbauer, Michael] St Marys Univ, Inst Computat Astrophys, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Appourchaux, Thierry] Univ Paris 11, Inst Astrophys Spatiale, UMR8617, CNRS, F-91405 Orsay, France. [Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, Danish AsteroSeismol Ctr DASC, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Garcia, Rafael A.] Univ Paris 07, Lab AIM, CEA DSM CNRS, IRFU SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Hekker, Saskia] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Mosser, Benoit] Univ Paris 07, LESIA, CNRS, Univ Paris 06,Observ Paris, F-92195 Meudon, France. [Kinemuchi, Karen; Still, Martin] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Mullally, Fergal] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP White, TR (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. EM t.white@physics.usyd.edu.au OI Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; Australian Research Council; Australian Postgraduate Award; University of Sydney; Australian Astronomical Observatory; Denison Merit Award; NSERC; Netherlands Organisation of Scientific Research (NWO) FX The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to the Kepler Mission for their tireless efforts which have made these results possible. Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. We acknowledge the support of the Australian Research Council. T. R. W. is supported by an Australian Postgraduate Award, a University of Sydney Merit Award, an Australian Astronomical Observatory PhD Scholarship and a Denison Merit Award. M. G. received financial support from an NSERC Vanier Scholarship. S. H. acknowledges financial support from the Netherlands Organisation of Scientific Research (NWO). NR 47 TC 19 Z9 19 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L36 DI 10.1088/2041-8205/751/2/L36 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000014 ER PT J AU Hoffmayer, ER Hendon, JM Parsons, GR AF Hoffmayer, Eric R. Hendon, Jill M. Parsons, Glenn R. TI Seasonal modulation in the secondary stress response of a carcharhinid shark, Rhizoprionodon terraenovae SO COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY LA English DT Article; Proceedings Paper CT Symposium on Physiological Stress Response in Elasmobranch Fishes/26th Annual Meeting of the American-Elasmobranch-Society CY JUL 10-11, 2010 CL Providence, RI SP Amer Elasmobranch Soc DE Glucose; Hematocrit; Lactate; Osmolality; Seasonal; Shark; Stress ID ATLANTIC SHARPNOSE SHARK; GILL-NET CAPTURE; GULF-OF-MEXICO; RAINBOW-TROUT; SQUALUS-ACANTHIAS; CORTICOSTERONE CONCENTRATIONS; POSTRELEASE SURVIVORSHIP; PHYSIOLOGICAL-RESPONSE; SALVELINUS-FONTINALIS; MOLECULAR ECOLOGY AB Some animals have the ability to modulate their stress response depending on the type and duration of the stressor. Modulations can initiate behavioral changes that increase fitness during the stressful period. The goal of this study was to determine if Atlantic sharpnose sharks, Rhizoprionodon terraenovae, exhibit seasonal modulations in their secondary stress parameters. Mature, male Atlantic sharpnose sharks were acutely stressed and serially sampled for one-hour, during spring, summer, and fall. An elevated stress response was observed for plasma glucose, lactate and osmolality during summer compared to spring and fall. Glucose also exhibited elevated initial concentrations, followed by a linear response during summer; varying from the asymptotic response during spring and fall. Hematocrit did not show differences over time or season; however, the power of the analysis was low due to the small sample size. When an additional 120 samples were included in the analysis, significantly higher initial hematocrit values were found during summer. Based on these results we suggest that summer is a demanding time for Atlantic sharpnose sharks. Published by Elsevier Inc. C1 [Hoffmayer, Eric R.; Parsons, Glenn R.] Univ Mississippi, Dept Biol, University, MS 38677 USA. [Hendon, Jill M.] Univ So Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA. RP Hoffmayer, ER (reprint author), Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Mississippi Labs, 3209 Frederic St, Pascagoula, MS 39567 USA. EM eric.hoffmayer@noaa.gov NR 71 TC 14 Z9 14 U1 0 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1095-6433 EI 1531-4332 J9 COMP BIOCHEM PHYS A JI Comp. Biochem. Physiol. A-Mol. Integr. Physiol. PD JUN PY 2012 VL 162 IS 2 BP 81 EP 87 DI 10.1016/j.cbpa.2011.05.002 PG 7 WC Biochemistry & Molecular Biology; Physiology; Zoology SC Biochemistry & Molecular Biology; Physiology; Zoology GA 946ED UT WOS:000304333400003 PM 21596154 ER PT J AU Lee, D Dinov, I Dong, B Gutman, B Yanovsky, I Toga, AW AF Lee, Daren Dinov, Ivo Dong, Bin Gutman, Boris Yanovsky, Igor Toga, Arthur W. TI CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms SO COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE LA English DT Article DE Graphics Processing Unit (GPU); Performance Optimization; Compute-bound; Memory-bound; CUDA; Neuroimaging ID MEDICAL IMAGE REGISTRATION; ITERATIVE REGULARIZATION; BRAIN; ATLAS; RESTORATION; GPU AB As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6x faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129x for the 3D unbiased nonlinear image registration technique and 93x for the non-local means surface denoising algorithm. (C) 2010 Elsevier Ireland Ltd. All rights reserved. C1 [Lee, Daren; Dinov, Ivo; Gutman, Boris; Toga, Arthur W.] Univ Calif Los Angeles, David Geffen Sch Med, Lab Neuro Imaging, Los Angeles, CA 90095 USA. [Dong, Bin] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA. [Yanovsky, Igor] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Toga, AW (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Lab Neuro Imaging, 635 Charles Young Dr S,Suite 225, Los Angeles, CA 90095 USA. EM daren.lee@loni.ucla.edu; ivo.dinov@loni.ucla.edu; b1dong@math.ucsd.edu; boris.gutman@loni.ucla.edu; igor.yanovsky@jpl.nasa.gov; toga@loni.ucla.edu RI Dong, Bin/J-3104-2014; OI Dinov, Ivo/0000-0003-3825-4375 FU National Institutes of Health [U54 RR021813]; NIH/NCRR [5 P41 RR013642]; NIH/NIMH [5 R01 MH71940]; NSF [0716055] FX This work was funded by the National Institutes of Health grants U54 RR021813, NIH/NCRR 5 P41 RR013642, NIH/NIMH 5 R01 MH71940, and NSF grant 0716055. The research of Igor Yanovsky was carried out in part at the University of California, Los Angeles, and in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 47 TC 11 Z9 11 U1 2 U2 8 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0169-2607 EI 1872-7565 J9 COMPUT METH PROG BIO JI Comput. Meth. Programs Biomed. PD JUN PY 2012 VL 106 IS 3 BP 175 EP 187 DI 10.1016/j.cmpb.2010.10.013 PG 13 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Biomedical; Medical Informatics SC Computer Science; Engineering; Medical Informatics GA 944WM UT WOS:000304234500005 PM 21159404 ER PT J AU Samanta, A Ganguly, S Vermote, E Nemani, RR Myneni, RB AF Samanta, Arindam Ganguly, Sangram Vermote, Eric Nemani, Ramakrishna R. Myneni, Ranga B. TI Why Is Remote Sensing of Amazon Forest Greenness So Challenging? SO EARTH INTERACTIONS LA English DT Article DE Amazon forests; Greenness; Vegetation index; Remote sensing ID SPECTRAL VEGETATION INDEXES; BIOMASS-BURNING AEROSOLS; ATMOSPHERIC CORRECTION; SURFACE-TEMPERATURE; SOUTH-AMERICA; MODIS; PRODUCTIVITY; IRRADIANCE; PHENOLOGY; DROUGHT AB The prevalence of clouds and aerosols and their impact on satellite-measured greenness levels of forests in southern and central Amazonia are explored in this article using 10 years of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) greenness data: normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). During the wet season (October-March), cloud contamination of greenness data is pervasive;nearly the entire region lacks uncorrupted observations. Even in the dry season (July-September), nearly 60%-66% of greenness data are corrupted, mainly because of biomass burning aerosol contamination. Under these conditions, spectrally varying residual atmospheric effects in surface reflectance data introduce artifacts into greenness indices; NDVI is known to artificially decrease, whereas EVI, given its formulation and use of blue channel surface reflectance data, shows artificial enhancement, which manifests as large patches of enhanced greenness. These issues render remote sensing of Amazon forest greenness a challenging task. C1 [Samanta, Arindam] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Samanta, Arindam; Myneni, Ranga B.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Ganguly, Sangram] NASA, BAERI, Ames Res Ctr, Moffett Field, CA USA. [Vermote, Eric] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Nemani, Ramakrishna R.] NASA, Biospher Sci Branch, Ames Res Ctr, Moffett Field, CA USA. RP Samanta, A (reprint author), Atmospher & Environm Res Inc, 131 Hartwell Ave, Lexington, MA 02421 USA. EM arindam.sam@gmail.com RI Myneni, Ranga/F-5129-2012; Vermote, Eric/K-3733-2012; ganguly, sangram/B-5108-2010 FU NASA Earth Science Enterprise FX This research was funded by the NASA Earth Science Enterprise. NR 43 TC 11 Z9 11 U1 1 U2 50 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD JUN PY 2012 VL 16 AR 7 DI 10.1175/2012EI440.1 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 947FI UT WOS:000304413400001 ER PT J AU Farrell, SL Kurtz, N Connor, LN Elder, BC Leuschen, C Markus, T McAdoo, DC Panzer, B Richter-Menge, J Sonntag, JG AF Farrell, Sinead Louise Kurtz, Nathan Connor, Laurence N. Elder, Bruce C. Leuschen, Carlton Markus, Thorsten McAdoo, David C. Panzer, Ben Richter-Menge, Jacqueline Sonntag, John G. TI A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Altimetry; geophysical measurement techniques; remote sensing; sea ice; snow ID LASER ALTIMETER MEASUREMENTS; AIRBORNE LASER; RADAR MEASUREMENTS; DEPTH; VARIABILITY; VALIDATION; CAMPAIGN; SHEBA AB We present a first assessment of airborne laser and radar altimeter data over snow-covered sea ice, gathered during the National Aeronautics and Space Administration Operation IceBridge Mission. We describe a new technique designed to process radar echograms fromthe University of Kansas snow radar to estimate snow depth. We combine IceBridge laser altimetry with radar-derived snow depths to determine sea ice thickness. Results are validated through comparison with direct measurements of snow and ice thickness collected in situ at the Danish GreenArc 2009 sea ice camp located on fast ice north of Greenland. The IceBridge instrument suite provides accurate measurements of snow and ice thickness, particularly over level ice. Mean IceBridge snow and ice thickness agree with in situ measurements to within similar to 0.01 and similar to 0.05 m, respectively, while modal snow and ice thickness estimates agree to within 0.02 and 0.10 m, respectively. IceBridge snow depths were correlated with in situ measurements (R = 0.7, for an averaging length of 55 m). The uncertainty associated with the derived IceBridge sea ice thickness estimates is 0.40 m. The results demonstrate the retrieval of both first-year and multiyear ice thickness from IceBridge data. The airborne data were however compromised in heavily ridged ice where snow depth, and hence ice thickness, could not be measured. Techniques developed as part of this study will be used for routine processing of IceBridge retrievals over Arctic sea ice. The limitations of the GreenArc study are discussed, and recommendations for future validation of airborne measurements via field activities are provided. C1 [Farrell, Sinead Louise] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Kurtz, Nathan] Univ Maryland Baltimore Cty, NASA, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Kurtz, Nathan; Markus, Thorsten] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Connor, Laurence N.; McAdoo, David C.] Natl Ocean & Atmospher Adm, Lab Satellite Altimetry, Satellite Oceanog & Climatol Div, Silver Spring, MD 20910 USA. [Elder, Bruce C.; Richter-Menge, Jacqueline] USA, Cold Reg Res & Engn Lab, Corps Engineers, Hanover, NH 03755 USA. [Leuschen, Carlton; Panzer, Ben] Univ Kansas, Ctr Remote Sensing Ice Sheets, Lawrence, KS 66045 USA. [Sonntag, John G.] URS Corp, NASA, Wallops Flight Facil, Wallops Isl, VA 23337 USA. RP Farrell, SL (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. EM sineadf@umd.edu; nathan.t.kurtz@nasa.gov; laurence.connor@noaa.gov; Bruce.C.Elder@usace.army.mil; leuschen@cresis.ku.edu; thorsten.markus@nasa.gov; dave.mcadoo@noaa.gov; bpanzer@ku.edu; Jacqueline.A.Richter-Menge@usace.army.mil; john.g.sonntag@nasa.gov RI Connor, Laurence/E-7930-2011; Farrell, Sinead/F-5586-2010; McAdoo, Dave/F-5612-2010 OI Connor, Laurence/0000-0002-5276-6257; Farrell, Sinead/0000-0003-3222-2751; McAdoo, Dave/0000-0002-7533-5564 FU NOAA; NASA FX This work was supported by NOAA, and the NASA Cryospheric Sciences Program. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position, policy, or decision. NR 34 TC 24 Z9 24 U1 4 U2 34 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2012 VL 50 IS 6 BP 2098 EP 2111 DI 10.1109/TGRS.2011.2170843 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 945AZ UT WOS:000304246500002 ER PT J AU Helder, DL Malla, R Mettler, CJ Markham, BL Micijevic, E AF Helder, Dennis L. Malla, Rimy Mettler, Cory J. Markham, Brian L. Micijevic, Esad TI Landsat 4 Thematic Mapper Calibration Update SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; Landsat; radiometry; thematic mapper ID RADIOMETRIC CALIBRATION; PERFORMANCE AB The Landsat 4 Thematic Mapper (TM) collected imagery of the Earth's surface from 1982 to 1993. Although largely overshadowed by Landsat 5 which was launched in 1984, Landsat 4 TM imagery extends the TM-based record of the Earth back to 1982 and also substantially supplements the image archive collected by Landsat 5. To provide a consistent calibration record for the TM instruments, Landsat 4 TM was cross-calibrated to Landsat 5 using nearly simultaneous overpass imagery of pseudo-invariant calibration sites (PICS) in the time period of 1988-1990. To determine if the radiometric gain of Landsat 4 had changed over its lifetime, time series from two PICS locations (a Saharan site known as Libya 4 and a site in southwest North America, commonly referred to as the Sonoran Desert site) were developed. The results indicated that Landsat 4 had been very stable over its lifetime, with no discernible degradation in sensor performance in all reflective bands except band 1. In contrast, band 1 exhibited a 12% decay in responsivity over the lifetime of the instrument. Results from this paper have been implemented at USGS EROS, which enables users of Landsat TM data sets to obtain consistently calibrated data from Landsat 4 and 5 TM as well as Landsat 7 ETM+ instruments. C1 [Helder, Dennis L.] S Dakota State Univ, Elect Engn & Comp Sci Dept, Brookings, SD 57007 USA. [Malla, Rimy] S Dakota State Univ, Image Proc Lab, Brookings, SD 57007 USA. [Markham, Brian L.] NASA, Landsat Project Sci Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Micijevic, Esad] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. RP Helder, DL (reprint author), S Dakota State Univ, Elect Engn & Comp Sci Dept, Brookings, SD 57007 USA. EM Dennis.Helder@sdstate.edu; rimy.joshi@gmail.com; cory.mettler@sdstate.edu; Brian.L.Markham@nasa.gov; emicijevic@usgs.gov RI Markham, Brian/M-4842-2013 OI Markham, Brian/0000-0002-9612-8169 FU NASA Goddard Space Flight Center; USGS EROS; U.S. Geological Survey [G10PC00044] FX This work was supported by the Landsat Project Science Office, NASA Goddard Space Flight Center, and by the USGS EROS. This work was performed under U.S. Geological Survey contract G10PC00044. NR 20 TC 3 Z9 5 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2012 VL 50 IS 6 BP 2400 EP 2408 DI 10.1109/TGRS.2011.2171350 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 945AZ UT WOS:000304246500024 ER PT J AU Stapleton, SE Waas, AM Arnold, SM AF Stapleton, Scott E. Waas, Anthony M. Arnold, Steven M. TI Functionally graded adhesives for composite joints SO INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES LA English DT Article DE Finite element stress analysis; Stress distribution; Mechanical properties of adhesives; Joint design; Functionally graded bondline ID BONDED JOINTS; MATRIX; BEAMS AB Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Stapleton, Scott E.; Waas, Anthony M.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48105 USA. [Arnold, Steven M.] NASA, Glenn Res Ctr, Life Predict Branch, Cleveland, OH 44135 USA. RP Waas, AM (reprint author), Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48105 USA. EM dcw@umich.edu FU Space Vehicle Technology Institute [NCC3-989]; NASA; Department of Defense; NASA Glenn Research Center through the GSRP FX The authors would like to thank Brett Bednarcyk from NASA Glenn for valuable input. Portions of this work were financially supported by the Space Vehicle Technology Institute under grant NCC3-989 jointly funded by NASA and the Department of Defense. Additional financial support was provided by NASA Glenn Research Center through the GSRP Fellowship. NR 31 TC 24 Z9 24 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-7496 J9 INT J ADHES ADHES JI Int. J. Adhes. Adhes. PD JUN PY 2012 VL 35 BP 36 EP 49 DI 10.1016/j.ijadhadh.2011.11.010 PG 14 WC Engineering, Chemical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 949MM UT WOS:000304580300006 ER PT J AU Nesbitt, JA Opila, EJ Nathal, MV AF Nesbitt, James A. Opila, Elizabeth J. Nathal, Michael V. TI In Situ Growth of a Yb2O3 Layer for Sublimation Suppression for Yb14MnSb11 Thermoelectric Material for Space Power Applications SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Zintl; Yb14MnSb11; sublimation; coatings; oxidation AB The compound Yb14MnSb11 is a -type thermoelectric material of interest to the National Aeronautics and Space Administration (NASA) as a candidate replacement for the state-of-the-art Si-Ge used in current radioisotope thermoelectric generators (RTGs). Ideally, the hot end of this leg would operate at 1000A degrees C in the vacuum of space. Although Yb14MnSb11 shows the potential to double the value of the thermoelectric figure of merit () over that of Si-Ge at 1000A degrees C, it suffers from a high sublimation rate at elevated temperatures and would require a coating in order to survive the required RTG lifetime of 14 years. The purpose of the present work is to measure the sublimation rate of Yb14MnSb11 and to investigate sublimation suppression for this material. This paper reports on the sublimation rate of Yb14MnSb11 at 1000A degrees C (similar to 3 x 10(-3) g/cm(2) h) and efforts to reduce the sublimation rate with an grown Yb2O3 layer. Despite the success in forming thin, dense, continuous, and adherent oxide scales on Yb14MnSb11, the scales did not prove to be sublimation barriers. C1 [Nesbitt, James A.; Nathal, Michael V.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Opila, Elizabeth J.] Univ Virginia, Charlottesville, VA 22904 USA. RP Nesbitt, JA (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM JNesbitt@NASA.gov FU Radioisotope Power Systems office at the NASA Glenn Research Center FX The support of the Radioisotope Power Systems office at the NASA Glenn Research Center is gratefully acknowledged. NR 14 TC 5 Z9 5 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2012 VL 41 IS 6 BP 1267 EP 1273 DI 10.1007/s11664-011-1875-7 PG 7 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 944LZ UT WOS:000304205100050 ER PT J AU Beck, J Alvarado, M Nemir, D Nowell, M Murr, L Prasad, N AF Beck, Jan Alvarado, Manuel Nemir, David Nowell, Mathew Murr, Lawrence Prasad, Narasimha TI Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Thermoelectric; explosive; consolidation; shock wave; nanopowder; atomization; compaction AB Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results. C1 [Beck, Jan; Alvarado, Manuel; Nemir, David] TXL Grp Inc, El Paso, TX 79903 USA. [Nowell, Mathew] EDAX Inc, Draper, UT 84020 USA. [Murr, Lawrence] Univ Texas El Paso, Dept Met & Mat Engn, El Paso, TX 79968 USA. [Prasad, Narasimha] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Beck, J (reprint author), TXL Grp Inc, 2000 Wyoming Ave, El Paso, TX 79903 USA. EM david@txlgroup.com OI Murr, Lawrence/0000-0001-5942-8376 FU NASA [NNX09CF76P, NNX10CB69C] FX This work was supported by NASA under Contracts #NNX09CF76P and NNX10CB69C. NR 7 TC 5 Z9 5 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2012 VL 41 IS 6 BP 1595 EP 1600 DI 10.1007/s11664-011-1878-4 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 944LZ UT WOS:000304205100103 ER PT J AU Krishnan, S Karri, NK Gogna, PK Chase, JR Fleurial, JP Hendricks, TJ AF Krishnan, Shankar Karri, Naveen K. Gogna, Pawan K. Chase, Jordan R. Fleurial, Jean-Pierre Hendricks, Terry J. TI Progress Towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Thermoelectric generator; heat transfer; system analysis AB There is enormous military and commercial interest in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. In the design and development of this portable TE power system using a JP-8 combustor as a high-temperature heat source, optimal process flows depend on efficient heat generation, transfer, and recovery within the system. The combustor performance and TE subsystem performance were coupled directly through combustor exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation and design optimization of this TE power system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed TE converter thermal/mechanical modeling. To this end, this paper reports integration of system-level process flow simulations using CHEMCAD (TM) commercial software with in-house TE converter and module optimization, and heat exchanger analyses using COMSOL (TM) software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem-level conversion efficiencies exceeding 10%. These TE advances are integrated with a high-performance microtechnology combustion reactor based on recent advances at Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation approach lead directly to system efficiency-power maps defining potentially available optimal system operating conditions and regimes. Further, it is shown that, for a given fuel flow rate, there exists a combination of recuperative effectiveness and hot-side heat exchanger effectiveness that provides a higher specific power output from the TE modules. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high-performance TE devices, and microtechnologies to produce a compact, lightweight, combustion-driven TE power system prototype that operates on common fuels. C1 [Krishnan, Shankar; Hendricks, Terry J.] Pacific NW Natl Lab, MicroProd Breakthrough Inst, Corvallis, OR 97330 USA. [Karri, Naveen K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hendricks, Terry J.] Battelle Mem Inst, Columbus, OH 43201 USA. RP Krishnan, S (reprint author), Pacific NW Natl Lab, MicroProd Breakthrough Inst, Corvallis, OR 97330 USA. EM hendrickst@battelle.org FU U.S. Department of Energy [DE-AC05-76RL01830]; US Army Logistics Innovation Agency FX This manuscript has been authored by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; The authors would like to thank and acknowledge the US Army Logistics Innovation Agency and Mr. Sam Cooper for their support of this work. NR 10 TC 8 Z9 8 U1 2 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2012 VL 41 IS 6 BP 1622 EP 1631 DI 10.1007/s11664-012-1964-2 PG 10 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 944LZ UT WOS:000304205100107 ER PT J AU Ghosh, T Banday, AJ Jaffe, T Dickinson, C Davies, R Davis, R Gorski, K AF Ghosh, Tuhin Banday, A. J. Jaffe, Tess Dickinson, Clive Davies, Rod Davis, Richard Gorski, Krzysztof TI Foreground analysis using cross-correlations of external templates on the 7-year Wilkinson Microwave Anisotropy Probe data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: general; cosmology: observations; diffuse radiation; radio continuum: ISM ID SPINNING DUST GRAINS; DIFFUSE GALACTIC EMISSION; RADIO-CONTINUUM EMISSION; H-ALPHA; WMAP OBSERVATIONS; FULL-SKY; COMPONENT SEPARATION; INTERSTELLAR-MEDIUM; INFRARED-EMISSION; SCATTERED-LIGHT AB Wilkinson Microwave Anisotropy Probe (WMAP) data when combined with ancillary data on freefree, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here we examine the sky variation at intermediate and high latitudes using a cross-correlation technique. In particular, we compare the observed emission in several global partitions of the sky plus 33 selected sky regions to three standard templates. The regions are selected using a criterion based on the morphology of these template maps. The synchrotron emission shows evidence of steepening between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky, but the current data are not precise enough to accurately quantify this from region to region. The Ha template correlated emission derived from the global fits shows clear evidence of deviation from a freefree spectrum. If this spectrum is decomposed into a contribution from both freefree and spinning dust emission in the warm ionized medium of the Galaxy, the derived freefree emissivity corresponds to a mean electron temperature of similar to 6000 K (a value critically dependent on the impact of dust absorption on the Ha intensity), and the spinning dust emission has a peak emission in intensity typically in the range 4050 GHz. However, the analysis of the smaller regions is generally unrevealing and the analysis presented here does not unambiguously demonstrate the presence of spinning dust emission in the warm ionized medium, as advocated by Dobler & Finkbeiner. The anomalous microwave emission associated with dust is detected at high significance in most of the 33 fields studied. The anomalous emission correlates well with the Finkbeiner et al. model 8 predictions (FDS8) at 94 GHz, and is well described globally by a power-law emission model with an effective spectral index between 20 and 60 GHz of beta similar to-2.7. It is clear that attempts to explain the emission by spinning dust models require multiple components, which presumably relates to a complex mix of emission regions along a given line of sight. An enhancement of the thermal dust contribution over the FDS8 predictions by a factor similar to 1.2 is required with such models. Furthermore, the emissivity varies by a factor of similar to 50 per cent from cloud to cloud relative to the mean. The significance of these results for the correction of cosmic microwave background data for Galactic foreground emission is discussed. C1 [Ghosh, Tuhin] IUCAA, Pune 411007, Maharashtra, India. [Banday, A. J.; Jaffe, Tess] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Banday, A. J.; Jaffe, Tess] CNRS, IRAP, F-31028 Toulouse 4, France. [Dickinson, Clive; Davies, Rod; Davis, Richard] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Gorski, Krzysztof] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gorski, Krzysztof] CALTECH, Pasadena, CA 91125 USA. [Gorski, Krzysztof] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Ghosh, T (reprint author), IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. EM tuhin@iucaa.ernet.in RI Ghosh, Tuhin/E-6899-2016 NR 68 TC 17 Z9 17 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 422 IS 4 BP 3617 EP 3642 DI 10.1111/j.1365-2966.2012.20875.x PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 945AV UT WOS:000304246100058 ER PT J AU Ubelmann, C Verron, J Brankart, JM Brasseur, P Cosme, E AF Ubelmann, Clement Verron, Jacques Brankart, Jean-Michel Brasseur, Pierre Cosme, Emmanuel TI Assimilating altimetric data to control the tropical instability waves: an observing system simulation experiment study SO OCEAN DYNAMICS LA English DT Article DE Data assimilation; Altimetry; Orbital parameters; Twin experiments; Tropical instability waves ID PACIFIC-OCEAN; ATLANTIC-OCEAN; FUTURE; MODEL; OCEANOGRAPHY; TEMPERATURE; CIRCULATION; SATELLITE; VORTICES; IMPACT AB Tropical instability waves (TIWs) are not easily simulated by ocean circulation models primarily because such waves are very sensitive to wind forcing. In this study, we investigate the impact of assimilating sea surface height (SSH) observations on the control of TIWs in an observing system simulation experiment (OSSE) context based on a regional model configuration of the tropical Atlantic. A Kalman filtering method with suitable adaptations is found to be successful when altimetric data are assimilated in conjunction with sea surface temperature and some in situ temperature/salinity profiles. In this rather realistic system, the TIW phase is roughly controlled with a single nadir observing satellite. However, a right correction of the TIW structure and amplitude requires at least two nadir observing satellites or a wide swath observing satellite. The significant impact of orbital parameters is also demonstrated: in particular, the Jason or GFO satellite orbits are found to be more suitable than the ENVISAT orbit. More generally, it is found that as soon as adequate sub-sampling exists (with periods of 5-10 days), the length of the repetitivity cycle of orbits does not have a significant impact. C1 [Ubelmann, Clement] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Verron, Jacques; Brankart, Jean-Michel; Brasseur, Pierre; Cosme, Emmanuel] CNRS UJF Grenoble 1 G INP, LEGI UMR5519, F-38041 Grenoble 9, France. RP Ubelmann, C (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM clement.ubelmann@jpl.nasa.gov FU CNES (Centre National d'Etudes Spatiales) FX The authors would like to thank the CNES (Centre National d'Etudes Spatiales) for financial support and the IDRIS (Institut du Developpement et des Ressources en Informatique Scientifique) for assistance with computing. The calculations were performed using HPC resources from GENCI-IDRIS (Grant 2009-011279). Many thanks are also due to Jean-Marc Molines for helping the authors set up the model configuration. NR 40 TC 0 Z9 0 U1 0 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 J9 OCEAN DYNAM JI Ocean Dyn. PD JUN PY 2012 VL 62 IS 6 BP 867 EP 880 DI 10.1007/s10236-012-0539-3 PG 14 WC Oceanography SC Oceanography GA 945XA UT WOS:000304308500004 ER PT J AU Volkov, DL Zlotnicki, V AF Volkov, Denis L. Zlotnicki, Victor TI Performance of GOCE and GRACE-derived mean dynamic topographies in resolving Antarctic Circumpolar Current fronts SO OCEAN DYNAMICS LA English DT Article DE Antarctic Circumpolar Current; Southern Ocean; Antarctic Circumpolar Current fronts; Sub-Antarctic front; Polar front; South ACC front; Satellite altimetry; Satellite gravity; Mean dynamic topography; GOCE; GRACE; Sea surface height gradients ID SOUTHERN-OCEAN; VARIABILITY; CIRCULATION; TRANSPORT; MODEL AB Presently, two satellite missions, Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE), are making detailed measurements of the Earth's gravity field, from which the geoid can be obtained. The mean dynamic topography (MDT) is the difference between the time-averaged sea surface height and the geoid. The GOCE mission is aimed at determining the geoid with superior accuracy and spatial resolution, so that a more accurate MDT can be estimated. In this study, we determine the mean positions of the Antarctic Circumpolar Current fronts using the purely geodetic estimates of the MDT constructed from an altimetric mean sea surface and GOCE and GRACE geoids. Overall, the frontal positions obtained from the GOCE and GRACE MDTs are close to each other. This means that these independent estimates are robust and can potentially be used to validate frontal positions obtained from sparse and irregular in situ measurements. The geodetic frontal positions are compared to earlier estimates as well as to those derived from MDTs based on satellite and in situ measurements and those obtained from an ocean data synthesis product. The position of the Sub-Antarctic Front identified in the GOCE MDT is found to be in better agreement with the previous estimates than that identified in the GRACE MDT. The geostrophic velocities derived from the GOCE MDT are also closer to observations than those derived from the GRACE MDT. Our results thus show that the GOCE mission represents an improvement upon GRACE in terms of the time-averaged geoid. C1 [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Volkov, Denis L.; Zlotnicki, Victor] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Volkov, DL (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM denis.volkov@jpl.nasa.gov RI Volkov, Denis/A-6079-2011 OI Volkov, Denis/0000-0002-9290-0502 FU National Aeronautics and Space Administration (NASA) FX This work was funded by the NASA Physical Oceanography program and carried out at Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The authors thank S. Sokolov, S. R. Rintoul, and A. H. Orsi for providing their estimates of frontal positions. Comments from two anonymous reviewers and the editor K. Heywood are greatly appreciated. Copyright 2011 California Institute of Technology. Government sponsorship is acknowledged. NR 20 TC 8 Z9 8 U1 1 U2 24 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 J9 OCEAN DYNAM JI Ocean Dyn. PD JUN PY 2012 VL 62 IS 6 BP 893 EP 905 DI 10.1007/s10236-012-0541-9 PG 13 WC Oceanography SC Oceanography GA 945XA UT WOS:000304308500006 ER PT J AU Lohn, AJ Kobayashi, NP AF Lohn, Andrew J. Kobayashi, Nobuhiko P. TI AC surface photovoltage of indium phosphide nanowire networks SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID SEMICONDUCTOR; SPECTROSCOPY; LAYER AB Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. C1 [Lohn, Andrew J.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Lohn, Andrew J.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, NASA, Ames Res Ctr, Adv Studies Labs,NECTAR, Moffett Field, CA 94035 USA. RP Lohn, AJ (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. EM lohnaj@soe.ucsc.edu RI Kobayashi, Nobuhiko/E-3834-2012 NR 27 TC 8 Z9 8 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD JUN PY 2012 VL 107 IS 3 BP 647 EP 651 DI 10.1007/s00339-012-6810-0 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 943XC UT WOS:000304159200018 ER PT J AU Brown, ME Schaller, EL Fraser, WC AF Brown, M. E. Schaller, E. L. Fraser, W. C. TI WATER ICE IN THE KUIPER BELT SO ASTRONOMICAL JOURNAL LA English DT Article DE astrochemistry; Kuiper belt: general; planets and satellites: composition; planets and satellites: formation ID NEAR-INFRARED SPECTROSCOPY; TRANS-NEPTUNIAN OBJECTS; OUTER SOLAR-SYSTEM; 2003 EL61; SURFACE-COMPOSITION; COLLISIONAL FAMILY; 90482 ORCUS; CENTAURS; COLORS; CHARON AB We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice-perhaps mixed with ammonia-that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as "neutral" and "red"), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the similar to 20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture. C1 [Brown, M. E.; Fraser, W. C.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Schaller, E. L.] NASA, Dryden Aircraft Operat Facil, Palmdale, CA 93550 USA. [Schaller, E. L.] Univ N Dakota, Natl Suborbital Educ & Res Ctr, Grand Forks, ND 85202 USA. RP Brown, ME (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM mbrown@caltech.edu FU NASA [NNX09AB49G, NAS 5-26555]; W. M. Keck Foundation; NASA through Space Telescope Science Institute [HST-GO-11644.01-A] FX This research has been supported by the grant NNX09AB49G from the NASA Planetary Astronomy program. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Support for program HST-GO-11644.01-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of the Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 39 TC 15 Z9 15 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 146 DI 10.1088/0004-6256/143/6/146 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800019 ER PT J AU Edwards, LOV Fadda, D AF Edwards, Louise O. V. Fadda, Dario TI A MULTI-WAVELENGTH ANALYSIS OF SPITZER SELECTED COMA CLUSTER GALAXIES: STAR FORMATION RATES AND MASSES (vol 142, pg 148, 2011) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Edwards, Louise O. V.; Fadda, Dario] NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Edwards, Louise O. V.] Mt Allison Univ, Dept Phys, Sackville, NB E4L 1E6, Canada. RP Edwards, LOV (reprint author), NASA, Herschel Sci Ctr, Caltech 100-22, Pasadena, CA 91125 USA. EM ledwards@mta.ca; fadda@ipac.caltech.edu NR 1 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 151 DI 10.1088/0004-6256/143/6/151 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800024 ER PT J AU Huang, S Haynes, MP Giovanelli, R Brinchmann, J Stierwalt, S Neff, SG AF Huang, Shan Haynes, Martha P. Giovanelli, Riccardo Brinchmann, Jarle Stierwalt, Sabrina Neff, Susan G. TI GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: evolution; galaxies: fundamental parameters; galaxies: star formation; radio lines: galaxies; surveys ID DIGITAL SKY SURVEY; FAST ALPHA SURVEY; I MASS FUNCTION; COLOR-MAGNITUDE DIAGRAM; TULLY-FISHER RELATION; ARECIBO SDSS SURVEY; HI SOURCE CATALOG; FORMING GALAXIES; LOCAL UNIVERSE; DUST ATTENUATION AB We examine the global properties of the stellar and Hi components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses < 10(7.7) M-circle dot and Hi line widths < 80 km s(-1). Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M-*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M-* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M-* less than or similar to 10(8) M-circle dot is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M-* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones. C1 [Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Brinchmann, Jarle] Leiden Univ, Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Stierwalt, Sabrina] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Neff, Susan G.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Huang, S (reprint author), Cornell Univ, Ctr Radiophys & Space Res, Space Sci Bldg, Ithaca, NY 14853 USA. EM shan@astro.cornell.edu; haynes@astro.cornell.edu; riccardo@astro.cornell.edu; jarle@strw.leidenuniv.nl; sabrina@ipac.caltech.edu; susan.g.neff@nasa.gov RI Brinchmann, Jarle/M-2616-2015 OI Brinchmann, Jarle/0000-0003-4359-8797 FU NASA [NAS5-98034, NNX07AJ12G, NNX08AL67G, NNX09AF79G]; National Science Foundation [AST-0607007, AST-1107390]; Brinson Foundation; Alfred P. Sloan Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max Planck Institute for Astronomy; MPA; New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX Based on observations made with the Arecibo Observatory and the NASA Galaxy Evolution Explorer (GALEX). The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana and the Universities Space Research Association. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.; The authors acknowledge the work of the entire ALFALFA collaboration team in observing, flagging, and extracting the catalog of galaxies used in this work. The ALFALFA team at Cornell is supported by NSF grant AST-0607007 and AST-1107390 and by grants from the Brinson Foundation.; GALEX is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. S.H., S.S., and M.P.H. acknowledge support for this work from the GALEX Guest Investigator program under NASA grants NNX07AJ12G, NNX08AL67G, and NNX09AF79G.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max Planck Institute for Astronomy, the MPA, New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 84 TC 49 Z9 49 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 133 DI 10.1088/0004-6256/143/6/133 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800006 ER PT J AU Smith, BJ Swartz, DA Miller, O Burleson, JA Nowak, MA Struck, C AF Smith, Beverly J. Swartz, Douglas A. Miller, Olivia Burleson, Jacob A. Nowak, Michael A. Struck, Curtis TI ChAInGeS: THE CHANDRA ARP INTERACTING GALAXIES SURVEY SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: interactions; galaxies: starburst; ultraviolet: galaxies; X-rays: galaxies ID X-RAY SOURCES; DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEUS; STAR-FORMATION RATES; LUMINOUS INFRARED GALAXIES; FORMATION RATE INDICATOR; OPTICAL COUNTERPART; SPIRAL GALAXIES; BLACK-HOLES; XMM-NEWTON AB We have conducted a statistical analysis of the ultra-luminous X-ray point sources (ULXs; L-X >= 10(39) erg s(-1)) in a sample of galaxies selected from the Arp Atlas of Peculiar Galaxies. We find a possible enhancement of a factor of similar to 2-4 in the number of ULXs per blue luminosity for the strongly interacting subset. Such an enhancement would be expected if ULX production is related to star formation, as interacting galaxies tend to have enhanced star formation rates on average. For most of the Arp galaxies in our sample, the total number of ULXs compared to the far-infrared luminosity is consistent with values found earlier for spiral galaxies. This suggests that for these galaxies, ULXs trace recent star formation. However, for the most infrared-luminous galaxies, we find a deficiency of ULXs compared to the infrared luminosity. For these very infrared-luminous galaxies, active galactic nuclei may contribute to powering the far-infrared; alternatively, ULXs may be highly obscured in the X-ray in these galaxies and therefore not detected by these Chandra observations. We determined local UV/optical colors within the galaxies in the vicinity of the candidate ULXs using Galaxy Evolution Explorer UV and Sloan Digitized Sky Survey optical images. In most cases, the distributions of colors are similar to the global colors of interacting galaxies. However, the u - g and r - i colors at the ULX locations tend to be bluer on average than these global colors, suggesting that ULXs are preferentially found in regions with young stellar populations. In the Arp sample there is a possible enhancement of a factor of similar to 2-5 in the fraction of galactic nuclei that are X-ray-bright compared to more normal spirals. C1 [Smith, Beverly J.; Miller, Olivia] E Tennessee State Univ, Dept Phys & Astron, Johnson City, TN 37614 USA. [Swartz, Douglas A.] NASA, Univ Space Res Assoc, Marshall Space Flight Ctr, Huntsville, AL USA. [Burleson, Jacob A.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [Nowak, Michael A.] MIT, Kavli Inst Astrophys, Cambridge, MA 02139 USA. [Struck, Curtis] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. RP Smith, BJ (reprint author), E Tennessee State Univ, Dept Phys & Astron, Johnson City, TN 37614 USA. EM smithbj@etsu.edu; Douglas.A.Swartz@nasa.gov; millero@goldmail.etsu.edu; jab0039@uah.edu; mnowak@space.mit.edu; curt@iastate.edu OI Struck, Curtis/0000-0002-6490-2156 FU NASA [AR9-0010A, GO9-0098X, GO0-11099A] FX We thank the anonymous referee for helpful suggestions that greatly improved this paper. We thank Qiongge Li and Nic Willis for help with downloading data, and Mark Hancock and Mark Giroux for helpful discussions. This work was funded by NASA Chandra grant AR9-0010A. D.A.S. is supported in part by NASA Chandra grants GO9-0098X and GO0-11099A. This work has made use of the NASA Chandra archives as well as the Chandra Source Catalog (CSC), provided by the Chandra X-ray Center (CXC) as part of the Chandra data archive. This research has made use of the NASA/IPAC Extragalactic Database (NED) and the NASA/IPAC Infrared Science Archive, which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 115 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 144 DI 10.1088/0004-6256/143/6/144 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800017 ER PT J AU Wilson, WC Rogge, MD Fisher, BH Malocha, DC Atkinson, GM AF Wilson, William C. Rogge, Matthew Douglas Fisher, Brian H. Malocha, Donald C. Atkinson, Gary M. TI Fastener Failure Detection Using a Surface Acoustic Wave Strain Sensor SO IEEE SENSORS JOURNAL LA English DT Article DE Aircraft; fastener failure; strain sensor; surface acoustic waves AB Surface acoustic wave (SAW) strain sensors are presented for use in the detection of aircraft fastener failures. SAW sensors have the potential for the development of passive wireless systems. The SAW devices employed four orthogonal frequency coding spread spectrum reflectors in two banks on a high temperature piezoelectric substrate. Three SAW devices were attached to a cantilever panel with removable side stiffeners. Damage in the form of fastener failure was simulated by removal of bolts from the side stiffeners. During testing, three different force conditions were used to simulate static aircraft structural response under loads. The design of the sensor, the panel arrangement and the panel testing results are reported. The results show that the sensors successfully detected single fastener failure at distances up to 655 mm from the failure site under loaded conditions. C1 [Wilson, William C.; Rogge, Matthew Douglas] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Fisher, Brian H.] Univ Cent Florida, Orlando, FL 32816 USA. [Malocha, Donald C.] Univ Cent Florida, Elect Engn & Comp Sci Dept, Orlando, FL 32816 USA. [Atkinson, Gary M.] Virginia Commonwealth Univ, Sch Engn, Richmond, VA 23284 USA. RP Wilson, WC (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM william.c.wilson@nasa.gov; matthew.rogge@nasa.gov; brian.fisher@knights.ucf.edu; donald.malocha@ucf.edu; gmatkins@vcu.edu FU NASA's Integrated Vehicle Heath Management Project, Aviation Safety Program under the Aeronautics Research Mission Directorate; NASA Small Business Technology Transfer Phase I [NNK04OA28C] FX This work was funded through NASA's Integrated Vehicle Heath Management Project which is part of the Aviation Safety Program under the Aeronautics Research Mission Directorate. Partial foundering was provided by the NASA Graduate Student Research Program Fellowships, the University of Central Florida - Florida Solar Energy Center, and a NASA Small Business Technology Transfer Phase I under Contract NNK04OA28C. This is an expanded paper from the IEEE SENSORS 2010 Conference. NR 18 TC 12 Z9 12 U1 0 U2 26 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD JUN PY 2012 VL 12 IS 6 BP 1993 EP 2000 DI 10.1109/JSEN.2011.2181160 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA V45IQ UT WOS:000209810700029 ER PT J AU Liebe, CC Bauman, BW Clark, GR Cook, R Kecman, B Madsen, KK Mao, P Meras, P Miyasaka, H Cooper, M Scholz, C Sedaka, J AF Liebe, Carl Christian Bauman, Bruce W. Clark, Gerald R. Cook, Rick Kecman, Branislav Madsen, Kristin Kruse Mao, Peter Meras, Patrick, Jr. Miyasaka, Hiromasa Cooper, Mark Scholz, Christopher Sedaka, Jack TI Design, Qualification, Calibration and Alignment of Position Sensing Detector for the NuSTAR Space Mission SO IEEE SENSORS JOURNAL LA English DT Article DE Metrology system; NuSTAR; position sensing detector; space qualification AB A commercial position sensing detector (PSD) has been used to measure mast deflections on a space based X-ray telescope (NuSTAR). This paper describes the space qualification process for utilizing a commercial PSD sensor in space. This discussion includes packaging, environmental testing, selection of flight candidate devices, calibration and alignment. C1 [Liebe, Carl Christian; Clark, Gerald R.; Meras, Patrick, Jr.; Cooper, Mark; Sedaka, Jack] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cook, Rick; Kecman, Branislav; Madsen, Kristin Kruse; Mao, Peter; Miyasaka, Hiromasa] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Bauman, Bruce W.] Pacific Silicon Sensor Inc, Westlake Village, CA 91362 USA. [Scholz, Christopher] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Liebe, CC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM carl.c.liebe@jpl.nasa.gov; bbauman@pacific-sensor.com; gerald.j.clark@jpl.nasa.gov; wrc@srl.caltech.edu; kecman@srl.caltech.edu; kristin@srl.caltech.edu; peterm@srl.caltech.edu; patrick.meras@jpl.nasa.gov; miyasaka@srl.caltech.edu; mark.cooper@jpl.nasa.gov; cscholz@ssl.berkeley.edu; jack.j.sedaka@jpl.nasa.gov OI Madsen, Kristin/0000-0003-1252-4891 FU Jet Propulsion Laboratory, California Institute of Technology; Space Radiation Laboratory, California Institute of Technology; Space Sciences Laboratory, U.C. Berkeley; Pacific Silicon Sensor Inc.; National Aeronautics and Space Administration FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, Space Radiation Laboratory, California Institute of Technology, Space Sciences Laboratory, U.C. Berkeley, and Pacific Silicon Sensor, Inc., and was sponsored by the National Aeronautics and Space Administration. NR 12 TC 1 Z9 1 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD JUN PY 2012 VL 12 IS 6 BP 2006 EP 2013 DI 10.1109/JSEN.2011.2181355 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA V45IQ UT WOS:000209810700031 ER PT J AU Carpenter, JR Markley, FL Gold, D AF Carpenter, J. Russell Markley, F. Landis Gold, Dara TI Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article AB When facing a conjunction between space objects, decision makers must choose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem. solution, one based on a frequentist method, and the other on a Bayesian method. The frequenfist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that the frequentist method is inferior to the Bayesian method. C1 [Carpenter, J. Russell] NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Greenbelt, MD 20771 USA. [Markley, F. Landis] NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. [Gold, Dara] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA. RP Carpenter, JR (reprint author), NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Code 595, Greenbelt, MD 20771 USA. NR 9 TC 3 Z9 3 U1 0 U2 1 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUN PY 2012 VL 59 IS 1-2 BP 273 EP 286 PG 14 WC Engineering, Aerospace SC Engineering GA V35BF UT WOS:000209125300017 ER PT J AU Gaebler, J Hur-Diaz, S Carpenter, R AF Gaebler, John Hur-Diaz, Sun Carpenter, Russell TI Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article AB Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference Sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail. C1 [Gaebler, John; Carpenter, Russell] NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Greenbelt, MD 20771 USA. [Hur-Diaz, Sun] Emergent Space Technol Inc, Greenbelt, MD 20770 USA. RP Gaebler, J (reprint author), NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Greenbelt, MD 20771 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUN PY 2012 VL 59 IS 1-2 BP 307 EP 313 PG 7 WC Engineering, Aerospace SC Engineering GA V35BF UT WOS:000209125300019 ER PT J AU McCraney, WT Saski, CA Guyon, JR AF McCraney, W. Tyler Saski, Christopher A. Guyon, Jeffrey R. TI Isolation and characterization of 12 microsatellites for the commercially important sablefish, Anoplopoma fimbria SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Alaska; Anoplopoma fimbria; Erilepis zonifer; Microsatellites; Sablefish; Skilfish AB Sablefish, Anoplopoma fimbria, are long-lived, highly migratory, bathydemersal, commercially important fishes that inhabit continental slope waters of the North Pacific Ocean. Here we describe 12 microsatellite loci developed for sablefish, and cross-species amplification in skilfish, Erilepis zonifer. Microsatellites were developed from one sablefish and characterized using 55 juveniles collected in the eastern Gulf of Alaska. The number of alleles ranged from 3 to 27 per locus, and observed heterozygosity ranged from 0.074 to 0.964. There was no significant evidence for linkage disequilibrium or departure from Hardy-Weinberg Equilibrium. Ten of the 12 microsatellite loci were successfully amplified in skilfish. These new microsatellites were developed for use in sablefish fishery management and conservation applications including selecting broodstock for aquaculture operations and defining population boundaries for stock assessments. C1 [McCraney, W. Tyler; Guyon, Jeffrey R.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Saski, Christopher A.] Clemson Univ, Genom Inst, Clemson, SC 29634 USA. RP McCraney, WT (reprint author), NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. EM Tyler.McCraney@noaa.gov FU NOAA's Aquaculture and Marine Ecology and Stock Assessment (MESA) FX Funding was provided by NOAA's Aquaculture and Marine Ecology and Stock Assessment (MESA) programs. We thank Hanhvan Nguyen for assisting with DNA extractions and crews of the R/V Medeia and F/V Ocean Prowler for samples. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. NR 12 TC 2 Z9 2 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD JUN PY 2012 VL 4 IS 2 BP 415 EP 417 DI 10.1007/s12686-011-9563-8 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 935QZ UT WOS:000303536400050 ER PT J AU Lavretsky, P Truong, TM McGowin, AE Balazs, GH Peters, JL AF Lavretsky, Philip Truong, Triet M. McGowin, Audrey E. Balazs, George H. Peters, Jeffrey L. TI New primers reveal the presence of a duplicate histone H3 in the marine turtle leech Ozobranchus branchiatus SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Ozobranchus branchiatus; Fibropapillomatosis; Histone H3; Primers; Gene duplication; Chelonia mydas ID PHYLOGENY; VARIANTS; MOLLUSCA; VECTOR; GENES AB Marine leeches, specific to sea turtles, have been implicated as potential vector organisms in the spread of fibropapillomatosis (FP), a pandemic neoplastic disease with Chelonia mydas having the highest affliction rate. Polymerase chain reaction identified two independent, seemingly functional histone H3 loci for marine turtle leeches Ozobranchus branchiatus collected from C. mydas in Florida and Hawaii. Primers were developed to amplify each product separately. Among the two loci, sequence differentiation (I broken vertical bar (ST) ) ranged from 0.161 to 0.182 with identical amino acid translations among the 22 samples. A maximum parsimony tree of GenBank histone H3 sequences from annelids indicated the gene duplication occurred within the Ozobranchidae family. Geographically separated populations yielded I broken vertical bar (ST) values of 0.004-0.005 but were phylogenetically distinctive. These novel markers will be useful in identifying ectoparasites in FP research, evaluating other histone variants, and chromatin dynamics regulation studies. C1 [Lavretsky, Philip; Peters, Jeffrey L.] Wright State Univ, Dept Biol Sci, Dayton, OH 45435 USA. [Truong, Triet M.; McGowin, Audrey E.] Wright State Univ, Dept Chem, Dayton, OH 45435 USA. [Balazs, George H.] NOAA, Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Honolulu Lab, Honolulu, HI 96822 USA. RP McGowin, AE (reprint author), Wright State Univ, Dept Chem, Dayton, OH 45435 USA. EM audrey.mcgowin@wright.edu RI Peters, Jeffrey/I-5116-2012 NR 19 TC 0 Z9 0 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD JUN PY 2012 VL 4 IS 2 BP 487 EP 490 DI 10.1007/s12686-011-9581-6 PG 4 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 935QZ UT WOS:000303536400067 ER PT J AU Shimoda, Y Seta, H Tashiro, MS Terada, Y Ishisaki, Y Tsujimoto, M Mitsuda, K Yasuda, T Takeda, S Hiyama, Y Masukawa, K Matsuda, K Boyce, K AF Shimoda, Y. Seta, H. Tashiro, M. S. Terada, Y. Ishisaki, Y. Tsujimoto, M. Mitsuda, K. Yasuda, T. Takeda, S. Hiyama, Y. Masukawa, K. Matsuda, K. Boyce, K. R. TI Development of a Digital Signal Processing System for the X-Ray Microcalorimeter Onboard ASTRO-H (II) SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Signal processing electronics; ASTRO-H; Microcalorimeter AB The Pulse Shape Processor is a digital signal processing electronics for the microcalorimeter instrument onboard ASTRO-H. Receiving digitized waveform (14 bit, 12.5 kHz sample) from 2x18 channels, two identical units of PSP-A and -B trigger X-ray events, assign five kinds of event grade, and perform optimal filtering to measure energy deposit on the 6x6 microcalorimeter pixels. One unit of PSP is composed of one FPGA board and two CPU boards. This paper describes the event processing algorithm to fulfill requirements for the signal processing, and task sharing between FPGA and CPU. C1 [Shimoda, Y.; Seta, H.; Tashiro, M. S.; Terada, Y.; Yasuda, T.; Takeda, S.] Saitama Univ, Sakura, Saitama 3388570, Japan. [Ishisaki, Y.; Hiyama, Y.] Tokyo Metropolitan Univ, Hachioji, Tokyo 1920397, Japan. [Tsujimoto, M.; Mitsuda, K.] ISAS JAXA, Chuo Ku, Sagamihara, Kanagawa 2298510, Japan. [Masukawa, K.; Matsuda, K.] Mitsubishi Heavy Ind Ltd MHI, Nagoya Guidance & Prop Syst Works, Komaki, Aichi, Japan. [Boyce, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shimoda, Y (reprint author), Saitama Univ, 255 Shimo Okubo, Sakura, Saitama 3388570, Japan. EM shimoda@crystal.heal.phy.saitama-u.ac.jp RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; Mitsuda, Kazuhisa/C-2649-2008 OI Terada, Yukikatsu/0000-0002-2359-1857; NR 5 TC 7 Z9 7 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 575 EP 581 DI 10.1007/s10909-012-0483-0 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600003 ER PT J AU Perinati, E Kilbourne, CA Colasanti, L Lotti, S Macculi, C Piro, L Mineo, T Mitsuda, K Bonardi, A Santangelo, A AF Perinati, E. Kilbourne, C. A. Colasanti, L. Lotti, S. Macculi, C. Piro, L. Mineo, T. Mitsuda, K. Bonardi, A. Santangelo, A. TI Monte-Carlo Simulations of the Suzaku-XRS Residual Background Spectrum SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE X-ray spectroscopy; Background; Monte-Carlo simulations ID RAYS AB Cryogenic micro-calorimeters are suitable to detect small amounts of energy deposited by electromagnetic and nuclear interactions, which makes them attractive in a variety of applications on ground and in space. The only X-ray micro-calorimeter that operated in orbit to date is the X-Ray Spectrometer on-board of the Japanese Suzaku satellite. We discuss the analysis of the components of its residual background spectrum with the support of Monte-Carlo simulations. C1 [Perinati, E.; Bonardi, A.; Santangelo, A.] Univ Tubingen, IAAT Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Perinati, E.; Mineo, T.] INAF Ist Astrofis Spaziale & Fis Cosm Palermo, I-90146 Palermo, Italy. [Kilbourne, C. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Colasanti, L.; Lotti, S.; Macculi, C.; Piro, L.] INAF Ist Astrofis Spaziale & Fis Cosm Roma, I-00133 Rome, Italy. [Piro, L.] King Abdulaziz Univ, Fac Sci, Dept Astron, Jeddah 21589, Saudi Arabia. [Mitsuda, K.] JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298150, Japan. RP Perinati, E (reprint author), Univ Tubingen, IAAT Inst Astron & Astrophys, D-72076 Tubingen, Germany. EM emanuele.perinati@uni-tuebingen.de RI PIRO, LUIGI/E-4954-2013; Mitsuda, Kazuhisa/C-2649-2008; XRAY, SUZAKU/A-1808-2009; Faculty of, Sciences, KAU/E-7305-2017; OI PIRO, LUIGI/0000-0003-4159-3984; Mineo, Teresa/0000-0002-4931-8445; Macculi, Claudio/0000-0002-7887-1485 FU ASI [I/035/10/0] FX We acknowledge ASI under contract I/035/10/0. NR 6 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 721 EP 725 DI 10.1007/s10909-012-0608-5 PN 2 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600025 ER PT J AU Eckart, ME Adams, JS Bailey, CN Bandler, SR Busch, SE Chervenak, JA Finkbeiner, FM Kelley, RL Kilbourne, CA Porter, FS Porst, JP Sadleir, JE Smith, SJ AF Eckart, M. E. Adams, J. S. Bailey, C. N. Bandler, S. R. Busch, S. E. Chervenak, J. A. Finkbeiner, F. M. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Porst, J. -P. Sadleir, J. E. Smith, S. J. TI Kilopixel X-ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Transition-edge sensors; Superconducting x-ray detectors; Astronomical x-ray instrumentation; Device characterization ID LINES; SPECTROMETER AB We are developing kilopixel arrays of TES microcalorimeters to enable high-resolution x-ray imaging spectrometers for future x-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40x40-pixel core array of 300 mu m devices with 2.5 eV energy resolution (at 6 keV). Here we present device characterization of our 32x32 arrays, including x-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (I (c) ) and transition shape to oscillate with applied magnetic field (B). We show I (c) (B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated copper backside heatsinking layer, which provides copper coverage on the four sidewalls of the silicon wells beneath each pixel. C1 [Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, S. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Porst, J. -P.; Smith, S. J.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Eckart, M. E.; Adams, J. S.; Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Eckart, M. E.; Adams, J. S.; Smith, S. J.] CRESST, Camp Springs, MD 21250 USA. [Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA. [Bandler, S. R.] CRESST, College Pk, MD 20742 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. [Porst, J. -P.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Eckart, ME (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. EM Megan.E.Eckart@nasa.gov RI Smith, Stephen/B-1256-2008; Porst, Jan-Patrick/D-2191-2012; Bandler, Simon/A-6258-2010; Kelley, Richard/K-4474-2012; Porter, Frederick/D-3501-2012; Bailey, Catherine/C-6107-2009 OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106; Porter, Frederick/0000-0002-6374-1119; FU NASA FX We thank K. D. Irwin and the Quantum Sensors Group (NIST, Boulder) for providing the SQUIDs used in this work. This research was supported in part by appointments to the NASA Postdoctoral Program (CNB, SEB), administered by ORAU. NR 15 TC 11 Z9 11 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 732 EP 740 DI 10.1007/s10909-012-0514-x PN 2 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600027 ER PT J AU Mitsuda, K Kelley, RL Boyce, KR Brown, GV Costantini, E DiPirro, MJ Ezoe, Y Fujimoto, R Gendreau, KC den Herder, JW Hoshino, A Ishisaki, Y Kilbourne, CA Kitamoto, S McCammon, D Murakami, M Murakami, H Ogawa, M Ohashi, T Okamoto, A Paltani, S Pohl, M Porter, FS Sato, Y Shinozaki, K Shirron, PJ Sneiderman, GA Sugita, H Szymkowiak, A Takei, Y Tamagawa, T Tashiro, M Terada, Y Tsujimoto, M de Vries, C Yamasaki, NY AF Mitsuda, Kazuhisa Kelley, Richard L. Boyce, Kevin R. Brown, Gregory V. Costantini, Elisa DiPirro, Michael J. Ezoe, Yuichiro Fujimoto, Ryuichi Gendreau, Keith C. den Herder, Jan-Willem Hoshino, Akio Ishisaki, Yoshitaka Kilbourne, Caroline A. Kitamoto, Shunji McCammon, Dan Murakami, Masahide Murakami, Hiroshi Ogawa, Mina Ohashi, Takaya Okamoto, Atsushi Paltani, Stephane Pohl, Martin Porter, F. Scott Sato, Yoichi Shinozaki, Keisuke Shirron, Peter J. Sneiderman, Gary A. Sugita, Hiroyuki Szymkowiak, Andrew Takei, Yoh Tamagawa, Toru Tashiro, Makoto Terada, Yukikatsu Tsujimoto, Masahiro de Vries, Cor Yamasaki, Noriko Y. TI The High-Resolution X-Ray Microcalorimeter Spectrometer, SXS, on Astro-H SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE X-ray astronomy; X-ray microcalorimeters; Space cryogenics ID SUZAKU AB The science and an overview of the Soft X-ray Spectrometer onboard the STRO-H mission are presented. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6x6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3'x3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 cm(2) at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies. C1 [Mitsuda, Kazuhisa; Ogawa, Mina; Takei, Yoh; Tsujimoto, Masahiro; Yamasaki, Noriko Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Okamoto, Atsushi; Sato, Yoichi; Shinozaki, Keisuke; Sugita, Hiroyuki] JAXA, Aerosp Res & Dev Directorate, Tsukuba, Ibaraki, Japan. [Ezoe, Yuichiro; Ishisaki, Yoshitaka; Ohashi, Takaya] Tokyo Metropolitan Univ, Hachioji, Tokyo, Japan. [Fujimoto, Ryuichi; Hoshino, Akio] Kanazwa Univ, Kanazawa, Ishikawa, Japan. [Murakami, Masahide] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Tashiro, Makoto; Terada, Yukikatsu] Saitama Univ, Saitama 3388570, Japan. [Kitamoto, Shunji; Murakami, Hiroshi] Rikkyo Univ, Tokyo 171, Japan. [Tamagawa, Toru] RIKEN, Wako, Saitama, Japan. [Kelley, Richard L.; Boyce, Kevin R.; DiPirro, Michael J.; Gendreau, Keith C.; Kilbourne, Caroline A.; Porter, F. Scott; Shirron, Peter J.; Sneiderman, Gary A.] NASA GSFC, Greenbelt, MD USA. [McCammon, Dan] Univ Wisconsin, Madison, WI USA. [Szymkowiak, Andrew] Yale Univ, New Haven, CT USA. [Brown, Gregory V.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor] SRON Netherlands Inst Space Res, Utrecht, Netherlands. [Paltani, Stephane; Pohl, Martin] Univ Geneva, Geneva, Switzerland. RP Mitsuda, K (reprint author), JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. EM mitsuda@astro.isas.jaxa.jp RI Yamasaki, Noriko/C-2252-2008; Tashiro, Makoto/J-4562-2012; Kelley, Richard/K-4474-2012; Terada, Yukikatsu/A-5879-2013; Mitsuda, Kazuhisa/C-2649-2008; Porter, Frederick/D-3501-2012 OI Terada, Yukikatsu/0000-0002-2359-1857; Porter, Frederick/0000-0002-6374-1119 NR 7 TC 15 Z9 16 U1 1 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 795 EP 802 DI 10.1007/s10909-012-0482-1 PN 2 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600036 ER PT J AU Staniszewski, Z Aikin, RW Amiri, M Benton, SJ Bischoff, C Bock, JJ Bonetti, JA Brevik, JA Burger, B Dowell, CD Duband, L Filippini, JP Golwala, SR Halpern, M Hasselfield, M Hilton, G Hristov, VV Irwin, K Kovac, JM Kuo, CL Lueker, M Montroy, T Nguyen, HT Ogburn, RW O'Brient, R Orlando, A Pryke, C Reintsema, C Ruhl, JE Schwarz, R Sheehy, C Stokes, S Thompson, KL Teply, G Tolan, JE Turner, AD Vieregg, AG Wilson, P Wiebe, D Wong, CL AF Staniszewski, Z. Aikin, R. W. Amiri, M. Benton, S. J. Bischoff, C. Bock, J. J. Bonetti, J. A. Brevik, J. A. Burger, B. Dowell, C. D. Duband, L. Filippini, J. P. Golwala, S. R. Halpern, M. Hasselfield, M. Hilton, G. Hristov, V. V. Irwin, K. Kovac, J. M. Kuo, C. L. Lueker, M. Montroy, T. Nguyen, H. T. Ogburn, R. W. O'Brient, R. Orlando, A. Pryke, C. Reintsema, C. Ruhl, J. E. Schwarz, R. Sheehy, C. Stokes, S. Thompson, K. L. Teply, G. Tolan, J. E. Turner, A. D. Vieregg, A. G. Wilson, P. Wiebe, D. Wong, C. L. TI The Keck Array: A Multi Camera CMB Polarimeter at the South Pole SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Transition edge sensor (TES) arrays; Cosmology; Cosmic microwave background; Inflation AB The Keck array is a new multi-camera Cosmic Microwave Background (CMB) polarimeter. Each camera contains 256 polarization pairs of antenna-coupled transition edge sensor (TES) bolometers. We recently deployed three of five cameras at the geographic South Pole, and plan to deploy the final two cameras in early 2012. This new telescope is an ideal instrument to search for the primordial B-mode polarization signal imprinted in the CMB by inflationary gravitational waves. We will discuss the design of the detectors and receivers, the status of current observations, and report on progress toward upgrading the instrument with the full compliment of polarized receivers. C1 [Staniszewski, Z.; Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Dowell, C. D.; Filippini, J. P.; Golwala, S. R.; Hristov, V. V.; Lueker, M.; Nguyen, H. T.; O'Brient, R.; Orlando, A.; Teply, G.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Staniszewski, Z.; Bock, J. J.; Bonetti, J. A.; Dowell, C. D.; Nguyen, H. T.; Turner, A. D.; Wilson, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kuo, C. L.; Ogburn, R. W.; Stokes, S.; Thompson, K. L.; Tolan, J. E.] KIPAC, Menlo Pk, CA 94025 USA. [Amiri, M.; Halpern, M.; Hasselfield, M.; Wiebe, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Benton, S. J.; Burger, B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Kuo, C. L.; Ogburn, R. W.; Stokes, S.; Thompson, K. L.; Tolan, J. E.] Stanford Univ, Stanford, CA 94305 USA. [Duband, L.] CEA Grenoble, Serv Basses Temp, F-38054 Grenoble, France. [Hilton, G.; Irwin, K.; Reintsema, C.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Bischoff, C.; Kovac, J. M.; Schwarz, R.; Vieregg, A. G.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sheehy, C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Pryke, C.; Sheehy, C.] Univ Minnesota, Minneapolis, MN 55455 USA. [Montroy, T.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. RP Staniszewski, Z (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM zks@caltech.edu RI Vieregg, Abigail/D-2287-2012; OI Orlando, Angiola/0000-0001-8004-5054; Bischoff, Colin/0000-0001-9185-6514 FU NASA FX The following individuals acknowledge additional support: Z. Staniszewski from the NASA Postdoctoral Program. NR 7 TC 17 Z9 17 U1 1 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 827 EP 833 DI 10.1007/s10909-012-0510-1 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600041 ER PT J AU Hubmayr, J Appel, JW Austermann, JE Beall, JA Becker, D Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crites, AT Essinger-Hileman, T Fox, A George, EM Halverson, NW Harrington, NL Henning, JW Hilton, GC Holzapfel, WL Irwin, KD Lee, AT Li, D McMahon, J Mehl, J Natoli, T Niemack, MD Newburgh, LB Nibarger, JP Parker, LP Schmitt, BL Staggs, ST Van Lanen, J Wollack, EJ Yoon, KW AF Hubmayr, J. Appel, J. W. Austermann, J. E. Beall, J. A. Becker, D. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. M. Crites, A. T. Essinger-Hileman, T. Fox, A. George, E. M. Halverson, N. W. Harrington, N. L. Henning, J. W. Hilton, G. C. Holzapfel, W. L. Irwin, K. D. Lee, A. T. Li, D. McMahon, J. Mehl, J. Natoli, T. Niemack, M. D. Newburgh, L. B. Nibarger, J. P. Parker, L. P. Schmitt, B. L. Staggs, S. T. Van Lanen, J. Wollack, E. J. Yoon, K. W. TI An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Cosmic microwave background; Polarimeter; Transition edge sensor ID TES POLARIMETERS; CMB POLARIMETRY AB Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response <-23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments. C1 [Hubmayr, J.; Beall, J. A.; Becker, D.; Cho, H. M.; Fox, A.; Hilton, G. C.; Irwin, K. D.; Li, D.; Niemack, M. D.; Nibarger, J. P.; Van Lanen, J.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Appel, J. W.; Essinger-Hileman, T.; Newburgh, L. B.; Parker, L. P.; Staggs, S. T.] Princeton Univ, Princeton, NJ 08544 USA. [Austermann, J. E.; Halverson, N. W.; Henning, J. W.] Univ Colorado, Boulder, CO 80309 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Mehl, J.; Natoli, T.] Univ Chicago, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [George, E. M.; Harrington, N. L.; Holzapfel, W. L.; Lee, A. T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [McMahon, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Schmitt, B. L.] Univ Penn, Philadelphia, PA 19104 USA. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Goddard, MD USA. [Yoon, K. W.] Stanford Univ, Palo Alto, CA 94304 USA. RP Hubmayr, J (reprint author), Natl Inst Stand & Technol, Boulder, CO 80305 USA. EM hubmayr@nist.gov; beckerd@boulder.nist.gov; bleeml@uchicago.edu; anna.fox@nist.gov; genehilton@gmail.com; irwin@nist.gov; jeffmcm@umich.edu; niemack@nist.gov; newburgh@princeton.edu; john.nibarger@nist.gov; bschm@physics.upenn.edu; staggs@princeton.edu; kiwon@stanford.edu RI Holzapfel, William/I-4836-2015; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU NIST; NSF [ANT-0638937, PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF GRFP; NASA NSTRF FX Work at NIST is supported by the NIST Innovations in Measurement Science program. The University of Chicago is supported by grants from the NSF (awards ANT-0638937 and PHY-0114422), the Kavli Foundation, and the Gordon and Betty Moore Foundation. B.L. Schmidt acknowledges support from NSF GRFP and NASA NSTRF fellowships. NR 13 TC 6 Z9 6 U1 0 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 904 EP 910 DI 10.1007/s10909-011-0420-7 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600053 ER PT J AU Chuss, DT Bennett, CL Costen, N Crowe, E Denis, K Eimer, JR Lourie, N Marriage, TA Moseley, SH Rostem, K Stevenson, TR Towner, D U-Yen, K Voellmer, G Wollack, EJ Zeng, L AF Chuss, D. T. Bennett, C. L. Costen, N. Crowe, E. Denis, K. Eimer, J. R. Lourie, N. Marriage, T. A. Moseley, S. H. Rostem, K. Stevenson, T. R. Towner, D. U-Yen, K. Voellmer, G. Wollack, E. J. Zeng, L. TI Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetry SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Transition-edge sensors; Cosmic microwave background; Polarimetry AB Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feedhorn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS). C1 [Chuss, D. T.; Costen, N.; Crowe, E.; Denis, K.; Lourie, N.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.; Towner, D.; U-Yen, K.; Voellmer, G.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bennett, C. L.; Eimer, J. R.; Marriage, T. A.; Zeng, L.] Johns Hopkins Univ, Baltimore, MD USA. RP Chuss, DT (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM David.T.Chuss@nasa.gov; kevin.l.denis@nasa.gov; harvey.moseley@nasa.gov; karwan.rostem@nasa.gov; thomas.r.stevenson@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 12 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 923 EP 928 DI 10.1007/s10909-011-0433-2 PN 2 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600056 ER PT J AU Ferri, E Arnaboldi, C Ceruti, G Faverzani, M Gatti, F Giachero, A Gotti, C Kilbourne, C Kraft-Bermuth, S Nucciotti, A Pessina, G Schaeffer, D Sisti, M AF Ferri, E. Arnaboldi, C. Ceruti, G. Faverzani, M. Gatti, F. Giachero, A. Gotti, C. Kilbourne, C. Kraft-Bermuth, S. Nucciotti, A. Pessina, G. Schaeffer, D. Sisti, M. TI MARE-1 in Milan: Status and Perspectives SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Neutrino mass; Cryogenics detector ID NEUTRINO MASS EXPERIMENT; SPECTRUM; SEARCH AB The international project MARE (Microcalorimeter Array for a Rhenium Experiment) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-eV sensitivity. Although the baseline of the MARE project consists in a large array of rhenium based thermal detectors, a different option for the isotope is also being considered. The different option is Ho-163. The potential of using Re-187 for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of Ho-163 has been so far measured with the precision required to set a useful limit on the neutrino mass. The first phase of the project (MARE-1) is a collection of activities with the aim of sorting out both the best isotope and the most suited detector technology to be used for the final experiment. One of the MARE-1 activities is carried out in Milan by the group of Milano-Bicocca in collaboration with NASA/GSFC and Wisconsin groups. The Milan MARE-1 arrays are based on semiconductor thermistors, provided by the NASA/GSFC group, with dielectric silver perrhenate absorbers, AgReO4. The experiment, which is presently being assembled, is designed to host up to 8 arrays. With 288 detectors, a sensitivity of 3 eV at 90% CL on the neutrino mass can be reached within 3 years. This contribution gives an outlook for the MARE activities for the active isotope selection. In this contribution the status and the perspectives of the MARE-1 in Milan are also reported. C1 [Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Giachero, A.; Gotti, C.; Nucciotti, A.; Pessina, G.; Sisti, M.] Univ Milano Bicocca, Milan, Italy. [Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Giachero, A.; Gotti, C.; Nucciotti, A.; Pessina, G.; Sisti, M.] INFN Milano Bicocca, Milan, Italy. [Schaeffer, D.] ABB AB, Corp Res, Vsteras, Sweden. [Kraft-Bermuth, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Kilbourne, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gatti, F.] Univ Genoa, Genoa, Italy. [Gatti, F.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. RP Ferri, E (reprint author), Univ Milano Bicocca, Milan, Italy. EM elena.ferri@mib.infn.it; marco.faverzani@gmail.com; gatti@ge.infn.it; claudio.gotti@mib.infn.it; caroline.a.kilbourne@nasa.gov; saskia.kraft-bermuth@iamp.physik.uni-giessen.de; angelo.nucciotti@mib.infn.it; pessina@mib.infn.it RI Kraft-Bermuth, Saskia/G-4007-2012; Nucciotti, Angelo/I-8888-2012; Giachero, Andrea/I-1081-2013; Gatti, Flavio/K-4568-2013; Ferri, Elena/L-8531-2014; Sisti, Monica/B-7550-2013; Faverzani, Marco/K-3865-2016; OI Kraft-Bermuth, Saskia/0000-0002-0864-7912; Nucciotti, Angelo/0000-0002-8458-1556; Giachero, Andrea/0000-0003-0493-695X; Gotti, Claudio/0000-0003-2501-9608; Ferri, Elena/0000-0003-1425-3669; Sisti, Monica/0000-0003-2517-1909; Faverzani, Marco/0000-0001-8119-2953; Pessina, Gianluigi Ezio/0000-0003-3700-9757 NR 16 TC 5 Z9 5 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 1035 EP 1040 DI 10.1007/s10909-011-0421-6 PN 2 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600072 ER PT J AU Faverzani, M Day, P Nucciotti, A Ferri, E AF Faverzani, M. Day, P. Nucciotti, A. Ferri, E. TI Developments of Microresonators Detectors for Neutrino Physics in Milan SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE MKID AB Superconducting microwave microresonators are low temperature detectors which are compatible with large-scale multiplexed frequency domain readout. We aim to adapt and further advance the technology of microresonator detectors to develop new devices applied to the problem of measuring the neutrino mass. More specifically, we aim to develop detector arrays for calorimetric measurement of the energy spectra of Ho-163 EC decay (Q similar to 2-3 keV) for a direct measurement of the neutrino mass. In order to achieve these goal, we need to find the best design and materials for the detectors. A recent advance in microwave microresonator technology was the discovery that some metal nitrides, such as TiN, possess properties consistent with very high detector sensitivity. We plan to investigate nitrides of higher-Z materials, for example TaN and HfN, that are appropriate for containing the energy of keV decay events, exploring the properties relevant to our detectors, such as quality factor, penetration depth and recombination time. C1 [Faverzani, M.; Nucciotti, A.; Ferri, E.] Univ Milano Bicocca, Milan, Italy. [Faverzani, M.; Nucciotti, A.; Ferri, E.] INFN Milano Bicocca, Milan, Italy. [Day, P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Faverzani, M (reprint author), Univ Milano Bicocca, Milan, Italy. EM marco.faverzani@mib.infn.it; peter.k.day@jpl.nasa.gov; angelo.nucciotti@mib.infn.it; elena.ferri@mib.infn.it RI Nucciotti, Angelo/I-8888-2012; Ferri, Elena/L-8531-2014; Faverzani, Marco/K-3865-2016 OI Nucciotti, Angelo/0000-0002-8458-1556; Ferri, Elena/0000-0003-1425-3669; Faverzani, Marco/0000-0001-8119-2953 FU Fondazione Cariplo FX This work is supported by Fondazione Cariplo through the project "Development of Microresonator Detectors for Neutrino Physics". NR 5 TC 6 Z9 6 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 1041 EP 1047 DI 10.1007/s10909-012-0538-2 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600073 ER PT J AU Czaja, AD Johnson, CM Roden, EE Beard, BL Voegelin, AR Nagler, TF Beukes, NJ Wille, M AF Czaja, Andrew D. Johnson, Clark M. Roden, Eric E. Beard, Brian L. Voegelin, Andrea R. Naegler, Thomas F. Beukes, Nicolas J. Wille, Martin TI Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ARCHEAN MOLECULAR FOSSILS; GREAT OXIDATION EVENT; BILLION YEARS AGO; TRANSVAAL SUPERGROUP; SOUTH-AFRICA; FE ISOTOPE; ATMOSPHERIC OXYGEN; CARBONATE PLATFORM; MARINE-SEDIMENTS; KAAPVAAL CRATON AB Most geochemical proxies and models of atmospheric evolution suggest that the amount of free O-2 in Earth's atmosphere stayed below 10(-5) present atmospheric level (PAL) until the Great Oxidation Event (GOE) that occurred between similar to 2.2 and 2.4 Ga, at which time free O-2 in the atmosphere increased to approximately 10(-1) to 10(-2) PAL. Although photosynthetically produced "O-2 oases" have been proposed for the photic zone of the oceans prior to the GOE, it has been difficult to constrain absolute O-2 concentrations and fluxes in such paleoenvironments. Here we constrain free O-2 levels in the photic zone of a Late Archean marine basin by the combined use of Fe and Mo isotope systematics of Ca-Mg carbonates and shales from the 2.68 to 2.50 Ga Campbellrand-Malmani carbonate platform of the Kaapvaal Craton in South Africa. Correlated Fe and Mo isotope compositions require a key role for Fe oxide precipitation via oxidation of aqueous Fe(II) by photosynthetically-derived O-2, followed by sorption of aqueous Mo to the newly formed Fe oxides. A dispersion/reaction model illustrates the effects of Fe oxide production and Mo sorption to Fe oxides, and suggests that a few to a few tens of mu M free O-2 was available in the photic zone of the Late Archean marine basin, consistent with some previous estimates. The coupling of Fe and Mo isotope systematics provides a unique view into the processes that occurred in the ancient shallow ocean after production of free O-2 began, but prior to oxygenation of the deep ocean, or significant accumulation of free O-2 in the atmosphere. These results require oxygenic photosynthesis to have evolved by at least 2.7 Ga and suggest that the Neoarchean ocean may have had a different oxygenation history than that of the atmosphere. The data also suggest that the extensive iron formation deposition that occurred during this time was unlikely to have been produced by anoxygenic photosynthetic Fe(II) oxidation. Finally, these data indicate that the ocean had significant amounts of O-2 at least 150 Myr prior to previously proposed "whiffs" of O-2 at the Archean to Proterozoic transition. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Czaja, Andrew D.; Johnson, Clark M.; Roden, Eric E.; Beard, Brian L.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Czaja, Andrew D.; Johnson, Clark M.; Roden, Eric E.; Beard, Brian L.] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Voegelin, Andrea R.; Naegler, Thomas F.] Univ Bern, Inst Geol, CH-3012 Bern, Switzerland. [Beukes, Nicolas J.] Univ Johannesburg, Dept Geol, Paleoproterozo Mineralizat Res Grp, Auckland Pk, South Africa. [Wille, Martin] Univ Tubingen, Dept Geosci, D-72076 Tubingen, Germany. RP Czaja, AD (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM aczaja@geology.wisc.edu RI Wille, Martin/A-1973-2009; Nagler, Thomas/I-8136-2015; OI Nagler, Thomas/0000-0002-6919-0151; Wille, Martin/0000-0003-1083-4730 FU NASA Astrobiology Institute; Swiss National Science Foundation [20021-126759] FX Iron isotope analyses in Madison, WI were funded by the NASA Astrobiology Institute. Molybdenum isotope work in Bern was funded by Swiss National Science Foundation Grant 20021-126759 to T.F.N. We thank H. Xu, H. Konishi, and J. Huberty for assistance with XRD analyses. We also thank D. Vance and C. Pearce, as well as two anonymous reviewers for comments on the manuscript. The manuscript also benefitted from discussions with P. Pufahl. NR 115 TC 46 Z9 51 U1 2 U2 81 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 1 PY 2012 VL 86 BP 118 EP 137 DI 10.1016/j.gca.2012.03.007 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 937RZ UT WOS:000303677400008 ER PT J AU Kis, KI Taylor, PT Wittmann, G Toronyi, B Puszta, S AF Kis, K. I. Taylor, P. T. Wittmann, G. Toronyi, B. Puszta, S. TI INTERPRETATION OF THE TOTAL MAGNETIC FIELD ANOMALIES MEASURED BY THE CHAMP SATELLITE OVER A PART OF EUROPE AND THE PANNONIAN BASIN SO ACTA GEODAETICA ET GEOPHYSICA HUNGARICA LA English DT Article DE CHAMP; exsolution of hematite-ilmenite minerals; Laplacian and Gaussian parameter distributions; regularized inversion; Simplex and Simulated Annealing methods; total magnetic anomalies ID NATURAL REMANENT MAGNETIZATION; CRUSTAL GRANULITE XENOLITHS; LAMELLAR MAGNETISM; BAYESIAN-ESTIMATION; SEISMIC INVERSION; TITANOHEMATITE; HUNGARY; REGION; ZONE AB In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies are reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions, Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals. C1 [Kis, K. I.] Eotvos Lorand Univ, Dept Geophys & Space Sci, H-1117 Budapest, Hungary. [Taylor, P. T.] NASA, Planetary Geodynam Lab, GFSC, Greenbelt, MD 20771 USA. [Wittmann, G.] MOL Hungarian Oil & Gas Co, H-1117 Budapest, Hungary. [Toronyi, B.] Inst Geodesy Cartog & Remote Sensing, H-1149 Budapest, Hungary. [Puszta, S.] Fractal Partnership, H-1155 Budapest, Hungary. RP Kis, KI (reprint author), Eotvos Lorand Univ, Dept Geophys & Space Sci, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary. EM kisk@ludens.elte.hu NR 40 TC 2 Z9 2 U1 1 U2 7 PU AKADEMIAI KIADO RT PI BUDAPEST PA PRIELLE K U 19, PO BOX 245,, H-1117 BUDAPEST, HUNGARY SN 1217-8977 J9 ACTA GEOD GEOPHYS HU JI Acta Geod. Geophys. Hung. PD JUN PY 2012 VL 47 IS 2 BP 130 EP 140 DI 10.1556/AGeod.47.2012.2.2 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 932XF UT WOS:000303323100002 ER PT J AU Tomasi, C Lupi, A Mazzola, M Stone, RS Dutton, EG Herber, A Radionov, VF Holben, BN Sorokin, MG Sakerin, SM Terpugova, SA Sobolewski, PS Lanconelli, C Petkov, BH Busetto, M Vitale, V AF Tomasi, Claudio Lupi, Angelo Mazzola, Mauro Stone, Robert S. Dutton, Ellsworth G. Herber, Andreas Radionov, Vladimir F. Holben, Brent N. Sorokin, Mikhail G. Sakerin, Sergey M. Terpugova, Svetlana A. Sobolewski, Piotr S. Lanconelli, Christian Petkov, Boyan H. Busetto, Maurizio Vitale, Vito TI An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Polar aerosol optical depth; Long-term AOD variations; Angstrom exponent variations; Polar aerosol chemical composition; Polar aerosol radiative parameters; Arctic haze; Volcanic aerosol effects ID LONG-TERM DECREASE; ARCTIC HAZE; SOUTH-POLE; BLACK CARBON; ATMOSPHERIC TURBIDITY; CHEMICAL-COMPOSITION; SIZE DISTRIBUTIONS; ANTARCTIC AEROSOL; BOUNDARY-LAYER; BARROW AB An updated set of time series of derived aerosol optical depth (AOD) and Angstrom's exponent alpha from a number of Arctic and Antarctic stations was analyzed to determine the long-term variations of these two parameters. The Arctic measurements were performed at Ny-Alesund (1991-2010), Barrow (1977-2010) and some Siberian sites (1981-1991). The data were integrated with Level 2.0 AERONET sun-photometer measurements recorded at Hornsund, Svalbard, and Barrow for recent years, and at Tiksi for the summer 2010. The Antarctic data-set comprises sun-photometer measurements performed at Mirny (1982-2009), Neumayer (1991-2004), and Terra Nova Bay (1987-2005), and at South Pole (1977-2010). Analyses of daily mean AOD were made in the Arctic by (i) adjusting values to eliminate volcanic effects due to the El Chichon, Pinatubo, Kasatochi and Sarychev eruptions, and (ii) selecting the summer background aerosol data from those affected by forest fire smoke. Nearly null values of the long-term variation of summer background AOD were obtained at Ny-Alesund (1991-2010) and at Barrow (1977-2010). No evidence of important variations in AOD was found when comparing the monthly mean values of AOD measured at Tiksi in summer 2010 with those derived from multi-filter actinometer measurements performed in the late 1980s at some Siberian sites. The long-term variations of seasonal mean AOD for Arctic Haze (AH) conditions and AH episode seasonal frequency were also evaluated, finding that these parameters underwent large fluctuations over the 35-year period at Ny-Alesund and Barrow, without presenting well-defined long-term variations. A characterization of chemical composition, complex refractive index and single scattering albedo of ground-level aerosol polydispersions in summer and winter-spring is also presented, based on results mainly found in the literature. The long-term variation in Antarctic AOD was estimated to be stable, within +/- 0.10% per year, at the three coastal sites, and nearly null at South Pole, where a weak increase was only recently observed, associated with an appreciable decrease in alpha, plausibly due to the formation of thin stratospheric layers of ageing volcanic particles. The main characteristics of chemical composition, complex refractive index and single scattering albedo of Antarctic aerosols are also presented for coastal particles sampled at Neumayer and Terra Nova Bay, and continental particles at South Pole. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Tomasi, Claudio; Lupi, Angelo; Mazzola, Mauro; Lanconelli, Christian; Petkov, Boyan H.; Busetto, Maurizio; Vitale, Vito] CNR, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy. [Stone, Robert S.; Dutton, Ellsworth G.] NOAA, GMD, ESRL, Boulder, CO USA. [Stone, Robert S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Herber, Andreas] Alfred Wegener Inst Polar & Marine Res, Climate Syst Div, Bremerhaven, Germany. [Radionov, Vladimir F.] AARI, St Petersburg, Russia. [Sorokin, Mikhail G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Sigma Space Corp, Greenbelt, MD 20771 USA. [Sakerin, Sergey M.; Terpugova, Svetlana A.] RAS, VE Zuev Inst Atmospher Opt, Siberian Branch IAO SB, Tomsk, Russia. [Sobolewski, Piotr S.] PAS, Inst Geophys, Warsaw, Poland. RP Tomasi, C (reprint author), CNR, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy. EM c.tomasi@isac.cnr.it RI Mazzola, Mauro/K-9376-2016; OI Mazzola, Mauro/0000-0002-8394-2292; Lanconelli, Christian/0000-0002-9545-1255; busetto, maurizio/0000-0003-1115-6564 FU Programma Nazionale di Ricerche in Antartide (PNRA) [2006/6.01]; International Centre for Theoretical Physics, Trieste (Italy) FX The research activity was supported by the Programma Nazionale di Ricerche in Antartide (PNRA) and developed as a part of Subproject 2006/6.01: "POLAR-AOD: a network to characterize the means, variability and trends of the climate-forcing properties of aerosols in polar regions". The authors thank R. Wagener, Principal Investigator of the Barrow AERONET site, for his effort in establishing and maintaining the activities at this important station of the Arctic region. The International Centre for Theoretical Physics, Trieste (Italy) is gratefully acknowledged for its support of the participation of B. Petkov in the framework of the Programme for Training and Research in Italian Laboratories. NR 93 TC 23 Z9 27 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2012 VL 52 SI SI BP 29 EP 47 DI 10.1016/j.atmosenv.2012.02.055 PG 19 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 929XH UT WOS:000303098500004 ER PT J AU Gatebe, CK Varnai, T Poudyal, R Ichoku, C King, MD AF Gatebe, C. K. Varnai, T. Poudyal, R. Ichoku, C. King, M. D. TI Taking the pulse of pyrocumulus clouds SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Remote sensing; Pyrocumulus; Clouds; Smoke; Fires; Biomass burning; Radiometer; Monte Carlo; Three-dimensional (3D) radiative transfer; Diffusion approximations; Airborne; CAR; NASA P-3B ID BIOMASS SMOKE INJECTION; ACTIVE FIRE DETECTION; LOWER STRATOSPHERE; RADIATIVE-TRANSFER; OPTICAL DEPTH; TRANSPORT; SCATTERING; TROPOSPHERE; CONVECTION; ALGORITHM AB Large forest fires are a known natural and dominant disturbance factor in high northern latitudes, and form pyrocumulus (pyroCu), and occasionally pyrocumulonimbus (pyroCb) clouds. These clouds can transport emissions into the upper troposphere/lower stratosphere (UT/LS) and produce significant regional and even global climate effects, as is the case with some volcanoes. However, the lack of observational data within pyroCu or pyroCb complicates our ability to investigate pyro-convection and to understand the vertical and cross-isentropic transport mechanisms responsible for UT/LS injection. Here, we report detailed airborne radiation measurements within strong pyroCu taken over boreal forest fires in Saskatchewan, Canada during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) summer field campaign in 2008. We find a prominent smoke core within the pyroCu, which is defined by strong extinction in the UV, VIS and NIR, and high gas-particle concentrations. We also find that the angular distribution of radiance within the pyroCu is closely related to the diffusion domain in water clouds, which is dominated by multiple scattering processes. The radiation field of pyroCu can be described by diffusion approximations that are comprised of simple cosine functions, which can be used to calculate the spatial and temporal characteristics of the radiance field, and applied in cloud resolving models. We demonstrate with Monte Carlo simulations that radiation transport in pyroCu is inherently a 3D problem and must account for particle absorption. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Gatebe, C. K.] Univ Space Res Assoc, Columbia, MD 21228 USA. [Gatebe, C. K.; Varnai, T.; Poudyal, R.; Ichoku, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Varnai, T.] Univ Maryland, Baltimore, MD 21228 USA. [Poudyal, R.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [King, M. D.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Gatebe, CK (reprint author), Univ Space Res Assoc, Columbia, MD 21228 USA. EM charles.k.gatebe@nasa.gov RI King, Michael/C-7153-2011; Ichoku, Charles/E-1857-2012; Gatebe, Charles/G-7094-2011 OI King, Michael/0000-0003-2645-7298; Ichoku, Charles/0000-0003-3244-4549; Gatebe, Charles/0000-0001-9261-2239 FU Science Mission Directorate of the National Aeronautics and Space Administration (NASA); NASA [NNX08A89G, NNX11AQ98G] FX This research was supported by the Science Mission Directorate of the National Aeronautics and Space Administration (NASA) as part of the Radiation Sciences Program under Hal B. Maring and Airborne Science Program under Bruce Tagg. We thank NASA P-3 crew members, and also the following individuals (R. Kahn, R. A. Marshak, R. Cahalan, W. Wiscombe, F. Ewald, A. Nenes, and T. Lathem) for insightful discussions and comments. We also thank the editor and two anonymous reviewers for their valuable comments. This work was performed under NASA Grants NNX08A89G and NNX11AQ98G. NR 43 TC 8 Z9 8 U1 1 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2012 VL 52 SI SI BP 121 EP 130 DI 10.1016/j.atmosenv.2012.01.045 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 929XH UT WOS:000303098500011 ER PT J AU Gustafson, RG Ford, MJ Adams, PB Drake, JS Emmett, RL Fresh, KL Rowse, M Spangler, EAK Spangler, RE Teel, DJ Wilson, MT AF Gustafson, Richard G. Ford, Michael J. Adams, Peter B. Drake, Jonathan S. Emmett, Robert L. Fresh, Kurt L. Rowse, Mindy Spangler, Elizabeth A. K. Spangler, Robert E. Teel, David J. Wilson, Matthew T. TI Conservation status of eulachon in the California Current SO FISH AND FISHERIES LA English DT Article DE Climate change; Endangered Species Act; forage fish; osmerid smelt; Thaleichthys pacificus ID THALEICHTHYS-PACIFICUS; POPULATION-STRUCTURE; MERLUCCIUS-PRODUCTUS; CLIMATE-CHANGE; TRAWL FISHERY; NORTH-AMERICA; OCEAN; MORTALITY; MARINE; TEMPERATURE AB Eulachon (Thaleichthys pacificus), an anadromous smelt in the Northeast Pacific Ocean was examined for listing under the USAs Endangered Species Act (ESA). A southern Distinct Population Segment (DPS) of eulachon that occurs in the California Current and is composed of numerous subpopulations that spawn in rivers from northern California to northern British Columbia was identified on the basis of ecological and environmental characteristics, and to a lesser extent, genetic and life history variation. Although the northern terrestrial boundary of this DPS remains uncertain, our consensus opinion was that this northern boundary occurs south of the Nass River and that the DPS was discrete from more northern eulachon, as well as significant to the biological species as a whole and thus is a species under the ESA. Eulachon have been nearly absent in northern California for over two decades, have declined in the Fraser River by over 97% in the past 10 years, and are at historically low levels in other British Columbia rivers in the DPS, and nearly so in the Columbia River. Major threats to southern eulachon include climate change impacts on ocean and freshwater habitat, by-catch in offshore shrimp trawl fisheries, changes in downstream flow timing and intensity owing to dams and water diversions, and predation. These threats, together with large declines in abundance, indicate that the southern DPS of eulachon is at moderate risk of extinction throughout all of its range. The southern DPS was listed as threatened under the ESA in May 2010 the first marine forage fish to be afforded these statutory protections, which apply only to waters under U.S. jurisdiction. C1 [Gustafson, Richard G.; Ford, Michael J.; Drake, Jonathan S.; Fresh, Kurt L.; Rowse, Mindy; Teel, David J.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Adams, Peter B.] Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Santa Cruz, CA 95060 USA. [Emmett, Robert L.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Newport, OR 97365 USA. [Spangler, Elizabeth A. K.] US Fish & Wildlife Serv, Dept Interior, Anchorage, AK 99503 USA. [Spangler, Robert E.] US Forest Serv, USDA, Anchorage, AK 99503 USA. [Wilson, Matthew T.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. RP Gustafson, RG (reprint author), Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, 2725 Montlake Blvd E, Seattle, WA 98112 USA. EM Rick.Gustafson@noaa.gov FU Northwest Region of NMFS FX Numerous individual fishery scientists and managers provided information that aided in preparation of this document and deserve special thanks. We particularly thank Dr. Doug Hay, Nearshore Consulting, Nanaimo, British Columbia (Scientist Emeritus, Pacific Biological Station, Department of Fisheries and Oceans Canada); Brad James, Greg Bargmann, and Olaf Langness, Washington Department of Fish and Wildlife; and Tom Rien, Oregon Department of Fish and Wildlife. We also thank Megan Moody, Nuxalk Nation, Bella Coola, British Columbia; Andy Lecuyer, Environmental Advisor, Rio Tinto Alcan Inc., Kemano, British Columbia; Michael R. Gordon, M. R. Gordon & Associates Ltd., North Vancouver, British Columbia; and Irene Martin, Skamokawa, Washington, for providing documents or steering us towards those who could. Additional thanks go to Jeff Cowen for assistance with the figures; Laurie Weitkamp, Thomas Good, Jeff Hard, Doug Hay (external reviewer), and one anonymous reviewer for providing valuable comments on earlier versions of the manuscript; and five anonymous scientists whose reviews of an early draft of the status review substantially improved the quality of our final product. The Northwest Region of NMFS provided partial funding in support of this investigation. NR 89 TC 3 Z9 3 U1 1 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1467-2960 J9 FISH FISH JI Fish. Fish. PD JUN PY 2012 VL 13 IS 2 BP 121 EP 138 DI 10.1111/j.1467-2979.2011.00418.x PG 18 WC Fisheries SC Fisheries GA 923HM UT WOS:000302610400001 ER PT J AU Peck, J Timko, MT Yu, ZH Wong, HW Herndon, SC Yelvington, PE Miake-Lye, RC Wey, C Winstead, EL Ziemba, LD Anderson, BE AF Peck, Jay Timko, Michael T. Yu, Zhenhong Wong, Hsi-Wu Herndon, Scott C. Yelvington, Paul E. Miake-Lye, Richard C. Wey, Changlie Winstead, Edward L. Ziemba, Luke D. Anderson, Bruce E. TI Measurement of Volatile Particulate Matter Emissions From Aircraft Engines Using a Simulated Plume Aging System SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID ATLANTA-INTERNATIONAL-AIRPORT; COMMERCIAL AIRCRAFT; AEROSOL EMISSIONS; JET ENGINE; THERMOPHORETIC DEPOSITION; HYDROCARBON EMISSIONS; AIRBORNE OBSERVATIONS; PARTICLE EMISSIONS; EXHAUST; FLOW AB Aircraft exhaust contains nonvolatile (soot) particulate matter (PM), trace gas pollutants, and volatile PM precursor material. Nonvolatile soot particles are predominantly present at the engine exit plane, but volatile PM precursors form new particles or add mass to the existing ones as the exhaust is diluted and cooled. Accurately characterizing the volatile PM mass, number, and size distribution is challenging due to this evolving nature and the impact of local ambient conditions on the gas-to-particle conversion processes. To accurately and consistently measure the aircraft PM emissions, a dilution and aging sampling system that can condense volatile precursors to particle phase to simulate the atmospheric evolution of aircraft engine exhaust has been developed. In this paper, a field demonstration of its operation is described. The dilution/aging probe system was tested using both a combustor rig and on-wing CFM56-7 engines. During the combustor rig testing at NASA Glenn Research Center, the dilution/aging probe supported formation of both nucleation/growth mode particles and soot coatings. The results showed that by increasing residence time, the nucleation particles become larger in size, increase in total mass, and decrease in number. During the on-wing CFM56-7 engine testing at Chicago Midway Airport, the dilution/aging probe was able to form soot coatings along with nucleation mode particles, unlike conventional 1-m probe engine measurements. The number concentration of nucleation particles depended on the sample fraction and relative humidity of the dilution air. The performance of the instrument is analyzed and explained using computational microphysics simulations. [DOI: 10.1115/1.4005988] C1 [Peck, Jay; Timko, Michael T.; Yu, Zhenhong; Wong, Hsi-Wu; Herndon, Scott C.; Yelvington, Paul E.; Miake-Lye, Richard C.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Wey, Changlie] ASRC Aerosp Corp, Cleveland, OH USA. [Winstead, Edward L.] Sci Syst & Applicat Inc, Hampton, VA USA. [Ziemba, Luke D.; Anderson, Bruce E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Peck, J (reprint author), Aerodyne Res Inc, Billerica, MA 01821 USA. EM jpeck@aerodyne.com FU Air Force SBIR [FA9101-08-C-0013]; AEDC SBIR; NASA through NRA [NNC07CB57C]; Art Kaucher of Southwest Airlines; Matthew Marich and Aaron Frame of the City of Chicago FX This instrument development effort was supported by the Air Force SBIR program (Contract No. FA9101-08-C-0013), and the authors are grateful to the support from Robert Howard, the AEDC SBIR technical monitor. NASA provided support for ARI participation in the CE-5 combustor testing through NRA Contract No. NNC07CB57C. The authors thank Kathy Tacina as well as the entire staff at NASA GRC for the support during the CE-5 test. We appreciate the ACRP 02-03a program for providing the opportunity to perform the MDW-10 measurements. Art Kaucher of Southwest Airlines and Matthew Marich and Aaron Frame of the City of Chicago are greatly thanked for the cooperation and support during the MDW-10 measurements. NR 47 TC 2 Z9 2 U1 3 U2 17 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUN PY 2012 VL 134 IS 6 AR 061503 DI 10.1115/1.4005988 PG 8 WC Engineering, Mechanical SC Engineering GA 931ZF UT WOS:000303257300004 ER PT J AU Birrane, E Burleigh, S Kasch, N AF Birrane, Edward Burleigh, Scott Kasch, Niels TI Analysis of the contact graph routing algorithm: Bounding interplanetary paths SO ACTA ASTRONAUTICA LA English DT Article DE Delay-tolerant networks; Contact graph routing; Solar system internet AB Interplanetary communication networks comprise orbiters, deep-space relays, and stations on planetary surfaces. These networks must overcome node mobility, constrained resources, and significant propagation delays. Opportunities for wireless contact rely on calculating transmit and receive opportunities, but the Euclidean-distance diameter of these networks (measured in light-seconds and light-minutes) precludes node discovery and contact negotiation. Propagation delay may be larger than the line-of-sight contact between nodes. For example, Mars and Earth orbiters may be separated by up to 20.8 min of signal propagation time. Such spacecraft may never share line-of-sight, but may uni-directionally communicate if one orbiter knows the other's future position. The Contact Graph Routing (CGR) approach is a family of algorithms presented to solve the messaging problem of interplanetary communications. These algorithms exploit networks where nodes exhibit deterministic mobility. For CGR, mobility and bandwidth information is pre-configured throughout the network allowing nodes to construct transmit opportunities. Once constructed, routing algorithms operate on this contact graph to build an efficient path through the network. The interpretation of the contact graph, and the construction of a bounded approximate path, is critically important for adoption in operational systems. Brute force approaches, while effective in small networks, are computationally expensive and will not scale. Methods of inferring cycles or other librations within the graph are difficult to detect and will guide the practical implementation of any routing algorithm. This paper presents a mathematical analysis of a multi-destination contact graph algorithm (MD-CGR), demonstrates that it is NP-complete, and proposes realistic constraints that make the problem solvable in polynomial time, as is the case with the originally proposed CGR algorithm. An analysis of path construction to complement hop-by-hop forwarding is presented as the CGR-EB algorithm. Future work is proposed to handle the presence of dynamic changes to the network, as produced by congestion, link disruption, and errors in the contact graph. We conclude that pre-computation, and thus CGR style algorithms, is the only efficient method of routing in a multi-node, multi-path interplanetary network and that algorithmic analysis is the key to its implementation in operational systems. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Birrane, Edward] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Burleigh, Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kasch, Niels] Univ Maryland, Baltimore, MD 21250 USA. RP Birrane, E (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Edward.Birrane@jhuapl.edu; scott.c.burleigh@jpl.nasa.gov; nkasch1@umbc.edu NR 12 TC 18 Z9 19 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2012 VL 75 BP 108 EP 119 DI 10.1016/j.actaastro.2012.02.004 PG 12 WC Engineering, Aerospace SC Engineering GA 928LS UT WOS:000302984900011 ER PT J AU Springmann, JC Sloboda, AJ Klesh, AT Bennett, MW Cutler, JW AF Springmann, John C. Sloboda, Alexander J. Klesh, Andrew T. Bennett, Matthew W. Cutler, James W. TI The attitude determination system of the RAX satellite SO ACTA ASTRONAUTICA LA English DT Article DE Attitude determination; CubeSat; Nanosatellite; Subsystem design; Magnetometer; Photodiode; Sun sensor; Rate gyroscope; Kalman filter ID CALIBRATION AB The Radio Aurora Explorer (RAX) is a triple CubeSat that launched on November 19, 2010. RAX was designed to study plasma irregularities in the polar lower ionosphere (80-300 km), and is the first CubeSat mission funded by the United States National Science Foundation. The scientific mission requires attitude knowledge within 5 degrees (1-sigma), and a custom attitude determination subsystem was developed for the mission. The subsystem utilizes rate gyros, magnetometers, coarse sun sensors, and an extended Kalman filter, and was designed to be a simple, low cost solution to meet the attitude determination requirements. In this paper, we describe the design, implementation, and testing of the RAX attitude determination subsystem, including derivation of the determination requirements, sensor selection, the integrated hardware design, preflight sensor calibration, and attitude estimation algorithms. The paper is meant to serve as a resource for others in the small satellite and nanosatellite communities, as well as a critical reference for those analyzing RAX data. Lessons learned from the design and performance of the RAX determination subsystem will be used in future designs of attitude determination systems for small satellites and similar platforms, such as high altitude balloons and autonomous aerial vehicles. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Springmann, John C.; Sloboda, Alexander J.; Cutler, James W.] Univ Michigan, Ann Arbor, MI 48109 USA. [Klesh, Andrew T.; Bennett, Matthew W.] CALTECH, Jet Prop Lab, Pasadena, CA 91105 USA. RP Springmann, JC (reprint author), Univ Michigan, 1320 Beal Ave, Ann Arbor, MI 48109 USA. EM jspringm@umich.edu FU RAX team; NASA Glenn Research Center; National Science Foundation [ATM-0838054]; Department of Defense FX The authors would like to acknowledge other students who have been part of the RAX attitude determination and control subsystems teams, including Dae Young Lee, Michael Heywood, Sheryl Seagraves, Jason Anyalebechi, and Dylan Boone: students who contributed to the development of the Kalman filter, including Sara Spangelo, Eric Gustafson, and Amor Menezes; and Allison Craddock and the other members of the RAX team for their support. The authors would also like to acknowledge NASA Glenn Research Center for support of the sun sensor testing. RAX is funded by the National Science Foundation, grant ATM-0838054. Additional support came from the Department of Defense through a National Defense Science & Engineering Graduate Fellowship (NDSEG) for the first author. Part of the editing of this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 29 TC 26 Z9 26 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2012 VL 75 BP 120 EP 135 DI 10.1016/j.actaastro.2012.02.001 PG 16 WC Engineering, Aerospace SC Engineering GA 928LS UT WOS:000302984900012 ER PT J AU Kwok, R Cunningham, GF AF Kwok, R. Cunningham, G. F. TI Deformation of the Arctic Ocean ice cover after the 2007 record minimum in summer ice extent SO COLD REGIONS SCIENCE AND TECHNOLOGY LA English DT Article DE Arctic Ocean sea ice; Sea ice deformation; Mass balance ID SEA-ICE; MOTION; SYSTEM; SAR AB We examine the deformation of the Arctic Ocean sea ice cover after the record minimum in summer extent in 2007. The period spans similar to 2.5 months between September 15 and December 1. Ice drift and deformation inside the ice edge, within a domain that initially covers similar to 0.76x10(6) km(2) of the western Arctic, are derived from high-resolution RADARSAT imagery from the Alaska Satellite Facility. Poleward of 80 degrees N, we find a net convergence of more than 14% over the period. This large convergence is associated with the strength, location, and persistence of the Beaufort high-pressure pattern that led to prevailing on-shore winds north of Ellesmere Island and Greenland. This can be contrasted to the nearly 25% divergence of the ice cover, accompanied by a large regional vorticity of -0.93 (or a clockwise rotation of similar to 53 degrees) south of 80 degrees N. The same atmospheric pattern produced openings as the ice cover drifts southwest towards the unconstrained ice-free part of the southern Beaufort and Chukchi Seas. These sustained strain rates, especially convergence, impacts the area and thickness distribution of the sea ice cover in the Arctic Basin. If unaccounted for, this deformation-induced decrease in ice coverage (in this region with predominantly multiyear ice) could be incorrectly ascribed to ice export with a concurrent decrease in Arctic sea ice volume, when in fact the ice volume is conserved but with a local redistribution in thickness. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kwok, R.; Cunningham, G. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kwok, R (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM ron.kwok@jpl.nasa.gov RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU National Aeronautics and Space Administration FX We thank Lisa Nguyen for her assistance in the preparation of the ice drift data set. The AMSR-E brightness temperature and ice concentration fields are provided by World Data Center A for Glaciology/National Snow and Ice Data Center, University of Colorado, Boulder, CO. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 16 TC 6 Z9 6 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-232X EI 1872-7441 J9 COLD REG SCI TECHNOL JI Cold Reg. Sci. Tech. PD JUN PY 2012 VL 76-77 SI SI BP 17 EP 23 DI 10.1016/j.coldregions.2011.04.003 PG 7 WC Engineering, Environmental; Engineering, Civil; Geosciences, Multidisciplinary SC Engineering; Geology GA 928GH UT WOS:000302970700004 ER PT J AU Godoy, WF Liu, X AF Godoy, William F. Liu, Xu TI Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiative transfer equation (RTE); Discrete ordinates method (DOM) S-N; Flux limiters; TVD; Electromagnetic radiation; Jacobian free Newton-Krylov (JFNK); General Minimal Residual (GMRES); Householder; Gram-Schmidt; Parallel MPI; Threads; Collimated radiation ID ALGORITHM; ACCURACY; SCHEMES; SYSTEMS; FLOWS; GMRES AB The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing-emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram-Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution. (C) 2012 Elsevier Inc. All rights reserved. C1 [Godoy, William F.; Liu, Xu] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Godoy, WF (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM william.f.godoycastaneda@nasa.gov RI Richards, Amber/K-8203-2015; OI Godoy, William/0000-0002-2590-5178 FU NASA at the Langley Research Center; NASA Advanced Supercomputing (NAS) Division for the use of the Pleiades supercomputer [SMD-10-1780] FX This research was supported by an appointment to the NASA Postdoctoral Program (NPP) at the Langley Research Center, administered by Oak Ridge Associated Universities (ORAU). The authors would like to acknowledge: (i) the NASA Advanced Supercomputing (NAS) Division for the use of the Pleiades supercomputer under award SMD-10-1780 and (ii) the CLARREO mission team members, Chris Currey and Jim Davis, for the use of their dedicated cluster for the computational tests. NR 43 TC 7 Z9 7 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 1 PY 2012 VL 231 IS 11 BP 4257 EP 4278 DI 10.1016/j.jcp.2012.02.010 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 927TS UT WOS:000302933600011 ER PT J AU Marshak, A Knyazikhin, Y Chiu, JC Wiscombe, WJ AF Marshak, Alexander Knyazikhin, Yuri Chiu, J. Christine Wiscombe, Warren J. TI On spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Single scattering albedo; Droplets; Ice particles; Spectral invariance ID CLOUDS; CANOPY; ABSORPTION; MODELS AB The single scattering albedo omega(0 lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(0 lambda)(r)/omega(0 lambda)(r(0)) of two single scattering albedo spectra is a linear function of omega(0 lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(0 lambda)(r) via one known spectrum omega(0 lambda)(r(0)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals. Published by Elsevier Ltd. C1 [Marshak, Alexander; Wiscombe, Warren J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Knyazikhin, Yuri] Boston Univ, Boston, MA 02215 USA. [Chiu, J. Christine] Univ Reading, Dept Meteorol, Reading, Berks, England. RP Marshak, A (reprint author), NASA, Goddard Space Flight Ctr, Code 613, Greenbelt, MD 20771 USA. EM alexander.marshak@nasa.gov RI Wiscombe, Warren/D-4665-2012; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012 OI Wiscombe, Warren/0000-0001-6844-9849; Chiu, Christine/0000-0002-8951-6913; FU Office of Science (BER, US Department of Energy) [DE-AI02-08ER64562] FX This research was supported by the Office of Science (BER, US Department of Energy, Interagency Agreement No. DE-AI02-08ER64562) as part of the ASR programme. We also thank Drs. F. Evans, P. Gabriel, R. Kahn, A. Lyapustin, V. Martins, T. Varnai, Z. Zhang for fruitful discussions. We are grateful to Dr. P. Yang for providing a database which gives the phase function for individual ice crystals, to Dr. Y. Yang for his help with Mie calculations and to Dr. Clothiaux for providing data for Fig. 2.25 from Bohren and Clothiaux [4]. NR 15 TC 1 Z9 1 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2012 VL 113 IS 9 BP 715 EP 720 DI 10.1016/j.jqsrt.2012.02.021 PG 6 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 927FL UT WOS:000302892400006 ER PT J AU Schepers, D Guerlet, S Butz, A Landgraf, J Frankenberg, C Hasekamp, O Blavier, JF Deutscher, NM Griffith, DWT Hase, F Kyro, E Morino, I Sherlock, V Sussmann, R Aben, I AF Schepers, D. Guerlet, S. Butz, A. Landgraf, J. Frankenberg, C. Hasekamp, O. Blavier, J. -F. Deutscher, N. M. Griffith, D. W. T. Hase, F. Kyro, E. Morino, I. Sherlock, V. Sussmann, R. Aben, I. TI Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FOURIER-TRANSFORM SPECTROMETER; ATMOSPHERIC METHANE; REFLECTED SUNLIGHT; CARBON-DIOXIDE; CO2 COLUMN; SPACE; EMISSIONS; SENSITIVITY; SCIAMACHY; NETWORK AB We compare two conceptually different methods for determining methane column-averaged mixing ratios (X-CH4) from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared (SWIR) measurements. These methods account differently for light scattering by aerosol and cirrus. The proxy method retrieves a CO2 column which, in conjunction with prior knowledge on CO2 acts as a proxy for scattering effects. The physics-based method accounts for scattering by retrieving three effective parameters of a scattering layer. Both retrievals are validated on a 19-month data set using ground-based X-CH4 measurements at 12 stations of the Total Carbon Column Observing Network (TCCON), showing comparable performance: for the proxy retrieval we find station-dependent retrieval biases from -0.312% to 0.421% of X-CH4 with a standard deviation of 0.22% and a typical precision of 17 ppb. The physics method shows biases between -0.836% and -0.081% with a standard deviation of 0.24% and a precision similar to the proxy method. Complementing this validation we compared both retrievals with simulated methane fields from a global chemistry-transport model. This identified shortcomings of both retrievals causing biases of up to 1ings and provide a satisfying validation of any methane retrieval from space-borne SWIR measurements, in our opinion it is essential to further expand the network of TCCON stations. C1 [Schepers, D.; Guerlet, S.; Landgraf, J.; Hasekamp, O.; Aben, I.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Butz, A.; Hase, F.] Karlsruhe Inst Technol, IMK ASF, Eggenstein Leopoldshafen, Germany. [Frankenberg, C.; Blavier, J. -F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Deutscher, N. M.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Deutscher, N. M.; Griffith, D. W. T.] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia. [Kyro, E.] Finnish Meteorol Inst, Arctic Res Ctr, FIN-00101 Helsinki, Finland. [Morino, I.] NIES, Tsukuba, Ibaraki, Japan. [Sherlock, V.] Natl Inst Water & Atmospher Res, Wellington, New Zealand. [Sussmann, R.] IMK IFU, Garmisch Partenkirchen, Germany. RP Schepers, D (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. EM d.schepers@sron.nl RI Sussmann, Ralf/K-3999-2012; Butz, Andre/A-7024-2013; Hase, Frank/A-7497-2013; Garmisch-Pa, Ifu/H-9902-2014; Morino, Isamu/K-1033-2014; Deutscher, Nicholas/E-3683-2015; Frankenberg, Christian/A-2944-2013 OI Butz, Andre/0000-0003-0593-1608; Morino, Isamu/0000-0003-2720-1569; Deutscher, Nicholas/0000-0002-2906-2577; Frankenberg, Christian/0000-0002-0546-5857 FU Deutsche Forschungsgemeinschaft (DFG) [BU2599/1-1] FX A.B. is supported by Deutsche Forschungsgemeinschaft (DFG) through the Emmy-Noether programme, grant BU2599/1-1 (RemoteC). Access to GOSAT data was granted through the 2nd GOSAT research announcement jointly issued by JAXA, NIES, and MOE. TCCON data were obtained from the TCCON Data Archive, operated by the California Institute of Technology from the Web site at http://tccon.ipac.caltech.edu/. GTOPO30 is available from the U. S. Geological Survey through the Earth Resources Observation and Science (EROS) Center (http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/GTOPO30_in fo). MODIS Atmosphere data are distributed through http://ladsweb.nascom.nasa.gov/data/search.html. CarbonTracker results are provided by NOAA-ESRL, Boulder, Colorado, USA through http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/. NR 36 TC 48 Z9 48 U1 3 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 30 PY 2012 VL 117 AR D10307 DI 10.1029/2012JD017549 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CI UT WOS:000304766900006 ER PT J AU Stolarski, RS Douglass, AR Remsberg, EE Livesey, NJ Gille, JC AF Stolarski, Richard S. Douglass, Anne R. Remsberg, Ellis E. Livesey, Nathaniel J. Gille, John C. TI Ozone temperature correlations in the upper stratosphere as a measure of chlorine content SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE; PERFORMANCE; CHEMISTRY; TRENDS; MODEL AB We use data from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) for the 1978-1979 period together with data from the Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS MLS) for the years 1993 to 1999, the Aura MLS for the years 2004 to 2011, and the Aura High Resolution Infrared Limb Sounder (HIRDLS) for the years 2005 to 2007 to examine ozone-temperature correlations in the upper stratosphere. Our model simulations indicate that the sensitivity coefficient of the ozone response to temperature (Delta ln(O-3)/Delta(1/T)) decreases as chlorine has increased in the stratosphere and should increase in the future as chlorine decreases. The data are in agreement with our simulation of the past. We also find that the sensitivity coefficient does not change in a constant-chlorine simulation. Thus the change in the sensitivity coefficient depends on the change in chlorine, but not on the change in greenhouse gases. We suggest that these and future data can be used to track the impact of chlorine added to the stratosphere and also to track the recovery of the stratosphere as chlorine is removed under the provisions of the Montreal Protocol. C1 [Stolarski, Richard S.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Douglass, Anne R.] NASA, Atmospher Chem & Dynam Branch, Goddard Space Flight Ctr, Greenbelt, MD USA. [Remsberg, Ellis E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Livesey, Nathaniel J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gille, John C.] Univ Colorado, Ctr Limb Atmospher Sounding, Boulder, CO 80309 USA. RP Stolarski, RS (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, 3400 N Charles St, Baltimore, MD 21218 USA. EM rstolar1@jhu.edu RI Douglass, Anne/D-4655-2012; Stolarski, Richard/B-8499-2013 OI Stolarski, Richard/0000-0001-8722-4012 NR 35 TC 7 Z9 7 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 30 PY 2012 VL 117 AR D10305 DI 10.1029/2012JD017456 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CI UT WOS:000304766900004 ER PT J AU Cantrell, JH Yost, WT AF Cantrell, John H. Yost, William T. TI Envelope solitons in acoustically dispersive vitreous silica SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DE-VRIES EQUATION; RADIATION STRESS; SOLIDS; NONLINEARITY; WAVES AB Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or 'dc' waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 +/- 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 +/- 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model. C1 [Cantrell, John H.; Yost, William T.] NASA, Res Directorate, Langley Res Ctr, Hampton, VA 23681 USA. RP Cantrell, JH (reprint author), NASA, Res Directorate, Langley Res Ctr, Hampton, VA 23681 USA. EM john.h.cantrell@nasa.gov; william.t.yost@nasa.gov NR 21 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 30 PY 2012 VL 24 IS 21 AR 215401 DI 10.1088/0953-8984/24/21/215401 PG 7 WC Physics, Condensed Matter SC Physics GA 941SS UT WOS:000303985800008 PM 22534066 ER PT J AU Cochran, CT Van Hoose, JR McGill, PB Grugel, RN AF Cochran, Calvin T. Van Hoose, James R. McGill, Preston B. Grugel, Richard N. TI Improving the strength of amalgams by including steel fibers SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Amalgam; Fiber reinforced composite; Diametral tensile strength; Peritectic reaction AB Mercury amalgams, due to their material properties, are widely and successfully used in dental practice. They are, however, also well recognized as having poor tensile strength. With the possibility of expanding amalgam applications it is demonstrated that tensile strength can be increased some 20% by including a small amount of steel fibers. Furthermore, it is shown that mercury can be replaced with a room temperature liquid gallium-indium alloy. Processing, microstructures, and mechanical test results of these novel amalgams are presented and discussed in view of means to further improve their properties. Published by Elsevier B.V. C1 [McGill, Preston B.; Grugel, Richard N.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Cochran, Calvin T.] Hendrix Coll, Conway, AR 72032 USA. [Van Hoose, James R.] Siemens, Orlando, FL 32826 USA. RP Grugel, RN (reprint author), NASA, George C Marshall Space Flight Ctr, EM30, Huntsville, AL 35812 USA. EM richard.n.grugel@nasa.gov FU Materials and Processing Laboratory of the Marshall Space Flight Center FX Appreciation is also expressed to Greg Jerman, Ms. Lisa Sharff, and Craig Stafford for their timely assistance. The Materials and Processing Laboratory of the Marshall Space Flight Center is also acknowledged for their support. NR 6 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 30 PY 2012 VL 545 BP 44 EP 50 DI 10.1016/j.msea.2012.02.084 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 939EZ UT WOS:000303791700007 ER PT J AU Narayanan, SR Prakash, GKS Manohar, A Yang, B Malkhandi, S Kindler, A AF Narayanan, S. R. Prakash, G. K. Surya Manohar, A. Yang, Bo Malkhandi, S. Kindler, Andrew TI Materials challenges and technical approaches for realizing inexpensive and robust iron-air batteries for large-scale energy storage SO SOLID STATE IONICS LA English DT Article DE Iron-air; Rechargeable battery; Large-scale energy storage; Aqueous rechargeable battery ID ELECTRODES; PERFORMANCE AB A high performance iron-air rechargeable battery has the potential of meeting the requirements of grid-scale energy storage. When successfully demonstrated, this battery technology can be transformational because of the extremely low cost of iron, the extraordinary environmental friendliness of iron and air. and the abundance of raw materials. The key technical challenges that hinder the successful commercialization of the iron-air battery are its efficiency and cycle life. An innovative multi-pronged strategy that aims at raising the round-trip energy efficiency from 50% to 80%, and the cycle life from 2000 to 5000 cycles is therefore necessary to meet the requirements of large scale energy storage. (C) 2011 Elsevier B.V. All rights reserved. C1 [Narayanan, S. R.; Prakash, G. K. Surya; Manohar, A.; Yang, Bo; Malkhandi, S.] Univ So Calif, Dept Chem, Loker Hydrocarbon Res Inst, Los Angeles, CA 90089 USA. [Kindler, Andrew] CALTECH, Jet Prop Lab, Pasadena, CA 90089 USA. RP Narayanan, SR (reprint author), Univ So Calif, Dept Chem, Loker Hydrocarbon Res Inst, Los Angeles, CA 90089 USA. RI Malkhandi, Souradip/C-3582-2009 OI Malkhandi, Souradip/0000-0003-0826-3078 NR 13 TC 41 Z9 41 U1 6 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD MAY 28 PY 2012 VL 216 SI SI BP 105 EP 109 DI 10.1016/j.ssi.2011.12.002 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 956TD UT WOS:000305111100023 ER PT J AU Liu, XM Shemansky, DE Johnson, PV Malone, CP Khakoo, MA AF Liu, Xianming Shemansky, Donald E. Johnson, Paul V. Malone, Charles P. Khakoo, Murtadha A. TI Electron and photon dissociation cross sections of the D-2 singlet ungerade continua SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID QUANTUM-DEFECT THEORY; SPONTANEOUS RADIATIVE DISSOCIATION; RESOLUTION LASER SPECTROSCOPY; DIFFUSE INTERSTELLAR BANDS; VACUUM-ULTRAVIOLET REGION; MINIMUM 1-SIGMA-G+ STATES; ANGULAR-MOMENTUM STATES; MOLECULAR-HYDROGEN; IMPACT EXCITATION; TRANSITION-PROBABILITIES AB The dissociation of H-2 and its isotopologues through excitation to the singlet ungerade continua is one of the major channels for the production of slow hydrogen atoms at high temperature (T > 10 000 K) and electron energy > 25 eV. State-specific photodissociation cross sections and oscillator strengths for molecular deuterium from the X-1 Sigma(+)(g)(v(i),J(i)) levels to the continuum levels of the B-1 Sigma(+)(u), C-1 Pi(u), B'(1)Sigma(+)(u), D-1 Pi(u), B"(B) over bar (1)Sigma(+)(u), D'(1)Pi(u) and 5p sigma(1)Sigma(+)(u) states have been calculated. The corresponding (v(i), J(i)) state-specific electron impact dissociation cross sections have been obtained for the first time over a wide energy range using calculated continuum oscillator strengths along with previously published excitation functions of the Lyman and Werner bands. Estimated cross sections to the higher (n >= 5) np sigma(1)Sigma(+)(u) and np pi(1)Pi(u) continua are also provided. Both photon and electron impact excitation cross sections show strong dependences on the initial (v(i), J(i)) quantum numbers. Thermally averaged electron impact cross sections of all singlet ungerade states increase monotonically with temperature. While excitation to the B'(1)Sigma(+)(u) continuum is the dominant dissociation channel at room temperature, the C-1 Pi(u) and B-1 Sigma(+)(u) continua become more important at high temperature (> 5000 K). The large increase of the C-1 Pi(u) and B-1 Sigma(+)(u) cross sections with (v(i), J(i)) is primarily responsible for making the continuum dissociation from a minor break-up channel at room temperature into a major one at high temperature. The electron dissociation cross section of D-2 via the singlet ungerade continua is smaller than its H-2 counterpart, although this difference decreases with temperature. This work, along with the previous calculations of H-2 by Liu et al (2009, 2012), provides the complete electron impact dissociation cross sections of H-2 and D-2 through the singlet ungerade continua. Thermally averaged electron dissociation cross sections are provided at various temperatures for applications in plasma physics. C1 [Liu, Xianming; Shemansky, Donald E.] Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. [Johnson, Paul V.; Malone, Charles P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Malone, Charles P.; Khakoo, Murtadha A.] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92834 USA. RP Liu, XM (reprint author), Space Environm Technol, Planetary & Space Sci Div, 1676 Palisades Dr, Pacific Palisades, CA 90272 USA. EM xliu@spacenvironment.net RI Malone, Charles/A-6294-2010; Johnson, Paul/D-4001-2009 OI Malone, Charles/0000-0001-8418-1539; Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration ( NASA); NSF [AGS-0938223] FX The authors wish to thank Professor Lutoslaw Wolniewicz for making results of his ab initio calculations accessible. We thank the reviewer for bringing the work of Celiberto et al (1994) to our attention. The analysis described in this paper was carried out at Space Environment Technologies (SET) and at the California State University, Fullerton, CA. A part of this work was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with the National Aeronautics and Space Administration ( NASA). Work performed at SET was supported by NSF AGS-0938223. We acknowledge financial support through NASA's Planetary Atmospheres Research programs. NR 134 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 28 PY 2012 VL 45 IS 10 AR 105203 DI 10.1088/0953-4075/45/10/105203 PG 16 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 942NS UT WOS:000304052100007 ER PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, BS Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Charlton, P Chassande-Mottin, E Chelkowski, S Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, H Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Feroz, F Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil, S Gill, C Gleason, J Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, B Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kranz, O Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Liu, Y Liu, Z Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA McWilliams, S Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Perreca, A Persichetti, G Phelps, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sainathan, P Salemi, F Sammut, L Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schreiber, E Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Stein, LC Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Tseng, K Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wang, Z Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, B. S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Feroz, F. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil, S. Gill, C. Gleason, J. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. -M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kranz, O. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McWilliams, S. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sainathan, P. Salemi, F. Sammut, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Stein, L. C. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tseng, K. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Search for gravitational waves from intermediate mass binary black holes SO PHYSICAL REVIEW D LA English DT Article ID INSPIRALLING COMPACT BINARIES; DENSE STAR-CLUSTERS; GLOBULAR-CLUSTERS; 2ND-POST-NEWTONIAN ORDER; SCIENCE RUN; GROWTH; FORMS; EVOLUTION; LIGO; 5TH AB We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450 M-circle dot and with the component mass ratios between 1: and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 M-circle dot, for nonspinning sources, the rate density upper limit is 0.13 per Mpc(3) per Myr at the 90% confidence level. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Meyer, M. S.; Murray, P. G.; Nelson, J.; Newton, G.; O'Reilly, B.; Pitkin, M.; Plissi, M. V.; Reid, S.; Riesen, R.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Li, J.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Nolting, D.; Overmier, H.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S. M.; Aylott, B. E.; Carbone, L.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Page, A.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Smith-Lefebvre, N. D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina Pisa, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Kelley, D.; Lough, J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Shapiro, B.; Shoemaker, D. H.; Soto, J.; Stein, A. J.; Stein, L. C.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, Lab AstroParticule & Cosmol APC, CNRS IN2P3, CEA DSM IRFU,Observ Pais, F-75013 Paris, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; McWilliams, S.; Murphy, D.; Redwine, K.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, B. S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Beck, D.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Markosyan, A.; Tseng, K.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Lundgren, A. P.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] IN2P3 CNRS, LMA, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Guidi, G. M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, Lab Kastler Brossel, ENS, CNRS,UPMC, F-75005 Paris, France. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Geng, R.; Jang, Y. J.; Liu, Y.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Barone, F.; Byer, R. L.; Clark, J.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-37100 Laquila, Italy. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Drever, R. W. P.; Harms, J.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.] Northwestern Univ, Evanston, IL 60208 USA. [Feroz, F.; Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Gil, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Greenhalgh, R. J. S.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Vitale, S.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kandhasamy, S.; Mandic, V.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Kang, G.; Kim, B.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Kim, C.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Hild, Stefan/A-3864-2010; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Ciani, Giacomo/G-1036-2011; Mitrofanov, Valery/D-8501-2012; Marchesoni, Fabio/A-1920-2008; Bell, Angus/E-7312-2011; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Ward, Robert/I-8032-2014; Howell, Eric/H-5072-2014; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Canuel, Benjamin/C-7459-2014; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; OI Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Ciani, Giacomo/0000-0003-4258-9338; Marchesoni, Fabio/0000-0001-9240-6793; Bell, Angus/0000-0003-1523-0821; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Kanner, Jonah/0000-0001-8115-0577; Husa, Sascha/0000-0002-0445-1971; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Aulbert, Carsten/0000-0002-1481-8319; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Ricci, Fulvio/0000-0001-5475-4447; Vetrano, Flavio/0000-0002-7523-4296; Milano, Leopoldo/0000-0001-9487-5876; Swinkels, Bas/0000-0002-3066-3601; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Gray, Norman/0000-0002-1941-9202; Granata, Massimo/0000-0003-3275-1186 FU United States National Science Foundation; LIGO Laboratory; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number P1100068. NR 63 TC 32 Z9 32 U1 3 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY 24 PY 2012 VL 85 IS 10 AR 102004 DI 10.1103/PhysRevD.85.102004 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 947BK UT WOS:000304401400001 ER PT J AU Wolkovich, EM Cook, BI Allen, JM Crimmins, TM Betancourt, JL Travers, SE Pau, S Regetz, J Davies, TJ Kraft, NJB Ault, TR Bolmgren, K Mazer, SJ McCabe, GJ McGill, BJ Parmesan, C Salamin, N Schwartz, MD Cleland, EE AF Wolkovich, E. M. Cook, B. I. Allen, J. M. Crimmins, T. M. Betancourt, J. L. Travers, S. E. Pau, S. Regetz, J. Davies, T. J. Kraft, N. J. B. Ault, T. R. Bolmgren, K. Mazer, S. J. McCabe, G. J. McGill, B. J. Parmesan, C. Salamin, N. Schwartz, M. D. Cleland, E. E. TI Warming experiments underpredict plant phenological responses to climate change SO NATURE LA English DT Article ID GRADIENT METHODS; TEMPERATURE AB Warming experiments are increasingly relied on to estimate plant responses to global climate change(1,2). For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing(3-5). We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated. C1 [Wolkovich, E. M.; Cleland, E. E.] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA. [Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, B. I.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Allen, J. M.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA. [Crimmins, T. M.] USA Natl Phenol Network, Tucson, AZ 85721 USA. [Betancourt, J. L.] US Geol Survey, Tucson, AZ 85719 USA. [Travers, S. E.] N Dakota State Univ, Dept Biol Sci, Fargo, ND 58108 USA. [Pau, S.; Regetz, J.] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA. [Davies, T. J.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. [Kraft, N. J. B.] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada. [Kraft, N. J. B.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Ault, T. R.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Bolmgren, K.] Swedish Univ Agr Sci, Swedish Natl Phenol Network, Unit Field Based Forest Res, SE-36030 Lammhult, Sweden. [Bolmgren, K.] Lund Univ, SE-22362 Lund, Sweden. [Mazer, S. J.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. [McCabe, G. J.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [McGill, B. J.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. [McGill, B. J.] Univ Maine, Sustainabil Solut Initiat, Orono, ME 04469 USA. [Parmesan, C.] Univ Texas Austin, Austin, TX 78712 USA. [Parmesan, C.] Univ Plymouth, Inst Marine Sci, Plymouth PL4 8AA, Devon, England. [Salamin, N.] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. [Salamin, N.] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland. [Schwartz, M. D.] Univ Wisconsin, Dept Geog, Milwaukee, WI 53201 USA. RP Wolkovich, EM (reprint author), Univ Calif San Diego, Div Biol Sci, 9500 Gilman Dr 0116, La Jolla, CA 92093 USA. EM wolkovich@biodiversity.ubc.ca RI Kraft, Nathan/A-2817-2012; Cook, Benjamin/H-2265-2012; Bolmgren, Kjell/E-1459-2016; McGill, Brian/A-3476-2008; OI Kraft, Nathan/0000-0001-8867-7806; Bolmgren, Kjell/0000-0001-9552-9684; McGill, Brian/0000-0002-0850-1913; Crimmins, Theresa/0000-0001-9592-625X FU National Center for Ecological Analysis Synthesis [EF-0553768]; National Science Foundation [DBI-0905806, IOS-0639794, DEB-0922080]; Natural Sciences and Engineering Research Council of Canada FX This work was conducted as part of the Forecasting Phenology Working Group supported by the National Center for Ecological Analysis & Synthesis (EF-0553768), with additional support from National Science Foundation grants DBI-0905806, IOS-0639794, DEB-0922080 and the Natural Sciences and Engineering Research Council of Canada CREATE Training Program. Special thanks to the many data managers, including G. Aldridge, P. Huth, D. Inouye, G. Johansson, A. Miller-Rushing, J. O'Keefe, R. Primack, S. Smiley, T. Sparks and J. Thompson. We thank M. Ayres, L. Kueppers, D. Moore and M. O'Connor for comments on earlier drafts. NR 28 TC 244 Z9 254 U1 46 U2 427 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 24 PY 2012 VL 485 IS 7399 BP 494 EP 497 DI 10.1038/nature11014 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 946IH UT WOS:000304344500041 PM 22622576 ER PT J AU Coates, AJ Wellbrock, A Lewis, GR Arridge, CS Crary, FJ Young, DT Thomsen, MF Reisenfeld, DB Sittler, EC Johnson, RE Szego, K Bebesi, Z Jones, GH AF Coates, A. J. Wellbrock, A. Lewis, G. R. Arridge, C. S. Crary, F. J. Young, D. T. Thomsen, M. F. Reisenfeld, D. B. Sittler, E. C., Jr. Johnson, R. E. Szego, K. Bebesi, Z. Jones, G. H. TI Cassini in Titan's tail: CAPS observations of plasma escape SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SATURNS MAGNETOSPHERE; ELECTRON SPECTROMETER; HYBRID SIMULATION; IONOSPHERE; HUYGENS; ENVIRONMENT; VOYAGER-1; CLOUDS; WIND; IONS AB We present observations of CAPS electron and ion spectra during Titan distant tail crossings at 5,000-10,000 km altitude by the Cassini spacecraft. In common with closer tail encounters, we identify ionospheric plasma in the tail. Some of the electron spectra indicate a direct magnetic connection to Titan's dayside ionosphere due to the presence of ionospheric photoelectrons. Ion observations reveal heavy (m/q similar to 16 and 28) and light (m/q = 1-2) ion populations streaming into the tail. Using the distant tail encounters T9, T75 and T63, we estimate total plasma loss rates from Titan via this process of (4.2, 0.96 and 2.3) x 10(24) ions s(-1) respectively for the three encounters, values which are in agreement with some simulations but slightly lower than earlier estimates based on non-differential techniques. Using the mass-separated data, this corresponds to mass loss rates of (8.9, 1.6, 4.0) x 10(25) amu s(-1) for T9, T75 and T63 respectively, an average loss rate of similar to 7 tonnes per Earth day. Remarkably, all of the tail encounters studied here indicate a split tail feature, indicating that this may be a common feature in Titan's interaction with Saturn's magnetosphere. C1 [Coates, A. J.; Wellbrock, A.; Lewis, G. R.; Arridge, C. S.; Jones, G. H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Coates, A. J.; Wellbrock, A.; Lewis, G. R.; Arridge, C. S.; Jones, G. H.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Crary, F. J.; Young, D. T.] SW Res Inst, San Antonio, TX USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Sittler, E. C., Jr.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Johnson, R. E.] Univ Virginia, Sch Engn & Appl Sci, Charlottesville, VA USA. [Szego, K.; Bebesi, Z.] RMKI, Wigner RCP, Budapest, Hungary. RP Coates, AJ (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM ajc@mssl.ucl.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Jones, Geraint/C-1682-2008; Reisenfeld, Daniel/F-7614-2015; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Jones, Geraint/0000-0002-5859-1136 FU STFC; ESA via the UK Space Agency; NASA JPL [1243218, 1405851]; U. S. Department of Energy; NASA FX We thank MAG team members H. Wei and C.T. Russell for useful discussions. We thank L.K. Gilbert for software support. We acknowledge support of CAPS ELS science by STFC, and of the CAPS ELS operations and software team by STFC (to 2010) and by ESA via the UK Space Agency (from 2011). CSA was supported by an STFC Postdoctoral fellowship and GHJ by an STFC Advanced Fellowship. Work in the U.S. was supported by NASA JPL contracts 1243218 and 1405851 to the Southwest Research Institute. Work at Los Alamos was conducted under the auspices of the U. S. Department of Energy, with support from NASA's Cassini project. NR 50 TC 23 Z9 23 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 23 PY 2012 VL 117 AR A05324 DI 10.1029/2012JA017595 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949OV UT WOS:000304586400004 ER PT J AU McPeters, RD Labow, GJ AF McPeters, Richard D. Labow, Gordon J. TI Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of the climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data. C1 [McPeters, Richard D.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Labow, Gordon J.] Sci Syst & Applicat Inc, Lanham, MD USA. RP McPeters, RD (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 614, Greenbelt, MD 20771 USA. EM richard.d.mcpeters@nasa.gov RI McPeters, Richard/G-4955-2013 OI McPeters, Richard/0000-0002-8926-8462 FU NASA FX The Aura MLS data were obtained from the MLS team via the Aura Validation Data Center, while balloon sonde data were obtained from the WOUDC in Canada and from the SHADOZ team at GSFC. We have a deep appreciation for the great effort that goes into producing and maintaining long-term data sets. We thank the MLS team and the many people who launch ozone sondes around the world. This work was supported under NASA's MEaSUREs program for the creation of long-term multi-instrument data sets. NR 16 TC 37 Z9 37 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 23 PY 2012 VL 117 AR D10303 DI 10.1029/2011JD017006 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 949FT UT WOS:000304562800001 ER PT J AU Steffen, JH Ragozzine, D Fabrycky, DC Carter, JA Ford, EB Holman, MJ Rowe, JF Welsh, WF Borucki, WJ Boss, AP Ciardi, DR Quinn, SN AF Steffen, Jason H. Ragozzine, Darin Fabrycky, Daniel C. Carter, Joshua A. Ford, Eric B. Holman, Matthew J. Rowe, Jason F. Welsh, William F. Borucki, William J. Boss, Alan P. Ciardi, David R. Quinn, Samuel N. TI Kepler constraints on planets near hot Jupiters SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE extrasolar planets; planet formation; planetary dynamics ID EARTH-LIKE PLANETS; 1ST 4 MONTHS; EXTRASOLAR PLANETS; STATISTICAL PROPERTIES; TIMING VARIATIONS; GIANT PLANETS; LIGHT CURVES; MIGRATION; SYSTEMS; CANDIDATES AB We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2: 1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. C1 [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Ragozzine, Darin; Carter, Joshua A.; Holman, Matthew J.; Quinn, Samuel N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fabrycky, Daniel C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32111 USA. [Rowe, Jason F.; Borucki, William J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Boss, Alan P.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Steffen, JH (reprint author), Fermilab Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM jsteffen@fnal.gov RI Steffen, Jason/A-4320-2013; Carter, Joshua/A-8280-2013; Ragozzine, Darin/C-4926-2013; OI Ciardi, David/0000-0002-5741-3047; Fabrycky, Daniel/0000-0003-3750-0183 FU National Aeronautics and Space Administration's (NASA) Science Mission Directorate; NASA [NNX08AR04G, HF-51272.01-A, HF-51267.01-A]; Space Telescope Science Institute; Association of Universities for Research in Astronomy, Inc. [NAS 5-26555] FX Funding for the Kepler mission is provided by the National Aeronautics and Space Administration's (NASA) Science Mission Directorate. We thank the Kepler team for their many years of hard work. J.H.S acknowledges support from NASA under Grant NNX08AR04G under the Kepler Participating Scientist Program. D.C.F. and J.A.C. acknowledge support from NASA through Hubble Fellowship Grants HF-51272.01-A and HF-51267.01-A awarded by the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under Contract NAS 5-26555. NR 44 TC 71 Z9 71 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 22 PY 2012 VL 109 IS 21 BP 7982 EP 7987 DI 10.1073/pnas.1120970109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 947QY UT WOS:000304445800020 PM 22566651 ER PT J AU Han, JW Oh, JS Meyyappan, M AF Han, Jin-Woo Oh, Jae Sub Meyyappan, M. TI Vacuum nanoelectronics: Back to the future?-Gate insulated nanoscale vacuum channel transistor SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-EMISSION; MICROELECTRONICS; FABRICATION; TRIODE; TUBES AB A gate-insulated vacuum channel transistor was fabricated using standard silicon semiconductor processing. Advantages of the vacuum tube and transistor are combined here by nanofabrication. A photoresist ashing technique enabled the nanogap separation of the emitter and the collector, thus allowing operation at less than 10 V. A cut-off frequency f(T) of 0.46 THz has been obtained. The nanoscale vacuum tubes can provide high frequency/power output while satisfying the metrics of lightness, cost, lifetime, and stability at harsh conditions, and the operation voltage can be decreased comparable to the modern semiconductor devices. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4717751] C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Oh, Jae Sub] Natl Nanofab Ctr, Taejon 305806, South Korea. RP Han, JW (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov NR 15 TC 34 Z9 34 U1 3 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 21 PY 2012 VL 100 IS 21 AR 213505 DI 10.1063/1.4717751 PG 4 WC Physics, Applied SC Physics GA 948FV UT WOS:000304489900078 ER PT J AU Baker, JG Thorpe, JI AF Baker, John G. Thorpe, J. I. TI Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors SO PHYSICAL REVIEW LETTERS LA English DT Article ID MATTER-WAVE; RADIATION; GRAVITY; TRACKING AB We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e. g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. C1 [Baker, John G.; Thorpe, J. I.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Baker, JG (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RI Thorpe, James/D-3150-2012 FU NASA [08-ATFP08-0126, 11-ATP11-0046] FX We thank Dr. Jan Harms for providing a copy of his report [27]. We also thank Holger Muller and Jeffrey Livas for helpful discussions and Bernard Kelly for his careful review of the manuscript. This work was partially supported by NASA Grants No. 08-ATFP08-0126 and No. 11-ATP11-0046. NR 27 TC 9 Z9 9 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 21 PY 2012 VL 108 IS 21 AR 211101 DI 10.1103/PhysRevLett.108.211101 PG 5 WC Physics, Multidisciplinary SC Physics GA 945CI UT WOS:000304250000004 PM 23003235 ER PT J AU Long, DA Cygan, A van Zee, RD Okumura, M Miller, CE Lisak, D Hodges, JT AF Long, D. A. Cygan, A. van Zee, R. D. Okumura, M. Miller, C. E. Lisak, D. Hodges, J. T. TI Frequency-stabilized cavity ring-down spectroscopy SO CHEMICAL PHYSICS LETTERS LA English DT Article ID O-2 A-BAND; ELEMENTARY CHEMICAL PROCESSES; ABSORPTION-SPECTROSCOPY; COMB SPECTROSCOPY; MOLECULAR-BEAM; NOBEL LECTURE; WATER-VAPOR; SPECTROMETER; INTENSITIES; PRESSURE AB We describe frequency-stabilized cavity ring-down spectroscopy (FS-CRDS), an ultraprecise refinement of conventional CRDS. We review the technique and highlight some recent studies that have utilized FS-CRDS to perform precision measurements of molecular transitions in the near-infrared. We describe system enhancements that are currently under implementation, including Pound-Drever-Hall locking and optical frequency comb-stabilization, which have the potential to reduce the uncertainty in both the absorption and frequency axes of our spectra by more than an order of magnitude. Finally, we describe high impact applications of this capability that can exploit frequency axis uncertainty at the 10 kHz level and signal-to-noise ratios exceeding 200000:1. (C) 2012 Elsevier B.V. All rights reserved. C1 [Long, D. A.; van Zee, R. D.; Hodges, J. T.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Cygan, A.; Lisak, D.] Uniwersytet Mikolaja Kopernika, Inst Fizyki, PL-87100 Torun, Poland. [Okumura, M.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Miller, C. E.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. RP Long, DA (reprint author), NIST, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM David.Long@nist.gov; mo@caltech.edu; jhodges@nist.gov RI Cygan, Agata/E-1393-2014; Lisak, Daniel/E-1470-2014; Okumura, Mitchio/I-3326-2013 OI Okumura, Mitchio/0000-0001-6874-1137 FU National Institute of Standards and Technology (NIST), Gaithersburg, MD; National Aeronautics and Space Administration (NASA) [NNG06GD88G, NNX09AE21G]; National Science Foundation (NSF) [CHE-0957490]; NASA Atmospheric Carbon Observations from Space (ACOS) [104127-04.02.02]; Foundation for Polish Science TEAM; EU; Polish NCN [N N202 2392 40]; National Science Centre [DEC-2011/01/B/ST2/00491] FX We acknowledge continual support from the National Institute of Standards and Technology (NIST), Gaithersburg, MD, including the NIST Greenhouse Gas Measurements and Climate Research Program, which made much of the work described herein possible. Part of the research described in this Letter was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). Additional support was provided by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission; the NASA Upper Atmospheric Research Program Grants NNG06GD88G and NNX09AE21G; National Science Foundation (NSF) Grant CHE-0957490, and the NASA Atmospheric Carbon Observations from Space (ACOS) Grant 104127-04.02.02. The research was partially supported by the Foundation for Polish Science TEAM Project co-financed by the EU European Regional Development Fund and is part of the program of the National Laboratory FAMO in Torun, Poland. A. Cygan is supported by the Polish NCN Project No. N N202 2392 40. The research was also supported by the National Science Centre, Project No. DEC-2011/01/B/ST2/00491. NR 68 TC 38 Z9 39 U1 6 U2 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY 21 PY 2012 VL 536 BP 1 EP 8 DI 10.1016/j.cplett.2012.03.035 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 937MA UT WOS:000303661400001 ER PT J AU Vergara, A Vembu, S Ayhan, T Ryan, MA Homer, ML Huerta, R AF Vergara, Alexander Vembu, Shankar Ayhan, Tuba Ryan, Margaret A. Homer, Margie L. Huerta, Ramon TI Chemical gas sensor drift compensation using classifier ensembles SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Sensor drift; Metal-oxide sensors; Time series classification; Ensemble methods; Support vector machines ID ELECTRONIC NOSE; COUNTERACTION; ARRAYS AB Sensor drift remains to be the most challenging problem in chemical sensing. To address this problem we have collected an extensive dataset for six different volatile organic compounds over a period of three years under tightly controlled operating conditions using an array of 16 metal-oxide gas sensors. The recordings were made using the same sensor array and a robust gas delivery system. To the best of our knowledge, this is one of the most comprehensive datasets available for the design and development of drift compensation methods, which is freely reachable on-line. We introduced a machine learning approach, namely an ensemble of classifiers, to solve a gas discrimination problem over extended periods of time with high accuracy rates. Experiments clearly indicate the presence of drift in the sensors during the period of three years and that it degrades the performance of the classifiers. Our proposed ensemble method based on support vector machines uses a weighted combination of classifiers trained at different points of time. As our experimental results illustrate, the ensemble of classifiers is able to cope well with sensor drift and performs better than the baseline competing methods. (C) 2012 Elsevier B.V. All rights reserved. C1 [Vergara, Alexander; Vembu, Shankar; Huerta, Ramon] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA. [Ayhan, Tuba] Tech Univ Istanbul, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey. [Ryan, Margaret A.; Homer, Margie L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vergara, A (reprint author), Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA. EM vergara@ucsd.edu RI Huerta, Ramon/J-4316-2012 OI Huerta, Ramon/0000-0003-3925-5169 FU U.S. office of Naval Research (ONR) [N00014-07-1-0741]; Jet Propulsion Laboratory [2010-1396686]; US Army Medical and Materiel Command; United States Army Research Institute of Environmental Medicine (USARIEM) [W81XWH-10-C-0040]; Elintrix FX This work has been supported by U.S. office of Naval Research (ONR) under the contract number N00014-07-1-0741, by Jet Propulsion Laboratory under the contract number 2010-1396686, and by the US Army Medical and Materiel Command and by the United States Army Research Institute of Environmental Medicine (USARIEM), under contract number W81XWH-10-C-0040 in collaboration with Elintrix. The authors also thank Joey Reeds and Travis Wong, from Elintrix, for the helpful and fruitful discussions during the elaboration of this work as well as Joanna Zytkowicz for proofreading and revising the manuscript. NR 33 TC 77 Z9 80 U1 3 U2 44 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAY 20 PY 2012 VL 166 BP 320 EP 329 DI 10.1016/j.snb.2012.01.074 PG 10 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 959ZN UT WOS:000305356900045 ER PT J AU Dudik, RP Jordan, ME Dorland, BN Veillette, D Waczynski, A Lane, BF Loose, M Kan, E Waterman, J Rollins, C Pravdo, S AF Dudik, Rachel P. Jordan, Margaret E. Dorland, Bryan N. Veillette, Daniel Waczynski, Augustyn Lane, Benjamin F. Loose, Markus Kan, Emily Waterman, James Rollins, Chris Pravdo, Steve TI Interpixel crosstalk in Teledyne Imaging Sensors H4RG-10 detectors SO APPLIED OPTICS LA English DT Article AB Complementary metal-oxide semiconductor (CMOS)-hybrid arrays have become competitive optical detectors for use in ground-and space-based astronomy. Interpixel capacitance (IPC) is one source of error that appears in most CMOS arrays. In this paper, we use a single-pixel-reset method to model IPC. We combine this IPC model with a model for charge diffusion to estimate the total crosstalk on H4RG-10 arrays. Finally, we compare our model results to Fe-55 data obtained using an astrometric camera built to test the H4RG-10 B0 generation detectors. (C) 2012 Optical Society of America C1 [Dudik, Rachel P.; Dorland, Bryan N.; Veillette, Daniel] USN Observ, Washington, DC 20392 USA. [Jordan, Margaret E.] Computat Phys Inc, Springfield, VA 22151 USA. [Waczynski, Augustyn; Kan, Emily] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lane, Benjamin F.] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA. [Loose, Markus] Markury Sci Inc, Thousand Oaks, CA 91361 USA. [Waterman, James] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA. [Rollins, Chris] Res Support Instruments Inc, Lanham, MD 20706 USA. [Pravdo, Steve] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dudik, RP (reprint author), USN Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA. EM rpdudik@usno.navy.mil NR 17 TC 2 Z9 2 U1 1 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2012 VL 51 IS 15 BP 2877 EP 2887 DI 10.1364/AO.51.002877 PG 11 WC Optics SC Optics GA 945AY UT WOS:000304246400012 PM 22614589 ER PT J AU Merrell, WC Aslam, S Brown, AD Chervenak, JA Huang, WC Quijada, M Wollack, EJ AF Merrell, Willie C. Aslam, Shahid, II Brown, Ari D. Chervenak, James A. Huang, Wei-Chung Quijada, Manuel Wollack, Edward J. TI Compact micromachined infrared bandpass filters for planetary spectroscopy SO APPLIED OPTICS LA English DT Article ID X-RAY-DETECTORS; INTERFERENCE FILTERS; RADIATION-DAMAGE; TRANSMISSION AB The future needs of space-based, observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high-radiation and low-temperature environments. Here, we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 mu m and report good agreement between the modeled and measured response. We present a technique of using standard micromachining processes for semiconductor fabrication to make compact, free-standing, resonant, metal mesh filter arrays with silicon support frames. The process can be customized to include multiple detector array architectures, and the silicon frame provides lightweight mechanical support with low form factor. C1 [Merrell, Willie C.; Aslam, Shahid, II; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Brown, AD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM ari.d.brown@nasa.gov RI Aslam, Shahid/D-1099-2012; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU NASA Goddard Space Flight Center [FY2011 IRAD]; NASA FX This work was supported by a directed FY2011 IRAD award through Brook Lakew from the NASA Goddard Space Flight Center. This work was also supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 35 TC 2 Z9 2 U1 1 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2012 VL 51 IS 15 BP 3046 EP 3053 DI 10.1364/AO.51.003046 PG 8 WC Optics SC Optics GA 945AY UT WOS:000304246400032 PM 22614609 ER PT J AU Anderson, GE Gaensler, BM Slane, PO Rea, N Kaplan, DL Posselt, B Levin, L Johnston, S Murray, SS Brogan, CL Bailes, M Bates, S Benjamin, RA Bhat, NDR Burgay, M Burke-Spolaor, S Chakrabarty, D D'Amico, N Drake, JJ Esposito, P Grindlay, JE Hong, J Israel, GL Keith, MJ Kramer, M Lazio, TJW Lee, JC Mauerhan, JC Milia, S Possenti, A Stappers, B Steeghs, DTH AF Anderson, Gemma E. Gaensler, B. M. Slane, Patrick O. Rea, Nanda Kaplan, David L. Posselt, Bettina Levin, Lina Johnston, Simon Murray, Stephen S. Brogan, Crystal L. Bailes, Matthew Bates, Samuel Benjamin, Robert A. Bhat, N. D. Ramesh Burgay, Marta Burke-Spolaor, Sarah Chakrabarty, Deepto D'Amico, Nichi Drake, Jeremy J. Esposito, Paolo Grindlay, Jonathan E. Hong, Jaesub Israel, G. L. Keith, Michael J. Kramer, Michael Lazio, T. Joseph W. Lee, Julia C. Mauerhan, Jon C. Milia, Sabrina Possenti, Andrea Stappers, Ben Steeghs, Danny T. H. TI MULTI-WAVELENGTH OBSERVATIONS OF THE RADIO MAGNETAR PSR J1622-4950 AND DISCOVERY OF ITS POSSIBLY ASSOCIATED SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G333.9+0.0); ISM: supernova remnants; pulsars: individual (PSR J1622-4950); radio continuum: stars; stars: neutron; X-rays: stars ID X-RAY PULSAR; GALACTIC PLANE SURVEY; LARGE-AREA TELESCOPE; PHOTON IMAGING CAMERA; AXP XTE J1810-197; 1E 1547.0-5408; SOURCE CATALOG; CROSS-SECTIONS; PROPER MOTIONS; 2009 OUTBURST AB We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of similar to 50 over 3.7 years, decaying exponentially with a characteristic time of tau = 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant (SNR). If G333.9+0.0 is an SNR then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggest that these two objects could be physically associated. C1 [Slane, Patrick O.; Drake, Jeremy J.; Grindlay, Jonathan E.; Hong, Jaesub; Lee, Julia C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rea, Nanda] Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Barcelona 08193, Spain. [Kaplan, David L.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. [Posselt, Bettina] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Levin, Lina; Bailes, Matthew; Bhat, N. D. Ramesh] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Levin, Lina; Johnston, Simon; Burke-Spolaor, Sarah; Keith, Michael J.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Murray, Stephen S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Brogan, Crystal L.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Bates, Samuel; Kramer, Michael; Stappers, Ben] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Bates, Samuel] W Virginia Univ, Dept Phys, Morgantown, WV USA. [Benjamin, Robert A.] Univ Wisconsin, Dept Phys, Whitewater, WI 53190 USA. [Burgay, Marta; D'Amico, Nichi; Esposito, Paolo; Milia, Sabrina; Possenti, Andrea] INAF Osservatorio Astron Cagliari, I-09012 Capoterra, Italy. [Burke-Spolaor, Sarah; Lazio, T. Joseph W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chakrabarty, Deepto] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Chakrabarty, Deepto] MIT, Dept Phys, Cambridge, MA 02139 USA. [Israel, G. L.] INAF Osservatorio Astron Roma, Monteporsio Catone, Italy. [Kramer, Michael] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Mauerhan, Jon C.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Milia, Sabrina] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy. [Steeghs, Danny T. H.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Anderson, Gemma E.; Gaensler, B. M.] Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia. RP Anderson, GE (reprint author), Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia. EM g.anderson@physics.usyd.edu.au RI Bhat, Ramesh/B-7396-2013; Steeghs, Danny/C-5468-2009; Gaensler, Bryan/F-8655-2010; Rea, Nanda/I-2853-2015; Lee, Julia/G-2381-2015; OI Steeghs, Danny/0000-0003-0771-4746; Rea, Nanda/0000-0003-2177-6388; Lee, Julia/0000-0002-7336-3588; Israel, GianLuca/0000-0001-5480-6438; Burgay, Marta/0000-0002-8265-4344; Anderson, Gemma/0000-0001-6544-8007; Posselt, Bettina/0000-0003-2317-9747; Esposito, Paolo/0000-0003-4849-5092; Gaensler, Bryan/0000-0002-3382-9558 FU Australian Postgraduate Award; Australian Laureate Fellowship; NASA [NAS8-03060, NAS8-39073, GO9-0155X]; Ramon y Cajal Research Fellowship; Formosa Program [TW2010005]; Autonomous Region of Sardinia through program PO Sardegna FSE; STFC; ESA; Australian Research Council; Science Foundation for Physics within the University of Sydney; Commonwealth of Australia; NFS; Spitzer Legacy Program; [AYA2009-07391]; [SGR2009-811] FX We thank the referee for their careful reading of the manuscript and constructive suggestions. G. E. A acknowledges the support of an Australian Postgraduate Award. B. M. G. acknowledges the support of an Australian Laureate Fellowship. P.O.S. acknowledges partial support from NASA Contract NAS8-03060. N.R. is supported by a Ramon y Cajal Research Fellowship to CSIC, and grants AYA2009-07391 and SGR2009-811, as well as the Formosa Program TW2010005. J.J.D was supported by NASA contract NAS8-39073 to the Chandra X-ray Center (CXC). P. E. acknowledges financial support from the Autonomous Region of Sardinia through a research grant under the program PO Sardegna FSE 2007-2013, L. R. 7/2007. D. T. H. S. acknowledges an STFC Advanced Fellowship. Support for this work was also provided by NASA through Chandra Award Number GO9-0155X issued by the CXC, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA. This research makes use of data obtained with the Chandra X-ray Observatory, and software provided by the CXC in the application packages CIAO. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. MOST is operated with the support of the Australian Research Council and the Science Foundation for Physics within the University of Sydney. ATCA and Parkes, part of the Australia Telescope, are funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. Observing time on the 6.5 m Baade Magellan Telescope, located at Las Campanas Observatory, was allocated through the Harvard-Smithsonian Center for Astrophysics. 2MASS is a joint project of the University of Massachusetts and the IPAC/Caltech, funded by the NASA and NFS. GLIMPSE survey data are part of the Spitzer Legacy Program. The Spitzer Space Telescope is operated by the JPL/Caltech under a contract with NASA. This research has made use of NASA's Astrophysics Data System. NR 99 TC 25 Z9 26 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 53 DI 10.1088/0004-637X/751/1/53 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600053 ER PT J AU Choi, JY Shin, IG Park, SY Han, C Gould, A Sumi, T Udalski, A Beaulieu, JP Street, R Dominik, M Allen, W Almeida, LA Bos, M Christie, GW Depoy, DL Dong, S Drummond, J Gal-Yam, A Gaudi, BS Henderson, CB Hung, LW Jablonski, F Janczak, J Lee, CU Mallia, F Maury, A McCormick, J McGregor, D Monard, LAG Moorhouse, D Munoz, JA Natusch, T Nelson, C Park, BG Pogge, RW Tan, TG Thornley, G Yee, JC Abe, F Barnard, E Baudry, J Bennett, DP Bond, IA Botzler, CS Freeman, M Fukui, A Furusawa, K Hayashi, F Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Kobara, S Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Nishimoto, K Ohnishi, K Okumura, T Omori, K Perrott, YC Rattenbury, N Saito, T Skuljan, L Sullivan, DJ Suzuki, D Suzuki, K Sweatman, WL Takino, S Tristram, PJ Wada, K Yock, PCM Szymanski, MK Kubiak, M Pietrzynski, G Soszynski, I Poleski, R Ulaczyk, K Wyrzykowski, L Kozllowski, S Pietrukowicz, P Albrow, MD Bachelet, E Batista, V Bennett, CS Bowens-Rubin, R Brillant, S Cassan, A Cole, A Corrales, E Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Greenhill, J Kane, SR Menzies, J Sahu, KC Wambsganss, J Williams, A Zub, M Allan, A Bramich, DM Browne, P Clay, N Fraser, S Horne, K Kains, N Mottram, C Snodgrass, C Steele, I Tsapras, Y Alsubai, KA Bozza, V Burgdorf, MJ Novati, SC Dodds, P Dreizler, S Finet, F Gerner, T Glitrup, M Grundahl, F Hardis, S Harpsoe, K Hinse, TC Hundertmark, M Jorgensen, UG Kerins, E Liebig, C Maier, G Mancini, L Mathiasen, M Penny, MT Proft, S Rahvar, S Ricci, D Scarpetta, G Schafer, S Schonebeck, F Skottfelt, J Surdej, J Southworth, J Zimmer, F AF Choi, J. -Y. Shin, I. -G. Park, S. -Y. Han, C. Gould, A. Sumi, T. Udalski, A. Beaulieu, J. -P. Street, R. Dominik, M. Allen, W. Almeida, L. A. Bos, M. Christie, G. W. Depoy, D. L. Dong, S. Drummond, J. Gal-Yam, A. Gaudi, B. S. Henderson, C. B. Hung, L. -W. Jablonski, F. Janczak, J. Lee, C. -U. Mallia, F. Maury, A. McCormick, J. McGregor, D. Monard, L. A. G. Moorhouse, D. Munoz, J. A. Natusch, T. Nelson, C. Park, B. -G. Pogge, R. W. Tan, T. -G. TG Thornley, G. Yee, J. C. Abe, F. Barnard, E. Baudry, J. Bennett, D. P. Bond, I. A. Botzler, C. S. Freeman, M. Fukui, A. Furusawa, K. Hayashi, F. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Kobara, S. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Nishimoto, K. Ohnishi, K. Okumura, T. Omori, K. Perrott, Y. C. Rattenbury, N. Saito, To Skuljan, L. Sullivan, D. J. Suzuki, D. Suzuki, K. Sweatman, W. L. Takino, S. Tristram, P. J. Wada, K. Yock, P. C. M. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Soszynski, I. Poleski, R. Ulaczyk, K. Wyrzykowski, L. Kozllowski, S. Pietrukowicz, P. Albrow, M. D. Bachelet, E. Batista, V. Bennett, C. S. Bowens-Rubin, R. Brillant, S. Cassan, A. Cole, A. Corrales, E. Coutures, Ch. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Greenhill, J. Kane, S. R. Menzies, J. Sahu, K. C. Wambsganss, J. Williams, A. Zub, M. Allan, A. Bramich, D. M. Browne, P. Clay, N. Fraser, S. Horne, K. Kains, N. Mottram, C. Snodgrass, C. Steele, I. Tsapras, Y. Alsubai, K. A. Bozza, V. Burgdorf, M. J. Novati, S. Calchi Dodds, P. Dreizler, S. Finet, F. Gerner, T. Glitrup, M. Grundahl, F. Hardis, S. Harpsoe, K. Hinse, T. C. Hundertmark, M. Jorgensen, U. G. Kerins, E. Liebig, C. Maier, G. Mancini, L. Mathiasen, M. Penny, M. T. Proft, S. Rahvar, S. Ricci, D. Scarpetta, G. Schaefer, S. Schoenebeck, F. Skottfelt, J. Surdej, J. Southworth, J. Zimmer, F. CA FUN Collaboration MOA Collaboration OGLE Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Consortium TI CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: bulge; gravitational lensing: micro ID STELLAR ATMOSPHERE MODELS; GALACTIC BULGE; LIGHT CURVES; CHEMICAL EVOLUTION; DWARF; PHOTOMETRY; PLANETS; GIANT; SIGNATURES; SYSTEMS AB We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of theta(E) similar to 0.08 mas combined with the short timescale of t(E) similar to 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of similar to 0.84M(circle dot) is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio. C1 [Choi, J. -Y.; Shin, I. -G.; Park, S. -Y.; Han, C.] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. [Gould, A.; Gaudi, B. S.; Henderson, C. B.; McGregor, D.; Pogge, R. W.; Yee, J. C.; Batista, V.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Sumi, T.; Suzuki, D.; Wada, K.] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, L.; Kozllowski, S.; Pietrukowicz, P.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Beaulieu, J. -P.; Cassan, A.; Corrales, E.; Coutures, Ch.; Dieters, S.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Street, R.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Dominik, M.; Browne, P.; Horne, K.; Dodds, P.; Hundertmark, M.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Almeida, L. A.; Jablonski, F.] Inst Nacl Pesquisas Espaciais MCTI, Sao Paulo, Brazil. [Bos, M.] Molehill Astron Observ, N Shore, New Zealand. [Christie, G. W.; Natusch, T.] Auckland Observ, Auckland, New Zealand. [Depoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Hung, L. -W.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Janczak, J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lee, C. -U.; Park, B. -G.; Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.; Maury, A.] Campo Catino Austral Observ, San Pedro De Atacama, Chile. [McCormick, J.] Farm Cove Observ, Auckland, New Zealand. [Monard, L. A. G.] Bronberg Observ, Pretoria, South Africa. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Munoz, J. A.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Nelson, C.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Tan, T. -G. TG] Perth Exoplanet Survey Telescope, Perth, WA, Australia. [Abe, F.; Furusawa, K.; Hayashi, F.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kobara, S.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Nishimoto, K.; Okumura, T.; Omori, K.; Suzuki, K.; Takino, S.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Barnard, E.; Baudry, J.; Botzler, C. S.; Freeman, M.; Perrott, Y. C.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Bennett, D. P.] Univ Notre Damey, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.; Lin, W.; Ling, C. H.; Skuljan, L.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Fukui, A.] Natl Inst Nat Sci, Natl Astron Observ Japan, Okayama Astrophys Observ, Kamogatacho, Okayama 7190232, Japan. [Hearnshaw, J. B.; Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Pietrzynski, G.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bachelet, E.; Dieters, S.; Fouque, P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Bennett, C. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bowens-Rubin, R.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Brillant, S.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Cole, A.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Gpo Hobart, Tas 7001, Australia. [Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wambsganss, J.; Zub, M.; Gerner, T.; Liebig, C.; Maier, G.; Proft, S.; Schoenebeck, F.; Zimmer, F.] Heidelberg Univ, Zentrum Astron, ARI, D-69120 Heidelberg, Germany. [Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Bramich, D. M.; Kains, N.] European So Observ, D-85748 Garching, Germany. [Clay, N.; Fraser, S.; Mottram, C.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Snodgrass, C.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Alsubai, K. A.] Qatar Fdn, Doha, Qatar. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dept Phys, I-84084 Fisciano, SA, Italy. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Dreizler, S.; Hundertmark, M.; Schaefer, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Glitrup, M.; Grundahl, F.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hardis, S.; Harpsoe, K.; Hinse, T. C.; Jorgensen, U. G.; Mathiasen, M.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Harpsoe, K.] Geol Museum, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Kerins, E.; Penny, M. T.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mancini, L.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Rahvar, S.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. RP Han, C (reprint author), Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. RI Williams, Andrew/K-2931-2013; Almeida, L./G-7188-2012; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Kozlowski, Szymon/G-4799-2013 OI Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855; Tan, Thiam-Guan/0000-0001-5603-6895; Ricci, Davide/0000-0002-9790-0552; Penny, Matthew/0000-0001-7506-5640; Snodgrass, Colin/0000-0001-9328-2905; Williams, Andrew/0000-0001-9080-0105; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Kozlowski, Szymon/0000-0003-4084-880X FU National Research Foundation of Korea [2009-0081561]; European Research Council under European Community [246678]; National Science Foundation [AST-1103471, 2009068160, 2011082275]; NASA [NNX08AF40G]; Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe; [JSPS17340074]; [JSPS18253002]; [JSPS20340052]; [JSPS22403003]; [JSPS23340064]; [JSPS18749004]; [MEXT19015005]; [JSPS20740104] FX Work by C. H. was supported by the Creative Research Initiative Program (2009-0081561) of the National Research Foundation of Korea. The MOA experiment was supported by JSPS17340074, JSPS18253002, JSPS20340052, JSPS22403003, and JSPS23340064. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 246678. Work by B. S. G. and A. G. was supported in part by NSF grant AST-1103471. Work by B. S. G., A. G., R. W. P., and J.C.Y. was supported in part by NASA grant NNX08AF40G. Work by J.C.Y. was supported by a National Science Foundation Graduate Research Fellowship under grant No. 2009068160. C. B. H. acknowledges the support of NSF Graduate Research Fellowship 2011082275. T. S. was supported by the grants JSPS18749004, MEXT19015005, and JSPS20740104. F. F., D. R., and J.S. were supported by the Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe. NR 53 TC 16 Z9 16 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 41 DI 10.1088/0004-637X/751/1/41 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600041 ER PT J AU Iwakiri, WB Terada, Y Mihara, T Angelini, L Tashiro, MS Enoto, T Yamada, S Makishima, K Nakajima, M Yoshida, A AF Iwakiri, W. B. Terada, Y. Mihara, T. Angelini, L. Tashiro, M. S. Enoto, T. Yamada, S. Makishima, K. Nakajima, M. Yoshida, A. TI POSSIBLE DETECTION OF AN EMISSION CYCLOTRON RESONANCE SCATTERING FEATURE FROM THE ACCRETION-POWERED PULSAR 4U 1626-67 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (4U 1626-67); stars: magnetic field; X-rays: binaries; X-rays: stars ID X-RAY PULSAR; STRONGLY MAGNETIZED PLASMA; TORQUE REVERSAL; LINE EMISSION; SUZAKU; 4U-1626-67; SPECTRUM; FIELDS; SPECTROSCOPY; HERCULES-X-1 AB We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of similar to 88 ks. The source was detected at an average 10-60 keV flux of similar to 4 x 10(-10) erg cm(-2) s(-1). The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at similar to 37 keV by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand, the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model, we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(-3) and 1.53 x 10(-5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase. C1 [Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.] Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, Saitama 3388570, Japan. [Mihara, T.] Inst Phys & Chem Res RIKEN, Wako, Saitama 3510198, Japan. [Angelini, L.; Yamada, S.] NASA, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Enoto, T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Enoto, T.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Nakajima, M.] Nihon Univ, Sch Dent Matsudo, Matsudo, Chiba 2718587, Japan. [Yoshida, A.] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2298558, Japan. RP Iwakiri, WB (reprint author), Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, 255 Shimo Okubo, Saitama 3388570, Japan. RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; XRAY, SUZAKU/A-1808-2009; Mihara, Tatehiro/C-5536-2017 OI Terada, Yukikatsu/0000-0002-2359-1857; Mihara, Tatehiro/0000-0002-6337-7943 NR 36 TC 10 Z9 10 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 35 DI 10.1088/0004-637X/751/1/35 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600035 ER PT J AU Lokas, EL Majewski, SR Kazantzidis, S Mayer, L Carlin, JL Nidever, DL Moustakas, LA AF Lokas, Ewa L. Majewski, Steven R. Kazantzidis, Stelios Mayer, Lucio Carlin, Jeffrey L. Nidever, David L. Moustakas, Leonidas A. TI THE SHAPES OF MILKY WAY SATELLITES: LOOKING FOR SIGNATURES OF TIDAL STIRRING SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: fundamental parameters; galaxies: kinematics and dynamics; galaxies: structure; Local Group ID DWARF SPHEROIDAL GALAXY; EXPLORING HALO SUBSTRUCTURE; LARGE-MAGELLANIC-CLOUD; DIGITAL SKY SURVEY; RR-LYRAE STARS; GIANT STARS; EXTENDED STRUCTURE; DARK-MATTER; LOCAL GROUP; LEO-II AB We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties such as bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available, we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened toward a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, Large Magellanic Cloud, and possibly Carina. In addition, 6 out of 11 dwarfs that we studied show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model. C1 [Lokas, Ewa L.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Majewski, Steven R.; Nidever, David L.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Kazantzidis, Stelios] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kazantzidis, Stelios] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kazantzidis, Stelios] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Mayer, Lucio] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Carlin, Jeffrey L.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lokas, EL (reprint author), Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. EM lokas@camk.edu.pl OI Moustakas, Leonidas/0000-0003-3030-2360; Carlin, Jeffrey/0000-0002-3936-9628 FU Polish National Science Centre [N N203 580940]; NSF [AST 97-02521, AST 03-07851, AST 0307417, AST 08-07945, AST 09-37523]; David and Lucile Packard Foundation; The Research Corporation; Center for Cosmology and AstroParticle Physics (CCAPP) at The Ohio State University; NASA ATFP; NASA FX This research was partially supported by the Polish National Science Centre under grant N N203 580940. We thank Gary Da Costa for providing photometric data for the Fornax dwarf in electronic form. S. R. M. is grateful for financial support from NSF grants AST 97-02521, AST 03-07851, AST 0307417, and AST 08-07945, a fellowship from the David and Lucile Packard Foundation, and a Cottrell Scholarship from The Research Corporation. He also thanks William E. Kunkel, James C. Ostheimer, Christopher Palma, Richard J. Patterson, Michael H. Siegel, Sangmo Tony Sohn, and Kyle B. Westfall for their help in producing the photometric catalogs used in this analysis. S. K. is funded by the Center for Cosmology and AstroParticle Physics (CCAPP) at The Ohio State University. J. L. C. acknowledges support from National Science Foundation grant AST 09-37523. The work of L. A. M. was carried out at the Jet Propulsion Laboratory, under a contract with NASA. L. A. M. acknowledges support from the NASA ATFP program. The numerical simulations were performed on the Cosmos cluster at the Jet Propulsion Laboratory. This work also benefited from an allocation of computing time from the Ohio Supercomputer Center (http://www.osc.edu). NR 48 TC 19 Z9 19 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 61 DI 10.1088/0004-637X/751/1/61 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600061 ER PT J AU Martin, PG Roy, A Bontemps, S Miville-Deschenes, MA Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, SR Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Mauskopf, P Netterfield, CB Olmi, L Patanchon, G Rex, M Scott, D Semisch, C Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Martin, Peter G. Roy, Arabindo Bontemps, Sylvain Miville-Deschenes, Marc-Antoine Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon R. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Mauskopf, Philip Netterfield, Calvin B. Olmi, Luca Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; dust, extinction; evolution; infrared: ISM; ISM: structure; submillimeter: ISM ID INTERSTELLAR MOLECULAR-HYDROGEN; INFRARED IMAGING SURVEY; GALACTIC PLANE SURVEY; TELESCOPE BLAST 2005; STAR-FORMING REGION; DARK CLOUD; CYGNUS-X; HI-GAL; INITIAL HIGHLIGHTS; EXTINCTION LAW AB The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 mu m and one IRAS band at 100 mu m. The proxy is the near-infrared color excess, E(J - K-s), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity sigma(e)(1200) at 1200 GHz or 250 mu m can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N-H > 10(22) cm(-2)) and small enough to ensure a uniform dust temperature. We find sigma(e)(1200) is typically (2-4) x 10 (25) cm(2) H-1 and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing sigma(e)(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted. C1 [Martin, Peter G.; Roy, Arabindo; Miville-Deschenes, Marc-Antoine] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Bontemps, Sylvain] Observ Bordeaux, F-33270 Floirac, France. [Miville-Deschenes, Marc-Antoine] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Tucker, Carole] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla 72000, Mexico. [Netterfield, Calvin B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Olmi, Luca] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00931 USA. [Patanchon, Guillaume] Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Viero, Marco P.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Martin, PG (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. RI Klein, Jeffrey/E-3295-2013; OI Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; Canadian Space Agency (CSA);