FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Charlton, P Chassande-Mottin, E Chelkowski, S Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, HS Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Feroz, F Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil-Casanova, S Gill, C Gleason, J Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Hardt, A Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kranz, O Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Liu, Y Liu, Z Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA McWilliams, S Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Neri, I Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sainathan, P Salemi, F Sammut, L Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schreiber, E Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Stein, LC Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Tseng, K Tucker, E Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wang, Z Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Feroz, F. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil-Casanova, S. Gill, C. Gleason, J. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Hardt, A. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kranz, O. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McWilliams, S. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Neri, I. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sainathan, P. Salemi, F. Sammut, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Stein, L. C. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tseng, K. Tucker, E. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run SO PHYSICAL REVIEW D LA English DT Article ID SCIENCE RUN; DETECTORS; COLLAPSE AB We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration less than or similar to 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc(3) for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range similar to 5 x 10(-22) Hz(-1/2) to similar to 1 x 10(-20) Hz(-1/2). The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-84084 Salerno, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, NL-1081 HV Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; Ochsner, E.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, M.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S. M.; Aylott, B. E.; Carbone, L.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Mandel, I.; Page, A.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Smith-Lefebvre, N. D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Kelley, D.; Lough, J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Shapiro, B.; Shoemaker, D. H.; Soto, J.; Stein, A. J.; Stein, L. C.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, APC, CNRS, IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; McWilliams, S.; Murphy, D.; Redwine, K.; Wade, L.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-53100 Siena, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-53100 Siena, Italy. [Beck, D.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Markosyan, A.; Tseng, K.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] Polish Acad Sci, IM, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.] Polish Acad Sci, CAMK, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.; Rosinska, D.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Lundgren, A. P.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote dAzur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, LMA, IN2P3, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Cagnoli, G.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, Lab Kastler Brossel, ENS, CNRS, F-75005 Paris, France. [Buonanno, A.; Kanner, J. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.; Jang, Y. J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Geng, R.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Hardt, A.; Isogai, T.; Tucker, E.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, WIGNER RCP, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Povo, Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.] Northwestern Univ, Evanston, IL 60208 USA. [Feroz, F.; Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Vitale, S.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kandhasamy, S.; Mandic, V.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Howell, Eric/H-5072-2014; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri, Igor/F-1482-2010; Shaddock, Daniel/A-7534-2011; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Lam, Ping Koy/A-5276-2008; Parisi, Maria/D-2817-2013; Ciani, Giacomo/G-1036-2011; Marchesoni, Fabio/A-1920-2008; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; Costa, Cesar/G-7588-2012; Bell, Angus/E-7312-2011; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; OI Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Vocca, Helios/0000-0002-1200-3917; Gray, Norman/0000-0002-1941-9202; Fairhurst, Stephen/0000-0001-8480-1961; Granata, Massimo/0000-0003-3275-1186; Husa, Sascha/0000-0002-0445-1971; Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Swinkels, Bas/0000-0002-3066-3601; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Milano, Leopoldo/0000-0001-9487-5876; Papa, M.Alessandra/0000-0002-1007-5298; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Aulbert, Carsten/0000-0002-1481-8319; Stein, Leo/0000-0001-7559-9597; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Kanner, Jonah/0000-0001-8115-0577; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Lam, Ping Koy/0000-0002-4421-601X; Ciani, Giacomo/0000-0003-4258-9338; Marchesoni, Fabio/0000-0001-9240-6793; prodi, giovanni/0000-0001-5256-915X; Bell, Angus/0000-0003-1523-0821; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X FU United States National Science Foundation; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Royal Society; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society and the State of Niedersachsen/Germany for support of the construction and operation of the GEO 600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number LIGO-P1100118-v16. NR 43 TC 68 Z9 68 U1 5 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 20 PY 2012 VL 85 IS 12 AR 122007 DI 10.1103/PhysRevD.85.122007 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 962RV UT WOS:000305563600001 ER PT J AU Shaposhnikov, N AF Shaposhnikov, Nikolai TI ON THE NATURE OF QUASI-PERIODIC OSCILLATION PHASE LAGS IN BLACK HOLE CANDIDATES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; stars: individual (XTE J1550-564); X-rays: binaries ID XTE J1550-564; BINARIES; STATES; COMPONENTS; ACCRETION; BEHAVIOR AB Observations of quasi-periodic oscillations (QPOs) in X-ray binaries hold a key to understanding many aspects of these enigmatic systems. Complex appearance of the Fourier phase lags related to QPOs is one of the most puzzling observational effects in accreting black holes (BHs). In this Letter we show that QPO properties, including phase lags, can be explained in a framework of a simple scenario, where the oscillating media provide feedback on the emerging spectrum. We demonstrate that the QPO waveform is presented by the product of a perturbation and time-delayed response factors, where the response is energy dependent. The essential property of this effect is its nonlinear and multiplicative nature. Our multiplicative reverberation model successfully describes the QPO components in energy-dependent power spectra as well as the appearance of the phase lags between signals in different energy bands. We apply our model to QPOs observed by the Rossi X-Ray Timing Explorer in BH candidate XTE J1550-564. We briefly discuss the implications of the observed energy dependence of the QPO reverberation times and amplitudes on the nature of the power-law spectral component and its variability. C1 [Shaposhnikov, Nikolai] Univ Maryland, Dept Astron, CRESST, College Pk, MD 20742 USA. [Shaposhnikov, Nikolai] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Shaposhnikov, N (reprint author), Univ Maryland, Dept Astron, CRESST, College Pk, MD 20742 USA. EM nikolai.v.shaposhnikov@nasa.gov FU NASA [NNX09AF02G] FX The author thanks C. Shrader and L. Titarchuk for productive discussions. This work was supported by NASA grant NNX09AF02G. NR 19 TC 6 Z9 6 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2012 VL 752 IS 2 AR L25 DI 10.1088/2041-8205/752/2/L25 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961JV UT WOS:000305461600008 ER PT J AU Sridharan, DM Whalen, MK Almendrala, D Cucinotta, FA Kawahara, M Yannone, SM Pluth, JM AF Sridharan, Deepa M. Whalen, Mary K. Almendrala, Donna Cucinotta, Francis A. Kawahara, Misako Yannone, Steven M. Pluth, Janice M. TI Increased Artemis levels confer radioresistance to both high and low LET radiation exposures SO RADIATION ONCOLOGY LA English DT Article DE Artemis; Radioresistance; High LET radiation ID DEPENDENT PROTEIN-KINASE; CLASS SWITCH RECOMBINATION; STRAND BREAK REPAIR; DNA-DAMAGE; CELL-CYCLE; LINKS ATM; PHOSPHORYLATION; GAMMA-H2AX; DEFICIENT; REVEALS AB Background: Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. Results: Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. Conclusions: These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies. C1 [Sridharan, Deepa M.; Whalen, Mary K.; Almendrala, Donna; Kawahara, Misako; Yannone, Steven M.; Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Pluth, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM jmpluth@lbl.gov FU NASA [NNJ08ZSA001N]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to acknowledge Hengameh Zahed who performed some of the initial proliferation assay studies and was involved in helpful discussions at the onset of this work. We gratefully acknowledge financial support provided by NASA (NNJ08ZSA001N). This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 6 Z9 8 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1748-717X J9 RADIAT ONCOL JI Radiat. Oncol. PD JUN 19 PY 2012 VL 7 AR 96 DI 10.1186/1748-717X-7-96 PG 12 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 099OW UT WOS:000315632100001 PM 22713703 ER PT J AU Morgan, JLL Skulan, JL Gordon, GW Romaniello, SJ Smith, SM Anbar, AD AF Morgan, Jennifer L. L. Skulan, Joseph L. Gordon, Gwyneth W. Romaniello, Stephen J. Smith, Scott M. Anbar, Ariel D. TI Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE osteopenia; biomarker; medical geology; biosignature; spaceflight ID DURATION SPACE-FLIGHT; X-RAY ABSORPTIOMETRY; DOWN BED REST; FRACTIONATION; OSTEOPOROSIS; METABOLISM; KINETICS; MARKERS; RATIOS; URINE AB The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. C1 [Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Anbar, Ariel D.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Morgan, Jennifer L. L.; Anbar, Ariel D.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Morgan, Jennifer L. L.; Smith, Scott M.] NASA, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. RP Skulan, JL (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. EM jlskulan@geology.wisc.edu FU National Aeronautics and Space Administration [07-HRP-2-0042, NNX-08Aq38G]; Human Health and Countermeasures Element; Flight Analogs Project; National Center for Research Resources, National Institutes of Health [1UL1RR029876-01] FX We thank Carina Arrua for help with developing the Ca method and processing samples; Thomas Crenshaw for supplying sow urine and blood samples; Thomas Owens for measuring their Ca isotope composition; Michael Whitaker and Yu-Hui Chang for assistance with statistics; Jane Krauhs for editorial assistance; and Michael Anbar for helpful discussions. The studies described here were funded by National Aeronautics and Space Administration Human Research Program Grants 07-HRP-2-0042 and NNX-08Aq38G and specifically, the Human Health and Countermeasures Element and the Flight Analogs Project. Bed rest studies were conducted at the University of Texas Medical Branch at Galveston's Institute for Translational Sciences-Clinical Research Center, and they were supported in part by National Center for Research Resources, National Institutes of Health Grant 1UL1RR029876-01. NR 36 TC 35 Z9 37 U1 3 U2 41 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 19 PY 2012 VL 109 IS 25 BP 9989 EP 9994 DI 10.1073/pnas.1119587109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 969NC UT WOS:000306061400067 PM 22652567 ER PT J AU Komarevskiy, N Shklover, V Braginsky, L Hafner, C Lawson, J AF Komarevskiy, Nikolay Shklover, Valery Braginsky, Leonid Hafner, Christian Lawson, John TI Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry SO OPTICS EXPRESS LA English DT Article AB During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range. (C) 2012 Optical Society of America C1 [Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian] Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland. [Lawson, John] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Komarevskiy, N (reprint author), Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland. EM n.komarevskiy@ifh.ee.ethz.ch RI Braginsky, Leonid/B-5278-2008 OI Braginsky, Leonid/0000-0002-2508-8876 FU ETH [0-20590-09] FX The authors are grateful to the colleagues from NASA Ames Research Center, namely to Brett Cruden and Dinesh Prabhu for discussions and to Aaron Brandis for providing the experimental data of radiative spectra, obtained in the NASA Ames Research Center's EAST facility. This work was supported by ETH project 0-20590-09, Materials for Infra Red Protection. NR 19 TC 2 Z9 2 U1 1 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 18 PY 2012 VL 20 IS 13 BP 14189 EP 14200 DI 10.1364/OE.20.014189 PG 12 WC Optics SC Optics GA 961NV UT WOS:000305473000058 PM 22714482 ER PT J AU Numata, K Chen, JR Wu, ST AF Numata, Kenji Chen, Jeffrey R. Wu, Stewart T. TI Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser SO OPTICS EXPRESS LA English DT Article ID DISTRIBUTED-BRAGG-REFLECTOR; DBR LASER; FREQUENCY STABILIZATION; CARBON-DIOXIDE; PERFORMANCE; LOCKING; BAND AB We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a similar to 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than similar to 40 mu s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning. (C) 2012 Optical Society of America C1 [Numata, Kenji] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Numata, K (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM kenji.numata@nasa.gov FU NASA Earth Science Technology Office; NASA FX The authors gratefully acknowledge Dr. G. Yang of NASA Goddard for fruitful discussions and his help with RF electronics. They are also indebted to Drs. S. Chandani and P. Mitchell of Oclaro Inc. for their technical support on the DS-DBR lasers, and Dr. J. B. Abshire and other members of the NASA Goddard CO2 Sounder team for their support. In addition, thanks are due to Dr. Jeffrey Livas of NASA Goddard for his excellent comments on the manuscript. This work was supported by the NASA Earth Science Technology Office Instrument Incubator Program and the NASA Goddard Internal Research and Development Program. NR 22 TC 12 Z9 12 U1 4 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 18 PY 2012 VL 20 IS 13 BP 14234 EP 14243 DI 10.1364/OE.20.014234 PG 10 WC Optics SC Optics GA 961NV UT WOS:000305473000062 PM 22714486 ER PT J AU Malone, CP Johnson, PV Liu, XM Ajdari, B Kanik, I Khakoo, MA AF Malone, Charles P. Johnson, Paul V. Liu, Xianming Ajdari, Bahar Kanik, Isik Khakoo, Murtadha A. TI Integral cross sections for the electron-impact excitation of the b (1)Pi(u), c(3) (1)Pi(u), o(3) (1)Pi(u), b ' (1)Sigma(+)(u), c '(4) (1)Sigma(+)(u), G (3)Pi(u), and F (3)Pi(u) states of N-2 SO PHYSICAL REVIEW A LA English DT Article ID VACUUM-ULTRAVIOLET EMISSION; LOW-ENERGY ELECTRONS; MOLECULAR NITROGEN; HIGH-RESOLUTION; EXTREME-ULTRAVIOLET; INCIDENT ENERGIES; 124.2 NM; DISSOCIATIVE EXCITATION; DIATOMIC-MOLECULES; RYDBERG STATES AB Integral cross sections for electron-impact excitation out of the ground-state level X (1)Sigma(+)(g) (nu '' = 0) to the b (1)Pi(u), c(3) (1)Pi(u), o(3) (1)Pi(u), b' (1)Sigma(+)(u), c'(1)(4)Sigma(+)(u), G (3)Pi(u), and F (3)Pi(u) electronic states in N-2 are reported at incident energies ranging between 17.5 and 100 eV. We also provide excitation cross sections using emission-based excitation shape functions and optical oscillator strengths. These cross-section results are of great importance to planetary atmospheric modeling of the emissions observed in Earth's atmosphere as well as those of Titan and Triton, the largest moons of Saturn and Neptune, respectively. Critical comparisons of the present cross sections with previous values are presented in an effort to provide improved cross sections for electron excitation of this fundamental molecule's important transitions. C1 [Malone, Charles P.; Johnson, Paul V.; Kanik, Isik] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Malone, Charles P.; Ajdari, Bahar; Khakoo, Murtadha A.] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92831 USA. [Liu, Xianming] Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. RP Malone, CP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Malone, Charles/A-6294-2010; Johnson, Paul/D-4001-2009 OI Malone, Charles/0000-0001-8418-1539; Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration (NASA); NASA's Outer Planets Research (OPR); Planetary Atmospheres (PATM); National Science Foundation [NSF-AGS-0938223, NSF-PHY-RUI-0096808, NSF-PHY-RUI-0965793] FX This work was performed at the California State University, Fullerton (CSUF) and at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with the National Aeronautics and Space Administration (NASA). We gratefully acknowledge financial support through NASA's Outer Planets Research (OPR) and Planetary Atmospheres (PATM) programs and the National Science Foundation, under Grants No. NSF-AGS-0938223, No. NSF-PHY-RUI-0096808, and No. NSF-PHY-RUI-0965793. We are grateful to Dr. B. R. Lewis and Dr. A. N. Heays for supplying data prior to publication. NR 101 TC 6 Z9 6 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUN 18 PY 2012 VL 85 IS 6 AR 062704 DI 10.1103/PhysRevA.85.062704 PG 17 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 962EU UT WOS:000305524500004 ER PT J AU Schwenzer, SP Abramov, O Allen, CC Clifford, SM Cockell, CS Filiberto, J Kring, DA Lasue, J McGovern, PJ Newsom, HE Treiman, AH Vaniman, DT Wiens, RC AF Schwenzer, S. P. Abramov, O. Allen, C. C. Clifford, S. M. Cockell, C. S. Filiberto, J. Kring, D. A. Lasue, J. McGovern, P. J. Newsom, H. E. Treiman, A. H. Vaniman, D. T. Wiens, R. C. TI Puncturing Mars: How impact craters interact with the Martian cryosphere SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE astrobiology; cratering; impact processes; Mars surface; search for extraterrestrial life ID HYDROTHERMAL SYSTEMS; STARTING CONDITIONS; RAMPART CRATERS; CLAY-MINERALS; GROUND ICE; EVOLUTION; DEPOSITS; EJECTA; WATER; PHYLLOSILICATES AB Geologic evidence suggests that the Martian surface and atmospheric conditions underwent major changes in the late Noachian, with a decline in observable water-related surface features, suggestive of a transition to a dryer and colder climate. Based on that assumption, we have modeled the consequences of impacts into a similar to 2-6 km-thick cryosphere. We calculate that medium-sized (few 10 s of km diameter) impact craters can physically andlor thermally penetrate through this cryosphere, creating liquid water through the melting of subsurface ice in an otherwise dry and frozen environment. The interaction of liquid water with the target rock produces alteration phases that thermochemical modeling predicts will include hydrous silicates (e.g., nontronite, chlorite, serpentine). Thus, even small impact craters are environments that combine liquid water and the presence of alteration minerals that make them potential sites for life to proliferate. Expanding on the well-known effects of large impact craters on target sites, we conclude that craters as small as similar to 5-20 km (depending on latitude) excavate large volumes of material from the subsurface while delivering sufficient heat to create liquid water (through the melting of ground ice) and drive hydrothermal activity. This connection between the surface and subsurface made by the formation of these small, and thus more frequent, impact craters may also represent the most favorable sites to test the hypothesis of life on early Mars. (C) 2012 Elsevier B.V. All rights reserved. C1 [Schwenzer, S. P.; Clifford, S. M.; Kring, D. A.; Lasue, J.; McGovern, P. J.; Treiman, A. H.] USRA, Lunar & Planetary Inst, Houston, TX 77058 USA. [Abramov, O.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Allen, C. C.] NASA JSC, ARES, Houston, TX 77058 USA. [Cockell, C. S.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Filiberto, J.] So Illinois Univ, Dept Geol, MC 4234, Carbondale, IL 62901 USA. [Lasue, J.; Wiens, R. C.] Los Alamos Natl Lab, ISR 2, Los Alamos, NM 87545 USA. [Lasue, J.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Newsom, H. E.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Newsom, H. E.] Univ New Mexico, Dept Earth & Planetary Sci, MSC03 2050, Albuquerque, NM 87131 USA. [Vaniman, D. T.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Schwenzer, S. P.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. RP Schwenzer, SP (reprint author), USRA, Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM s.p.schwenzer@open.ac.uk; oabramov@usgs.gov; carlton.c.allen@nasa.gov; clifford@lpi.usra.edu; c.s.cockell@ed.ac.uk; Filiberto@siu.edu; kring@lpi.usra.edu; lasue@lpi.usra.edu; mcgovern@lpi.usra.edu; newsom@unm.edu; treiman@lpi.usra.edu; dvaniman@psi.edu; rwiens@lanl.gov OI Schwenzer, Susanne Petra/0000-0002-9608-0759; McGovern, Patrick/0000-0001-9647-3096 FU NASA [NNX07AK42G, NNX09AL25G, NNH07DA001N]; NASA MDAP [NNX09AI42G]; NASA Mars Science Laboratory; Mars Fundamental Research Grant [NNH10AO831]; NASA Astrobiology Institute FX This work was supported, in part, by NASA Mars Fundamental Research grants NNX07AK42G (D.A.K., S.P.S.) and NNX09AL25G (A.H.T., J.F.); by NASA MDAP grant number NNX09AI42G (P.J.M.); by NASA Planetary Geology and Geophysics grant NNH07DA001N (H.E.N.); by NASA Mars Science Laboratory project (R.C.W.) and Mars Fundamental Research Grant NNH10AO831 (D.V.); and a NASA Astrobiology Institute Director's Discretionary Fund award to O.A. We thank Bethany Ehlman, Bob Craddock and an anonymous reviewer for thoughtful reviews. This is Lunar and Planetary Institute (LPI) contribution #1668. NR 94 TC 22 Z9 22 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 15 PY 2012 VL 335 BP 9 EP 17 DI 10.1016/j.epsl.2012.04.031 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 981PM UT WOS:000306981600002 ER PT J AU Wang, L Shum, CK Simons, FJ Tassara, A Erkan, K Jekeli, C Braun, A Kuo, CY Lee, HK Yuan, DN AF Wang, Lei Shum, C. K. Simons, Frederik J. Tassara, Andres Erkan, Kamil Jekeli, Christopher Braun, Alexander Kuo, Chungyen Lee, Hyongki Yuan, Dah-Ning TI Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Maule earthquake; Geodynamics; GRACE ID SUMATRA-ANDAMAN EARTHQUAKE; INTERSEISMIC STRAIN ACCUMULATION; SOUTH-CENTRAL CHILE; SEISMIC GAP; SUBDUCTION ZONE; GRAVITY; GPS; OPTIMIZATION; VARIABILITY; MEGATHRUST AB The 27 February 2010 Mw 8.8 Maule, Chile, earthquake ruptured over 500 km along a mature seismic gap between 34 degrees S and 38 degrees S-the Concepcion-Constitucion gap, where no large megathrust earthquakes had occurred since the 1835 Mw similar to 8.5 event. Notable discrepancies exist in slip distribution and moment magnitude estimated by various models inverted using traditional observations such as teleseismic networks, coastal/river markers, tsunami sensors, Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR). We conduct a spatio-spectral localization analysis, based on Slepian basis functions, of data from Gravity Recovery And Climate Experiment (GRACE) to extract coseismic gravity change signals of the Maule earthquake with improved spatial resolution (350 km half-wavelength). Our results reveal discernible differences in the average slip between the GRACE observation and predictions from various coseismic models. The sensitivity analysis reveals that GRACE observation is sensitive to the size of the fault, but unable to separate depth and slip. Here we assume the depth of the fault is known, and simultaneously invert for the fault-plane area and the average slip using the simulated annealing algorithm. Our GRACE-inverted fault plane length and width are 429 +/- 6 km, 146 +/- 5 km, respectively. The estimated slip is 8.1 +/- 1.2 m, indicating that most of the strain accumulated since 1835 in the Concepcion-Constitucion gap was released by the 2010 Maule earthquake. Published by Elsevier B.V. C1 [Wang, Lei; Shum, C. K.; Erkan, Kamil; Jekeli, Christopher] Ohio State Univ, Sch Earth Sci, Div Geodet Sci, Columbus, OH 43210 USA. [Simons, Frederik J.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Tassara, Andres] Univ Concepcion, Dept Ciencias Tierra, Concepcion, Chile. [Braun, Alexander] Univ Texas Dallas, Dept Geosci, Richardson, TX 75083 USA. [Kuo, Chungyen] Natl Cheng Kung Univ, Dept Geomat, Tainan 70101, Taiwan. [Lee, Hyongki] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Yuan, Dah-Ning] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Wang, L (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Div Seismol Geol & Tectonophys, Palisades, NY 10964 USA. EM leiwang@ldeo.columbia.edu RI Simons, Frederik/A-3427-2008; Wang, Lei/L-5187-2013; OI Simons, Frederik/0000-0003-2021-6645; Tassara, Andres/0000-0002-7448-2474 FU U.S. National Science Foundation [EAR-1013333, EAR-1014606]; Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams FX This research was supported by the U.S. National Science Foundation under Grants EAR-1013333 and EAR-1014606, and partially supported under the Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams. GRACE data products are from NASA via the University of Texas Center for Space Research and JPL-PODAAC. We thank Chen Ji, UCSB, for providing his coseismic model and also his comments and suggestions, which have enhanced the quality of the manuscript. We thank the modelers for providing their coseismic slip models used in the study. We thank the Editor and three anonymous reviewers for providing constructive comments, which resulted in the improvement of the manuscript. NR 40 TC 22 Z9 25 U1 1 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 15 PY 2012 VL 335 BP 167 EP 179 DI 10.1016/j.epsl.2012.04.044 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 981PM UT WOS:000306981600017 ER PT J AU Stabeno, PJ Farley, EV Kachel, NB Moore, S Mordy, CW Napp, JM Overland, JE Pinchuk, AI Sigler, MF AF Stabeno, Phyllis J. Farley, Edward V., Jr. Kachel, Nancy B. Moore, Sue Mordy, Calvin W. Napp, Jeffrey M. Overland, James E. Pinchuk, Alexei I. Sigler, Michael F. TI A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Bering Sea; Ecosystem; Climate; Hydrography; Sea ice; Zooplankton; Whales; Fish ID POLLOCK THERAGRA-CHALCOGRAMMA; CLIMATE-CHANGE; CHUKCHI SEAS; OCEANOGRAPHIC DOMAINS; CETACEAN DISTRIBUTION; MARINE ECOSYSTEM; SOUTHEASTERN; CIRCULATION; COMMUNITY; ABUNDANCE AB Sufficient oceanographic measurements have been made in recent years to describe the latitudinal variation in the physics of the eastern Bering Sea shelf and the potential impact of climate change on the species assemblages in the two ecosystems (north and south). Many of the predicted ecosystem changes will result from alterations in the timing and extent of sea ice. It is predicted that the sea ice in the northern Bering Sea will be less common in May, but will continue to be extensive through April. In contrast, the southern shelf will have, on average, much less sea ice than currently observed, but with large interannual and multiyear variability until at least 2050. Thus, even under current climate warming scenarios, bottom temperatures on the northern shelf will remain cold. Based on biophysical measurements, the southern and northern ecosystems were divided by a North South Transition at similar to 60 degrees N. The northern middle shelf was characterized by a freshwater lens at the surface, cold bottom temperatures, and a thicker pycnocline than found on the southern shelf. Subsurface phytoplankton blooms were common. In contrast, the southern shelf stratification was largely determined by temperature alone; the pycnocline was thin (often <3 m) and subsurface blooms were uncommon. Biological responses to climate warming could include greater north south differences in zooplankton community structure, the transport of large Outer Shelf Domain crustacean zooplankton to the middle shelf, and the disappearance of two principal prey taxa (Calanus spp. and Thysanoessa spp.) of planktivorous fish, seabirds and whales. The response of commercially and ecologically important fish species is predicted to vary. Some species of fish (e.g., juvenile sockeye salmon, Oncorhynchus nerka) may expand their summer range into the northern Bering Sea; some (e.g., pink salmon, O. gorbuscha) may increase in abundance while still other species (e.g., walleye pollock and arrowtooth flounder; Theragra chalcogramma and Atheresthes stomias, respectively) are unlikely to become common in the north. The projected warming of the southern shelf will limit the distribution of arctic species (e.g., snow crab, Chionoecetes opilio) to the northern shelf and will likely permit expansion of subarctic species into the southern Bering Sea. The distribution and abundance of baleen whales will respond to shifts in prey availability; for instance, if prey are advected northward from the southeastern Bering Sea, an extension of range and an increase in seasonally migratory baleen whale numbers is anticipated. Thus, alteration of this ecosystem in response to climate change is expected to result in something other than a simple northward shift in the distribution of all species. Published by Elsevier Ltd. C1 [Stabeno, Phyllis J.; Overland, James E.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Farley, Edward V., Jr.; Sigler, Michael F.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK USA. [Kachel, Nancy B.; Mordy, Calvin W.] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA. [Moore, Sue] NOAA, Off Sci & Technol, Natl Marine Fisheries Serv, Seattle, WA USA. [Napp, Jeffrey M.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA USA. [Pinchuk, Alexei I.] Univ Alaska, Seward Marine Ctr, Fairbanks, AK 99701 USA. RP Stabeno, PJ (reprint author), NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM Phyllis.stabeno@noaa.gov NR 66 TC 96 Z9 96 U1 7 U2 71 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 14 EP 30 DI 10.1016/j.dsr2.2012.02.019 PG 17 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200003 ER PT J AU Smart, TI Duffy-Anderson, JT Horne, JK Farley, EV Wilson, CD Napp, JM AF Smart, Tracey I. Duffy-Anderson, Janet T. Horne, John K. Farley, Edward V. Wilson, Christopher D. Napp, Jeffrey M. TI Influence of environment on walleye pollock eggs, larvae, and juveniles in the southeastern Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Walleye pollock; Early life stages; Environmental conditions; Generalized additive models; Theragra chalcogramma; Bering Sea ID SMALL-SCALE TURBULENCE; THERAGRA-CHALCOGRAMMA; SHELIKOF STRAIT; FEEDING CONDITIONS; PHASE-TRANSITIONS; CLIMATE-CHANGE; ALASKA; GULF; FISH; RECRUITMENT AB We examined the influence of environmental conditions on walleye pollock (Theragra chalcogramma) early life history in discrete stages at two ecological scales using a 17-year time series from the southeastern Bering Sea. Generalized additive models (GAMs) were used to quantify relationships between walleye pollock stages (eggs, yolksac larvae, preflexion larvae, late larvae, and juveniles), the fine-resolution environment (temperature, wind speed, salinity, and copepod concentration), and the broad-resolution environment (annual spawning stock biomass, temperature, zooplankton biomass, and wind mixing). Early stages (eggs, yolksac larvae, and preflexion larvae) were associated with high spawning stock biomass, while late stages (late larvae and juveniles) were not associated with spawning stock biomass. The influence of temperature increased with ontogeny: high egg abundance was associated with temperatures from -2 to 7 degrees C and negative annual temperature anomalies and high juvenile abundance was associated with temperatures from 4 to 12 degrees C and positive temperature anomalies. Winds enhanced the transport of early stages from spawning locations to shallower sampling depths, but did not affect feeding stages (preflexion larvae, late larvae, and juveniles) in a manner consistent with the encounter-turbulence hypothesis. Feeding stages were positively associated with localized copepod concentrations but not zooplankton biomass anomaly, suggesting that the localized measurements of potential prey is a better indicator compared to broad-scale conditions measured in areas where these stages do not necessarily occur. Broad-resolution covariates, however, explained a greater portion of the overall variation than did fine-resolution models. Of the environmental conditions examined, temperature explained more variation in abundance of walleye pollock early life stages than any other covariate. Temperature is likely a major driving force structuring variability in populations of walleye pollock in their first year of life, acting directly upon them and indirectly upon their physical habitat and prey community. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Smart, Tracey I.; Horne, John K.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Duffy-Anderson, Janet T.; Wilson, Christopher D.; Napp, Jeffrey M.] NOAA, RACE Div, Recruitment Proc Program, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Seattle, WA 98115 USA. [Farley, Edward V.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. RP Smart, TI (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. EM tis@u.washington.edu; janet.duffy-anderson@noaa.gov; jhorne@u.washington.edu; ed.farley@noaa.gov; chris.wilson@noaa.gov; jeff.napp@noaa.gov NR 52 TC 20 Z9 20 U1 3 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 196 EP 207 DI 10.1016/j.dsr2.2012.02.018 PG 12 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200016 ER PT J AU Hollowed, AB Barbeaux, SJ Cokelet, ED Farley, E Kotwicki, S Ressler, PH Spital, C Wilson, CD AF Hollowed, Anne B. Barbeaux, Steven J. Cokelet, Edward D. Farley, Ed Kotwicki, Stan Ressler, Patrick H. Spital, Cliff Wilson, Christopher D. TI Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Forage fish; Zoogeography; Bering Sea; Climate change; Cold pool ID POLLOCK THERAGRA-CHALCOGRAMMA; CAPELIN MALLOTUS-VILLOSUS; WALLEYE POLLOCK; SPATIAL-DISTRIBUTION; INTERSPECIFIC COMPETITION; PRIBILOF ISLANDS; FOOD-HABITS; SHELF; VARIABILITY; ECOSYSTEM AB This paper examines how climate variations influence the boundaries of suitable ocean habitat, and how these changes affect the spatial distribution and interactions between forage fishes in the southeastern Bering Sea shelf. The study focuses on the summer distributions of forage fish age-0 and age-1 walleye pollock. Theragra chalcogramma, and capelin, Mallotus villosus, observed during National Marine Fisheries Service summer acoustic trawl, surface trawl and bottom trawl surveys conducted in the Bering Sea between 2004 and 2009. We compare the responses of these forage fish to climate-induced shifts in ocean habitats. Habitat boundaries were defined using key explanatory variables including depth, bottom temperature and surface temperature, using general additive models. Bathymetry, bottom temperature and frontal zones formed boundaries between different groups of forage fishes. Age-0 pollock were dispersed throughout the middle domain (50-100 m depth) in well-stratified regions. In cold years the highest densities of age-Os were found in the southern regions of the middle domain waters in waters warmer than approximately 1 degrees C. In contrast, age-1 pollock were observed on the sea floor over the middle domain and in midwater in the northern outer domain in cold years and more broadly dispersed across the middle and outer domain in warm years. The demersal concentrations of age-1 pollock in the middle domain shows age-1 pollock tolerate a wide range of bottom temperatures. Midwater and demersal distributions of age-1 pollock exhibited a patchier distribution than age-0 pollock. Midwater concentrations of age-1 pollock tended to be associated with the outer domain and regions where higher levels of lower trophic level production are expected. Capelin were concentrated in the inner domain, a well-mixed region. The overlap of age-1 pollock and capelin was higher in cold years than in warm years. Published by Elsevier Ltd. C1 [Hollowed, Anne B.; Barbeaux, Steven J.; Kotwicki, Stan; Ressler, Patrick H.; Spital, Cliff; Wilson, Christopher D.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Farley, Ed; Spital, Cliff] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Auke Bay Lab, Juneau, AK 99801 USA. [Cokelet, Edward D.; Spital, Cliff] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Hollowed, AB (reprint author), NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM Anne.Hollowed@noaa.gov; Steve.Barbeaux@noaa.gov; Edward.D.Cokelet@noaa.gov; Ed.Farley@noaa.gov; Stan.Kotwicki@noaa.gov; Patrick.Ressier@noaa.gov; Chris.Wilson@noaa.gov NR 63 TC 41 Z9 41 U1 8 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 230 EP 250 DI 10.1016/j.dsr2.2012.02.008 PG 21 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200019 ER PT J AU Sigler, MF Kuletz, KJ Ressler, PH Friday, NA Wilson, CD Zerbini, AN AF Sigler, Michael F. Kuletz, Kathy J. Ressler, Patrick H. Friday, Nancy A. Wilson, Christopher D. Zerbini, Alexandre N. TI Marine predators and persistent prey in the southeast Bering Sea SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Seabirds; Whales; Prey; Persistence; Hot spots ID PRIBILOF ISLANDS; WALLEYE POLLOCK; SCHOOLING FISH; SEABIRDS; ABUNDANCE; ECOSYSTEM; AVAILABILITY; PATTERNS; FORAGE; AGGREGATIONS AB Predictable prey locations reduce search time and energetic costs of foraging; thus marine predators often exploit locations where prey concentrations persist. In our study, we examined whether this association is influenced by differences among predator species in foraging modes (travel cost, surface feeder or diver) or whether the predator species is a central place forager or not. We examined distributions of two seabird species during their nesting period, the surface-feeding black-legged kittiwake (Rissa tridactyla) and the pursuit-diving thick-billed murre (Uria lomvia), and two baleen whale species, the humpback whale (Megaptera novaeangliae) and the fin whale (Balaenoptera physalus), in relation to two key prey, age-1 walleye pollock (Theragra chalcogramma) and euphausiids (Euphausiidae). Prey surveys were conducted once each year during 2004 and 2006-2010. Concurrent predator surveys were conducted in 2006-2010 (seabirds) and 2008 and 2010 (whales). We compared the seabird and whale foraging locations to where age-1 pollock and euphausiids were concentrated and considered the persistence of these concentrations, where the time-scale of persistence is year (i.e., a comparison among surveys that are conducted once each year). Euphausiids were widespread and concentrations often were reliably found within specific 37 km x 37 km blocks ('persistent hot spots of prey'). In contrast, age-1 pollock were more concentrated and their hot spots were persistent only on coarser scales (> 37 km). Both seabird species, regardless of foraging mode, were associated with age-1 pollock but not with euphausiids, even though age-1 pollock were less persistent than euphausiids. The higher travel cost central place foragers, thick-billed murres, foraged at prey concentrations nearer their island colonies than black-legged kittiwakes, which were more widespread foragers. Humpback whales were not tied to a central place and mostly were located only where euphausiids were concentrated, and further, often in locations where these concentrations were persistent. Fin whales were associated with locations where age-1 pollock were more likely, similar to black-legged kittiwakes and thick-billed murres, but their association with euphausiids was unclear. Our results suggest that a predator's foraging mode and their restrictions during breeding affect their response to prey persistence. Published by Elsevier Ltd. C1 [Sigler, Michael F.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Kuletz, Kathy J.] US Fish & Wildlife Serv, Anchorage, AK 99503 USA. [Ressler, Patrick H.; Friday, Nancy A.; Wilson, Christopher D.; Zerbini, Alexandre N.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. RP Sigler, MF (reprint author), NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM Mike.Sigler@noaa.gov; Kathy_Kuletz@fws.gov; Patrick.Ressler@noaa.gov; Nancy.Friday@noaa.gov; Chris.Wilson@noaa.gov; Alex.Zerbini@noaa.gov RI Zerbini, Alexandre/G-4138-2012 NR 50 TC 29 Z9 29 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD JUN 15 PY 2012 VL 65-70 SI SI BP 292 EP 303 DI 10.1016/j.dsr2.2012.02.017 PG 12 WC Oceanography SC Oceanography GA 970QU UT WOS:000306148200023 ER PT J AU Peteet, DM Beh, M Orr, C Kurdyla, D Nichols, J Guilderson, T AF Peteet, D. M. Beh, M. Orr, C. Kurdyla, D. Nichols, J. Guilderson, T. TI Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATIC CHANGES; NORTH-AMERICA; NEW-ENGLAND; ATLANTIC; CIRCULATION; CALIBRATION; VEGETATION; USA AB The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26-21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28-23 cal. kyr (varve estimates). Utilizing accelerator mass spectrometry (AMS) C-14 dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 1615 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9-5 cal kyr; a landscape with no ice, yet no deposition in lakes. Our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt. Citation: Peteet, D. M., M. Beh, C. Orr, D. Kurdyla, J. Nichols, and T. Guilderson (2012), Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin?, Geophys. Res. Lett., 39, L11706, doi:10.1029/2012GL051884. C1 [Peteet, D. M.; Beh, M.; Orr, C.; Kurdyla, D.; Nichols, J.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Peteet, D. M.; Nichols, J.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Guilderson, T.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Peteet, DM (reprint author), Lamont Doherty Earth Observ, 61 Rte 9W, Palisades, NY 10964 USA. EM peteet@ldeo.columbia.edu FU NASA/GISS; Gary Comer Science and Education Foundation; NSF [ARC-1022979, OCE06-475574]; NASA; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX This research was supported by NASA/GISS, the Gary Comer Science and Education Foundation, partial support from the NSF (grant ARC-1022979) and an internship to Calder Orr. We thank Nicole Davi, Miriam Jones, Jennifer Levy, Beate Liepert, Argie Miller, Mike Previdi, Sanpisa Sritrairat, and Tamika Tannis for their arduous field effort. Thoughtful comments/edits were supplied by Patrick Applegate, Linda Heusser, Beate Liepert, Kirsten Menking, Pierre Richard, Emily Southgate, Ellen Thomas, Johan Varekamp, Debra Willard, and Daniel Wolff and two anonymous reviewers. Cores used in this project were stored in the LDEO Sample Repository, supported by the NSF (grant OCE06-475574). J. Nichols is supported by the NASA Postdoctoral Program. LDEO contribution 7554. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contracts W-7405-Eng-48 and DE-AC52-07NA27344. NR 33 TC 8 Z9 8 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 15 PY 2012 VL 39 AR L11706 DI 10.1029/2012GL051884 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 959WD UT WOS:000305347500001 ER PT J AU Sanin, AB Mitrofanov, IG Litvak, ML Malakhov, A Boynton, WV Chin, G Droege, G Evans, LG Garvin, J Golovin, DV Harshman, K McClanahan, TP Mokrousov, MI Mazarico, E Milikh, G Neumann, G Sagdeev, R Smith, DE Starr, RD Zuber, MT AF Sanin, A. B. Mitrofanov, I. G. Litvak, M. L. Malakhov, A. Boynton, W. V. Chin, G. Droege, G. Evans, L. G. Garvin, J. Golovin, D. V. Harshman, K. McClanahan, T. P. Mokrousov, M. I. Mazarico, E. Milikh, G. Neumann, G. Sagdeev, R. Smith, D. E. Starr, R. D. Zuber, M. T. TI Testing lunar permanently shadowed regions for water ice: LEND results from LRO SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID POLAR HYDROGEN DEPOSITS; RECONNAISSANCE ORBITER; SOUTH-POLE; SPATIAL-DISTRIBUTION; NEUTRON DETECTOR; MOON; PROSPECTOR; SURFACE AB We use measurements from the Lunar Exploration Neutron Detector (LEND) collimated sensors during more than one year of the mapping phase of NASA's Lunar Reconnaissance Orbiter (LRO) mission to make estimates of the epithermal neutron flux within known large Permanently Shadowed Regions (PSRs). These are compared with the local neutron background measured outside PSRs in sunlit regions. Individual and collective analyses of PSR properties have been performed. Only three large PSRs, Shoemaker and Cabeus in the south and Rozhdestvensky U in the north, have been found to manifest significant neutron suppression. All other PSRs have much smaller suppression, only a few percent, if at all. Some even display an excess of neutron emission in comparison to the sunlit vicinity around them. Testing PSRs collectively, we have not found any average suppression for them. Only the group of 18 large PSRs, with area >200 km(2), show a marginal effect of small average suppression, similar to 2%, with low statistical confidence. A similar to 2% suppression corresponds to similar to 125 ppm of hydrogen taking into account the global neutron suppression near the lunar poles and assuming a homogeneous H distribution in depth in the regolith. This means that all PSRs, except those in Shoemaker, Cabeus and Rozhdestvensky U craters, do not contain any significant amount of hydrogen in comparison with sunlit areas around them at the same latitude. C1 [Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Malakhov, A.; Golovin, D. V.; Mokrousov, M. I.] RAS, Inst Space Res, Moscow 117997, Russia. [Boynton, W. V.; Droege, G.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Chin, G.; Garvin, J.; McClanahan, T. P.; Mazarico, E.; Neumann, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Evans, L. G.] Comp Sci Corp, Lanham, MD USA. [Milikh, G.; Sagdeev, R.] Univ Maryland, Space Phys Dept, College Pk, MD 20742 USA. [Smith, D. E.; Zuber, M. T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Starr, R. D.] Catholic Univ Amer, Washington, DC 20064 USA. RP Sanin, AB (reprint author), RAS, Inst Space Res, Moscow 117997, Russia. EM sanin@mx.iki.rssi.ru RI Evans, Larry/F-7462-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU International Space Science Institute (ISSI, Bern, Switzerland) FX We wish to thank the International Space Science Institute (ISSI, Bern, Switzerland) for the support of research (included in the framework of international team " Nuclear Planetology" in 2007- 2010) presented in this paper. NR 31 TC 20 Z9 20 U1 2 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 15 PY 2012 VL 117 AR E00H26 DI 10.1029/2011JE003971 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 960JV UT WOS:000305384700001 ER PT J AU Aggarwal, M Joshi, HP Iyer, KN Kwak, YS Lee, JJ Chandra, H Cho, KS AF Aggarwal, Malini Joshi, H. P. Iyer, K. N. Kwak, Y. -S. Lee, J. J. Chandra, H. Cho, K. S. TI Day-to-day variability of equatorial anomaly in GPS-TEC during low solar activity period SO ADVANCES IN SPACE RESEARCH LA English DT Article DE GPS-total electron content (TEC); Equatorial ionization anomaly (EIA); Equatorial electrojet (EEJ) ID TOTAL ELECTRON-CONTENT; LATITUDE IONOSPHERE; ION TEMPERATURES; CREST REGION; F-LAYER; NORTHERN; MODEL; EUV; THERMOSPHERE; IONIZATION AB The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionization anomaly (EIA) crest region is investigated by using dual-frequency signals of the Global Positioning System (GPS) acquired from Rajkot (Geog. Lat. 22.29 degrees N, Geog. Long. 70.74 degrees E; Geom. Lat. 14.21 degrees N, Geom. Long.144.90 degrees E), India. The day-to-day variability of EIA characteristics is examined during low solar activity period (F10.7 similar to 83 sfu). It is found that the daily maximum TEC at EIA crest exhibits a day-to-day and strong semi-annual variability. The seasonal anomaly and equinoctial asymmetry in TEC at EIA is found non-existent and weaker, respectively. We found a moderate and positive correlation of daily magnitude of crest, Ic with daily F10.7 and EUV fluxes with a correlation coefficient of 0.43 and 0.33, respectively indicating an existence of a short-term relation between TEC at EIA and the solar radiation even during low solar activity period. The correlation of daily Ic with Dst index is also moderate (r = -0.35), whereas no correlation is found with the daily Kp index (r = 0.14) respectively. We found that the magnitude of EIA crest is moderately correlated with solar flux in all seasons except winter where it is weakly related (0.27). The magnitude of EIA crest is also found highly related with EEJ strength in spring (r = 0.69) and summer (r = 0.65) than autumn (0.5) and winter (r = 0.47), though EEJ is stronger in autumn than spring. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Aggarwal, Malini; Lee, J. J.; Cho, K. S.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Joshi, H. P.; Iyer, K. N.] Saurashtra Univ, Dept Phys, Rajkot 360005, Gujarat, India. [Chandra, H.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Cho, K. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cho, K. S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Aggarwal, M (reprint author), Korea Astron & Space Sci Inst, Taejon 305348, South Korea. EM asmalini@rediffmail.com; hp.joshi.hp@gmail.com; iyerkn@yahoo.com; yskwak@kasi.re.kr; jjlee@kasi.re.kr; chandra@prl.res.in; kscho@kasi.re.kr RI Aggarwal, Malini/O-1612-2014 FU KASI, Korea; ISRO, India; UGC-SAP FX MA is grateful to KASI, Korea for providing the fellowship to carry out this work. She is also grateful to ISRO, India for providing the fellowship during the collection of GPS-TEC data. The GPS receiver at Saurashtra University, Rajkot was procured under the UGC-SAP grant. We acknowledge Indian Institute of Geomagnetism (IIG), Mumbai, India and WDC Kyoto University, NGDC, Boulder and SOHO websites for the geomagnetic and solar data. The authors are grateful to the reviewers for their very careful corrections, comments and suggestions in improving the manuscript. NR 52 TC 8 Z9 9 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 15 PY 2012 VL 49 IS 12 BP 1709 EP 1720 DI 10.1016/j.asr.2012.03.005 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 952JD UT WOS:000304787900008 ER PT J AU Joy, KH Zolensky, ME Nagashima, K Huss, GR Ross, DK McKay, DS Kring, DA AF Joy, Katherine H. Zolensky, Michael E. Nagashima, Kazuhide Huss, Gary R. Ross, D. Kent McKay, David S. Kring, David A. TI Direct Detection of Projectile Relics from the End of the Lunar Basin-Forming Epoch SO SCIENCE LA English DT Article ID LATE HEAVY BOMBARDMENT; TERRESTRIAL PLANETS; MELT BRECCIAS; IMPACT; MOON; METEORITES; CHONDRITE; ORIGIN; PERIOD; PETROGENESIS AB The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch. C1 [Joy, Katherine H.; Kring, David A.] Univ Space Res Assoc, Ctr Lunar Sci & Explorat, Lunar & Planetary Inst, Houston, TX 77058 USA. [Joy, Katherine H.; Zolensky, Michael E.; McKay, David S.; Kring, David A.] NASA, Lunar Sci Inst, Houston, TX 77058 USA. [Zolensky, Michael E.; Ross, D. Kent; McKay, David S.] NASA, Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Nagashima, Kazuhide; Huss, Gary R.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Ross, D. Kent] Jacobs Technol, Engn & Sci Contract Grp, Houston, TX 77058 USA. RP Joy, KH (reprint author), Univ Space Res Assoc, Ctr Lunar Sci & Explorat, Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM joy@lpi.usra.edu OI Joy, Katherine/0000-0003-4992-8750 FU NASA Lunar Science Institute [NNA09DB33A]; NASA [NNX11AG78G, NNX08AH77G] FX The data reported in this paper are tabulated in the supplementary materials. This research was funded by NASA Lunar Science Institute contract NNA09DB33A (D.A.K.), NASA Cosmochemistry grant NNX11AG78G (G.R.H.), and NASA Cosmochemistry grant NNX08AH77G (K.N.). This is Lunar and Planetary Institute contribution number 1665. We thank the three reviewers for helpful comments and D. Mittlefehldt, J. Berlin, R. Jones, and H. McSween for sharing meteorite data sets. NR 41 TC 40 Z9 41 U1 0 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 15 PY 2012 VL 336 IS 6087 BP 1426 EP 1429 DI 10.1126/science.1219633 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 958BT UT WOS:000305211700041 PM 22604725 ER PT J AU Casey, T Zakrzewska, EI Maple, RL Lintault, L Wade, CE Baer, LA Ronca, AE Plaut, K AF Casey, Theresa Zakrzewska, Elzbieta I. Maple, Rhonda L. Lintault, Laura Wade, Charles E. Baer, Lisa A. Ronca, April E. Plaut, Karen TI Hypergravity disruption of homeorhetic adaptations to lactation in rat dams include changes in circadian clocks SO BIOLOGY OPEN LA English DT Article DE Circadian; Hypergravity; Homeorhesis; Lactation; Mammary; Pregnancy AB Altered gravity load induced by spaceflight (microgravity) and centrifugation (hypergravity) is associated with changes in circadian, metabolic, and reproductive systems. Exposure to 2-g hypergravity (HG) during pregnancy and lactation decreased rate of mammary metabolic activity and increased pup mortality. We hypothesize HG disrupted maternal homeorhetic responses to pregnancy and lactation are due to changes in maternal metabolism, hormone concentrations, and maternal behavior related to gravity induced alterations in circadian clocks. Effect of HG exposure on mammary, liver and adipose tissue metabolism, plasma hormones and maternal behavior were analyzed in rat dams from mid-pregnancy (Gestational day [G] 11) through early lactation (Postnatal day [P] 3); comparisons were made across five time-points: G20, G21, P0 (labor and delivery), P1 and P3. Blood, mammary, liver, and adipose tissue were collected for analyzing plasma hormones, glucose oxidation to CO2 and incorporation into lipids, or gene expression. Maternal behavioral phenotyping was conducted using time-lapse videographic analyses. Dam and fetal-pup body mass were significantly reduced in HG in all age groups. HG did not affect labor and delivery; however, HG pups experienced a greater rate of mortality. PRL, corticosterone, and insulin levels and receptor genes were altered by HG. Mammary, liver and adipose tissue metabolism and expression of genes that regulate lipid metabolism were altered by HG exposure. Exposure to HG significantly changed expression of core clock genes in mammary and liver and circadian rhythms of maternal behavior. Gravity load alterations in dam's circadian system may have impacted homeorhetic adaptations needed for a successful lactation. (C) 2012. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License. C1 [Casey, Theresa; Plaut, Karen] Purdue Univ, Dept Anim Sci, W Lafayette, IN 47907 USA. [Zakrzewska, Elzbieta I.; Maple, Rhonda L.; Lintault, Laura] Univ Vermont, Dept Anim Sci, Burlington, VT 05405 USA. [Wade, Charles E.; Baer, Lisa A.; Ronca, April E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ronca, April E.] Wake Forest Univ, Bowman Gray Sch Med, Dept Obstet & Gynecol, Winston Salem, NC 27101 USA. RP Casey, T (reprint author), Purdue Univ, Dept Anim Sci, W Lafayette, IN 47907 USA. EM theresa-casey@purdue.edu FU NASA [NCC2-1373, NCC5-581, NNA04CK83]; NIH [HD50201] FX In terms of funding, this project was supported by NASA NCC2-1373, NASA EPSCoR NCC5-581, NASA Grant NNA04CK83, and NIH Grant HD50201. NR 76 TC 6 Z9 6 U1 0 U2 7 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 2046-6390 J9 BIOL OPEN JI Biol. Open PD JUN 15 PY 2012 VL 1 IS 6 BP 570 EP 581 DI 10.1242/bio.2012687 PG 12 WC Biology SC Life Sciences & Biomedicine - Other Topics GA V36ID UT WOS:000209205100008 PM 23213450 ER PT J AU Velbel, MA Tonui, EK Zolensky, ME AF Velbel, Michael A. Tonui, Eric K. Zolensky, Michael E. TI Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2) SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FINE-GRAINED RIMS; ROCK-FORMING MINERALS; EARLY SOLAR-SYSTEM; X-RAY-DIFFRACTION; AQUEOUS ALTERATION; PARENT BODIES; DISSOLUTION KINETICS; WEATHERING PRODUCTS; SURFACE CONDITIONS; MODAL MINERALOGY AB Coarse (chondrule and isolated) olivine in some CM chondrites is replaced by serpentine in both centripetal and meshwork replacement textures. Locally preserved textures formed by partial replacement of coarse olivine by serpentine in the carbonaceous chondrite Nogoya (CM2) establish unique associations between each individual mass of serpentine and the specific olivine from which that serpentine formed. Electron probe microanalyses show that the composition of serpentine replacing coarse olivine is uniform throughout all analyzed volumes of Nogoya, and is independent of the composition of the olivine being replaced. If, as previously proposed, late-stage alteration fluids were Mg-rich because Fe-source minerals were depleted in earlier stages, then the uniform Mg-rich composition of the serpentine replacing large silicate grains during advanced stages of alteration may indicate diffusional homogenization of the aqueous solutions over progressively larger spatial scales, enabled by long timescales and previously proposed stagnant or slow-moving fluids. The range of olivine compositions replaced in Nogoya is even larger than previously reported from ALH 81002 (CM2). This militates against hypotheses of strong primary-mineral control on the compositions of alteration products, at least at advanced stages of alteration. The serpentine formed by olivine replacement in Nogoya is more magnesian than the counterpart serpentine replacing all anhydrous primary silicates in ALH 81002. This intermeteorite heterogeneity of replacement-serpentine composition between ALH 81002 and Nogoya indicates that the aqueous solutions in which the olivine-serpentine replacement reactions occurred were of different compositions in the two different CM parent-body volumes sampled by ALH 81002 and Nogoya. The more magnesian character of serpentines in Nogoya than in ALH 81002 indicates that the Nogoya aqueous-alteration environment was even more highly evolved toward Mg-rich solutions than the environment indicated by the composition of the serpentine in ALH 81002. Persistence of primary-silicate remnants within centripetal and meshwork serpentine indicates that either the aqueous alteration episodes in the parent-body volumes represented by individual meteorites were too short to allow complete replacement of olivine by serpentine, or one or more reactants (most likely water) were completely consumed before the coarse primary silicate was completely replaced. Seemingly incompatible arguments for and against primary-mineral control of serpentine composition during CM chondrite alteration may be reconciled by considering the different grain sizes and reaction timescales that likely existed in different textural settings. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Velbel, Michael A.] Michigan State Univ, Dept Geol Sci, E Lansing, MI 48824 USA. [Tonui, Eric K.] BP Amer Inc, Upstream Technol, Houston, TX 77079 USA. [Zolensky, Michael E.] NASA, KT Astromat Res & Explorat Sci, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Velbel, MA (reprint author), Michigan State Univ, Dept Geol Sci, 206 Nat Sci Bldg, E Lansing, MI 48824 USA. EM velbel@msu.edu FU Michigan Space Grant Consortium; Michigan State University Honors College; NASA/ASEE; NASA [NAG 9-1211] FX We thank our colleagues Hap McSween, Adrian Brearley, Frans Rietmeijer, Bob Clayton, Alan Rubin, Jeff Grossman, Anton Kearsley, and Ed Young for helpful discussions; current and former MSU students Jason Price, Cari Corrigan, Amy McAdam, Angela Donatelle, Dan Snyder, Anna Losiak, Kathleen Jeffery, Gabrielle Tepp, Laurel Eibach, and Mike Wright for assistance in the laboratory and stimulating discussions; Craig Schwandt and Loan Le at NASA-JSC for assistance with the electron probe microanalysis; Ewa Danielewicz and Abigail Tirrell (Michigan State University Center for Advanced Microscopy) for assistance with the scanning electron microscopy; Kurt Stepnitz for assembling the digital photomosaics; and Harley Seeley for preparation of the final images. Thorough reviews by Adrian Brearley, Phil Bland, and Neyda Abreu, and comments by Associate Editor Alexander Krot, were most helpful in preparing the final draft, and are greatly appreciated. This research was supported by two Michigan Space Grant Consortium Research Seed Grants, a Michigan State University Honors College Honors Research Seminar, a NASA/ASEE Summer Faculty Fellowship, and NASA Grant NAG 9-1211. NR 107 TC 16 Z9 16 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2012 VL 87 BP 117 EP 135 DI 10.1016/j.gca.2012.03.016 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 944LI UT WOS:000304202900008 ER PT J AU Walter, F Decarli, R Carilli, C Bertoldi, F Cox, P Da Cunha, E Daddi, E Dickinson, M Downes, D Elbaz, D Ellis, R Hodge, J Neri, R Riechers, DA Weiss, A Bell, E Dannerbauer, H Krips, M Krumholz, M Lentati, L Maiolino, R Menten, K Rix, HW Robertson, B Spinrad, H Stark, DP Stern, D AF Walter, Fabian Decarli, Roberto Carilli, Chris Bertoldi, Frank Cox, Pierre Da Cunha, Elisabete Daddi, Emanuele Dickinson, Mark Downes, Dennis Elbaz, David Ellis, Richard Hodge, Jacqueline Neri, Roberto Riechers, Dominik A. Weiss, Axel Bell, Eric Dannerbauer, Helmut Krips, Melanie Krumholz, Mark Lentati, Lindley Maiolino, Roberto Menten, Karl Rix, Hans-Walter Robertson, Brant Spinrad, Hyron Stark, Dan P. Stern, Daniel TI The intense starburst HDF 850.1 in a galaxy overdensity at z approximate to 5.2 in the Hubble Deep Field SO NATURE LA English DT Article ID BRIGHTEST SUBMILLIMETER SOURCE; MOLECULAR GAS; HIGH-REDSHIFT; STAR-FORMATION; BIG-BANG; NORTH; IDENTIFICATION; CONSTRAINTS; INDICATOR; OBJECT AB The Hubble Deep Field provides one of the deepest multiwave-length views of the distant Universe and has led to the detection of thousands of galaxies seen throughout cosmic time(1). An early map of the Hubble Deep Field at a wavelength of 850 micrometres, which is sensitive to dust emission powered by star formation, revealed the brightest source in the field, dubbed HDF 850.1 (ref. 2). For more than a decade, and despite significant efforts, no counterpart was found at shorter wavelengths, and it was not possible to determine its redshift, size or mass(3-7). Here we report a redshift of z = 5.183 for HDF 850.1, from a millimetre-wave molecular line scan. This places HDF 850.1 in a galaxy overdensity at z approximate to 5.2, corresponding to a cosmic age of only 1.1 billion years after the Big Bang. This redshift is significantly higher than earlier estimates(3,4,6,8) and higher than those of most of the hundreds of submillimetre-bright galaxies identified so far. The source has a star-formation rate of 850 solar masses per year and is spatially resolved on scales of 5 kiloparsecs, with an implied dynamical mass of about 1.3 x 10(11) solar masses, a significant fraction of which is present in the form of molecular gas. Despite our accurate determination of redshift and position, a counterpart emitting starlight remains elusive. C1 [Walter, Fabian; Decarli, Roberto; Da Cunha, Elisabete; Hodge, Jacqueline; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Walter, Fabian; Carilli, Chris] Natl Radio Astron Observ, Pete V Domenici Array Sci Ctr, Socorro, NM 87801 USA. [Carilli, Chris; Lentati, Lindley; Maiolino, Roberto] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bertoldi, Frank] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Cox, Pierre; Downes, Dennis; Neri, Roberto; Krips, Melanie] IRAM, F-38406 St Martin Dheres, France. [Da Cunha, Elisabete; Elbaz, David] Univ Paris Diderot, Lab AIM, CEA, DSM,CNRS,Irfu Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Ellis, Richard; Riechers, Dominik A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Weiss, Axel; Menten, Karl] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Bell, Eric] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Dannerbauer, Helmut] Univ Vienna, Inst Astron, A-1080 Vienna, Austria. [Krumholz, Mark] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Maiolino, Roberto] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Robertson, Brant; Stark, Dan P.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Spinrad, Hyron] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Walter, F (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM walter@mpia.de RI Daddi, Emanuele/D-1649-2012 OI Daddi, Emanuele/0000-0002-3331-9590 FU MPG (Germany); INSU/CNRS (France); IGN (Spain); NASA; DLR [FKZ 50OR1004] FX This work is based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by MPG (Germany), INSU/CNRS (France) and IGN (Spain). The Jansky Very Large Array of NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. D. A. R. acknowledges support from NASA through a Spitzer Space Telescope grant. R. D. acknowledges funding through DLR project FKZ 50OR1004. NR 30 TC 95 Z9 95 U1 1 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 14 PY 2012 VL 486 IS 7402 BP 233 EP 236 DI 10.1038/nature11073 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 957UH UT WOS:000305189000029 PM 22699613 ER PT J AU Reuveni, Y Kedar, S Owen, SE Moore, AW Webb, FH AF Reuveni, Yuval Kedar, Sharon Owen, Susan E. Moore, Angelyn W. Webb, Frank H. TI Improving sub-daily strain estimates using GPS measurements SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GLOBAL POSITIONING SYSTEM; EARTHQUAKE SEQUENCE; MAPPING FUNCTIONS; KILAUEA VOLCANO; DELAY; DEFORMATION; ATMOSPHERE; GRADIENTS AB We present an improved GPS analysis strategy that reduces the noise level of GPS-based sub-daily strain measurements by a factor of similar to 5 or more and improves sub-daily resolution of positions and baseline estimates by a factor of similar to 2-5. These improvements are accomplished by reducing the key sources of error due to diurnal effects from path delays caused by reflections and refractions of the GPS signal near the receiver (multipath), and from tropospheric delays. Errors due to poorly determined tropospheric path delays are mitigated by using the tropospheric parameters estimated in static positioning runs as fixed values. The multipath effects are treated as periodic errors and are mitigated by a modified sidereal filter applied to the phase prior to processing. This combination of path error modeling results in sub-daily strain resolution on the order of similar to 0.1 mu strain for a similar to 100 k mbaseline. Citation: Reuveni, Y., S. Kedar, S. E. Owen, A. W. Moore, and F. H. Webb (2012), Improving sub-daily strain estimates using GPS measurements, Geophys. Res. Lett., 39, L11311, doi:10.1029/2012GL051927. C1 [Reuveni, Yuval; Kedar, Sharon; Owen, Susan E.; Moore, Angelyn W.; Webb, Frank H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Reuveni, Y (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 238-634, Pasadena, CA 91109 USA. EM yuval.reuveni@jpl.nasa.gov RI Reuveni, Yuval/J-8287-2015 FU National Aeronautics and Space Administration FX The authors wish to thank the editor, reviewers and Duncan Agnew for their thoughtful and constructive critique of the manuscript. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 36 TC 7 Z9 7 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 12 PY 2012 VL 39 AR L11311 DI 10.1029/2012GL051927 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 959VX UT WOS:000305346700001 ER PT J AU Turyshev, SG Toth, VT Kinsella, G Lee, SC Lok, SM Ellis, J AF Turyshev, Slava G. Toth, Viktor T. Kinsella, Gary Lee, Siu-Chun Lok, Shing M. Ellis, Jordan TI Support for the Thermal Origin of the Pioneer Anomaly SO PHYSICAL REVIEW LETTERS LA English DT Article ID LONG-RANGE ACCELERATION; ULYSSES DATA; GALILEO; WEAK AB We investigate the possibility that the anomalous acceleration of the Pioneer 10 and 11 spacecraft is due to the recoil force associated with an anisotropic emission of thermal radiation off the vehicles. To this end, relying on the project and spacecraft design documentation, we constructed a comprehensive finite-element thermal model of the two spacecraft. Then, we numerically solve thermal conduction and radiation equations using the actual flight telemetry as boundary conditions. We use the results of this model to evaluate the effect of the thermal recoil force on the Pioneer 10 spacecraft at various heliocentric distances. We found that the magnitude, temporal behavior, and direction of the resulting thermal acceleration are all similar to the properties of the observed anomaly. As a novel element of our investigation, we develop a parametrized model for the thermal recoil force and estimate the coefficients of this model independently from navigational Doppler data. We find no statistically significant difference between the two estimates and conclude that, once the thermal recoil force is properly accounted for, no anomalous acceleration remains. C1 [Turyshev, Slava G.; Kinsella, Gary; Ellis, Jordan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lee, Siu-Chun; Lok, Shing M.] Appl Sci Lab, Baldwin Pk, CA 91706 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Ellis, John/J-2222-2012; Toth, Viktor/D-3502-2009 OI Ellis, John/0000-0002-7399-0813; Toth, Viktor/0000-0003-3651-9843 FU Planetary Society; National Aeronautics and Space Administration FX We thank G. L. Goltz, K. J. Lee, and N. A. Mottinger of JPL for their indispensable help with the Pioneer Doppler data recovery. We thank W. M. Folkner, T. P. McElrath, M. M. Watkins, and J. G. Williams of JPL for their interest, support, and encouragement. We also thank L. K. Scheffer and C. B. Markwardt for many helpful conversations. We thank The Planetary Society for their long-lasting interest and support. This work in part was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 15 TC 46 Z9 46 U1 4 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2012 VL 108 IS 24 AR 241101 DI 10.1103/PhysRevLett.108.241101 PG 5 WC Physics, Multidisciplinary SC Physics GA 956UV UT WOS:000305115700003 PM 23004253 ER PT J AU Myneni, K Smith, DD Odutola, JA Schambeau, CA AF Myneni, Krishna Smith, David D. Odutola, Jamiu A. Schambeau, Charles A. TI Tuning the scale factor and sensitivity of a passive cavity with optical pumping SO PHYSICAL REVIEW A LA English DT Article AB The pushing of the Fabry-Perot cavity modes by an intracavity medium of Rb vapor may be tuned with optical pumping. A second laser, propagating through the Rb vapor orthogonal to the intracavity beam, is used to modify the optical transmission of the Rb vapor. We demonstrate that the cavity scale factor may be switched from S > 1, on one side of its pole along the gain axis, to the other side of the pole, where mode splitting occurs, simply by changing the pumping transition. Continuous tuning of the cavity scale factor and sensitivity may be realized by varying the intensity and/or frequency of the pump beam. C1 [Myneni, Krishna] USA, RDMR WSS, Res Dev & Engn Command, Redstone Arsenal, AL 35898 USA. [Smith, David D.] NASA, George C Marshall Space Flight Ctr, Spacecraft & Vehicle Syst Dept, Huntsville, AL 35812 USA. [Odutola, Jamiu A.] Alabama A&M Univ, Dept Nat & Phys Sci Chem, Normal, AL 35762 USA. [Schambeau, Charles A.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. RP Myneni, K (reprint author), USA, RDMR WSS, Res Dev & Engn Command, Redstone Arsenal, AL 35898 USA. EM krishna.myneni@us.army.mil NR 17 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JUN 11 PY 2012 VL 85 IS 6 AR 063813 DI 10.1103/PhysRevA.85.063813 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 956KG UT WOS:000305087900012 ER PT J AU Martin, S Booth, A Liewer, K Raouf, N Loya, F Tang, H AF Martin, Stefan Booth, Andrew Liewer, Kurt Raouf, Nasrat Loya, Frank Tang, Hong TI High performance testbed for four-beam infrared interferometric nulling and exoplanet detection SO APPLIED OPTICS LA English DT Article ID STARLIGHT SUPPRESSION; BROAD-BAND; MISSION; PLANETS; SEARCH; PHASE AB Technology development for a space-based infrared nulling interferometer capable of earthlike exoplanet detection and characterization started in earnest in the last 10 years. At the Jet Propulsion Laboratory, the planet detection testbed was developed to demonstrate the principal components of the beam combiner train for a high performance four-beam nulling interferometer. Early in the development of the testbed, the importance of "instability noise" for nulling interferometer sensitivity was recognized, and the four-beam testbed would produce this noise, allowing investigation of methods for mitigating this noise source. The testbed contains the required features of a four-beam combiner for a space interferometer and performs at a level matching that needed for the space mission. This paper describes in detail the design, functions, and controls of the testbed. (C) 2012 Optical Society of America C1 [Martin, Stefan; Booth, Andrew; Liewer, Kurt; Raouf, Nasrat; Loya, Frank; Tang, Hong] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Booth, Andrew] Sigma Space Corp, Lanham, MD 20706 USA. RP Martin, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM stefan.r.martin@jpl.nasa.gov FU NASA FX Many people participated in testbed development over several years, including Piotr Szwaykowski (optical engineering), Oliver Lay (analysis and traceability to flight), Randall Bartos (engineering), Boris Lurie (controls systems), Santos Felipe Fregoso (software), Francisco Aguayo (engineering), Martin Marcin (optical engineering), Ray Lam (software), Andrew Lowman (optical engineering), Steve Monacos (electronics engineering), Robert Peters (optical engineering), and Muthu Jeganathan (optical engineering). The authors are also grateful to Mike Devirian and to Peter Lawson for their tireless support of the testbed. The work reported here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The mention of any commercial product herein does not constitute an endorsement. NR 24 TC 5 Z9 5 U1 1 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 10 PY 2012 VL 51 IS 17 BP 3907 EP 3921 DI 10.1364/AO.51.003907 PG 15 WC Optics SC Optics GA 958XN UT WOS:000305274400025 PM 22695670 ER PT J AU Dall'Ora, M Kinemuchi, K Ripepi, V Rodgers, CT Clementini, G Di Fabrizio, L Smith, HA Marconi, M Musella, I Greco, C Kuehn, CA Catelan, M Pritzl, BJ Beers, TC AF Dall'Ora, M. Kinemuchi, Karen Ripepi, Vincenzo Rodgers, Christopher T. Clementini, Gisella Di Fabrizio, Luca Smith, Horace A. Marconi, Marcella Musella, Ilaria Greco, Claudia Kuehn, Charles A. Catelan, Marcio Pritzl, Barton J. Beers, Timothy C. TI STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: individual (Ursa Major II); stars: distances; stars: variables: RR Lyrae; techniques: photometric ID MILKY-WAY SATELLITE; METAL-POOR STARS; RR-LYRAE STARS; COLOR-MAGNITUDE DIAGRAM; LARGE-MAGELLANIC-CLOUD; VARIABLE-STARS; COMA BERENICES; ORPHAN STREAM; LOCAL GROUP; SPECTROSCOPIC SURVEY AB We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V similar to 15 to V similar to 23.5 mag and extending over an 18 x 18 arcmin(2) area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V similar to 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m-M) 0 = 17.70 +/- 0.04 +/- 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7(-0.7)(+0.6)((+2.0)(-1.9))kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 +/- 0.04 dex and -1.33 +/- 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II. C1 [Dall'Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Kinemuchi, Karen] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Rodgers, Christopher T.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Clementini, Gisella] Osservatorio Astron Bologna, INAF, Bologna, Italy. [Di Fabrizio, Luca] Ctr Galileo Galilei & Telescopio Nazl Galileo, INAF, S Cruz De La Palma, Spain. [Smith, Horace A.; Kuehn, Charles A.; Beers, Timothy C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Greco, Claudia] Observ Geneva, CH-1290 Sauverny, Switzerland. [Catelan, Marcio] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Pritzl, Barton J.] Univ Wisconsin, Dept Phys & Astron, Oshkosh, WI 54901 USA. [Beers, Timothy C.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Dall'Ora, M (reprint author), Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. EM dallora@na.astro.it; karen.kinemuchi@nasa.gov; ripepi@na.astro.it; crodgers@uwyo.edu; gisella.clementini@oabo.inaf.it; difabrizio@tng.iac.es; smith@pa.msu.edu; marcella@na.astro.it; ilaria@na.astro.it; claudia.greco@obs.unige.ch; kuehncha@msu.edu; mcatelan@astro.puc.cl; pritzlb@uwosh.edu; beers@pa.msu.edu OI Musella, Ilaria/0000-0001-5909-6615; Marconi, Marcella/0000-0002-1330-2927 FU NSF [AST-0079541, AST-0607249, AST-0707756]; Italian PRIN MUR; COFIS ASI-INAF [I/016/07/0]; ASI-INAF [I/009/10/0]; Chilean Ministry for the Economy, Development, and Tourisms Programa Iniciativa Cientifica Milenio [P07-021-F]; BASAL Center for Astrophysics and Associated Technologies [PFB-06]; FONDAP Center for Astrophysics [15010003]; Proyecto Fondecyt Regular [1110326]; Proyecto Anillo [ACT-86]; Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), U.S. National Science Foundation [PHY 02-16783, PHY 08-22648] FX We thank an anonymous referee for helpful comments, which greatly improved both the scientific accuracy and the readability of this paper. We warmly thank Evan Kirby and Joshua Simon for providing us identification and individual metallicities for member stars of the UMa IIUFD. PRISM was developed with support from NSF (AST-0079541, PI: K. A. Janes) with additional support from Boston University and Lowell Observatory. We also thank Benjamin Kelly and Laura Portscheller for having joined us in the first phase of this project. We acknowledge financial contribution from the Italian PRIN MUR 2007 "Multiple stellar populations in globular clusters: census, characterization and origin," PI: G. Piotto, from COFIS ASI-INAF I/016/07/0, and from the agreement ASI-INAF I/009/10/0. H. A. S. thanks the NSF for support under grants AST-0607249 and AST-0707756. M. C. acknowledges support by the Chilean Ministry for the Economy, Development, and Tourisms Programa Iniciativa Cientifica Milenio through grant P07-021-F, awarded to The Milky Way Millennium Nucleus; by the BASAL Center for Astrophysics and Associated Technologies (PFB-06); by the FONDAP Center for Astrophysics (15010003); by Proyecto Fondecyt Regular 1110326; and by Proyecto Anillo ACT-86. T. C. B. acknowledges partial funding of this work from grants PHY 02-16783 and PHY 08-22648: Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. NR 63 TC 19 Z9 19 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 42 DI 10.1088/0004-637X/752/1/42 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400042 ER PT J AU Godet, O Plazolles, B Kawaguchi, T Lasota, JP Barret, D Farrell, SA Braito, V Servillat, M Webb, N Gehrels, N AF Godet, O. Plazolles, B. Kawaguchi, T. Lasota, J. -P. Barret, D. Farrell, S. A. Braito, V. Servillat, M. Webb, N. Gehrels, N. TI INVESTIGATING SLIM DISK SOLUTIONS FOR HLX-1 IN ESO 243-49 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; galaxies: individual (ESO 243-49); methods: data analysis; X-rays: individuals (HLX-1) ID X-RAY SOURCES; MASS BLACK-HOLE; SPECTRAL STATE TRANSITIONS; NOVA MUSCAE 1991; ACCRETION DISKS; VARIABILITY; BINARIES; MODEL; IRRADIATION; EVOLUTION AB The hyperluminous X-ray source HLX-1 in the galaxy ESO 243-49, currently the best intermediate-mass black hole (BH) candidate, displays spectral transitions similar to those observed in Galactic BH binaries, but with a luminosity 100-1000 times higher. We investigated the X-ray properties of this unique source by fitting multiepoch data collected by Swift, XMM-Newton, and Chandra with a disk model computing spectra for a wide range of sub- and super-Eddington accretion rates assuming a non-spinning BH and a face-on disk (i = 0 degrees). Under these assumptions we find that the BH in HLX-1 is in the intermediate-mass range (similar to 2 x 10(4) M-circle dot) and the accretion flow is in the sub-Eddington regime. The disk radiation efficiency is eta = 0.11 +/- 0.03. We also show that the source does follow the L-X alpha T-4 relation for our mass estimate. At the outburst peaks, the source radiates near the Eddington limit. The accretion rate then stays constant around 4 x 10(-4) M-circle dot yr(-1) for several days and then decreases exponentially. Such "plateaus" in the accretion rate could be evidence that enhanced mass-transfer rate is the driving outburst mechanism in HLX-1. We also report on the new outburst observed in 2011 August by the Swift X-Ray Telescope. The time of this new outburst further strengthens the similar to 1 year recurrence timescale. C1 [Godet, O.; Plazolles, B.; Barret, D.; Webb, N.] Univ Toulouse, UPS, IRAP, F-31028 Toulouse 4, France. [Godet, O.; Plazolles, B.; Barret, D.; Webb, N.] CNRS, UMR5277, F-31028 Toulouse, France. [Kawaguchi, T.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Lasota, J. -P.] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Lasota, J. -P.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Farrell, S. A.; Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Farrell, S. A.] Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Servillat, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Godet, O (reprint author), Univ Toulouse, UPS, IRAP, 9 Ave Colonel Roche, F-31028 Toulouse 4, France. OI Braito, Valentina/0000-0002-2629-4989 FU NASA [GO0-11063X, DD0-11050X]; NSF [AST-0909073]; UK Science and Technology Funding Council; Australian Research Council [DP110102889]; UK STFC research council; French Space Agency CNES FX We thank the anonymous referee for his useful comments that helped to improve the paper. We are grateful to Ken Ebisawa and Takashi Okajima for creating a new fits model for XSPEC incorporating the extended black hole mass ranges. We thank Shane Davis for his useful suggestions during the writing of this paper. M.S. acknowledges supports from NASA/Chandra Grants GO0-11063X, DD0-11050X and NSF Grant AST-0909073. S.A.F. acknowledges funding from the UK Science and Technology Funding Council. S.A.F. is the recipient of an Australian Research Council Postdoctoral Fellowship, funded by grant DP110102889. V.B. acknowledge support from the UK STFC research council. J.P.L. acknowledges support from the French Space Agency CNES. NR 60 TC 28 Z9 28 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 34 DI 10.1088/0004-637X/752/1/34 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400034 ER PT J AU Hu, RY Ehlmann, BL Seager, S AF Hu, Renyu Ehlmann, Bethany L. Seager, Sara TI THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES SO ASTROPHYSICAL JOURNAL LA English DT Article DE atmospheric effects; planets and satellites: general; techniques: photometric; techniques: spectroscopic ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; THERMAL EMISSION-SPECTROSCOPY; SUN-LIKE STAR; PLANETARY SURFACES; WARM-SPITZER; MU-M; MERCURY; MARS; MOON; SPACE AB We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 mu m and 15-25 mu m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A(g)(K) - A(g)(J)): A(g)(K) - A(g)(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A(g)(K) - A(g)(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice. C1 [Hu, Renyu; Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hu, RY (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM hury@mit.edu FU NASA Earth and Space Science Fellowship [NESSF/NNX11AP47H] FX Thanks to P. Isaacson for providing M3 lunar spectra and W. Calvin for providing modeled water ice spectra. R.H. is supported by NASA Earth and Space Science Fellowship (NESSF/NNX11AP47H). NR 80 TC 16 Z9 16 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 7 DI 10.1088/0004-637X/752/1/7 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400007 ER PT J AU Kelly, BC Shetty, R Stutz, AM Kauffmann, J Goodman, AA Launhardt, R AF Kelly, Brandon C. Shetty, Rahul Stutz, Amelia M. Kauffmann, Jens Goodman, Alyssa A. Launhardt, Ralf TI DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: ISM; ISM: structure; methods: data analysis; methods: statistical; stars: formation ID STAR-FORMING CORES; T-TAURI STARS; TEMPERATURE-DEPENDENCE; PROTOPLANETARY DISKS; INFRARED GALAXIES; SILICATE GRAINS; SUBMILLIMETER; INDEX; MASS; EMISSIVITY AB We present a hierarchical Bayesian method for fitting infrared spectral energy distributions (SEDs) of dust emission to observed fluxes. Under the standard assumption of optically thin single temperature (T) sources, the dust SED as represented by a power-law-modified blackbody is subject to a strong degeneracy between T and the spectral index beta. The traditional non-hierarchical approaches, typically based on chi(2) minimization, are severely limited by this degeneracy, as it produces an artificial anti-correlation between T and beta even with modest levels of observational noise. The hierarchical Bayesian method rigorously and self-consistently treats measurement uncertainties, including calibration and noise, resulting in more precise SED fits. As a result, the Bayesian fits do not produce any spurious anti-correlations between the SED parameters due to measurement uncertainty. We demonstrate that the Bayesian method is substantially more accurate than the chi(2) fit in recovering the SED parameters, as well as the correlations between them. As an illustration, we apply our method to Herschel and submillimeter ground-based observations of the star-forming Bok globule CB244. This source is a small, nearby molecular cloud containing a single low-mass protostar and a starless core. We find that T and beta are weakly positively correlated-in contradiction with the chi(2) fits, which indicate a T-beta anti-correlation from the same data set. Additionally, in comparison to the chi(2) fits the Bayesian SED parameter estimates exhibit a reduced range in values. C1 [Kelly, Brandon C.; Goodman, Alyssa A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kelly, Brandon C.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Shetty, Rahul] Univ Heidelberg, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Stutz, Amelia M.; Launhardt, Ralf] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kauffmann, Jens] NASA JPL, Pasadena, CA 91109 USA. RP Kelly, BC (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Goodman, Alyssa/A-6007-2010; OI Goodman, Alyssa/0000-0003-1312-0477; Stutz, Amelia/0000-0003-2300-8200 FU National Science Foundation [AST-0908159]; NASA through Space Telescope Science Institute [HF-01220.01, HF-51243.01]; Southern California Center for Galaxy Evolution; University of California Office of Research; German Bundesministerium fur Bildung und Forschung via the ASTRONET project STAR FORMAT [05A09VHA]; NASA [NAS 5-26555]; The Milky Way System [SFB 881] FX We are grateful to Scott Schnee, David Hogg, Karin Sandstrom, Cornelis Dullemond, Chris Beaumont, Paul Clark, Ralf Klessen, Bruce Draine, Jonathan Foster, Xiao-Li Meng, Alexander Blocker, and Chris Hayward for useful discussions regarding dust emission and Bayesian inference. We are also grateful to an anonymous referee whose suggestions for additional tests helped improve the paper. This material is based upon work supported by the National Science Foundation under grant No. AST-0908159. B. K. acknowledges support by NASA through Hubble Fellowship grants HF-01220.01 and HF-51243.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and from the Southern California Center for Galaxy Evolution, a multi-campus research program funded by the University of California Office of Research. R.S. is supported by the German Bundesministerium fur Bildung und Forschung via the ASTRONET project STAR FORMAT (grant 05A09VHA), and the SFB 881 "The Milky Way System." NR 53 TC 57 Z9 57 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 55 DI 10.1088/0004-637X/752/1/55 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400055 ER PT J AU Lehmer, BD Xue, YQ Brandt, WN Alexander, DM Bauer, FE Brusa, M Comastri, A Gilli, R Hornschemeier, AE Luo, B Paolillo, M Ptak, A Shemmer, O Schneider, DP Tozzi, P Vignali, C AF Lehmer, B. D. Xue, Y. Q. Brandt, W. N. Alexander, D. M. Bauer, F. E. Brusa, M. Comastri, A. Gilli, R. Hornschemeier, A. E. Luo, B. Paolillo, M. Ptak, A. Shemmer, O. Schneider, D. P. Tozzi, P. Vignali, C. TI THE 4 Ms CHANDRA DEEP FIELD-SOUTH NUMBER COUNTS APPORTIONED BY SOURCE CLASS: PERVASIVE ACTIVE GALACTIC NUCLEI AND THE ASCENT OF NORMAL GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: active; galaxies: starburst; X-rays: galaxies ID X-RAY-EMISSION; STAR-FORMATION HISTORY; LUMINOUS INFRARED GALAXIES; LYMAN BREAK GALAXIES; SIMILAR-TO 1; XMM-NEWTON; SOURCE CATALOG; STELLAR-MASS; MULTIWAVELENGTH PROJECT; HIGH-REDSHIFT AB We present 0.5-2 keV, 2-8 keV, 4-8 keV, and 0.5-8 keV (hereafter soft, hard, ultra-hard, and full bands, respectively) cumulative and differential number-count (log N-log S) measurements for the recently completed approximate to 4 Ms Chandra Deep Field-South (CDF-S) survey, the deepest X-ray survey to date. We implement a new Bayesian approach, which allows reliable calculation of number counts down to flux limits that are factors of approximate to 1.9-4.3 times fainter than the previously deepest number-count investigations. In the soft band (SB), the most sensitive bandpass in our analysis, the approximate to 4 Ms CDF-S reaches a maximum source density of approximate to 27,800 deg(-2). By virtue of the exquisite X-ray and multiwavelength data available in the CDF-S, we are able to measure the number counts from a variety of source populations (active galactic nuclei (AGNs), normal galaxies, and Galactic stars) and subpopulations (as a function of redshift, AGN absorption, luminosity, and galaxy morphology) and test models that describe their evolution. We find that AGNs still dominate the X-ray number counts down to the faintest flux levels for all bands and reach a limiting SB source density of approximate to 14,900 deg(-2), the highest reliable AGN source density measured at any wavelength. We find that the normal-galaxy counts rise rapidly near the flux limits and, at the limiting SB flux, reach source densities of approximate to 12,700 deg(-2) and make up 46% +/- 5% of the total number counts. The rapid rise of the galaxy counts toward faint fluxes, as well as significant normal-galaxy contributions to the overall number counts, indicates that normal galaxies will overtake AGNs just below the approximate to 4 Ms SB flux limit and will provide a numerically significant new X-ray source population in future surveys that reach below the approximate to 4 Ms sensitivity limit. We show that a future approximate to 10 Ms CDF-S would allow for a significant increase in X-ray-detected sources, with many of the new sources being cosmologically distant (z greater than or similar to 0.6) normal galaxies. C1 [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.; Hornschemeier, A. E.; Ptak, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Xue, Y. Q.; Brandt, W. N.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Xue, Y. Q.; Brandt, W. N.; Schneider, D. P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Brusa, M.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Comastri, A.; Gilli, R.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Luo, B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Paolillo, M.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Shemmer, O.] Univ N Texas, Dept Phys, Denton, TX 76203 USA. [Tozzi, P.] INAF Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Vignali, C.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. RP Lehmer, BD (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. RI Paolillo, Maurizio/J-1733-2012; Vignali, Cristian/J-4974-2012; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; Gilli, Roberto/P-1110-2015; OI Paolillo, Maurizio/0000-0003-4210-7693; Vignali, Cristian/0000-0002-8853-9611; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Gilli, Roberto/0000-0001-8121-6177; Shemmer, Ohad/0000-0003-4327-1460; Alexander, David/0000-0002-5896-6313; Brusa, Marcella/0000-0002-5059-6848 FU Einstein Fellowship Program; CXC [SP1-12007A, SAO SP1-12007B]; NASA ADP [NNX10AC99G]; Science and Technology Facilities Council; Financiamento Basal; CONICYT-Chile FONDECYT [1101024]; FONDAP-CATA [15010003]; ASI-INAF [I/088/06, I/009/10/0] FX We thank the anonymous referee for reviewing the manuscript and providing useful suggestions. We thank Andy Fabian for useful discussions and acknowledge James Aird, Hermann Brunner, Fabrizio Fiore, Simonetta Puccetti, and Shaji Vattakunnel for sharing data; these contributions have helped the quality of this paper. We gratefully acknowledge financial support from the Einstein Fellowship Program (B.D.L.), CXC grant SP1-12007A and NASA ADP grant NNX10AC99G (Y.Q.X. and W.N.B.), the Science and Technology Facilities Council (D.M.A.), Financiamento Basal, CONICYT-Chile FONDECYT 1101024 and FONDAP-CATA 15010003, and CXC grant SAO SP1-12007B (F.E.B.), and ASI-INAF grants I/088/06 and I/009/10/0 (A.C., R.G., C.V.). NR 98 TC 84 Z9 84 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 46 DI 10.1088/0004-637X/752/1/46 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400046 ER PT J AU Melnick, GJ Tolls, V Goldsmith, PF Kaufman, MJ Hollenbach, DJ Black, JH Encrenaz, P Falgarone, E Gerin, M Hjalmarson, A Li, D Lis, DC Liseau, R Neufeld, DA Pagani, L Snell, RL van der Tak, F van Dishoeck, EF AF Melnick, Gary J. Tolls, Volker Goldsmith, Paul F. Kaufman, Michael J. Hollenbach, David J. Black, John H. Encrenaz, Pierre Falgarone, Edith Gerin, Maryvonne Hjalmarson, Ake Li, Di Lis, Dariusz C. Liseau, Rene Neufeld, David A. Pagani, Laurent Snell, Ronald L. van der Tak, Floris van Dishoeck, Ewine F. TI HERSCHEL SEARCH FOR O-2 TOWARD THE ORION BAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: abundances; ISM: individual objects (Orion); ISM: molecules; submillimeter: ISM ID SUBMILLIMETER OBSERVATIONS; MOLECULAR CLOUDS; WATER ICE; INTERSTELLAR CHLORONIUM; THERMAL BALANCE; CHEMICAL-MODELS; PHOTODESORPTION; EMISSION; MILLIMETER; REGION AB We report the results of a search for molecular oxygen (O-2) toward the Orion Bar, a prominent photodissociation region at the southern edge of the HII region created by the luminous Trapezium stars. We observed the spectral region around the frequency of the O-2 N-J = 3(3)-1(2) transition at 487 GHz and the 5(4)-3(4) transition at 774 GHz using the Heterodyne Instrument for the Far-Infrared on the Herschel Space Observatory. Neither line was detected, but the 3 sigma upper limits established here translate to a total line-of-sight O-2 column density <1.5 x 10(16) cm(-2) for an emitting region whose temperature is between 30 K and 250 K, or <1 x 10(16) cm(-2) if the O-2 emitting region is primarily at a temperature of less than or similar to 100 K. Because the Orion Bar is oriented nearly edge-on relative to our line of sight, the observed column density is enhanced by a factor estimated to be between 4 and 20 relative to the face-on value. Our upper limits imply that the face-on O-2 column density is less than 4 x 10(15) cm(-2), a value that is below, and possibly well below, model predictions for gas with a density of 10(4)-10(5) cm-(3) exposed to a far-ultraviolet flux 10(4) times the local value, conditions inferred from previous observations of the Orion Bar. The discrepancy might be resolved if (1) the adsorption energy of O atoms to ice is greater than 800 K; (2) the total face-on AV of the Bar is less than required for O-2 to reach peak abundance; (3) the O-2 emission arises within dense clumps with a small beam filling factor; or (4) the face-on depth into the Bar where O-2 reaches its peak abundance, which is density dependent, corresponds to a sky position different from that sampled by our Herschel beams. C1 [Melnick, Gary J.; Tolls, Volker] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Goldsmith, Paul F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kaufman, Michael J.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Hollenbach, David J.] SETI Inst, Mountain View, CA 94043 USA. [Black, John H.; Hjalmarson, Ake; Liseau, Rene] Chalmers, Dept Earth & Space Sci, Onsala Space Observ, SE-43992 Onsala, Sweden. [Encrenaz, Pierre; Pagani, Laurent] Observ Paris, LERMA, F-75014 Paris, France. [Encrenaz, Pierre; Pagani, Laurent] Observ Paris, CNRS, UMR8112, LRA LERMA, F-75014 Paris, France. [Falgarone, Edith; Gerin, Maryvonne] Observ Paris, CNRS, UMR8112, LRA LERMA, F-75231 Paris 05, France. [Falgarone, Edith; Gerin, Maryvonne] Ecole Normale Super, F-75231 Paris 05, France. [Li, Di] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Lis, Dariusz C.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Neufeld, David A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Snell, Ronald L.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [van der Tak, Floris] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van der Tak, Floris] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands. [van Dishoeck, Ewine F.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, Ewine F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Melnick, GJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 66, Cambridge, MA 02138 USA. RI Goldsmith, Paul/H-3159-2016 FU NASA through JPL/Caltech FX Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 46 TC 19 Z9 19 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 26 DI 10.1088/0004-637X/752/1/26 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400026 ER PT J AU Rappaport, S Levine, A Chiang, E El Mellah, I Jenkins, J Kalomeni, B Kite, ES Kotson, M Nelson, L Rousseau-Nepton, L Tran, K AF Rappaport, S. Levine, A. Chiang, E. El Mellah, I. Jenkins, J. Kalomeni, B. Kite, E. S. Kotson, M. Nelson, L. Rousseau-Nepton, L. Tran, K. TI POSSIBLE DISINTEGRATING SHORT-PERIOD SUPER-MERCURY ORBITING KIC 12557548 SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; occultations; planetary systems; planets and satellites: general ID EXTRASOLAR PLANETS; TERRESTRIAL PLANETS; ATMOSPHERIC ESCAPE; MANTLE CONVECTION; HOT JUPITERS; MASS-LOSS; STARS; EARTHS; CANDIDATES; EVOLUTION AB We report on the discovery of stellar occultations, observed with Kepler, which recur periodically at 15.685 hr intervals, but which vary in depth from a maximum of 1.3% to a minimum that can be less than 0.2%. The star that is apparently being occulted is KIC 12557548, a V = 16 mag K dwarf with T-eff,T-s similar or equal to 4400 K. The out-of-occultation behavior shows no evidence for ellipsoidal light variations, indicating that the mass of the orbiting object is less than similar to 3 M-J (for an orbital period of 15.7 hr). Because the eclipse depths are highly variable, they cannot be due solely to transits of a single planet with a fixed size. We discuss but dismiss a scenario involving a binary giant planet whose mutual orbit plane precesses, bringing one of the planets into and out of a grazing transit. This scenario seems ruled out by the dynamical instability that would result from such a configuration. We also briefly consider an eclipsing binary, possibly containing an accretion disk, that either orbits KIC 12557548 in a hierarchical triple configuration or is nearby on the sky, but we find such a scenario inadequate to reproduce the observations. The much more likely explanation-but one which still requires more quantitative development-involves macroscopic particles escaping the atmosphere of a slowly disintegrating planet not much larger than Mercury in size. The particles could take the form of micron-sized pyroxene or aluminum oxide dust grains. The planetary surface is hot enough to sublimate and create a high-Z atmosphere; this atmosphere may be loaded with dust via cloud condensation or explosive volcanism. Atmospheric gas escapes the planet via a Parker-type thermal wind, dragging dust grains with it. We infer a mass-loss rate from the observations of order 1 M-circle plus Gyr(-1), with a dust-to-gas ratio possibly of order unity. For our fiducial 0.1 M-circle plus planet (twice the mass of Mercury), the evaporation timescale may be similar to 0.2 Gyr. Smaller mass planets are disfavored because they evaporate still more quickly, as are larger mass planets because they have surface gravities too strong to sustain outflows with the requisite mass-loss rates. The occultation profile evinces an ingress-egress asymmetry that could reflect a comet-like dust tail trailing the planet; we present simulations of such a tail. C1 [Rappaport, S.; El Mellah, I.; Kotson, M.; Tran, K.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Levine, A.; Kalomeni, B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Chiang, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Chiang, E.; Kite, E. S.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [El Mellah, I.] ENS Cachan, F-94235 Cachan, France. [Jenkins, J.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kalomeni, B.] Univ Ege, Dept Astron & Space Sci, TR-35100 Bornova, Turkey. [Kalomeni, B.] Izmir Inst Technol, Dept Phys, Izmir, Turkey. [Kite, E. S.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Nelson, L.] Bishops Univ, Dept Phys, Sherbrooke, PQ J1M 1Z7, Canada. [Rousseau-Nepton, L.] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ G1K 7P4, Canada. RP Rappaport, S (reprint author), MIT, Dept Phys, 37-602B,70 Vassar St, Cambridge, MA 02139 USA. EM sar@mit.edu; aml@space.mit.edu; echiang@astro.berkeley.edu; ielmelah@ens-cachan.fr; Jon.M.Jenkins@nasa.gov; belinda.kalomeni@ege.edu.tr; ekite@caltech.edu; lnelson@ubishops.ca; laurie.r-nepton.1@ulaval.ca FU National Science Foundation; Natural Sciences and Engineering Research Council (NSERC) of Canada; Turkish Council of Higher Education FX We thank the anonymous referee for an encouraging and incisive report that motivated us to consider volcanic activity and to examine more quantitatively the ability of the atmosphere to entrain solids; Raymond Jeanloz and Michael Manga for instructive exchanges about vaporizing silicates and volcano ejecta speeds; Josh Carter for discussions about data validations and the viability of a dynamically stable binary planet; Ruth Murray-Clay for input about thermal winds; Robert Szabo for information about properties of RR Lyrae stars; and Bryce Croll, Dan Fabrycky, Ron Gilliland, Meredith Hughes, John Johnson, Heather Knutson, Tim Morton, Margaret Pan, Erik Petigura, and Josh Winn for stimulating discussions about follow-up observations. We consulted with Ron Remillard, Rob Simcoe, and Adam Burgasser about spectral classifications. We also thank Robert Lamontagne and the staff at the Observatoire Astronomique du Mont-Megantic for their assistance. E. C. is grateful for support from the National Science Foundation, and for useful and encouraging feedback from participants of the Berkeley Planet and Star Formation Seminar, including Ryan O'Leary and Geoff Marcy who shared their own analyses of the Kepler data on KIC 12557548. L.N. thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support. B. K. is grateful to the MIT Kavli Institute for Astrophysics and Space Research for the hospitality they extended during her visit and the support provided by the Turkish Council of Higher Education. NR 55 TC 73 Z9 73 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 1 DI 10.1088/0004-637X/752/1/1 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400001 ER PT J AU Rodigas, TJ Hinz, PM Leisenring, J Vaitheeswaran, V Skemer, AJ Skrutskie, M Su, KYL Bailey, V Schneider, G Close, L Mannucci, F Esposito, S Arcidiacono, C Pinna, E Argomedo, J Agapito, G Apai, D Bono, G Boutsia, K Briguglio, R Brusa, G Busoni, L Cresci, G Currie, T Desidera, S Eisner, J Falomo, R Fini, L Follette, K Fontana, A Garnavich, P Gratton, R Green, R Guerra, JC Hill, JM Hoffmann, WF Jones, TJ Krejny, M Kulesa, C Males, J Masciadri, E Mesa, D McCarthy, D Meyer, M Miller, D Nelson, MJ Puglisi, A Quiros-Pacheco, F Riccardi, A Sani, E Stefanini, P Testa, V Wilson, J Woodward, CE Xompero, M AF Rodigas, Timothy J. Hinz, Philip M. Leisenring, Jarron Vaitheeswaran, Vidhya Skemer, Andrew J. Skrutskie, Michael Su, Kate Y. L. Bailey, Vanessa Schneider, Glenn Close, Laird Mannucci, Filippo Esposito, Simone Arcidiacono, Carmelo Pinna, Enrico Argomedo, Javier Agapito, Guido Apai, Daniel Bono, Giuseppe Boutsia, Kostantina Briguglio, Runa Brusa, Guido Busoni, Lorenzo Cresci, Giovanni Currie, Thayne Desidera, Silvano Eisner, Josh Falomo, Renato Fini, Luca Follette, Kate Fontana, Adriano Garnavich, Peter Gratton, Raffaele Green, Richard Guerra, Juan Carlos Hill, J. M. Hoffmann, William F. Jones, Terry J. Krejny, Megan Kulesa, Craig Males, Jared Masciadri, Elena Mesa, Dino McCarthy, Don Meyer, Michael Miller, Doug Nelson, Matthew J. Puglisi, Alfio Quiros-Pacheco, Fernando Riccardi, Armando Sani, Eleonora Stefanini, Paolo Testa, Vincenzo Wilson, John Woodward, Charles E. Xompero, Marco TI THE GRAY NEEDLE: LARGE GRAINS IN THE HD 15115 DEBRIS DISK FROM LBT/PISCES/Ks AND LBTI/LMIRcam/L ' ADAPTIVE OPTICS IMAGING SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; instrumentation: adaptive optics; planetary systems; stars: individual (HD 15115); techniques: high angular resolution ID ORBITING HR 8799; CIRCUMSTELLAR DISK; SCATTERED-LIGHT; SPACE-TELESCOPE; AU MICROSCOPII; BROWN DWARFS; PLANETS; SYSTEM; DUST; IMAGES AB We present diffraction-limited Ks band and L' adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At the Ks band, the disk is detected at signal-to-noise per resolution element (SNRE) similar to 3-8 from similar to 1 to 2 ''.5 (45-113 AU) on the western side and from similar to 1 ''.2 to 2 ''.1 (63-90 AU) on the east. At L' the disk is detected at SNRE similar to 2.5 from similar to 1 to 1 ''.45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 mu m. At both wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at the Ks band, but not at L'. The surface brightness at the Ks band declines inside 1 ''(similar to 45 AU), which may be indicative of a gap in the disk near 1 ''. The Ks - L' disk color, after removal of the stellar color, is mostly gray for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 mu m sized grains on the east side and 1-10 mu m dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium. C1 [Rodigas, Timothy J.; Hinz, Philip M.; Vaitheeswaran, Vidhya; Skemer, Andrew J.; Su, Kate Y. L.; Bailey, Vanessa; Schneider, Glenn; Close, Laird; Apai, Daniel; Eisner, Josh; Follette, Kate; Hoffmann, William F.; Kulesa, Craig; Males, Jared; McCarthy, Don] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Leisenring, Jarron; Skrutskie, Michael; Nelson, Matthew J.; Wilson, John] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Leisenring, Jarron; Meyer, Michael] ETH Zrich, Inst Astron, CH-8093 Zurich, Switzerland. [Mannucci, Filippo; Esposito, Simone; Arcidiacono, Carmelo; Pinna, Enrico; Argomedo, Javier; Agapito, Guido; Bono, Giuseppe; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Cresci, Giovanni; Fini, Luca; Fontana, Adriano; Masciadri, Elena; Puglisi, Alfio; Quiros-Pacheco, Fernando; Riccardi, Armando; Sani, Eleonora; Stefanini, Paolo; Testa, Vincenzo; Xompero, Marco] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Boutsia, Kostantina; Fontana, Adriano] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Boutsia, Kostantina; Desidera, Silvano; Falomo, Renato; Gratton, Raffaele; Mesa, Dino] Astron Observ Padova, INAF, I-35122 Padua, Italy. [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Garnavich, Peter] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Green, Richard; Guerra, Juan Carlos; Hill, J. M.; Miller, Doug] Univ Arizona, LBT Observ, Tucson, AZ 85721 USA. [Jones, Terry J.; Krejny, Megan; Woodward, Charles E.] Univ Minnesota, Inst Astrophys, Minneapolis, MN 55455 USA. RP Rodigas, TJ (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM rodigas@as.arizona.edu OI Desidera, Silvano/0000-0001-8613-2589; Pinna, Enrico/0000-0002-6243-5697; Skemer, Andrew/0000-0001-6098-3924; Rodigas, Timothy/0000-0002-7535-2997; Cresci, Giovanni/0000-0002-5281-1417; Su, Kate/0000-0002-3532-5580; fontana, adriano/0000-0003-3820-2823; Testa, Vincenzo/0000-0003-1033-1340; Riccardi, Armando/0000-0001-5460-2929; Busoni, Lorenzo/0000-0002-2074-0458; Arcidiacono, Carmelo/0000-0003-0142-8108; Bailey, Vanessa/0000-0002-5407-2806; Gratton, Raffaele/0000-0003-2195-6805 FU National Science Foundation [NSF AST-0705296]; NASA Earth and Space Science Graduate Fellowship FX We thank Piero Salinari for his insight, leadership, and persistence which made the development of the LBT adaptive secondaries possible. We thank the LBTO staff and telescope operators for their hard work facilitating use of the telescope and instruments. We are grateful to Elliott Solheid, the lead mechanical engineer on the PISCES project. Roland Sarlot and Andrew Rakich provided support in the PISCES optical design and engineering, respectively. We acknowledge support for LMIRcam from the National Science Foundation under grant NSF AST-0705296. We thank A. K. Inoue and M. Honda for sharing their disk modeling data and for helpful discussions. We thank John Debes, the referee, for helpful discussions and for his careful review of the manuscript. T.J.R. acknowledges support from the NASA Earth and Space Science Graduate Fellowship. NR 42 TC 38 Z9 38 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 57 DI 10.1088/0004-637X/752/1/57 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400057 ER PT J AU Rouillard, AP Sheeley, NR Tylka, A Vourlidas, A Ng, CK Rakowski, C Cohen, CMS Mewaldt, RA Mason, GM Reames, D Savani, NP StCyr, OC Szabo, A AF Rouillard, A. P. Sheeley, N. R., Jr. Tylka, A. Vourlidas, A. Ng, C. K. Rakowski, C. Cohen, C. M. S. Mewaldt, R. A. Mason, G. M. Reames, D. Savani, N. P. StCyr, O. C. Szabo, A. TI THE LONGITUDINAL PROPERTIES OF A SOLAR ENERGETIC PARTICLE EVENT INVESTIGATED USING MODERN SOLAR IMAGING SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; shock waves; Sun: coronal mass ejections (CMEs); Sun: radio radiation ID CORONAL MASS EJECTION; GROUND-LEVEL EVENTS; INTERPLANETARY SHOCKS; LASCO OBSERVATIONS; ELECTRON EVENTS; EIT WAVES; MORETON WAVES; RELEASE TIMES; HIGH-ENERGIES; ONSET TIMES AB We use combined high-cadence, high-resolution, and multi-point imaging by the Solar-Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory to investigate the hour-long eruption of a fast and wide coronal mass ejection (CME) on 2011 March 21 when the twin STEREO spacecraft were located beyond the solar limbs. We analyze the relation between the eruption of the CME, the evolution of an Extreme Ultraviolet (EUV) wave, and the onset of a solar energetic particle (SEP) event measured in situ by the STEREO and near-Earth orbiting spacecraft. Combined ultraviolet and white-light images of the lower corona reveal that in an initial CME lateral "expansion phase," the EUV disturbance tracks the laterally expanding flanks of the CME, both moving parallel to the solar surface with speeds of similar to 450 km s(-1). When the lateral expansion of the ejecta ceases, the EUV disturbance carries on propagating parallel to the solar surface but devolves rapidly into a less coherent structure. Multi-point tracking of the CME leading edge and the effects of the launched compression waves (e.g., pushed streamers) give anti-sunward speeds that initially exceed 900 km s(-1) at all measured position angles. We combine our analysis of ultraviolet and white-light images with a comprehensive study of the velocity dispersion of energetic particles measured in situ by particle detectors located at STEREO-A (STA) and first Lagrange point (L1), to demonstrate that the delayed solar particle release times at STA and L1 are consistent with the time required (30-40 minutes) for the CME to perturb the corona over a wide range of longitudes. This study finds an association between the longitudinal extent of the perturbed corona (in EUV and white light) and the longitudinal extent of the SEP event in the heliosphere. C1 [Rouillard, A. P.] Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France. [Rouillard, A. P.] CNRS, UMR 5187, Toulouse, France. [Rouillard, A. P.; Ng, C. K.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Sheeley, N. R., Jr.; Tylka, A.; Vourlidas, A.; Rakowski, C.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Ng, C. K.; StCyr, O. C.; Szabo, A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Cohen, C. M. S.; Mewaldt, R. A.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Mason, G. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Reames, D.] Univ Maryland, Inst Phys Sci & Technol, Greenbelt, MD 20742 USA. [Savani, N. P.] Univ Corp Atmospher Res, Boulder, CO 80307 USA. RP Rouillard, AP (reprint author), Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France. RI Savani, Neel/G-4066-2014; Tylka, Allan/G-9592-2014; Vourlidas, Angelos/C-8231-2009 OI Savani, Neel/0000-0002-1916-7877; Vourlidas, Angelos/0000-0002-8164-5948 FU NASA [NNX08AI11G, NNX11AD40G-45527, NNXIOAT06G, NNX09AU98G, NMX07AN45G, NNH09AK79I]; Caltech [SA2715-26309]; NASA (UC Berkeley) [NAS5-0313]; NASA from University of Berkeley (STEREO SIT) [SA4889-26309]; Office of Naval Research FX We thank Dennis Haggerty for providing the EPAM ion data plotted in Figure 13. We thank Dr. Valtonen for making the ERNE data available online. The SECCHI images were obtained from the World Data Center, Chilton, UK and the Naval Research Laboratory, Washington, DC, USA. We thank Yi-Ming Wang and Judith Lean for their continual support. We also acknowledge constructive exchanges with Ed Cliver and Raul Gomez Herrero. The STEREO SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). The ACE data were obtained from the ACE science center. The Wind data were obtained from the Space Physics Data Facility. The work of C.M.S.C. and R.A.M. on ACE data was partly funded by the NASA contract NNX08AI11G. The Caltech subcontract SA2715-26309 was funded with NASA contract NAS5-0313 (UC Berkeley). The work of A. P. R. was partly funded by NASA contracts NNX11AD40G-45527 and NNXIOAT06G and that of C.K.N. was partially supported by NASA grant NNX09AU98G. NASA contract SA4889-26309 from University of Berkeley (STEREO SIT) and NASA grant NMX07AN45G permitted the preparation and calibration of the ULEIS and SIT data. A.J.T. was supported in part by NASA grant NNH09AK79I. The NRL employees acknowledge support from the Office of Naval Research and NASA. NR 85 TC 63 Z9 63 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2012 VL 752 IS 1 AR 44 DI 10.1088/0004-637X/752/1/44 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 961KN UT WOS:000305463400044 ER PT J AU Giacomazzo, B Baker, JG Miller, MC Reynolds, CS van Meter, JR AF Giacomazzo, Bruno Baker, John G. Miller, M. Coleman Reynolds, Christopher S. van Meter, James R. TI GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; gravitational waves; magnetohydrodynamics (MHD); methods: numerical ID ELECTROMAGNETIC COUNTERPARTS; NUMERICAL RELATIVITY; NEUTRON-STARS; MASS-LOSS; MERGERS; BINARY; MAGNETOHYDRODYNAMICS; ACCRETION; AFTERGLOW; DISKS AB Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of similar to 2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10(4) larger than comparable calculations done in the force-free regime where such amplifications are not possible. C1 [Giacomazzo, Bruno] Univ Colorado, JILA, Boulder, CO 80309 USA. [Giacomazzo, Bruno] NIST, Boulder, CO 80309 USA. [Giacomazzo, Bruno; Miller, M. Coleman; Reynolds, Christopher S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giacomazzo, Bruno; Baker, John G.; van Meter, James R.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 21114 USA. [Miller, M. Coleman; Reynolds, Christopher S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. RP Giacomazzo, B (reprint author), Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA. RI Giacomazzo, Bruno/I-8088-2012 OI Giacomazzo, Bruno/0000-0002-6947-4023 FU NASA through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; XSEDE [TG-PHY110027]; NASA [NNX09AI75G, 09-ATP09-0136]; NSF [AST 1009396] FX We thank Phil Armitage, Tamara Bogdanovic, Bernard Kelly, Krzysztof Nalewajko, Carlos Palenzuela, Luciano Rezzolla, Jeremy Schnittman, and Roman Shcherbakov for useful comments and suggestions. We also thank Philip Cowperthwaite for help in visualizing some of the numerical data. Resources supporting this work were provided by the NASA High-End Computing (HEC) program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center and NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Numerical simulations were also performed on the cluster RANGER at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin through XSEDE grant No. TG-PHY110027. B.G. acknowledges support from NASA grant No. NNX09AI75G and NSF grant No. AST 1009396. J.B. and J.v.M. acknowledge support from NASA grant 09-ATP09-0136. NR 49 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2012 VL 752 IS 1 AR L15 DI 10.1088/2041-8205/752//L15 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 948FL UT WOS:000304488900015 ER PT J AU Meyer, ET Fossati, G Georganopoulos, M Lister, ML AF Meyer, Eileen T. Fossati, Giovanni Georganopoulos, Markos Lister, Matthew L. TI COLLECTIVE EVIDENCE FOR INVERSE COMPTON EMISSION FROM EXTERNAL PHOTONS IN HIGH-POWER BLAZARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; quasars: general; radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; ENERGY GAMMA-RADIATION; SPECTRUM RADIO QUASARS; LARGE-AREA TELESCOPE; BL LACERTAE OBJECTS; RAY BRIGHT BLAZARS; BASE-LINE ARRAY; RELATIVISTIC JET; KINEMATICS; UNIFICATION AB We present the first collective evidence that Fermi-detected jets of high kinetic power (L-kin) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L-kin > 10(45.5) erg s(-1)) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self-Compton (SSC) emission. For the lowest power jets (L-kin < 10(43.5) erg s(-1)), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets. C1 [Meyer, Eileen T.; Fossati, Giovanni] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Georganopoulos, Markos] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Dept Phys, Baltimore, MD 21250 USA. [Georganopoulos, Markos] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lister, Matthew L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. RP Meyer, ET (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. FU NASA [NNX11AO15G, NNX10AO42G, NNX09AR04G, NNX06AE92G, NNX08AG77G, NNX12AF01G]; National Science Foundation [0807860-AST] FX E.M. and G.F. acknowledge support from NASA Fermi grants NNX11AO15G and NNX10AO42G, Swift grant NNX09AR04G, and XMM grant NNX06AE92G. M.G. acknowledges support from NASA ATFP grant NNX08AG77G and Fermi grant NNX12AF01G. M.L. and the MOJAVE project is supported under National Science Foundation grant 0807860-AST. NR 37 TC 17 Z9 18 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2012 VL 752 IS 1 AR L4 DI 10.1088/2041-8205/752/1/L4 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 948FL UT WOS:000304488900004 ER PT J AU Walter, D Heue, KP Rauthe-Schoch, A Brenninkmeijer, CAM Lamsal, LN Krotkov, NA Platt, U AF Walter, D. Heue, K. -P. Rauthe-Schoech, A. Brenninkmeijer, C. A. M. Lamsal, L. N. Krotkov, N. A. Platt, U. TI Flux calculation using CARIBIC DOAS aircraft measurements: SO2 emission of Norilsk SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DIFFERENTIAL OPTICAL-ABSORPTION; GAS-PHASE REACTIONS; ATMOSPHERIC CHEMISTRY; PHOTOCHEMICAL DATA; CROSS-SECTIONS; NM REGION; SULFUR; OZONE; SPECTROSCOPY; PLUMES AB Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities. C1 [Walter, D.; Heue, K. -P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.] Max Planck Inst Chem, DE-55128 Mainz, Germany. [Walter, D.; Platt, U.] Heidelberg Univ, Inst Environm Phys, Heidelberg, Germany. [Lamsal, L. N.; Krotkov, N. A.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Lamsal, L. N.] Univ Space Res Assoc, Columbia, MD USA. RP Walter, D (reprint author), Max Planck Inst Chem, Hahn Meitner Weg 1, DE-55128 Mainz, Germany. EM david.walter@mpic.de RI Lamsal, Lok/G-4781-2012; Brenninkmeijer, Carl/B-6860-2013; Rauthe-Schoch, Armin/C-8208-2011; Krotkov, Nickolay/E-1541-2012; OI Rauthe-Schoch, Armin/0000-0001-5738-8112; Krotkov, Nickolay/0000-0001-6170-6750; Heue, Klaus-Peter/0000-0001-8823-7712 FU Lufthansa Airlines; Lufthansa Technik; German Ministry of Education and Science (AFO); European Commission's DGXII Environment RTD; Max Planck Society; Frankfurt Airport FX The authors thank Lufthansa Airlines and Lufthansa Technik for their commitment and support, especially Andreas Waibel and Thomas Dauer. We would also like to thank Angela Baker and all members of the CARIBIC team. Further thanks go to the MPI-C satellite group, especially Christoph Hormann and Steffen Dorner for the support concerning the wind data, which were kindly provided by ECMWF (http://www.ecmwf.int). The DOAS system was built and operated by the Institut fur Umweltphysik of the Universitat Heidelberg. The development and operation of the CARIBIC system has been financially supported by the German Ministry of Education and Science (AFO 2000), by the European Commission's DGXII Environment RTD 4th, 5th and 6th Framework programs, by the Max Planck Society and Frankfurt Airport. Data are available upon request; please visit http://www.caribic-atmospheric.com/ for more information. The service charges for this publication have been covered by the Max Planck Society. NR 46 TC 16 Z9 16 U1 3 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 8 PY 2012 VL 117 AR D11305 DI 10.1029/2011JD017335 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GM UT WOS:000305147900003 ER PT J AU Stefanescu, ER Bursik, M Cordoba, G Dalbey, K Jones, MD Patra, AK Pieri, DC Pitman, EB Sheridan, MF AF Stefanescu, E. R. Bursik, M. Cordoba, G. Dalbey, K. Jones, M. D. Patra, A. K. Pieri, D. C. Pitman, E. B. Sheridan, M. F. TI Digital elevation model uncertainty and hazard analysis using a geophysical flow model SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE digital elevation model uncertainty; modelling; digital elevation model realizations ID GALERAS VOLCANO; COMPUTER-MODELS; VARIABLES; COLOMBIA; ERROR; SIMULATION; COMPLEX; VALLEY; CODE AB This paper describes a new methodology to quantify the variation in the output of a computational fluid dynamics model for block and ash flows, when the digital elevation model (DEM) of the terrain and other inputs are given as a range of possible values with a prescribed uncertainty. Integrating these variations in the possible flows as a function of input uncertainties provides well-defined hazard probabilities at specific locations, i.e. a hazard map. Earlier work provided a methodology for assessing hazards based on variations in flow initiation and friction parameters. This paper extends this approach to include the effect of terrain error and uncertainty. The results are based on potential flows at Mammoth Mountain, CA, and Galeras Volcano, Colombia. The analysis establishes the soundness of the approach and the effect of including the uncertainty in DEMs in the construction of probabilistic hazard maps. C1 [Stefanescu, E. R.; Patra, A. K.; Pitman, E. B.] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA. [Bursik, M.; Sheridan, M. F.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Jones, M. D.] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14260 USA. [Cordoba, G.] Univ Narino, Dept Civil Engn, Narino, Colombia. [Dalbey, K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Pieri, D. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stefanescu, ER (reprint author), SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA. EM ers32@buffalo.edu OI Cordoba, Gustavo/0000-0002-1104-0249 FU NASA [NNX08AF75G] FX This work was supported by NASA grant NNX08AF75G. The work and opinions expressed herein are those of the authors alone and do not reflect the opinion of NASA. We are grateful to JPL for the construction and distribution of the TOPSAR dataset. NR 52 TC 5 Z9 5 U1 0 U2 9 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD JUN 8 PY 2012 VL 468 IS 2142 BP 1543 EP 1563 DI 10.1098/rspa.2011.0711 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 932SQ UT WOS:000303311200002 ER PT J AU Guzman, MI Athalye, RR Rodriguez, JM AF Guzman, Marcelo I. Athalye, Richa R. Rodriguez, Jose M. TI Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GENERATION VIBRATIONAL SPECTROSCOPY; AIR/WATER INTERFACE; ARTIFICIAL SEAWATER; ARCTIC ATMOSPHERE; WATER MIXTURES; OZONE; SURFACE; ADSORPTION; CHEMISTRY; HALOGENS AB During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f(x)-) and their correlation with ion properties. Although no correlation exists between f(x)- and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R-x-, dehydration free-energy Delta G(dehyd), and polarizability alpha, follows the order: R-x-(-2) > R-x-(-1) > R-x- > Delta G(dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f(x)- does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol- and ethanol-water mixtures (0 <= x(H2O) <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation. C1 [Guzman, Marcelo I.; Athalye, Richa R.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Rodriguez, Jose M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guzman, MI (reprint author), Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. EM marcelo.guzman@uky.edu RI Guzman, Marcelo/C-5966-2008; Rodriguez, Jose/G-3751-2013 OI Guzman, Marcelo/0000-0002-6730-7766; Rodriguez, Jose/0000-0002-1902-4649 FU University of Kentucky FX We thank research funding from the University of Kentucky. NR 47 TC 10 Z9 10 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 7 PY 2012 VL 116 IS 22 BP 5428 EP 5435 DI 10.1021/jp3011316 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 953QW UT WOS:000304888300018 PM 22591185 ER PT J AU Ehlmann, BL Mustard, JF AF Ehlmann, Bethany L. Mustard, John F. TI An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NILI FOSSAE REGION; MERIDIANI-PLANUM; DEPOSITS; OLIVINE; IDENTIFICATION; CONSTRAINTS; EVOLUTION; MINERALS; JAROSITE AB The Noachian-Hesperian transition on Mars was a period marked by changes in volcanic processes and styles of aqueous alteration. Understanding the timing and nature of environmental change requires the exploration of units recording both sets of processes. Herein, we report the compositional stratigraphy of distinctive Noachian to Hesperian units along the northeastern margin of the Syrtis Major volcanic flows. A layered, polyhydrated sulfate-bearing unit with jarosite ridges has been discovered beneath the Syrtis Major lava flows and above the regionally-extensive stratigraphy of Noachian plains units reported previously. Sequential clay-, carbonate-, and sulfate-bearing units formed in-situ and record a transition from alkaline pH to acidic pH waters. The sequence is chronologically bookended by the Isidis impact and Syrtis Major flows, and is one of the most temporally-constrained and well-preserved stratigraphic sections from early Mars available for landed exploration. Citation: Ehlmann, B. L., and J. F. Mustard (2012), An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major, Geophys. Res. Lett., 39, L11202, doi: 10.1029/2012GL051594. C1 [Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mustard, John F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. RP Ehlmann, BL (reprint author), CALTECH, Div Geol & Planetary Sci, MC 170-25,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM ehlmann@caltech.edu NR 45 TC 18 Z9 18 U1 4 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 6 PY 2012 VL 39 AR L11202 DI 10.1029/2012GL051594 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 957FQ UT WOS:000305145300001 ER PT J AU Noel, V Pitts, M AF Noel, V. Pitts, M. TI Gravity wave events from mesoscale simulations, compared to polar stratospheric clouds observed from spaceborne lidar over the Antarctic Peninsula SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WATER-VAPOR; ICE; CALIPSO; TEMPERATURES; PRESSURE; LIFETIME; IMPACT; SEASON AB We compare Gravity Waves (GW) and Polar Stratospheric Clouds (PSC) above the Antarctic Peninsula for winters (June to September) between 2006 and 2010. GW activity is inferred from stratospheric temperature and vertical winds from the Weather and Research Forecast mesoscale model (WRF), and documented as a function of time and geography for the studied period. Significant GW activity affects 36% of days and follows the Peninsula orography closely. Volumes of PSC, composed of ice and Nitric Acid Trihydrate (NAT), are retrieved using observations from the spaceborne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). They are documented against GW activity as a function of time and longitude. Sixty-three percent of ice PSC are observed during GW events, when the average volume of PSC per profile doubles. Maximum ice PSC volumes are seen directly over the Peninsula (65 degrees W), while maximum NAT PSC volumes appear downstream further East (similar to 35 degrees W). Effects of GW events on NAT PSC are felt as far East as 40 degrees E. Our results support the importance of gravity waves as a major mechanism driving the evolution of ice PSC in the area, but the effects on NAT PSC are harder to detect. After a GW event ends, volumes of ice PSC get back to their usual levels in less than 24 h, while this process takes more than 48 h for NAT PSC. Daily profiles of H2O and HNO3 mixing ratios, retrieved from MLS observations, are used to derive ice and NAT frost points with altitude and time. Combining these frost points with modeled stratospheric temperatures, the volumes of air able to support ice and NAT crystals are quantified and compared with PSC volumes. Correlation is high for ice crystals, but not for NAT, consistent with their much slower nucleation mechanisms. Observations of ice PSC over the domain are followed by a strong increase (+50-100%) in NAT PSC formation efficiency 2 to 6 h later. This increase is followed by a steep drop (6-10 h later) and a longer period of slow decline (10-24 h later), at the end of which the NAT PSC formation efficiency is less than half its initial value. The fact that these effects tend to cancel each other out, coupled to the important lag in NAT PSC reaction to GW activity, suggest why it is especially difficult to quantify how GW activity impacts NAT PSC cover. C1 [Noel, V.] Ecole Polytech, Meteorol Dynam Lab, CNRS, IPSL, FR-91128 Palaiseau, France. [Pitts, M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Noel, V (reprint author), Ecole Polytech, Meteorol Dynam Lab, CNRS, IPSL, FR-91128 Palaiseau, France. EM vincent.noel@lmd.polytechnique.fr RI Noel, Vincent/C-3702-2013 OI Noel, Vincent/0000-0001-9494-0340 NR 41 TC 7 Z9 8 U1 3 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 6 PY 2012 VL 117 AR D11207 DI 10.1029/2011JD017318 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GH UT WOS:000305147400002 ER PT J AU Zhu, P Dudhia, J Field, PR Wapler, K Fridlind, A Varble, A Zipser, E Petch, J Chen, M Zhu, ZD AF Zhu, Ping Dudhia, Jim Field, Paul R. Wapler, Kathrin Fridlind, Ann Varble, Adam Zipser, Ed Petch, Jon Chen, Ming Zhu, Zhenduo TI A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PART I; SCHEME; PARAMETERIZATION; PRECIPITATION; IMPLEMENTATION; REPRESENTATION; MICROPHYSICS; SENSITIVITY; ATMOSPHERE; FORECASTS AB A limited area model (LAM) intercomparison study is conducted based on a tropical monsoonal deep convection case observed during the Tropical Warm Pool - International Cloud Experiment (TWP-ICE). The LAM simulations are compared with the variational analyses (VA) based on the Atmospheric Radiation Measurement (ARM) observations and the cloud resolving model (CRM) simulations forced by the VA. Driven by the ECMWF analyses or global model forecasts, LAMs are able to produce the large-scale thermodynamic field reasonably well compared with the VA. However, the LAM simulated dynamic fields, such as the large-scale horizontal divergence, vertical velocity, and cyclogenesis in the monsoonal trough, have a large inter-model spread and deviate substantially from observations. Despite the differences in large-scale forcing, there is certain consistency between the CRM and LAM simulations: stratiform (w <= 1 m s(-1)) ice clouds dominate the cloud fraction and convective (w > 3 m s(-1)) clouds occupy less than 3 percent of the total cloudy area. But the hydrometeor content of stratiform ice clouds is only one tenth of that of convective and transitional (1 m s(-1) < w <= 3 m s(-1)) ice clouds. However, there is a large inter-LAM spread in the simulated cloud fraction and hydrometeor mixing ratios. The inter-LAM difference in solid phase hydrometeors (cloud ice, snow, and graupel) can be up to nearly a factor of 10. Among all the hydrometeor types, the stratiform ice clouds are simulated least consistently by the LAMs. The large inter-LAM spread suggests that obtaining consistent and reliable dynamic and cloud fields remains a challenge for the LAM approach. C1 [Zhu, Ping; Zhu, Zhenduo] Florida Int Univ, Dept Earth & Environm, Miami, FL 33199 USA. [Dudhia, Jim; Chen, Ming] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Field, Paul R.; Petch, Jon] Met Off, Exeter, Devon, England. [Wapler, Kathrin] Deutsch Wetterdienst, Offenbach, Germany. [Fridlind, Ann] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Varble, Adam; Zipser, Ed] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT USA. RP Zhu, P (reprint author), Florida Int Univ, Dept Earth & Environm, MARC 360,11200 SW 8th St, Miami, FL 33199 USA. EM zhup@fiu.edu RI Dudhia, Jimy/B-1287-2008; Field, Paul/B-1692-2009 OI Dudhia, Jimy/0000-0002-2394-6232; Field, Paul/0000-0001-8528-0088 FU DOE ASR [DE-FG02-09ER64737, DE-FG02-08ER64575]; National Science Foundation (NSF) [ATM-0735954]; DOE ARM [DE-AI02-06ER64173, DE-AI02-08ER64547, DE-FG03-02ER63337, DEFG0208ER64557]; DOE Office of Science, Office of Biological and Environmental Research, Environmental Science Division; ECMWF FX Ping Zhu wishes to acknowledge his support for this work by the DOE ASR program under grant DE-FG02-09ER64737 and National Science Foundation (NSF) under grant ATM-0735954. Jim Dudhia acknowledges his support by DOE ASR grant DE-FG02-08ER64575 and NSF support for computational resource for his simulation. Ann Fridlind acknowledges her support from DOE ARM program grants DE-AI02-06ER64173, DE-AI02-08ER64547, and DE-FG03-02ER63337. Support for A. Varble and E. Zipser is acknowledged from DOE ARM grant DEFG0208ER64557. The CRM computational support was provided by the DOE National Energy Scientific Computing Center and the NASA Advanced Supercomputing Division. We thank the TWP-ICE field campaign team led by Peter May. TWP-ICE data were obtained from the ARM program archive, sponsored by the DOE Office of Science, Office of Biological and Environmental Research, Environmental Science Division. We thank ECMWF for kindly providing their analyses data to support the TWP-ICE modeling studies. We are very grateful to the three anonymous reviewers for their constructive comments. Their helpful suggestions led to substantial improvement of this paper. NR 41 TC 16 Z9 16 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 6 PY 2012 VL 117 AR D11208 DI 10.1029/2011JD016447 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GH UT WOS:000305147400001 ER PT J AU Jensen, EJ Pfister, L Bui, TP AF Jensen, E. J. Pfister, L. Bui, T. P. TI Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID METEOROLOGICAL MEASUREMENT SYSTEM; SUBVISIBLE CIRRUS; UPPER TROPOSPHERE; CLOUD FORMATION; NUCLEATION; AEROSOLS; LAYER; PARAMETERIZATION; STRATOSPHERE; TEMPERATURE AB Previous ice nucleation calculations have suggested that in the presence of wave-driven temperature perturbations typical of the tropical tropopause layer (TTL), homogeneous freezing should produce ice concentrations well in excess of measured values. A statistical ice cloud parameterization that includes effects of sedimentation was recently used to show that if the wave amplitudes are not too large, a quasi steady state may be established wherein loss of ice crystals by sedimentation is balanced by nucleation of new ice crystals, and the resulting cloud ice concentrations agree well with observations. Here, we use numerical models to further evaluate the evolution of ice concentrations in TTL cirrus, including a range of cloud physical processes (homogeneous and heterogeneous ice nucleation, sedimentation, and radiatively driven dynamics). We use a one-dimensional microphysical model with bin microphysics to show that as a result of gravitational size sorting, the mean ice concentrations over the life cycle of the clouds are considerably smaller than the peak ice concentrations produced by ice nucleation events. However, the mean ice concentrations predicted here are considerably higher than either those reported based on the statistical model or those indicated by the observations. With the baseline wave amplitudes, ice crystals nucleated heterogeneously do not quench rising supersaturation in cooling air parcels and prevent homogeneous nucleation that produces high ice concentrations. We also use a three-dimensional cloud resolving model to show that radiatively driven internal circulations and entrainment do slowly shift the ice concentrations toward lower values, but the time required to dilute ice concentrations produced by homogeneous freezing to values comparable to measured ice concentrations is of the order of 12-24 h, which may be longer than typical TTL cirrus lifetimes. C1 [Jensen, E. J.; Pfister, L.; Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, MS 245-4, Moffett Field, CA 94035 USA. EM eric.j.jensen@nasa.gov FU NASA FX This work was supported by NASA's Radiation Science Program. NR 28 TC 18 Z9 18 U1 3 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 5 PY 2012 VL 117 AR D11205 DI 10.1029/2011JD017319 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GF UT WOS:000305147200003 ER PT J AU Lintner, BR Biasutti, M Diffenbaugh, NS Lee, JE Niznik, MJ Findell, KL AF Lintner, Benjamin R. Biasutti, Michela Diffenbaugh, Noah S. Lee, Jung-Eun Niznik, Matthew J. Findell, Kirsten L. TI Amplification of wet and dry month occurrence over tropical land regions in response to global warming SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE-CHANGE; EL-NINO; PRECIPITATION; RAINFALL; SATELLITE; TRENDS; VARIABILITY; MODELS; GPCP AB Quantifying how global warming impacts the spatiotemporal distribution of precipitation represents a key scientific challenge with profound implications for human welfare. Utilizing monthly precipitation data from Coupled Model Intercomparison Project (CMIP3) climate change simulations, the results here show that the occurrence of very dry (<0.5 mm/day) and very wet (>10 mm/day) months comprises a straightforward, robust metric of anthropogenic warming on tropical land region rainfall. In particular, differencing tropics-wide precipitation frequency histograms for 25-year periods over the late 21st and 20th centuries shows increased late-21st-century occurrence of histogram extremes both in the model ensemble and across individual models. Mechanistically, such differences are consistent with the view of enhanced tropical precipitation spatial gradients. Similar diagnostics are calculated for two 15-year subperiods over 1979-2008 for the CMIP3 models and three observational precipitation products to assess whether the signature of late-21st-century warming has already emerged in response to recent warming. While both the observations and CMIP3 ensemble-mean hint at similar amplification in the warmer (1994-2008) subinterval, the changes are not robust, as substantial differences are evident among the observational products and the intraensemble spread is large. Comparing histograms computed from the warmest and coolest years of the observational period further demonstrates effects of internal variability, notably the El Nino/Southern Oscillation, which appear to oppose the impact of quasi-uniform anthropogenic warming on the wet tail of the monthly precipitation distribution. These results identify the increase of very dry and wet occurrences in monthly precipitation as a potential signature of anthropogenic global warming but also highlight the continuing dominance of internal climate variability on even bulk measures of tropical rainfall. C1 [Lintner, Benjamin R.; Niznik, Matthew J.] State Univ New Jersey, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Biasutti, Michela] Lamont Doherty Earth Observ, Palisades, NY USA. [Diffenbaugh, Noah S.] Stanford Univ, Dept Environm Earth Syst Sci, Woods Inst Environm, Stanford, CA 94305 USA. [Lee, Jung-Eun] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Findell, Kirsten L.] Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Lintner, BR (reprint author), State Univ New Jersey, Dept Environm Sci, 14 Coll Farm Rd, New Brunswick, NJ 08901 USA. EM lintner@envsci.rutgers.edu RI Lee, Jung-Eun/F-8981-2012; Findell, Kirsten/D-4430-2014; Diffenbaugh, Noah/I-5920-2014; Biasutti, Michela/G-3804-2012; OI Diffenbaugh, Noah/0000-0002-8856-4964; Biasutti, Michela/0000-0001-6681-1533; Niznik, Matthew/0000-0003-2904-3146 FU Office of Science, U.S. Department of Energy; NSF [AGS-1103209]; New Jersey Agricultural Experiment Station Hatch [NJ07102]; DOE; Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX B.R.L. and M.B. contributed equally to this work. We thank the British Atmospheric Data Centre for providing access to the CRU data and thank Anthony DeAngelis for useful comments on the text. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multimodel data set. Support for this data set is provided by the Office of Science, U.S. Department of Energy. Our work was supported by NSF AGS-1103209 and New Jersey Agricultural Experiment Station Hatch grant NJ07102. N.S.D. acknowledges support from DOE's program in Integrated Assessment of Global Climate Change. J.-E.L. acknowledges that part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 30 TC 17 Z9 17 U1 2 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 5 PY 2012 VL 117 AR D11106 DI 10.1029/2012JD017499 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 957GF UT WOS:000305147200005 ER PT J AU Litvak, ML Mitrofanov, IG Sanin, A Malakhov, A Boynton, WV Chin, G Droege, G Evans, LG Garvin, J Golovin, DV Harshman, K McClanahan, TP Mokrousov, MI Mazarico, E Milikh, G Neumann, G Sagdeev, R Smith, DE Starr, R Zuber, MT AF Litvak, M. L. Mitrofanov, I. G. Sanin, A. Malakhov, A. Boynton, W. V. Chin, G. Droege, G. Evans, L. G. Garvin, J. Golovin, D. V. Harshman, K. McClanahan, T. P. Mokrousov, M. I. Mazarico, E. Milikh, G. Neumann, G. Sagdeev, R. Smith, D. E. Starr, R. Zuber, M. T. TI Global maps of lunar neutron fluxes from the LEND instrument SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID DETECTOR EXPERIMENT LEND; POLAR HYDROGEN DEPOSITS; RECONNAISSANCE ORBITER; GAMMA-RAY; WATER ICE; PROSPECTOR; MOON; POLES; ABUNDANCES; SURFACE AB The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data. C1 [Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Golovin, D. V.; Mokrousov, M. I.] RAS, Inst Space Res, Moscow 117997, Russia. [Boynton, W. V.; Droege, G.; Harshman, K.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Chin, G.; Garvin, J.; McClanahan, T. P.; Mazarico, E.; Neumann, G.; Smith, D. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Evans, L. G.] Comp Sci Corp, Lanham, MD USA. [Milikh, G.; Sagdeev, R.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Starr, R.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Zuber, M. T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. RP Litvak, ML (reprint author), RAS, Inst Space Res, Moscow 117997, Russia. EM mlitvak.iki@gmail.com RI Evans, Larry/F-7462-2012; Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014 OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X FU International Space Science Institute (ISSI, Bern, Switzerland) FX We wish to thank the International Space Science Institute (ISSI, Bern, Switzerland) for the support of research (included in the framework of international team "Nuclear Planetology" in 2007-2010) presented in this paper. NR 29 TC 20 Z9 20 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 5 PY 2012 VL 117 AR E00H22 DI 10.1029/2011JE003949 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 957IS UT WOS:000305155700002 ER PT J AU Jolivet, R Lasserre, C Doin, MP Guillaso, S Peltzer, G Dailu, R Sun, J Shen, ZK Xu, X AF Jolivet, R. Lasserre, C. Doin, M-P Guillaso, S. Peltzer, G. Dailu, R. Sun, J. Shen, Z-K Xu, X. TI Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID SYNTHETIC-APERTURE RADAR; NORTH ANATOLIAN FAULT; ALTYN-TAGH FAULT; ANDREAS FAULT; SURFACE DEFORMATION; STRAIN ACCUMULATION; SLIP RATE; M-W; PERMANENT SCATTERERS; INTERSEISMIC STRAIN AB Interferometric synthetic aperture radar data are used to map the interseismic velocity field along the Haiyuan fault system (HFS), at the north-eastern boundary of the Tibetan plateau. Two M similar to 8 earthquakes ruptured the HFS in 1920 and 1927, but its 260 km-long central section, known as the Tianzhu seismic gap, remains unbroken since similar to 1000 years. The Envisat SAR data, spanning the 2003-2009 period, cover about 200 x 300 km(2) along three descending and two ascending tracks. Interferograms are processed using an adapted version of ROI_PAC. The signal due to stratified atmospheric phase delay is empirically corrected together with orbital residuals. Mean line-of-sight velocity maps are computed using a constrained time series analysis after selection of interferograms with low atmospheric noise. These maps show a dominant left-lateral motion across the HFS, and reveal a narrow, 35 km-long zone of high velocity gradient across the fault in between the Tianzhu gap and the 1920 rupture. We model the observed velocity field using a discretized fault creeping at shallow depth and a least squares inversion. The inferred shallow slip rate distribution reveals aseismic slip in between two fully locked segments. The average creep rate is similar to 5 mm yr(-1), comparable in magnitude with the estimated loading rate at depth, suggesting no strain accumulation on this segment. The modeled creep rate locally exceeds the long term rate, reaching 8 mm yr(-1), suggesting transient creep episodes. The present study emphasizes the need for continuous monitoring of the surface velocity in the vicinity of major seismic gaps in terms of seismic hazard assessment. C1 [Jolivet, R.; Lasserre, C.] Univ Grenoble 1, CNRS, UMR 5275, Inst Sci Terre, Grenoble, France. [Doin, M-P; Guillaso, S.] Ecole Normale Super, CNRS, UMR 8538, Geol Lab, Paris, France. [Peltzer, G.; Shen, Z-K] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Peltzer, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dailu, R.] Chinese Earthquake Adm, Lanzhou Seismol Inst, Lanzhou, Peoples R China. [Sun, J.; Xu, X.] Chinese Earthquake Adm, Inst Geol, Beijing, Peoples R China. RP Jolivet, R (reprint author), CALTECH, Tecton Observ, Pasadena, CA 90125 USA. EM romain.jolivet@ujf-grenoble.fr RI Lasserre, Cecile/D-7073-2017; OI Lasserre, Cecile/0000-0002-0582-0775; Jolivet, Romain/0000-0002-9896-3651 FU Young Scientist fellowship; EFIDIR, ANR, France; CNES; NASA FX The SAR data set was provided by the European Space Agency (ESA) in the framework of the Dragon 2 program (ID 2509 and 5305). This program also supported R. Jolivet's work, through the Young Scientist fellowship. Funding was provided by the French "Extraction et Fusion d'Information et de Donnees d'Interferometrie Radar" program (EFIDIR, ANR, France) and Programme National de Teledection Spatiale (CNES). Part of G. Peltzer's contribution was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Figures and map were prepared using Generic Mapping Tools software [Wessel and Smith, 1995]. The authors thank Gareth Funning, an anonymous reviewer, and the Associate Editor for their constructive comments and suggestions. NR 89 TC 33 Z9 33 U1 0 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN 5 PY 2012 VL 117 AR B06401 DI 10.1029/2011JB008732 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 957IW UT WOS:000305156100001 ER PT J AU Cook, BI Wolkovich, EM Parmesan, C AF Cook, Benjamin I. Wolkovich, Elizabeth M. Parmesan, Camille TI Divergent responses to spring and winter warming drive community level flowering trends SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE growing season; ecological forecasting ID GROWING DEGREE-DAYS; CLIMATE-CHANGE; PHENOLOGICAL RESPONSE; GROWTH CESSATION; LEAF PHENOLOGY; TEMPERATURE; PLANTS; PHOTOPERIOD; DIVERSITY; BUDBURST AB Analyses of datasets throughout the temperate midlatitude regions show a widespread tendency for species to advance their springtime phenology, consistent with warming trends over the past 20-50 y. Within these general trends toward earlier spring, however, are species that either have insignificant trends or have delayed their timing. Various explanations have been offered to explain this apparent nonresponsiveness to warming, including the influence of other abiotic cues (e. g., photoperiod) or reductions in fall/winter chilling (vernalization). Few studies, however, have explicitly attributed the historical trends of nonresponding species to any specific factor. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that (i) apparent nonresponders are indeed responding to warming, but their responses to fall/winter and spring warming are opposite in sign and of similar magnitude; (ii) observed trends in first flowering date depend strongly on the magnitude of a given species' response to fall/winter vs. spring warming; and (iii) inclusion of fall/winter temperature cues strongly improves hindcast model predictions of long-term flowering trends compared with models with spring warming only. With a few notable exceptions, climate change research has focused on the overall mean trend toward phenological advance, minimizing discussion of apparently nonresponding species. Our results illuminate an understudied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues to improve predictability of community level responses to anthropogenic climate change. C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Wolkovich, Elizabeth M.] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92103 USA. [Parmesan, Camille] Univ Plymouth, Inst Marine, Plymouth PL9 OBL, Devon, England. [Parmesan, Camille] Univ Montpellier, Inst Sci Evolut, F-34095 Montpellier, France. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM bc9z@ldeo.columbia.edu RI Cook, Benjamin/H-2265-2012 FU National Center for Ecological Analysis and Synthesis; National Science Foundation [EF-0553768, DBI-0905806]; University of California, Santa Barbara; State of California FX We thank R. S. R. Fitter and A. H. Fitter for previous work, including data and theories, which provided much of the background for this study. Additional support came from the National Phenology Network (United States). We thank three anonymous reviewers and the editor for providing comments and critiques that significantly improved the manuscript. This work was conducted as a part of the "Forecasting Phenology" Working Group supported by the National Center for Ecological Analysis and Synthesis, a center funded by National Science Foundation Grant EF-0553768; the University of California, Santa Barbara; and the State of California. Support for E. M. W. came from the National Science Foundation Postdoctoral Fellow program Grant DBI-0905806. This is publication ISEM-2012-050 of the Institut des Sciences de l'Evolution de Montpellier Lamont contribution #7548. NR 44 TC 104 Z9 110 U1 10 U2 151 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 5 PY 2012 VL 109 IS 23 BP 9000 EP 9005 DI 10.1073/pnas.1118364109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 955BC UT WOS:000304991100049 PM 22615406 ER PT J AU Moore, DC Golwala, SR Bumble, B Cornell, B Day, PK LeDuc, HG Zmuidzinas, J AF Moore, D. C. Golwala, S. R. Bumble, B. Cornell, B. Day, P. K. LeDuc, H. G. Zmuidzinas, J. TI Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID DARK-MATTER SEARCH; QUASI-PARTICLE AB We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with <= 1 mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of sigma(E) - 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for similar to 1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726279] C1 [Moore, D. C.; Golwala, S. R.; Cornell, B.; Zmuidzinas, J.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bumble, B.; Day, P. K.; LeDuc, H. G.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Moore, DC (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM davidm@caltech.edu FU National Aeronautics and Space Administration; Gordon and Betty Moore Foundation FX This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The devices used in this work were fabricated at the JPL Microdevices Laboratory. We gratefully acknowledge support from the Gordon and Betty Moore Foundation. This work benefited significantly from interactions with and simulation software developed by the CDMS/SuperCDMS collaborations, as well as from useful insights from B. Mazin and O. Noroozian. B. Cornell has been partially supported by a NASA Space Technology Research Fellowship. NR 25 TC 24 Z9 24 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 4 PY 2012 VL 100 IS 23 AR 232601 DI 10.1063/1.4726279 PG 4 WC Physics, Applied SC Physics GA 956LA UT WOS:000305089900057 ER PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Charlton, P Chassande-Mottin, E Chelkowski, S Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, HS Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Feroz, F Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil-Casanova, S Gill, C Gleason, J Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kranz, O Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Liu, Y Liu, Z Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA McWilliams, S Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Neri, I Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sainathan, P Salemi, F Sammut, L Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schreiber, E Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Stein, LC Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Tseng, K Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wang, Z Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Feroz, F. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil-Casanova, S. Gill, C. Gleason, J. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kranz, O. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McWilliams, S. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Neri, I. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sainathan, P. Salemi, F. Sammut, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Stein, L. C. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tseng, K. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz SO PHYSICAL REVIEW D LA English DT Article ID RADIATION; BBN AB A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of Omega(GW)(f) = Omega(3)(f/900 Hz)(3), of Omega(3) < 0.32, assuming a value of the Hubble parameter of h(100) = 0.71. These new limits are a factor of seven better than the previous best in this frequency band. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Pichot, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Neri, I.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Napoli Federico II, Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S. M.; Aylott, B. E.; Carbone, L.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Page, A.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Smith-Lefebvre, N. D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Kelley, D.; Lough, J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Shapiro, B.; Shoemaker, D. H.; Soto, J.; Stein, A. J.; Stein, L. C.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, Lab AstroParticule & Cosmol APC, CNRS, IN2P3,CEA,DSM,IRFU,Observ Paris, F-75013 Paris, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; McWilliams, S.; Murphy, D.; Redwine, K.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Beck, D.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Markosyan, A.; Tseng, K.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Lundgren, A. P.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, Lab Mat Avances LMA, IN2P3, F-69622 Villeurbanne, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Cagnoli, G.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, Lab Kastler Brossel, ENS, CNRS, F-75005 Paris, France. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Geng, R.; Jang, Y. J.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Povo, Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Drever, R. W. P.; Harms, J.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.] Northwestern Univ, Evanston, IL 60208 USA. [Feroz, F.; Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kandhasamy, S.; Mandic, V.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] So Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Howell, Eric/H-5072-2014; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri, Igor/F-1482-2010; Shaddock, Daniel/A-7534-2011; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Lam, Ping Koy/A-5276-2008; Parisi, Maria/D-2817-2013; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Ciani, Giacomo/G-1036-2011; Mitrofanov, Valery/D-8501-2012; Marchesoni, Fabio/A-1920-2008; Bell, Angus/E-7312-2011; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; OI Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Vocca, Helios/0000-0002-1200-3917; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Lam, Ping Koy/0000-0002-4421-601X; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Ciani, Giacomo/0000-0003-4258-9338; Marchesoni, Fabio/0000-0001-9240-6793; Bell, Angus/0000-0003-1523-0821; prodi, giovanni/0000-0001-5256-915X; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; O'Shaughnessy, Richard/0000-0001-5832-8517; Gray, Norman/0000-0002-1941-9202; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767 FU United States National Science Foundation; LIGO Laboratory; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; GEO600 detector; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Virgo detector; Australian Research Council; International Science Linkages program of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This is LIGO document LIGO-P1000128. NR 36 TC 33 Z9 33 U1 3 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 4 PY 2012 VL 85 IS 12 AR 122001 DI 10.1103/PhysRevD.85.122001 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 951WE UT WOS:000304750000001 ER PT J AU Liemohn, MW Dupre, A Bougher, SW Trantham, M Mitchell, DL Smith, MD AF Liemohn, Michael W. Dupre, Ava Bougher, Stephen W. Trantham, Matthew Mitchell, David L. Smith, Michael D. TI Time-history influence of global dust storms on the upper atmosphere at Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THERMAL EMISSION SPECTROMETER; INTERANNUAL VARIABILITY; MAGNETIC-FIELD; SURVEYOR; ACCELEROMETER; THERMOSPHERE; IONOSPHERE; MISSION AB A recent survey of the Mars Global Surveyor (MGS) electron data for dayside photoelectron observations over regions of strong crustal fields revealed an unusual bimodal solar flux dependence. The elevated-flux population was associated with the timing of a large global dust storm in late 2001. The results of a systematic study parameterizing the photoelectron flux intensities against a solar flux proxy and MGS-observed atmospheric dust opacity are presented here. Instantaneous dust opacities were used as well as time-history averages and maximal values. The result is a functional form for the photoelectron fluxes against these parameters. The inclusion of instantaneous dust opacity values in the function do not improve the correlation, but a time-history window significantly enhances the correlation and explains the bimodal distribution in the electron fluxes. The best relationship was obtained with 7-Earth-month time-history dust opacity variables included in the function. The most likely explanation for this long-lived influence of dust storms is a composition and/or density change in the upper atmosphere. Citation: Liemohn, M. W., A. Dupre, S. W. Bougher, M. Trantham, D. L. Mitchell, and M. D. Smith (2012), Time-history influence of global dust storms on the upper atmosphere at Mars, Geophys. Res. Lett., 39, L11201, doi:10.1029/2012GL051994. C1 [Liemohn, Michael W.; Dupre, Ava; Bougher, Stephen W.; Trantham, Matthew] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Mitchell, David L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Liemohn, MW (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM liemohn@umich.edu RI Liemohn, Michael/H-8703-2012; Bougher, Stephen/C-1913-2013 OI Liemohn, Michael/0000-0002-7039-2631; Bougher, Stephen/0000-0002-4178-2729 FU NASA [NNX07AN98G, NNX11AD80G]; NSF [AST-0908311] FX The authors thank NASA and NSF for supporting this work, particularly under NASA grants NNX07AN98G and NNX11AD80G and NSF grant AST-0908311. NR 24 TC 10 Z9 10 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 2 PY 2012 VL 39 AR L11201 DI 10.1029/2012GL051994 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 952EN UT WOS:000304773400004 ER PT J AU Rignot, E Mouginot, J AF Rignot, E. Mouginot, J. TI Ice flow in Greenland for the International Polar Year 2008-2009 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADAR INTERFEROMETRY; SHEET; BASAL; SURFACE AB A digital representation of ice surface velocity is essential for a variety of glaciological, geologic and geophysical analyses and modeling. Here, we present a new, reference, comprehensive, high-resolution, digital mosaic of ice motion in Greenland assembled from satellite radar interferometry data acquired during the International Polar Year 2008 to 2009 by the Envisat Advanced Synthetic-Aperture Radar (ASAR), the Advanced Land Observation System (ALOS)'s Phase-Array L-band SAR (PALSAR) and the RADARSAT-1 SAR that covers 99% of the ice sheet in area. The best mapping performance is obtained using ALOS PALSAR data due to higher levels of temporal coherence at the L-band frequency; but C-band frequency SAR data are less affected by the ionosphere. The ice motion map reveals various flow regimes, ranging from patterned enhanced flow into a few large glaciers in the cold, low precipitation areas of north Greenland; to diffuse, enhanced flow into numerous, narrow, fast-moving glaciers in the warmer, high precipitation sectors of northwest and southeast Greenland. We find that the 100 fastest glaciers (v > 800 m/yr) drain 66% of the ice sheet in area, marine-terminating glaciers drain 88% of Greenland, and basal-sliding motion dominates internal deformation over more than 50% of the ice sheet. This view of ice sheet motion provides significant new constraints on ice flow modeling. Citation: Rignot, E., and J. Mouginot (2012), Ice flow in Greenland for the International Polar Year 2008-2009, Geophys. Res. Lett., 39, L11501, doi:10.1029/2012GL051634. C1 [Rignot, E.; Mouginot, J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Rignot, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Rignot, E (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 3202 Croul Hall, Irvine, CA 92697 USA. EM erignot@uci.edu RI Rignot, Eric/A-4560-2014; Mouginot, Jeremie/G-7045-2015; OI Rignot, Eric/0000-0002-3366-0481; Mouginot, Jeremie/0000-0001-9155-5455 FU National Aeronautics and Space Administration FX The authors thank Joanne Shimada, at JPL, for her assistance in processing RADARSAT-1 data and Anker Weidick, at GEUS, for his thorough review of glacier names employed in this study. This work was performed at the Department of Earth System Science of the School of Physical Sciences, University of California Irvine and at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryospheric Science Program. NR 20 TC 55 Z9 55 U1 1 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 2 PY 2012 VL 39 AR L11501 DI 10.1029/2012GL051634 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 952EN UT WOS:000304773400001 ER PT J AU Christensen, MW Stephens, GL AF Christensen, Matthew W. Stephens, Graeme L. TI Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHEAST PACIFIC STRATOCUMULUS; BOUNDARY-LAYER STRUCTURE; CELLULAR STRUCTURES; STRATIFORM CLOUDS; VOCALS-REX; WARM RAIN; PART II; TRACKS; DRIZZLE; ALBEDO AB The 94-GHz cloud profiling radar on the CloudSat satellite was used to examine the precipitation response of marine stratocumulus clouds to the increased aerosol burden from oceangoing vessels. Aerosol plumes generated by ships sometimes influence cloud microphysics and, to a largely undetermined extent, precipitation. To assess this response, the locations of over one thousand ship tracks coinciding with the radar were meticulously logged by hand from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Although precipitation detectable by the radar was infrequent, drizzle rates were often suppressed (72% of cases) and lighter in the ship tracks compared to the clouds adjacent to them. Ship plumes primarily decreased average rain rates through reducing the spatial coverage of precipitation. However, larger liquid water paths in ship tracks seldom coincided with the reduced cloud water sink from the suppression of precipitation (in less than 20% of cases). The sign and strength of the precipitation response was primarily tied to the mesoscale convective structure of the clouds. When closed cellular clouds were identified, significant decreases in the relative average liquid water path, rain rate (an average relative decrease of 68%), and rain cover fraction were observed in ship tracks compared to the surrounding clouds. The opposite occurred in the open cell regime where it was more common to find enhanced precipitation in the perturbed clouds. Ship plumes ingested into this regime resulted in significantly deeper and brighter clouds with higher liquid water amounts and rain rates (an average relative increase of 89%). C1 [Christensen, Matthew W.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Stephens, Graeme L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Christensen, MW (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. EM chrismat@atmos.colostate.edu RI Christensen, Matthew/C-5733-2013 FU NASA [NNX07AR11G, NAS5-99237, NNX09AK02G] FX We would like to thank reviewers: Bruce Albrecht, Jim Coakley, Robert Wood, and the other anonymous reviewers for their helpful input and comments in writing this paper. This work was supported by NASA grants NNX07AR11G, NAS5-99237, and NNX09AK02G. NR 50 TC 11 Z9 11 U1 3 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 2 PY 2012 VL 117 AR D11203 DI 10.1029/2011JD017125 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CG UT WOS:000304766700003 ER PT J AU Ekman, AML Hermann, M Gross, P Heintzenberg, J Kim, D Wang, C AF Ekman, Annica M. L. Hermann, Markus Gross, Peter Heintzenberg, Jost Kim, Dongchul Wang, Chien TI Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IN-SITU MEASUREMENTS; SULFURIC-ACID; CIVIL AIRCRAFT; NORTH-ATLANTIC; TRACE GASES; CLOUDS; NUCLEATION; DISTRIBUTIONS; TROPOPAUSE; TRANSPORT AB In this study, we compare modeled (MIT-CAM3) and observed (CARIBIC) sub-micrometer nucleation (N4-12, 4 <= d <= 12 nm) and Aitken mode (N-12, d > 12 nm) particle number concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). Modeled and observed global median N4-12 and N-12 agree fairly well (within a factor of two) indicating that the relatively simplified binary H2SO4-H2O nucleation parameterization applied in the model produces reasonable results in the UT/LMS. However, a comparison of the spatiotemporal distribution of sub-micrometer particles displays a number of discrepancies between MIT-CAM3 and CARIBIC data: N4-12 is underestimated by the model in the tropics and overestimated in the extra-topics. N-12 is in general overestimated by the model, in particular in the tropics and during summer months. The modeled seasonal variability of N4-12 is in poor agreement with CARIBIC data whereas it agrees rather well for N-12. Modeled particle frequency distributions are in general narrower than the observed ones. The model biases indicate an insufficient diffusive mixing in MIT-CAM3 and a too large vertical transport of carbonaceous aerosols. The overestimated transport is most likely caused by the constant supersaturation threshold applied in the model for the activation of particles into cloud droplets. The annually constant SO2 emissions in the model may also partly explain the poor representation of the N4-12 seasonal cycle. Comparing the MIT-CAM3 with CARIBIC data, it is also clear that care has to be taken regarding the representativeness of the measurement data and the time frequency of the model output. C1 [Ekman, Annica M. L.] Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, Sweden. [Ekman, Annica M. L.] Stockholm Univ, Bert Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden. [Hermann, Markus; Gross, Peter; Heintzenberg, Jost] Leibniz Inst Tropospher Res, Leipzig, Germany. [Kim, Dongchul; Wang, Chien] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. [Kim, Dongchul] Univ Space Res Assoc, Columbia, MD USA. [Kim, Dongchul] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ekman, AML (reprint author), Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, Sweden. EM annica@misu.su.se RI Kim, Dongchul/H-2256-2012; Hermann, Markus/B-7527-2013; OI Kim, Dongchul/0000-0002-5659-1394; Hermann, Markus/0000-0002-5124-1571; , /0000-0002-3979-4747 FU German Ministry of Education and Science (AFO); German Academic Exchange Service (DAAD); U.S. NSF [ATM-0329759, AGS-0944121] FX A. Ekman would like to thank the Bert Bolin Centre for Climate Research and the Vinnova-VINNMER program for financial support. M. Hermann and the CARIBIC team are deeply grateful to the airlines LTU and Lufthansa for their strong support of CARIBIC. The development of the CARIBIC system was financially supported by the German Ministry of Education and Science (AFO 2000 program) and its operation benefited and benefits from the European Commission's DGXII Environment RTD 4th, 5th, 6th, and 7th Framework programs. P. Gross would like to thank the German Academic Exchange Service (DAAD) for the financial support of his stay in Stockholm. C. Wang thanks the U.S. NSF (ATM-0329759 and AGS-0944121) for supporting the development of MIT-NCAR aerosol-climate model. NR 59 TC 2 Z9 2 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 2 PY 2012 VL 117 AR D11202 DI 10.1029/2011JD016777 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CG UT WOS:000304766700001 ER PT J AU Voll, P Samoska, L Church, S Lau, JM Sieth, M Gaier, T Kangaslahti, P Soria, M Tantawi, S Van Winkle, D AF Voll, Patricia Samoska, Lorene Church, Sarah Lau, Judy M. Sieth, Matthew Gaier, Todd Kangaslahti, Pekka Soria, Mary Tantawi, Sami Van Winkle, Dan TI A G-band cryogenic MMIC heterodyne receiver module for astronomical applications SO INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES LA English DT Article DE Multi-Chip Modules; Low Noise Amplifier (LNA); Low Noise Receiver; MMIC; HEMT ID PROBE AB We report cryogenic noise temperature and gain measurements of a prototype heterodyne receiver module designed to operate in the atmospheric window centered on 150 GHz. The module utilizes monolithic microwave integrated circuit (MMIC) InP high electron mobility transistor (HEMT) amplifiers, a second harmonic mixer, and bandpass filters. Swept local oscillator (LO) measurements show an average gain of 22 dB and an average noise temperature of 87 K over a 40 GHz band from 140 to 180 GHz when the module is cooled to 22 K. A spot noise temperature of 58 K was measured at 166 GHz and is a record for cryogenic noise from HEMT amplifiers at this frequency. Intermediate frequency (IF) sweep measurements show a 20 GHz IF band with less than 94 K receiver noise temperature for a fixed LO of 83 GHz. The compact housing features a split-block design that facilitates quick assembly and a condensed arrangement of the MMIC components and bias circuitry. DC feedthroughs and nano-miniature connectors also contribute to the compact design, so that the dimensions of the moduleare approximately 2.5 cm per side. C1 [Voll, Patricia; Church, Sarah; Lau, Judy M.; Sieth, Matthew] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Voll, Patricia; Church, Sarah; Lau, Judy M.; Sieth, Matthew] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Samoska, Lorene; Gaier, Todd; Kangaslahti, Pekka; Soria, Mary] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tantawi, Sami; Van Winkle, Dan] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Voll, P (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM pvoll@stanford.edu FU JPL Strategic University Research Partnership Program; SLAC Laboratory Directed Research and Development Program, Department of Energy [DE-AC03-76SF00515]; Harriett G. Jenkins Pre-doctoral Fellowship Program FX The authors would like to acknowledge Richard Lai and Gerry Mei of the Northrop Grumman Corporation for development of the HEMT MMIC process used for the LNA. This research was carried out in part at the JPL, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work is supported by the JPL Strategic University Research Partnership Program and the SLAC Laboratory Directed Research and Development Program, Department of Energy contract DE-AC03-76SF00515. P. V. thanks the Harriett G. Jenkins Pre-doctoral Fellowship Program for their support. NR 20 TC 1 Z9 1 U1 1 U2 3 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1759-0787 J9 INT J MICROW WIREL T JI Int. J. Microw. Wirel. Technol. PD JUN PY 2012 VL 4 IS 3 SI SI BP 283 EP 289 DI 10.1017/S1759078712000189 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 071XM UT WOS:000313630900005 ER PT J AU Sieth, M Church, S Lau, JM Voll, P Gaier, T Kangaslahti, P Samoska, L Soria, M Cleary, K Gawande, R Readhead, ACS Reeves, R Harris, A Neilson, J Tantawi, S Van Winkle, D AF Sieth, Matthew Church, Sarah Lau, Judy M. Voll, Patricia Gaier, Todd Kangaslahti, Pekka Samoska, Lorene Soria, Mary Cleary, Kieran Gawande, Rohit Readhead, Anthony C. S. Reeves, Rodrigo Harris, Andrew Neilson, Jeffrey Tantawi, Sami Van Winkle, Dan TI Technology developments for a large-format heterodyne MMIC array at W-band SO INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES LA English DT Article DE Hybrid and Multi-chip Modules; Low Noise and Communication Receivers AB We report on the development of W-band (75-110 GHz) heterodyne receiver technology for large-format astronomical arrays. The receiver system is designed to be both mass producible, so that the designs could be scaled to thousands of receiver elements, and modular. Most of the receiver functionality is integrated into compact monolithic microwave integrated circuit (MMIC) amplifier-based multichip modules. The MMIC modules include a chain of InP MMIC low-noise amplifiers, coupled-line bandpass filters, and sub-harmonic Schottky diode mixers. The receiver signals will be routed to and from the MMIC modules on a multilayer high-frequency laminate, which includes splitters, amplifiers, and frequency triplers. A prototype MMIC module has exhibited a band-averaged noise temperature of 41 K from 82 to 100 GHz and a gain of 29 dB at 15 K, which is the state-of-the-art for heterodyne multichip modules. C1 [Sieth, Matthew; Church, Sarah; Lau, Judy M.; Voll, Patricia] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Sieth, Matthew; Church, Sarah; Lau, Judy M.; Voll, Patricia] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Gaier, Todd; Kangaslahti, Pekka; Samoska, Lorene; Soria, Mary] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cleary, Kieran; Gawande, Rohit; Readhead, Anthony C. S.; Reeves, Rodrigo] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Harris, Andrew] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Neilson, Jeffrey; Tantawi, Sami; Van Winkle, Dan] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Sieth, M (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM mmsieth@stanford.edu RI Reeves, Rodrigo/H-2812-2014 OI Reeves, Rodrigo/0000-0001-5704-271X FU JPL Strategic University Partnership Program; National Science Foundation [AST-0905855]; Department of Energy [DE-AC03-76SF00515]; Harriett G. Jenkins Pre-doctoral Fellowship Program FX This research was carried out in part by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported by the JPL Strategic University Partnership Program, the National Science Foundation under grant AST-0905855, and Department of Energy contract DE-AC03-76SF00515. P.V. thanks the Harriett G. Jenkins Pre-doctoral Fellowship Program for their support. NR 15 TC 1 Z9 1 U1 0 U2 7 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1759-0787 J9 INT J MICROW WIREL T JI Int. J. Microw. Wirel. Technol. PD JUN PY 2012 VL 4 IS 3 SI SI BP 299 EP 307 DI 10.1017/S1759078712000293 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 071XM UT WOS:000313630900007 ER PT J AU Lall, P Lowe, R Goebel, K AF Lall, Pradeep Lowe, Ryan Goebel, Kai TI Prognostication Based on Resistance-Spectroscopy and Phase-Sensitive Detection for Electronics Subjected to Shock-Impact SO JOURNAL OF ELECTRONIC PACKAGING LA English DT Article ID HARSH ENVIRONMENTS; RELIABILITY; VIBRATION; BIST AB Leading indicators of failure have been developed based on high-frequency characteristics, and system-transfer function derived from resistance spectroscopy measurements during shock and vibration. The technique is intended for condition-monitoring in high-reliability applications where the knowledge of impending failure is critical and the risks in terms of loss-of-functionality are too high to bear. Previously, resistance spectroscopy measurements have been used during thermal cycling tests to monitor damage progression due to thermomechanical stresses. The development of resistance spectroscopy based damage precursors for prognostication under shock and vibration is new. In this paper, the high-frequency characteristics and system-transfer function based on resistance spectroscopy measurements have been correlated to the damage progression in electronics during shock and vibration. Packages being examined include ceramic area-array packages. Second level interconnect technologies examined include copper-reinforced solder column, SAC305 solder ball, and 90Pb10Sn high-lead solder ball. Assemblies have been subjected to 1500 g, 0.5 ms pulse (JESD-B2111). Continuity has been monitored in situ during the shock test for identification of part-failure. Resistance spectroscopy based damage precursors have been correlated to the optically measured transient strain based feature vectors. High speed cameras have been used to capture the transient strain histories during shock-impact. Statistical pattern recognition techniques have been used to identify damage initiation and progression and determine the statistical significance in variance between healthy and damaged assemblies. Models for healthy and damaged packages have been developed based on package characteristics. Data presented show that high-frequency characteristics and system-transfer characteristics based on resistance spectroscopy measurements can be used for condition-monitoring, damage initiation, and progression in electronic systems. A positive prognostic distance has been demonstrated for each of the interconnect technologies tested. [DOI: 10.1115/1.4006706] C1 [Lall, Pradeep; Lowe, Ryan] Auburn Univ, Dept Mech Engn, NSF Ctr Adv Vehicle & Extreme Environm Elect CAVE, Auburn, AL 36849 USA. [Goebel, Kai] NASA, Ames Res Ctr, Prognost Ctr Excellence, Moffett Field, CA 94035 USA. RP Lall, P (reprint author), Auburn Univ, Dept Mech Engn, NSF Ctr Adv Vehicle & Extreme Environm Elect CAVE, Auburn, AL 36849 USA. EM lall@eng.auburn.edu FU NASA-IVHM Program from the National Aeronautics and Space Administration [NNA08BA21C] FX The research presented in this paper has been supported by NASA-IVHM Program Grant NNA08BA21C from the National Aeronautics and Space Administration. NR 46 TC 0 Z9 0 U1 1 U2 3 PU ASME PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1043-7398 J9 J ELECTRON PACKAGING JI J. Electron. Packag. PD JUN PY 2012 VL 134 IS 2 AR 021001 DI 10.1115/1.4006706 PG 10 WC Engineering, Electrical & Electronic; Engineering, Mechanical SC Engineering GA 063VR UT WOS:000313030600009 ER PT J AU Miles, JH AF Miles, Jeffrey Hilton TI Spatial correlation in the ambient core noise field of a turbofan engine SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID INDIRECT COMBUSTION NOISE; JET ENGINE; PHASE DATA; COHERENCE; CHAMBERS; ENTROPY AB An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine. [http://dx.doi.org/10.1121/1.4714359] C1 NASA, John H Glenn Res Ctr, Lewis Field, Cleveland, OH 44135 USA. RP Miles, JH (reprint author), NASA, John H Glenn Res Ctr, Lewis Field, Cleveland, OH 44135 USA. EM Jeffrey.H.Miles@nasa.gov FU NASA Glenn Research Center Fast Track Center Innovation Fund; NASA Fundamental Aeronautics Subsonic Fixed Wing program FX The data used in this paper were provided with funding from the NASA Fundamental Aeronautics Subsonic Fixed Wing program. This work was supported by the NASA Glenn Research Center Fast Track Center Innovation Fund. NR 41 TC 1 Z9 1 U1 0 U2 2 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JUN PY 2012 VL 131 IS 6 BP 4625 EP 4639 DI 10.1121/1.4714359 PG 15 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 010ZQ UT WOS:000309133500053 PM 22712936 ER PT J AU Kandula, M AF Kandula, Max TI Sound propagation in saturated gas-vapor-droplet suspensions with droplet evaporation and nonlinear relaxation SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID ATTENUATION AB The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson [J. Atmos. Sci. 32(11), 2201-2205 (1975)] to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration. (C) 2012 Acoustical Society of America C1 NASA Kennedy Space Ctr, ESC Team QNA, Kennedy Space Ctr, FL 32899 USA. RP Kandula, M (reprint author), NASA Kennedy Space Ctr, ESC Team QNA, Kennedy Space Ctr, FL 32899 USA. EM max.kandula-1@nasa.gov NR 15 TC 1 Z9 1 U1 0 U2 2 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JUN PY 2012 VL 131 IS 6 BP EL434 EP EL440 DI 10.1121/1.4710835 PG 7 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 010ZQ UT WOS:000309133500003 PM 22713018 ER PT J AU Musenich, R Becker, R Bollweg, K Burger, J Capell, M Datskov, VI Gallilee, MA Gargiulo, C Kounine, A Koutsenko, V Lebedev, A McInturff, A Schinzel, D Siemko, A Stiff, KJ Zeigler, J AF Musenich, Riccardo Becker, Robert Bollweg, Kenneth Burger, Joseph Capell, Michael Datskov, Vladimir Ivanovich Gallilee, Mark Antony Gargiulo, Corrado Kounine, Andrej Koutsenko, Vladimir Lebedev, Alexei McInturff, Al Schinzel, Dietrich Siemko, Andrzej Stiff, Kerry John Zeigler, John TI Results From the Testing of the AMS Space Superconducting Magnet SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article; Proceedings Paper CT 22nd International Conference on Magnet Technology (MT) CY SEP 12-16, 2011 CL ITER Org, Marseille, FRANCE SP PACA Reg, CEA, IEEE CSC, Iberdrola Ingenieria & Construcc, SAU, Oxford Superconducting Technol, R KIND, Super Power Inc, Western Superconducting Technol Co Ltd HO ITER Org DE Space technology; spectrometer; superconducting magnets AB The Alpha Magnetic Spectrometer (AMS) is a particle detector designed to search for anti-matter, dark matter and the origin of cosmic rays in space. A superconducting magnet has been developed to generate 0.78 T field at the center. The magnet system consists of a pair of large "dipole" coils together with two series of six racetrack coils, arranged circumferentially in order to minimize the stray field. The coils, series connected, are wound with an aluminum-stabilized mono-strand NbTi conductor and are cooled by a superfluid helium circuit. The superconducting magnet was successfully tested up to the operating current of 410 A, however the decision was taken to equip the spectrometer with a NdFeB permanent magnet in order to maximize the experiment life. The paper describes the results of the superconducting magnet tests and in particular analyses an anomalous increasing of the coil temperature during magnet charging. C1 [Musenich, Riccardo] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Becker, Robert; Burger, Joseph; Capell, Michael; Gallilee, Mark Antony; Kounine, Andrej; Koutsenko, Vladimir; Lebedev, Alexei; Schinzel, Dietrich; Stiff, Kerry John] MIT, Cambridge, MA 02139 USA. [Bollweg, Kenneth] NASA, Washington, DC USA. [Datskov, Vladimir Ivanovich; Gargiulo, Corrado] Ist Nazl Fis Nucl, Rome, Italy. [McInturff, Al] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Siemko, Andrzej] CERN, Geneva, Switzerland. [Zeigler, John] Sensor Design Grp LLC, Houston, TX USA. RP Musenich, R (reprint author), Ist Nazl Fis Nucl, Via Dodecaneso 33, I-16146 Genoa, Italy. EM riccardo.musenich@ge.infn.it NR 10 TC 2 Z9 2 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2012 VL 22 IS 3 AR 4500204 DI 10.1109/TASC.2011.2176450 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 986SK UT WOS:000307364700164 ER PT J AU Qi, JG Bobushev, TS Kulmatov, R Groisman, P Gutman, G AF Qi, Jiaguo Bobushev, Temirbek S. Kulmatov, Rashid Groisman, Pavel Gutman, Garik TI Addressing global change challenges for Central Asian socio-ecosystems SO FRONTIERS OF EARTH SCIENCE LA English DT Article DE Central Asia; climate change; land use and land cover change; water and food security ID CLIMATE-CHANGE; ARAL SEA; WATER-RESOURCES; POPULATION; DISASTER; IMPACTS; GROWTH; BASIN AB Central Asia is one of the most vulnerable regions on the planet earth to global climate change, depending on very fragile natural resources. The Soviet legacy has left the five countries (Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan, and Uzbekistan) with a highly integrated system but they are facing great challenges with tensions that hinder regional coordination of food and water resources. With increasing climate variability and warming trend in the region, food and water security issues become even more crucial now and, if not addressed properly, could affect the regional stability. The long-term drivers of these two most critical elements, food and water, are climate change; the immediate and probably more drastic factors affecting the food and water security are land uses driven by institutional change and economic incentives. As a feedback, changes in land use and land cover have directly implications on water uses, food production, and lifestyles of the rural community in the region. Regional and international efforts have been made to holistically understand the cause, extent, rate and societal implications of land use changes in the region. Much of these have been understood, or under investigation by various projects, but solutions or research effort to develop solutions, to these urgent regional issues are lacking. This article, serves as an introduction to the special issue, provides a brief overview of the challenges facing the Central Asian countries and various international efforts in place that resulted in the publications of this special issue. C1 [Qi, Jiaguo] Michigan State Univ, E Lansing, MI 48823 USA. [Bobushev, Temirbek S.] Amer Univ Cent Asia, Bishkek 720040, Kyrgyzstan. [Kulmatov, Rashid] Natl Univ Uzbekistan, Tashkent 100027, Uzbekistan. [Groisman, Pavel] NOAA, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Gutman, Garik] NASA, Land Use & Land Cover Change Program, Washington, DC 20546 USA. RP Qi, JG (reprint author), Michigan State Univ, E Lansing, MI 48823 USA. EM qi@msu.edu FU NASA Land Cover and Land Use Change Program [NNX08AH50G]; MAIRS Program of Chinese Academy of Science FX This work was partially supported by NASA Land Cover and Land Use Change Program (No. NNX08AH50G) and the MAIRS Program of Chinese Academy of Science. NR 23 TC 3 Z9 4 U1 3 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 2095-0195 J9 FRONT EARTH SCI-PRC JI Front. Earth Sci. PD JUN PY 2012 VL 6 IS 2 BP 115 EP 121 DI 10.1007/s11707-012-0320-4 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 002TB UT WOS:000308557100001 ER PT J AU Li, X Brinckerhoff, WB Managadze, GG Pugel, DE Corrigan, CM Doty, JH AF Li, X. Brinckerhoff, W. B. Managadze, G. G. Pugel, D. E. Corrigan, C. M. Doty, J. H. TI Laser ablation mass spectrometer (LAMS) as a standoff analyzer in space missions for airless bodies SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Laser ablation mass spectrometer (LAMS); Time-of-flight; Standoff analyzer ID ION AB A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm and 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore. LAMS should be able to be mounted on a platform or robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, X.] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Brinckerhoff, W. B.; Pugel, D. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Managadze, G. G.] Space Res Inst IKI, Moscow, Russia. [Corrigan, C. M.] Natl Museum Nat Hist, Smithsonian Inst, Washington, DC 20560 USA. [Doty, J. H.] Rice Univ, Houston, TX USA. RP Li, X (reprint author), Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, 1000 Hilltop Circle, Baltimore, MD 21250 USA. EM xiang.li@nasa.gov RI Li, Xiang/F-4539-2012; Brinckerhoff, William/F-3453-2012 OI Brinckerhoff, William/0000-0001-5121-2634 FU NASA Planetary Instrument Definition and Development (PIDDP) program; Goddard Internal Research and Development program FX This work was supported by the NASA Planetary Instrument Definition and Development (PIDDP) program and by the Goddard Internal Research and Development program. NR 17 TC 4 Z9 4 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD JUN 1 PY 2012 VL 323 BP 63 EP 67 DI 10.1016/j.ijms.2012.06.020 PG 5 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 005RU UT WOS:000308768400011 ER PT J AU Fricker, GA Saatchi, SS Meyer, V Gillespie, TW Sheng, YW AF Fricker, Geoffrey A. Saatchi, Sassan S. Meyer, Victoria Gillespie, Thomas W. Sheng, Yongwei TI Application of Semi-Automated Filter to Improve Waveform Lidar Sub-Canopy Elevation Model SO REMOTE SENSING LA English DT Article DE laser vegetation imaging sensor; lidar; discrete return lidar; large footprint lidar; sub-canopy topography; point filtering; terrain slope; moist tropical rainforest; Barro Colorado Island ID TROPICAL RAIN-FOREST; LARGE-FOOTPRINT LIDAR; ABOVEGROUND BIOMASS; CANOPY; TOPOGRAPHY; VEGETATION; LANDSCAPE; HEIGHT; VALIDATION; ALGORITHMS AB Modeling sub-canopy elevation is an important step in the processing of waveform lidar data to measure three dimensional forest structure. Here, we present a methodology based on high resolution discrete-return lidar (DRL) to correct the ground elevation derived from large-footprint Laser Vegetation Imaging Sensor (LVIS) and to improve measurement of forest structure. We use data acquired over Barro Colorado Island, Panama by LVIS large-footprint lidar (LFL) in 1998 and DRL in 2009. The study found an average vertical difference of 28.7 cm between 98,040 LVIS last-return points and the discrete-return lidar ground surface across the island. The majority (82.3%) of all LVIS points matched discrete return elevations to 2 m or less. Using a multi-step process, the LVIS last-return data is filtered using an iterative approach, expanding window filter to identify outlier points which are not part of the ground surface, as well as applying vertical corrections based on terrain slope within the individual LVIS footprints. The results of the experiment demonstrate that LFL ground surfaces can be effectively filtered using methods adapted from discrete-return lidar point filtering, reducing the average vertical error by 15 cm and reducing the variance in LVIS last-return data by 70 cm. The filters also reduced the largest vertical estimations caused by sensor saturation in the upper reaches of the forest canopy by 14.35 m, which improve forest canopy structure measurement by increasing accuracy in the sub-canopy digital elevation model. C1 [Fricker, Geoffrey A.; Gillespie, Thomas W.; Sheng, Yongwei] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA. [Saatchi, Sassan S.; Meyer, Victoria] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Fricker, GA (reprint author), Univ Calif Los Angeles, Dept Geog, 1255 Bunche Hall,Box 951524, Los Angeles, CA 90095 USA. EM africker@ucla.edu; Sasan.S.Saatchi@jpl.nasa.gov; vic.meyer@gmail.com; tg@geog.ucla.edu; ysheng@geog.ucla.edu RI Beckley, Matthew/D-4547-2013 FU Vegetation Canopy Lidar (VCL) Science team (NASA) [NAS597160]; NASA [NNG04GO05G] FX Funding for the collection and processing of the 1998 Central America data were provided by the Vegetation Canopy Lidar (VCL) Science team (NASA grant number NAS597160) and NASA's Interdisciplinary Science Program (IDS) (NASA grant number NNG04GO05G). Publisher: Code 694 NASA Goddard Space Flight Center. ESRI world map data (Figure 1). NR 47 TC 5 Z9 5 U1 0 U2 20 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2012 VL 4 IS 6 BP 1494 EP 1518 DI 10.3390/rs4061494 PG 25 WC Remote Sensing SC Remote Sensing GA 978QB UT WOS:000306759100001 ER PT J AU Watts, AC Ambrosia, VG Hinkley, EA AF Watts, Adam C. Ambrosia, Vincent G. Hinkley, Everett A. TI Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use SO REMOTE SENSING LA English DT Article DE Unmanned Aircraft System (UAS); UAV; drone; aerial survey ID IMAGERY AB Unmanned Aircraft Systems (UAS) have evolved rapidly over the past decade driven primarily by military uses, and have begun finding application among civilian users for earth sensing reconnaissance and scientific data collection purposes. Among UAS, promising characteristics are long flight duration, improved mission safety, flight repeatability due to improving autopilots, and reduced operational costs when compared to manned aircraft. The potential advantages of an unmanned platform, however, depend on many factors, such as aircraft, sensor types, mission objectives, and the current UAS regulatory requirements for operations of the particular platform. The regulations concerning UAS operation are still in the early development stages and currently present significant barriers to entry for scientific users. In this article we describe a variety of platforms, as well as sensor capabilities, and identify advantages of each as relevant to the demands of users in the scientific research sector. We also briefly discuss the current state of regulations affecting UAS operations, with the purpose of informing the scientific community about this developing technology whose potential for revolutionizing natural science observations is similar to those transformations that GIS and GPS brought to the community two decades ago. C1 [Watts, Adam C.] Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA. [Ambrosia, Vincent G.] Calif State Univ, Monterey Bay NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hinkley, Everett A.] US Forest Serv, USDA, Arlington, VA 22209 USA. RP Watts, AC (reprint author), Univ Florida, Sch Nat Resources & Environm, POB 110410, Gainesville, FL 32611 USA. EM acwatts@ufl.edu; vincent.g.ambrosia@nasa.gov; ehinkley@fs.fed.us NR 21 TC 129 Z9 135 U1 29 U2 210 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2012 VL 4 IS 6 BP 1671 EP 1692 DI 10.3390/rs4061671 PG 22 WC Remote Sensing SC Remote Sensing GA 978QB UT WOS:000306759100009 ER PT J AU Peduzzi, A Wynne, RH Thomas, VA Nelson, RF Reis, JJ Sanford, M AF Peduzzi, Alicia Wynne, Randolph H. Thomas, Valerie A. Nelson, Ross F. Reis, James J. Sanford, Mark TI Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests SO REMOTE SENSING LA English DT Article DE deciduous forests; coniferous forests; silviculture; leaf area index; remote sensing; laser scanning; InSAR; dual band single pass interferometric synthetic aperture radar ID LEAF-AREA INDEX; STAND CHARACTERISTICS; CANOPY-HEIGHT; LASER SCANNER; PREDICTION; BACKSCATTER; DEFOLIATION; REGRESSION; VARIABLES; CONIFER AB The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X-and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R-2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests. C1 [Peduzzi, Alicia; Wynne, Randolph H.; Thomas, Valerie A.] Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, Blacksburg, VA 24061 USA. [Nelson, Ross F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reis, James J.] IEEE, Baltimore, MD 21201 USA. [Sanford, Mark] Fugro EarthData Inc, Frederick, MD 21704 USA. RP Peduzzi, A (reprint author), Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, 319 Cheatham Hall,Mail Code 0324, Blacksburg, VA 24061 USA. EM apeduzzi@vt.edu; wynne@vt.edu; thomasv@vt.edu; ross.f.nelson@nasa.gov; jamesjreis@comcast.net; msanford@earthdata.com RI Beckley, Matthew/D-4547-2013; Nelson, Ross/H-8266-2014 FU Virginia Tech Department of Forest Resources and Environmental Conservation FX This research was possible thanks to support from the Virginia Tech Department of Forest Resources and Environmental Conservation and the help in field data collection provided by Jessica Walker (Virginia Tech), Rupesh Shrestha (Boise State University), Nilam Kayastha (Virginia Tech), Asim Banskota (Conservation International), Wayne Bowman (Virginia Department of Forestry), and John Scrivani (Virginia Information Technology Agency). NR 51 TC 10 Z9 10 U1 0 U2 23 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUN PY 2012 VL 4 IS 6 BP 1758 EP 1780 DI 10.3390/rs4061758 PG 23 WC Remote Sensing SC Remote Sensing GA 978QB UT WOS:000306759100013 ER PT J AU Devi, VM Benner, DC Smith, MAH Mantz, AW Sung, K Brown, LR AF Devi, V. Malathy Benner, D. Chris Smith, Mary Ann H. Mantz, Arlan W. Sung, Keeyoon Brown, Linda R. TI Spectral line parameters including temperature dependences of air-broadening for the 2 <- 0 bands of (CO)-C-13-O-60 and (CO)-C-12-O-18 at 2.3 mu.m SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE CO; Lorentz widths; Pressure shifts; Line mixing; Speed dependence; Intensities; Temperature dependences of widths and shifts ID MOLECULAR SPECTROSCOPIC DATABASE; SUB-DOPPLER MEASUREMENTS; CARBON-MONOXIDE; CO; ACCURATE; FREQUENCIES; EDITION; STATE AB The first air broadening line shape parameters were determined for the 2 <- 0 bands of (CO)-C-13-O-16 near 4166.8 cm(-1) and (CO)-C-12-O-18 near 4159.0 cm(-1). Air-broadened Lorentz half-width coefficients, their temperature dependence exponents; air-induced pressure shift coefficients, their temperature dependences; and air line mixing coefficients were measured. Additionally, speed-dependent line shapes with line mixing employing the off-diagonal relaxation matrix element coefficients were applied to minimize the fit residuals. Finally, individual line positions and line intensities of the two isotopologues were constrained to the well-known theoretical quantum mechanical expressions in order to obtain the rovibrational (G, B, D and H) and band intensity parameters (including Herman-Wallis coefficients). For this, laboratory spectra were recorded at 0.005 cm(-1) resolution using a temperature-controlled coolable absorption cell configured inside a Bruker IFS 125HR Fourier transform spectrometer. Gas temperatures and pressures for the spectra varied from 150 to 298 K and 20 to 700 Torr, respectively. Results were obtained from broad-band multispectrum least-squares fitting of the 4000-4360 cm(-1) spectral region. Four isotope-enriched pure sample spectra and twelve spectra with air + CO samples ((CO)-C-13-O-16 or (CO)-C-12-O-18, as appropriate) were fitted simultaneously. The results obtained for (CO)-C-13-O-16 and (CO)-C-12-O-18 are compared and discussed. (C) 2012 Elsevier Inc. All rights reserved. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Smith, Mary Ann H.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA. [Mantz, Arlan W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. [Sung, Keeyoon; Brown, Linda R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM malathy.d.venkataraman@nasa.gov RI Sung, Keeyoon/I-6533-2015 FU NASA's Atmospheric Composition Laboratory; National Aeronautics and Space Administration FX The research performed at the College of William and Mary, NASA Langley Research Center and Connecticut College is supported by NASA's Atmospheric Composition Laboratory Research Program. The research at the Jet Propulsion Laboratory, California Institute of Technology is performed under contract with National Aeronautics and Space Administration. The authors thank R.R. Gamache for providing the rotational quantum partition function for all the three CO isotopologues. NR 26 TC 7 Z9 7 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUN-JUL PY 2012 VL 276 BP 33 EP 48 DI 10.1016/j.jms.2012.05.005 PG 16 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 990DX UT WOS:000307612300007 ER PT J AU Sasgen, I van den Broeke, M Bamber, JL Rignot, E Sorensen, LS Wouters, B Martinec, Z Velicogna, I Simonsen, SB AF Sasgen, Ingo van den Broeke, Michiel Bamber, Jonathan L. Rignot, Eric Sorensen, Louise Sandberg Wouters, Bert Martinec, Zdenek Velicogna, Isabella Simonsen, Sebastian B. TI Timing and origin of recent regional ice-mass loss in Greenland SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE mass balance; Greenland; GRACE; InSAR; RACMO; ICESat ID GLACIAL-ISOSTATIC-ADJUSTMENT; REBOUND MODELS; GRACE DATA; SHEET; BALANCE; ACCELERATION; DRAINAGE; SURFACE; VARIABILITY; VALIDATION AB Within the last decade, the Greenland ice sheet (GrIS) and its surroundings have experienced record high surface temperatures (Mote, 2007; Box et al., 2010), ice sheet melt extent (Fettweis et al., 2011) and record-low summer sea-ice extent (Nghiem et al., 2007). Using three independent data sets, we derive, for the first time, consistent ice-mass trends and temporal variations within seven major drainage basins from gravity fields from the Gravity Recovery and Climate Experiment (GRACE; Tapley et al., 2004), surface-ice velocities from Inteferometric Synthetic Aperture Radar (InSAR; Rignot and Kanagaratnam, 2006) together with output of the regional atmospheric climate modelling (RACMO2/GR; Ettema et al., 2009), and surface-elevation changes from the Ice, cloud and land elevation satellite (ICESat; Sorensen et al., 2011). We show that changing ice discharge (D), surface melting and subsequent run-off (M/R) and precipitation (P) all contribute, in a complex and regionally variable interplay, to the increasingly negative mass balance of the GrIS observed within the last decade. Interannual variability in P along the northwest and west coasts of the GrIS largely explains the apparent regional mass loss increase during 2002-2010, and obscures increasing M/R and D since the 1990s. In winter 2002/2003 and 2008/2009, accumulation anomalies in the east and southeast temporarily outweighed the losses by M/R and D that prevailed during 2003-2008, and after summer 2010. Overall, for all basins of the GrIS, the decadal variability of anomalies in P, M/R and D between 1958 and 2010 (w.r.t. 1961-1990) was significantly exceeded by the regional trends observed during the GRACE period (2002-2011). (C) 2012 Elsevier B.V. All rights reserved. C1 [Sasgen, Ingo] Geoforschungszentrum Potsdam, German Res Ctr Geosci, Dept Geodesy & Remote Sensing, D-14473 Potsdam, Germany. [van den Broeke, Michiel] Univ Utrecht, Inst Marine & Atmospher Res, NL-3508 TA Utrecht, Netherlands. [Bamber, Jonathan L.] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. [Rignot, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rignot, Eric; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Sorensen, Louise Sandberg] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Wouters, Bert] Royal Netherlands Meteorol Inst, NL-3732 GK De Bilt, Netherlands. [Martinec, Zdenek] Dublin Inst Adv Studies, Sch Theoret Phys, Dublin 4, Ireland. [Simonsen, Sebastian B.] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen, Denmark. [Simonsen, Sebastian B.] DMI, Danish Climate Centre, DK-2100 Copenhagen, Denmark. RP Sasgen, I (reprint author), Geoforschungszentrum Potsdam, German Res Ctr Geosci, Dept Geodesy & Remote Sensing, Telegrafenberg A20, D-14473 Potsdam, Germany. EM sasgen@gfz-potsdam.de RI Simonsen, Sebastian /F-4791-2013; Bamber, Jonathan/C-7608-2011; Rignot, Eric/A-4560-2014; Van den Broeke, Michiel/F-7867-2011; Sorensen, Louise/E-5282-2014; OI Simonsen, Sebastian /0000-0001-9569-1294; Bamber, Jonathan/0000-0002-2280-2819; Rignot, Eric/0000-0002-3366-0481; Van den Broeke, Michiel/0000-0003-4662-7565; Sorensen, Louise/0000-0002-3771-4061; Wouters, Bert/0000-0002-1086-2435 FU Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [SA 1734/2-2 (SPP1257)]; Utrecht University; RAPID international project; Netherlands Polar Programme; European Union [226375] FX Ingo Sasgen would like to acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Grant SA 1734/2-2 (SPP1257). We would like to thank the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100% of the raw telemetry data of the twin GRACE satellites. This work is a contribution to the "Helmholtz Climate Initiative REKLIM" (Regional Climate Change), a joint research project of the Helmholtz Association of German research centres (HGF). Michiel van den Broeke acknowledges support from Utrecht University, the RAPID international project and the Netherlands Polar Programme. This work was supported by funding from the ice2sea programme from the European Union 7th Framework Programme, Grant no. 226375. Ice2sea contribution number ice2sea039. We would like to thank Philippe Lucas-Picher for the high resolution HIRHAM5 data. We would like to thank four anonymous reviewers for their helpful comments. NR 62 TC 90 Z9 91 U1 9 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 1 PY 2012 VL 333 BP 293 EP 303 DI 10.1016/j.epsl.2012.03.033 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 980HK UT WOS:000306884000029 ER PT J AU Li, WQ Chakraborty, S Beard, BL Romanek, CS Johnson, CM AF Li, Weiqiang Chakraborty, Suvankar Beard, Brian L. Romanek, Christopher S. Johnson, Clark M. TI Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mg isotope; Mg-calcite; carbonate; isotope fractionation; free-drift experiment; vital effect ID COCCOLITHOPHORES EMILIANIA-HUXLEYI; EQUILIBRIUM FRACTIONATION; BIOLOGICAL CARBONATES; SYNTHETIC ARAGONITE; BIOGENIC CALCITE; CHLOROPHYLL-A; PLANT-GROWTH; MG ISOTOPES; PORE-FLUID; ICP-MS AB The Mg isotope composition of biogenic and inorganic carbonate bears on paleoclimate and paleooceanography studies because of the potential for constraining temperatures, so-called "vital" effects, and marine Mg fluxes. Previous work has shown that marine organisms produce a wide range of Mg isotope compositions that are species dependent, where Delta Mg-26/24(carb-sol) fractionations vary from -1 parts per thousand to -5 parts per thousand (e.g., Hippler et al., 2009, GCA). Constraining Mg isotope fractionation during inorganic carbonate precipitation is important because this serves as a baseline with which to compare biogenic samples, as well as constrain Mg cycling in natural environments. We report Mg isotope fractionation factors between Mg-bearing calcite and aqueous Mg (Mg/Ca molar ratio between 3:1 and 13:1) from 20 free-drift and one chemo-stat experiment conducted at temperatures between 4 degrees C and 45 degrees C, for solutions buffered at P-CO2 between 0.038% and 3%. Pure CaCO3 seed crystals were used to promote the heterogeneous growth of carbonate from solution, and to minimize kinetic isotope effects associated with nucleation and rapid precipitation from strongly super-saturated solutions. Under these conditions, calcite overgrowths that contained 0.8-14.9 mol% MgCO3 precipitated on the seed crystals. The measured Mg-62/Mg-24 fractionation factors between Mg-calcite and solution ( Delta Mg-26(cal-sol)) are modestly correlated with temperature, changing from -2.70 parts per thousand at 4 degrees C to -2.22 parts per thousand, at 45 degrees C. The fractionation factors are not correlated with experimental conditions (chemo-stat vs. free drift), Mg content of the overgrowth, P-CO2, or the Mg/Ca ratio of the solution. The temperature-dependence of the Mg isotope fractionation is: Delta Mg-26(cal-sol)=(-0.158 +/- 0.051) x 10(6)/T-2 - (0.74 +/- 0.56), where T is temperature in Kelvin. Fractionation of Mg isotopes in calcite is much less sensitive to temperature than oxygen isotope fractionation, which limits its application as a geothermometer. In contrast, the Mg isotope fractionations for biogenically precipitated Mg calcite vary greatly, suggesting its potential to discern "vital" effects in natural samples. Finally, the relatively small temperature effect on Mg isotope fractionation greatly simplifies use of Mg isotopes in modern or ancient marine systems to constrain Mg fluxes, including continental weathering. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Chakraborty, Suvankar; Romanek, Christopher S.] Univ Kentucky, Dept Earth & Environm Sci, Lexington, KY 40506 USA. [Li, Weiqiang; Chakraborty, Suvankar; Beard, Brian L.; Romanek, Christopher S.; Johnson, Clark M.] NASA, Astrobiol Inst, Washington, DC USA. RP Li, WQ (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM liweiq@gmail.com RI Li, Weiqiang/D-2975-2011 OI Li, Weiqiang/0000-0003-2648-7630 FU NASA Astrobiology Institute FX We thank Dr. Andrew Czaja for discussion on taxonomy of marine species. Prof. Huifang Xu provided Hawaiian seawater. This paper benefited from constructive comments from A. Immenhauser, E Tipper, and M. Fantle, as well as editorial comments by G. Henderson. This study was supported by the NASA Astrobiology Institute. NR 74 TC 40 Z9 45 U1 5 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 1 PY 2012 VL 333 BP 304 EP 316 DI 10.1016/j.epsl.2012.04.010 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 980HK UT WOS:000306884000030 ER PT J AU Canan, JW Gerstenmaier, WH AF Canan, James W. Gerstenmaier, William H. TI Converstaions with William H. Gerstenmaier SO AEROSPACE AMERICA LA English DT Editorial Material C1 [Gerstenmaier, William H.] NASA Headquarters, Human Explorat & Operat Directorate, Washington, DC USA. [Gerstenmaier, William H.] NASA, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD JUN PY 2012 VL 50 IS 6 BP 16 EP 19 PG 4 WC Engineering, Aerospace SC Engineering GA 981JD UT WOS:000306962000007 ER PT J AU Oehler, DZ Allen, CC AF Oehler, Dorothy Z. Allen, Carlton C. TI Giant Polygons and Mounds in the Lowlands of Mars: Signatures of an Ancient Ocean? SO ASTROBIOLOGY LA English DT Article DE Mars; Ocean; Giant polygons; Mounds; Lowlands; Chryse; Acidalia; Mud volcano ID LOWER CONGO BASIN; SUBSURFACE SEDIMENT MOBILIZATION; MID-NORWEGIAN MARGIN; SEA-FLOOR POCKMARKS; MUD VOLCANO FIELD; FAULT SYSTEMS; NORTHERN PLAINS; FLUID-FLOW; IMPACT CRATERS; UPPER MIOCENE AB This paper presents the hypothesis that the well-known giant polygons and bright mounds of the martian lowlands may be related to a common process-a process of fluid expulsion that results from burial of fine-grained sediments beneath a body of water. Specifically, we hypothesize that giant polygons and mounds in Chryse and Acidalia Planitiae are analogous to kilometer-scale polygons and mud volcanoes in terrestrial, marine basins and that the co-occurrence of masses of these features in Chryse and Acidalia may be the signature of sedimentary processes in an ancient martian ocean. We base this hypothesis on recent data from both Earth and Mars. On Earth, 3-D seismic data illustrate kilometer-scale polygons that may be analogous to the giant polygons on Mars. The terrestrial polygons form in fine-grained sediments that have been deposited and buried in passive-margin, marine settings. These polygons are thought to result from compaction/dewatering, and they are commonly associated with fluid expulsion features, such as mud volcanoes. On Mars, in Chryse and Acidalia Planitiae, orbital data demonstrate that giant polygons and mounds have overlapping spatial distributions. There, each set of features occurs within a geological setting that is seemingly analogous to that of the terrestrial, kilometer-scale polygons (broad basin of deposition, predicted fine-grained sediments, and lack of significant horizontal stress). Regionally, the martian polygons and mounds both show a correlation to elevation, as if their formation were related to past water levels. Although these observations are based on older data with incomplete coverage, a similar correlation to elevation has been established in one local area studied in detail with newer higher-resolution data. Further mapping with the latest data sets should more clearly elucidate the relationship(s) of the polygons and mounds to elevation over the entire Chryse-Acidalia region and thereby provide more insight into this hypothesis. C1 [Oehler, Dorothy Z.; Allen, Carlton C.] NASA, Astromat Res & Explorat Sci Directorate, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Oehler, DZ (reprint author), NASA, Astromat Res & Explorat Sci Directorate, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM dorothy.z.oehler@nasa.gov FU Astromaterials Research and Exploration Science (ARES) Directorate at Johnson Space Center (JSC); Innovative Research and Development program at JSC FX We are grateful to Dr. P. Van Rensbergen (Shell International Exploration and Technology, Rijswijk, The Netherlands) for discussions regarding the occurrence of giant polygons and mud volcanoes in offshore settings. We also are grateful to Drs. K.L. Tanaka, S.M. Clifford, and T.J. Parker for many helpful comments and suggestions. Support for this work was provided by the Astromaterials Research and Exploration Science (ARES) Directorate at Johnson Space Center (JSC) and by a grant from the Innovative Research and Development program at JSC. We thank the American Geophysical Union, the Geological Society of London, and John Wiley and Sons for granting permission to use portions of published images in Fig. 7 of this paper. NR 107 TC 8 Z9 8 U1 3 U2 8 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD JUN PY 2012 VL 12 IS 6 BP 601 EP 615 DI 10.1089/ast.2011.0803 PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 973QC UT WOS:000306373900007 PM 22731685 ER PT J AU Ansari, RR Nyeo, SL AF Ansari, Rafat R. Nyeo, Su-Long TI Submicron Particle Size Distributions by Dynamic Light Scattering with Non-Negative Least-Squares Algorithm SO CHINESE JOURNAL OF PHYSICS LA English DT Article ID MAXIMUM-ENTROPY ANALYSIS; CORRELATION SPECTROSCOPY DATA; POLYDISPERSITY; PROGRAM AB A method is proposed using the non-negative least-squares (NNLS) algorithm of Lawson and Hanson to analyze dynamic light scattering (DLS) data for the size distribution of particles in a colloidal dispersion. The NNLS algorithm gives sparse solutions, which are sensitive to the domains used for reconstructing the solutions. The method uses the algorithm to construct an optimal solution from a set of sparse solutions of different domains but of the same dimension. The sparse solutions are superimposed to give a general solution with its dimension being treated as a regularization parameter. An optimal solution is specified by a suitable value for the dimension, which is determined by either Morozov's criterion or the L-curve method. Simulated DLS data are generated from a unimodal and a bimodal distribution for evaluating the performance of the method, which is then applied to analyze experimental DLS data from the ocular lenses of a fetal calf and a Rhesus monkey to obtain optimal size distributions of the alpha-crystallins and crystallin aggregates in the ocular lenses. C1 [Ansari, Rafat R.] NASA, Biosci & Technol Branch, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. [Nyeo, Su-Long] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan. RP Ansari, RR (reprint author), NASA, Biosci & Technol Branch, John H Glenn Res Ctr Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Rafat.R.Ansari@nasa.gov; t14269@mail.ncku.edu.tw FU National Science Council of the Republic of China [NSC 98-2112-M-006-009] FX Dr. Ansari would like to acknowledge the support from the Research and Technology Directorate of the NASA Glenn Research Center, and Dr. Nyeo would like to acknowledge the support from the National Science Council of the Republic of China under the Contract No. NSC 98-2112-M-006-009. NR 21 TC 1 Z9 1 U1 1 U2 3 PU PHYSICAL SOC REPUBLIC CHINA PI TAIPEI PA CHINESE JOURNAL PHYSICS PO BOX 23-30, TAIPEI 10764, TAIWAN SN 0577-9073 J9 CHINESE J PHYS JI Chin. J. Phys. PD JUN PY 2012 VL 50 IS 3 BP 459 EP 477 PG 19 WC Physics, Multidisciplinary SC Physics GA 973MP UT WOS:000306364500010 ER PT J AU Johnson, NM Elsila, JE Kopstein, M Nuth, JA AF Johnson, Natasha M. Elsila, Jamie E. Kopstein, Mickey Nuth, Joseph A., III TI Carbon isotopic fractionation in Fischer-Tropsch-type reactions and relevance to meteorite organics SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID PRIMITIVE SOLAR NEBULA; MONOCARBOXYLIC ACIDS; MURCHISON METEORITE; HYDROCARBONS; ORIGIN; SYSTEM; MATTER; CONDENSATION; CATALYSIS; CHEMISTRY AB Fischer-Tropsch-type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend toward lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain. C1 [Johnson, Natasha M.; Elsila, Jamie E.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Kopstein, Mickey] Coll William & Mary, NAI Summer Intern, Williamsburg, VA 23187 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Johnson, NM (reprint author), NASA, Goddard Space Flight Ctr, Astrochem Lab, Code 691, Greenbelt, MD 20771 USA. EM natasha.m.johnson@nasa.gov RI Elsila, Jamie/C-9952-2012; Johnson, Natasha/E-3093-2012 FU NASA; Goddard Center for Astrobiology FX The authors thank F. Ferguson and J. Dworkin for both their assistance and comments. This manuscript was also improved thanks to comments by an anonymous reviewer and by I. Gilmour. This work was supported by NASA's Exobiology Research and Analysis program and the Goddard Center for Astrobiology. NR 31 TC 2 Z9 3 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2012 VL 47 IS 6 BP 1029 EP 1034 DI 10.1111/j.1945-5100.2012.01370.x PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 971BR UT WOS:000306177400004 ER PT J AU Lim, T Kim, H Meyyappan, M Ju, S AF Lim, Taekyung Kim, Hwansoo Meyyappan, M. Ju, Sanghyun TI Photostable Zn2SnO4 Nanowire Transistors for Transparent Displays SO ACS NANO LA English DT Article DE photostability; Zn2SnO4; nanowire; transistors; display ID ACTIVE-MATRIX DISPLAYS; THIN-FILM TRANSISTORS; LIGHT-EMITTING-DIODE; OPTICAL-PROPERTIES; ZNO NANOWIRES; PHOTOLUMINESCENCE PROPERTIES; OXIDE NANOWIRES; SINGLE-CRYSTAL; PHOTO-LEAKAGE; PIXEL CIRCUIT AB Although oxide nanowires offer advantages for next-generation transparent display applications, they are also one of the most challenging materials for this purpose. Exposure of semiconducting channel areas of oxide nanowire transistors produces an undesirable increase in the photocurrent, which may result in unstable device operation. In this study, we have developed a Zn2SnO4 nanowire transistor that operates stably regardless of changes in the external illumination. In particular, after exposure to a light source of 2100 lx, the threshold voltage (V-th) showed a negative shift of less than 0.4 V, and the subthreshold slope (SS) changed by similar to 0.1 V/dec. ZnO or SnO2 nanowire transistors, in contrast, showed 1.5-2.0 V negative shift in V-th and an SS change of similar to 0.3 V/dec under the same conditions. Furthermore, the Zn2SnO4 nanowire transistors returned to their initial state immediately after the light source was turned off, unlike those using the other two nanowires. Thus, Zn2SnO4 nanowires achieve photostability without the application of a black material or additional processing, minimizing the photocurrent effect for display devices. C1 [Lim, Taekyung; Kim, Hwansoo; Ju, Sanghyun] Kyonggi Univ, Dept Phys, Suwon 443760, Gyeonggi Do, South Korea. [Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Meyyappan, M.] POSTECH, Div IT Convergence Eng, Pohang, South Korea. RP Ju, S (reprint author), Kyonggi Univ, Dept Phys, Suwon 443760, Gyeonggi Do, South Korea. EM shju@kgu.ac.kr FU National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2011-0023219, 2011-0019133, 2011K000627]; Ministry of Education, Science and Technology through National Research Foundation of Korea [R31-10100] FX This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0023219, 2011-0019133, and 2011K000627). The World Class University program at POSTECH funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31-10100) is also acknowledged. NR 45 TC 13 Z9 13 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUN PY 2012 VL 6 IS 6 BP 4912 EP 4920 DI 10.1021/nn300401w PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 963YQ UT WOS:000305661300038 PM 22578094 ER PT J AU Rauscher, BJ Stahle, C Hill, RJ Greenhouse, M Beletic, J Babu, S Blake, P Cleveland, K Cofie, E Eegholm, B Engelbracht, CW Hall, DNB Hoffman, A Jeffers, B Jhabvala, C Kimble, RA Kohn, S Kopp, R Lee, D Leidecker, H Lindler, D McMurray, RE Misselt, K Mott, DB Ohl, R Pipher, JL Piquette, E Polis, D Pontius, J Rieke, M Smith, R Tennant, WE Wang, LQ Wen, YT Willmer, CNA Zandian, M AF Rauscher, Bernard J. Stahle, Carl Hill, Robert J. Greenhouse, Matthew Beletic, James Babu, Sachidananda Blake, Peter Cleveland, Keith Cofie, Emmanuel Eegholm, Bente Engelbracht, C. W. Hall, Donald N. B. Hoffman, Alan Jeffers, Basil Jhabvala, Christine Kimble, Randy A. Kohn, Stanley Kopp, Robert Lee, Don Leidecker, Henning Lindler, Don McMurray, Robert E., Jr. Misselt, Karl Mott, D. Brent Ohl, Raymond Pipher, Judith L. Piquette, Eric Polis, Dan Pontius, Jim Rieke, Marcia Smith, Roger Tennant, W. E. Wang, Liqin Wen, Yiting Willmer, Christopher N. A. Zandian, Majid TI Commentary: JWST near-infrared detector degradation-finding the problem, fixing the problem, and moving forward SO AIP ADVANCES LA English DT Editorial Material ID WEBB-SPACE-TELESCOPE AB The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared-optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 mu m cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article, we present the two public DD-FRB "Executive Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, some recent measurements showing that the performance of the improved design meets JWST requirements, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4733534] C1 [Rauscher, Bernard J.] NASA, Goddard Space Flight Ctr, NIRSpec Detector, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Stahle, Carl] NASA, Goddard Space Flight Ctr, Detector Degradat Failure Review Board, Instrument Syst & Technol Div, Greenbelt, MD 20771 USA. [Hill, Robert J.] NASA, Goddard Space Flight Ctr, Detector Degradat Failure Review Board, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Greenhouse, Matthew] NASA, Goddard Space Flight Ctr, Integrated Sci Instruments Module Project, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Beletic, James; Kopp, Robert; Lee, Don; Piquette, Eric; Tennant, W. E.; Zandian, Majid] Teledyne Imaging Sensors, Camarillo, CA 93012 USA. [Babu, Sachidananda; Jhabvala, Christine; Mott, D. Brent; Wen, Yiting] NASA, Goddard Space Flight Ctr, Detector Syst Branch, Greenbelt, MD 20771 USA. [Blake, Peter; Eegholm, Bente; Ohl, Raymond] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. [Cleveland, Keith] NASA, Goddard Space Flight Ctr, Mission Assurance Branch, Greenbelt, MD 20771 USA. [Cofie, Emmanuel; Pontius, Jim] NASA, Goddard Space Flight Ctr, Mech Syst Anal & Simulat Branch, Greenbelt, MD 20771 USA. [Engelbracht, C. W.; Misselt, Karl; Willmer, Christopher N. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Hall, Donald N. B.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Hoffman, Alan] Acumen Sci, Goleta, CA 93117 USA. [Jeffers, Basil] NASA, Goddard Space Flight Ctr, Parts Engn Branch, Greenbelt, MD 20771 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Integrat & Test Project, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Kohn, Stanley] Aerosp Corp, El Segundo, CA 90245 USA. [Leidecker, Henning] NASA, Goddard Space Flight Ctr, Elect Engn Div, Greenbelt, MD 20771 USA. [McMurray, Robert E., Jr.] NASA, Ames Res Ctr, Instrument Technol Branch, Moffett Field, CA 94035 USA. [Pipher, Judith L.] Univ Rochester, Dept Phys & Astron, FGS Detector, Rochester, NY 14627 USA. [Polis, Dan; Wang, Liqin] NASA, Goddard Space Flight Ctr, Mat Engn Branch, Greenbelt, MD 20771 USA. [Rieke, Marcia] Univ Arizona, Steward Observ, NIRCam, Tucson, AZ 85721 USA. [Smith, Roger] CALTECH, Pasadena, CA 91125 USA. [Hill, Robert J.] Conceptual Analyt LLC, Glenn Dale, MD USA. [Eegholm, Bente; Lindler, Don] Sigma Space Corp, Lanham, MD 20706 USA. [Wang, Liqin] Ball Aerosp, Boulder, CO 80301 USA. RP Rauscher, BJ (reprint author), NASA, Goddard Space Flight Ctr, NIRSpec Detector, Observat Cosmol Lab, Greenbelt, MD 20771 USA. EM Bernard.J.Rauscher@nasa.gov NR 13 TC 17 Z9 17 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUN PY 2012 VL 2 IS 2 AR 021901 DI 10.1063/1.4733534 PG 18 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 966IO UT WOS:000305831300001 ER PT J AU Bernardini, F de Martino, D Falanga, M Mukai, K Matt, G Bonnet-Bidaud, JM Masetti, N Mouchet, M AF Bernardini, F. de Martino, D. Falanga, M. Mukai, K. Matt, G. Bonnet-Bidaud, J. -M. Masetti, N. Mouchet, M. TI Characterization of new hard X-ray cataclysmic variables SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE binaries: close; X-rays: binaries; accretion, accretion disks; novae, cataclysmic variables ID STATIONARY RADIATION HYDRODYNAMICS; PHOTON IMAGING CAMERA; BG-CANIS-MINORIS; INTERMEDIATE POLARS; WHITE-DWARF; XMM-NEWTON; CIRCULAR-POLARIZATION; LUMINOSITY FUNCTION; XSS J12270-4859; ACCRETION FLOWS AB Aims. We aim at characterizing a sample of nine new hard X-ray selected cataclysmic variable (CVs), to unambiguously identify them as magnetic systems of the intermediate polar (IP) type. Methods. We performed detailed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The broad band X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Results. Strong X-ray pulses at the white dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGR J08390-4833, IGR J18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 posses a soft X-ray optically thick component at kT similar to 80 eV. An intense K-alpha Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are also estimated. Conclusions. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs, a feature that needs future exploration. The addition of two systems to the subgroup of soft X-ray IPs confirms a relatively large (similar to 30%) incidence. C1 [Bernardini, F.; de Martino, D.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Falanga, M.] ISSI, CH-3012 Bern, Switzerland. [Mukai, K.] NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, X Ray Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Matt, G.] Univ Roma III, Dipartimento Fis, I-00146 Rome, Italy. [Bonnet-Bidaud, J. -M.] CEA Saclay, DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Masetti, N.] INAF Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Mouchet, M.] Univ Paris 07, Lab APC, F-75005 Paris, France. [Mouchet, M.] Observ Paris, Sect Meudon, LUTH, F-92195 Meudon, France. RP Bernardini, F (reprint author), INAF Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy. EM federico.bernardini@oa-roma.inaf.it; demartino@oacn.inaf.it; mfalanga@issibern.ch; koji.mukai@nasa.gov; matt@fis.uniroma3.it; bonnetbidaud@cea.fr; nicola.masetti@iasfbo.inaf.it; martine.mouchet@obspm.fr OI Bernardini, Federico/0000-0001-5326-2010; de Martino, Domitilla/0000-0002-5069-4202; Masetti, Nicola/0000-0001-9487-7740 FU NASA; National Science Foundation; ASI [ASI/INAF I/009/10/0] FX This publication also makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (California Institute of Technology), funded by NASA and National Science Foundation. F.B. and D.d.M. acknowledge financial support from ASI under contract ASI/INAF I/009/10/0. NR 72 TC 20 Z9 20 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A22 DI 10.1051/0004-6361/201219233 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300149 ER PT J AU Bethermin, M Le Floc'h, E Ilbert, O Conley, A Lagache, G Amblard, A Arumugam, V Aussel, H Berta, S Bock, J Boselli, A Buat, V Casey, CM Castro-Rodriguez, N Cava, A Clements, DL Cooray, A Dowell, CD Eales, S Farrah, D Franceschini, A Glenn, J Griffin, M Hatziminaoglou, E Heinis, S Ibar, E Ivison, RJ Kartaltepe, JS Levenson, L Magdis, G Marchetti, L Marsden, G Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Roseboom, IG Rowan-Robinson, M Salvato, M Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Viero, M Wang, L Xu, CK Zemcov, M AF Bethermin, M. Le Floc'h, E. Ilbert, O. Conley, A. Lagache, G. Amblard, A. Arumugam, V. Aussel, H. Berta, S. Bock, J. Boselli, A. Buat, V. Casey, C. M. Castro-Rodriguez, N. Cava, A. Clements, D. L. Cooray, A. Dowell, C. D. Eales, S. Farrah, D. Franceschini, A. Glenn, J. Griffin, M. Hatziminaoglou, E. Heinis, S. Ibar, E. Ivison, R. J. Kartaltepe, J. S. Levenson, L. Magdis, G. Marchetti, L. Marsden, G. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Roseboom, I. G. Rowan-Robinson, M. Salvato, M. Schulz, B. Scott, D. Seymour, N. Shupe, D. L. Smith, A. J. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Viero, M. Wang, L. Xu, C. K. Zemcov, M. TI HerMES: deep number counts at 250 mu m, 350 mu m and 500 mu m in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; diffuse radiation; galaxies: statistics; galaxies: photometry; submillimeter: galaxies; submillimeter: diffuse background ID HERSCHEL-SPIRE INSTRUMENT; LESS-THAN 2; STAR-FORMATION; LUMINOSITY FUNCTION; DUSTY GALAXIES; SCUBA GALAXIES; SUBMILLIMETER; EVOLUTION; SPITZER; BLAST AB Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 mu m, 350 mu m, and 500 mu m, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (similar to 20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 mu m sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 mu m catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to similar to 2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5s confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-sigma. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1 (+2.6)(2.3) nW m(-2) sr(-1), 6.5 (+1.7)(1.6) nW m(-2) sr(-1), and 2.8 (+0.9)(0.8) nW m(-2) sr(-1) at 250 mu m, 350 mu m, and 500 mu m, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 mu m and 1000 mu m: 26(-3)(+7) nW m(-2) sr(-1). C1 [Bethermin, M.; Le Floc'h, E.; Aussel, H.; Magdis, G.; Panuzzo, P.] Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu,CNRS, F-91191 Gif Sur Yvette, France. [Bethermin, M.; Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Bethermin, M.; Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Ilbert, O.; Boselli, A.; Buat, V.; Heinis, S.] Univ Aix Marseille, Lab Astrophys Marseille, OAMP, CNRS, F-13388 Marseille 13, France. [Conley, A.; Glenn, J.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA. [Amblard, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Arumugam, V.; Ivison, R. J.; Roseboom, I. G.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Berta, S.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany. [Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J. D.; Viero, M.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Casey, C. M.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Castro-Rodriguez, N.; Perez-Fournon, I.] IAC, Tenerife 38200, Spain. [Castro-Rodriguez, N.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Cava, A.] Univ Complutense Madrid, Fac CC, Dept Astrofis, E-28040 Madrid, Spain. [Clements, D. L.; O'Halloran, B.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Eales, S.; Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Kartaltepe, J. S.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Marsden, G.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Omont, A.] UPMC Univ Paris 6, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Salvato, M.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Salvato, M.] Excellence Cluster, D-85748 Garching, Germany. [Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Seymour, N.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Trichas, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Vaccari, M.] Univ Western Cape, Dept Phys, Astrophys Grp, ZA-7535 Cape Town, South Africa. RP Bethermin, M (reprint author), Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu,CNRS, Pt Courrier 131, F-91191 Gif Sur Yvette, France. EM matthieu.bethermin@cea.fr RI Magdis, Georgios/C-7295-2014; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; OI Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Bethermin, Matthieu/0000-0002-3915-2015 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); UKSA (UK); NASA (USA); ERC-StG [UPGAL 240039]; Science and Technology Facilities Council [ST/F002858/1, ST/I000976/1]; Italian Space Agency (ASI Herschel Science Contract) [I/005/07/0] FX We thank the COSMOS and GOODS teams for releasing publicly their data. Thanks to Georges Helou for suggesting that the distribution of the colors is more likely log-normal than normal. MB thank Herve Dole for his advices about stacking, and Elizabeth Fernandez for providing a mock catalog from the Bethermin et al. model. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). MB acknowledge financial support from ERC-StG grant UPGAL 240039. SJO acknowledge support from the Science and Technology Facilities Council [grant number ST/F002858/1] and [grant number ST/I000976/1]. M. V. was supported by the Italian Space Agency (ASI Herschel Science Contract I/005/07/0). The data presented in this paper will be released through the Herschel Database in Marseille HeDaM (hedam.oamp.fr/HerMES). NR 73 TC 72 Z9 72 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A58 DI 10.1051/0004-6361/201118698 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300063 ER PT J AU Gicquel, A Bockelee-Morvan, D Zakharov, VV Kelley, MS Woodward, CE Wooden, DH AF Gicquel, A. Bockelee-Morvan, D. Zakharov, V. V. Kelley, M. S. Woodward, C. E. Wooden, D. H. TI Investigation of dust and water ice in comet 9P/Tempel 1 from Spitzer observations of the Deep Impact event SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: comet 9P/Tempel 1; methods: data analysis; methods: numerical; infrared: general ID TELESCOPE OBSERVATIONS; SPACE-TELESCOPE; IR OBSERVATIONS; EJECTA PLUME; GRAINS; COMET-9P/TEMPEL-1; ENCOUNTER; SPECTRA; NUCLEUS; COMET-TEMPEL-1 AB Context. The Spitzer spacecraft monitored the Deep Impact event on 2005 July 4 providing unique infrared spectrophotometric data that enabled exploration of comet 9P/Tempel 1's activity and coma properties prior to and after the collision of the impactor. Aims. The time series of spectra take with the Spitzer Infrared Spectrograph (IRS) show fluorescence emission of the H2O nu(2) band at 6.4 mu m superimposed on the dust thermal continuum. These data provide constraints on the properties of the dust ejecta cloud (dust size distribution, velocity, and mass), as well as on the water component (origin and mass). Our goal is to determine the dust-to-ice ratio of the material ejected from the impact site. Methods. The temporal evolution of the continuum was analyzed using a dust thermal model which considers amorphous carbon and intimate silicate-carbon mixtures. The water emission was extracted from the spectra and the water columns within the Spitzer extraction aperture were inferred using a fluorescence excitation model. Time-dependent models simulating the development of the ejecta cloud and the sublimation of icy grains were developed to interpret the temporal evolution of both dust and water emissions within the field of view. Results. Both the color temperature of the grains in the ejecta cloud (375 +/- 5 K) and their size distribution show that a large quantity of submicron grains were ejected by the impact. The velocity of the smallest grains is 230 m s(-1), with a power index for the size dependence of 0.3-0.5, in agreement with gas loading. The total mass of dust is (0.7-1.2) x 10(5) kg for grain sizes 0.1-1 mu m and (0.5-2.1) x 10(6) kg for sizes 0.1-100 mu m. A sustained production of water is observed, which can be explained by the sublimation of pure ice grains with sizes less than 1 mu m and comprising a mass of ice of (0.8-1.8) x 10(7) kg. The contribution of dirty ice grains to the ice budget is negligible. Assuming that water was essentially produced by icy grains present in the ejecta cloud, our measurements suggest a very high ice-to-dust ratio of about 10 in the excavated material, which greatly exceeds the gas-to-dust production rate ratio of similar to 0.5 measured for the background coma. Alternately, if a large amount of material felt back to the surface and sublimated, ice-to-dust ratios of 1-3 are not excluded. A better understanding of the cratering event on 9P/Tempel 1 is required to disentangle between the two hypotheses. Evidence for grain fragmentation in the ejecta cloud is found in the data. The pre-impact water production rate is measured to be (4.7 +/- 0.7) x 10(27) mol s(-1). C1 [Gicquel, A.; Bockelee-Morvan, D.; Zakharov, V. V.] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Kelley, M. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Woodward, C. E.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Wooden, D. H.] NASA, Ames Res Ctr, Div Space Sci, Washington, DC USA. RP Gicquel, A (reprint author), Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM adeline.gicquel@obspm.fr; dominique.bockelee@obspm.fr; vladimir.zakharov@obspm.fr; msk@astro.umd.edu; chelsea@astro.umn.edu; dwooden@me.com OI Kelley, Michael/0000-0002-6702-7676 FU National Science Foundation [AST-0706980]; NASA [NNX09AW16A, 08-PATM08-0080] FX We thank D. Harker for enlightening discussions, and E. Lellouch for providing us the Mie code. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research made use of Tiny Tim/Spitzer, developed by John Krist for the Spitzer Science Center. The Center is managed by the California Institute of Technology under a contract with NASA. C. E. Woodward also acknowledges support from National Science Foundation grant AST-0706980. M. S. Kelley acknowledges support from NASA Planetary Atmospheres grant NNX09AW16A. D. H. Wooden acknowledges support from NASA Planetary Atmospheres grant 08-PATM08-0080. NR 59 TC 5 Z9 5 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A119 DI 10.1051/0004-6361/201118718 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300067 ER PT J AU Graf, UU Simon, R Stutzki, J Colgan, SWJ Guan, X Gusten, R Hartogh, P Honingh, CE Hubers, HW AF Graf, U. U. Simon, R. Stutzki, J. Colgan, S. W. J. Guan, X. Guesten, R. Hartogh, P. Honingh, C. E. Huebers, H. -W. TI [(CII)-C-12] and [(CII)-C-13] 158 mu m emission from NGC 2024: Large column densities of ionized carbon SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: atoms; ISM: clouds; ISM: individual objects: NGC 2024; photon-dominated region (PDR) ID PHOTON-DOMINATED REGIONS; ORION-B; PROTOSTELLAR CONDENSATIONS; MOLECULAR CLOUDS; LINE EMISSION; NGC-2024 AB Context. We analyze the NGC 2024 HII region and molecular cloud interface using [(CII)-C-12] and [(CII)-C-13] observations. Aims. We attempt to gain insight into the physical structure of the interface layer between the molecular cloud and the HII region. Methods. Observations of [(CII)-C-12] and [(CII)-C-13] emission at 158 mu m with high spatial and spectral resolution allow us to study the detailed structure of the ionization front and estimate the column densities and temperatures of the ionized carbon layer in the photon-dominated region. Results. The [(CII)-C-12] emission closely follows the distribution of the 8 mu m continuum. Across most of the source, the spectral lines have two velocity peaks similar to lines of rare CO isotopes. The [(CII)-C-13] emission is detected near the edge-on ionization front. It has only a single velocity component, which implies that the [(CII)-C-12] line shape is caused by self-absorption. An anomalous hyperfine line-intensity ratio observed in [(CII)-C-13] cannot yet be explained. Conclusions. Our analysis of the two isotopes results in a total column density of N(H) approximate to 1.6 x 10(23) cm(-2) in the gas emitting the [CII] line. A large fraction of this gas has to be at a temperature of several hundred K. The self-absorption is caused by a cooler (T <= 100 K) foreground component containing a column density of N(H) approximate to 10(22) cm(-2). C1 [Graf, U. U.; Simon, R.; Stutzki, J.; Guan, X.; Honingh, C. E.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Colgan, S. W. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Huebers, H. -W.] Inst Planetenforsch, Deutsch Zentrum Luft & Raumfahrt, D-12489 Berlin, Germany. [Huebers, H. -W.] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany. RP Graf, UU (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. EM graf@ph1.uni-koeln.de RI Colgan, Sean/M-4742-2014 FU NASA [NAS2-97001]; DLR [50 OK 0901] FX We thank Volker Ossenkopf and Markus Rollig for useful discussions. We also thank the SOFIA engineering and operations teams whose tireless support and good-spirit teamwork has been essential for the GREAT accomplishments during Early Science, and say Herzlichen Dank to the DSI telescope engineering team. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. NR 25 TC 13 Z9 13 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L16 DI 10.1051/0004-6361/201218930 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300113 ER PT J AU Khanzadyan, T Davis, CJ Aspin, C Froebrich, D Smith, MD Magakian, TY Movsessian, T Moriarty-Schieven, GH Nikogossian, EH Pyo, TS Beck, TL AF Khanzadyan, T. Davis, C. J. Aspin, C. Froebrich, D. Smith, M. D. Magakian, T. Yu. Movsessian, T. Moriarty-Schieven, G. H. Nikogossian, E. H. Pyo, T. -S. Beck, T. L. TI A wide-field near-infrared H-2 2.122 mu m line survey of the Braid Nebula star formation region in Cygnus OB7 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; ISM: jets and outflows; ISM: clouds ID FU-ORIONIS OBJECTS; T TAURI STARS; MOLECULAR CLOUDS; SKY SURVEY; PROTOSTELLAR JETS; YOUNG STARS; BURST MODE; MILKY-WAY; ACCRETION; EVOLUTION AB Context. Outflows and jets are the first signposts of ongoing star formation processes in any molecular cloud, yet their study in optical bands provides limited results due to the large extinction present. Near-infrared unbiased wide-field observations in the H-2 1-0 S(1) line at 2.122 mu m alleviates the problem, enabling us to detect more outflows and trace them closer to their driving sources. Aims. As part of a large-scale multi-waveband study of ongoing star formation in the Braid Nebula star formation region, we focus on a one square degree region that includes Lynds Dark Nebula 1003 and 1004. Our goal is to find all of the near-infrared outflows, uncover their driving sources and estimate their evolutionary phase. Methods. We use near-infrared wide-field observations obtained with WFCAM on UKIRT, in conjunction with previously-published optical and archival MM data, to search for outflows and identify their driving sources; we subsequently use colour colour analysis to determine the evolutionary phase of each source. Results. Within a one square degree field we have identified 37 complex MHOs, most of which are new. After combining our findings with other wide-field, multi-waveband observations of the same region we were able to discern 28 outflows and at least 18 protostars. Our analysis suggests that these protostars are younger and/or more energetic than those of the Taurus-Auriga region. The outflow data enable us to suggest connection between outflow ejection and repetitive FU Ori outburst events. We also find that star formation progresses from W to E across the investigated region. C1 [Khanzadyan, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Davis, C. J.] Joint Astron Ctr, Hilo, HI 96720 USA. [Davis, C. J.] NASA HQ, Div Astrophys, Washington, DC 20546 USA. [Aspin, C.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Froebrich, D.; Smith, M. D.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Magakian, T. Yu.; Movsessian, T.; Nikogossian, E. H.] VA Ambartsumyan Byurakan Astrophys Observ, Aragatsotn Reg 0213, Armenia. [Moriarty-Schieven, G. H.] NRC Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Pyo, T. -S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Beck, T. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Khanzadyan, T (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM tkhanzadyan@mpifr-bonn.mpg.de FU Science and Technology Facilities Council; EU; National Aeronautics and Space Administration FX This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France as well as software provided by the UK's AstroGrid Virtual Observatory Project, which is funded by the Science and Technology Facilities Council and through the EU's Framework 6 programme. This research has made use of the NASA/ IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. In particular data from IRAS, MSX, AKARI and 2MASS missions were used. The authors wish to recognise and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this sacred mountain. NR 74 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A111 DI 10.1051/0004-6361/201219124 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300138 ER PT J AU Klochkov, D Doroshenko, V Santangelo, A Staubert, R Ferrigno, C Kretschmar, P Caballero, I Wilms, J Kreykenbohm, I Pottschmidt, K Rothschild, RE Wilson-Hodge, CA Puhlhofer, G AF Klochkov, D. Doroshenko, V. Santangelo, A. Staubert, R. Ferrigno, C. Kretschmar, P. Caballero, I. Wilms, J. Kreykenbohm, I. Pottschmidt, K. Rothschild, R. E. Wilson-Hodge, C. A. Puehlhofer, G. TI Outburst of GX 304-1 monitored with INTEGRAL: positive correlation between the cyclotron line energy and flux SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: binaries; stars: neutron; accretion, accretion disks ID X-RAY-SPECTRUM; DISCOVERY; ACCRETION; GX-304-1; PULSARS; IMAGER; RXTE AB Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-ray spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source. C1 [Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Puehlhofer, G.] Univ Tubingen IAAT, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Ferrigno, C.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Kretschmar, P.] ESAC, ESA, Sci Operat Dept, Madrid, Spain. [Caballero, I.] Univ P Diderot, CEA Saclay, DSM IRFU SAp, UMR AIM CNRS CEA 7158, F-91191 Gif Sur Yvette, France. [Wilms, J.; Kreykenbohm, I.] Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Wilms, J.; Kreykenbohm, I.] Erlangen Ctr Astroparticle Phys, D-96049 Bamberg, Germany. [Pottschmidt, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Wilson-Hodge, C. A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. RP Klochkov, D (reprint author), Univ Tubingen IAAT, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM klochkov@astro.uni-tuebingen.de RI Ferrigno, Carlo/H-4139-2012; Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013; OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803; Doroshenko, Victor/0000-0001-8162-1105; Kretschmar, Peter/0000-0001-9840-2048 FU Carl-Zeiss-Stiftung; BMWi under DLR [50 OR 1007]; ESA FX The work was supported by the Carl-Zeiss-Stiftung. J.W. and I. K. were partially supported by BMWi under DLR grant 50 OR 1007. This research is based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states. We thank the INTEGRAL team for the prompt scheduling of the TOO observations and support with the data reduction and calibration. We thank ISSI (Bern, Switzerland) for its hospitality during the collaboration meetings of our team. NR 23 TC 29 Z9 30 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L28 DI 10.1051/0004-6361/201219385 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300159 ER PT J AU Rizzo, JR Pedreira, A Bustos, MG Sotuela, I Larranaga, JR Ojalvo, L Franco, M Cernicharo, J Garcia-Miro, C Ceron, JMC Kuiper, TBH Vazquez, M Calvo, J Baquero, A AF Rizzo, J. R. Pedreira, A. Gutierrez Bustos, M. Sotuela, I. Larranaga, J. R. Ojalvo, L. Franco, M. Cernicharo, J. Garcia-Miro, C. Castro Ceron, J. M. Kuiper, T. B. H. Vazquez, M. Calvo, J. Baquero, A. TI The wideband backend at the MDSCC in Robledo A new facility for radio astronomy at Q- and K-bands SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: miscellaneous; instrumentation: spectrographs; techniques: spectroscopic; ISM: lines and bands; ISM: molecules; radio lines: general ID H2O MASERS; TMC-1; GHZ; ANTENNA; HC5N; LINE AB Context. The antennas of NASA's Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela are available as single-dish radio astronomical facilities during a significant percentage of their operational time. Current instrumentation includes two antennas of 70 and 34m in diameter, equipped with dual-polarization receivers in K (18-26 GHz) and Q (38-50 GHz) bands, respectively. Until mid-2011, the only backend available in MDSCC was a single spectral autocorrelator, which provides bandwidths from 2 to 16MHz. The limited bandwidth available with this autocorrelator seriously limited the science one could carry out at Robledo. Aims. We have developed and built a new wideband backend for the Robledo antennas, with the objectives (1) to optimize the available time and enhance the efficiency of radio astronomy in MDSCC; and (2) to tackle new scientific cases that were impossible to investigate with the existing autocorrelator. Methods. The features required for the new backend include (1) a broad instantaneous bandwidth of at least 1.5 GHz; (2) high-quality and stable baselines, with small variations in frequency along the whole band; (3) easy upgradability; and (4) usability for at least the antennas that host the K-and Q-band receivers. Results. The backend consists of an intermediate frequency (IF) processor, a fast Fourier transform spectrometer (FFTS), and the software that interfaces and manages the events among the observing program, antenna control, the IF processor, the FFTS operation, and data recording. The whole system was end-to-end assembled in August 2011, at the start of commissioning activities, and the results are reported in this paper. Frequency tunings and line intensities are stable over hours, even when using different synthesizers and IF channels; no aliasing effects have been measured, and the rejection of the image sideband was characterized. Conclusions. The new wideband backend fulfills the requirements and makes better use of the available time for radio astronomy, which opens new possibilities to potential users. The first setup provides 1.5 GHz of instantaneous bandwidth in a single polarization, using 8192 channels and a frequency resolution of 212 kHz; upgrades under way include a second FFTS card, and two high-resolution cores providing 100MHz and 500MHz of bandwidth, and 16 384 channels. These upgrades will permit simultaneous observations of the two polarizations with instantaneous bandwidths from 100MHz to 3GHz, and spectral resolutions from 7 to 212 kHz. C1 [Rizzo, J. R.; Gutierrez Bustos, M.; Cernicharo, J.] Ctr Astrobiol INTA CSIC, Madrid 28850, Spain. [Pedreira, A.; Larranaga, J. R.; Ojalvo, L.; Baquero, A.] Inst Nacl Tecn Aeroespacial, Madrid 28850, Spain. [Sotuela, I.; Garcia-Miro, C.; Castro Ceron, J. M.; Vazquez, M.; Calvo, J.] Madrid Deep Space Commun Complex, Madrid 28294, Spain. [Franco, M.; Kuiper, T. B. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rizzo, JR (reprint author), Ctr Astrobiol INTA CSIC, Ctra M-108,Km 4, Madrid 28850, Spain. EM ricardo@cab.inta-csic.es RI Rizzo, J. Ricardo/N-5879-2014 OI Rizzo, J. Ricardo/0000-0002-8443-6631 FU INTA [2009/PC0002CAB]; MICINN [AYA2006-14876, AYA2009-07304]; program CONSOLIDER INGENIO under grant Molecular Astrophysics: The Herschel and ALMA Era ASTROMOL [CSD2009-00038] FX The backend was funded mostly through INTA grant 2009/PC0002CAB. This paper has been partially supported by MICINN under grants AYA2006-14876 and AYA2009-07304, and by the program CONSOLIDER INGENIO 2010, under grant Molecular Astrophysics: The Herschel and ALMA Era ASTROMOL (Ref.: CSD2009-00038). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J.R.R. wishes to thank Clemens Thum and Salvador Sanchez (IRAM Granada) for their guidance in the first stages of the project. We are also indebted to Andreas Bell and Bernd Klein (MPIfR), and Ralf Henneberger (RPG), for their kind support about the FFTS and its libraries. We acknowledge our referee, Dr. Jeff Mangum, for thoroughly reading the manuscript, and for comments and suggestions that allowed us to greatly improve this paper. NR 15 TC 2 Z9 2 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR A63 DI 10.1051/0004-6361/201218833 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300087 ER PT J AU Sahai, R Morris, MR Werner, MW Gusten, R Wiesemeyer, H Sandell, G AF Sahai, R. Morris, M. R. Werner, M. W. Guesten, R. Wiesemeyer, H. Sandell, G. TI Probing the mass and structure of the Ring Nebula in Lyra with SOFIA/GREAT observations of the [CII] 158 micron line SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary nebulae: individual: NGC 6720; stars: winds, outflows; photon-dominated region (PDR); circumstellar matter; planetary nebulae: general ID YOUNG PLANETARY-NEBULAE; KINEMATICS; NGC-6720; GALAXIES; CARBON; HALOS AB We have obtained new velocity-resolved spectra of the [CII] 158 mu m line towards the Ring Nebula in Lyra (NGC 6720), one of the best-studied planetary nebulae, in order to probe its controversial 3-dimensional structure and to estimate the mass of circumstellar material in this object. We used the terahertz receiver GREAT aboard the SOFIA airborne telescope to obtain the [CII] spectra at eight locations within and outside the bright optical ring of NGC 6720. Emission was detected at all positions except for the most distant position along the nebula's minor axis, and generally covers a broad velocity range, Delta V similar to 50 km s(-1) (FWZI), except at a position along the major axis located just outside the optical ring, where it is significantly narrower (Delta V similar to 25 km s(-1)). The one narrow spectrum appears to be probing circumstellar material lying outside the main nebular shell that has not been accelerated by past fast wind episodes from the central star, and therefore most likely comes from equatorial and/or low-latitude regions of this multipolar nebula. Along lines-of-sight passing within about 10 '' of the nebular center, the CII column density is a factor 46 higher than the CO column density. The total mass of gas associated with the [CII] emission inside a circular region of diameter 87 ''.5 is at least 0.11 M-circle dot. A significant amount of [CII] flux arises from a photodissociation region immediately outside the bright optical ring, where we find a CII to CO ratio of >6.5, lower than that seen towards the central region. Comparing our data with lower-quality CI spectra, which indicate similarly large CI/CO ratios in NGC 6720, we conclude that the bulk of elemental carbon in NGC 6720 is divided roughly equally between CII and CI, and that the emissions from these species are far more robust tracers of circumstellar material than CO in this object and other evolved planetary nebulae. C1 [Sahai, R.; Werner, M. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astrophys, Los Angeles, CA 90095 USA. [Guesten, R.; Wiesemeyer, H.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Sandell, G.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sahai, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM raghvendra.sahai@jpl.nasa.gov FU Universities Space Research Association, Inc., under NASA [NAS2-97001]; Deutsches SOFIA Institut under DLR [50 OK 0901]; SOFIA; California Institute of Technology, under NASA; NASA through Long Term Space Astrophysics award FX This study is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA Science Mission Operations is operated by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. R.S.'s contribution to the research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Financial support was provided by NASA through a Long Term Space Astrophysics award to R.S. and M.M., and a SOFIA award to R.S. NR 20 TC 5 Z9 5 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L20 DI 10.1051/0004-6361/201219021 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300128 ER PT J AU Sandell, G Wiesemeyer, H Requena-Torres, MA Heyminck, S Gusten, R Stutzki, J Simon, R Graf, UU AF Sandell, G. Wiesemeyer, H. Requena-Torres, M. A. Heyminck, S. Guesten, R. Stutzki, J. Simon, R. Graf, U. U. TI GREAT [C II] and CO observations of the BD+40 degrees 4124 region SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE circumstellar matter; ISM: molecules; stars: pre-main sequence; photon-dominated region (PDR); stars: variables: T Tauri, Herbig Ae/Be ID HERBIG-AE/BE STARS; AEBE STARS; ISO-LWS; SPECTROSCOPY; CLOUDS; GAS AB The BD+40 degrees 4124 region was observed with high angular and spectral resolution with the German heterodyne instrument GREAT in CO J = 13 -> 12 and [C II] on SOFIA. These observations show that the [C II] emission is very strong in the reflection nebula surrounding the young Herbig Ae/Be star BD+40 degrees 4124. A strip map over the nebula shows that the [C II] emission approximately coincides with the optical nebulosity. The strongest [C II] emission is centered on the B2 star and a deep spectrum shows that it has faint wings, which suggests that the ionized gas is expanding. We also see faint CO J = 13 -> 12 at the position of BD+40 degrees 4124, which suggests that the star may still be surrounded by an accretion disk. We also detected [C II] emission and strong CO J = 13 -> 12 toward V1318 Cyg. Here the [C I] emission is fainter than in BD+40 degrees 4124 and appears to come from the outflow, since it shows red and blue wings with very little emission at the systemic velocity, where the CO emission is quite strong. It therefore appears that in the broad ISO beam the [C II] emission was dominated by the reflection nebula surrounding BD+40 degrees 4124, while the high J CO lines originated from the adjacent younger and more deeply embedded binary system V1318 Cyg. C1 [Sandell, G.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wiesemeyer, H.; Requena-Torres, M. A.; Heyminck, S.; Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Stutzki, J.; Simon, R.; Graf, U. U.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. RP Sandell, G (reprint author), NASA, SOFIA USRA, Ames Res Ctr, MS 232-12,Bldg N232,Rm 146,POB 1, Moffett Field, CA 94035 USA. EM Goran.H.Sandell@nasa.gov FU NASA [NAS2-97001]; DLR [50 OK 0901] FX Based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. We also thank Hans Zinnecker for a critical reading of the paper. NR 20 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L14 DI 10.1051/0004-6361/201218920 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300107 ER PT J AU Schneider, N Gusten, R Tremblin, P Hennemann, M Minier, V Hill, T Comeron, F Requena-Torres, MA Kraemer, KE Simon, R Rollig, M Stutzki, J Djupvik, AA Zinnecker, H Marston, A Csengeri, T Cormier, D Lebouteiller, V Audit, E Motte, F Bontemps, S Sandell, G Allen, L Megeath, T Gutermuth, RA AF Schneider, N. Guesten, R. Tremblin, P. Hennemann, M. Minier, V. Hill, T. Comeron, F. Requena-Torres, M. A. Kraemer, K. E. Simon, R. Roellig, M. Stutzki, J. Djupvik, A. A. Zinnecker, H. Marston, A. Csengeri, T. Cormier, D. Lebouteiller, V. Audit, E. Motte, F. Bontemps, S. Sandell, G. Allen, L. Megeath, T. Gutermuth, R. A. TI Globules and pillars seen in the [CII] 158 mu m line with SOFIA SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: individual objects: Cygnus; ISM: molecules; ISM: kinematics and dynamics; radio lines: ISM ID COMPACT HII-REGIONS; STAR-FORMATION; PROTOSTELLAR CANDIDATES; CYGNUS OB2; RADIATION; EMISSION; CLUSTERS; OBJECTS; CLOUDS AB Molecular globules and pillars are spectacular features, found only in the interface region between a molecular cloud and an H II-region. Impacting far-ultraviolet (FUV) radiation creates photon-dominated regions (PDRs) on their surfaces that can be traced by typical cooling lines. With the GREAT receiver onboard SOFIA we mapped and spectrally resolved the [CII] 158 mu m atomic fine-structure line and the highly excited (CO)-C-12 J = 11 -> 10 molecular line from three objects in Cygnus X (a pillar, a globule, and a strong IRAS source). We focus here on the globule and compare our data with existing Spitzer data and recent Herschel open-time PACS data. Extended [CII] emission and more compact CO-emission was found in the globule. We ascribe this emission mainly to an internal PDR, created by a possibly embedded star-cluster with at least one early B-star. However, external PDR emission caused by the excitation by the Cyg OB2 association cannot be fully excluded. The velocity-resolved [CII] emission traces the emission of PDR surfaces, possible rotation of the globule, and high-velocity outflowing gas. The globule shows a velocity shift of similar to 2 kms(-1) with respect to the expanding HII-region, which can be understood as the residual turbulence of the molecular cloud from which the globule arose. This scenario is compatible with recent numerical simulations that emphazise the effect of turbulence. It is remarkable that an isolated globule shows these strong dynamical features traced by the [CII]-line, but it demands more observational studies to verify if there is indeed an embedded cluster of B-stars. C1 [Schneider, N.; Tremblin, P.; Hennemann, M.; Minier, V.; Hill, T.; Cormier, D.; Lebouteiller, V.; Audit, E.; Motte, F.] Univ Paris Diderot, Lab AIM CNRS, IRFU SAp CEA DSM, F-91191 Gif Sur Yvette, France. [Guesten, R.; Requena-Torres, M. A.; Csengeri, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Comeron, F.] ESO, D-85748 Garching, Germany. [Kraemer, K. E.] Boston Coll, Inst Sci Res, Boston, MA 02467 USA. [Simon, R.; Roellig, M.; Stutzki, J.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Djupvik, A. A.] NOT, Santa Cruz De La Palma 38700, Spain. [Zinnecker, H.; Sandell, G.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Zinnecker, H.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Marston, A.] ESA, ESAC, Herschel Sci Ctr, Madrid 28040, Spain. [Bontemps, S.] Univ Bordeaux, LAB, UMR 5804, F-33270 Floirac, France. [Bontemps, S.] CNRS, LAB, UMR 5804, F-33270 Floirac, France. [Allen, L.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Megeath, T.] Univ Toledo, Dep Phys & Astron, Toledo, OH 43606 USA. [Gutermuth, R. A.] Univ Massachusetts, Dep Astron, Amherst, MA 01003 USA. RP Schneider, N (reprint author), Univ Paris Diderot, Lab AIM CNRS, IRFU SAp CEA DSM, F-91191 Gif Sur Yvette, France. EM nschneid@cea.fr FU NASA [NAS2-97001]; DLR [50 OK 0901] FX Based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. NR 34 TC 16 Z9 16 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L18 DI 10.1051/0004-6361/201218917 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300106 ER PT J AU Simon, R Schneider, N Stutzki, J Gusten, R Graf, UU Hartogh, P Guan, X Staguhn, JG Benford, DJ AF Simon, R. Schneider, N. Stutzki, J. Guesten, R. Graf, U. U. Hartogh, P. Guan, X. Staguhn, J. G. Benford, D. J. TI SOFIA observations of S106: dynamics of the warm gas SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE HII regions; ISM: individual objects: S106; ISM: kinematics and dynamics; photon-dominated region (PDR); ISM: clouds ID FAR-INFRARED SPECTROSCOPY; YOUNG STELLAR OBJECTS; H-II REGION; MOLECULAR GAS; MULTIWAVELENGTH; CLOUDS; MICRON; S-106; DISK; H2O AB Context. The HII region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm, partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. We disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas, and we investigate the nature of the dark lane. Methods. We used the heterodyne receiver GREAT onboard on SOFIA to observe velocity resolved spectral lines of [CII] and CO 11 -> 10 in comparison with so far unpublished submm continuum data at 350 mu m (SHARC-II) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [CII] lines are found to be bright and very broad, tracing high velocity gas close to the interface of molecular cloud and HII region. CO 11 -> 10 emission is more confined, both spatially and in velocity, to the immediate surroundings of S106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and HII region. C1 [Simon, R.; Stutzki, J.; Graf, U. U.; Guan, X.] Univ Cologne, Inst Phys 1, KOSMA, D-50937 Cologne, Germany. [Schneider, N.] Univ Paris Diderot, CNRS, Ctr Etud Saclay, Lab AIM Paris Saclay,CEA Irfu, F-91191 Gif Sur Yvette, France. [Guesten, R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hartogh, P.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Staguhn, J. G.; Benford, D. J.] NASA, Observ Cosmol Lab Code 665, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Staguhn, J. G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Simon, R (reprint author), Univ Cologne, Inst Phys 1, KOSMA, Zulpicher Str 77, D-50937 Cologne, Germany. EM simonr@ph1.uni-koeln.de; nicola.schneider-bontemps@cea.fr RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 FU NASA [NAS2-97001]; DLR [50 OK 0901] FX Based in part on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy. SOFIA Science Mission Operations are conducted jointly by the Universities Space Research Association, Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut under DLR contract 50 OK 0901. We thank the SOFIA engineering and operations teams and the DSI telescope engineering team for their tireless support and good-spirit teamwork, which has been essential for the GREAT accomplishments during Early Science. NR 25 TC 8 Z9 8 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2012 VL 542 AR L12 DI 10.1051/0004-6361/201218931 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 965YI UT WOS:000305803300114 ER PT J AU Han, JW Choi, YK Meyyappan, M AF Han, Jin-Woo Choi, Yang-Kyu Meyyappan, M. TI A Gate-Dielectric-Last Process via Photosolidification of Liquid Resin SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Gate-dielectric-last process; photopolymer; replacement of gate dielectric; ultraviolet (UV) curing AB A gate-dielectric-last process is demonstrated on an independent double-gate FinFET as a test vehicle. After the source/drain (S/D) process, the dummy gate dielectric is selectively replaced with a liquid monomer that can be cured by ultraviolet treatment. The present scheme provides the benefits from both gate-first and gate-last processes. The replacement of the gate dielectric is a minor modification of the baseline of the gate-first process. Compared to the gate-last process, the gate dielectric last does not introduce process complexity or alter the design rule. As the gate dielectric is formed after the S/D, the thermal-budget issue can be mitigated. C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. [Choi, Yang-Kyu] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea. RP Han, JW (reprint author), NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov FU Smart IT Convergence System Research Center; Ministry of Education, Science and Technology [SIRC-2011-0031845] FX This work was supported in part by the Smart IT Convergence System Research Center funded by the Ministry of Education, Science and Technology (SIRC-2011-0031845). The review of this letter was arranged by Editor A. Chin. NR 10 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD JUN PY 2012 VL 33 IS 6 BP 746 EP 748 DI 10.1109/LED.2012.2189866 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 966JX UT WOS:000305835000002 ER PT J AU Schwerdt, HN Miranda, FA Chae, J AF Schwerdt, Helen N. Miranda, Felix A. Chae, Junseok TI A Fully Passive Wireless Backscattering Neurorecording Microsystem Embedded in Dispersive Human-Head Phantom Medium SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Biological microelectromechanical systems (bio-MEMS); electromagnetic (EM) backscattering; neural recording AB This letter reports a microfabricated fully passive circuit for extracting and transmitting targeted neuropotentials wirelessly via the backscattering effect without any internal power source or harvester. Radiating electromagnetic waves experience attenuation, phase and wavelength alteration, and random scattering effects when propagating through dispersive biological media (i.e., human head), and these effects are augmented at microwave frequencies required for practical miniaturization of the integrated microsystem antenna. The authors examine the fully passive microsystem for wireless recording of emulated neuropotentials as implanted in a phantom mimicking the human head. The wireless measurements of emulated neuropotentials acquired by the microsystem demonstrate its promising capabilities for neurological applications. C1 [Schwerdt, Helen N.; Chae, Junseok] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Miranda, Felix A.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Schwerdt, HN (reprint author), Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. EM hschwerd@asu.edu; felix.a.miranda@nasa.gov; junseok.chae@asu.edu FU U.S. National Science Foundation [ECCS-0702227]; National Institutes of Health [5R21NS059815-02]; NASA [NNX09AK93H] FX This work was supported in part by the U.S. National Science Foundation under Grant ECCS-0702227, by the National Institutes of Health under Grant 5R21NS059815-02, and by the NASA Graduate Student Research Program fellowship under Grant NNX09AK93H. The review of this letter was arranged by Editor W. T. Ng. NR 13 TC 7 Z9 7 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD JUN PY 2012 VL 33 IS 6 BP 908 EP 910 DI 10.1109/LED.2012.2190967 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 966JX UT WOS:000305835000056 ER PT J AU Xu, F Deshpande, M AF Xu, Feng Deshpande, Manohar TI Iterative Nonlinear Tikhonov Algorithm With Constraints for Electromagnetic Tomography SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Capacitance tomography; INTAC; two-phase system ID ELECTRICAL-CAPACITANCE TOMOGRAPHY; IMAGE-RECONSTRUCTION AB Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high-resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov-regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution. C1 [Xu, Feng; Deshpande, Manohar] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Xu, Feng] Intelligent Automat Inc, Rockville, MD 20855 USA. RP Xu, F (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM fynn.xu@gmail.com RI XU, Feng/A-4582-2010 OI XU, Feng/0000-0002-7015-1467 FU NASA Goddard Space Flight Center [NNG10LY34P] FX This work was supported by NASA Goddard Space Flight Center under Contract No. NNG10LY34P. NR 22 TC 2 Z9 2 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2012 VL 5 IS 3 SI SI BP 707 EP 716 DI 10.1109/JSTARS.2012.2193117 PG 10 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 968KB UT WOS:000305978200005 ER PT J AU Xu, XL Tsang, L Yueh, S AF Xu, Xiaolan Tsang, Leung Yueh, Simon TI Electromagnetic Models of Co/Cross Polarization of Bicontinuous/DMRT in Radar Remote Sensing of Terrestrial Snow at X- and Ku-band for CoReH2O and SCLP Applications SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Active remote sensing; bi-continuous media; CLPX II experiments; dense media; NMM3D; snow properties; surface scattering; volume scattering ID QUASI-CRYSTALLINE APPROXIMATION; SCATTERING; SIMULATIONS AB In this paper, we study the scattering properties of the terrestrial dry snow by modeling the snow structure as Bi-continuous media. The model is applied to study the snow scattering characteristics at X-band and Ku-band that are two frequencies in the proposed Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission by ESA and the proposed Snow and Cold Land Process (SCLP) mission by NASA. There are two variables in the Bi-continuous media that can be adjusted to generate various snow microstructures. The different snow structures are illustrated. The extinction properties and phase matrices are studied through the Monte Carlo simulations. For each realization, the Maxwell Equations are solved numerically to take into account the coherent wave interactions among the inhomogeneties. We demonstrated the frequency dependences of scattering coefficients, which can vary depending on the setup parameters of the bicontinuous media. The power law are compared with experiment data of extinction coefficients of terrestrial snow. The calculated extinction and phase matrices are combined in the Dense Media Radiative Transfer theory (DMRT). We obtain the 1st order solution by using the iterative method. The surface scattering from the snow-ground interface is included by searching the look up table of NMM3D. The results of co-polarization and cross polarization are compared with the POLSCAT Ku-band airborne data and X-band TerraSAR-X satellite data in North Slope, Alaska. C1 [Xu, Xiaolan; Tsang, Leung] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Yueh, Simon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xu, XL (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. EM xlxu@uw.edu FU National Aeronautics and Space Administration FX Manuscript received October 01, 2011; revised February 06, 2012; accepted March 03, 2012. Date of publication April 17, 2012; date of current version June 28, 2012. This work was supported in part by the National Aeronautics and Space Administration. NR 31 TC 14 Z9 15 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2012 VL 5 IS 3 SI SI BP 1024 EP 1032 DI 10.1109/JSTARS.2012.2190719 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 968KB UT WOS:000305978200039 ER PT J AU Thurai, M Bringi, VN Carey, LD Gatlin, P Schultz, E Petersen, WA AF Thurai, M. Bringi, V. N. Carey, L. D. Gatlin, P. Schultz, E. Petersen, W. A. TI Estimating the Accuracy of Polarimetric Radar-Based Retrievals of Drop-Size Distribution Parameters and Rain Rate: An Application of Error Variance Separation Using Radar-Derived Spatial Correlations SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SMALL-SCALE VARIABILITY; 2D VIDEO DISDROMETER; C-BAND RADAR; POLARIZATION RADAR; SAMPLING ERRORS; WEATHER RADAR; REFLECTIVITY; VALIDATION; PROFILER; NETWORK AB The accuracy of retrieving the two drop size distribution (DSD) parameters, median volume diameter (D-0), and normalized intercept parameter (N-W), as well as rain rate (R), from polarimetric C-band radar data obtained during a cool-season, long-duration precipitation event in Huntsville, Alabama, is examined. The radar was operated in a special "near-dwelling" mode over two video disdrometers (2DVD) located 15 km away. The polarimetric radar based retrieval algorithms for the DSD parameters and rain rate were obtained from simulations using the 2DVD measurements of the DSD. A unique feature of this paper is the radar-based estimation of the spatial correlation functions of the two DSD parameters and rain rate that are used to estimate the "point-to-area" variance. A detailed error variance separation is performed, including the aforementioned point-to-area variance, along with variance components due to the retrieval algorithm error, radar measurement error, and disdrometer sampling error. The spatial decorrelation distance was found to be smallest for the R (4.5 km) and largest for D-0 (8.24 km). For log(10)(N-W), it was 7.22 km. The proportion of the variance of the difference between radar-based estimates and 2DVD measurements that could be explained by the aforementioned errors was 100%, 57%, and 73% for D-0, log(10)(N-W), and R, respectively. The overall accuracy of the radar-based retrievals for the particular precipitation event quantified in terms of the fractional standard deviation were estimated to be 6.8%, 6%, and 21% for D-0, log(10)(N-W), and R, respectively. The normalized bias was <1%. These correspond to time resolution of similar to 3 min and spatial resolution of similar to 1.5 km. C1 [Thurai, M.; Bringi, V. N.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Carey, L. D.; Gatlin, P.; Schultz, E.] Univ Alabama, NSSTC, Huntsville, AL 35899 USA. [Petersen, W. A.] NASA MSFC, Huntsville, AL USA. RP Thurai, M (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM merhala@engr.colostate.edu RI Measurement, Global/C-4698-2015; OI Gatlin, Patrick/0000-0001-9345-1457 FU NASA [NNX10AJ12G]; National Science Foundation [AGS-0924622] FX MT/VNB acknowledge support from NASA Grant Award NNX10AJ12G. MT also acknowledges support from the National Science Foundation via AGS-0924622. WAP/LDC/ES/PG acknowledge NASA Precipitation Measurements Missions Science Team research support provided by Dr. Ramesh Kakar, and also NASA Global Precipitation Measurement Mission Project Office support provided by Dr. Mathew Schwaller. NR 49 TC 10 Z9 10 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2012 VL 13 IS 3 BP 1066 EP 1079 DI 10.1175/JHM-D-11-070.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 965OH UT WOS:000305776600018 ER PT J AU Maggioni, V Reichle, RH Anagnostou, EN AF Maggioni, Viviana Reichle, Rolf H. Anagnostou, Emmanouil N. TI The Impact of Rainfall Error Characterization on the Estimation of Soil Moisture Fields in a Land Data Assimilation System SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LATITUDE HYDROLOGICAL PROCESSES; TORNE-KALIX BASIN; SURFACE MODEL; PILPS PHASE-2(E); PRECIPITATION; RETRIEVALS; SIMULATION; MICROWAVE; SCALE; SKILL AB This study presents a numerical experiment to assess the impact of satellite rainfall error structure on the efficiency of assimilating near-surface soil moisture observations. Specifically, the study contrasts a multidimensional satellite rainfall error model (SREM2D) to a simpler rainfall error model (CTRL) currently used to generate rainfall ensembles as part of the ensemble-based land data assimilation system developed at the NASA Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region using rainfall data from a NOAA multisatellite global rainfall product [the Climate Prediction Center (CPC) morphing technique (CMORPH)] and the National Weather Service rain gauge-calibrated radar rainfall product [Weather Surveillance Radar-1988 Doppler (WSR-88D)] representing the "uncertain" and "reference" model rainfall forcing, respectively. Soil moisture simulations using the Catchment land surface model (CLSM), obtained by forcing the model with reference rainfall, are randomly perturbed to represent satellite retrieval uncertainty, and assimilated into CLSM as synthetic near-surface soil moisture observations. The assimilation estimates show improved performance metrics, exhibiting higher anomaly correlation coefficients (e.g., similar to 0.79 and similar to 0.90 in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively) and lower root-mean-square errors (e.g., similar to 0.034 m(3) m(-3) and similar to 0.024 m(3) m(-3) in the SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively). The more elaborate rainfall error model in the assimilation system leads to slightly improved assimilation estimates. In particular, the relative enhancement due to SREM2D over CTRL is larger for root zone soil moisture and in wetter rainfall conditions. C1 [Maggioni, Viviana; Anagnostou, Emmanouil N.] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. [Reichle, Rolf H.] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. RP Maggioni, V (reprint author), Univ Connecticut, Dept Civil & Environm Engn, 261 Glenbrook Rd,Unit 2037, Storrs, CT 06269 USA. EM viviana@engr.uconn.edu RI Reichle, Rolf/E-1419-2012 FU NASA [NNX07AE31G]; SMAP Science Definition Team FX V. Maggioni was supported by a NASA Earth System Science Graduate Fellowship. R. Reichle was supported by the NASA research program "The Science of Terra and Aqua" and the SMAP Science Definition Team. E. Anagnostou was supported by NASA Precipitation Science Team Grant NNX07AE31G. Computing was supported by the NASA High End Computing Program. NR 35 TC 4 Z9 4 U1 2 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2012 VL 13 IS 3 BP 1107 EP 1118 DI 10.1175/JHM-D-11-0115.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 965OH UT WOS:000305776600021 ER PT J AU Kafka, S AF Kafka, Stella TI Forecasting Life: A Study of Activity Cycles in Low-Mass Stars Lessons from Long-Term Stellar Light Curves SO ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES LA English DT Article; Proceedings Paper CT 11th European Workshop on Astrobiology of the European-Astrobiology-Network-Association (EANA) CY JUL 11-14, 2011 CL German Aerosp Ctr, Cologne, GERMANY SP Helmholtz Alliance, European Astrobiol Network Assoc (EANA), European Space Agcy HO German Aerosp Ctr DE Active stars; Magnetic activity; Activity cycles; Low-mass stars; Habitable zone; Space weather ID SKY AUTOMATED SURVEY; MAGNETIC-FLUX TUBES; CLOSE BINARY STARS; PLANETS; HABITABILITY; STABILITY; DYNAMICS; SYSTEMS; CATALOG; EARTH AB Magnetic activity cycles are indirect traces of magnetic fields and can provide an insight on the nature and action of stellar dynamos and stellar magnetic activity. This, in turn, can determine local space weather and activity effects on stellar habitable zones. Using photometric monitoring of low-mass stars, we study the presence and properties of their magnetic activity cycles. We introduce long-term light curves of our sample stars, and discuss the properties of the observed trends, especially at spectral types where stars are fully convective (later than M3). C1 Carnegie Inst Sci, Dept Terr Magnetism, NASA Astrobiol Inst, Washington, DC 20015 USA. RP Kafka, S (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, NASA Astrobiol Inst, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM skafka@dtm.ciw.edu NR 25 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-6149 J9 ORIGINS LIFE EVOL B JI Orig. Life Evol. Biosph. PD JUN PY 2012 VL 42 IS 2-3 BP 143 EP 152 DI 10.1007/s11084-012-9283-4 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 968MM UT WOS:000305985800006 PM 22729352 ER PT J AU Anglada-Escude, G Plavchan, P Mills, S Gao, P Garcia-Berrios, E Lewis, NS Sung, K Ciardi, D Beichman, C Brinkworth, C Johnson, J Davison, C White, R Prato, L AF Anglada-Escude, Guillem Plavchan, Peter Mills, Sean Gao, Peter Garcia-Berrios, Edgardo Lewis, Nathan S. Sung, Keeyoon Ciardi, David Beichman, Chas Brinkworth, Carolyn Johnson, John Davison, Cassy White, Russel Prato, Lisa TI Design and Construction of Absorption Cells for Precision Radial Velocities in the K Band Using Methane Isotopologues SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID CARNEGIE EXOPLANET SURVEY; ECHELLE SPECTROGRAPH; GAS CELL; MASS; PLANET; STAR AB We present a method to optimize absorption cells for precise wavelength calibration in the near-infrared. We apply it to design and optimize methane isotopologue cells for precision radial velocity measurements in the K band. We also describe the construction and installation of two such cells for the CSHELL spectrograph at NASA's IRTF. We have obtained their high-resolution laboratory spectra, which we can then use in precision radial velocity measurements and which can also have other applications. In terms of obtainable RV precision, methane should outperform other proposed cells, such as the ammonia cell ((NH3)-N-14) recently demonstrated on CRIRES/VLT. The laboratory spectra of the ammonia and methane cells show strong absorption features in the H band that could also be exploited for precision Doppler measurements. We present spectra and preliminary radial velocity measurements obtained during our first-light run. These initial results show that a precision down to 20-30 m s(-1) can be obtained using a wavelength interval of only 5 nm in the K band and S/N similar to 150. This supports the prediction that a precision down to a few meters per second can be achieved on late-M dwarfs using the new generation of NIR spectrographs, thus enabling the detection of terrestrial planets in their habitable zones. Doppler measurements in the NIR can also be used to mitigate the radial velocity jitter due to stellar activity, enabling more efficient surveys on young active stars. C1 [Anglada-Escude, Guillem] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Plavchan, Peter; Ciardi, David; Beichman, Chas; Brinkworth, Carolyn] NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Mills, Sean; Gao, Peter; Johnson, John] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Garcia-Berrios, Edgardo; Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Noyes Lab 210, Pasadena, CA 91125 USA. [Sung, Keeyoon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davison, Cassy; White, Russel] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Prato, Lisa] Lowell Observ, Flagstaff, AZ 86001 USA. RP Anglada-Escude, G (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM anglada@dtm.ciw.edu; plavchan@ipac.caltech.edu RI Sung, Keeyoon/I-6533-2015; OI Anglada Escude, Guillem/0000-0002-3645-5977; Ciardi, David/0000-0002-5741-3047 FU NASA Astrobiology Institute [NNA09DA81A]; Jet Propulsion Laboratory's (JPL's) Center for Exoplanet Science; NASA Exoplanet Science Institute; National Aeronautics and Space Administration FX Both G. Anglada-Escude and P. Plavchan contributed equally to this work. G. A. would like to acknowledge the Carnegie Postdoctoral Fellowship Program and the support provided by the NASA Astrobiology Institute grant NNA09DA81A. Peter Plavchan would like acknowledge Wes Traub and Stephen Unwin for funding provided by the Jet Propulsion Laboratory's (JPL's) Center for Exoplanet Science and NASA Exoplanet Science Institute. K. Sung acknowledges the Planetary Atmospheric Research Program to support the laboratory spectroscopic calibrations. Part of the research at the JPL and California Institute of Technology was performed under contracts with National Aeronautics and Space Administration. We thank Anu Dudhia for making the Reference Forward Model code available to us and for his assistance with adapting it for gas cell spectral calculations. The stellar synthetic spectra were graciously provided by Peter Hauschildt (University of Hamburg) and the PHOENIX group. We also thank Linda Brown from JPL's Laboratory Studies and Modeling group and Pin Chen from the Planetary Chemistry and Astrobiology group for their advice and support using the Fourier-transformed infrared spectrometer. We would like to thank Paul Butler (Carnegie Institution of Washington) and Gilian Nave (NIST) for their advice in gas optimization parameters and molecular spectroscopy in general. We would like to thank Stephen Kane (NExScI), Kaspar von Braun (NExScI), and Steve Osterman (University of Colorado) for their valuable discussions. We also thank John Rayner, Morgan Bonnet, George Koenig, and Alan Tokunaga from IfA, Hawaii, for their support during the CSHELL/IRTF cell design review, integration, and commissioning. We thank Rick Gerhart (California Institute of Technology), Scot Howell (Mindrum Precision), and Thurston Levy (Glass Instruments, Inc.) for their work in helping construct and fill the gas cells, as well as Joeff Zolkower (California Institute of Technology) for mechanical engineering advise. NR 33 TC 9 Z9 9 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD JUN PY 2012 VL 124 IS 916 BP 586 EP 597 DI 10.1086/666489 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 966LT UT WOS:000305839900008 ER PT J AU Pfaff, RF AF Pfaff, Robert F., Jr. TI The Near-Earth Plasma Environment SO SPACE SCIENCE REVIEWS LA English DT Review DE Ionosphere; Upper atmosphere; Electric fields ID INTERPLANETARY MAGNETIC-FIELD; EQUATORIAL-SPREAD-F; INCOHERENT-SCATTER RADAR; MIDLATITUDE SPORADIC-E; SUBAURORAL ION DRIFTS; TRAVELING IONOSPHERIC DISTURBANCES; GENERAL-CIRCULATION MODEL; HIGH-LATITUDE IONOSPHERE; INTENSE ELECTRIC-FIELDS; PITCH-ANGLE DIFFUSION AB An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pfaff, RF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Robert.F.Pfaff@nasa.gov RI Pfaff, Robert/F-5703-2012 OI Pfaff, Robert/0000-0002-4881-9715 NR 256 TC 3 Z9 3 U1 1 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2012 VL 168 IS 1-4 BP 23 EP 112 DI 10.1007/s11214-012-9872-6 PG 90 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 967KY UT WOS:000305907900002 ER PT J AU Simoes, F Pfaff, R Berthelier, JJ Klenzing, J AF Simoes, Fernando Pfaff, Robert Berthelier, Jean-Jacques Klenzing, Jeffrey TI A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms SO SPACE SCIENCE REVIEWS LA English DT Review DE Wave propagation; Lightning; Ionosphere dynamics; Aeronomy; Troposphere-ionosphere coupling ID ATMOSPHERIC ELECTRIC-CIRCUIT; RADIATION BELT ELECTRONS; SCHUMANN RESONANCE PARAMETERS; GLOBAL LIGHTNING ACTIVITY; COSMIC-RAY INTENSITY; EXPLOSIVE SPREAD-F; SOLAR PROTON EVENT; ENERGY PARTICLE-PRECIPITATION; KELVIN-HELMHOLTZ INSTABILITY; D-REGION IONOSPHERE AB Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave observations in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review ionospheric processes as well as surface and space weather phenomena that drive the coupling between the troposphere and the ionosphere. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface perturbations and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and to solve inverse problems and outline in a final section a few challenging subjects that are important to advance our understanding of tropospheric-ionospheric coupling. C1 [Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey] NASA, GSFC Heliophys Sci Div, Space Weather Lab, Greenbelt, MD 20771 USA. [Berthelier, Jean-Jacques] UPMC, LATMOS IPSL, F-75005 Paris, France. RP Simoes, F (reprint author), NASA, GSFC Heliophys Sci Div, Space Weather Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM fernando.a.simoes@nasa.gov; robert.f.pfaff@nasa.gov; jean-jacques.berthelier@latmos.ipsl.fr; jeffrey.klenzing@nasa.gov RI Klenzing, Jeff/E-2406-2011; Pfaff, Robert/F-5703-2012 OI Klenzing, Jeff/0000-0001-8321-6074; Pfaff, Robert/0000-0002-4881-9715 FU Goddard Space Flight Center FX FS and JK are supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 299 TC 14 Z9 15 U1 4 U2 32 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD JUN PY 2012 VL 168 IS 1-4 BP 551 EP 593 DI 10.1007/s11214-011-9854-0 PG 43 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 967KY UT WOS:000305907900020 ER PT J AU Xu, F Davis, AB Sanghavi, SV Martonchik, JV Diner, DJ AF Xu, Feng Davis, Anthony B. Sanghavi, Suniti V. Martonchik, John V. Diner, David J. TI Linearization of Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere/surface system SO APPLIED OPTICS LA English DT Article ID POLARIZED-LIGHT; TRANSFER MODEL; SCATTERING; INSTRUMENT; RETRIEVAL; AEROSOLS; MISSION; SURFACE AB The Markov chain formalism for polarized radiative transfer through a vertically inhomogeneous atmosphere is linearized comprehensively with respect to the aerosol and polarizing surface properties. For verification, numerical results are compared to those obtained by the finite difference method. We demonstrate the use of the linearized code as part of a retrieval of aerosol and surface properties for an atmosphere overlying a black and Fresnel-reflecting ocean surface. (C) 2012 Optical Society of America C1 [Xu, Feng; Davis, Anthony B.; Sanghavi, Suniti V.; Martonchik, John V.; Diner, David J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xu, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Feng.Xu@jpl.nasa.gov RI Xu, Feng/G-3673-2013 NR 37 TC 8 Z9 8 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 1 PY 2012 VL 51 IS 16 BP 3491 EP 3507 DI 10.1364/AO.51.003491 PG 17 WC Optics SC Optics GA 955JT UT WOS:000305015300049 PM 22695587 ER PT J AU Vogelmann, AM McFarquhar, GM Ogren, JA Turner, DD Comstock, JM Feingold, G Long, CN Jonsson, HH Bucholtz, A Collins, DR Diskin, GS Gerber, H Lawson, RP Woods, RK Andrews, E Yang, HJ Chiu, JC Hartsock, D Hubbe, JM Lo, CM Marshak, A Monroe, JW McFarlane, SA Schmid, B Tomlinson, JM Toto, T AF Vogelmann, Andrew M. McFarquhar, Greg M. Ogren, John A. Turner, David D. Comstock, Jennifer M. Feingold, Graham Long, Charles N. Jonsson, Haflidi H. Bucholtz, Anthony Collins, Don R. Diskin, Glenn S. Gerber, Hermann Lawson, R. Paul Woods, Roy K. Andrews, Elisabeth Yang, Hee-Jung Chiu, J. Christine Hartsock, Daniel Hubbe, John M. Lo, Chaomei Marshak, Alexander Monroe, Justin W. McFarlane, Sally A. Schmid, Beat Tomlinson, Jason M. Toto, Tami TI RACORO EXTENDED-TERM AIRCRAFT OBSERVATIONS OF BOUNDARY LAYER CLOUDS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID LIQUID WATER PATH; GROUND-BASED MEASUREMENTS; DIURNAL CYCLE; MICROWAVE RADIOMETERS; CONVECTION OVERLAND; CONDENSATION NUCLEI; STRATIFORM CLOUDS; INDIAN-OCEAN; ARM CART; IN-SITU C1 [Vogelmann, Andrew M.; Toto, Tami] Brookhaven Natl Lab, Upton, NY 11973 USA. [McFarquhar, Greg M.; Yang, Hee-Jung] Univ Illinois, Urbana, IL USA. [Ogren, John A.; Feingold, Graham; Andrews, Elisabeth] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Turner, David D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Turner, David D.] Univ Wisconsin, Madison, WI USA. [Comstock, Jennifer M.; Long, Charles N.; Hubbe, John M.; Lo, Chaomei; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jonsson, Haflidi H.; Woods, Roy K.] USN, Postgrad Sch, Monterey, CA USA. [Bucholtz, Anthony] USN, Res Lab, Monterey, CA USA. [Collins, Don R.] Texas A&M Univ, College Stn, TX USA. [Diskin, Glenn S.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Gerber, Hermann] Gerber Sci Inc, Reston, VA USA. [Lawson, R. Paul] SPEC Inc, Boulder, CO USA. [Andrews, Elisabeth] Univ Colorado, Boulder, CO 80309 USA. [Chiu, J. Christine] Univ Reading, Reading, Berks, England. [Hartsock, Daniel; Monroe, Justin W.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Marshak, Alexander] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Vogelmann, AM (reprint author), Brookhaven Natl Lab, Bldg 490D, Upton, NY 11973 USA. EM vogelmann@bnl.gov RI Collins, Don/F-9617-2012; Tomlinson, Jason/C-6566-2009; Feingold, Graham/B-6152-2009; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012; Vogelmann, Andrew/M-8779-2014; Ogren, John/M-8255-2015; Manager, CSD Publications/B-2789-2015; OI Chiu, Christine/0000-0002-8951-6913; Vogelmann, Andrew/0000-0003-1918-5423; Ogren, John/0000-0002-7895-9583; McFarquhar, Greg/0000-0003-0950-0135 FU U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research; Earth System Modeling Program via the FASTER Project [DE-AC06-76RLO 1,830, DE-FG02-05ER64062, DE-AI05-09OR23371, DE-SC0000543, DE-AI-02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564]; Office of Science, Office of Biological and Environmental Research [DE-AC02-98CH10886] FX We gratefully acknowledge the many contributions by Debbie Ronfeld (AAF logistics point of contact), pilots Mike Hubbell and Chris McGuire, copilot Dave McSwaggan, Jesse Barge (cabin instrument operations), and Greg Cooper (CIRPAS aircraft operations) and the web and media support by Sherman Beus and Lynne Roeder, respectively. We are delighted to acknowledge the NASA King Air team for their collaborative participation and excellent flight coordination (PIs Rich Ferrare, Chris Hostetler, and Brian Cairns). Data used in this article are from the U.S. Department of Energy AAF RACORO campaign and from the SGP ARM Climate Research Facility. This research was supported by the U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under the following grants/contracts: DE-AC02-98CH10886 and the Earth System Modeling Program via the FASTER Project (AMV, TT); DE-SC0005008 (JAO, EA); DE-FG02-08ER64538 (DDT); DE-FG02-02ER63337 (GM, HJY); DE-FG02-07ER64378 (GM, HJY); DE-FG02-09ER64770 (GM, HJY); DE-SC0001279 (GM, HJY); DE-SC0005507 (GM, HJY); DE-SC0002037 (GF); DE-AC06-76RLO 1,830 (CNL, SAM); DE-FG02-05ER64062 (DH, JWM); DE-AI05-09OR23371 (AB); DE-SC0000543 (GSD); DE-AI-02-08ER64562 (AM); DE-FG02-08ER64563 (AM, JCC); and DE-FG02-08ER54564 (AM). NR 56 TC 31 Z9 31 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2012 VL 93 IS 6 BP 861 EP 878 DI 10.1175/BAMS-D-11-00189.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 964VI UT WOS:000305724400013 ER PT J AU Ali, Z Norsk, P Ulrik, CS AF Ali, Zarqa Norsk, Peter Ulrik, Charlotte Suppli TI Mechanisms and Management of Exercise-Induced Asthma in Elite Athletes SO JOURNAL OF ASTHMA LA English DT Article DE asthma; doping; elite athletes; management; mechanisms ID CROSS-COUNTRY SKIERS; EUCAPNIC VOLUNTARY HYPERVENTILATION; FISH-OIL SUPPLEMENTATION; INDUCED BRONCHOCONSTRICTION; INDUCED BRONCHOSPASM; INHALED CORTICOSTEROIDS; AIRWAY INFLAMMATION; COLD-AIR; BRONCHIAL HYPERRESPONSIVENESS; REFRACTORY PERIOD AB Objective and methods. Asthma is often reported by elite athletes, especially endurance athletes. The aim of this article is to review current knowledge of mechanisms and management of exercise-induced asthma (EIA) in adult elite athletes. Results. The mechanisms underlying EIA is incompletely understood, but the two prevailing hypotheses are the hyper-osmolarity and the thermal hypothesis. Both hypotheses consider inflammation and activation of mast cells as being crucial for the development of EIA, although the assumed mechanisms triggering the inflammatory response differ. Objective testing is of utmost importance in the diagnosis of EIA in elite athletes. Management of EIA can be divided into pharmacologic and non-pharmacologic treatment. The basic principles for the treatment of EIA in elite athletes should be as for any asthmatic individual, including use of inhaled corticosteroids (ICS), beta(2)-agonists, and leukotriene antagonists. However, evidence suggests that daily use of beta(2)-agonists might lead to the development of tolerance. ICS therapy is, due to its anti-inflammatory effects, the recommended primary therapy for EIA also in elite athletes. All doctors treating individuals with asthma, especially elite athletes, should remain updated on doping aspects of asthma therapy. Non-pharmacologic management of EIA in elite athletes includes physical warm-up, which takes advantage of the refractory period following an attack of EIA, whereas high intake of antioxidants may reduce airway inflammation. Wearing heat masks, specially designed for outdoor winter athletes, might protect against bronchoconstriction triggered by inhalation of cold and dry air. Conclusion. EIA in elite athletes should be managed as in any individual with asthma, but the risk of developing tolerance to bronchodilators as well as doping aspects should always be taken into account. C1 [Ulrik, Charlotte Suppli] Univ Copenhagen, Hvidovre Hosp, Internal Med Unit, Resp Sect, DK-2830 Copenhagen, Denmark. [Ali, Zarqa] Univ Copenhagen, DK-2830 Copenhagen, Denmark. [Norsk, Peter] USRA NASA, Lyndon B Johnson Space Ctr, Houston, TX USA. RP Ulrik, CS (reprint author), Univ Copenhagen, Hvidovre Hosp, Internal Med Unit, Resp Sect, Virum Overdrevsvej 13, DK-2830 Copenhagen, Denmark. EM csulrik@dadlnet.dk NR 95 TC 10 Z9 10 U1 2 U2 20 PU INFORMA HEALTHCARE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0277-0903 J9 J ASTHMA JI J. Asthma PD JUN PY 2012 VL 49 IS 5 BP 480 EP 486 DI 10.3109/02770903.2012.676123 PG 7 WC Allergy; Respiratory System SC Allergy; Respiratory System GA 962IS UT WOS:000305537900006 PM 22515573 ER PT J AU Ponomarev, AL George, K Cucinotta, FA AF Ponomarev, Artem L. George, Kerry Cucinotta, Francis A. TI Computational Model of Chromosome Aberration Yield Induced by High- and Low-LET Radiation Exposures SO RADIATION RESEARCH LA English DT Article ID DOUBLE-STRAND BREAKS; HUMAN-LYMPHOCYTES; BIOLOGICAL EFFECTIVENESS; INTERPHASE CHROMOSOMES; ACCELERATED PARTICLES; EXCHANGE ABERRATIONS; HEAVY-IONS; DNA; INDUCTION; KINETICS AB Ponomarev, A. L., George, K. and Cucinotta, F. A. Computational Model of Chromosome Aberration Yield Induced by High- and Low-LET Radiation Exposures. Radiat. Res. 177, 727-737 (2012). We present a computational model for calculating the yield of radiation-induced chromosomal aberrations in human cells based on a stochastic Monte Carlo approach and calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. A previously developed DNA-fragmentation model for high- and low-LET radiation called the NASA Radiation Track- Image model was enhanced to simulate a stochastic process of the formation of chromosomal aberrations from DNA fragments. The current version of the model gives predictions of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G(0)/G(1), cell cycle phase during the first cell division after irradiation. As the model can predict smaller-sized deletions and rings (<3 Mbp) that are below the resolution limits of current cytogenetic analysis techniques, we present predictions of hypothesized small deletions that may be produced as a byproduct of properly repaired DNA double-strand breaks (DSB) by nonhomologous end-joining. Additionally, the model was used to scale chromosomal exchanges in two or three chromosomes that were obtained from whole-chromosome FISH painting analysis techniques to whole-genome equivalent values. (C) 2012 by Radiation Research Society C1 [Ponomarev, Artem L.; George, Kerry; Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ponomarev, Artem L.] Univ Space Res Assoc, Houston, TX 77058 USA. [George, Kerry] Wyle, Houston, TX 77058 USA. RP Ponomarev, AL (reprint author), NASA, Lyndon B Johnson Space Ctr, ATTN Mail Code SK,2101 NASA Pkwy, Houston, TX 77058 USA. EM artem.l.ponomarev@nasa.gov FU NASA Space Radiation Risk Assessment Project FX Funding was provided through the NASA Space Radiation Risk Assessment Project. Many thanks to M. Cornforth and B. Loucas for fruitful discussions. NR 34 TC 7 Z9 7 U1 0 U2 7 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUN PY 2012 VL 177 IS 6 BP 727 EP 737 DI 10.1667/RR2659.1 PG 11 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 966NN UT WOS:000305844800002 PM 22490019 ER PT J AU Barkstrom, BR Mattmann, CA AF Barkstrom, Bruce R. Mattmann, Chris A. TI A simple model illustrating the virtue of replication for long-term information preservation SO EARTH SCIENCE INFORMATICS LA English DT Article DE Information loss rates; Parameterizations of rates of storage volume increases and costs AB Each year destructive events might cause loss of data in members of an archival federation. This paper provides a 'back-of-the-envelope' model for the fraction of the federated data collection that survives after a certain number of years. It also discusses some simple parameterizations of factors that contribute to the trade offs between cost and survival of information. C1 [Mattmann, Chris A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mattmann, Chris A.] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. RP Barkstrom, BR (reprint author), 15 Josie Lane, Asheville, NC 28804 USA. EM brbarkstrom@gmail.com; chris.a.mattmann@nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology FX Support for Dr. Mattmann's effort was provided by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD JUN PY 2012 VL 5 IS 2 BP 105 EP 109 DI 10.1007/s12145-012-0100-4 PG 5 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 961JQ UT WOS:000305461100004 ER PT J AU Lohne, T Eiroa, C Augereau, JC Ertel, S Marshall, JP Mora, A Absil, O Stapelfeldt, K Thebault, P Bayo, A del Burgo, C Danchi, W Krivov, AV Lebreton, J Letawe, G Magain, P Maldonado, J Montesinos, B Pilbratt, GL White, GJ Wolf, S AF Loehne, T. Eiroa, C. Augereau, J-C. Ertel, S. Marshall, J. P. Mora, A. Absil, O. Stapelfeldt, K. Thebault, P. Bayo, A. del Burgo, C. Danchi, W. Krivov, A. V. Lebreton, J. Letawe, G. Magain, P. Maldonado, J. Montesinos, B. Pilbratt, G. L. White, G. J. Wolf, S. TI Debris disks as seen by Herschel/DUNES SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE interplanetary medium; planetary systems; space vehicles; stars: individual (HD 207129) ID KUIPER-BELT; BETA-PICTORIS; HD 207129; NEARBY STARS; DUST; VEGA; POPULATION; SPITZER; SYSTEM; COLD AB The far-infrared excesses produced by debris disks are common features of stellar systems. These disks are thought to contain solids ranging from micron-sized dust to planetesimals. Naturally, their formation and evolution are linked to those of potential planets. With this motivation, the Herschel open time key programme DUNES (DUst around NEarby Stars) aims at further characterising known debris disks and discovering new ones in the regime explored by the Herschel space observatory. On the one hand, in their survey of 133 nearby FGK stars, DUNES discovered a class of extremely cold and faint debris disks, different from well-known disks such as the one around Vega in that their inferred typical grain sizes are rather large, indicating low dynamical excitation and low collision rates. On the other hand, for the more massive disk around the sun-like star HD 207129, well-resolved PACS images confirmed the ring-liked structure seen in HST images and provided valuable information for an in-depth study and benchmark for models. Employing both models for power-law fitting and collisional evolution we found the disk around HD 207129 to feature low collision rates and large grains, as well. Transport by means of Poynting-Robertson drag likely plays a role in replenishing the dust seen closer to the star, inside of the ring. The inner edge is therefore rather smooth and the contribution from the extended halo of barely bound grains is small. Both slowly self-stirring and planetary perturbations could potentially have formed and shaped this disk ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) C1 [Loehne, T.; Krivov, A. V.] Univ Jena, Inst Astrophys, D-07745 Jena, Germany. [Loehne, T.; Krivov, A. V.] Univ Jena, Univ Sternwarte, D-07745 Jena, Germany. [Eiroa, C.; Marshall, J. P.; Maldonado, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, E-28049 Madrid, Spain. [Augereau, J-C.; Lebreton, J.] UJF Grenoble 1, CNRS INSU, IPAG UMR 5274, F-38041 Grenoble, France. [Ertel, S.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. [Mora, A.] ESA ESAC Gaia SOC, Madrid 28691, Spain. [Absil, O.; Letawe, G.; Magain, P.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Montesinos, B.] CSIC INTA, Ctr Astrobiol CAB, Dept Astrofis, Madrid, Spain. [Stapelfeldt, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thebault, P.] Observ Paris, LESIA, F-92195 Meudon, France. [Bayo, A.] European So Observ, Santiago 19, Chile. [del Burgo, C.] UNINOVA CA3, P-2825149 Caparica, Portugal. [Pilbratt, G. L.] ESTEC SRE SA, ESA Astrophys & Fundamental Phys Miss Div, NL-2201 AZ Noordwijk, Netherlands. [White, G. J.] Open Univ, Dept Phys & Astrophys, Milton Keynes MK7 6AA, Bucks, England. Rutherford Appleton Lab, Chilton OX11 0QX, England. [Danchi, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lohne, T (reprint author), Univ Jena, Inst Astrophys, Schillergasschen 2-3, D-07745 Jena, Germany. EM tloehne@astro.uni-jena.de RI Montesinos, Benjamin/C-3493-2017; OI Montesinos, Benjamin/0000-0002-7982-2095; Marshall, Jonathan/0000-0001-6208-1801; Absil, Olivier/0000-0002-4006-6237 NR 36 TC 3 Z9 3 U1 2 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD JUN PY 2012 VL 333 IS 5-6 SI SI BP 441 EP 446 DI 10.1002/asna.201211686 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 959SA UT WOS:000305331900008 ER PT J AU Guyon, O Bendek, EA Eisner, JA Angel, R Woolf, NJ Milster, TD Ammons, SM Shao, M Shaklan, S Levine, M Nemati, B Pitman, J Woodruff, RA Belikov, R AF Guyon, Olivier Bendek, Eduardo A. Eisner, Josh A. Angel, Roger Woolf, Neville J. Milster, Thomas D. Ammons, S. Mark Shao, Michael Shaklan, Stuart Levine, Marie Nemati, Bijan Pitman, Joe Woodruff, Robert A. Belikov, Ruslan TI HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astrometry; planets and satellites: detection; techniques: high angular resolution; telescopes ID PHOTOMETRY AB Astrometric detection and mass determination of Earth-mass exoplanets require sub-mu as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg(2) field we adopt as a baseline design achieves 0.2 mu as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-mu as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts. C1 [Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Guyon, Olivier] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Bendek, Eduardo A.; Milster, Thomas D.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Ammons, S. Mark] Lawrence Livermore Natl Lab, Phys Div L 210, Livermore, CA 94550 USA. [Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pitman, Joe] Explorat Sci, Pine, CO 80470 USA. [Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Guyon, O (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM guyon@naoj.org FU NASA Astronomy and Physics Research and Analysis (APRA); State of Arizona Technology Research Initiative Fund (TRIF) FX This work is funded by the NASA Astronomy and Physics Research and Analysis (APRA) program and the State of Arizona Technology Research Initiative Fund (TRIF). NR 13 TC 17 Z9 17 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2012 VL 200 IS 2 AR 11 DI 10.1088/0067-0049/200/2/11 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956KH UT WOS:000305088000001 ER PT J AU Hicken, M Challis, P Kirshner, RP Rest, A Cramer, CE Wood-Vasey, WM Bakos, G Berlind, P Brown, WR Caldwell, N Calkins, M Currie, T de Kleer, K Esquerdo, G Everett, M Falco, E Fernandez, J Friedman, AS Groner, T Hartman, J Holman, MJ Hutchins, R Keys, S Kipping, D Latham, D Marion, GH Narayan, G Pahre, M Pal, A Peters, W Perumpilly, G Ripman, B Sipocz, B Szentgyorgyi, A Tang, SM Torres, MAP Vaz, A Wolk, S Zezas, A AF Hicken, Malcolm Challis, Peter Kirshner, Robert P. Rest, Armin Cramer, Claire E. Wood-Vasey, W. Michael Bakos, Gaspar Berlind, Perry Brown, Warren R. Caldwell, Nelson Calkins, Mike Currie, Thayne de Kleer, Kathy Esquerdo, Gil Everett, Mark Falco, Emilio Fernandez, Jose Friedman, Andrew S. Groner, Ted Hartman, Joel Holman, Matthew J. Hutchins, Robert Keys, Sonia Kipping, David Latham, Dave Marion, George H. Narayan, Gautham Pahre, Michael Pal, Andras Peters, Wayne Perumpilly, Gopakumar Ripman, Ben Sipocz, Brigitta Szentgyorgyi, Andrew Tang, Sumin Torres, Manuel A. P. Vaz, Amali Wolk, Scott Zezas, Andreas TI CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE supernovae: general ID HUBBLE-SPACE-TELESCOPE; DARK-ENERGY CONSTRAINTS; PHOTOMETRY DATA RELEASE; INFRARED PHOTOMETRY; LUMINOSITY INDICATORS; IMAGE SUBTRACTION; HOST GALAXIES; CONSTANT; MAGNITUDES; UNIVERSE AB We present multi-band optical photometry of 94 spectroscopically confirmed Type Ia supernovae (SNe Ia) in the redshift range 0.0055-0.073, obtained between 2006 and 2011. There are a total of 5522 light-curve points. We show that our natural-system SN photometry has a precision of less than or similar to 0.03 mag in BV r'i', less than or similar to 0.06 mag in u', and less than or similar to 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BV r'i'u'U, respectively. Comparisons of our standard-system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of similar to 0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al. This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SNe Ia is now sufficiently large to remove most of the statistical sampling error from the dark-energy error budget. But pursuing the dark-energy systematic errors by determining highly accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SNe Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples. C1 [Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S.; Groner, Ted; Hartman, Joel; Holman, Matthew J.; Hutchins, Robert; Keys, Sonia; Kipping, David; Latham, Dave; Marion, George H.; Narayan, Gautham; Pahre, Michael; Pal, Andras; Peters, Wayne; Ripman, Ben; Sipocz, Brigitta; Szentgyorgyi, Andrew; Tang, Sumin; Torres, Manuel A. P.; Wolk, Scott; Zezas, Andreas] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rest, Armin] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Cramer, Claire E.] NIST, Gaithersburg, MD 20899 USA. [Wood-Vasey, W. Michael] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Bakos, Gaspar; Hartman, Joel] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08542 USA. [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [de Kleer, Kathy] MIT, Dept Phys, Cambridge, MA 02139 USA. [Esquerdo, Gil; Everett, Mark] Planetary Sci Inst, Tucson, AZ 85719 USA. [Perumpilly, Gopakumar] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Vaz, Amali] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Hicken, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM mhicken@cfa.harvard.edu RI Friedman, Andrew/I-4691-2013; Zezas, Andreas/C-7543-2011; OI Friedman, Andrew/0000-0003-1334-039X; Zezas, Andreas/0000-0001-8952-676X; Wolk, Scott/0000-0002-0826-9261; Narayan, Gautham/0000-0001-6022-0484; Hartman, Joel/0000-0001-8732-6166 FU NSF [AST0606772, AST0907903] FX We thank the staff at FLWO for their dedicated work in maintaining the 1.2 m telescope and instruments. We also thank M. Stritzinger, W. Li, and M. Ganeshalingam for help in comparing the CfA4 sample with the CSP2 and LOSS samples. Finally, we appreciate discussions with K. Mandel. This work has been supported, in part, by NSF grants AST0606772 and AST0907903 to Harvard University. NR 72 TC 45 Z9 45 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2012 VL 200 IS 2 AR 12 DI 10.1088/0067-0049/200/2/12 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956KH UT WOS:000305088000002 ER PT J AU Trichas, M Green, PJ Silverman, JD Aldcroft, T Barkhouse, W Cameron, RA Constantin, A Ellison, SL Foltz, C Haggard, D Jannuzi, BT Kim, DW Marshall, HL Mossman, A Perez, LM Romero-Colmenero, E Ruiz, A Smith, MG Smith, PS Torres, G Wik, DR Wilkes, BJ Wolfgang, A AF Trichas, Markos Green, Paul J. Silverman, John D. Aldcroft, Tom Barkhouse, Wayne Cameron, Robert A. Constantin, Anca Ellison, Sara L. Foltz, Craig Haggard, Daryl Jannuzi, Buell T. Kim, Dong-Woo Marshall, Herman L. Mossman, Amy Perez, Laura M. Romero-Colmenero, Encarni Ruiz, Angel Smith, Malcolm G. Smith, Paul S. Torres, Guillermo Wik, Daniel R. Wilkes, Belinda J. Wolfgang, Angie TI THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: evolution; galaxies: Seyfert; galaxies: starburst; quasars: general; techniques: spectroscopic; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; DEEP FIELD-SOUTH; DIGITAL-SKY-SURVEY; ULTRALUMINOUS INFRARED GALAXIES; QUASAR LUMINOSITY FUNCTION; STAR-FORMATION; BLACK-HOLES; HELLAS2XMM SURVEY; REDSHIFT SURVEY; SOURCE CATALOGS AB From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z similar to 5.5 and galaxies out to z similar to 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While similar to 58% of X-ray Seyferts (10(42) erg s(-1) < L2-10 keV < 10(44) erg s(-1)) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L2-10 keV > 10(44) erg s(-1)) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 X-ray Bright Optically inactive Galaxies, 78 z > 3 X-ray sources, and eight Type-2 QSO candidates. Also, we have identified the highest redshift (z = 5.4135) X-ray-selected QSO with optical spectroscopy. C1 [Trichas, Markos; Green, Paul J.; Aldcroft, Tom; Kim, Dong-Woo; Mossman, Amy; Torres, Guillermo; Wilkes, Belinda J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Silverman, John D.] Univ Tokyo, Inst Phys & Math Universe IPMU, Kashiwa, Chiba 2778568, Japan. [Barkhouse, Wayne] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Cameron, Robert A.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Cameron, Robert A.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Constantin, Anca] James Madison Univ, Dept Phys & Astron, PHCH, Harrisonburg, VA 22807 USA. [Ellison, Sara L.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Foltz, Craig] Natl Sci Fdn, Div Astron Sci, Arlington, VA 22230 USA. [Haggard, Daryl] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys, Evanston, IL 60208 USA. [Jannuzi, Buell T.] Kitt Peak Natl Observ, NOAO, Tucson, AZ 85726 USA. [Marshall, Herman L.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Perez, Laura M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Romero-Colmenero, Encarni] S African Astron Observ, ZA-7935 Observatory, South Africa. [Ruiz, Angel] Osservatorio Astron Brera INAF, Milan, Italy. [Smith, Malcolm G.] Cerro Tololo Interamer Observ, La Serena, Chile. [Smith, Paul S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wik, Daniel R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wolfgang, Angie] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Trichas, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM mtrichas@cfa.harvard.edu RI Ruiz, Angel/B-4914-2008; OI Ruiz, Angel/0000-0002-3352-4383; Constantin, Anca/0000-0002-2441-1619; Wilkes, Belinda/0000-0003-1809-2364 FU National Aeronautics and Space Administration [AR9-0020X, AR1-12016X, NAS8-03060] FX The authors thank Francesca Civano and Hagai Netzer for their useful comments. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award nos. AR9-0020X and AR1-12016X, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. NR 92 TC 26 Z9 26 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2012 VL 200 IS 2 AR 17 DI 10.1088/0067-0049/200/2/17 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956KH UT WOS:000305088000007 ER PT J AU Anenberg, SC Schwartz, J Shindell, D Amann, M Faluvegi, G Klimont, Z Janssens-Maenhout, G Pozzoli, L Van Dingenen, R Vignati, E Emberson, L Muller, NZ West, JJ Williams, M Demkine, V Hicks, WK Kuylenstierna, J Raes, F Ramanathan, V AF Anenberg, Susan C. Schwartz, Joel Shindell, Drew Amann, Markus Faluvegi, Greg Klimont, Zbigniew Janssens-Maenhout, Greet Pozzoli, Luca Van Dingenen, Rita Vignati, Elisabetta Emberson, Lisa Muller, Nicholas Z. West, J. Jason Williams, Martin Demkine, Volodymyr Hicks, W. Kevin Kuylenstierna, Johan Raes, Frank Ramanathan, Veerabhadran TI Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE air quality; climate change; health impact analysis; outdoor air; particulate matter ID MORTALITY; POLLUTION; EXPOSURE; OZONE; STRATEGIES; MATTER; MODEL AB BACKGROUND: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM <= 2.5 mu m in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. METHODS: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. RESULTS: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health bene-fits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of non-methane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. CONCLUSIONS: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are under-estimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution. C1 [Anenberg, Susan C.] US EPA, Washington, DC 20460 USA. [Schwartz, Joel] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. [Shindell, Drew; Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, Drew; Faluvegi, Greg] Columbia Univ, Columbia Earth Inst, New York, NY USA. [Amann, Markus; Klimont, Zbigniew] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Raes, Frank] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. [Emberson, Lisa; Hicks, W. Kevin; Kuylenstierna, Johan] Univ York, Dept Environm, Stockholm Environm Inst, York YO10 5DD, N Yorkshire, England. [Muller, Nicholas Z.] Middlebury Coll, Dept Econ, Middlebury, VT 05753 USA. [West, J. Jason] Univ N Carolina, Dept Environm Sci & Engn, Gillings Sch Global Publ Hlth, Chapel Hill, NC USA. [Williams, Martin] Kings Coll London, Environm Res Grp, London WC2R 2LS, England. [Demkine, Volodymyr] United Nations Environm Programme, Nairobi, Kenya. [Ramanathan, Veerabhadran] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. RP Anenberg, SC (reprint author), US EPA, 1200 Penn Ave NW,MC-6301A, Washington, DC 20460 USA. EM anenberg.susan@epa.gov RI Shindell, Drew/D-4636-2012; West, Jason/J-2322-2015; Klimont, Zbigniew/P-7641-2015; OI West, Jason/0000-0001-5652-4987; Klimont, Zbigniew/0000-0003-2630-198X; Pozzoli, Luca/0000-0003-0485-9624 NR 39 TC 84 Z9 86 U1 16 U2 140 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD JUN PY 2012 VL 120 IS 6 BP 831 EP 839 DI 10.1289/ehp.1104301 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 952BW UT WOS:000304765700023 PM 22418651 ER PT J AU Teverovsky, A AF Teverovsky, Alexander TI Thermal-Shock Testing and Fracturing of MLCCs Under Manual-Soldering Conditions SO IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY LA English DT Article DE Ceramic capacitors; crack; failure; thermal shock (TS) ID MULTILAYER CERAMIC CAPACITORS; RESISTANCE AB The fracturing and failures of multilayer ceramic capacitors (MLCCs) after manual soldering onto printed wiring boards are often associated with a soldering-induced thermal shock that results in substantial mechanical stresses in the parts. Recommendations and guidelines for safe soldering conditions are well developed and documented; however, there is a lack of adequate testing for the selection of MLCCs that are robust enough to sustain stresses related to manual soldering. In this paper, various lots of X7R-type material MLCCs with different size have been subjected to three types of thermal-shock testing: terminal solder-dip test, ice-water test, and liquid-nitrogen drop test. The electrical characteristics of the parts were measured through various test conditions to determine critical temperatures that resulted in fracturing and electrical failures. Optical examinations and cross-sectional analysis were used to confirm the presence of cracks. The mechanisms of fracturing, factors affecting crack formation, and the effectiveness of different thermal-shock methods are discussed. C1 NASA, Dell Serv Fed Govt Inc, GSFC, Greenbelt, MD 20771 USA. RP Teverovsky, A (reprint author), NASA, Dell Serv Fed Govt Inc, GSFC, Code 562, Greenbelt, MD 20771 USA. EM Alexander.A.Teverovsky@nasa.gov FU NASA FX Manuscript received January 3, 2012; revised February 18, 2012 and February 21, 2012; accepted February 21, 2012. Date of publication February 28, 2012; date of current version June 6, 2012. This work was supported by the NASA Electronic Parts and Packaging Program. NR 24 TC 3 Z9 3 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-4388 J9 IEEE T DEVICE MAT RE JI IEEE Trans. Device Mater. Reliab. PD JUN PY 2012 VL 12 IS 2 BP 413 EP 419 DI 10.1109/TDMR.2012.2189213 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 956JE UT WOS:000305085100030 ER PT J AU Wasylkiwskyj, W Shiri, S AF Wasylkiwskyj, Wasyl Shiri, Shahram TI Limits on achievable intensity reduction with an optical occulter: reply to comment SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Editorial Material AB External occulters for NASA exoplanet missions have been proposed as the means to suppressing the Poisson spot intensity by at least 10 orders of magnitude. The leading proposed external occulter shapes adhere to the binary petaled occulters with sharp petal tips. In a recent paper, Wasylkiwskyj and Shiri [J. Opt. Soc. Am. A 28, 1668 (2011)] (WS2011) investigated two forms of occulters: a binary petaled occulter and a circular partially transparent occulter. They showed that the achievable intensity reduction for a petal-style occulter is limited by the radii of curvature at the petal tips. For a partially transparent occulter they derived the optimum transparency function that minimizes the intensity on the optic axis within a prescribed wavelength range and provides the required intensity suppression. Since the publication of WS2011, a paper by Cash describes the analytical model of the occulter [Astrophys. J. 738, 76 (2011)] and recent commentary by Cash and Lo [J. Opt. Soc. Am. A 29, 913 (2012)] (CL2011) compares the intensity reduction of petal shape functions and concludes prematurely against the petal shapes in WS2011. In this correspondence, we analyze the performance of a petal shaped occulter with petals tips of 0.1 mm width (following the prescription of CL2011) and show that its suppression performance is compatible with the calculations reported in WS2011 and measured intensity reduction reported in [Proc. SPIE 6687, 66871B (2007)] and [Proc. SPIE 6693, 669305 (2007)]. (c) 2012 Optical Society of America C1 [Wasylkiwskyj, Wasyl] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. [Shiri, Shahram] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. RP Wasylkiwskyj, W (reprint author), George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. EM wasylkiw@gwu.edu NR 7 TC 0 Z9 0 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 EI 1520-8532 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD JUN PY 2012 VL 29 IS 6 BP 918 EP 920 PG 3 WC Optics SC Optics GA 956KS UT WOS:000305089100012 ER PT J AU Pang, XY Fischer, DG Visser, TD AF Pang, Xiaoyan Fischer, David G. Visser, Taco D. TI Generalized Gouy phase for focused partially coherent light and its implications for interferometry SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID SPATIAL COHERENCE; INTENSITY DISTRIBUTION; SYSTEMS; FIELDS; STATE AB The Gouy phase, sometimes called the phase anomaly, is the remarkable effect that in the region of focus a converging wave field undergoes a rapid phase change by an amount of p, compared to the phase of a plane wave of the same frequency. This phenomenon plays a crucial role in any application where fields are focused, such as optical coherence tomography, mode selection in laser resonators, and interference microscopy. However, when the field is spatially partially coherent, as is often the case, its phase is a random quantity. When such a field is focused, the Gouy phase is therefore undefined. The correlation properties of partially coherent fields are described by their so-called spectral degree of coherence. We demonstrate that this coherence function does exhibit a generalized Gouy phase. Its precise behavior in the focal region depends on the transverse coherence length. We show that this effect influences the fringe spacing in interference experiments in a nontrivial manner. (c) 2012 Optical Society of America C1 [Pang, Xiaoyan; Visser, Taco D.] Delft Univ Technol, Dept Elect Engn, Delft, Netherlands. [Fischer, David G.] NASA Glenn Res Ctr, Res & Technol Directorate, Cleveland, OH 44135 USA. [Visser, Taco D.] Vrije Univ Amsterdam, Dept Phys & Astron, Amsterdam, Netherlands. RP Visser, TD (reprint author), Delft Univ Technol, Dept Elect Engn, Delft, Netherlands. EM T.D.Visser@tudelft.nl RI Pang, Xiaoyan/M-9413-2013 NR 24 TC 18 Z9 18 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD JUN PY 2012 VL 29 IS 6 BP 989 EP 993 PG 5 WC Optics SC Optics GA 956KS UT WOS:000305089100020 PM 22673430 ER PT J AU Alexandroff, R Overzier, RA Paragi, Z Basu-Zych, A Heckman, T Kauffmann, G Bourke, S Lobanov, A Ptak, A Schiminovich, D AF Alexandroff, R. Overzier, R. A. Paragi, Zsolt Basu-Zych, Antara Heckman, Tim Kauffmann, Guinevere Bourke, Stephen Lobanov, Andrei Ptak, Andy Schiminovich, David TI A search for active galactic nuclei in the most extreme UV-selected starbursts using the European VLBI Network SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: interferometric; galaxies: active; galaxies: ISM; galaxies: starburst; radio continuum: galaxies ID ULTRAVIOLET-LUMINOUS GALAXIES; LYMAN BREAK GALAXIES; STAR-FORMATION RATE; LY-ALPHA EMITTERS; X-RAY-PROPERTIES; INFRARED GALAXIES; BLACK-HOLE; RADIO-EMISSION; HOST GALAXIES; DEEP FIELD AB We have used the European very long baseline interferometry (VLBI) Network (EVN) to observe a sample of Lyman break analogues (LBAs), nearby (z < 0.3) galaxies with properties similar to the more distant Lyman break galaxies (LBGs). The study of LBGs may help define the feedback relationship between black holes (BHs) and their host galaxies. Previous Very Large Array (VLA) observations have shown that the kpc-scale radio emission from LBAs is dominated by starbursts. The main targets of this VLBI experiment were selected because they possessed emission-line properties between starbursts and Type 2 (obscured) active galactic nuclei (AGN). Eight targets (three star-forming LBAs, four composite LBAs and one Type 1 AGN) were observed at 5 GHz, four of which (one star-forming LBA and three composite LBAs) were also observed at 1.7 GHz. One star-forming LBA and one composite LBA were detected above 5s at 1.7 GHz (only), while the AGN was detected at 5 GHz. In both LBAs, the radio luminosity (LR) exceeds that expected from supernovae (remnants) based on a comparison with Arp 220, Arp 229A and Mrk 273, by factors of . The composite LBA exhibits a compact core emitting around 10 per cent of the VLA flux density. The high Tb of 3.5 x 10(7) K and excess core LR with respect to the LR/LX relation of radio-quiet AGN indicate that this LBA possesses an obscured AGN (MBH similar to 105 - 7 M?). In three other composite LBAs detected previously in the X-ray, no radio sources were detected, indicating either variability or the presence of an obscured AGN below our radio sensitivity. While weak AGN may coexist with the starbursts as shown in at least one of the LBAs, their contribution to the total radio flux is fairly minimal. Our results show that the detection of such weak AGN presents a challenge at radio, X-ray and optical emission-line wavelengths at z similar to 0.2, indicating the great difficulties that need to be overcome in order to study similar processes at high redshift when these types of galaxies were common. C1 [Alexandroff, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Overzier, R. A.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Paragi, Zsolt; Bourke, Stephen] JIVE, NL-7990 AA Dwingeloo, Netherlands. [Paragi, Zsolt] MTA Res Grp Phys Geodesy & Geodynam, H-1521 Budapest, Hungary. [Basu-Zych, Antara; Ptak, Andy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Heckman, Tim] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Kauffmann, Guinevere] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Lobanov, Andrei] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. RP Alexandroff, R (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. EM rmalexan@princeton.edu OI Paragi, Zsolt/0000-0002-5195-335X NR 58 TC 16 Z9 16 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 2 BP 1325 EP 1334 DI 10.1111/j.1365-2966.2012.20959.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956DU UT WOS:000305070900026 ER PT J AU Burke-Spolaor, S Johnston, S Bailes, M Bates, SD Bhat, NDR Burgay, M Champion, DJ D'Amico, N Keith, MJ Kramer, M Levin, L Milia, S Possenti, A Stappers, B van Straten, W AF Burke-Spolaor, S. Johnston, S. Bailes, M. Bates, S. D. Bhat, N. D. R. Burgay, M. Champion, D. J. D'Amico, N. Keith, M. J. Kramer, M. Levin, L. Milia, S. Possenti, A. Stappers, B. van Straten, W. TI The High Time Resolution Universe Pulsar Survey - V. Single-pulse energetics and modulation properties of 315 pulsars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astronomical databases: miscellaneous; pulsars general ID VELA PULSAR; INTRINSIC VARIABILITY; SUBPULSE MODULATION; FIELD STATISTICS; GIANT PULSES; NEUTRON-STARS; CRAB NEBULA; RADIO; EMISSION; CONFIGURATION AB We report on the pulse-to-pulse energy distributions and phase-resolved modulation properties for catalogued pulsars in the southern High Time Resolution Universe intermediate-latitude survey. We selected the 315 pulsars detected in a single-pulse search of this survey, allowing a large sample unbiased regarding any rotational parameters of neutron stars. We found that the energy distribution of many pulsars is well described by a log-normal distribution, with few deviating from a small range in log-normal scale and location parameters. Some pulsars exhibited multiple energy states corresponding to mode changes, and implying that some observed nulling may actually be a mode-change effect. PSR J1900-2600 was found to emit weakly in its previously identified null state. We found evidence for another state-change effect in two pulsars, which show bimodality in their nulling time-scales; that is, they switch between a continuous-emission state and a single-pulse-emitting state. Large modulation occurs in many pulsars across the full integrated profile, with increased sporadic bursts at leading and trailing sub-beam edges. Some of these high-energy outbursts may indicate the presence of giant pulse phenomena. We found no correlation with modulation and pulsar period, age or other parameters. Finally, the deviation of integrated pulse energy from its average value was generally quite small, despite the significant phase-resolved modulation in some pulsars; we interpret this as tenuous evidence of energy regulation between distinct pulsar sub-beams. C1 [Burke-Spolaor, S.; Johnston, S.; Keith, M. J.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Burke-Spolaor, S.] NASA, Jet Prop Lab, Pasadena, CA 91106 USA. [Bailes, M.; Bhat, N. D. R.; Levin, L.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Bates, S. D.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Bates, S. D.; Stappers, B.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Burgay, M.; D'Amico, N.; Milia, S.; Possenti, A.] INAF Osservatorio Astron Cagliari, I-09012 Capoterra, Italy. [Champion, D. J.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Milia, S.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy. RP Burke-Spolaor, S (reprint author), CSIRO, Australia Telescope Natl Facil, POB 76, Epping, NSW 1710, Australia. EM sarah.burke-spolaor@jpl.nasa.gov RI Bhat, Ramesh/B-7396-2013; OI Champion, David/0000-0003-1361-7723; Burgay, Marta/0000-0002-8265-4344; van Straten, Willem/0000-0003-2519-7375 FU Commonwealth of Australia FX The Parkes radio telescope is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. A portion of research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 42 TC 16 Z9 16 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 2 BP 1351 EP 1367 DI 10.1111/j.1365-2966.2012.20998.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956DU UT WOS:000305070900028 ER PT J AU Cuylle, SH Tenenbaum, ED Bouwman, J Linnartz, H Allamandola, LJ AF Cuylle, Steven H. Tenenbaum, Emily D. Bouwman, Jordy Linnartz, Harold Allamandola, Louis J. TI Ly alpha-induced charge effects of polycyclic aromatic hydrocarbons embedded in ammonia and ammonia:water ice SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE astrochemistry; molecular processes; methods: laboratory; ISM: molecules ID YOUNG STELLAR OBJECTS; INTERSTELLAR ICE; ASTROPHYSICAL ICES; ABSORPTION-SPECTRA; WATER ICES; ANALOGS; SPECTROSCOPY; JUPITER; H2O; OCN AB Infrared emission features assigned to gas phase polycyclic aromatic hydrocarbons (PAHs) are observed in space along many lines of sight. In regions where interstellar ices are present, these emissions are largely quenched. It is here that PAHs form agglomerates covered by ice or freeze out on to dust grains, together with volatile species such as H2O, CO, CO2 and NH3. Upon exposure to the Lya-dominated interstellar radiation field, PAHs are expected to participate in photo-induced chemical reactions, explicitly also involving the surrounding ice matrix. In this paper, a systematic laboratory-based study is presented for the solid-state behaviour of the PAHs pyrene and benzo[ghi]perylene upon Lya irradiation in ammonia and mixed NH3:H2O astronomical ice analogues. The results are compared to recently published work focusing on a pure water ice environment. It is found that the ice matrix acts as an electronic solid-state switch in which the relative amount of water and ammonia determines whether positively or negatively charged PAHs form. In pure water ice, cations are generated through direct ionization, whereas in pure ammonia ice, anions form through electron donation from ammonia-related photoproducts. The solid-state process controlling this latter channel involves electron transfer, rather than acidbase type proton transfer. In the mixed ice, the resulting products depend on the mixing ratio. The astronomical consequences of these laboratory findings are discussed. C1 [Cuylle, Steven H.; Tenenbaum, Emily D.; Bouwman, Jordy; Linnartz, Harold] Leiden Univ, Leiden Observ, Raymond & Beverly Sackler Lab Astrophys, NL-2300 RA Leiden, Netherlands. [Allamandola, Louis J.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Linnartz, H (reprint author), Leiden Univ, Leiden Observ, Raymond & Beverly Sackler Lab Astrophys, POB 9513, NL-2300 RA Leiden, Netherlands. EM linnartz@strw.leidenuniv.nl FU Netherlands School for Astronomy; Dutch Organization for Fundamental Research (FOM); NWO-VICI; Dutch Organization for Science; European Community [238258]; NWO; NASA FX This research is financially supported by the Netherlands School for Astronomy, the Dutch Organization for Fundamental Research (FOM), NWO-VICI, the Dutch Organization for Science and the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 238258. EDT acknowledges support from an NWO Rubicon Fellowship. LJA gratefully acknowledges support from NASA's laboratory astrophysics and astrobiology programmes. NR 43 TC 8 Z9 8 U1 2 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 2 BP 1825 EP 1830 DI 10.1111/j.1365-2966.2012.21006.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956DU UT WOS:000305070900064 ER PT J AU Yue, Y Zhang, L Yan, Y Ahmed, N Yang, JY Huang, H Ren, YX Dolinar, S Tur, M Willner, AE AF Yue, Yang Zhang, Lin Yan, Yan Ahmed, Nisar Yang, Jeng-Yuan Huang, Hao Ren, Yongxiong Dolinar, Sam Tur, Moshe Willner, Alan E. TI Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber SO OPTICS LETTERS LA English DT Article ID POLARIZED BEAMS AB We propose As2S3 ring photonic crystal fiber (PCF) for supercontinuum generation of optical vortex modes. Due to the large material index contrast between As2S3 and air holes in the designed ring PCF, there is a two-orders-of- magnitude improvement of the difference between the effective refractive indices of different vortex modes compared with regular ring fiber. The design freedom of PCFs enables a low dispersion (< 60 ps/nm/km variation in total) over a 522 nm optical bandwidth. Moreover, the vortex mode has a large nonlinear coefficient of 11.7/W/m at 1550 nm with a small confinement loss of < 0.03 dB/m up to 2000 nm. An octave-spanning supercontinuum spectrum of the vortex mode is generated from 1196 to 2418 nm at -20 dB by launching a 120 fs pulse with a 60 W peak power at 1710 nm into a 1 cm long As2S3 ring PCF. (C) 2012 Optical Society of America C1 [Yue, Yang; Zhang, Lin; Yan, Yan; Ahmed, Nisar; Yang, Jeng-Yuan; Huang, Hao; Ren, Yongxiong; Willner, Alan E.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Dolinar, Sam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tur, Moshe] Tel Aviv Univ, Sch Elect Engn, IL-69978 Ramat Aviv, Israel. RP Yue, Y (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. EM yyue@usc.edu RI Yue, Yang/A-3357-2012; Zhang, Lin/E-7913-2011 OI Zhang, Lin/0000-0003-0545-1110 FU Defense Advanced Research Projects Agency (DARPA) FX We acknowledge the support of the Defense Advanced Research Projects Agency (DARPA) under InPho (Information in a Photon) program. NR 20 TC 20 Z9 20 U1 0 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 1 PY 2012 VL 37 IS 11 BP 1889 EP 1891 PG 3 WC Optics SC Optics GA 956JD UT WOS:000305085000037 PM 22660063 ER PT J AU Potter, C Li, S Huang, SL Crabtree, RL AF Potter, Christopher Li, Shuang Huang, Shengli Crabtree, Robert L. TI Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Sapling density; Post-fire ecosystems; AVIRIS; Hyperspectral; Fire ecology; Northern Rocky Mountains; Yellowstone National Park ID VEGETATION INDEXES; AVIRIS DATA; POSTFIRE; FIRES; REFLECTANCE; FORESTS; RED; USA; HETEROGENEITY; ECOSYSTEMS AB The density of lodgepole pine (Pinus contorta) sapling regeneration was mapped in areas burned during the 1988 wildfires across Yellowstone National Park (YNP), Wyoming, USA. Hyperspectral image analysis and field measurements were combined across the entire YNP extent. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) image data from 2006 were used to compute ten different vegetation indices (VI). The ten VIs were combined to build multiple regression models for predicting and mapping post-fire sapling density. Four different forms of regression modeling were applied to derive the highest possible prediction accuracy (correlation coefficient of R-2 = 0.83). Pine sapling regeneration 19 years after large-scale wildfires showed a high level of variability in patch density (ranging from 14/100 ha to 57/100 ha), whereas sapling density measured previously from the first decade following wildfire was more uniform (10/100 ha to 21/100 ha). The ecosystem-level dumpiness index showed major shifts in aggregation of different sapling density classes, and was consistent with an overall decrease in estimated sapling density of nearly 50% between 1998 and 2007. This analysis revealed important succession patterns and processes in post-fire forest regeneration for the Greater Yellowstone Area (GYA). Published by Elsevier Inc. C1 [Potter, Christopher; Li, Shuang; Huang, Shengli] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Li, Shuang] Henan Univ, Coll Environm & Planning, Kaifeng 475001, Henan, Peoples R China. [Huang, Shengli; Crabtree, Robert L.] Yellowstone Ecol Res Ctr, Bozeman, MT 59718 USA. [Crabtree, Robert L.] HyPerspectives Inc, Bozeman, MT 59718 USA. RP Potter, C (reprint author), NASA, Ames Res Ctr, Mail Stop 242-4, Moffett Field, CA 94035 USA. EM Chris.Potter@nasa.gov FU NASA Ames Research Center; NASA FX The authors thank the many field crews, especially Jamie Robertson, Nate Emery, Amelia Hagen-Dillon, and Jeanine Moy, of the Yellowstone Ecological Research Center for their dedicated field survey work. We thank Alan Swanson on his assistance on statistical analysis. We are grateful to Ann Rodman, PJ White, and Roy Renkin of the Yellowstone Center for Resources, National Park Service, for their guidance on data usage and research planning. This research was supported by appointments to the NASA Postdoctoral Program at the NASA Ames Research Center (for both authors Shuang Li and Shengli Huang) administered by Oak Ridge Associated Universities through a contract with NASA. NR 47 TC 6 Z9 7 U1 1 U2 33 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 61 EP 68 DI 10.1016/j.rse.2012.01.019 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700006 ER PT J AU Yu, HB Zhang, Y Chin, M Liu, ZY Omar, A Remer, LA Yang, YK Yuan, TL Zhang, JL AF Yu, Hongbin Zhang, Yan Chin, Mian Liu, Zhaoyan Omar, Ali Remer, Lorraine A. Yang, Yuekui Yuan, Tianle Zhang, Jianglong TI An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Aerosols; Clouds ID OPTICAL DEPTH; ABSORBING AEROSOLS; RETRIEVALS; THICKNESS; PRODUCTS; AEROCOM; MISSION; TOMS AB Quantifying above-cloud aerosol can help improve the assessment of aerosol intercontinental transport and climate impacts. In this study we conduct an integrated analysis of aerosols above clouds by using multi-sensor A-Train measurements, including above-cloud aerosol optical depth at 532 nm (AOD(532)) from CALIPSO lidar, the UV aerosol index (AI) from OMI, and cloud fraction and cloud optical depth (COD) from MOD'S. The analysis of Saharan dust outflow and Southwest African smoke outflow regions shows that the above-cloud AOD correlates positively with AI in an approximately linear manner, and that the AOD(532)/AI ratio decreases with increasing COD. The dependence of AOD(532)/AI ratio on COD doesn't depend on aerosol type when potential biases in the CALIOP AOD measurements are empirically accounted for. Our results may suggest the potential of combining OMI AI and MODIS cloud measurements to empirically derive above-cloud AOD with a spatial coverage much more extensive than CALIPSO measurements, which needs 10 be further explored in the future. (c) 2012 Elsevier Inc. All rights reserved. C1 [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Yu, Hongbin; Zhang, Yan; Remer, Lorraine A.; Yang, Yuekui; Yuan, Tianle] NASA Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD USA. [Zhang, Yan] Morgan State Univ, Baltimore, MD 21239 USA. [Chin, Mian] NASA Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Liu, Zhaoyan] Natl Inst Aerosp, Hampton, VA USA. [Liu, Zhaoyan; Omar, Ali] NASA Langley Res Ctr, Hampton, VA USA. [Yang, Yuekui] Univ Space Res Assoc, Columbia, MD USA. [Yuan, Tianle] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Zhang, Jianglong] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND USA. RP Yu, HB (reprint author), NASA, GSFC, Code 613, Greenbelt, MD 20771 USA. EM Hongbin.Yu@nasa.gov RI Yu, Hongbin/C-6485-2008; Liu, Zhaoyan/B-1783-2010; Chin, Mian/J-8354-2012; Yuan, Tianle/D-3323-2011; Zhang, Yan/C-4792-2012; Yang, Yuekui/B-4326-2015; Omar, Ali/D-7102-2017 OI Yu, Hongbin/0000-0003-4706-1575; Liu, Zhaoyan/0000-0003-4996-5738; Omar, Ali/0000-0003-1871-9235 FU NASA; Atmospheric Composition Modeling and Analysis Program (ACMAP) FX The work was sponsored by NASA through its Radiation Science program, and Atmospheric Composition Modeling and Analysis Program (ACMAP), managed by Richard Eckman. We are grateful to Omar Torres, Tom Eck, Jeffery Reid, and Zhibo Zhang for helpful discussions. We thank three anonymous reviewers for comments. The MODIS data were obtained from the NASA Level 1 and Atmosphere Archive and Distribution System (LAADS). The OMI data were obtained from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. NR 42 TC 22 Z9 23 U1 2 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 125 EP 131 DI 10.1016/j.rse.2012.01.011 PG 7 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700012 ER PT J AU Fensholt, R Langanke, T Rasmussen, K Reenberg, A Prince, SD Tucker, C Scholes, RJ Le, QB Bondeau, A Eastman, R Epstein, H Gaughan, AE Hellden, U Mbow, C Olsson, L Paruelo, J Schweitzer, C Seaquist, J Wessels, K AF Fensholt, Rasmus Langanke, Tobias Rasmussen, Kjeld Reenberg, Anette Prince, Stephen D. Tucker, Compton Scholes, Robert J. Le, Quang Bao Bondeau, Alberte Eastman, Ron Epstein, Howard Gaughan, Andrea E. Hellden, Ulf Mbow, Cheikh Olsson, Lennart Paruelo, Jose Schweitzer, Christian Seaquist, Jonathan Wessels, Konrad TI Greenness in semi-arid areas across the globe 1981-2007 - an Earth Observing Satellite based analysis of trends and drivers SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE AVHRR GIMMS NDVI; MODIS NDVI; Semi-arid; Vegetation greenness; Phenology; Precipitation; Air temperature; Incoming shortwave radiation ID NDVI TIME-SERIES; TERM VEGETATION TRENDS; SPOT-VEGETATION; SOUTH-AMERICA; DATA SETS; AVHRR; MODIS; SAHEL; DYNAMICS; CLIMATE AB Semi-arid areas, defined as those areas of the world where water is an important limitation for plant growth, have become the subject of increased interest due to the impacts of current global changes and sustainability of human lifestyles. While many ground-based reports of declining vegetation productivity have been published over the last decades, a number of recent publications have shown a nuanced and, for some regions, positive picture. With this background, the paper provides an analysis of trends in vegetation greenness of semi-arid areas using AVHRR GIMMS from 1981 to 2007. The vegetation index dataset is used as a proxy for vegetation productivity and trends are analyzed for characterization of changes in semi-arid vegetation greenness. Calculated vegetation trends are analyzed with gridded data on potential climatic constraints to plant growth to explore possible causes of the observed changes. An analysis of changes in the seasonal variation of vegetation greenness and climatic drivers is conducted for selected regions to further understand the causes of observed inter-annual vegetation changes in semi-arid areas across the globe. It is concluded that semi-arid areas, across the globe, on average experience an increase in greenness (0.015 NDVI units over the period of analysis). Further it is observed that increases in greenness are found both in semi-arid areas where precipitation is the dominating limiting factor for plant production (0.019 NDVI units) and in semi-arid areas where air temperature is the primarily growth constraint (0.013 NDVI units). Finally, in the analysis of changes in the intra-annual variation of greenness it is found that seemingly similar increases in greenness over the study period may have widely different explanations. This implies that current generalizations, claiming that land degradation is ongoing in semi-arid areas worldwide, are not supported by the satellite based analysis of vegetation greenness. (c) 2012 Elsevier Inc. All rights reserved. C1 [Fensholt, Rasmus; Langanke, Tobias; Rasmussen, Kjeld; Reenberg, Anette] Univ Copenhagen, Dept Geog & Geol, DK-1350 Copenhagen, Denmark. [Prince, Stephen D.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Tucker, Compton] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Scholes, Robert J.; Wessels, Konrad] CSIR, ZA-0001 Pretoria, South Africa. [Le, Quang Bao] Univ Bonn, Ctr Dev Res ZEF, D-53113 Bonn, Germany. [Le, Quang Bao] ETH, Inst F Umweltentscheidungen, CH-8092 Zurich, Switzerland. [Bondeau, Alberte] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany. [Eastman, Ron] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA. [Epstein, Howard] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Gaughan, Andrea E.] Univ Florida, Dept Geog, Gainesville, FL 32611 USA. [Mbow, Cheikh] Univ Cheikh Anta Diop Dakar, Inst Sci Environm, Dakar, Senegal. [Paruelo, Jose] Univ Buenos Aires, Fac Agron IFEVA, RA-1417 Buenos Aires, DF, Argentina. [Paruelo, Jose] Consejo Nacl Invest Cient & Tecn, RA-1417 Buenos Aires, DF, Argentina. [Schweitzer, Christian] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol CLE, D-04318 Leipzig, Germany. [Hellden, Ulf; Olsson, Lennart; Seaquist, Jonathan] Lund Univ, Dept Earth & Ecosyst Sci, S-22362 Lund, Sweden. [Bondeau, Alberte] CNRS, Inst Mediterraneen Biodivers & Ecol Marine & Cont, Mediterranean Inst Biodivers & Ecol, IRD 237,UMR 7263, F-13545 Aix En Provence 04, France. RP Fensholt, R (reprint author), Univ Copenhagen, Dept Geog & Geol, Oster Voldgade 10, DK-1350 Copenhagen, Denmark. EM rf@geo.ku.dk RI Bondeau, Alberte/E-9909-2012; Fensholt, Rasmus/L-7951-2014; Rasmussen, Kjeld/A-4212-2015; Reenberg, Anette/E-1476-2015; OI Fensholt, Rasmus/0000-0003-3067-4527; Rasmussen, Kjeld/0000-0003-3111-584X; Reenberg, Anette/0000-0003-2676-380X; Le, Quang Bao/0000-0001-8514-1088; Scholes, Robert/0000-0001-5537-6935 FU Global Land Project, International Project Office (GLP-IPO) FX The current paper was initiated by the Global Land Project, a joint project under the International Geosphere Biosphere Program (IGBP) and the International Human Dimension Program (IHDP). The authors are grateful to the Global Land Project, International Project Office (GLP-IPO) for preparing, funding and facilitating the workshop held in Copenhagen. The authors would like to thank R. Nemani for providing the potential climatic plant growth constraints data used in the analyses. Finally the authors are grateful to the anonymous reviewers for their many detailed and constructive comments that considerably improved the manuscript. NR 66 TC 128 Z9 146 U1 17 U2 147 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 144 EP 158 DI 10.1016/j.rse.2012.01.017 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700014 ER PT J AU Wulder, MA White, JC Nelson, RF Naesset, E Orka, HO Coops, NC Hilker, T Bater, CW Gobakken, T AF Wulder, Michael A. White, Joanne C. Nelson, Ross F. Naesset, Erik Orka, Hans Ole Coops, Nicholas C. Hilker, Thomas Bater, Christopher W. Gobakken, Terje TI Lidar sampling for large-area forest characterization: A review SO REMOTE SENSING OF ENVIRONMENT LA English DT Review DE Light detection and ranging; Lidar; Sampling; Extrapolation; Forest; Large area; Stratification; Satellite; Monitoring ID AIRBORNE SCANNING LASER; MODEL-BASED INFERENCE; WAVE-FORM LIDAR; STAND CHARACTERISTICS; BIOMASS ESTIMATION; FLYING ALTITUDES; PROFILING LIDAR; LIGHT DETECTION; HEDMARK COUNTY; CANOPY HEIGHT AB The ability to use digital remotely sensed data for forest inventory is often limited by the nature of the measures, which, with the exception of multi-angular or stereo observations, are largely insensitive to vertically distributed attributes. As a result, empirical estimates are typically made to characterize attributes such as height, volume, or biomass, with known asymptotic relationships as signal saturation occurs. Lidar (light detection and ranging) has emerged as a robust means to collect and subsequently characterize vertically distributed attributes. Lidar has been established as an appropriate data source for forest inventory purposes; however, large area monitoring and mapping activities with lidar remain challenging due to the logistics, costs, and data volumes involved. The use of lidar as a sampling tool for large-area estimation may mitigate some or all of these problems. A number of factors drive, and are common to, the use of airborne profiling, airborne scanning, and spaceborne lidar systems as sampling tools for measuring and monitoring forest resources across areas that range in size from tens of thousands to millions of square kilometers. In this communication, we present the case for lidar sampling as a means to enable timely and robust large-area characterizations. We briefly outline the nature of different lidar systems and data, followed by the theoretical and statistical underpinnings for lidar sampling. Current applications are presented and the future potential of using lidar in an integrated sampling framework for large area ecosystem characterization and monitoring is presented. We also include recommendations regarding statistics, lidar sampling schemes, applications (including data integration and stratification), and subsequent information generation. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved. C1 [Wulder, Michael A.; White, Joanne C.] Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC V8Z 1M5, Canada. [Nelson, Ross F.; Hilker, Thomas] NASAs Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Naesset, Erik; Orka, Hans Ole; Gobakken, Terje] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, NO-1432 As, Norway. [Coops, Nicholas C.; Bater, Christopher W.] Univ British Columbia, Dept Forest Resources Management, Fac Forestry, Vancouver, BC V6T 1Z4, Canada. RP Wulder, MA (reprint author), Nat Resources Canada, Canadian Forest Serv, Pacific Forestry Ctr, 506 W Burnside Rd, Victoria, BC V8Z 1M5, Canada. EM mwulder@nrcan.gc.ca RI Coops, Nicholas/J-1543-2012; Orka, Hans Ole/A-8142-2014; Beckley, Matthew/D-4547-2013; Nelson, Ross/H-8266-2014; Wulder, Michael/J-5597-2016; OI Coops, Nicholas/0000-0002-0151-9037; Wulder, Michael/0000-0002-6942-1896; White, Joanne/0000-0003-4674-0373 FU Research Council of Norway [192792/199]; CFS FX The contributions of Dr. Hans Ole Orka to this manuscript were made possible by a travel grant (#192792/199) from the Research Council of Norway supporting a research visit to the Canadian Forest Service (CFS) - Pacific Forestry Center. Funding support from the CFS Innovative Ideas program also aided in making this research possible. Dr. Gang Chen, of the Canadian Forest Service, is thanked for aiding with the development of Tables 1 and 2. NR 106 TC 146 Z9 149 U1 14 U2 159 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 196 EP 209 DI 10.1016/j.rse.2012.02.001 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700018 ER PT J AU Guanter, L Frankenberg, C Dudhia, A Lewis, PE Gomez-Dans, J Kuze, A Suto, H Grainger, RG AF Guanter, Luis Frankenberg, Christian Dudhia, Anu Lewis, Philip E. Gomez-Dans, Jose Kuze, Akihiko Suto, Hiroshi Grainger, Roy G. TI Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Fluorescence retrieval; GOSAT-FTS; Fraunhofer-line approach; Singular vector decomposition; Gross primary production; Vegetation indices ID RADIATIVE-TRANSFER; SATELLITE; MODIS; PHOTOSYNTHESIS; REFLECTANCE; ECOSYSTEM; ENERGY AB The recent advent of very high spectral resolution measurements by the Fourier Transform Spectrometer (FTS) on board the Greenhouse gases Observing SATellite (GOSAT) platform has made possible the retrieval of sun-induced terrestrial chlorophyll fluorescence (F-s) on a global scale. The basis for this retrieval is the modeling of the in-filling of solar Fraunhofer lines by fluorescence. This contribution to the field of space-based carbon cycle science presents an alternative method for the retrieval of Fs from the Fraunhofer lines resolved by GOSAT-FTS measurements. The method is based on a linear forward model derived by a singular vector decomposition technique, which enables a fast and robust inversion of top-of-atmosphere radiance spectra. Retrievals are performed in two spectral micro-windows (similar to 2-3 nm width) containing several strong Fraunhofer lines. The statistical nature of this approach allows to avoid potential retrieval errors associated with the modeling of the instrument line shape or with a given extraterrestrial solar irradiance data set. The method has been tested on 22 consecutive months of global GOSAT-FTS measurements. The fundamental basis of this F-s retrieval approach and the results from the analysis of the global F-s data set produced with it are described in this work. Among other findings, the data analysis has shown (i) a very good comparison of F-s intensity levels and spatial patterns with the state-of-the-art physically-based F-s retrieval approach described in Frankenberg et al. (2011a), (ii) the overall good agreement between F-s annual and seasonal patterns and other space-based vegetation parameters, (iii) the need for a biome-dependent scaling from F-s to gross primary production, and (iv) the apparent existence of strong directional effects in the F-s emission from forest canopies. These results reinforce the confidence in the feasibility of F-s retrievals with GOSAT-FTS and open several points for future research in this emerging field. (c) 2012 Elsevier Inc. All rights reserved. C1 [Guanter, Luis] Free Univ Berlin, Inst Space Sci, D-12165 Berlin, Germany. [Guanter, Luis; Dudhia, Anu; Grainger, Roy G.] Univ Oxford, Oxford OX1 2JD, England. [Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lewis, Philip E.; Gomez-Dans, Jose] UCL, Dept Geog, London WC1E 6BT, England. [Lewis, Philip E.; Gomez-Dans, Jose] UCL, Natl Ctr Earth Observat, London WC1E 6BT, England. [Kuze, Akihiko; Suto, Hiroshi] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki, Japan. RP Guanter, L (reprint author), Free Univ Berlin, Inst Space Sci, Carl Heinrich Becker Weg 6-10, D-12165 Berlin, Germany. EM guanter@atm.ox.ac.uk RI Lewis, Philip/C-1588-2008; Guanter, Luis/B-2108-2013; Grainger, Roy/E-8823-2011; Guanter, Luis/I-1588-2015; KUZE, AKIHIKO/J-2074-2016; Frankenberg, Christian/A-2944-2013; OI Lewis, Philip/0000-0002-8562-0633; Grainger, Roy/0000-0003-0709-1315; Guanter, Luis/0000-0002-8389-5764; KUZE, AKIHIKO/0000-0001-5415-3377; Frankenberg, Christian/0000-0002-0546-5857; Gomez-Dans, Jose/0000-0003-4787-8307 FU European Commission FX We would like to acknowledge JAXA, NIES and MOE for making GOSAT data available to the scientific community. Dr. H. Watanabe and NIES are especially thanked for opening the large volume GOSAT data distribution server to PIs. The MPI-BGC GPP was kindly provided by Martin Jung from the Max Planck Institute for Biogeochemistry, MODIS MOD17 GPP data were downloaded from the server of the Numerical Terradynamic Simulation Group at the University of Montana, MODIS MOD13 EVI/NDVI data were obtained from the MODIS LP DAAC archive, and MERIS-MTCI from the Infoterra Ltd server. H. Boesch and R. Parker from the University of Leicester are thanked for initial help with GOSAT data handling. C. Van der Tol from ITC is also thanked for useful comments on the manuscript. The research of LG has been funded by the European Commission through the 7th Framework Marie Curie Actions Programme. We thank three anonymous reviewers for their constructive comments to improve the quality of this manuscript. NR 34 TC 89 Z9 90 U1 15 U2 98 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 236 EP 251 DI 10.1016/j.rse.2012.02.006 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700021 ER PT J AU Hilker, T Hall, FG Tucker, CJ Coops, NC Black, TA Nichol, CJ Sellers, PJ Barr, A Hollinger, DY Munger, JW AF Hilker, Thomas Hall, Forrest G. Tucker, Compton J. Coops, Nicholas C. Black, T. Andrew Nichol, Caroline J. Sellers, Piers J. Barr, Alan Hollinger, David Y. Munger, J. W. TI Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II Model implementation and validation SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Data assimilation; Photosynthesis; Eddy-flux; Multivariate function; Epsilon; Epsilon max; Global carbon cycle; Carbon modeling; Vegetation carbon cycle; Downregulation; CHRIS/Proba; PRI'; Multi-angular ID CARBON-DIOXIDE FLUXES; GROSS PRIMARY PRODUCTION; DOUGLAS-FIR FOREST; LEAF-AREA INDEX; DECIDUOUS FOREST; BOREAL; MODIS; CANOPY; CANADA; VARIABILITY AB Spatially explicit and temporally continuous estimates of photosynthesis will be of great importance for increasing our understanding of and ultimately closing the terrestrial carbon cycle. Current capabilities to model photosynthesis, however, are limited by accurate enough representations of the complexity of the underlying biochemical processes and the numerous environmental constraints imposed upon plant primary production. A potentially powerful alternative to model photosynthesis through these indirect observations is the use of multi-angular satellite data to infer light-use efficiency (epsilon) directly from spectral reflectance properties in connection with canopy shadow fractions. Hall et al. (this issue) introduced a new approach for predicting gross ecosystem production that would allow the use of such observations in a data assimilation mode to obtain spatially explicit variations in epsilon from infrequent polar-orbiting satellite observations, while meteorological data are used to account for the more dynamic responses of epsilon to variations in environmental conditions caused by changes in weather and illumination. In this second part of the study we implement and validate the approach of Hall et al. (this issue) across an ecologically diverse array of eight flux-tower sites in North America using data acquired from the Compact High Resolution Imaging Spectroradiometer (CHRIS) and eddy-flux observations. Our results show significantly enhanced estimates of epsilon and therefore cumulative gross ecosystem production (GEP) over the course of one year at all examined sites. We also demonstrate that epsilon is greatly heterogeneous even across small study areas. Data assimilation and direct inference of GEP from space using a new, proposed sensor could therefore be a significant step towards closing the terrestrial carbon cycle. (c) 2012 Elsevier Inc. All rights reserved. C1 [Hilker, Thomas; Hall, Forrest G.; Tucker, Compton J.; Sellers, Piers J.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. [Black, T. Andrew] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. [Nichol, Caroline J.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Barr, Alan] Environm Canada, Saskatoon, SK, Canada. [Hollinger, David Y.] US Forest Serv, No Res Stn, Durham, NH USA. [Munger, J. W.] Harvard Univ, Cambridge, MA 02138 USA. RP Hilker, T (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Code 618, Greenbelt, MD 20771 USA. EM thomas.hilker@nasa.gov RI Coops, Nicholas/J-1543-2012; Hollinger, David/G-7185-2012; Barr, Alan/H-9939-2014; Munger, J/H-4502-2013 OI Coops, Nicholas/0000-0002-0151-9037; Munger, J/0000-0002-1042-8452 FU NASA; Canadian Carbon Program; Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP FX The ESA CHRIS/Proba images were provided by Dr. David G. Goodenough, Dr. Ray Merton, and Dr. Mathias Kneubuhler, all principal investigators of the Evaluation and Validation of CHRIS (EVC) Project. The Center for Remote Sensing and Department of Geography at Boston University are thanked for provision of the GOMS model. Partial funding for this study was provided by NASA's Terrestrial Ecology Program managed by Dr. Diane Wickland. This research is also partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP, and an NSERC-Accelerator grant to NCC. NR 48 TC 19 Z9 21 U1 3 U2 40 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 287 EP 300 DI 10.1016/j.rse.2012.02.008 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700025 ER PT J AU Hall, FG Hilker, T Coops, NC AF Hall, Forrest G. Hilker, Thomas Coops, Nicholas C. TI Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Photosynthesis; Light-use efficiency; Data assimilation; Multivariate model; CHRIS/Proba; Eddy covariance; Carbon cycle ID NET PRIMARY PRODUCTION; MESOPHYLL CONDUCTANCE; TEMPERATURE RESPONSE; STOMATAL CONDUCTANCE; DECIDUOUS FOREST; IN-VIVO; PRODUCTIVITY; KINETICS; CLIMATE; LEAVES AB Forest photosynthetic exchange rates at landscape scales have proven difficult to either accurately measure or estimate. Recent developments (Hall et al., 2011, 2008: Hilker et al., 2011a, 2010a) permit us to infer photosynthetic forest light use efficiency (epsilon) using multi-angle measurements of photochemical reflectance index (PRI) from the CHRIS/PROBA satellite imaging spectrometer, thus completing a long sought-after capability to remotely sense the major inputs driving gross primary production GPP i.e., epsilon and absorbed photosynthetically active radiation (APAR). In this first of two companion papers we introduce the theoretical underpinnings of an innovative approach that utilizes our recent developments to produce remotely sensed and spatially explicit maps of epsilon and GPP from space, and a data assimilation approach to extend the spatially explicit maps to diurnal, daily and annual time scales. We quantify GPP using the traditional radiation-limited approach of Monteith (1972); however we apply it in an innovative way. [I] Using CHRIS/PROBA we quantify epsilon at each satellite overpass for a 625 km(2) area at 30 m resolution. [II] We use a novel physiologically-based multivariate function of APAR, temperature and water vapor pressure deficit model (described herein) and use it to down-regulate epsilon at 30 minute intervals. [III] We use the CHRIS/PROBA images of spatial variation in epsilon, and NDVI to quantify APAR, hence produce snapshots of GPP. We use a data assimilation approach to extend epsilon and GPP to temporally continuous and spatially contiguous maps of vegetation carbon uptake. In the second part of this study (Hilker et al., 2011b) we demonstrate and validate our approach over eight different forest flux tower sites in North America. (c) 2012 Elsevier Inc. All rights reserved. C1 [Hall, Forrest G.; Hilker, Thomas] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. RP Hilker, T (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Code 614-4, Greenbelt, MD 20771 USA. EM Forrest.G.Hall@nasa.gov; thomas.hilker@nasa.gov RI Coops, Nicholas/J-1543-2012 OI Coops, Nicholas/0000-0002-0151-9037 FU NASA; Canadian Carbon Program; Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP FX Partial funding for this study was provided by NASA's Terrestrial Ecology Program managed by Dr. Diane Wickland. This research is also partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP. NR 39 TC 17 Z9 18 U1 4 U2 47 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 301 EP 308 DI 10.1016/j.rse.2012.02.007 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700026 ER PT J AU Colliander, A Chan, S Kim, SB Das, N Yueh, S Cosh, M Bindlish, R Jackson, T Njoku, E AF Colliander, Andreas Chan, Steven Kim, Seung-bum Das, Narendra Yueh, Simon Cosh, Michael Bindlish, Rajat Jackson, Thomas Njoku, Eni TI Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Soil moisture; SMAP (Soil Moisture Active and Passive); SGP99; SMEX02; CLASIC; SMAPVEX08; PALS ID MICROWAVE DIELECTRIC BEHAVIOR; L-BAND RADIOMETER; SURFACE-ROUGHNESS; OCEAN SURFACE; WET SOIL; RETRIEVAL; MODEL; SMOS; EMISSION; MISSION AB An important component of satellite-based soil moisture algorithm development and validation is the comparison of coincident remote sensing and in situ observations that are typically provided by intensive field campaigns. The planned NASA Soil Moisture Active Passive (SMAP) mission has unique requirements compared to previous soil moisture satellite programs because both active and passive microwave observations are needed. The primary source of these combined observations has been an aircraft-based SMAP simulator called PALS (Passive and Active L-band System). This paper presents an overview of the field experiment data collected using PALS that spans 10 years. Data from the various campaigns were merged to form a single data set. Analyses showed that the data set contains an extensive range of soil moisture values collected under a variety of conditions and that the quality of both the PALS and ground truth data meets the needs of SMAP algorithm development and validation. The study suggests that the data set should be expanded in order to achieve globally representative land cover diversity and that more observations under dense vegetation conditions and longer time series would be desirable. (c) 2012 Elsevier Inc. All rights reserved. C1 [Colliander, Andreas; Chan, Steven; Kim, Seung-bum; Das, Narendra; Yueh, Simon; Njoku, Eni] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cosh, Michael; Bindlish, Rajat; Jackson, Thomas] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. RP Colliander, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM andreas.colliander@jpl.nasa.gov RI Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 NR 68 TC 18 Z9 18 U1 1 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 309 EP 322 DI 10.1016/j.rse.2012.02.002 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700027 ER PT J AU Cescatti, A Marcolla, B Vannan, SKS Pan, JY Roman, MO Yang, XY Ciais, P Cook, RB Law, BE Matteucci, G Migliavacca, M Moors, E Richardson, AD Seufert, G Schaaf, CB AF Cescatti, Alessandro Marcolla, Barbara Vannan, Suresh K. Santhana Pan, Jerry Yun Roman, Miguel O. Yang, Xiaoyuan Ciais, Philippe Cook, Robert B. Law, Beverly E. Matteucci, Giorgio Migliavacca, Mirco Moors, Eddy Richardson, Andrew D. Seufert, Guenther Schaaf, Crystal B. TI Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS; Surface albedo; Validation; FLUXNET; Terrestrial ecosystems; Plant functional types; Remote sensing ID REFLECTANCE DISTRIBUTION FUNCTION; BROAD-BAND ALBEDO; SURFACE ALBEDO; BOREAL FORESTS; CLIMATE-CHANGE; VEGETATION; PRODUCTS; FEEDBACKS; VALIDATION; INSTRUMENT AB Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (r(2) = 0.82). The mismatch is correlated with the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo are considered for different plant functional types, the match,. with surface observations is extremely good at all forest sites. On the contrary, satellite retrievals at non-forested sites (grasslands, savannas, croplands) underestimate in situ measurements across the seasonal cycle. The mismatch observed at grassland and cropland sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes. (c) 2012 Elsevier Inc. All rights reserved. C1 [Cescatti, Alessandro; Migliavacca, Mirco; Seufert, Guenther] Commiss European Communities, DG Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, I-21027 Ispra, VA, Italy. [Marcolla, Barbara] Fdn Edmund Mach, IASMA Res & Innovat Ctr, Sustainable Agroecosyst & Bioresources Dept, I-38010 San Michele All Adige, Italy. [Vannan, Suresh K. Santhana; Pan, Jerry Yun; Cook, Robert B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Lab, Greenbelt, MD 20771 USA. [Yang, Xiaoyuan; Schaaf, Crystal B.] Boston Univ, Dept Geog & Environm, Ctr Remote Sensing, Boston, MA 02215 USA. [Ciais, Philippe] Joint Unit CEA CNRS UVSQ, Lab Sci Climat & Environm LSCE, Gif Sur Yvette, France. [Law, Beverly E.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Matteucci, Giorgio] CNR ISAFOM, I-87036 Arcavacata Di Rende, CS, Italy. [Moors, Eddy] Alterra Wageningen UR, ESS CC, Wageningen, Netherlands. [Richardson, Andrew D.] Harvard Univ Hebaria, Dept Organism & Evolutionary Biol, Harvard Univ, Cambridge, MA 02138 USA. [Schaaf, Crystal B.] Univ Massachusetts, Boston, MA 02125 USA. RP Cescatti, A (reprint author), Commiss European Communities, DG Joint Res Ctr, Inst Environm & Sustainabil, Climate Change Unit, TP290,Via E Fermi 2749, I-21027 Ispra, VA, Italy. EM alessandro.cescatti@jrc.ec.europa.eu RI Law, Beverly/G-3882-2010; Migliavacca, mirco/C-1260-2011; Moors, Eddy/J-5165-2012; Richardson, Andrew/F-5691-2011; Roman, Miguel/D-4764-2012; Seufert, Gunther/J-9918-2013; Matteucci, Giorgio/N-3526-2015 OI Cook, Robert/0000-0001-7393-7302; Law, Beverly/0000-0002-1605-1203; Marcolla, Barbara/0000-0001-6357-4616; Moors, Eddy/0000-0003-2309-2887; Richardson, Andrew/0000-0002-0148-6714; Roman, Miguel/0000-0003-3953-319X; Seufert, Gunther/0000-0002-6019-6688; Matteucci, Giorgio/0000-0002-4790-9540 FU CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval and Environment Canada and US Department of Energy; Berkeley Water Center; Lawrence Berkeley National Laboratory; Microsoft Research eScience; Oak Ridge National Laboratory; University of California - Berkeley; University of Virginia; NASA [NNX08AE94A] FX This work is based on radiometric measurements acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, FLUXNET - Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), Green-Grass, KoFlux, LBA, NECC, OzFlux, TCOS - Siberia, and USCCC. We acknowledge the support to data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS (the Integrated Land Ecosystem-Atmosphere Processes Study, a core project of IGBP), Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California - Berkeley, and University of Virginia. The processing of MODIS data has been supported by NASA grant NNX08AE94A. Support for C. Schaaf and X. Yang was provided by NASA grant NNX08AE94A. NR 58 TC 98 Z9 103 U1 5 U2 58 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 323 EP 334 DI 10.1016/j.rse.2012.02.019 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700028 ER PT J AU Ottaviani, M Cairns, B Chowdhary, J Van Diedenhoven, B Knobelspiesse, K Hostetler, C Ferrare, R Burton, S Hair, J Obland, MD Rogers, R AF Ottaviani, Matteo Cairns, Brian Chowdhary, Jacek Van Diedenhoven, Bastiaan Knobelspiesse, Kirk Hostetler, Chris Ferrare, Rich Burton, Sharon Hair, John Obland, Michael D. Rogers, Raymond TI Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing; Polarization; Sunglint; Oil spill; Cirrus; Thin-film interference ID RESEARCH SCANNING POLARIMETER; LANGMUIR CIRCULATION; MULTIPLE-SCATTERING; OPTICAL-PROPERTIES; REFRACTIVE-INDEX; LIGHT-SCATTERING; ICE CRYSTALS; CRUDE-OIL; REFLECTION; ABSORPTION AB In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley 13200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by prohibitive variability in atmospheric conditions (very inhomogeneous aerosol distribution and cloud cover). Although the results presented for the surface are essentially unaffected, we discuss the results obtained by typing algorithms in sorting the complex mix of aerosol types, and show evidence of oriented ice in cirrus clouds present in the area. In this context, polarization measurements at 1880 nm were used to infer ice habit and cirrus optical depth, which was found in the subvisual/threshold-visible regime, confirming the utility of the aforementioned RSP channel for the remote sensing of even thin cold clouds. (c) 2012 Elsevier Inc. All rights reserved. C1 [Ottaviani, Matteo; Cairns, Brian; Knobelspiesse, Kirk] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Chowdhary, Jacek] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Van Diedenhoven, Bastiaan] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.; Rogers, Raymond] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Ottaviani, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM mottaviani@giss.nasa.gov RI van Diedenhoven, Bastiaan/A-2002-2013; Knobelspiesse, Kirk/S-5902-2016; OI Knobelspiesse, Kirk/0000-0001-5986-1751; van Diedenhoven, Bastiaan/0000-0001-5622-8619; Cairns, Brian/0000-0002-1980-1022 FU NASA at the NASA Goddard Institute for Space Studies; NASA FX Matteo Ottaviani was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA. A special mention must be given to the pilots (Mike Wusk, Rick Yasky, Les Kagey) and the ground crew (Rob White, Dale Bowser) of the B200 for their outstanding dedication, not limited to the research flights described in the present work. M. Ottaviani also thanks Misha Alexandrov for his insightful feedback on the analysis of the data. Mark Dix, Bill Lehr and CJ Beegle-Krause at NOAA need be mentioned, together with A. Stelmaszewski and T. Krol, for the interest they demonstrated in the RSP measurements and for their contribution on "missing" refractive index data for crude oil. The NOAA Air Resources Laboratory (ARL) is gratefully acknowledged for the provision of the HYSPLIT transport and dispersion model through the READY website (http://www.arl.noaa.gov/ready.php), together with the NASA/GSFC, MODIS Rapid Response team (Jeff Schmaltz especially) for the MODIS imagery available at http://rapidfire.sci.gsfc.nasa.gov. These two portals are excellent examples of user-friendliness and were of great value in building scene context for this publication. NR 67 TC 12 Z9 12 U1 0 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 389 EP 403 DI 10.1016/j.rse.2012.02.016 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700033 ER PT J AU Gitelson, AA Peng, Y Masek, JG Rundquist, DC Verma, S Suyker, A Baker, JM Hatfield, JL Meyers, T AF Gitelson, Anatoly A. Peng, Yi Masek, Jeffery G. Rundquist, Donald C. Verma, Shashi Suyker, Andrew Baker, John M. Hatfield, Jerry L. Meyers, Tilden TI Remote estimation of crop gross primary production with Landsat data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Gross primary production; Landsat; Chlorophyll content; Vegetation index; Potential incident photosynthetically active radiation ID CANOPY CHLOROPHYLL CONTENT; LIGHT-USE-EFFICIENCY; LEAF-AREA INDEX; RADIATIVE-TRANSFER; ATMOSPHERIC CORRECTION; INTERANNUAL VARIATION; VEGETATION INDEXES; TERRESTRIAL GROSS; MAIZE; CARBON AB An accurate and synoptic quantification of gross primary production (GPP) in crops is essential for studies of carbon budgets at regional and global scales. In this study, we tested a model, relating crop GPP to a product of total canopy chlorophyll (Chl) content and potential incident photosynthetically active radiation (PAR(potential)). The approach is based on remotely sensed data; specifically, vegetation indices (VI) that are proxies for total Chl content and PAR(potential), which is incident PAR under a condition of minimal atmospheric aerosol loading. Using VI retrieved from surface reflectance Landsat data, we found that the model is capable of accurately estimating GPP in maize, with coefficient of variation (CV) below 23%, and in soybean with CV below 30%. The algorithms established and calibrated over three Mead, Nebraska AmeriFlux sites were able to estimate maize and soybean GPP at tower flux sites in Minnesota, Iowa and Illinois with acceptable accuracy. (c) 2012 Elsevier Inc. All rights reserved. C1 [Gitelson, Anatoly A.; Peng, Yi; Rundquist, Donald C.; Verma, Shashi; Suyker, Andrew] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68588 USA. [Masek, Jeffery G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Baker, John M.] USDA, Soil & Water Management Res Unit, Minneapolis, MN USA. [Hatfield, Jerry L.] USDA, Natl Lab Agr & Environm, Ames, IA USA. [Meyers, Tilden] Natl Ocean & Atmospher Adm, Oak Ridge, TN USA. RP Gitelson, AA (reprint author), Univ Nebraska, Sch Nat Resources, Lincoln, NE 68588 USA. EM agitelson2@unl.edu RI Gitelson, Anatoly/G-3452-2012; Masek, Jeffrey/D-7673-2012; Meyers, Tilden/C-6633-2016 FU NASA NACP [NNX08AI75G]; U.S. Department of Energy [DE-FG-02-00ER45827]; Office of Science (BER) [DE-FG03-00ER62996]; Center for Advanced Land Management Information Technologies (CALMIT); University of Nebraska-Lincoln FX This research was supported by NASA NACP grant no. NNX08AI75G and partially by the U.S. Department of Energy: (a) EPSCoR program, grant no. DE-FG-02-00ER45827 and (b) Office of Science (BER), grant no. DE-FG03-00ER62996. We sincerely appreciate the support and the use of facilities and equipment provided by the Center for Advanced Land Management Information Technologies (CALMIT) and Carbon Sequestration Program, University of Nebraska-Lincoln. NR 63 TC 59 Z9 64 U1 6 U2 77 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 404 EP 414 DI 10.1016/j.rse.2012.02.017 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700034 ER PT J AU Kim, Y Kimball, JS Zhang, K McDonald, KC AF Kim, Youngwook Kimball, J. S. Zhang, K. McDonald, K. C. TI Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Freeze thaw; SMMR; SSM/I; Climate change; Global warming; MODIS; NDVI; Vegetation growing season; Phenology; ESDR; CDR; NASA MEaSUREs ID NET PRIMARY PRODUCTION; SOIL THERMAL DYNAMICS; CLIMATE-CHANGE; HIGH-LATITUDES; PHOTOSYNTHETIC TRENDS; FOREST PRODUCTIVITY; BOREAL FORESTS; TIME-SERIES; DATA RECORD; AVHRR DATA AB The landscape freeze-thaw (FT) signal from satellite microwave remote sensing is closely linked to vegetation phenology and land-atmosphere trace gas exchange where seasonal frozen temperatures are a major constraint to plant growth. We applied a temporal change classification of 37 GHz brightness temperature (T-b) series from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) to classify daily FT status over global land areas where seasonal frozen temperatures influence ecosystem processes. A temporally consistent, long-term (30 year) FT record was created, ensuring cross-sensor consistency through pixel-wise adjustment of the SMMR T-b record based on empirical analyses of overlapping SMMR and SSM/I measurements. The resulting FT record showed mean annual spatial classification accuracies of 91 (+/-8.6) and 84 ( +/-9.3) percent for PM and AM overpass retrievals relative to in situ air temperature measurements from the global weather station network. The FT results were compared against other measures of biosphere activity including CO2 eddy flux tower measurements and satellite (MODIS) vegetation greenness (NDVI). The FT defined non-frozen season largely bounds the period of active vegetation growth and net ecosystem CO2 uptake for tower sites representing major biomes. Earlier spring thawing and longer non-frozen seasons generally benefit vegetation growth inferred from NDVI spring and summer growth anomalies where the non-frozen season is less than approximately 6 months, with greater benefits at higher (>45 degrees N) latitudes. A strong (P<0.001) increasing (0.189 days yr(-1)) trend in the Northern Hemisphere mean annual non-frozen season is largely driven by an earlier (-0.149 days yr(-1)) spring thaw trend and coincides with a 0.033 degrees C yr(-1) regional warming trend. The FT record also shows a positive (0.199 days yr(-1)) trend in the number of transitional (AM frozen and PM non-frozen) frost days, which coincide with reduced vegetation productivity inferred from tower CO2 and MODIS NDVI measurements. The relative benefits of earlier and longer non-frozen seasons for vegetation growth under global warming may be declining due to opposing increases in disturbance, drought and frost damage related impacts. (c) 2012 Elsevier Inc. All rights reserved. C1 [Kim, Youngwook; Kimball, J. S.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Kim, Youngwook; Kimball, J. S.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Zhang, K.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [McDonald, K. C.] CUNY, New York, NY 10031 USA. [McDonald, K. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kim, Y (reprint author), Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. EM youngwook.kim@ntsg.umt.edu RI Zhang, Ke/B-3227-2012 OI Zhang, Ke/0000-0001-5288-9372 FU NASA; SMMR; SSM/I; National Snow and Ice Data Center (NSIDC); NCEP/NCAR; National Climate Data Center FX This work was conducted at the University of Montana and Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. This work was supported under the NASA Making Earth Science Data Records for Use in Research Environments (MEaSUREs) program; SMMR and SSM/I data were provided by the National Snow and Ice Data Center (NSIDC), while in situ and reanalysis meteorology datasets were provided by NCEP/NCAR and the National Climate Data Center. This work used CO2 eddy covariance data acquired by the FLUXNET community and in particular by the following Pls: Christian Bernhofer (DE_Tha), Torbjorn Johansson (SE_Abi), Hank A. Margolis (CA_Qfo) and Lawrence B. Flanagan (CA_Let). NR 113 TC 63 Z9 64 U1 9 U2 79 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN PY 2012 VL 121 BP 472 EP 487 DI 10.1016/j.rse.2012.02.014 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 955WN UT WOS:000305051700039 ER PT J AU Balla, RJ Everhart, JL AF Balla, R. Jeffrey Everhart, Joel L. TI Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands SO AIAA JOURNAL LA English DT Article ID LASER-INDUCED FLUORESCENCE; FLOW VISUALIZATION; BLUNT-BODY; GAS-FLOWS; I-2 AB An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(wake)/rho(freestream) of 0.145 +/- 0.010, independent of freestream air density. Average offbody results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow. C1 [Balla, R. Jeffrey] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Balla, R. Jeffrey] NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, Hampton, VA 23681 USA. [Everhart, Joel L.] NASA, Langley Res Ctr, Aerothermodynamies Branch, Hampton, VA 23681 USA. RP Balla, RJ (reprint author), NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, Mail Stop 493, Hampton, VA 23681 USA. EM Robert.j.balla@nasa.gov NR 27 TC 2 Z9 2 U1 0 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUN PY 2012 VL 50 IS 6 BP 1388 EP 1397 DI 10.2514/1.J051523 PG 10 WC Engineering, Aerospace SC Engineering GA 952JB UT WOS:000304787700015 ER PT J AU Luu, L Roman, PA Mathews, SA Ramella-Roman, JC AF Luu, Long Roman, Patrick A. Mathews, Scott A. Ramella-Roman, Jessica C. TI Microfluidics based phantoms of superficial vascular network SO BIOMEDICAL OPTICS EXPRESS LA English DT Article ID CEREBRAL-BLOOD-FLOW; LASER DOPPLER MEASUREMENTS; FLUORESCENCE-SPECTRA; SPECKLE; POLY(DIMETHYLSILOXANE); VELOCITY; SYSTEMS; FABRICATION; ULTRASOUND; DEVICES AB Several new bio-photonic techniques aim to measure flow in the human vasculature non-destructively. Some of these tools, such as laser speckle imaging or Doppler optical coherence tomography, are now reaching the clinical stage. Therefore appropriate calibration and validation techniques dedicated to these particular measurements are therefore of paramount importance. In this paper we introduce a fast prototyping technique based on laser micromachining for the fabrication of dynamic flow phantoms. Micro-channels smaller than 20 mu m in width can be formed in a variety of materials such as epoxies, plastics, and household tape. Vasculature geometries can be easily and quickly modified to accommodate a particular experimental scenario. (C) 2012 Optical Society of America C1 [Luu, Long; Ramella-Roman, Jessica C.] Catholic Univ Amer, Dept Biomed Engn, Washington, DC 20064 USA. [Mathews, Scott A.] Catholic Univ Amer, Dept Elect Engn, Washington, DC 20064 USA. [Roman, Patrick A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Luu, L (reprint author), Catholic Univ Amer, Dept Biomed Engn, Washington, DC 20064 USA. EM ramella@cua.edu NR 53 TC 16 Z9 16 U1 4 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2156-7085 J9 BIOMED OPT EXPRESS JI Biomed. Opt. Express PD JUN 1 PY 2012 VL 3 IS 6 BP 1350 EP 1364 PG 15 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 954RY UT WOS:000304965700019 PM 22741081 ER PT J AU Ham, YG Kang, IS Kim, D Kug, JS AF Ham, Yoo-Geun Kang, In-Sik Kim, Daehyun Kug, Jong-Seong TI El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs SO CLIMATE DYNAMICS LA English DT Article ID SEASONAL CLIMATE PREDICTABILITY; SURFACE TEMPERATURE ANOMALIES; ZONAL ADVECTIVE FEEDBACKS; GENERAL-CIRCULATION MODEL; OCEAN-ATMOSPHERE MODELS; EQUATORIAL PACIFIC; INTRASEASONAL VARIABILITY; INTERCOMPARISON PROJECT; TROPICAL OCEAN; TOGA COARE AB The characteristics of the El-Nino Southern Oscillation (ENSO) simulated in free integrations using two versions of the Seoul National University (SNU) ocean-atmosphere coupled global climate model (CGCM) are examined. A revised version of the SNU CGCM is developed by incorporating a reduced air-sea coupling interval (from 1 day to 2 h), a parameterization for cumulus momentum transport, a minimum entrainment rate threshold for convective plumes, and a shortened auto-conversion time scale of cloud water to raindrops. With the revised physical processes, lower tropospheric zonal wind anomalies associated with the ENSO-related sea surface temperature anomalies (SSTA) are represented with more realism than those in the original version. From too weak, the standard deviation of SST over the eastern Pacific becomes too strong in the revised version due to the enhanced air-sea coupling strength and intraseasonal variability associated with ENSO. From the oceanic side, the stronger stratification and the shallower-than-observed thermocline over the eastern Pacific also contribute to the excessive ENSO. The impacts of the revised physical processes on the seasonal predictability are investigated in two sets of the hindcast experiment performed using the two versions of CGCMs. The prediction skill measured by anomaly correlation coefficients of monthly-mean SSTA shows that the new version has a higher skill over the tropical Pacific regions compared to the old version. The better atmospheric responses to the ENSO-related SSTA in the revised version lead to the basin-wide SSTA maintained and developed in a manner that is closer to observations. The symptom of an excessively strong ENSO of the new version in the free integration is not prominent in the hindcast experiment because the thermocline depth over the eastern Pacific is maintained as initialized over the arc of time of the hindcast (7 months). C1 [Ham, Yoo-Geun] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr NASA GSFC, Greenbelt, MD 20771 USA. [Ham, Yoo-Geun] Univ Space Res Assoc, Goddard Earth Sci Technol & Res Studies & Invest, Greenbelt, MD USA. [Kang, In-Sik] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea. [Kim, Daehyun] Columbia Univ, Lamont Doherty Earth Observ, New York, NY USA. [Kug, Jong-Seong] Korea Ocean Res & Dev Inst, Ansan, South Korea. RP Ham, YG (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr NASA GSFC, Greenbelt, MD 20771 USA. EM yoo-geun.ham@nasa.gov RI KUG, JONG-SEONG/A-8053-2013; 안, 민섭/D-9972-2015 FU National Research Foundation of Korea (NRF); Korean Government (MEST) [NRF-2009-C1AAA001-2009-0093042]; Brain Korea 21; NASA [NNX09AK34G] FX ISK was supported by the National Research Foundation of Korea (NRF) Grant Funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042) and second phase of the Brain Korea 21. And, DK was supported by NASA grant NNX09AK34G. NR 58 TC 5 Z9 6 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 J9 CLIM DYNAM JI Clim. Dyn. PD JUN PY 2012 VL 38 IS 11-12 BP 2227 EP 2242 DI 10.1007/s00382-011-1171-5 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951BS UT WOS:000304696300006 ER PT J AU Loeffler, MJ Hudson, RL AF Loeffler, Mark J. Hudson, Reggie L. TI Thermal regeneration of sulfuric acid hydrates after irradiation SO ICARUS LA English DT Article DE Europa; Ices, IR spectroscopy; Jupiter, Satellites; Impact processes; Cosmic rays ID SOLAR-SYSTEM SURFACES; WATER ICE; GALILEAN SATELLITES; ION IRRADIATION; PROTON IRRADIATION; HYDROGEN-PEROXIDE; THIN-FILMS; EUROPA; CRYSTALLINE; CALLISTO AB In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 center dot 4H(2)O and H2SO4 center dot H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System. Published by Elsevier Inc. C1 [Loeffler, Mark J.; Hudson, Reggie L.] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Loeffler, MJ (reprint author), NASA, Astrochem Lab, Goddard Space Flight Ctr, Mail Code 691, Greenbelt, MD 20771 USA. EM mark.loeffler@nasa.gov RI Loeffler, Mark/C-9477-2012 FU NASA; NASA Astrobiology Institute through the Goddard Center for Astrobiology FX The support of NASA's Planetary Geology and Geophysics program is gratefully acknowledged. RLH also acknowledges support from the NASA Astrobiology Institute through the Goddard Center for Astrobiology. In addition, we thank Steve Brown, Tom Ward, and Eugene Gerashchenko, members of the Radiation Laboratory at NASA Goddard, for operation of the proton accelerator. NR 44 TC 8 Z9 8 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 561 EP 566 DI 10.1016/j.icarus.2012.03.023 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200005 ER PT J AU Line, MR Mierkiewicz, EJ Oliversen, RJ Wilson, JK Haffner, LM Roesler, FL AF Line, Michael R. Mierkiewicz, E. J. Oliversen, R. J. Wilson, J. K. Haffner, L. M. Roesler, F. L. TI Sodium atoms in the lunar exotail: Observed velocity and spatial distributions SO ICARUS LA English DT Article DE Moon; Aeronomy; Spectroscopy; Satellites, Atmospheres; Solar wind ID LEONID METEOR-SHOWER; ATMOSPHERE; ENHANCEMENT; DISCOVERY; MOON; TAIL AB The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be similar to 12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 degrees x 15 degrees region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 30 degrees east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days. (c) 2012 Elsevier Inc. All rights reserved. C1 [Line, Michael R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91106 USA. [Mierkiewicz, E. J.; Roesler, F. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Oliversen, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20706 USA. [Wilson, J. K.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Haffner, L. M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. RP Line, MR (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91106 USA. EM mrl@gps.caltech.edu RI Mierkiewicz, Edwin/N-7926-2016; OI Mierkiewicz, Edwin/0000-0002-4283-3751; Haffner, Lawrence/0000-0002-9947-6396 FU National Solar Observatory mountain; UW; NASA [NNX11AE38G]; National Science Foundation; [AST-0607512]; [AST-1108911] FX The authors thank M. Mendillo and It Reynolds for their valuable assistance as well as K. Nordsieck for providing the sodium filter. We thank all the members of the WHAM collaboration, in particular K. Jaehnig, A. Hill, G. Madsen and K. Barger. Finally, we thank the National Solar Observatory mountain support staff, C. Plymate and E. Galayda for their support and hosting us during the WHAM observations. M. Line's involvement as an undergraduate at Wisconsin was partially supported by a UW-Madison Hilldale Undergraduate Fellowship. This work was also funded by NASA Award NNX11AE38G. WHAM construction and operations were primarily supported by the National Science Foundation: in particular, the use of WHAM described here was partially supported by Awards AST-0607512 and AST-1108911. NR 14 TC 3 Z9 3 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 609 EP 617 DI 10.1016/j.icarus.2012.04.001 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200008 ER PT J AU Del Genio, AD Barbara, JM AF Del Genio, Anthony D. Barbara, John M. TI Constraints on Saturn's tropospheric general circulation from Cassini ISS images SO ICARUS LA English DT Article DE Atmospheres, Dynamics; Meteorology; Saturn, Atmosphere ID JUPITERS ATMOSPHERE; IMAGING SCIENCE; ROTATION PERIOD; CLOUD STRUCTURE; EQUATORIAL JET; GIANT PLANETS; WINDS; CONVECTION; EVOLUTION; TRANSPORT AB An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are similar to 10m s(-1) weaker than cloud level winds in the cores of eastward jets and similar to 5 m s(-1) stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 x 10(-5) m(2) s(-3)) and smaller in westward jet regions (1.6 x 10(-5) m(2) s(-3)) than the global mean value (4.1 x 10(-5) m(2) s(-3)). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level. Published by Elsevier Inc. C1 [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Barbara, John M.] Inst Space Studies, New York, NY 10025 USA. RP Del Genio, AD (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM anthony.d.delgenio@nasa.gov; john.m.barbara@nasa.gov RI Del Genio, Anthony/D-4663-2012 OI Del Genio, Anthony/0000-0001-7450-1359 FU NASA of the Imaging Science Subsystem team FX This research was supported by NASA Cassini Project funding of the Imaging Science Subsystem team. We thank the reviewers for constructive comments that helped improve the manuscript. NR 43 TC 11 Z9 11 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 689 EP 700 DI 10.1016/j.icarus.2012.03.035 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200015 ER PT J AU Veeder, GJ Davies, AG Matson, DL Johnson, TV Williams, DA Radebaugh, J AF Veeder, Glenn J. Davies, Ashley Gerard Matson, Dennis L. Johnson, Torrence V. Williams, David A. Radebaugh, Jani TI Io: Volcanic thermal sources and global heat flow SO ICARUS LA English DT Article DE Io; Jupiter, Satellites; Volcanism; Geophysics ID INFRARED MAPPING SPECTROMETER; GALILEO PHOTOPOLARIMETER-RADIOMETER; JUPITERS MOON IO; SILICATE VOLCANISM; HOT-SPOTS; TIDAL DISSIPATION; ACTIVE VOLCANISM; IMAGING DATA; NIMS DATA; TEMPERATURE AB We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for "outburst" eruptions and for a multitude of very small ("myriad") hot spots, we account for similar to 62 x 10(12) W (similar to 59 +/- 7% of Io's total thermal emission). Loki Patera contributes, on average, 9.6 x 10(12) W (similar to 9.1 +/- 1%). All dark paterae contribute 45.3 x 10(12) W (similar to 43 +/- 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 x 10(12) W (similar to 5.3 +/- 0.6%). Bright paterae contribute similar to 2.6 x 10(12) W (similar to 2.5 +/- 0.3%). Outburst eruption phases and very small hot spots contribute no more than similar to 4% of Io's total thermal emission: this is probably a maximum value. About 50% of Io's volcanic heat flow emanates from only 1.2% of Io's surface. Of Io's heat flow, 41 +/- 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at similar to 315 degrees W and similar to 105 degrees W (using 30 degrees bins). There is a minimum in thermal emission at around 200 degrees W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from predicted global heat flow patterns resulting from tidal heating in an asthenosphere. Global volcanic heat flow is dominated by thermal emission from paterae, especially from Loki Patera (312 degrees W, 12 degrees N). Thermal emission from dark flows maximises between 165 degrees W and 225 degrees W. Finally, it is possible that a multitude of very small hot spots, smaller than the present angular resolution detection limits, and/or cooler, secondary volcanic processes involving sulphurous compounds, may be responsible for at least part of the heat flow that is not associated with known sources. Such activity should be sought out during the next mission to Io. (c) 2012 Elsevier Inc. All rights reserved. C1 [Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Veeder, Glenn J.] Bear Fight Inst, Winthrop, WA 98862 USA. [Williams, David A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Radebaugh, Jani] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. RP Davies, AG (reprint author), CALTECH, Jet Prop Lab, MS 183-401,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ashley.Davies@jpl.nasa.gov FU Jet Propulsion Laboratory; California Institute of Technology under NASA; NASA PGG; OPR FX We thank Laszlo Keszthelyi for his detailed and insightful review of this paper and Julie Castillo-Rogez for discussions about global heat flow patterns. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. G.J.V. A.G.D. and D.L.M. are supported by grants from the NASA PGG and OPR programs. 2012 Caltech. All rights reserved. NR 97 TC 24 Z9 24 U1 0 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2012 VL 219 IS 2 BP 701 EP 722 DI 10.1016/j.icarus.2012.04.004 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 955VY UT WOS:000305050200016 ER PT J AU Del Genio, AD Chen, YH Kim, D Yao, MS AF Del Genio, Anthony D. Chen, Yonghua Kim, Daehyun Yao, Mao-Sung TI The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations SO JOURNAL OF CLIMATE LA English DT Article ID MADDEN-JULIAN OSCILLATION; TROPICAL INTRASEASONAL OSCILLATIONS; GENERAL-CIRCULATION MODELS; HIGH-RESOLUTION SIMULATION; TRIMODAL CHARACTERISTICS; VERTICAL STRUCTURE; CLIMATE MODELS; COUPLED WAVES; WATER-VAPOR; TOGA COARE AB The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10 MJO events show the following anticipated MJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) column water vapor (CWV) increases by similar to 5 mm during the shallow-deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between similar to 46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. C1 [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Chen, Yonghua] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Kim, Daehyun] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA. [Yao, Mao-Sung] Sigma Space Partners, Inst Space Studies, New York, NY USA. RP Del Genio, AD (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM anthony.d.delgenio@nasa.gov RI Del Genio, Anthony/D-4663-2012 OI Del Genio, Anthony/0000-0001-7450-1359 FU NASA [NNX09AK34G]; American Recovery and Reinvestment Act FX The authors thank Brian Mapes and two anonymous reviewers for constructive comments that helped improve the manuscript. This research was supported by the NASA CloudSat/CALIPSO and Precipitation Measurement Missions and the NASA Modeling and Analysis Program. DK was supported by NASA Grant NNX09AK34G. Some of the ISCCP data products used in this paper were produced with support from the American Recovery and Reinvestment Act as part of the Metrics for General Circulation Model Evaluation project (http://gcss-dime.giss.nasa.gov/ARRA/arra.html). NR 76 TC 80 Z9 80 U1 2 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2012 VL 25 IS 11 BP 3755 EP 3770 DI 10.1175/JCLI-D-11-00384.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951RC UT WOS:000304736700006 ER PT J AU Chang, YH Schubert, S Suarez, M AF Chang, Yehui Schubert, Siegfried Suarez, Max TI Attribution of the Extreme U.S. East Coast Snowstorm Activity of 2010 SO JOURNAL OF CLIMATE LA English DT Article ID UNITED-STATES; PATTERNS; ENSO; COMPONENTS; CONVECTION; SNOWFALL; MODELS AB This study examines the cause of the extreme snowstorm activity along the U.S. East Coast during the winter of 2009/10 with a focus on the role of sea surface temperature (SST) anomalies. The study employs the Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model (AGCM) run at high resolution and forced with specified observed or idealized SST. Comparisons are made with the winter of 1999/2000, a period that is characterized by SST anomalies that are largely of opposite sign. When forced with observed SSTs, the AGCM response consists of a band of enhanced storminess extending from the central subtropical North Pacific, across the southern United States, across the North Atlantic, and across southern Eurasia, with reduced storminess to the north of these regions. Positive precipitation and cold temperature anomalies occur over the eastern United States, reflecting a propensity for enhanced snowstorm activity. Additional idealized SST experiments show that the anomalies over the United States are, to a large extent, driven by the ENSO-related Pacific SST. The North Atlantic SSTs contribute to the cooler temperatures along the East Coast of the United States, while the Indian Ocean SSTs act primarily to warm the central part of the country. It is further shown that the observed upper-tropospheric height anomalies have a large noise (unforced) component over the Northern Hemisphere, represented over the North Atlantic by a North Atlantic Oscillation (NAO)-like structure. The signal-to-noise ratios of the temperature and precipitation fields nevertheless indicate a potential for predicting the unusual storm activity along the U.S. East Coast several months in advance. C1 [Chang, Yehui; Schubert, Siegfried; Suarez, Max] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Chang, Yehui] Morgan State Univ, Baltimore, MD 21239 USA. RP Schubert, S (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, NASA GSFC Code 610-1, Greenbelt, MD 20771 USA. EM siegfried.d.schubert@nasa.gov FU NASA FX We wish to thank Martin Hoerling, Richard Seager, two anonymous reviewers, and the editor for their very constructive and helpful comments. Support for this work was provided by the NASA Modeling, Analysis, and Prediction (MAP) Program. NR 23 TC 2 Z9 2 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2012 VL 25 IS 11 BP 3771 EP 3791 DI 10.1175/JCLI-D-11-00353.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951RC UT WOS:000304736700007 ER PT J AU Parson, LE Swafford, R AF Parson, Larry E. Swafford, Russell TI Beneficial Use of Sediments from Dredging Activities in the Gulf of Mexico SO JOURNAL OF COASTAL RESEARCH LA English DT Article AB Parson, L.E. and Swafford, R., 2012. Beneficial use of sediments from dredging activities in the Gulf of Mexico. In: Khalil, S.M., Parson, L.E., and Waters, J.P. (eds.), Technical Framework for the Gulf Regional Sediment Management Master Plan (GRSMMP), Journal of Coastal Research, Special Issue No. 60, 45-50. Dredging activities are a potential source of sediment and should be considered in any conservation and restoration planning process. Wise use of sediment resources from dredging is integral to accomplishing the conservation and restoration initiatives and objectives being recommended under the Gulf of Mexico Alliance. Keeping dredged sediments within the natural system or using it in the construction of restoration projects can improve environmental conditions, provide storm damage protection, and contribute to habitat creation and restoration goals. Hundreds of millions of cubic yards of sediments are dredged each year from Gulf ports, harbors, and waterways, much of which could be used beneficially. Currently it is estimated that about 30% of all material dredged from federal channels in the Gulf states is used beneficially and very little of the privately funded dredging is used for beneficial purposes. The U.S. Army Corps of Engineers (USACE) conducts dredging under its navigation maintenance program and much of the dredging conducted is typically done on a scheduled and routine basis. Successful planning of beneficial-use projects utilizing USACE dredging necessitates the early coordination and work of multidisciplinary interagency teams on a regular basis. There is also a need to improve data access and management for dredging activities for use by project managers and planners. C1 [Parson, Larry E.] USA, Corps Engineers, Mobile, AL 36602 USA. [Swafford, Russell] Natl Marine Fisheries Serv, Galveston, TX 77551 USA. RP Parson, LE (reprint author), USA, Corps Engineers, Mobile, AL 36602 USA. EM larry.e.parson@usace.army.mil NR 9 TC 5 Z9 5 U1 1 U2 16 PU COASTAL EDUCATION & RESEARCH FOUNDATION PI LAWRENCE PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA SN 0749-0208 J9 J COASTAL RES JI J. Coast. Res. PD SUM PY 2012 SI 60 BP 45 EP 50 DI 10.2112/SI_60_5 PG 6 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 950XH UT WOS:000304684700006 ER PT J AU Zhou, TH Geller, MA Lin, WY AF Zhou, Tiehan Geller, Marvin A. Lin, Wuyin TI An Observational Study on the Latitudes Where Wave Forcing Drives Brewer-Dobson Upwelling SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID QUASI-BIENNIAL OSCILLATION; TROPICAL TROPOPAUSE TEMPERATURES; LOWER-STRATOSPHERIC TEMPERATURES; CLIMATE MODEL SIMULATIONS; DOUBLED CO2 CLIMATE; MIDDLE-ATMOSPHERE; ANNUAL CYCLE; INTERANNUAL VARIABILITY; DIABATIC CIRCULATION; DOWNWARD CONTROL AB The 40-yr ECMWF Re-Analysis (ERA-40) data are analyzed to demonstrate that wave forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer-Dobson circulation. It is shown that subtropical wave forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient waves are taken into account, and that tropical wave forcing exerts its influence on tropical upwelling via its body force on the zonal mean flow. C1 [Zhou, Tiehan] Columbia Univ, NASA Goddard Inst Space Studies, New York, NY 10025 USA. [Zhou, Tiehan] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Geller, Marvin A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Lin, Wuyin] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Zhou, TH (reprint author), Columbia Univ, NASA Goddard Inst Space Studies, New York, NY 10025 USA. EM tz2131@columbia.edu FU NASA FX This work was supported by NASA's Modeling and Analysis and Atmospheric Composition, Modeling and Analysis programs. We also acknowledge helpful suggestions from two anonymous reviewers. NR 105 TC 9 Z9 9 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUN PY 2012 VL 69 IS 6 BP 1916 EP 1935 DI 10.1175/JAS-D-11-0197.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 951RA UT WOS:000304736500011 ER PT J AU Huber, D Ireland, MJ Bedding, TR Howell, SB Maestro, V Merand, A Tuthill, PG White, TR Farrington, CD Goldfinger, PJ McAlister, HA Schaefer, GH Sturmann, J Sturmann, L ten Brummelaar, TA Turner, NH AF Huber, Daniel Ireland, Michael J. Bedding, Timothy R. Howell, Steve B. Maestro, Vicente Merand, Antoine Tuthill, Peter G. White, Timothy R. Farrington, Christopher D. Goldfinger, P. J. McAlister, Harold A. Schaefer, Gail H. Sturmann, Judit Sturmann, Laszlo ten Brummelaar, Theo A. Turner, Nils H. TI Validation of the exoplanet Kepler-21b using PAVO/CHARA long-baseline interferometry SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: interferometric; planets and satellites: individual: Kepler-2lb; stars: individual: HD 179070 ID TRANSITING PLANET; MULTIPLE SYSTEM; CHARA ARRAY; STARS; CANDIDATES; HIPPARCOS AB We present long-baseline interferometry of the Kepler exoplanet host star HD 179070 (Kepler-21) using the Precision Astronomical Visible Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array. The visibility data are consistent with a single star and exclude stellar companions at separations similar to 11000 mas (similar to 0.1113 au) and contrasts <3.5 mag. This result supports the validation of the 1.6 R ? exoplanet Kepler-21b by Howell et al. and complements the constraints set by adaptive optics imaging, speckle interferometry and radial-velocity observations to rule out false positives due to stellar companions. We conclude that long-baseline interferometry has strong potential to validate transiting extrasolar planets, particularly for future projects aimed at brighter stars and for host stars where radial-velocity follow-up is not available. C1 [Huber, Daniel; Ireland, Michael J.; Bedding, Timothy R.; Maestro, Vicente; Tuthill, Peter G.; White, Timothy R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Huber, Daniel; Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ireland, Michael J.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia. [Ireland, Michael J.] Australian Astron Observ, Epping, NSW 1710, Australia. [Merand, Antoine] European So Observ, Santiago 19, Chile. [Farrington, Christopher D.; Goldfinger, P. J.; McAlister, Harold A.; Schaefer, Gail H.; Sturmann, Judit; Sturmann, Laszlo; ten Brummelaar, Theo A.; Turner, Nils H.] Georgia State Univ, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. RP Huber, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. EM daniel.huber@nasa.gov OI Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661 FU NASA; National Science Foundation [AST-0606958]; Georgia State University through the College of Arts and Sciences; W. M. Keck Foundation FX DH, TRB and VM acknowledge support from the Access to Major Research Facilities Programme, administered by the Australian Nuclear Science and Technology Organisation (ANSTO). DH is supported by an appointment to the NASA Postdoctoral Program at Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. The CHARA Array is funded by the National Science Foundation through NSF grant AST-0606958, by Georgia State University through the College of Arts and Sciences, and by the W. M. Keck Foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. NR 37 TC 8 Z9 8 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 1 BP L16 EP L20 DI 10.1111/j.1745-3933.2012.01242.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 952SU UT WOS:000304813500004 ER PT J AU McCarty, W Errico, RM Gelaro, R AF McCarty, Will Errico, Ronald M. Gelaro, Ronald TI Cloud Coverage in the Joint OSSE Nature Run SO MONTHLY WEATHER REVIEW LA English DT Article ID SYSTEM SIMULATION EXPERIMENT; DOPPLER WIND LIDAR; INFRARED SOUNDERS; STATISTICS; HIRS; TROPOPAUSE AB A successful observing system simulation experiment (OSSE) is fundamentally dependent on the simulation of the global observing system used in the experiment. In many applications, a free-running numerical model simulation, called a nature run, is used as the meteorological truth from which the observations are simulated. To accurately and realistically simulate observations from any nature run, the simulated observations must contain realistic cloud effects representative of the meteorological regimes being sampled. This study provides a validation of the clouds in the Joint OSSE nature run generated at ECMWF. Presented is the methodology used to validate the nature run cloud fraction fields with seasonally aggregated combined CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud geometric profile retrievals and the Wisconsin High Resolution Infrared Radiation Sounder (HIRS) cloud climatology. The results show that the Joint OSSE nature run has a correct vertical distribution of clouds but lacks globally in cloud amount compared to the validation data. The differences between the nature run and validation datasets shown in this study should be considered and accounted for in the generation of the global observing system for use in full OSSE studies. C1 [McCarty, Will; Errico, Ronald M.; Gelaro, Ronald] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Errico, Ronald M.] Morgan State Univ, Goddard Earth Sci Technol & Res Ctr, Baltimore, MD 21239 USA. RP McCarty, W (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Mail Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM will.mccarty@nasa.gov RI McCarty, Will/E-9359-2012 FU NASA WBS [281945.02.19.01.12] FX The research presented benefitted greatly from discussions with Gert-Jan Marseille and Ad Stoffelen of KNMI. This work was supported under NASA WBS 281945.02.19.01.12. NR 31 TC 11 Z9 11 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2012 VL 140 IS 6 BP 1863 EP 1871 DI 10.1175/MWR-D-11-00131.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 953BC UT WOS:000304840900009 ER PT J AU Gulkis, S Keihm, S Kamp, L Lee, S Hartogh, P Crovisier, J Lellouch, E Encrenaz, P Bockelee-Morvan, D Hofstadter, M Beaudin, G Janssen, M Weissman, P von Allmen, PA Encrenaz, T Backus, CR Ip, WH Schloerb, PF Biver, N Spilker, T Mann, I AF Gulkis, S. Keihm, S. Kamp, L. Lee, S. Hartogh, P. Crovisier, J. Lellouch, E. Encrenaz, P. Bockelee-Morvan, D. Hofstadter, M. Beaudin, G. Janssen, M. Weissman, P. von Allmen, P. A. Encrenaz, T. Backus, C. R. Ip, W. -H. Schloerb, P. F. Biver, N. Spilker, T. Mann, I. TI Continuum and spectroscopic observations of asteroid (21) Lutetia at millimeter and submillimeter wavelengths with the MIRO instrument on the Rosetta spacecraft SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Rosetta spacecraft; Asteroid; Asteroid (21) Lutetia; Astronomy; Thermal emission; Submillimeter and millimeter radiometer/spectrometer ID PHYSICAL-PROPERTIES; SOLAR-SYSTEM; 2867 STEINS; WATER; TEMPERATURE; EVOLUTION; REGOLITH; ORIGIN; ICE AB The European Space Agency's Rosetta spacecraft made a close flyby of asteroid (21) Lutetia on July 10, 2010. The spacecraft carries a dual-band radiometer/spectrometer instrument, named MIRO, which operates at 190 GHz (1.6 mm) and 560 GHz (0.5 mm). During the flyby, the MIRO instrument measured the temperature of Lutetia in both the northern and southern hemispheres. At the time of the flyby, the northern hemisphere was seasonally sun-lit and warmer than the southern hemisphere. Subsurface (depths from similar to 2 mm to similar to 2 cm) temperatures ranged from similar to 200 K on the northern hemisphere to similar to 60 K on the southern hemisphere. A lunar-like regolith - very low thermal inertia < 20 J/(K m(2) S-0.5) in the upper 1-3 cm overlaying a layer of rapidly increasing density and thermal conductivity - is required to explain the observations. A spectroscopic search was made for H2O, CO, CH3OH, and NH3 in Lutetia's exosphere but none of the molecules were detected. An upper limit to the water column density was estimated to be <5 x 10(11) molecules/cm(2) at the time of the flyby. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gulkis, S.; Keihm, S.; Kamp, L.; Lee, S.; Encrenaz, P.; Hofstadter, M.; Janssen, M.; Weissman, P.; von Allmen, P. A.; Encrenaz, T.; Backus, C. R.; Spilker, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hartogh, P.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Encrenaz, P.; Beaudin, G.] Observ Paris, LERMA, F-75014 Paris, France. [Ip, W. -H.] Natl Cent Univ, Inst Astron, Chungli 320, Taiwan. [Schloerb, P. F.] Univ Massachusetts, Coll Radio Astron Observ 5, Amherst, MA 01003 USA. [Mann, I.] Belgium Inst Space Aeron, B-1180 Brussels, Belgium. [Crovisier, J.; Lellouch, E.; Bockelee-Morvan, D.; Encrenaz, T.; Biver, N.] Univ Paris Diderot, LESIA, Observ Paris, CNRS,UPMC, Meudon, France. RP Gulkis, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM samuel.gulkis@jpl.nasa.gov; Stephen.J.Keihm@jpl.nasa.gov; lucas.kamp@jpl.nasa.gov; Seungwon.lee@jpl.nasa.gov; paul@linmpi.mpg.de; Jacques.Crovisier@obspm.fr; emmanuel.lellouch@obspm.fr; Pierre.encrenaz@obspm.fr; Dominique.Bockelee@obspm.fr; Mark.Hofstadter@jpl.nasa.gov; Gerard.Beaudin@obspm.fr; Michael.A.Janssen@jpl.nasa.gov; paul.r.weissman@jpl.nasa.gov; Paul.A.Vonallmen@jpl.nasa.gov; Therese.Encrenaz@obspm.fr; Charles.R.Backus@jpl.nasa.gov; wingip@astro.ncu.edu.tw; schloerb@astro.umass.edu; Nicolas.Biver@obspm.fr; Thomas.R.Spilker@jpl.nasa.gov; ingrid.mann@aeronomie.be FU NASA; DLR; CNES/CNRS; Rosetta Science Operations Centre; Rosetta Mission Operations Centre FX MIRO is one of four remote sensing instruments on the ESA Rosetta spacecraft. It was constructed at the Jet Propulsion Laboratory (JPL) under the direction of a US-France-Germany science-instrument team. A part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The Observatoire de Paris, France supplied the Ultra Stable Oscillator (USO). The Max Planck Institute in Lindau, Germany supplied the Chirp Transform Spectrometer (CTS). Funding was supplied by NASA, DLR, and CNES/CNRS for the US, German, and French contributions respectively. We thank the named individuals in Jorda et al. (2010, 2011) and the entire OSIRIS Team for making their Lutetia shape model available to us prior to publication, and for allowing us to reference it in this paper. We thank Nat Bachmann of JPL/NAIF for his support in processing the shape models as DSK (Digital Shape Kernel) files. The MIRO team thanks the Rosetta Science Operations Centre and the Rosetta Mission Operations Centre for their support. NR 38 TC 22 Z9 22 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2012 VL 66 IS 1 SI SI BP 31 EP 42 DI 10.1016/j.pss.2011.12.004 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 953SG UT WOS:000304892900005 ER PT J AU Weiss, BP Elkins-Tanton, LT Barucci, MA Sierks, H Snodgrass, C Vincent, JB Marchi, S Weissman, PR Patzold, M Richter, I Fulchignoni, M Binzel, RP Schulz, R AF Weiss, Benjamin P. Elkins-Tanton, Linda T. Barucci, M. Antonietta Sierks, Holger Snodgrass, Colin Vincent, Jean-Baptiste Marchi, Simone Weissman, Paul R. Paetzold, Martin Richter, Ingo Fulchignoni, Marcello Binzel, Richard P. Schulz, Rita TI Possible evidence for partial differentiation of asteroid Lutetia from Rosetta SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Rosetta; Lutetia; Asteroids; Planetesimals; Metamorphism; Differentiation; Chondrites; Planetary evolution ID PARENT BODIES; ORDINARY CHONDRITES; CARBONACEOUS CHONDRITES; REFLECTANCE SPECTRA; SURFACE-COMPOSITION; IRON-METEORITES; SOLAR-SYSTEM; 2867 STEINS; MAIN-BELT; MU-M AB The petrologic diversity of meteorites demonstrates that planetesimals ranged from unmelted, variably metamorphosed aggregates to fully molten, differentiated bodies. However, partially differentiated bodies have not been unambiguously identified in the asteroid belt. New constraints on the density, composition, and morphology of 21 Lutetia from the Rosetta spacecraft indicate that the asteroid's high bulk density exceeds that of most known chondritic meteorite groups, yet its surface properties resemble those of some carbonaceous and enstatite chondrite groups. This indicates that Lutetia likely experienced early compaction processes like metamorphic sintering. It may have also partially differentiated, forming a metallic core overlain by a primitive chondritic crust (C) 2011 Elsevier Ltd. All rights reserved. C1 [Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Binzel, Richard P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Barucci, M. Antonietta; Fulchignoni, Marcello] Observ Paris LESIA, Paris, France. [Sierks, Holger; Snodgrass, Colin; Vincent, Jean-Baptiste] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Marchi, Simone] Univ Nice Sophia Antipolis, Dept Cassiopee, Observ Cote dAzur, CNRS, Nice, France. [Weissman, Paul R.] CALTECH, Jet Prop Lab, Planetary Ices Sect, Pasadena, CA USA. [Paetzold, Martin] Univ Cologne, Rhein Inst Umweltforsch, Abt Planetenforsch, D-50931 Cologne, Germany. [Richter, Ingo] TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany. [Schulz, Rita] European Space Agcy, Res & Sci Support Dept, NL-2200 AG Noordwijk, Netherlands. RP Weiss, BP (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM bpweiss@mit.edu RI Elkins-Tanton, Linda/C-5508-2008; OI Elkins-Tanton, Linda/0000-0003-4008-1098; Snodgrass, Colin/0000-0001-9328-2905 FU NASA; NASA U.S. at the Jet Propulsion Laboratory FX BPW thanks the Rosetta team for their generous collaboration, the NASA Origins Program for support, A. Rubin, I. Sanders and other anonymous reviewers for helpful suggestions about the manuscript, and Y. Bernabe, W. Durham, and B. Evans for discussions about rock mechanics. PRW was supported by the NASA U.S. Rosetta Project at the Jet Propulsion Laboratory under contract with NASA. NR 98 TC 21 Z9 21 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2012 VL 66 IS 1 SI SI BP 137 EP 146 DI 10.1016/j.pss.2011.09.012 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 953SG UT WOS:000304892900014 ER PT J AU Morse, AD Altwegg, K Andrews, DJ Auster, HU Carr, CM Galand, M Goesmann, F Gulkis, S Lee, S Richter, I Sheridan, S Stern, SA A'Hearn, MF Feldman, P Parker, J Retherford, KD Weaver, HA Wright, IP AF Morse, A. D. Altwegg, K. Andrews, D. J. Auster, H. U. Carr, C. M. Galand, M. Goesmann, F. Gulkis, S. Lee, S. Richter, I. Sheridan, S. Stern, S. A. A'Hearn, M. F. Feldman, P. Parker, J. Retherford, K. D. Weaver, H. A. Wright, I. P. TI The Rosetta campaign to detect an exosphere at Lutetia SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Rosetta; Lutetia; Exosphere; Asteroid; Comet ID ASTEROID 21 LUTETIA; P/2010 A2; FLYBY; 133P/ELST-PIZARRO; INSTRUMENT; ORGANICS; SURFACE; ORIGIN; COMET; MIRO AB On 10th July 2010 the Rosetta spacecraft passed within 3160 km of asteroid 21 Lutetia during which seven instruments attempted to detect an exosphere. A comparison of the sensitivity is made between the different instruments based on a simple spherical out-gassing point source model, which was used to infer that the Lutetia exosphere production rate was determined by MIRO to be <4.3 x 10(23) molecules s(-1) for water and by ROSINA RTOF to be <1.7 x 10(25) molecules s(-1) for carbon monoxide. Consideration of the flyby geometry and combined instrument operations places further constraints on the exosphere structure and gas production rate. Experience gained during the flyby will prove invaluable for operations planning during Rosetta's approach and orbit of comet 67P/Churyumov-Gerasimenko in 2014. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Morse, A. D.; Andrews, D. J.; Sheridan, S.; Wright, I. P.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Altwegg, K.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Auster, H. U.; Richter, I.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Carr, C. M.; Galand, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 28W, England. [Goesmann, F.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany. [Gulkis, S.; Lee, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stern, S. A.] Natl Aeronaut & Space Adm, Washington, DC USA. [A'Hearn, M. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Feldman, P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Parker, J.; Retherford, K. D.] SW Res Inst, Boulder, CO 80302 USA. [Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Morse, AD (reprint author), Open Univ, Planetary & Space Sci Res Inst, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. EM A.D.Morse@open.ac.uk RI Weaver, Harold/D-9188-2016 NR 41 TC 6 Z9 6 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2012 VL 66 IS 1 SI SI BP 165 EP 172 DI 10.1016/j.pss.2012.01.003 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 953SG UT WOS:000304892900017 ER PT J AU Ramanathan, R James, JT McCoy, T AF Ramanathan, Raghupathy James, John T. McCoy, Torin TI Acceptable Levels for Ingestion of Dimethylsilanediol in Water on the International Space Station SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE drinking water; total organic carbon; acceptable concentration; SWEG; DMSD AB Introduction: Water is recovered aboard the International Space Station (ISS) from humidity condensate and treated urine. The product water is monitored for total organic carbon (TOC). In 2010 the TOC readings indicated that a new contaminant had entered the potable water and was steadily increasing toward the TOC screening limit of 3 mg (.) L-1. In a ground-based laboratory, chemists discovered that dimethylsilanediol (DMSD) was the principal new contaminant. As no standard existed for safe levels of DMSD in water, the Toxicology Office at Johnson Space Center was asked to set such a standard. Methods: The Toxicology Office used methods developed over the past decade, in collaboration with the National Research Council Committee on Toxicology, for setting Spacecraft Water Exposure Guidelines (SWEGs). These methods require a thorough literature search and development of an acceptable concentration (AC) for each potential toxic effect, keeping in mind that the adverse effects that accompany spaceflight could increase toxicity for certain end points. Benchmark close modeling was encouraged if sufficient data were available. The most sensitive AC becomes the driver for the SWEG. Results: Hematotoxicity, hepatotoxicity, and possibly neurotoxicity were the most sensitive toxicological endpoints for DMSD. Conclusions: The SWEG for DMSD for 100 d of ingestion was set at 35 mg (.) L-1, which is equivalent to 9 mg (.) L-1 as TOC. This is well above the TOC SWEG of 3 mg (.) L-1 and the peak DMSD level of processed water observed on orbit, which was 2.2 mg (.) L-1 as TOC (8.5 mg (.) L-1 of DMSD). C1 [James, John T.; McCoy, Torin] NASA, Habitabil & Environm Factors Branch, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP James, JT (reprint author), NASA, Habitabil & Environm Factors Branch, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy,Mail Stop SF2, Houston, TX 77058 USA. EM john.t.james@nasa.gov NR 13 TC 3 Z9 3 U1 1 U2 14 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUN PY 2012 VL 83 IS 6 BP 598 EP 603 DI 10.3357/ASEM.3198.2012 PG 6 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 951MB UT WOS:000304723600008 PM 22764615 ER PT J AU Carra, C Cucinotta, FA AF Carra, Claudio Cucinotta, Francis A. TI Accurate prediction of the binding free energy and analysis of the mechanism of the interaction of replication protein A (RPA) with ssDNA SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE Amber; Binding; MM-PBSA; Molecular dynamics; Replication protein; RPA ID SINGLE-STRANDED-DNA; MOLECULAR-DYNAMICS SIMULATIONS; NUCLEOTIDE EXCISION-REPAIR; CONTINUUM SOLVENT MODELS; ABSOLUTE FREE-ENERGIES; 70 KDA SUBUNIT; CONFIGURATIONAL ENTROPY; LIGAND-BINDING; DAMAGED DNA; DIHYDROFOLATE-REDUCTASE AB The eukaryotic replication protein A (RPA) has several pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Moreover, RPA seems to have a crucial role in organizing the sequential assembly of DNA processing proteins along single stranded DNA (ssDNA). The strong RPA affinity for ssDNA, K-A between 10(-9) -aEuro parts per thousand 10(-10) M, is characterized by a low cooperativity with minor variation for changes on the nucleotide sequence. Recently, new data on RPA interactions was reported, including the binding free energy of the complex RPA70AB with dC(8) and dC(5), which has been estimated to be -10 +/- 0.4 kcal mol(-1) and -7 +/- 1 kcal mol(-1), respectively. In view of these results we performed a study based on molecular dynamics aimed to reproduce the absolute binding free energy of RPA70AB with the dC(5) and dC(8) oligonucleotides. We used several tools to analyze the binding free energy, rigidity, and time evolution of the complex. The results obtained by MM-PBSA method, with the use of ligand free geometry as a reference for the receptor in the separate trajectory approach, are in excellent agreement with the experimental data, with +/- 4 kcal mol(-1) error. This result shows that the MM-PB(GB)SA methods can provide accurate quantitative estimates of the binding free energy for interacting complexes when appropriate geometries are used for the receptor, ligand and complex. The decomposition of the MM-GBSA energy for each residue in the receptor allowed us to correlate the change of the affinity of the mutated protein with the Delta G(gas+sol) contribution of the residue considered in the mutation. The agreement with experiment is optimal and a strong change in the binding free energy can be considered as the dominant factor in the loss for the binding affinity resulting from mutation. C1 [Carra, Claudio] Univ Space Res Assoc, Houston, TX 77058 USA. [Cucinotta, Francis A.] NASA JSC Space Radiat Hlth Project, Houston, TX 77058 USA. RP Carra, C (reprint author), Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM claudio.carra-1@nasa.gov FU NASA FX We gratefully acknowledge support for this work from the NASA Space Radiation Risk Assessment Project. NR 141 TC 4 Z9 4 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 J9 J MOL MODEL JI J. Mol. Model. PD JUN PY 2012 VL 18 IS 6 BP 2761 EP 2783 DI 10.1007/s00894-011-1288-9 PG 23 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA 950AQ UT WOS:000304621400047 PM 22116609 ER PT J AU Bruntt, H Basu, S Smalley, B Chaplin, WJ Verner, GA Bedding, TR Catala, C Gazzano, JC Molenda-Zakowicz, J Thygesen, AO Uytterhoeven, K Hekker, S Huber, D Karoff, C Mathur, S Mosser, B Appourchaux, T Campante, TL Elsworth, Y Garcia, RA Handberg, R Metcalfe, TS Quirion, PO Regulo, C Roxburgh, IW Stello, D Christensen-Dalsgaard, J Kawaler, SD Kjeldsen, H Morris, RL Quintana, EV Sanderfer, DT AF Bruntt, H. Basu, S. Smalley, B. Chaplin, W. J. Verner, G. A. Bedding, T. R. Catala, C. Gazzano, J. -C. Molenda-Zakowicz, J. Thygesen, A. O. Uytterhoeven, K. Hekker, S. Huber, D. Karoff, C. Mathur, S. Mosser, B. Appourchaux, T. Campante, T. L. Elsworth, Y. Garcia, R. A. Handberg, R. Metcalfe, T. S. Quirion, P. -O. Regulo, C. Roxburgh, I. W. Stello, D. Christensen-Dalsgaard, J. Kawaler, S. D. Kjeldsen, H. Morris, R. L. Quintana, E. V. Sanderfer, D. T. TI Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: abundances; stars: atmospheres; stars: fundamental parameters; stars: solar-type ID INITIAL CHARACTERISTICS; CHEMICAL-COMPOSITION; INPUT CATALOG; CADENCE DATA; STARS; ASTEROSEISMOLOGY; OSCILLATIONS; MISSION; SUN; PLANETS AB We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well represented by Fe lines. Relative abundances of light elements (CNO) and a elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The accuracy on the log g parameter is better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of VT-KS [TYCHO V magnitude minus Two Micron All Sky Survey (2MASS) KS magnitude] and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets, this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe iFe ii balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, a elements and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where a-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars. C1 [Bruntt, H.; Thygesen, A. O.; Karoff, C.; Campante, T. L.; Handberg, R.; Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Bruntt, H.; Catala, C.; Mosser, B.] Univ Paris 07, Univ Paris 06, Observ Paris, LESIA,CNRS, F-92195 Meudon, France. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Smalley, B.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Chaplin, W. J.; Verner, G. A.; Hekker, S.; Elsworth, Y.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Verner, G. A.; Roxburgh, I. W.] Univ London, Astron Unit, London E1 4NS, England. [Bedding, T. R.; Huber, D.; Stello, D.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Gazzano, J. -C.] Univ Aix Marseille, OAMP, Lab Astrophys Marseille, UMR 6110, F-13388 Marseille 13, France. [Gazzano, J. -C.] CNRS, F-13388 Marseille 13, France. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Uytterhoeven, K.; Regulo, C.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Uytterhoeven, K.; Regulo, C.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Mathur, S.; Metcalfe, T. S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Appourchaux, T.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Campante, T. L.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Garcia, R. A.] Univ Paris Diderot, IRFU SAp, CNRS, Lab AIM,CEA DSM, F-91191 Gif Sur Yvette, France. [Quirion, P. -O.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Morris, R. L.; Quintana, E. V.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Bruntt, H (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM bruntt@gmail.com RI Basu, Sarbani/B-8015-2014; Karoff, Christoffer/L-1007-2013; OI Basu, Sarbani/0000-0002-6163-3472; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Timothy/0000-0001-5943-1460; Metcalfe, Travis/0000-0003-4034-0416; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Handberg, Rasmus/0000-0001-8725-4502; Kawaler, Steven/0000-0002-6536-6367 FU NASA's Science Mission Directorate; Polish Ministry [N N203 405 139]; Spanish National Plan of RD [AYA2010-17803]; Netherlands Organization for Scientific Research (NWO); White Dwarf Research Corporation; US National Science Foundation; UK Science and Technology Facilities Council (STFC); NSF [ATM-1105930] FX We are thankful for the efficient service observing teams at the CFHT and Pic du Midi observatories. Funding for this Discovery mission is provided by NASA's Science Mission Directorate. JM-Z acknowledges the Polish Ministry grant no. N N203 405 139. KU acknowledges financial support by the Spanish National Plan of R&D for 2010, project AYA2010-17803. SH acknowledges financial support from the Netherlands Organization for Scientific Research (NWO). TSM and HB are supported in part by White Dwarf Research Corporation through the Pale Blue Dot project. NCAR is sponsored by the US National Science Foundation. WJC, GAV, YE and IWR all acknowledge the financial support of the UK Science and Technology Facilities Council (STFC). SB acknowledges NSF grant ATM-1105930. NR 42 TC 108 Z9 108 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 1 BP 122 EP 131 DI 10.1111/j.1365-2966.2012.20686.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949TP UT WOS:000304599100010 ER PT J AU Bailey, JD Grunhut, J Shultz, M Wade, G Landstreet, JD Bohlender, D Lim, J Wong, K Drake, S Linsky, J AF Bailey, J. D. Grunhut, J. Shultz, M. Wade, G. Landstreet, J. D. Bohlender, D. Lim, J. Wong, K. Drake, S. Linsky, J. CA MiMeS Collaboration TI An analysis of the rapidly rotating Bp star HD 133880 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: stars: abundances; chemically peculiar; stars: magnetic field ID ABUNDANCE DISTRIBUTION GEOMETRY; CHEMICALLY PECULIAR STARS; DRIVEN STELLAR WINDS; LINE-DATA-BASE; MAGNETIC-FIELD; AP-STARS; EFFECTIVE TEMPERATURE; DYNAMICAL SIMULATIONS; SPECTRUM SYNTHESIS; GENEVA PHOTOMETRY AB HD 133880 is a rapidly rotating chemically peculiar B-type (Bp) star (v sin i? 103 km s-1) and is host to one of the strongest magnetic fields of any Ap/Bp star. A member of the Upper Centaurus Lupus association, it is a star with a well-determined age of 16 Myr. 12 new spectra, four of which are polarimetric, obtained from the FEROS, ESPaDOnS and HARPS instruments, provide sufficient material from which to re-evaluate the magnetic field and obtain a first approximation to the atmospheric abundance distributions of He, O, Mg, Si, Ti, Cr, Fe, Ni, Pr and Nd. An abundance analysis was carried out using zeeman, a program which synthesizes spectral line profiles for stars with permeating magnetic fields. The magnetic field structure was characterized by a colinear multipole expansion from the observed variations of the longitudinal and surface fields with rotational phase. Both magnetic hemispheres are clearly visible during the stellar rotation, and thus a three-ring abundance distribution model encompassing both magnetic poles and magnetic equator with equal spans in colatitude was adopted. Using the new magnetic field measurements and optical photometry together with previously published data, we refine the period of HD 133880 to P= 0.877 476 +/- 0.000 009 d. Our simple axisymmetric magnetic field model is based on a predominantly quadrupolar component that roughly describes the field variations. Using spectrum synthesis, we derived mean abundances for O, Mg, Si, Ti, Cr, Fe and Pr. All elements, except Mg, are overabundant compared to the Sun. Mg appears to be approximately uniform over the stellar surface, while all other elements are more abundant in the negative magnetic hemisphere than in the positive magnetic hemisphere. In contrast to most Ap/Bp stars which show an underabundance in O, in HD 133880 this element is clearly overabundant compared to the solar abundance ratio. In studying the Ha and Paschen lines in the optical spectra, we could not unambiguously detect information about the magnetosphere of HD 133880. However, radio emission data at both 3 and 6 cm suggest that the magnetospheric plasma is held in rigid rotation with the star by the magnetic field and further supported against collapse by the rapid rotation. Subtle differences in the shapes of the optically thick radio light curves at 3 and 6 cm suggest that the large-scale magnetic field is not fully axisymmetric at large distances from the star. C1 [Bailey, J. D.; Landstreet, J. D.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Grunhut, J.; Shultz, M.; Wade, G.] Royal Mil Coll Canada, Dept Phys, Kingston, ON K7K 7B4, Canada. [Landstreet, J. D.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Bohlender, D.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Lim, J.; Wong, K.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Lim, J.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Drake, S.] USRA, Greenbelt, MD 20771 USA. [Drake, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Linsky, J.] Univ Colorado, JILA, Boulder, CO 80309 USA. RP Bailey, JD (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. EM jbaile33@uwo.ca OI Wong, Ka Tat/0000-0002-4579-6546; Landstreet, John/0000-0001-8218-8542 FU Natural Sciences and Engineering Research Council of Canada; European Southern Observatory (ESO) from the ESO/ST-ECF Science Archive Facility [082.D-0061(A), 083.D-0034(A), 085.D-0296(A), 086.D-0449(A)] FX JDB, JDL and GW are grateful for support by the Natural Sciences and Engineering Research Council of Canada. We thank Veronique Petit for communicating calculations of the magnetospheric parameters for HD 133880 prior to publication. We thank the HARPSpol team for generously providing a spectrum for HD 133880 used in this analysis. We thank the referee, Dr Evelyne Alecian, for her useful comments and suggestions.; Based in part on observations made with the European Southern Observatory (ESO) telescopes under ESO programmes 082.D-0061(A), 083.D-0034(A), 085.D-0296(A) and 086.D-0449(A), obtained from the ESO/ST-ECF Science Archive Facility. It is also based in part on observations carried out at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. NR 51 TC 14 Z9 14 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 423 IS 1 BP 328 EP 343 DI 10.1111/j.1365-2966.2012.20881.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949TP UT WOS:000304599100026 ER PT J AU Kramer, LA Sargsyan, AE Hasan, KM Polk, JD Hamilton, DR AF Kramer, Larry A. Sargsyan, Ashot E. Hasan, Khader M. Polk, James D. Hamilton, Douglas R. TI Orbital and Intracranial Effects of Microgravity: Findings at 3-T MR Imaging SO RADIOLOGY LA English DT Article ID OPTIC-NERVE SHEATH; SUBARACHNOID SPACE; CHOROIDAL FOLDS; DISK EDEMA; EXPERIMENTAL PAPILLEDEMA; PRESSURE; HYPERTENSION; FLUID; FLIGHT; ULTRASOUND AB Purpose: To identify intraorbital and intracranial abnormalities in astronauts previously exposed to microgravity by using quantitative and qualitative magnetic resonance (MR) techniques. Materials and Methods: The institutional review board approved this HIPAA-compliant, retrospective review and waived the requirement for informed consent. Twenty-seven astronauts (mean age 6 standard deviation, 48 years +/- 4.5) underwent 3-T MR imaging with use of thin-section, three-dimensional, axial T2-weighted orbital and conventional brain sequences. Eight astronauts underwent repeat imaging after an additional mission in space. Optic nerve sheath diameter (ONSD) and optic nerve diameter (OND) were quantified in the retrolaminar optic nerve. OND and central optic nerve T2 hyperintensity were quantified at mid orbit. Qualitative analysis of the optic nerve sheath, optic disc, posterior globe, and pituitary gland morphology was performed and correlated for association with intracranial evidence of hydrocephalus, vasogenic edema, central venous thrombosis, and/or mass lesion. Statistical analyses included the paired t test, Mann-Whitney nonparametric test for group comparisons, Cronbach alpha coefficient for reproducibility, and Pearson correlation coefficient. Results: All astronauts had previous exposure to microgravity and, thus, control data were not available for comparison. The ONSD and OND ranged from 4.7 to 10.8 mm (mean, 6.2 mm +/- 1.1) and from 2.4 to 4.5 mm (mean, 3.0 mm +/- 0.5), respectively. Posterior globe flattening was seen in seven of the 27 astronauts (26%), optic nerve protrusion in four (15%), and moderate concavity of the pituitary dome with posterior stalk deviation in three (11%) without additional intracranial abnormalities. Retrolaminar OND increased linearly relative to ONSD (r = 0.797, Pearson correlation). A central area of T2 hyperintensity was identifiable in 26 of the 27 astronauts (96%) and increased in diameter in association with kinking of the optic nerve sheath. Conclusion: Exposure to microgravity can result in a spectrum of intraorbital and intracranial findings similar to those in idiopathic intracranial hypertension. (c) RSNA, 2012 C1 [Kramer, Larry A.; Hasan, Khader M.] Univ Texas Hlth Sci Ctr Houston, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA. [Sargsyan, Ashot E.; Hamilton, Douglas R.] Wyle Integrated Sci & Engn, Houston, TX USA. [Polk, James D.] NASA, Lyndon B Johnson Space Ctr, Dept Space Med, Houston, TX 77058 USA. RP Kramer, LA (reprint author), Univ Texas Hlth Sci Ctr Houston, Dept Diagnost & Intervent Imaging, 6431 Fannin St,MSB 2-100, Houston, TX 77030 USA. EM Larry.A.Kramer@uth.tmc.edu NR 55 TC 43 Z9 45 U1 1 U2 12 PU RADIOLOGICAL SOC NORTH AMERICA PI OAK BROOK PA 820 JORIE BLVD, OAK BROOK, IL 60523 USA SN 0033-8419 J9 RADIOLOGY JI Radiology PD JUN PY 2012 VL 263 IS 3 BP 819 EP 827 DI 10.1148/radiol.12111986 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 947GK UT WOS:000304416900024 PM 22416248 ER PT J AU Li, NC Raskin, R Goodchild, M Janowicz, K AF Li, Naicong Raskin, Robert Goodchild, Michael Janowicz, Krzysztof TI An Ontology-Driven Framework and Web Portal for Spatial Decision Support SO TRANSACTIONS IN GIS LA English DT Article ID GEOGRAPHIC INFORMATION; SEMANTIC WEB AB Numerous systems and tools have been developed for spatial decision support (SDS), but they generally suffer from a lack of re-usability, inconsistent terminology, and weak conceptualization. We introduce a collaborative effort by the SDS Consortium to build a SDS knowledge portal. We present the formal representation of knowledge about SDS, the various ontologies captured and made accessible by the portal, and the processes used to create them. We describe the portal in action, and the ways in which users can search, browse, and make use of its content. Finally, we discuss the lessons learned from this effort, and future development directions. Our work demonstrates how ontologies and semantic technologies can support the documentation and retrieval of dynamic knowledge in GIScience by offering flexible schemata instead of fixed data structures. C1 [Li, Naicong] Univ Redlands, Redlands Inst, Redlands, CA 92373 USA. [Raskin, Robert] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Li, NC (reprint author), Univ Redlands, Redlands Inst, 1200 E Colton Ave,POB 3080, Redlands, CA 92373 USA. EM naicong_li@spatial.redlands.edu NR 27 TC 8 Z9 8 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1361-1682 J9 T GIS JI Trans. GIS PD JUN PY 2012 VL 16 IS 3 BP 313 EP 329 DI 10.1111/j.1467-9671.2012.01325.x PG 17 WC Geography SC Geography GA 947YO UT WOS:000304470800004 ER PT J AU Madrinan, MJM Al-Hamdan, MZ Rickman, DL Ye, J AF Madrinan, Max J. Moreno Al-Hamdan, Mohammad Z. Rickman, Douglas L. Ye, Jun TI Relationship Between Watershed Land-Cover/Land-Use Change and Water Turbidity Status of Tampa Bay Major Tributaries, Florida, USA SO WATER AIR AND SOIL POLLUTION LA English DT Article DE Remote sensing; Geographical information systems; Water quality; Developed; Agriculture; Wetland; Bare land; Scrub/shrub; Forest; SAS; Urbanization ID HILLSBOROUGH COUNTY; METROPOLITAN-AREA; COASTAL WATERS; SURFACE WATERS; QUALITY; PHOSPHORUS; NITROGEN; EUTROPHICATION; URBAN; PERSPECTIVE AB The extent and change of land cover/land use (LCLU) across the Tampa Bay watershed, Florida, was characterized for the time period between 1996 and 2006. Likewise, the water turbidity trend was determined at a site near the Bay for each of four major tributaries to Tampa Bay (Hillsborough River, the Alafia River, the Little Manatee River, and the Manatee River). This study identifies consistent changes in LCLU across the Tampa Bay watershed and a decrease in water turbidity. LCLU change analysis as a percent of the total Tampa Bay watershed revealed an increase of 2.6% in developed area followed by a 0.9% in bare land and a 0.6% in water cover. A decrease of 1.8% of the total Tampa Bay watershed was found in agriculture, followed in order by 1.1% in wetland and 1.4% in scrub/shrub. Other land classes changed less than 0.2% of the total watershed. A linear mixed model (SAS procedure PROC MIXED) revealed an overall decreasing trend in water turbidity (p = 0.003, slope estimate = -0.02) across the four major Tampa Bay tributaries considered. This study suggests that development (urbanization) could be associated with decreasing water turbidity in Tampa Bay. Finally, although these results may help explain similar effects on other water bodies with similar conditions of adjacent urbanization and low slope, more analysis are needed considering a larger number of watersheds with similar scales and longer time period in order to confirm that the findings of this study are generally evident. C1 [Madrinan, Max J. Moreno] NASA Global Hydrol & Climate Ctr, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Al-Hamdan, Mohammad Z.] Univ Space Res Assoc, NASA Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, NASA Global Hydrol & Climate Ctr, Huntsville, AL 35805 USA. [Rickman, Douglas L.] NASA Global Hydrol & Climate Ctr, Natl Space Sci & Technol Ctr, NASA Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35805 USA. [Ye, Jun] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA. RP Madrinan, MJM (reprint author), NASA Global Hydrol & Climate Ctr, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. EM max.j.moreno-madrinan@nasa.gov; mohammad.alhamdan@nasa.gov; douglas.l.rickman@nasa.gov; jun.ye@sdstate.edu OI Rickman, Doug/0000-0003-3409-2882 FU NASA; Marshall Space Flight Center/Global Hydrology and Climate Center in Huntsville, AL FX This research was supported by an appointment to the NASA Postdoctoral Program at the Marshall Space Flight Center/Global Hydrology and Climate Center in Huntsville, AL. This program is administered by Oak Ridge Associated Universities through a contract with NASA. We acknowledge the contribution of the Environmental Protection Commission of Hillsborough County (EPCHC) and the Manatee County Environmental Management Department (MCEMD) by sharing water quality data. We wish to thank Dr. Rick Garrity and Mr. Richard Boler for their collaboration. NR 65 TC 5 Z9 5 U1 5 U2 42 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD JUN PY 2012 VL 223 IS 5 BP 2093 EP 2109 DI 10.1007/s11270-011-1007-2 PG 17 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 947XF UT WOS:000304467000014 ER PT J AU Rastatter, L Kuznetsova, MM Sibeck, DG Berrios, DH AF Rastaetter, Lutz Kuznetsova, Maria M. Sibeck, David G. Berrios, David H. TI Scientific visualization to study Flux Transfer Events at the Community Coordinated Modeling Center SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Scientific visualization; Flux Transfer Events; Magnetopause; Magnetic reconnection ID DAYSIDE MAGNETOPAUSE; RECONNECTION AB In this paper we present recent additions to the visualization toolset offered by the Community Coordinated Modeling Center (CCMC). Two suites of visualization tools are available that can address different needs during the analysis of model simulations of the magnetosphere that are provided by the CCMC. The online, server-side visualization allows the user to quickly browse through simulation runs and now can create maps of magnetic field line topology in the magnetosphere. The second tool, SWX, can be used on the client computer after data have been downloaded. With this second tool the user can interact directly with the three-dimensional objects that are being rendered. We present results from a simulation of a Flux Transfer Event that was performed at the CCMC using a magnetohydrodynamic model of the Earth's magnetosphere with a high resolution grid focused on the dayside magnetosheath and dayside magnetopause. The simulation shows that the FTE that results from localized magnetic reconnection is a complicated three-dimensional structure that requires modern visualization techniques. Visualization techniques that are presented here allow the researcher to fully appreciate the complexity contained in magnetospheric simulation results. Published by Elsevier Ltd. on behalf of COSPA C1 [Rastaetter, Lutz; Kuznetsova, Maria M.; Sibeck, David G.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Berrios, David H.] NASA, Goddard Space Flight Ctr, Sci Data Proc Branch, Greenbelt, MD 20771 USA. RP Rastatter, L (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Mail Code 674, Greenbelt, MD 20771 USA. EM lutz.sastaetter@nasa.gov; maria.m.kuznetsova@nasa.gov; david.g.sibeck@nasa.gov; david.h.berrios@nasa.gov RI Sibeck, David/D-4424-2012; Rastaetter, Lutz/D-4715-2012 OI Rastaetter, Lutz/0000-0002-7343-4147 FU Community Coordinated Modeling Center; NASA FX This work was funded as part of the Community Coordinated Modeling Center's operation. Work by D.G. Sibeck and M.M. Kuznetsova was supported in part by funding from the NASA Heliophysics Guest Investigator Program. NR 13 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 1 PY 2012 VL 49 IS 11 BP 1623 EP 1632 DI 10.1016/j.asr.2011.12.034 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 948KL UT WOS:000304502000013 ER PT J AU Tamppari, LK Anderson, RM Archer, PD Douglas, S Kounaves, SP McKay, CP Ming, DW Moore, Q Quinn, JE Smith, PH Stroble, S Zent, AP AF Tamppari, L. K. Anderson, R. M. Archer, P. D., Jr. Douglas, S. Kounaves, S. P. McKay, C. P. Ming, D. W. Moore, Q. Quinn, J. E. Smith, P. H. Stroble, S. Zent, A. P. TI Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site SO ANTARCTIC SCIENCE LA English DT Article DE dry permafrost; habitability; Taylor Valley; University Valley ID MICROBIAL BIOMASS; ROSS SEA; ANTARCTICA; ICE; CLASSIFICATION; PERMAFROST; COMPONENTS; DESERT; SNOW; TIME AB The McMurdo Dry Valleys are among the driest, coldest environments on Earth and are excellent analogues for the Martian northern plains. In preparation for the 2008 Phoenix Mars mission, we conducted an interdisciplinary investigation comparing the biological, mineralogical, chemical, and physical properties of wetter lower Taylor Valley (TV) soils to colder, drier University Valley (UV) soils. Our analyses were performed for each horizon from the surface to the ice table. In TV, clay-sized particle distribution and less abundant soluble salts both suggested vertical and possible horizontal transport by water, and microbial biomass was higher. Alteration of mica to short-order phyllosilicates suggested aqueous weathering. In UV, salts, clay-sized materials, and biomass were more abundant near the surface, suggesting minimal downward translocation by water. The presence of microorganisms in each horizon was established for the first time in an ultraxerous zone. Higher biomass numbers were seen near the surface and ice table, perhaps representing locally more clement environments. Currently, water activity is too low to support metabolism at the Phoenix site, but obliquity changes may produce higher temperatures and sufficient water activity to permit microbial growth, if the populations could survive long dormancy periods (similar to 10(6) years). C1 [Tamppari, L. K.; Douglas, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Anderson, R. M.; Kounaves, S. P.; Moore, Q.; Stroble, S.] Tufts Univ, Medford, MA 02155 USA. [Archer, P. D., Jr.; Ming, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [McKay, C. P.; Zent, A. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Quinn, J. E.] ESCG NASA, Houston, TX USA. [Smith, P. H.] Univ Arizona, Tucson, AZ USA. RP Tamppari, LK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM leslie.tamppari@jpl.nasa.gov OI Kounaves, Samuel/0000-0002-2629-4831 FU NASA; International Polar Year research opportunity FX The authors would like to thank two anonymous reviewers for very thorough reviews of this paper that helped substantially improve it. Part of this work was conducted at the Jet Propulsion Laboratory/Caltech under a grant funded through the International Polar Year research opportunity with NASA. We thank the NSF Office of Polar Programs and the men and women of the US Antarctic Program for outstanding support of field operations. NR 50 TC 13 Z9 13 U1 1 U2 24 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2012 VL 24 IS 3 BP 211 EP 228 DI 10.1017/S0954102011000800 PG 18 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 947OZ UT WOS:000304440700002 ER PT J AU McKay, CP AF McKay, Christopher P. TI Full solar spectrum measurements of absorption of light in a sample of the Beacon Sandstone containing the Antarctic cryptoendolithic microbial community SO ANTARCTIC SCIENCE LA English DT Article DE habitability; IR light; UV light; wet transmissivity ID FIBEROPTIC MICROPROBES; MARINE-SEDIMENTS; COLD DESERT; CYANOBACTERIA; PENETRATION; TRANSMISSION; ATTENUATION; TEMPERATURE; ENVIRONMENT; REFLECTION AB We report measures of absorption (negative log10 of the transmissivity) of a collimated beam through a 2.27mm surface layer of Beacon Sandstone that harbours a cryptoendolithic microbial community. Consistent with the findings of previous work in the visible light range with these rocks, and in analogous sediments, blue wavelengths are more strongly attenuated than red. At wavelengths from 2400-1200 nm the absorption of the dry rock layer is roughly constant at 3.1 except in the water bands at 2000 nm and 1600 nm. From 1200-300 nm the absorption increases from 3.1 to 6.4, below 300-190 nm (the lowest wavelength measured) the absorption exceeds 6.4. When the rock is saturated with water the absorption uniformly decreases by about 0.1-0.2 over the 700-400 nm region but decreases sharply for lower wavelengths, with the decrease equal to 0.5 at 300 nm. Thus, the relative protection against UV is attenuated when the rock is wet. Even with this decreased absorption the UV absorption is still greater than that for the visible. The absorption at wavelengths less than 300 nm was too large to measure (>6.4) for both the wet and dry rocks. C1 NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP McKay, CP (reprint author), NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. EM chris.mckay@nasa.gov FU NASA FX Field support was provided by the US Antarctic Research Program. Laboratory work and analysis was supported by the NASA Astrobiology program. I thank two high school students, Lisa Lockyer and Terence Lung, for assistance with the measurements and analysis. I thank the two reviewers for their constructive comments. This paper is dedicated to the memory of Imre Friedmann, who recruited me to the study of endoliths and hypoliths. NR 28 TC 3 Z9 3 U1 5 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2012 VL 24 IS 3 BP 243 EP 248 DI 10.1017/S0954102011000915 PG 6 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 947OZ UT WOS:000304440700004 ER PT J AU Heldmann, JL Marinova, M Williams, KE Lacelle, D McKay, CP Davila, A Pollard, W Andersen, DT AF Heldmann, J. L. Marinova, M. Williams, K. E. Lacelle, D. McKay, C. P. Davila, A. Pollard, W. Andersen, D. T. TI Formation and evolution of buried snowpack deposits in Pearse Valley, Antarctica, and implications for Mars SO ANTARCTIC SCIENCE LA English DT Article DE McMurdo Dry Valleys; Polar Regions; snow ablation ID MCMURDO DRY VALLEYS; MIDLATITUDE SNOWPACKS; THERMAL-CONDUCTIVITY; DUST STORMS; ICE; WATER; STABILITY; SURFACE; SITE; TRANSPORT AB Buried snowpack deposits are found within the McMurdo Dry Valleys of Antarctica, which offers the opportunity to study these layered structures of sand and ice within a polar desert environment. Four discrete buried snowpacks are studied within Pearse Valley, Antarctica, through in situ observations, sample analyses, O-H isotope measurements and numerical modelling of snowpack stability and evolution. The buried snowpack deposits evolve throughout the year and undergo deposition, melt, refreeze, and sublimation. We demonstrate how the deposition and subsequent burial of snow can preserve the snowpacks in the Dry Valleys. The modelled lifetimes of the buried snowpacks are dependent upon subsurface stratigraphy but are typically less than one year if the lag thickness is less than c. 7 cm and snow thickness is less than c. 10 cm, indicating that some of the Antarctic buried snowpacks form annually. Buried snowpacks in the Antarctic polar desert may serve as analogues for similar deposits on Mars and may be applicable to observations of the north polar erg, buried ice at the Mars Phoenix landing site, and observations of buried ice throughout the martian Arctic. Numerical modelling suggests that seasonal snows and subsequent burial are not required to preserve the snow and ice on Mars. C1 [Heldmann, J. L.; Marinova, M.; Williams, K. E.; McKay, C. P.; Davila, A.] NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA. [Marinova, M.; Williams, K. E.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA. [Lacelle, D.] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. [Davila, A.; Andersen, D. T.] Carl Sagan Ctr Study Life Universe, SETI Inst, Mountain View, CA 94041 USA. [Pollard, W.] McGill Univ, Dept Geog, Montreal, PQ H3A 2T5, Canada. RP Heldmann, JL (reprint author), NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA. EM Jennifer.heldmann@nasa.gov RI Davila, Alfonso/A-2198-2013; OI Davila, Alfonso/0000-0002-0977-9909; Lacelle, Denis/0000-0002-6691-8717 FU NASA; NSF; NASA ASTEP FX The authors acknowledge funding and support from both NASA and NSF to enable the Antarctic fieldwork and data analysis (NASA ASTEP grant to CPM, NASA Exobiology grant to DTA, and logistical support for Antarctic fieldwork through NSF and Raytheon Polar Services). We appreciate support from the Crary Lab at McMurdo Station, Antarctica for laboratory and field equipment assistance. Special thanks to Jon Rask of Dynamac Corp at NASA Ames Research Center for use of laboratory facilities to enable the particle size measurements. We thank Janice Bishop and Adrian Brown of the SETI Institute for use of the visible to near-infrared spectrometer and the use of laboratory facilities at SETI. We also thank Joe Levy and an anonymous reviewer for their thoughtful comments which have helped improve the quality of this paper. NR 42 TC 6 Z9 6 U1 0 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 J9 ANTARCT SCI JI Antarct. Sci. PD JUN PY 2012 VL 24 IS 3 BP 299 EP 316 DI 10.1017/S0954102011000903 PG 18 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 947OZ UT WOS:000304440700010 ER PT J AU Ackermann, M Ajello, M Ballet, J Barbiellini, G Bastieri, D Bellazzini, R Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bottacini, E Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cutini, S D'Ammando, F de Palma, F Dermer, CD Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Fuhrmann, L Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guiriec, S Hadasch, D Hayashida, M Hughes, RE Itoh, R Johannesson, G Johnson, AS Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Larsson, S Lee, SH Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nishino, S Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ozaki, M Paneque, D Panetta, JH Pelassa, V Pesce-Rollins, M Pierbattista, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Rastawicki, D Razzano, M Readhead, A Reimer, A Reimer, O Reyes, LC Richards, JL Sbarra, C Sgro, C Siskind, EJ Spandre, G Spinelli, P Szostek, A Takahashi, H Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tinivella, M Torres, DF Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Winer, BL Wood, KS Yang, Z Zimmer, S Moderski, R Nalewajko, K Sikora, M Villata, M Raiteri, CM Aller, HD Aller, MF Arkharov, AA Benitez, E Berdyugin, A Blinov, DA Boettcher, M Calle, OJAB Buemi, CS Carosati, D Chen, WP Diltz, C Di Paola, A Dolci, M Efimova, NV Forne, E Gurwell, MA Heidt, J Hiriart, D Jordan, B Kimeridze, G Konstantinova, TS Kopatskaya, EN Koptelova, E Kurtanidze, OM Lahteenmaki, A Larionova, EG Larionova, LV Larionov, VM Leto, P Lindfors, E Lin, HC Morozova, DA Nikolashvili, MG Nilsson, K Oksman, M Roustazadeh, P Sievers, A Sigua, LA Sillanpaa, A Takahashi, T Takalo, LO Tornikoski, M Trigilio, C Troitsky, IS Umana, G Angelakis, E Krichbaum, TP Nestoras, I Riquelme, D Krips, M Trippe, S Arai, A Kawabata, KS Sakimoto, K Sasada, M Sato, S Uemura, M Yamanaka, M Yoshida, M Belloni, T Tagliaferri, G Bonning, EW Isler, J Urry, CM Hoversten, E Falcone, A Pagani, C Stroh, M AF Ackermann, M. Ajello, M. Ballet, J. Barbiellini, G. Bastieri, D. Bellazzini, R. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bottacini, E. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cutini, S. D'Ammando, F. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Fuhrmann, L. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Hadasch, D. Hayashida, M. Hughes, R. E. Itoh, R. Johannesson, G. Johnson, A. S. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nishino, S. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ozaki, M. Paneque, D. Panetta, J. H. Pelassa, V. Pesce-Rollins, M. Pierbattista, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Rastawicki, D. Razzano, M. Readhead, A. Reimer, A. Reimer, O. Reyes, L. C. Richards, J. L. Sbarra, C. Sgro, C. Siskind, E. J. Spandre, G. Spinelli, P. Szostek, A. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Winer, B. L. Wood, K. S. Yang, Z. Zimmer, S. Moderski, R. Nalewajko, K. Sikora, M. Villata, M. Raiteri, C. M. Aller, H. D. Aller, M. F. Arkharov, A. A. Benitez, E. Berdyugin, A. Blinov, D. A. Boettcher, M. Calle, O. J. A. Bravo Buemi, C. S. Carosati, D. Chen, W. P. Diltz, C. Di Paola, A. Dolci, M. Efimova, N. V. Forne, E. Gurwell, M. A. Heidt, J. Hiriart, D. Jordan, B. Kimeridze, G. Konstantinova, T. S. Kopatskaya, E. N. Koptelova, E. Kurtanidze, O. M. Lahteenmaki, A. Larionova, E. G. Larionova, L. V. Larionov, V. M. Leto, P. Lindfors, E. Lin, H. C. Morozova, D. A. Nikolashvili, M. G. Nilsson, K. Oksman, M. Roustazadeh, P. Sievers, A. Sigua, L. A. Sillanpaa, A. Takahashi, T. Takalo, L. O. Tornikoski, M. Trigilio, C. Troitsky, I. S. Umana, G. Angelakis, E. Krichbaum, T. P. Nestoras, I. Riquelme, D. Krips, M. Trippe, S. Arai, A. Kawabata, K. S. Sakimoto, K. Sasada, M. Sato, S. Uemura, M. Yamanaka, M. Yoshida, M. Belloni, T. Tagliaferri, G. Bonning, E. W. Isler, J. Urry, C. M. Hoversten, E. Falcone, A. Pagani, C. Stroh, M. CA Fermi-LAT Collaboration GASP-WEBT Consortium F-GAMMA Iram-PdBI Kanata RXTE SMARTS Swift-XRT TI MULTI-WAVELENGTH OBSERVATIONS OF BLAZAR AO 0235+164 IN THE 2008-2009 FLARING STATE SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (AO 0235+164); galaxies: active; galaxies: jets; gamma rays: galaxies; radiation mechanisms: non-thermal ID BL-LACERTAE OBJECT; ACTIVE GALACTIC NUCLEI; SOUTHERN SPECTROPHOTOMETRIC STANDARDS; RELATIVISTIC RECONFINEMENT SHOCKS; SPECTRAL ENERGY-DISTRIBUTIONS; LARGE-AREA TELESCOPE; GAMMA-RAY OUTBURST; SOFT-X-RAY; RADIO-SOURCES; ABSORPTION-LINE AB The blazarAO 0235+164 (z=0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to gamma-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the gamma-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R-g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Rastawicki, D.; Reimer, A.; Reimer, O.; Szostek, A.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ajello, M.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Raino, S.; Rastawicki, D.; Reimer, A.; Reimer, O.; Szostek, A.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ballet, J.; Casandjian, J. M.; Charles, E.; Grenier, I. A.; Naumann-Godo, M.] CEA IRFU CNRS Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. [Barbiellini, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Sbarra, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bonamente, E.; Cecchi, C.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEE CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS IN2P3, Lab Univ & Particules Montpellier, Montpellier, France. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Dermer, C. D.; Lovellette, M. N.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ferrara, E. C.; Gehrels, N.; McEnery, J. E.; Thompson, D. J.; Troja, E.; Wood, K. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fuhrmann, L.; Angelakis, E.; Krichbaum, T. P.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Itoh, R.; Mizuno, T.; Nishino, S.; Sakimoto, K.; Sasada, M.; Yamanaka, M.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.; Pelassa, V.] Univ Alabama Huntsville, CSPAR, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Katagiri, H.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Larsson, S.; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden. [Larsson, S.; Yang, Z.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Larsson, S.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Lee, S. -H.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. [Lott, B.] Univ Bordeaux 1, CEN Bordeaux Gradignan, CNRS IN2p3, F-33175 Gradignan, France. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohsugi, T.; Takahashi, H.; Kawabata, K. S.; Uemura, M.; Yoshida, M.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Takahashi, T.] Inst Space & Astronaut Sci, JAXA, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzano, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Razzano, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Readhead, A.; Richards, J. L.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93401 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.; Vitale, V.] CIFS, I-10133 Turin, Italy. Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Moderski, R.; Nalewajko, K.; Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Nalewajko, K.] Univ Colorado, Boulder, CO 80309 USA. [Villata, M.; Raiteri, C. M.] INAF, Osservatorio Astron Torino, I-10025 Pino Torinese, TO, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Arkharov, A. A.; Blinov, D. A.; Efimova, N. V.; Larionov, V. M.] Pulkovo Observ, St Petersburg 196140, Russia. [Benitez, E.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City, DF, Mexico. [Berdyugin, A.; Lindfors, E.; Roustazadeh, P.; Sillanpaa, A.; Takalo, L. O.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Diltz, C.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Boettcher, M.; Calle, O. J. A. Bravo; Efimova, N. V.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionova, E. G.; Larionova, L. V.; Larionov, V. M.; Morozova, D. A.; Troitsky, I. S.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.] Osserv Astrofis Catania, I-95123 Catania, Italy. [Carosati, D.] EPT Observ, Tijarafe, La Palma, Spain. [Carosati, D.] INAF, TNG Fdn Galileo Galilei, La Palma, Spain. [Chen, W. P.; Kopatskaya, E. N.; Koptelova, E.; Lin, H. C.] Natl Cent Univ, Grad Inst Astron, Jhongli 32054, Taiwan. [Di Paola, A.] Osserv Astron Roma, I-00040 Monte Porzio Catone, Roma, Italy. [Dolci, M.] Osservatorio Astron Collurania Vincenzo Cerruli, I-64100 Teramo, Italy. [Forne, E.] Agrupacio Astron Sabadell, Sabadell 08206, Spain. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Heidt, J.] Heidelberg Univ, Konigstuhl, Landessternwarte, D-69117 Heidelberg, Germany. [Hiriart, D.] Univ Nacl Autonoma Mexico, Inst Astron, Ensenada, Baja California, Mexico. [Jordan, B.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Kimeridze, G.; Kurtanidze, O. M.; Nikolashvili, M. G.; Sigua, L. A.] Abastumani Observ, GE-0301 Abastumani, Rep of Georgia. [Koptelova, E.] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. [Torres, D. F.; Lahteenmaki, A.; Oksman, M.] Aalto Univ, Metsahovi Radio Observ, FIN-02540 Kylmala, Finland. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikio, Finland. [Sievers, A.; Riquelme, D.] Inst Radio Astron Millimetr, Granada 18012, Spain. [Krips, M.] Domaine Univ, Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. [Trippe, S.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Arai, A.] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto, Japan. [Sato, S.] Nagoya Univ, Dept Phys & Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Belloni, T.; Tagliaferri, G.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Bonning, E. W.; Isler, J.; Urry, C. M.] Yale Univ, Dept Astron, Dept Phys, New Haven, CT 06520 USA. [Bonning, E. W.; Isler, J.; Urry, C. M.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Hoversten, E.; Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM eduardo@slac.stanford.edu; fabio.gargano@ba.infn.it; madejski@slac.stanford.edu; silvia.raino@ba.infn.it; lreyes04@calpoly.edu; knalew@colorado.edu; sikora@camk.edu.pl RI Urry, Claudia/G-7381-2011; Lahteenmaki, Anne/L-5987-2013; Kurtanidze, Omar/J-6237-2014; Morozova, Daria/H-1298-2013; Troitskiy, Ivan/K-7979-2013; Grishina, Tatiana/H-6873-2013; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Larionov, Valeri/H-1349-2013; Kopatskaya, Evgenia/H-4720-2013; Larionova, Elena/H-7287-2013; Efimova, Natalia/I-2196-2013; Blinov, Dmitry/G-9925-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Orlando, E/R-5594-2016; OI Urry, Claudia/0000-0002-0745-9792; Morozova, Daria/0000-0002-9407-7804; Troitskiy, Ivan/0000-0002-4218-0148; Grishina, Tatiana/0000-0002-3953-6676; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Larionov, Valeri/0000-0002-4640-4356; Kopatskaya, Evgenia/0000-0001-9518-337X; Larionova, Elena/0000-0002-2471-6500; Efimova, Natalia/0000-0002-8071-4753; Blinov, Dmitry/0000-0003-0611-5784; Dolci, Mauro/0000-0001-8000-5642; Buemi, Carla Simona/0000-0002-7288-4613; Villata, Massimo/0000-0003-1743-6946; Larionova, Liudmila/0000-0002-0274-1481; giommi, paolo/0000-0002-2265-5003; Umana, Grazia/0000-0002-6972-8388; Caraveo, Patrizia/0000-0003-2478-8018; Leto, Paolo/0000-0003-4864-2806; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Raiteri, Claudia Maria/0000-0003-1784-2784; Sasada, Mahito/0000-0001-5946-9960; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Angelakis, Emmanouil/0000-0001-7327-5441; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tagliaferri, Gianpiero/0000-0003-0121-0723 FU National Aeronautics and Space Administration [NNX10AJ70G]; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Polish MNiSW [N N203 301635]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Georgian National Science Foundation [GNSF/ST08/4-404]; Academy of Finland [212656, 210338, 121148]; Smithsonian Institution; Academia Sinica; Fermi GI [011283, 31155, NNX10AP16G, NNX11AO13G]; Fermi Guest Investigator [NNX08AW56G, NNX09AU10G]; University of Michigan; [AST-0607523] FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; We acknowledge the support by the Polish MNiSW grant N N203 301635.; L. C. Reyes acknowledges support from NASA through Swift Guest Investigator Grant NNX10AJ70G; as well as support by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli.; The Abastumani team acknowledges financial support by the Georgian National Science Foundation through grant GNSF/ST08/4-404.; The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (numbers 212656, 210338, 121148, and others).; The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica.; The acquisition and analysis of the SMARTS data are supported by Fermi GI grants 011283 and 31155 (PI:C. Bailyn).; Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G and NNX09AU10G.; UMRAO research is supported by a series of grants from the NSF and NASA, most recently AST-0607523 and Fermi GI grants NNX10AP16G and NNX11AO13G, respectively; funds for telescope operation are provided by the University of Michigan. NR 112 TC 25 Z9 25 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 159 DI 10.1088/0004-637X/751/2/159 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600080 ER PT J AU Beirao, P Armus, L Helou, G Appleton, PN Smith, JDT Croxall, KV Murphy, EJ Dale, DA Draine, BT Wolfire, MG Sandstrom, KM Aniano, G Bolatto, AD Groves, B Brandl, BR Schinnerer, E Crocker, AF Hinz, JL Rix, HW Kennicutt, RC Calzetti, D de Paz, AG Dumas, G Galametz, M Gordon, KD Hao, CN Johnson, B Koda, J Krause, O van der Laan, T Leroy, AK Li, Y Meidt, SE Meyer, JD Rahman, N Roussel, H Sauvage, M Srinivasan, S Vigroux, L Walter, F Warren, BE AF Beirao, P. Armus, L. Helou, G. Appleton, P. N. Smith, J. -D. T. Croxall, K. V. Murphy, E. J. Dale, D. A. Draine, B. T. Wolfire, M. G. Sandstrom, K. M. Aniano, G. Bolatto, A. D. Groves, B. Brandl, B. R. Schinnerer, E. Crocker, A. F. Hinz, J. L. Rix, H. -W. Kennicutt, R. C. Calzetti, D. Gil de Paz, A. Dumas, G. Galametz, M. Gordon, K. D. Hao, C. -N. Johnson, B. Koda, J. Krause, O. van der Laan, T. Leroy, A. K. Li, Y. Meidt, S. E. Meyer, J. D. Rahman, N. Roussel, H. Sauvage, M. Srinivasan, S. Vigroux, L. Walter, F. Warren, B. E. TI A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (NGC 1097); galaxies: ISM; galaxies: starburst; infrared: galaxies ID FAR-INFRARED SPECTROSCOPY; NEARBY GALAXIES SURVEY; STAR-FORMING GALAXIES; INTERSTELLAR-MEDIUM; C-II; PHOTODISSOCIATION REGIONS; MOLECULAR-HYDROGEN; TRANSLUCENT CLOUDS; SEYFERT-GALAXIES; IRON PROJECT AB NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar, and an active nucleus. We present a detailed study of the spatial variation of the far-infrared (FIR) [CII]158 mu m and [OI]63 mu m lines and mid-infrared H-2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star-forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158 mu m+[OI]63 mu m)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7 mu m PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158 mu m/PAH(5.5-14 mu m) is found. PAHs in the ring are responsible for a factor of two more [CII]158 mu m and [OI]63 mu m emission per unit mass than PAHs in the Enuc S. spectral energy distribution (SED) modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high-intensity photodissociation regions (PDRs), in which case G(0) similar to 10(2.3) and n(H) similar to 10(3.5) cm(-3) in the ring. For these values of G(0) and n(H), PDR models cannot reproduce the observed H-2 emission. Much of the H-2 emission in the starburst ring could come from warm regions in the diffuse interstellar medium that are heated by turbulent dissipation or shocks. C1 [Beirao, P.; Armus, L.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Helou, G.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Appleton, P. N.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Smith, J. -D. T.; Croxall, K. V.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Murphy, E. J.] Carnegie Observ, Pasadena, CA 91101 USA. [Dale, D. A.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Draine, B. T.; Aniano, G.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Wolfire, M. G.; Bolatto, A. D.; Rahman, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Sandstrom, K. M.; Groves, B.; Schinnerer, E.; Rix, H. -W.; Dumas, G.; Krause, O.; van der Laan, T.; Meidt, S. E.; Walter, F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Brandl, B. R.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Crocker, A. F.; Calzetti, D.; Li, Y.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Hinz, J. L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Kennicutt, R. C.; Galametz, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gil de Paz, A.] Univ Complutense Madrid, Dept Astrofis, Fac Ciencias Fis, E-28040 Madrid, Spain. [Gordon, K. D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hao, C. -N.] Tianjin Normal Univ, Tianjin Astrophys Ctr, Tianjin 300387, Peoples R China. [Johnson, B.; Roussel, H.; Sauvage, M.; Srinivasan, S.] Univ Paris 06, Inst Astrophys Paris, UMR7095, CNRS, F-75014 Paris, France. [Koda, J.; Meyer, J. D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Leroy, A. K.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Vigroux, L.] CE Saclay, CEA, DSM, DAPNIA,Serv Astrophys,UMR, F-91191 Gif Sur Yvette, France. [Warren, B. E.] Univ Western Australia, ICRAR, M468, Crawley, WA 6009, Australia. RP Beirao, P (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. EM pedro@ipac.caltech.edu RI Gil de Paz, Armando/J-2874-2016; OI Gil de Paz, Armando/0000-0001-6150-2854; Draine, Bruce/0000-0002-0846-936X; Appleton, Philip/0000-0002-7607-8766; Schinnerer, Eva/0000-0002-3933-7677 FU NASA through JPL/Caltech; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain) FX We thank Gregory Brunner and Sebastian Haan for the code used to construct the Spitzer-IRS maps. We also thank Dario Fadda and Jeff Jacobson for software support. This work is partially based on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); and IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). Data presented in this paper were analyzed using The Herschel Interactive Processing Environment (HIPE), a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia. NR 67 TC 18 Z9 18 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 144 DI 10.1088/0004-637X/751/2/144 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600065 ER PT J AU Johnson, RE Zuhone, J Jones, C Forman, WR Markevitch, M AF Johnson, Ryan E. Zuhone, John Jones, Christine Forman, William R. Markevitch, Maxim TI SLOSHING GAS IN THE CORE OF THE MOST LUMINOUS GALAXY CLUSTER RXJ1347.5-1145 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: interactions; X-rays: galaxies: clusters ID SUNYAEV-ZELDOVICH MAP; X-RAY-CLUSTER; RX J1347.5-1145; COLD FRONTS; CHANDRA OBSERVATION; DARK-MATTER; XMM-NEWTON; J1347-1145; MASS; CONSTRAINTS AB We present new constraints on the merger history of the most X-ray luminous cluster of galaxies, RXJ1347.5-1145, based on its unique multiwavelength morphology. Our X-ray analysis confirms that the core gas is undergoing "sloshing" resulting from a prior, large-scale, gravitational perturbation. In combination with multiwavelength observations, the sloshing gas points to the primary and secondary clusters having had at least two prior strong gravitational interactions. The evidence supports a model in which the secondary subcluster with mass M = 4.8 +/- 2.4 x 10(14) M-circle dot has previously (greater than or similar to 0.6 Gyr ago) passed by the primary cluster, and has now returned for a subsequent crossing where the subcluster's gas has been completely stripped from its dark matter halo. RXJ1347 is a prime example of how core gas sloshing may be used to constrain the merger histories of galaxy clusters through multiwavelength analyses. C1 [Johnson, Ryan E.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Johnson, Ryan E.; Zuhone, John; Jones, Christine; Forman, William R.; Markevitch, Maxim] Harvard Smithsonian Ctr Astrophys, Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Zuhone, John; Markevitch, Maxim] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. RP Johnson, RE (reprint author), Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. EM johnsonr@denison.edu; jzuhone@cfa.harvard.edu; cjf@cfa.harvard.edu; wrf@cfa.harvard.edu; maxim@head.cfa.harvard.edu OI Forman, William/0000-0002-9478-1682 FU NASA; ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago; SAO; CFD; Chandra grant [GO8-9128X] FX This research has made extensive use of SAOImager DS9, in addition to software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The simulation software used in this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. R.E.J. was supported by an SAO predoctoral fellowship and a CFD fellowship during this work. J.A.Z. was supported by Chandra grant GO8-9128X, as well as by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 47 TC 10 Z9 10 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 95 DI 10.1088/0004-637X/751/2/95 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600016 ER PT J AU Loewenstein, M Kusenko, A AF Loewenstein, Michael Kusenko, Alexander TI DARK MATTER SEARCH USING XMM-NEWTON OBSERVATIONS OF WILLMAN 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: dwarf; galaxies: individual (Willman 1); X-rays: galaxies ID STERILE NEUTRINOS; DWARF GALAXY; X-RAY; COSMOLOGY; SUPERNOVA; UNIVERSE AB We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1 that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keV feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allows us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line. C1 [Loewenstein, Michael] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Loewenstein, Michael] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Kusenko, Alexander] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kusenko, Alexander] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. RP Loewenstein, M (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. FU NASA ADAP [NNX11AD36G]; DOE [DE-FG03-91ER40662]; ESA Member States; USA (NASA) FX We thank Steve Snowden and Dave Davis for their advice on XMM-Newton data analysis issues, Beth Willman for comments on the draft manuscript and input on observing and funding proposals, and an anonymous referee for feedback. This work was supported by NASA ADAP grant NNX11AD36G. A.K. acknowledges additional support from DOE grant DE-FG03-91ER40662.; This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), and utilized software integrated and maintained at the XMM-Newton Science Operations Center. Additionally, we made use of data and/or software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. Finally, we made use of NASA's Astrophysics Data System, and the arXiv e-print service operated by Cornell University. NR 57 TC 28 Z9 28 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 82 DI 10.1088/0004-637X/751/2/82 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600003 ER PT J AU Margutti, R Soderberg, AM Chomiuk, L Chevalier, R Hurley, K Milisavljevic, D Foley, RJ Hughes, JP Slane, P Fransson, C Moe, M Barthelmy, S Boynton, W Briggs, M Connaughton, V Costa, E Cummings, J Del Monte, E Enos, H Fellows, C Feroci, M Fukazawa, Y Gehrels, N Goldsten, J Golovin, D Hanabata, Y Harshman, K Krimm, H Litvak, ML Makishima, K Marisaldi, M Mitrofanov, IG Murakami, T Ohno, M Palmer, DM Sanin, AB Starr, R Svinkin, D Takahashi, T Tashiro, M Terada, Y Yamaoka, K AF Margutti, R. Soderberg, A. M. Chomiuk, L. Chevalier, R. Hurley, K. Milisavljevic, D. Foley, R. J. Hughes, J. P. Slane, P. Fransson, C. Moe, M. Barthelmy, S. Boynton, W. Briggs, M. Connaughton, V. Costa, E. Cummings, J. Del Monte, E. Enos, H. Fellows, C. Feroci, M. Fukazawa, Y. Gehrels, N. Goldsten, J. Golovin, D. Hanabata, Y. Harshman, K. Krimm, H. Litvak, M. L. Makishima, K. Marisaldi, M. Mitrofanov, I. G. Murakami, T. Ohno, M. Palmer, D. M. Sanin, A. B. Starr, R. Svinkin, D. Takahashi, T. Tashiro, M. Terada, Y. Yamaoka, K. TI INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe SO ASTROPHYSICAL JOURNAL LA English DT Article DE radiation mechanisms: non-thermal; supernovae: individual (SN2011fe) ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; SYMBIOTIC-STAR PROGENITOR; WHITE-DWARF MODELS; IA SUPERNOVAE; RADIO-EMISSION; LIGHT CURVES; SN 2011FE; CIRCUMSTELLAR MATERIAL; SODIUM-ABSORPTION; BURST AFTERGLOWS AB We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a "normal" SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate (M) over dot < 2 x 10(-9) M-circle dot yr(-1) (3 sigma c.l.) for wind velocity v(w) = 100 km s(-1). Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if greater than or similar to 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n(CSM) < 150 cm(-3)) for 2 x 10(15) less than or similar to R less than or similar to 5 x 10(16) cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites. C1 [Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chomiuk, L.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Chevalier, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Hughes, J. P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Fransson, C.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H.; Starr, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boynton, W.; Enos, H.; Fellows, C.; Harshman, K.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Briggs, M.; Connaughton, V.] Univ Alabama, Dept Phys, Huntsville, AL 35809 USA. [Costa, E.; Del Monte, E.; Feroci, M.] INAF IASF Roma, I-00133 Rome, Italy. [Fukazawa, Y.; Hanabata, Y.; Ohno, M.; Takahashi, T.] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. [Goldsten, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Golovin, D.; Litvak, M. L.; Mitrofanov, I. G.; Murakami, T.; Sanin, A. B.] Moscow Space Res Inst, Moscow 117997, Russia. [Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Marisaldi, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Svinkin, D.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Tashiro, M.; Terada, Y.] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2298558, Japan. RP Margutti, R (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; Svinkin, Dmitry/C-1934-2014; OI Terada, Yukikatsu/0000-0002-2359-1857; Feroci, Marco/0000-0002-7617-3421; Costa, Enrico/0000-0003-4925-8523; Marisaldi, Martino/0000-0002-4000-3789 FU Clay Fellowship; NASA [NNX10AR12G, NNX12AD68G, NNX07AR71G, NNX10AU34G, NAS8-03060]; Russian Space Agency; RFBR [11-02-12082-ofi_m] FX We thank Harvey Tananbaum and Neil Gehrels for making Chandra and Swift observations possible. We thank Re'em Sari, Bob Kirshner, Sayan Chakraborti, Stephan Immler, Brosk Russell, and Rodolfo Barniol Duran for helpful discussions. L. C. is a Jansky Fellow of the National Radio Astronomy Observatory. R.J.F. is supported by a Clay Fellowship. K.H. is grateful for IPN support under the following NASA grants: NNX10AR12G (Suzaku), NNX12AD68G (Swift), NNX07AR71G (MESSENGER), and NNX10AU34G (Fermi). The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR Grant 11-02-12082-ofi_m. P.O.S. acknowledges partial support from NASA Contract NAS8-03060. NR 79 TC 49 Z9 49 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 134 DI 10.1088/0004-637X/751/2/134 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600055 ER PT J AU Opher, M Drake, JF Velli, M Decker, RB Toth, G AF Opher, M. Drake, J. F. Velli, M. Decker, R. B. Toth, G. TI NEAR THE BOUNDARY OF THE HELIOSPHERE: A FLOW TRANSITION REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE interplanetary medium; magnetic fields; solar wind ID INTERSTELLAR MAGNETIC-FIELD; TERMINATION SHOCK; SOLAR-WIND; HELIOSHEATH; PLASMA; VOYAGER-1; HYDROGEN; VELOCITY AB Since April of 2010, Voyager 1 has been immersed in a region of near zero radial flows, where the solar wind seems to have stopped. The existence of this region contradicts current models that predict that the radial flows will go to zero only at the heliopause. These models, however, do not include the sector region (or include it in a kinematic fashion), where the solar magnetic field periodically reverses polarity. Here we show that the presence of the sector region in the heliosheath, where reconnection occurs, fundamentally alters the flows, giving rise to a Flow Transition Region (FTR), where the flow abruptly turns and the radial velocity becomes near zero or negative. We estimate, based on a simulation, that at the Voyager 1 location, the thickness of the FTR is around 7-11 AU. C1 [Opher, M.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Drake, J. F.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Decker, R. B.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Toth, G.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Opher, M (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM mopher@bu.edu RI Toth, Gabor/B-7977-2013 OI Toth, Gabor/0000-0002-5654-9823 FU NSF CAREER [0747654]; NASA Voyager Interstellar Mission [NNX07AB02G] FX We thank E. C. Stone for first noticing the difference in the flows. We acknowledge valuable discussions with Matthew E. Hill. M.O. acknowledges the support of the NSF CAREER grant ATM-0747654. Work at JHU/APL was supported by the NASA Voyager Interstellar Mission, contract NNX07AB02G. NR 21 TC 13 Z9 13 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 80 DI 10.1088/0004-637X/751/2/80 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600001 ER PT J AU Penev, K Jackson, B Spada, F Thom, N AF Penev, Kaloyan Jackson, Brian Spada, Federico Thom, Nicole TI CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; planet-star interactions; stars: interiors; stars: rotation; stars: winds, outflows; turbulence ID TRANSITING HOT JUPITER; SPIN-ORBIT ALIGNMENT; LOW-MASS STARS; ROTATING CONVECTIVE ENVELOPES; HIGH-PRECISION PHOTOMETRY; EXTRASOLAR GIANT PLANETS; CLOSE BINARY STARS; METAL-POOR STAR; SOUTHERN-HEMISPHERE; K DWARF AB We use the distribution of extrasolar planets in circular orbits around stars with surface convective zones detected by ground-based transit searches to constrain how efficiently tides raised by the planet are dissipated on the parent star. We parameterize this efficiency as a tidal quality factor (Q(*)). We conclude that the population of currently known planets is inconsistent with Q(*) < 10(7) at the 99% level. Previous studies show that values of Q(*) between 10(5) and 10(7) are required in order to explain the orbital circularization of main-sequence low-mass binary stars in clusters, suggesting that different dissipation mechanisms might be acting in the two cases, most likely due to the very different tidal forcing frequencies relative to the stellar rotation frequency occurring for star-star versus planet-star systems. C1 [Penev, Kaloyan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Jackson, Brian] Carnegie DTM, Washington, DC 20015 USA. [Spada, Federico] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Thom, Nicole] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Penev, K (reprint author), Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane,Peyton Hall, Princeton, NJ 08544 USA. OI Spada, Federico/0000-0001-6948-4259; Penev, Kaloyan/0000-0003-4464-1371 FU NASA [NNX09AB29G]; Yale Institute for Biospheric Studies FX The authors gratefully acknowledge useful input from Joleen Carlberg. K.P. acknowledges support from NASA grant NNX09AB29G. F.S. acknowledges support from the Yale Institute for Biospheric Studies through the YIBS Postdoctoral Fellowship. NR 125 TC 24 Z9 25 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 96 DI 10.1088/0004-637X/751/2/96 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600017 ER PT J AU Pillai, T Caselli, P Kauffmann, J Zhang, Q Thompson, MA Lis, DC AF Pillai, T. Caselli, P. Kauffmann, J. Zhang, Q. Thompson, M. A. Lis, D. C. TI H2D+ IN THE HIGH-MASS STAR-FORMING REGION CYGNUS X SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; ISM: clouds; ISM: individual objects (Cygnus X); ISM: molecules; ISM: structure; radio lines: ISM; stars: formation ID INFRARED DARK CLOUDS; DEUTERIUM FRACTIONATION; PRESTELLAR CORES; INITIAL CONDITIONS; MOLECULAR-IONS; PROTOSTELLAR CANDIDATES; L1544; DEUTERATION; CLUMPS; IONIZATION AB H2D+ is a primary ion that dominates the gas-phase chemistry of cold dense gas. Therefore, it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is, however, just beginning to be understood in low-mass prestellar and cluster-forming cores. In high-mass star-forming regions, H2D+ has been detected only in two cores, and its spatial distribution remains unknown. Here, we present the first map of the ortho-H2D+ J(k+, k-) = 1(1,0) -> 1(1,1) and N2H+ 4-3 transition in the DR21 filament of Cygnus X with the James Clerk Maxwell Telescope, and N2D+ 3-2 and dust continuum with the Submillimeter Array. We have discovered five very extended (<= 34,000 AU diameter) weak structures in H2D+ in the vicinity of, but distinctly offset from, embedded protostars. More surprisingly, the H2D+ peak is not associated with either a dust continuum or N2D+ peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster-forming cores and needs to be refined: neither dust continuum with existing capabilities nor emission in tracers like N2D+ can provide a complete census of the total prestellar gas in such regions. Sensitive H2D+ mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high-mass star-forming region. C1 [Pillai, T.; Lis, D. C.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Kauffmann, J.; Zhang, Q.] Ctr Astrophys, Cambridge, MA 02138 USA. [Kauffmann, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thompson, M. A.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. RP Pillai, T (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. EM tpillai@astro.caltech.edu FU Jet Propulsion Laboratory; Combined Array for Research in Millimeter-wave Astronomy (CARMA); National Science Foundation [AST 05-40399]; SMA FX We are grateful to Dr. Iain Coulson and the JCMT staff for their kind support with observations and data handling. The James Clerk Maxwell Telescope is operated by The Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada. The JCMT data were obtained under the program ID M07BU14. This research was supported by an appointment of J.K. to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. It was executed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. T. P. acknowledges support from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), which is supported by the National Science Foundation through grant AST 05-40399. T. P. acknowledges support from the SMA Fellowship Program while working on this project. Asignificant part of this work was done at the Center for Astrophysics, MA, USA. NR 54 TC 5 Z9 5 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 135 DI 10.1088/0004-637X/751/2/135 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600056 ER PT J AU Provencal, JL Montgomery, MH Kanaan, A Thompson, SE Dalessio, J Shipman, HL Childers, D Clemens, JC Rosen, R Henrique, P Bischoff-Kim, A Strickland, W Chandler, D Walter, B Watson, TK Castanheira, B Wang, S Handler, G Wood, M Vennes, S Nemeth, P Kepler, SO Reed, M Nitta, A Kleinman, SJ Brown, T Kim, SL Sullivan, D Chen, WP Yang, M Shih, CY Jiang, XJ Sergeev, AV Maksim, A Janulis, R Baliyan, KS Vats, HO Zola, S Baran, A Winiarski, M Ogloza, W Paparo, M Bognar, Z Papics, P Kilkenny, D Sefako, R Buckley, D Loaring, N Kniazev, A Silvotti, R Galleti, S Nagel, T Vauclair, G Dolez, N Fremy, JR Perez, J Almenara, JM Fraga, L AF Provencal, J. L. Montgomery, M. H. Kanaan, A. Thompson, S. E. Dalessio, J. Shipman, H. L. Childers, D. Clemens, J. C. Rosen, R. Henrique, P. Bischoff-Kim, A. Strickland, W. Chandler, D. Walter, B. Watson, T. K. Castanheira, B. Wang, S. Handler, G. Wood, M. Vennes, S. Nemeth, P. Kepler, S. O. Reed, M. Nitta, A. Kleinman, S. J. Brown, T. Kim, S. -L. Sullivan, D. Chen, W. P. Yang, M. Shih, C. Y. Jiang, X. J. Sergeev, A. V. Maksim, A. Janulis, R. Baliyan, K. S. Vats, H. O. Zola, S. Baran, A. Winiarski, M. Ogloza, W. Paparo, M. Bognar, Z. Papics, P. Kilkenny, D. Sefako, R. Buckley, D. Loaring, N. Kniazev, A. Silvotti, R. Galleti, S. Nagel, T. Vauclair, G. Dolez, N. Fremy, J. R. Perez, J. Almenara, J. M. Fraga, L. TI EMPIRICAL DETERMINATION OF CONVECTION PARAMETERS IN WHITE DWARFS. I. WHOLE EARTH TELESCOPE OBSERVATIONS OF EC14012-1446 SO ASTROPHYSICAL JOURNAL LA English DT Article DE asteroseismology; stars: evolution; stars: individual (EC14012-1446); stars: oscillations; white dwarfs ID ZZ-CETI STARS; DIGITAL-SKY-SURVEY; LIGHT CURVES; EVOLUTIONARY MODELS; GRAVITY MODES; ASTEROSEISMOLOGY; PULSATIONS; DBV; IDENTIFICATION; SIMULATIONS AB We report on an analysis of 308.3 hr of high-speed photometry targeting the pulsating DA white dwarf EC14012-1446. The data were acquired with the Whole Earth Telescope during the 2008 international observing run XCOV26. The Fourier transform of the light curve contains 19 independent frequencies and numerous combination frequencies. The dominant peaks are 1633.907, 1887.404, and 2504.897 mu Hz. Our analysis of the combination amplitudes reveals that the parent frequencies are consistent with modes of spherical degree l = 1. The combination amplitudes also provide m identifications for the largest amplitude parent frequencies. Our seismology analysis, which includes 2004-2007 archival data, confirms these identifications, provides constraints on additional frequencies, and finds an average period spacing of 41 s. Building on this foundation, we present nonlinear fits to high signal-to-noise light curves from the SOAR 4.1 m, McDonald 2.1 m, and KPNO 2 m telescopes. The fits indicate a time-averaged convective response timescale of tau(0) = 99.4 +/- 17 s, a temperature exponent N = 85 +/- 6.2, and an inclination angle of theta(i) = 32 degrees.9 +/- 3 degrees.2. We present our current empirical map of the convective response timescale across the DA instability strip. C1 [Provencal, J. L.; Thompson, S. E.; Dalessio, J.; Shipman, H. L.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Provencal, J. L.; Montgomery, M. H.; Thompson, S. E.; Dalessio, J.; Shipman, H. L.; Childers, D.] Mt Cuba Observ, Delaware Asteroseism Res Ctr, Greenville, DE 19807 USA. [Montgomery, M. H.; Wang, S.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Kanaan, A.; Henrique, P.] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil. [Thompson, S. E.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Childers, D.] Delaware Cty Community Coll, Dept Math & Sci, Media, PA 19063 USA. [Clemens, J. C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Rosen, R.] NRAO, Green Bank, WV 24944 USA. [Bischoff-Kim, A.] Georgia Coll & State Univ, Dept Chem & Phys, Milledgeville, GA 31061 USA. [Strickland, W.; Chandler, D.; Walter, B.] Meyer Observ, Waco, TX 76705 USA. [Strickland, W.; Chandler, D.; Walter, B.] Cent Texas Astron Soc, Waco, TX 76705 USA. [Watson, T. K.] Southwestern Univ, Inst Astron, Georgetown, TX USA. [Castanheira, B.; Handler, G.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Wood, M.; Vennes, S.; Nemeth, P.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL USA. [Kepler, S. O.; Fraga, L.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Reed, M.] Missouri State Univ, Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [Reed, M.] Baker Observ, Springfield, MO 65897 USA. [Nitta, A.; Kleinman, S. J.] Gemini Observ, No Operat Ctr, Hilo, HI 96720 USA. [Brown, T.] Cumbres Observ Global Telescope Network Inc, Santa Barbara, CA 93117 USA. [Kim, S. -L.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Sullivan, D.] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington, New Zealand. [Chen, W. P.; Yang, M.; Shih, C. Y.] Natl Cent Univ, Lulin Observ, Jhongli, Taoyuan County, Taiwan. [Jiang, X. J.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Sergeev, A. V.; Maksim, A.] Ukrainian Natl Acad Sci, Main Astron Observ, UA-02225265 Kiev, Ukraine. [Janulis, R.] Vilnius Univ, Inst Theoret Phys & Astron, Vilnius, Lithuania. [Baliyan, K. S.; Vats, H. O.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Zola, S.; Baran, A.; Winiarski, M.; Ogloza, W.] Cracow Pedag Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. [Zola, S.; Winiarski, M.; Ogloza, W.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Paparo, M.; Bognar, Z.; Papics, P.] Konkoly Observ Budapest, H-1525 Budapest 12, Hungary. [Kilkenny, D.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. [Sefako, R.; Buckley, D.; Loaring, N.; Kniazev, A.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Silvotti, R.; Galleti, S.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Nagel, T.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Vauclair, G.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-314000 Toulouse, France. [Dolez, N.; Fremy, J. R.] Observ Paris, LESIA, F-92195 Meudon, France. [Perez, J.; Almenara, J. M.] Inst Astrofis Canarias, Tenerife 38200, Spain. RP Provencal, JL (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM jlp@udel.edu; mikemon@rocky.as.utexas.edu; ankanaan@gmail.com; dpc@udel.edu; clemens@physics.unc.edu; rachel.rosen@gmail.com; agnes.kim@gcsu.edu; chandler@vvm.com; tkw@sousthwestern.edu; gerald@camk.edu.pl; wood@fit.edu; kepler@if.ufrgs.br; MikeReed@missouristate.edu; atsuko.nittakleinman1@gmail.com; tbrown@lcogt.com; slkim@kasi.re.kr; denis.sullivan@vuw.ac.nz; wchen@astro.ncu.edu.tw; xjjiang@bao.ac.cn; sergeev@terskol.com; jr@itpa.lt; zola@astro1.as.ap.krakow.pl; paparo@konkoly.hu; nagel@astro.uni-tuebingen.de; gerardv@srvdec.obs-mip.fr RI Kepler, S. O. /H-5901-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Vennes, Stephane/G-9903-2014; OI Kepler, S. O. /0000-0002-7470-5703; Silvotti, Roberto/0000-0002-1295-8174; /0000-0003-0180-8231 FU Crystal Trust Foundation; Mt. Cuba Observatory; University of Delaware; NSF [AST-0909107]; Norman Hackerman Advanced Research Program [003658-0252-2009]; KASI (Korea Astronomy and Space Science Institute) [2012-1-410-02]; Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P18339-N08] FX The Delaware Asteroseismic Research Association (DARC) is grateful for the support of the Crystal Trust Foundation and Mt. Cuba Observatory. DARC also acknowledges the support of the University of Delaware, through their participation in the SMARTS consortium. M.H.M. gratefully acknowledges the support of the NSF under grant AST-0909107 and the Norman Hackerman Advanced Research Program under grant 003658-0252-2009. S.L.K. acknowledges partial support by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02. This paper uses observations made at the South African Astronomical Observatory (SAAO). This work is further supported by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung under grant P18339-N08. We thank the various Telescope Allocation Committees for the awards of telescope time. NR 55 TC 18 Z9 18 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 91 DI 10.1088/0004-637X/751/2/91 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600012 ER PT J AU Roming, PWA Pritchard, TA Prieto, JL Kochanek, CS Fryer, CL Davidson, K Humphreys, RM Bayless, AJ Beacom, JF Brown, PJ Holland, ST Immler, S Kuin, NPM Oates, SR Pogge, RW Pojmanski, G Stoll, R Shappee, BJ Stanek, KZ Szczygiel, DM AF Roming, P. W. A. Pritchard, T. A. Prieto, J. L. Kochanek, C. S. Fryer, C. L. Davidson, K. Humphreys, R. M. Bayless, A. J. Beacom, J. F. Brown, P. J. Holland, S. T. Immler, S. Kuin, N. P. M. Oates, S. R. Pogge, R. W. Pojmanski, G. Stoll, R. Shappee, B. J. Stanek, K. Z. Szczygiel, D. M. TI THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA 2011ht SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: individual (SN 2011ht) ID SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; ULTRA-VIOLET/OPTICAL TELESCOPE; HOBBY-EBERLY TELESCOPE; ETA-CARINAE; SN 2008S; CIRCUMSTELLAR INTERACTION; OPTICAL TRANSIENT; DUST FORMATION; IA SUPERNOVAE; LIGHT CURVES AB We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of M-V similar to -17 in similar to 55 days. In contrast to the similar to 2 mag increase in the upsilon-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated by strong, Balmer emission with narrow peaks (FWHM similar to 600 km s(-1)), very broad asymmetric wings (FWHM similar to 4200 km s(-1)), and blueshifted absorption (similar to 300 km s(-1)) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by similar to 1500 km s(-1). Merged X-ray observations reveal a L0.2-10 = (1.0 +/- 0.2) x 10(39) erg s(-1). Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics (similar to 2.5 x 10(49) erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN. C1 [Roming, P. W. A.; Bayless, A. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. [Roming, P. W. A.; Pritchard, T. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Prieto, J. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stoll, R.; Shappee, B. J.; Stanek, K. Z.; Szczygiel, D. M.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.; Beacom, J. F.; Pogge, R. W.; Stanek, K. Z.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Fryer, C. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Fryer, C. L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Fryer, C. L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Davidson, K.; Humphreys, R. M.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Beacom, J. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Brown, P. J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Holland, S. T.] Space Telescope Sci Ctr, Baltimore, MD 21218 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Immler, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kuin, N. P. M.; Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pojmanski, G.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. RP Roming, PWA (reprint author), SW Res Inst, Space Sci & Engn Div, PO Drawer 28510, San Antonio, TX 78228 USA. EM proming@swri.edu OI Beacom, John/0000-0002-0005-2631 FU NASA [HF-51261.01-A, NAS 5-2655, NAS5-00136]; STScI; NSF [AST-0908816, AST-1108687, PHY-1101216, AST-9987045]; Science and Technology Facilities Council (STFC); UK Space Agency; NSF Telescope System Instrumentation Program (TSIP); Ohio Board of Regents; The Ohio State University Office of Research FX J.L.P. acknowledges support from NASA through the Hubble Fellowship Grant HF-51261.01-A awarded by STScI, which is operated by AURA, Inc. for NASA, under the contract NAS 5-2655. C.S.K., B.J.S., D.M.S., and K.Z.S. are supported by the NSF grant AST-0908816. K.Z.S. and R.S. are also supported by the NSF grant AST-1108687. J.F.B. was supported by the NSF grant PHY-1101216. We gratefully acknowledge the contributions from members of the Swift UVOT team at the Pennsylvania State University (PSU), University College London/Mullard Space Science Laboratory (MSSL), and NASA/Goddard Space Flight Center. This work is sponsored at PSU by the NASA contract NAS5-00136 and at MSSL by funding from the Science and Technology Facilities Council (STFC) and the UK Space Agency. The ASAS-SN commissioning observations were only possible due to help and support of the Las Cumbres Observatory, especially W. Rosing, E. Hawkins, R. Ross, M. Elphick, D. Mullins, and Z. Walker. We thank R. McMillan and G. Bakos for obtaining a spectrum with the APO 3.5 m telescope, and the APO director S. Hawley for granting DD time for this observation. This paper used data taken with the LBT/MODS1 spectrographs built with funding from the NSF grant AST-9987045 and the NSF Telescope System Instrumentation Program (TSIP), with additional funds from the Ohio Board of Regents and The Ohio State University Office of Research. The Hobby Eberly Telescope (HET) is a joint project of the University of Texas at Austin, PSU, Stanford University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low Resolution Spectrograph (LRS) is named for Mike Marcario of High Lonesome Optics who fabricated several optics for the instrument but died before its completion. The LRS is a joint project of the HET partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. Based in part on observations made with the Large Binocular Telescope. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. The LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; the Istituto Nazionale di Astrofisica, Italy; the LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and this research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 99 TC 29 Z9 29 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 92 DI 10.1088/0004-637X/751/2/92 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600013 ER PT J AU Stothers, RB AF Stothers, Richard B. TI YELLOW HYPERGIANTS SHOW LONG SECONDARY PERIODS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; stars: interiors; stars: oscillations; stars: variables: general; supergiants ID RED SUPERGIANT STARS; LUMINOUS BLUE VARIABLES; RHO-CASSIOPEIAE; MASS-LOSS; HR 8752; SPECTROSCOPIC OBSERVATIONS; SEMIREGULAR VARIABLES; CIRCUMSTELLAR EJECTA; STELLAR ENVELOPES; COOL HYPERGIANT AB There is observational evidence that intermittent long secondary periods of similar to 1000 days are present in the well-observed yellow hypergiants rho Cas and HR 8752. The long secondary period is interpreted here as the turnover time of giant convection cells in the convective envelope, as has been already suggested in the case of red giants and supergiants of high luminosity. The observed secondary periods and surface radial velocities of rho Cas and HR 8752 agree with the theoretical predictions, within the expected errors. These results support a theoretical interpretation that now covers the entire initial mass range from 1 to 50M(circle dot) for luminous cool stars. C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Stothers, RB (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. NR 51 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 151 DI 10.1088/0004-637X/751/2/151 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600072 ER PT J AU Zheng, W Shen, RF Sakamoto, T Beardmore, AP De Pasquale, M Wu, XF Gorosabel, J Urata, Y Sugita, S Zhang, B Pozanenko, A Nissinen, M Sahu, DK Im, M Ukwatta, TN Andreev, M Klunko, E Volnova, A Akerlof, CW Anto, P Barthelmy, SD Breeveld, A Carsenty, U Castillo-Carrion, S Castro-Tirado, AJ Chester, MM Chuang, CJ Cunniffe, R Postigo, AD Duffard, R Flewelling, H Gehrels, N Guver, T Guziy, S Hentunen, VP Huang, KY Jelinek, M Koch, TS Kubanek, P Kuin, P McKay, TA Mottola, S Oates, SR O'Brien, P Ohno, M Page, MJ Pandey, SB del Pulgar, CP Rujopakarn, W Rykoff, E Salmi, T Sanchez-Ramirez, R Schaefer, BE Sergeev, A Sonbas, E Sota, A Tello, JC Yamaoka, K Yost, SA Yuan, F AF Zheng, W. Shen, R. F. Sakamoto, T. Beardmore, A. P. De Pasquale, M. Wu, X. F. Gorosabel, J. Urata, Y. Sugita, S. Zhang, B. Pozanenko, A. Nissinen, M. Sahu, D. K. Im, M. Ukwatta, T. N. Andreev, M. Klunko, E. Volnova, A. Akerlof, C. W. Anto, P. Barthelmy, S. D. Breeveld, A. Carsenty, U. Castillo-Carrion, S. Castro-Tirado, A. J. Chester, M. M. Chuang, C. J. Cunniffe, R. Postigo, A. De Ugarte Duffard, R. Flewelling, H. Gehrels, N. Guever, T. Guziy, S. Hentunen, V. P. Huang, K. Y. Jelinek, M. Koch, T. S. Kubanek, P. Kuin, P. McKay, T. A. Mottola, S. Oates, S. R. O'Brien, P. Ohno, M. Page, M. J. Pandey, S. B. Perez del Pulgar, C. Rujopakarn, W. Rykoff, E. Salmi, T. Sanchez-Ramirez, R. Schaefer, B. E. Sergeev, A. Sonbas, E. Sota, A. Tello, J. C. Yamaoka, K. Yost, S. A. Yuan, F. TI PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB 110205A) ID GAMMA-RAY BURST; INITIAL LORENTZ FACTOR; INTERNAL-SHOCK MODEL; X-RAY; LIGHT CURVES; OPTICAL-EMISSION; MAGNETIC-FIELDS; REVERSE SHOCK; RELATIVISTIC SHOCK; DENSITY-JUMP AB We present a comprehensive analysis of a bright, long-duration (T-90 similar to 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the gamma-ray band, with optical light curve showing correlation with gamma-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to gamma-ray (1 eV to 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission (similar to 1100 s), a bright (R = 14.0) optical emission hump with very steep rise (alpha similar to 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R-GRB similar to 3 x 10(13) cm), initial Lorentz factor of the outflow (Gamma(0) similar to 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget. C1 [Zheng, W.; Akerlof, C. W.; McKay, T. A.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Shen, R. F.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Sakamoto, T.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Beardmore, A. P.; O'Brien, P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [De Pasquale, M.; Breeveld, A.; Kuin, P.; Oates, S. R.; Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Wu, X. F.; Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Gorosabel, J.; Castro-Tirado, A. J.; Cunniffe, R.; Duffard, R.; Guziy, S.; Jelinek, M.; Kubanek, P.; Sanchez-Ramirez, R.; Sota, A.; Tello, J. C.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Urata, Y.; Chuang, C. J.] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Sugita, S.] Nagoya Univ, EcoTopia Sci Inst, Chikusa Ku, Nagoya, Aichi 4648603, Japan. [Pozanenko, A.] Space Res Inst IKI, Moscow 117997, Russia. [Nissinen, M.; Hentunen, V. P.; Salmi, T.] Taurus Hill Observ, Kangaslampi 79480, Finland. [Sahu, D. K.; Anto, P.] Indian Inst Astrophys, CREST, Bangalore 560034, Karnataka, India. [Im, M.] Seoul Natl Univ, FPRD, Dept Phys & Astron, Ctr Explorat Origin Universe, Seoul, South Korea. [Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Andreev, M.; Sergeev, A.] RAS, Inst Astron, Terskol Branch, Kabardino Balkaria Repub 361605, Russia. [Andreev, M.; Sergeev, A.] NASU, Int Ctr Astron & Medicoecol Res, UA-03680 Kiev, Ukraine. [Klunko, E.] Inst Solar Terr Phys, Irkutsk 664033, Russia. [Volnova, A.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Carsenty, U.; Mottola, S.] DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Castillo-Carrion, S.; Perez del Pulgar, C.] Univ Malaga, Dept EVLT, E-29071 Malaga, Spain. [Chester, M. M.; Koch, T. S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Postigo, A. De Ugarte] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Flewelling, H.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Guever, T.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Huang, K. Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Ohno, M.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Pandey, S. B.] Aryabhatta Res Inst Observat Sci ARIES, Manora Peak 263129, Nainital, India. [Rujopakarn, W.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Rykoff, E.] EO Lawrence Berkeley Natl Laboratoy, Berkeley, CA 94720 USA. [Schaefer, B. E.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Sonbas, E.] Adiyaman Univ, Dept Phys, TR-02040 Adiyaman, Turkey. [Sonbas, E.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan. [Yost, S. A.] Coll St Benedict, Dept Phys, Collegeville, MN 56321 USA. [Yuan, F.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. RP Zheng, W (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM zwk@umich.edu; rfshen@astro.utoronto.ca; zhang@physics.unlv.edu RI Rujopakarn, Wiphu/E-7849-2012; Im, Myungshin/B-3436-2013; Duffard, Rene/A-2233-2009; McKay, Timothy/C-1501-2009; Guver, Tolga/B-1039-2014; Kubanek, Petr/G-7209-2014; Jelinek, Martin/E-5290-2016; Wu, Xuefeng/G-5316-2015; OI de Ugarte Postigo, Antonio/0000-0001-7717-5085; Rujopakarn, Wiphu/0000-0002-0303-499X; Flewelling, Heather/0000-0002-1050-4056; Sanchez-Ramirez, Ruben/0000-0002-7158-5099; Im, Myungshin/0000-0002-8537-6714; McKay, Timothy/0000-0001-9036-6150; Guver, Tolga/0000-0002-3531-9842; Jelinek, Martin/0000-0003-3922-7416; Wu, Xuefeng/0000-0002-6299-1263; Castro-Tirado, A. J./0000-0003-2999-3563 FU NASA [NNX08AV63G, NNX10AD48G]; NSF [PHY-0801007, AST-0908362]; NSERC; UK Space Agency; CRI [2009-0063616]; MEST of the Korean government; Spanish Junta de Andalucia [FQM-02192]; Spanish Ministry of Science and Innovation [AYA 2009-14000-C03-01, AYA2008-03467/ESP]; UK STFC; [CE11E0090] FX We thank the anonymous referee for helpful comments and suggestions to improve the manuscript. This research is supported by the NASA grant NNX08AV63G and the NSF grant PHY-0801007. R.F.S. is supported by an NSERC Discovery grant. A.P.B., A.A.B., N.P.K., M.J.P., and S.R.O. acknowledge the support from the UK Space Agency. B.Z. acknowledges NASA NNX10AD48G and NSF AST-0908362 for support. M.I. acknowledges support from the CRI grant 2009-0063616, funded by MEST of the Korean government. The Centre for All-sky Astrophysics is an Australian Research Council Centre of Excellence, funded by grant CE11E0090. This research made use of public data supplied by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center. This work has been supported by Spanish Junta de Andalucia through program FQM-02192 and from the Spanish Ministry of Science and Innovation through Projects (including FEDER funds) AYA 2009-14000-C03-01 and AYA2008-03467/ESP. We thank INTA and EELM-CSIC for hosting the BOOTES observatories. The work is based partly on data acquired at the Centro Astronomico Hispano Aleman (CAHA) de Calar Alto and Observatorio de Sierra Nevada (OSN). This research was also supported by the UK STFC. NR 148 TC 18 Z9 18 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 1 PY 2012 VL 751 IS 2 AR 90 DI 10.1088/0004-637X/751/2/90 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LU UT WOS:000304204600011 ER PT J AU De Luca, M Gupta, H Neufeld, D Gerin, M Teyssier, D Drouin, BJ Pearson, JC Lis, DC Monje, R Phillips, TG Goicoechea, JR Godard, B Falgarone, E Coutens, A Bell, TA AF De Luca, M. Gupta, H. Neufeld, D. Gerin, M. Teyssier, D. Drouin, B. J. Pearson, J. C. Lis, D. C. Monje, R. Phillips, T. G. Goicoechea, J. R. Godard, B. Falgarone, E. Coutens, A. Bell, T. A. TI HERSCHEL/HIFI DISCOVERY OF HCL+ IN THE INTERSTELLAR MEDIUM SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; ISM: abundances; ISM: molecules; line: identification; molecular processes; radio lines: ISM ID CLOUDS; CHLORINE; MOLECULES; OMC-1 AB The radical ion HCl+, a key intermediate in the chlorine chemistry of the interstellar gas, has been identified for the first time in the interstellar medium with the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared. The ground-state rotational transition of (HCl+)-Cl-35, (2)Pi(3/2)J = 5/2-3/2, showing.-doubling and hyperfine structure, is detected in absorption toward the Galactic star-forming regions W31C (G10.6-0.4) and W49N. The complex interstellar absorption features are modeled by convolving in velocity space the opacity profiles of other molecular tracers toward the same sources with the fine and hyperfine structure of HCl+. This structure is derived from a combined analysis of optical data from the literature and new laboratory measurements of pure rotational transitions, reported in the accompanying Letter by Gupta et al. The models reproduce well the interstellar absorption, and the frequencies inferred from the astronomical observations are in exact agreement with those calculated using spectroscopic constants derived from the laboratory data. The detection of (HCl+)-Cl-37 toward W31C, with a column density consistent with the expected Cl-35/Cl-37 isotopic ratio, provides additional evidence for the identification. A comparison with the chemically related molecules HCl and H2Cl+ yields an abundance ratio of unity with both species (HCl+ : H2Cl+ : HCl similar to 1). These observations also yield the unexpected result that HCl+ accounts for 3%-5% of the gas-phase chlorine toward W49N and W31C, values several times larger than the maximum fraction (similar to 1%) predicted by chemical models. C1 [De Luca, M.; Gerin, M.; Falgarone, E.] UPMC, LERMA LRA, UMR 8112, CNRS,Observ Paris,Ecole Normale Super, F-75231 Paris 05, France. [De Luca, M.; Gerin, M.; Falgarone, E.] UCP, F-75231 Paris 05, France. [Gupta, H.; Drouin, B. J.; Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Neufeld, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Teyssier, D.] ESA, European Space Astron Ctr, E-28691 Madrid, Spain. [Lis, D. C.; Monje, R.; Phillips, T. G.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Goicoechea, J. R.; Godard, B.; Bell, T. A.] Ctr Astrobiol CSIC INTA, Madrid 28850, Spain. [Coutens, A.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. RP De Luca, M (reprint author), UPMC, LERMA LRA, UMR 8112, CNRS,Observ Paris,Ecole Normale Super, 24 Rue Lhomond, F-75231 Paris 05, France. RI Coutens, Audrey/M-4533-2014 OI Coutens, Audrey/0000-0003-1805-3920 FU Centre National de Recherche Spatiale (CNES); SCHISM [ANR-09-BLAN-0231-01]; NASA through JPL/Caltech; Spanish MICINN [AYA2009-07304, CSD2009-00038] FX We are indebted to I. Avruch, R. Higgins, and the OBerlin group for helpful discussions on spectroscopy and support on data reduction. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States (NASA) under the leadership of SRON, Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France and the US. Consortium members are Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia; Sweden: Chalmers University of Technology-MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University-Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: CalTech, JPL, NHSC. Support for this work was provided by the Centre National de Recherche Spatiale (CNES), by the SCHISM project (grant ANR-09-BLAN-0231-01), by NASA through an award issued by JPL/Caltech, and by the Spanish MICINN (grants AYA2009-07304 and CSD2009-00038). NR 37 TC 30 Z9 30 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L37 DI 10.1088/2041-8205/751/2/L37 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000015 ER PT J AU Gupta, H Drouin, BJ Pearson, JC AF Gupta, H. Drouin, B. J. Pearson, J. C. TI THE ROTATIONAL SPECTRUM OF HCl+ SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; ISM: molecules; line: identification; molecular data ID DIATOMIC-MOLECULES; STATES; PARAMETERS AB The rotational spectrum of the radical ion HCl+ has been detected at high resolution in the laboratory, confirming the identification reported in the accompanying Letter by De Luca et al., in diffuse clouds toward W31C and W49N. Three rotational transitions, one in the ground-state (2)Pi(3/2) ladder and two in the (2)Pi(1/2) ladder (643 cm(-1) above ground), were observed in a microwave discharge of He and HCl. Well-resolved chlorine hyperfine structure and.-doubling, and the detection of lines of (HCl+)-Cl-37 at precisely the expected isotopic shift, provide conclusive evidence for the laboratory identification. Detection of rotational transitions in the (2)Pi(1/2) ladder of HCl+ for the first time allows an experimental determination of the individual hyperfine coupling constants of chlorine and yields a precise value of eQq(2). The spectroscopic constants obtained by fitting a Hamiltonian simultaneously to our data and more than 8000 optical transitions are so precise that they allow us to calculate the frequencies of the (2)Pi(3/2)J = 5/2-3/2 transition observed in space to within 0.2 km s(-1), and indeed, those of the strongest rotational transitions below 7.5 THz, to better than 1 km s(-1). C1 [Gupta, H.; Drouin, B. J.; Pearson, J. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gupta, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Harshal.Gupta@jpl.nasa.gov FU National Aeronautics and Space Administration FX We thank E. A. Cohen for helpful advice on the spectroscopy of HCl+. We are grateful to S. Sander and K. D. Bayes for providing dry ice and an HCl regulator. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 23 TC 11 Z9 11 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L38 DI 10.1088/2041-8205/751/2/L38 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000016 ER PT J AU Wang, TJ Ofman, L Davila, JM Su, Y AF Wang, Tongjiang Ofman, Leon Davila, Joseph M. Su, Yang TI GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY SDO/AIA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: corona; Sun: flares; Sun: oscillations; Sun: UV radiation; waves ID CORONAL MASS EJECTION; REGION; WAVES; TRACE; KINK; SEISMOLOGY; DENSITY; MODELS; ARCADE AB The first evidence of transverse oscillations of a multistranded loop with growing amplitudes and internal coupling observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory is presented. The loop oscillation event occurred on 2011 March 8, triggered by a coronal mass ejection (CME). The multiwavelength analysis reveals the presence of multithermal strands in the oscillating loop, whose dynamic behaviors are temperature-dependent, showing differences in their oscillation amplitudes, phases, and emission evolution. The physical parameters of growing oscillations of two strands in 171 angstrom are measured and the three-dimensional loop geometry is determined using STEREO-A/EUVI data. These strands have very similar frequencies, and between two 193 angstrom strands a quarter-period phase delay sets up. These features suggest the coupling between kink oscillations of neighboring strands and the interpretation by the collective kink mode as predicted by some models. However, the temperature dependence of the multistranded loop oscillations was not studied previously and needs further investigation. The transverse loop oscillations are associated with intensity and loop width variations. We suggest that the amplitude-growing kink oscillations may be a result of continuous non-periodic driving by magnetic deformation of the CME, which deposits energy into the loop system at a rate faster than its loss. C1 [Wang, Tongjiang; Ofman, Leon; Su, Yang] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.; Su, Yang] NASA Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Su, Yang] Graz Univ, IGAM Dept Phys, A-8010 Graz, Austria. RP Wang, TJ (reprint author), Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE, Washington, DC 20064 USA. EM tongjiang.wang@nasa.gov RI Su, Yang/J-5381-2014 FU NASA [NNX08AE44G, NNX12AB34G, NNX09AG10G, NNX10AN10G] FX The authors are grateful to Drs. Jaume Terradas and Manuel Luna for their valuable comments. The work of T. W. was supported by NASA grants NNX08AE44G, NNX10AN10G, and NNX12AB34G. L.O. acknowledges support from NASA grants NNX09AG10G, NNX10AN10G, and NNX12AB34G. NR 35 TC 36 Z9 37 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L27 DI 10.1088/2041-8205/751/2/L27 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000005 ER PT J AU White, TR Bedding, TR Gruberbauer, M Benomar, O Stello, D Appourchaux, T Chaplin, WJ Christensen-Dalsgaard, J Elsworth, YP Garcia, RA Hekker, S Huber, D Kjeldsen, H Mosser, B Kinemuchi, K Mullally, F Still, M AF White, Timothy R. Bedding, Timothy R. Gruberbauer, Michael Benomar, Othman Stello, Dennis Appourchaux, Thierry Chaplin, William J. Christensen-Dalsgaard, Jorgen Elsworth, Yvonne P. Garcia, Rafael A. Hekker, Saskia Huber, Daniel Kjeldsen, Hans Mosser, Benoit Kinemuchi, Karen Mullally, Fergal Still, Martin TI SOLVING THE MODE IDENTIFICATION PROBLEM IN ASTEROSEISMOLOGY OF F STARS OBSERVED WITH KEPLER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: fundamental parameters; stars: interiors; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; STELLAR OSCILLATIONS; RED GIANTS; COROT; FREQUENCIES; SUN; GRANULATION; PARAMETERS; DIAGRAMS; SCIENCE AB Asteroseismology of F-type stars has been hindered by an ambiguity in identification of their oscillation modes. The regular mode pattern that makes this task trivial in cooler stars is masked by increased line widths. The absolute mode frequencies, encapsulated in the asteroseismic variable epsilon, can help solve this impasse because the values of epsilon implied by the two possible mode identifications are distinct. We find that the correct epsilon can be deduced from the effective temperature and the line widths and we apply these methods to a sample of solar-like oscillators observed with Kepler. C1 [White, Timothy R.; Bedding, Timothy R.; Benomar, Othman; Stello, Dennis; Huber, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [White, Timothy R.] Australian Astron Observ, Epping, NSW 1710, Australia. [Gruberbauer, Michael] St Marys Univ, Inst Computat Astrophys, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Appourchaux, Thierry] Univ Paris 11, Inst Astrophys Spatiale, UMR8617, CNRS, F-91405 Orsay, France. [Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, Danish AsteroSeismol Ctr DASC, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Garcia, Rafael A.] Univ Paris 07, Lab AIM, CEA DSM CNRS, IRFU SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Hekker, Saskia] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Mosser, Benoit] Univ Paris 07, LESIA, CNRS, Univ Paris 06,Observ Paris, F-92195 Meudon, France. [Kinemuchi, Karen; Still, Martin] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Mullally, Fergal] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP White, TR (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. EM t.white@physics.usyd.edu.au OI Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; Australian Research Council; Australian Postgraduate Award; University of Sydney; Australian Astronomical Observatory; Denison Merit Award; NSERC; Netherlands Organisation of Scientific Research (NWO) FX The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to the Kepler Mission for their tireless efforts which have made these results possible. Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. We acknowledge the support of the Australian Research Council. T. R. W. is supported by an Australian Postgraduate Award, a University of Sydney Merit Award, an Australian Astronomical Observatory PhD Scholarship and a Denison Merit Award. M. G. received financial support from an NSERC Vanier Scholarship. S. H. acknowledges financial support from the Netherlands Organisation of Scientific Research (NWO). NR 47 TC 19 Z9 19 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2012 VL 751 IS 2 AR L36 DI 10.1088/2041-8205/751/2/L36 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944LY UT WOS:000304205000014 ER PT J AU Hoffmayer, ER Hendon, JM Parsons, GR AF Hoffmayer, Eric R. Hendon, Jill M. Parsons, Glenn R. TI Seasonal modulation in the secondary stress response of a carcharhinid shark, Rhizoprionodon terraenovae SO COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY LA English DT Article; Proceedings Paper CT Symposium on Physiological Stress Response in Elasmobranch Fishes/26th Annual Meeting of the American-Elasmobranch-Society CY JUL 10-11, 2010 CL Providence, RI SP Amer Elasmobranch Soc DE Glucose; Hematocrit; Lactate; Osmolality; Seasonal; Shark; Stress ID ATLANTIC SHARPNOSE SHARK; GILL-NET CAPTURE; GULF-OF-MEXICO; RAINBOW-TROUT; SQUALUS-ACANTHIAS; CORTICOSTERONE CONCENTRATIONS; POSTRELEASE SURVIVORSHIP; PHYSIOLOGICAL-RESPONSE; SALVELINUS-FONTINALIS; MOLECULAR ECOLOGY AB Some animals have the ability to modulate their stress response depending on the type and duration of the stressor. Modulations can initiate behavioral changes that increase fitness during the stressful period. The goal of this study was to determine if Atlantic sharpnose sharks, Rhizoprionodon terraenovae, exhibit seasonal modulations in their secondary stress parameters. Mature, male Atlantic sharpnose sharks were acutely stressed and serially sampled for one-hour, during spring, summer, and fall. An elevated stress response was observed for plasma glucose, lactate and osmolality during summer compared to spring and fall. Glucose also exhibited elevated initial concentrations, followed by a linear response during summer; varying from the asymptotic response during spring and fall. Hematocrit did not show differences over time or season; however, the power of the analysis was low due to the small sample size. When an additional 120 samples were included in the analysis, significantly higher initial hematocrit values were found during summer. Based on these results we suggest that summer is a demanding time for Atlantic sharpnose sharks. Published by Elsevier Inc. C1 [Hoffmayer, Eric R.; Parsons, Glenn R.] Univ Mississippi, Dept Biol, University, MS 38677 USA. [Hendon, Jill M.] Univ So Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA. RP Hoffmayer, ER (reprint author), Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Mississippi Labs, 3209 Frederic St, Pascagoula, MS 39567 USA. EM eric.hoffmayer@noaa.gov NR 71 TC 14 Z9 14 U1 0 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1095-6433 EI 1531-4332 J9 COMP BIOCHEM PHYS A JI Comp. Biochem. Physiol. A-Mol. Integr. Physiol. PD JUN PY 2012 VL 162 IS 2 BP 81 EP 87 DI 10.1016/j.cbpa.2011.05.002 PG 7 WC Biochemistry & Molecular Biology; Physiology; Zoology SC Biochemistry & Molecular Biology; Physiology; Zoology GA 946ED UT WOS:000304333400003 PM 21596154 ER PT J AU Lee, D Dinov, I Dong, B Gutman, B Yanovsky, I Toga, AW AF Lee, Daren Dinov, Ivo Dong, Bin Gutman, Boris Yanovsky, Igor Toga, Arthur W. TI CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms SO COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE LA English DT Article DE Graphics Processing Unit (GPU); Performance Optimization; Compute-bound; Memory-bound; CUDA; Neuroimaging ID MEDICAL IMAGE REGISTRATION; ITERATIVE REGULARIZATION; BRAIN; ATLAS; RESTORATION; GPU AB As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6x faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129x for the 3D unbiased nonlinear image registration technique and 93x for the non-local means surface denoising algorithm. (C) 2010 Elsevier Ireland Ltd. All rights reserved. C1 [Lee, Daren; Dinov, Ivo; Gutman, Boris; Toga, Arthur W.] Univ Calif Los Angeles, David Geffen Sch Med, Lab Neuro Imaging, Los Angeles, CA 90095 USA. [Dong, Bin] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA. [Yanovsky, Igor] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Toga, AW (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Lab Neuro Imaging, 635 Charles Young Dr S,Suite 225, Los Angeles, CA 90095 USA. EM daren.lee@loni.ucla.edu; ivo.dinov@loni.ucla.edu; b1dong@math.ucsd.edu; boris.gutman@loni.ucla.edu; igor.yanovsky@jpl.nasa.gov; toga@loni.ucla.edu RI Dong, Bin/J-3104-2014; OI Dinov, Ivo/0000-0003-3825-4375 FU National Institutes of Health [U54 RR021813]; NIH/NCRR [5 P41 RR013642]; NIH/NIMH [5 R01 MH71940]; NSF [0716055] FX This work was funded by the National Institutes of Health grants U54 RR021813, NIH/NCRR 5 P41 RR013642, NIH/NIMH 5 R01 MH71940, and NSF grant 0716055. The research of Igor Yanovsky was carried out in part at the University of California, Los Angeles, and in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 47 TC 11 Z9 11 U1 2 U2 8 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0169-2607 EI 1872-7565 J9 COMPUT METH PROG BIO JI Comput. Meth. Programs Biomed. PD JUN PY 2012 VL 106 IS 3 BP 175 EP 187 DI 10.1016/j.cmpb.2010.10.013 PG 13 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods; Engineering, Biomedical; Medical Informatics SC Computer Science; Engineering; Medical Informatics GA 944WM UT WOS:000304234500005 PM 21159404 ER PT J AU Samanta, A Ganguly, S Vermote, E Nemani, RR Myneni, RB AF Samanta, Arindam Ganguly, Sangram Vermote, Eric Nemani, Ramakrishna R. Myneni, Ranga B. TI Why Is Remote Sensing of Amazon Forest Greenness So Challenging? SO EARTH INTERACTIONS LA English DT Article DE Amazon forests; Greenness; Vegetation index; Remote sensing ID SPECTRAL VEGETATION INDEXES; BIOMASS-BURNING AEROSOLS; ATMOSPHERIC CORRECTION; SURFACE-TEMPERATURE; SOUTH-AMERICA; MODIS; PRODUCTIVITY; IRRADIANCE; PHENOLOGY; DROUGHT AB The prevalence of clouds and aerosols and their impact on satellite-measured greenness levels of forests in southern and central Amazonia are explored in this article using 10 years of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) greenness data: normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). During the wet season (October-March), cloud contamination of greenness data is pervasive;nearly the entire region lacks uncorrupted observations. Even in the dry season (July-September), nearly 60%-66% of greenness data are corrupted, mainly because of biomass burning aerosol contamination. Under these conditions, spectrally varying residual atmospheric effects in surface reflectance data introduce artifacts into greenness indices; NDVI is known to artificially decrease, whereas EVI, given its formulation and use of blue channel surface reflectance data, shows artificial enhancement, which manifests as large patches of enhanced greenness. These issues render remote sensing of Amazon forest greenness a challenging task. C1 [Samanta, Arindam] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Samanta, Arindam; Myneni, Ranga B.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Ganguly, Sangram] NASA, BAERI, Ames Res Ctr, Moffett Field, CA USA. [Vermote, Eric] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Nemani, Ramakrishna R.] NASA, Biospher Sci Branch, Ames Res Ctr, Moffett Field, CA USA. RP Samanta, A (reprint author), Atmospher & Environm Res Inc, 131 Hartwell Ave, Lexington, MA 02421 USA. EM arindam.sam@gmail.com RI Myneni, Ranga/F-5129-2012; Vermote, Eric/K-3733-2012; ganguly, sangram/B-5108-2010 FU NASA Earth Science Enterprise FX This research was funded by the NASA Earth Science Enterprise. NR 43 TC 11 Z9 11 U1 1 U2 50 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD JUN PY 2012 VL 16 AR 7 DI 10.1175/2012EI440.1 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 947FI UT WOS:000304413400001 ER PT J AU Farrell, SL Kurtz, N Connor, LN Elder, BC Leuschen, C Markus, T McAdoo, DC Panzer, B Richter-Menge, J Sonntag, JG AF Farrell, Sinead Louise Kurtz, Nathan Connor, Laurence N. Elder, Bruce C. Leuschen, Carlton Markus, Thorsten McAdoo, David C. Panzer, Ben Richter-Menge, Jacqueline Sonntag, John G. TI A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Altimetry; geophysical measurement techniques; remote sensing; sea ice; snow ID LASER ALTIMETER MEASUREMENTS; AIRBORNE LASER; RADAR MEASUREMENTS; DEPTH; VARIABILITY; VALIDATION; CAMPAIGN; SHEBA AB We present a first assessment of airborne laser and radar altimeter data over snow-covered sea ice, gathered during the National Aeronautics and Space Administration Operation IceBridge Mission. We describe a new technique designed to process radar echograms fromthe University of Kansas snow radar to estimate snow depth. We combine IceBridge laser altimetry with radar-derived snow depths to determine sea ice thickness. Results are validated through comparison with direct measurements of snow and ice thickness collected in situ at the Danish GreenArc 2009 sea ice camp located on fast ice north of Greenland. The IceBridge instrument suite provides accurate measurements of snow and ice thickness, particularly over level ice. Mean IceBridge snow and ice thickness agree with in situ measurements to within similar to 0.01 and similar to 0.05 m, respectively, while modal snow and ice thickness estimates agree to within 0.02 and 0.10 m, respectively. IceBridge snow depths were correlated with in situ measurements (R = 0.7, for an averaging length of 55 m). The uncertainty associated with the derived IceBridge sea ice thickness estimates is 0.40 m. The results demonstrate the retrieval of both first-year and multiyear ice thickness from IceBridge data. The airborne data were however compromised in heavily ridged ice where snow depth, and hence ice thickness, could not be measured. Techniques developed as part of this study will be used for routine processing of IceBridge retrievals over Arctic sea ice. The limitations of the GreenArc study are discussed, and recommendations for future validation of airborne measurements via field activities are provided. C1 [Farrell, Sinead Louise] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Kurtz, Nathan] Univ Maryland Baltimore Cty, NASA, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Kurtz, Nathan; Markus, Thorsten] NASA, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Connor, Laurence N.; McAdoo, David C.] Natl Ocean & Atmospher Adm, Lab Satellite Altimetry, Satellite Oceanog & Climatol Div, Silver Spring, MD 20910 USA. [Elder, Bruce C.; Richter-Menge, Jacqueline] USA, Cold Reg Res & Engn Lab, Corps Engineers, Hanover, NH 03755 USA. [Leuschen, Carlton; Panzer, Ben] Univ Kansas, Ctr Remote Sensing Ice Sheets, Lawrence, KS 66045 USA. [Sonntag, John G.] URS Corp, NASA, Wallops Flight Facil, Wallops Isl, VA 23337 USA. RP Farrell, SL (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. EM sineadf@umd.edu; nathan.t.kurtz@nasa.gov; laurence.connor@noaa.gov; Bruce.C.Elder@usace.army.mil; leuschen@cresis.ku.edu; thorsten.markus@nasa.gov; dave.mcadoo@noaa.gov; bpanzer@ku.edu; Jacqueline.A.Richter-Menge@usace.army.mil; john.g.sonntag@nasa.gov RI Connor, Laurence/E-7930-2011; Farrell, Sinead/F-5586-2010; McAdoo, Dave/F-5612-2010 OI Connor, Laurence/0000-0002-5276-6257; Farrell, Sinead/0000-0003-3222-2751; McAdoo, Dave/0000-0002-7533-5564 FU NOAA; NASA FX This work was supported by NOAA, and the NASA Cryospheric Sciences Program. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position, policy, or decision. NR 34 TC 24 Z9 24 U1 4 U2 34 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2012 VL 50 IS 6 BP 2098 EP 2111 DI 10.1109/TGRS.2011.2170843 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 945AZ UT WOS:000304246500002 ER PT J AU Helder, DL Malla, R Mettler, CJ Markham, BL Micijevic, E AF Helder, Dennis L. Malla, Rimy Mettler, Cory J. Markham, Brian L. Micijevic, Esad TI Landsat 4 Thematic Mapper Calibration Update SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; Landsat; radiometry; thematic mapper ID RADIOMETRIC CALIBRATION; PERFORMANCE AB The Landsat 4 Thematic Mapper (TM) collected imagery of the Earth's surface from 1982 to 1993. Although largely overshadowed by Landsat 5 which was launched in 1984, Landsat 4 TM imagery extends the TM-based record of the Earth back to 1982 and also substantially supplements the image archive collected by Landsat 5. To provide a consistent calibration record for the TM instruments, Landsat 4 TM was cross-calibrated to Landsat 5 using nearly simultaneous overpass imagery of pseudo-invariant calibration sites (PICS) in the time period of 1988-1990. To determine if the radiometric gain of Landsat 4 had changed over its lifetime, time series from two PICS locations (a Saharan site known as Libya 4 and a site in southwest North America, commonly referred to as the Sonoran Desert site) were developed. The results indicated that Landsat 4 had been very stable over its lifetime, with no discernible degradation in sensor performance in all reflective bands except band 1. In contrast, band 1 exhibited a 12% decay in responsivity over the lifetime of the instrument. Results from this paper have been implemented at USGS EROS, which enables users of Landsat TM data sets to obtain consistently calibrated data from Landsat 4 and 5 TM as well as Landsat 7 ETM+ instruments. C1 [Helder, Dennis L.] S Dakota State Univ, Elect Engn & Comp Sci Dept, Brookings, SD 57007 USA. [Malla, Rimy] S Dakota State Univ, Image Proc Lab, Brookings, SD 57007 USA. [Markham, Brian L.] NASA, Landsat Project Sci Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Micijevic, Esad] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. RP Helder, DL (reprint author), S Dakota State Univ, Elect Engn & Comp Sci Dept, Brookings, SD 57007 USA. EM Dennis.Helder@sdstate.edu; rimy.joshi@gmail.com; cory.mettler@sdstate.edu; Brian.L.Markham@nasa.gov; emicijevic@usgs.gov RI Markham, Brian/M-4842-2013 OI Markham, Brian/0000-0002-9612-8169 FU NASA Goddard Space Flight Center; USGS EROS; U.S. Geological Survey [G10PC00044] FX This work was supported by the Landsat Project Science Office, NASA Goddard Space Flight Center, and by the USGS EROS. This work was performed under U.S. Geological Survey contract G10PC00044. NR 20 TC 3 Z9 5 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2012 VL 50 IS 6 BP 2400 EP 2408 DI 10.1109/TGRS.2011.2171350 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 945AZ UT WOS:000304246500024 ER PT J AU Stapleton, SE Waas, AM Arnold, SM AF Stapleton, Scott E. Waas, Anthony M. Arnold, Steven M. TI Functionally graded adhesives for composite joints SO INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES LA English DT Article DE Finite element stress analysis; Stress distribution; Mechanical properties of adhesives; Joint design; Functionally graded bondline ID BONDED JOINTS; MATRIX; BEAMS AB Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Stapleton, Scott E.; Waas, Anthony M.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48105 USA. [Arnold, Steven M.] NASA, Glenn Res Ctr, Life Predict Branch, Cleveland, OH 44135 USA. RP Waas, AM (reprint author), Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48105 USA. EM dcw@umich.edu FU Space Vehicle Technology Institute [NCC3-989]; NASA; Department of Defense; NASA Glenn Research Center through the GSRP FX The authors would like to thank Brett Bednarcyk from NASA Glenn for valuable input. Portions of this work were financially supported by the Space Vehicle Technology Institute under grant NCC3-989 jointly funded by NASA and the Department of Defense. Additional financial support was provided by NASA Glenn Research Center through the GSRP Fellowship. NR 31 TC 24 Z9 24 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-7496 J9 INT J ADHES ADHES JI Int. J. Adhes. Adhes. PD JUN PY 2012 VL 35 BP 36 EP 49 DI 10.1016/j.ijadhadh.2011.11.010 PG 14 WC Engineering, Chemical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 949MM UT WOS:000304580300006 ER PT J AU Nesbitt, JA Opila, EJ Nathal, MV AF Nesbitt, James A. Opila, Elizabeth J. Nathal, Michael V. TI In Situ Growth of a Yb2O3 Layer for Sublimation Suppression for Yb14MnSb11 Thermoelectric Material for Space Power Applications SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Zintl; Yb14MnSb11; sublimation; coatings; oxidation AB The compound Yb14MnSb11 is a -type thermoelectric material of interest to the National Aeronautics and Space Administration (NASA) as a candidate replacement for the state-of-the-art Si-Ge used in current radioisotope thermoelectric generators (RTGs). Ideally, the hot end of this leg would operate at 1000A degrees C in the vacuum of space. Although Yb14MnSb11 shows the potential to double the value of the thermoelectric figure of merit () over that of Si-Ge at 1000A degrees C, it suffers from a high sublimation rate at elevated temperatures and would require a coating in order to survive the required RTG lifetime of 14 years. The purpose of the present work is to measure the sublimation rate of Yb14MnSb11 and to investigate sublimation suppression for this material. This paper reports on the sublimation rate of Yb14MnSb11 at 1000A degrees C (similar to 3 x 10(-3) g/cm(2) h) and efforts to reduce the sublimation rate with an grown Yb2O3 layer. Despite the success in forming thin, dense, continuous, and adherent oxide scales on Yb14MnSb11, the scales did not prove to be sublimation barriers. C1 [Nesbitt, James A.; Nathal, Michael V.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Opila, Elizabeth J.] Univ Virginia, Charlottesville, VA 22904 USA. RP Nesbitt, JA (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM JNesbitt@NASA.gov FU Radioisotope Power Systems office at the NASA Glenn Research Center FX The support of the Radioisotope Power Systems office at the NASA Glenn Research Center is gratefully acknowledged. NR 14 TC 5 Z9 5 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2012 VL 41 IS 6 BP 1267 EP 1273 DI 10.1007/s11664-011-1875-7 PG 7 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 944LZ UT WOS:000304205100050 ER PT J AU Beck, J Alvarado, M Nemir, D Nowell, M Murr, L Prasad, N AF Beck, Jan Alvarado, Manuel Nemir, David Nowell, Mathew Murr, Lawrence Prasad, Narasimha TI Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Thermoelectric; explosive; consolidation; shock wave; nanopowder; atomization; compaction AB Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results. C1 [Beck, Jan; Alvarado, Manuel; Nemir, David] TXL Grp Inc, El Paso, TX 79903 USA. [Nowell, Mathew] EDAX Inc, Draper, UT 84020 USA. [Murr, Lawrence] Univ Texas El Paso, Dept Met & Mat Engn, El Paso, TX 79968 USA. [Prasad, Narasimha] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Beck, J (reprint author), TXL Grp Inc, 2000 Wyoming Ave, El Paso, TX 79903 USA. EM david@txlgroup.com OI Murr, Lawrence/0000-0001-5942-8376 FU NASA [NNX09CF76P, NNX10CB69C] FX This work was supported by NASA under Contracts #NNX09CF76P and NNX10CB69C. NR 7 TC 5 Z9 5 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2012 VL 41 IS 6 BP 1595 EP 1600 DI 10.1007/s11664-011-1878-4 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 944LZ UT WOS:000304205100103 ER PT J AU Krishnan, S Karri, NK Gogna, PK Chase, JR Fleurial, JP Hendricks, TJ AF Krishnan, Shankar Karri, Naveen K. Gogna, Pawan K. Chase, Jordan R. Fleurial, Jean-Pierre Hendricks, Terry J. TI Progress Towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Thermoelectric generator; heat transfer; system analysis AB There is enormous military and commercial interest in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. In the design and development of this portable TE power system using a JP-8 combustor as a high-temperature heat source, optimal process flows depend on efficient heat generation, transfer, and recovery within the system. The combustor performance and TE subsystem performance were coupled directly through combustor exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation and design optimization of this TE power system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed TE converter thermal/mechanical modeling. To this end, this paper reports integration of system-level process flow simulations using CHEMCAD (TM) commercial software with in-house TE converter and module optimization, and heat exchanger analyses using COMSOL (TM) software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem-level conversion efficiencies exceeding 10%. These TE advances are integrated with a high-performance microtechnology combustion reactor based on recent advances at Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation approach lead directly to system efficiency-power maps defining potentially available optimal system operating conditions and regimes. Further, it is shown that, for a given fuel flow rate, there exists a combination of recuperative effectiveness and hot-side heat exchanger effectiveness that provides a higher specific power output from the TE modules. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high-performance TE devices, and microtechnologies to produce a compact, lightweight, combustion-driven TE power system prototype that operates on common fuels. C1 [Krishnan, Shankar; Hendricks, Terry J.] Pacific NW Natl Lab, MicroProd Breakthrough Inst, Corvallis, OR 97330 USA. [Karri, Naveen K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hendricks, Terry J.] Battelle Mem Inst, Columbus, OH 43201 USA. RP Krishnan, S (reprint author), Pacific NW Natl Lab, MicroProd Breakthrough Inst, Corvallis, OR 97330 USA. EM hendrickst@battelle.org FU U.S. Department of Energy [DE-AC05-76RL01830]; US Army Logistics Innovation Agency FX This manuscript has been authored by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; The authors would like to thank and acknowledge the US Army Logistics Innovation Agency and Mr. Sam Cooper for their support of this work. NR 10 TC 8 Z9 8 U1 2 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUN PY 2012 VL 41 IS 6 BP 1622 EP 1631 DI 10.1007/s11664-012-1964-2 PG 10 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 944LZ UT WOS:000304205100107 ER PT J AU Ghosh, T Banday, AJ Jaffe, T Dickinson, C Davies, R Davis, R Gorski, K AF Ghosh, Tuhin Banday, A. J. Jaffe, Tess Dickinson, Clive Davies, Rod Davis, Richard Gorski, Krzysztof TI Foreground analysis using cross-correlations of external templates on the 7-year Wilkinson Microwave Anisotropy Probe data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: general; cosmology: observations; diffuse radiation; radio continuum: ISM ID SPINNING DUST GRAINS; DIFFUSE GALACTIC EMISSION; RADIO-CONTINUUM EMISSION; H-ALPHA; WMAP OBSERVATIONS; FULL-SKY; COMPONENT SEPARATION; INTERSTELLAR-MEDIUM; INFRARED-EMISSION; SCATTERED-LIGHT AB Wilkinson Microwave Anisotropy Probe (WMAP) data when combined with ancillary data on freefree, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here we examine the sky variation at intermediate and high latitudes using a cross-correlation technique. In particular, we compare the observed emission in several global partitions of the sky plus 33 selected sky regions to three standard templates. The regions are selected using a criterion based on the morphology of these template maps. The synchrotron emission shows evidence of steepening between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky, but the current data are not precise enough to accurately quantify this from region to region. The Ha template correlated emission derived from the global fits shows clear evidence of deviation from a freefree spectrum. If this spectrum is decomposed into a contribution from both freefree and spinning dust emission in the warm ionized medium of the Galaxy, the derived freefree emissivity corresponds to a mean electron temperature of similar to 6000 K (a value critically dependent on the impact of dust absorption on the Ha intensity), and the spinning dust emission has a peak emission in intensity typically in the range 4050 GHz. However, the analysis of the smaller regions is generally unrevealing and the analysis presented here does not unambiguously demonstrate the presence of spinning dust emission in the warm ionized medium, as advocated by Dobler & Finkbeiner. The anomalous microwave emission associated with dust is detected at high significance in most of the 33 fields studied. The anomalous emission correlates well with the Finkbeiner et al. model 8 predictions (FDS8) at 94 GHz, and is well described globally by a power-law emission model with an effective spectral index between 20 and 60 GHz of beta similar to-2.7. It is clear that attempts to explain the emission by spinning dust models require multiple components, which presumably relates to a complex mix of emission regions along a given line of sight. An enhancement of the thermal dust contribution over the FDS8 predictions by a factor similar to 1.2 is required with such models. Furthermore, the emissivity varies by a factor of similar to 50 per cent from cloud to cloud relative to the mean. The significance of these results for the correction of cosmic microwave background data for Galactic foreground emission is discussed. C1 [Ghosh, Tuhin] IUCAA, Pune 411007, Maharashtra, India. [Banday, A. J.; Jaffe, Tess] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Banday, A. J.; Jaffe, Tess] CNRS, IRAP, F-31028 Toulouse 4, France. [Dickinson, Clive; Davies, Rod; Davis, Richard] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Gorski, Krzysztof] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gorski, Krzysztof] CALTECH, Pasadena, CA 91125 USA. [Gorski, Krzysztof] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Ghosh, T (reprint author), IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. EM tuhin@iucaa.ernet.in RI Ghosh, Tuhin/E-6899-2016 NR 68 TC 17 Z9 17 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2012 VL 422 IS 4 BP 3617 EP 3642 DI 10.1111/j.1365-2966.2012.20875.x PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 945AV UT WOS:000304246100058 ER PT J AU Ubelmann, C Verron, J Brankart, JM Brasseur, P Cosme, E AF Ubelmann, Clement Verron, Jacques Brankart, Jean-Michel Brasseur, Pierre Cosme, Emmanuel TI Assimilating altimetric data to control the tropical instability waves: an observing system simulation experiment study SO OCEAN DYNAMICS LA English DT Article DE Data assimilation; Altimetry; Orbital parameters; Twin experiments; Tropical instability waves ID PACIFIC-OCEAN; ATLANTIC-OCEAN; FUTURE; MODEL; OCEANOGRAPHY; TEMPERATURE; CIRCULATION; SATELLITE; VORTICES; IMPACT AB Tropical instability waves (TIWs) are not easily simulated by ocean circulation models primarily because such waves are very sensitive to wind forcing. In this study, we investigate the impact of assimilating sea surface height (SSH) observations on the control of TIWs in an observing system simulation experiment (OSSE) context based on a regional model configuration of the tropical Atlantic. A Kalman filtering method with suitable adaptations is found to be successful when altimetric data are assimilated in conjunction with sea surface temperature and some in situ temperature/salinity profiles. In this rather realistic system, the TIW phase is roughly controlled with a single nadir observing satellite. However, a right correction of the TIW structure and amplitude requires at least two nadir observing satellites or a wide swath observing satellite. The significant impact of orbital parameters is also demonstrated: in particular, the Jason or GFO satellite orbits are found to be more suitable than the ENVISAT orbit. More generally, it is found that as soon as adequate sub-sampling exists (with periods of 5-10 days), the length of the repetitivity cycle of orbits does not have a significant impact. C1 [Ubelmann, Clement] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Verron, Jacques; Brankart, Jean-Michel; Brasseur, Pierre; Cosme, Emmanuel] CNRS UJF Grenoble 1 G INP, LEGI UMR5519, F-38041 Grenoble 9, France. RP Ubelmann, C (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM clement.ubelmann@jpl.nasa.gov FU CNES (Centre National d'Etudes Spatiales) FX The authors would like to thank the CNES (Centre National d'Etudes Spatiales) for financial support and the IDRIS (Institut du Developpement et des Ressources en Informatique Scientifique) for assistance with computing. The calculations were performed using HPC resources from GENCI-IDRIS (Grant 2009-011279). Many thanks are also due to Jean-Marc Molines for helping the authors set up the model configuration. NR 40 TC 0 Z9 0 U1 0 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 J9 OCEAN DYNAM JI Ocean Dyn. PD JUN PY 2012 VL 62 IS 6 BP 867 EP 880 DI 10.1007/s10236-012-0539-3 PG 14 WC Oceanography SC Oceanography GA 945XA UT WOS:000304308500004 ER PT J AU Volkov, DL Zlotnicki, V AF Volkov, Denis L. Zlotnicki, Victor TI Performance of GOCE and GRACE-derived mean dynamic topographies in resolving Antarctic Circumpolar Current fronts SO OCEAN DYNAMICS LA English DT Article DE Antarctic Circumpolar Current; Southern Ocean; Antarctic Circumpolar Current fronts; Sub-Antarctic front; Polar front; South ACC front; Satellite altimetry; Satellite gravity; Mean dynamic topography; GOCE; GRACE; Sea surface height gradients ID SOUTHERN-OCEAN; VARIABILITY; CIRCULATION; TRANSPORT; MODEL AB Presently, two satellite missions, Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE), are making detailed measurements of the Earth's gravity field, from which the geoid can be obtained. The mean dynamic topography (MDT) is the difference between the time-averaged sea surface height and the geoid. The GOCE mission is aimed at determining the geoid with superior accuracy and spatial resolution, so that a more accurate MDT can be estimated. In this study, we determine the mean positions of the Antarctic Circumpolar Current fronts using the purely geodetic estimates of the MDT constructed from an altimetric mean sea surface and GOCE and GRACE geoids. Overall, the frontal positions obtained from the GOCE and GRACE MDTs are close to each other. This means that these independent estimates are robust and can potentially be used to validate frontal positions obtained from sparse and irregular in situ measurements. The geodetic frontal positions are compared to earlier estimates as well as to those derived from MDTs based on satellite and in situ measurements and those obtained from an ocean data synthesis product. The position of the Sub-Antarctic Front identified in the GOCE MDT is found to be in better agreement with the previous estimates than that identified in the GRACE MDT. The geostrophic velocities derived from the GOCE MDT are also closer to observations than those derived from the GRACE MDT. Our results thus show that the GOCE mission represents an improvement upon GRACE in terms of the time-averaged geoid. C1 [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Volkov, Denis L.; Zlotnicki, Victor] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Volkov, DL (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM denis.volkov@jpl.nasa.gov RI Volkov, Denis/A-6079-2011 OI Volkov, Denis/0000-0002-9290-0502 FU National Aeronautics and Space Administration (NASA) FX This work was funded by the NASA Physical Oceanography program and carried out at Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The authors thank S. Sokolov, S. R. Rintoul, and A. H. Orsi for providing their estimates of frontal positions. Comments from two anonymous reviewers and the editor K. Heywood are greatly appreciated. Copyright 2011 California Institute of Technology. Government sponsorship is acknowledged. NR 20 TC 8 Z9 8 U1 1 U2 24 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 J9 OCEAN DYNAM JI Ocean Dyn. PD JUN PY 2012 VL 62 IS 6 BP 893 EP 905 DI 10.1007/s10236-012-0541-9 PG 13 WC Oceanography SC Oceanography GA 945XA UT WOS:000304308500006 ER PT J AU Lohn, AJ Kobayashi, NP AF Lohn, Andrew J. Kobayashi, Nobuhiko P. TI AC surface photovoltage of indium phosphide nanowire networks SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID SEMICONDUCTOR; SPECTROSCOPY; LAYER AB Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. C1 [Lohn, Andrew J.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Lohn, Andrew J.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, NASA, Ames Res Ctr, Adv Studies Labs,NECTAR, Moffett Field, CA 94035 USA. RP Lohn, AJ (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. EM lohnaj@soe.ucsc.edu RI Kobayashi, Nobuhiko/E-3834-2012 NR 27 TC 8 Z9 8 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD JUN PY 2012 VL 107 IS 3 BP 647 EP 651 DI 10.1007/s00339-012-6810-0 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 943XC UT WOS:000304159200018 ER PT J AU Brown, ME Schaller, EL Fraser, WC AF Brown, M. E. Schaller, E. L. Fraser, W. C. TI WATER ICE IN THE KUIPER BELT SO ASTRONOMICAL JOURNAL LA English DT Article DE astrochemistry; Kuiper belt: general; planets and satellites: composition; planets and satellites: formation ID NEAR-INFRARED SPECTROSCOPY; TRANS-NEPTUNIAN OBJECTS; OUTER SOLAR-SYSTEM; 2003 EL61; SURFACE-COMPOSITION; COLLISIONAL FAMILY; 90482 ORCUS; CENTAURS; COLORS; CHARON AB We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice-perhaps mixed with ammonia-that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as "neutral" and "red"), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the similar to 20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture. C1 [Brown, M. E.; Fraser, W. C.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Schaller, E. L.] NASA, Dryden Aircraft Operat Facil, Palmdale, CA 93550 USA. [Schaller, E. L.] Univ N Dakota, Natl Suborbital Educ & Res Ctr, Grand Forks, ND 85202 USA. RP Brown, ME (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM mbrown@caltech.edu FU NASA [NNX09AB49G, NAS 5-26555]; W. M. Keck Foundation; NASA through Space Telescope Science Institute [HST-GO-11644.01-A] FX This research has been supported by the grant NNX09AB49G from the NASA Planetary Astronomy program. Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Support for program HST-GO-11644.01-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of the Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 39 TC 15 Z9 15 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 146 DI 10.1088/0004-6256/143/6/146 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800019 ER PT J AU Edwards, LOV Fadda, D AF Edwards, Louise O. V. Fadda, Dario TI A MULTI-WAVELENGTH ANALYSIS OF SPITZER SELECTED COMA CLUSTER GALAXIES: STAR FORMATION RATES AND MASSES (vol 142, pg 148, 2011) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Edwards, Louise O. V.; Fadda, Dario] NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Edwards, Louise O. V.] Mt Allison Univ, Dept Phys, Sackville, NB E4L 1E6, Canada. RP Edwards, LOV (reprint author), NASA, Herschel Sci Ctr, Caltech 100-22, Pasadena, CA 91125 USA. EM ledwards@mta.ca; fadda@ipac.caltech.edu NR 1 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 151 DI 10.1088/0004-6256/143/6/151 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800024 ER PT J AU Huang, S Haynes, MP Giovanelli, R Brinchmann, J Stierwalt, S Neff, SG AF Huang, Shan Haynes, Martha P. Giovanelli, Riccardo Brinchmann, Jarle Stierwalt, Sabrina Neff, Susan G. TI GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: evolution; galaxies: fundamental parameters; galaxies: star formation; radio lines: galaxies; surveys ID DIGITAL SKY SURVEY; FAST ALPHA SURVEY; I MASS FUNCTION; COLOR-MAGNITUDE DIAGRAM; TULLY-FISHER RELATION; ARECIBO SDSS SURVEY; HI SOURCE CATALOG; FORMING GALAXIES; LOCAL UNIVERSE; DUST ATTENUATION AB We examine the global properties of the stellar and Hi components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses < 10(7.7) M-circle dot and Hi line widths < 80 km s(-1). Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M-*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M-* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M-* less than or similar to 10(8) M-circle dot is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M-* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones. C1 [Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Brinchmann, Jarle] Leiden Univ, Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Stierwalt, Sabrina] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Neff, Susan G.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Huang, S (reprint author), Cornell Univ, Ctr Radiophys & Space Res, Space Sci Bldg, Ithaca, NY 14853 USA. EM shan@astro.cornell.edu; haynes@astro.cornell.edu; riccardo@astro.cornell.edu; jarle@strw.leidenuniv.nl; sabrina@ipac.caltech.edu; susan.g.neff@nasa.gov RI Brinchmann, Jarle/M-2616-2015 OI Brinchmann, Jarle/0000-0003-4359-8797 FU NASA [NAS5-98034, NNX07AJ12G, NNX08AL67G, NNX09AF79G]; National Science Foundation [AST-0607007, AST-1107390]; Brinson Foundation; Alfred P. Sloan Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max Planck Institute for Astronomy; MPA; New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX Based on observations made with the Arecibo Observatory and the NASA Galaxy Evolution Explorer (GALEX). The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana and the Universities Space Research Association. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.; The authors acknowledge the work of the entire ALFALFA collaboration team in observing, flagging, and extracting the catalog of galaxies used in this work. The ALFALFA team at Cornell is supported by NSF grant AST-0607007 and AST-1107390 and by grants from the Brinson Foundation.; GALEX is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. S.H., S.S., and M.P.H. acknowledge support for this work from the GALEX Guest Investigator program under NASA grants NNX07AJ12G, NNX08AL67G, and NNX09AF79G.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max Planck Institute for Astronomy, the MPA, New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 84 TC 49 Z9 49 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 133 DI 10.1088/0004-6256/143/6/133 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800006 ER PT J AU Smith, BJ Swartz, DA Miller, O Burleson, JA Nowak, MA Struck, C AF Smith, Beverly J. Swartz, Douglas A. Miller, Olivia Burleson, Jacob A. Nowak, Michael A. Struck, Curtis TI ChAInGeS: THE CHANDRA ARP INTERACTING GALAXIES SURVEY SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: interactions; galaxies: starburst; ultraviolet: galaxies; X-rays: galaxies ID X-RAY SOURCES; DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEUS; STAR-FORMATION RATES; LUMINOUS INFRARED GALAXIES; FORMATION RATE INDICATOR; OPTICAL COUNTERPART; SPIRAL GALAXIES; BLACK-HOLES; XMM-NEWTON AB We have conducted a statistical analysis of the ultra-luminous X-ray point sources (ULXs; L-X >= 10(39) erg s(-1)) in a sample of galaxies selected from the Arp Atlas of Peculiar Galaxies. We find a possible enhancement of a factor of similar to 2-4 in the number of ULXs per blue luminosity for the strongly interacting subset. Such an enhancement would be expected if ULX production is related to star formation, as interacting galaxies tend to have enhanced star formation rates on average. For most of the Arp galaxies in our sample, the total number of ULXs compared to the far-infrared luminosity is consistent with values found earlier for spiral galaxies. This suggests that for these galaxies, ULXs trace recent star formation. However, for the most infrared-luminous galaxies, we find a deficiency of ULXs compared to the infrared luminosity. For these very infrared-luminous galaxies, active galactic nuclei may contribute to powering the far-infrared; alternatively, ULXs may be highly obscured in the X-ray in these galaxies and therefore not detected by these Chandra observations. We determined local UV/optical colors within the galaxies in the vicinity of the candidate ULXs using Galaxy Evolution Explorer UV and Sloan Digitized Sky Survey optical images. In most cases, the distributions of colors are similar to the global colors of interacting galaxies. However, the u - g and r - i colors at the ULX locations tend to be bluer on average than these global colors, suggesting that ULXs are preferentially found in regions with young stellar populations. In the Arp sample there is a possible enhancement of a factor of similar to 2-5 in the fraction of galactic nuclei that are X-ray-bright compared to more normal spirals. C1 [Smith, Beverly J.; Miller, Olivia] E Tennessee State Univ, Dept Phys & Astron, Johnson City, TN 37614 USA. [Swartz, Douglas A.] NASA, Univ Space Res Assoc, Marshall Space Flight Ctr, Huntsville, AL USA. [Burleson, Jacob A.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [Nowak, Michael A.] MIT, Kavli Inst Astrophys, Cambridge, MA 02139 USA. [Struck, Curtis] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. RP Smith, BJ (reprint author), E Tennessee State Univ, Dept Phys & Astron, Johnson City, TN 37614 USA. EM smithbj@etsu.edu; Douglas.A.Swartz@nasa.gov; millero@goldmail.etsu.edu; jab0039@uah.edu; mnowak@space.mit.edu; curt@iastate.edu OI Struck, Curtis/0000-0002-6490-2156 FU NASA [AR9-0010A, GO9-0098X, GO0-11099A] FX We thank the anonymous referee for helpful suggestions that greatly improved this paper. We thank Qiongge Li and Nic Willis for help with downloading data, and Mark Hancock and Mark Giroux for helpful discussions. This work was funded by NASA Chandra grant AR9-0010A. D.A.S. is supported in part by NASA Chandra grants GO9-0098X and GO0-11099A. This work has made use of the NASA Chandra archives as well as the Chandra Source Catalog (CSC), provided by the Chandra X-ray Center (CXC) as part of the Chandra data archive. This research has made use of the NASA/IPAC Extragalactic Database (NED) and the NASA/IPAC Infrared Science Archive, which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 115 TC 13 Z9 13 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUN PY 2012 VL 143 IS 6 AR 144 DI 10.1088/0004-6256/143/6/144 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 944GH UT WOS:000304186800017 ER PT J AU Wilson, WC Rogge, MD Fisher, BH Malocha, DC Atkinson, GM AF Wilson, William C. Rogge, Matthew Douglas Fisher, Brian H. Malocha, Donald C. Atkinson, Gary M. TI Fastener Failure Detection Using a Surface Acoustic Wave Strain Sensor SO IEEE SENSORS JOURNAL LA English DT Article DE Aircraft; fastener failure; strain sensor; surface acoustic waves AB Surface acoustic wave (SAW) strain sensors are presented for use in the detection of aircraft fastener failures. SAW sensors have the potential for the development of passive wireless systems. The SAW devices employed four orthogonal frequency coding spread spectrum reflectors in two banks on a high temperature piezoelectric substrate. Three SAW devices were attached to a cantilever panel with removable side stiffeners. Damage in the form of fastener failure was simulated by removal of bolts from the side stiffeners. During testing, three different force conditions were used to simulate static aircraft structural response under loads. The design of the sensor, the panel arrangement and the panel testing results are reported. The results show that the sensors successfully detected single fastener failure at distances up to 655 mm from the failure site under loaded conditions. C1 [Wilson, William C.; Rogge, Matthew Douglas] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Fisher, Brian H.] Univ Cent Florida, Orlando, FL 32816 USA. [Malocha, Donald C.] Univ Cent Florida, Elect Engn & Comp Sci Dept, Orlando, FL 32816 USA. [Atkinson, Gary M.] Virginia Commonwealth Univ, Sch Engn, Richmond, VA 23284 USA. RP Wilson, WC (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM william.c.wilson@nasa.gov; matthew.rogge@nasa.gov; brian.fisher@knights.ucf.edu; donald.malocha@ucf.edu; gmatkins@vcu.edu FU NASA's Integrated Vehicle Heath Management Project, Aviation Safety Program under the Aeronautics Research Mission Directorate; NASA Small Business Technology Transfer Phase I [NNK04OA28C] FX This work was funded through NASA's Integrated Vehicle Heath Management Project which is part of the Aviation Safety Program under the Aeronautics Research Mission Directorate. Partial foundering was provided by the NASA Graduate Student Research Program Fellowships, the University of Central Florida - Florida Solar Energy Center, and a NASA Small Business Technology Transfer Phase I under Contract NNK04OA28C. This is an expanded paper from the IEEE SENSORS 2010 Conference. NR 18 TC 12 Z9 12 U1 0 U2 26 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD JUN PY 2012 VL 12 IS 6 BP 1993 EP 2000 DI 10.1109/JSEN.2011.2181160 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA V45IQ UT WOS:000209810700029 ER PT J AU Liebe, CC Bauman, BW Clark, GR Cook, R Kecman, B Madsen, KK Mao, P Meras, P Miyasaka, H Cooper, M Scholz, C Sedaka, J AF Liebe, Carl Christian Bauman, Bruce W. Clark, Gerald R. Cook, Rick Kecman, Branislav Madsen, Kristin Kruse Mao, Peter Meras, Patrick, Jr. Miyasaka, Hiromasa Cooper, Mark Scholz, Christopher Sedaka, Jack TI Design, Qualification, Calibration and Alignment of Position Sensing Detector for the NuSTAR Space Mission SO IEEE SENSORS JOURNAL LA English DT Article DE Metrology system; NuSTAR; position sensing detector; space qualification AB A commercial position sensing detector (PSD) has been used to measure mast deflections on a space based X-ray telescope (NuSTAR). This paper describes the space qualification process for utilizing a commercial PSD sensor in space. This discussion includes packaging, environmental testing, selection of flight candidate devices, calibration and alignment. C1 [Liebe, Carl Christian; Clark, Gerald R.; Meras, Patrick, Jr.; Cooper, Mark; Sedaka, Jack] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Cook, Rick; Kecman, Branislav; Madsen, Kristin Kruse; Mao, Peter; Miyasaka, Hiromasa] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Bauman, Bruce W.] Pacific Silicon Sensor Inc, Westlake Village, CA 91362 USA. [Scholz, Christopher] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Liebe, CC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM carl.c.liebe@jpl.nasa.gov; bbauman@pacific-sensor.com; gerald.j.clark@jpl.nasa.gov; wrc@srl.caltech.edu; kecman@srl.caltech.edu; kristin@srl.caltech.edu; peterm@srl.caltech.edu; patrick.meras@jpl.nasa.gov; miyasaka@srl.caltech.edu; mark.cooper@jpl.nasa.gov; cscholz@ssl.berkeley.edu; jack.j.sedaka@jpl.nasa.gov OI Madsen, Kristin/0000-0003-1252-4891 FU Jet Propulsion Laboratory, California Institute of Technology; Space Radiation Laboratory, California Institute of Technology; Space Sciences Laboratory, U.C. Berkeley; Pacific Silicon Sensor Inc.; National Aeronautics and Space Administration FX This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, Space Radiation Laboratory, California Institute of Technology, Space Sciences Laboratory, U.C. Berkeley, and Pacific Silicon Sensor, Inc., and was sponsored by the National Aeronautics and Space Administration. NR 12 TC 1 Z9 1 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD JUN PY 2012 VL 12 IS 6 BP 2006 EP 2013 DI 10.1109/JSEN.2011.2181355 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA V45IQ UT WOS:000209810700031 ER PT J AU Carpenter, JR Markley, FL Gold, D AF Carpenter, J. Russell Markley, F. Landis Gold, Dara TI Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article AB When facing a conjunction between space objects, decision makers must choose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem. solution, one based on a frequentist method, and the other on a Bayesian method. The frequenfist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that the frequentist method is inferior to the Bayesian method. C1 [Carpenter, J. Russell] NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Greenbelt, MD 20771 USA. [Markley, F. Landis] NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. [Gold, Dara] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA. RP Carpenter, JR (reprint author), NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Code 595, Greenbelt, MD 20771 USA. NR 9 TC 3 Z9 3 U1 0 U2 1 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUN PY 2012 VL 59 IS 1-2 BP 273 EP 286 PG 14 WC Engineering, Aerospace SC Engineering GA V35BF UT WOS:000209125300017 ER PT J AU Gaebler, J Hur-Diaz, S Carpenter, R AF Gaebler, John Hur-Diaz, Sun Carpenter, Russell TI Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article AB Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference Sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail. C1 [Gaebler, John; Carpenter, Russell] NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Greenbelt, MD 20771 USA. [Hur-Diaz, Sun] Emergent Space Technol Inc, Greenbelt, MD 20770 USA. RP Gaebler, J (reprint author), NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Greenbelt, MD 20771 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUN PY 2012 VL 59 IS 1-2 BP 307 EP 313 PG 7 WC Engineering, Aerospace SC Engineering GA V35BF UT WOS:000209125300019 ER PT J AU McCraney, WT Saski, CA Guyon, JR AF McCraney, W. Tyler Saski, Christopher A. Guyon, Jeffrey R. TI Isolation and characterization of 12 microsatellites for the commercially important sablefish, Anoplopoma fimbria SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Alaska; Anoplopoma fimbria; Erilepis zonifer; Microsatellites; Sablefish; Skilfish AB Sablefish, Anoplopoma fimbria, are long-lived, highly migratory, bathydemersal, commercially important fishes that inhabit continental slope waters of the North Pacific Ocean. Here we describe 12 microsatellite loci developed for sablefish, and cross-species amplification in skilfish, Erilepis zonifer. Microsatellites were developed from one sablefish and characterized using 55 juveniles collected in the eastern Gulf of Alaska. The number of alleles ranged from 3 to 27 per locus, and observed heterozygosity ranged from 0.074 to 0.964. There was no significant evidence for linkage disequilibrium or departure from Hardy-Weinberg Equilibrium. Ten of the 12 microsatellite loci were successfully amplified in skilfish. These new microsatellites were developed for use in sablefish fishery management and conservation applications including selecting broodstock for aquaculture operations and defining population boundaries for stock assessments. C1 [McCraney, W. Tyler; Guyon, Jeffrey R.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Saski, Christopher A.] Clemson Univ, Genom Inst, Clemson, SC 29634 USA. RP McCraney, WT (reprint author), NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. EM Tyler.McCraney@noaa.gov FU NOAA's Aquaculture and Marine Ecology and Stock Assessment (MESA) FX Funding was provided by NOAA's Aquaculture and Marine Ecology and Stock Assessment (MESA) programs. We thank Hanhvan Nguyen for assisting with DNA extractions and crews of the R/V Medeia and F/V Ocean Prowler for samples. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. NR 12 TC 2 Z9 2 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD JUN PY 2012 VL 4 IS 2 BP 415 EP 417 DI 10.1007/s12686-011-9563-8 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 935QZ UT WOS:000303536400050 ER PT J AU Lavretsky, P Truong, TM McGowin, AE Balazs, GH Peters, JL AF Lavretsky, Philip Truong, Triet M. McGowin, Audrey E. Balazs, George H. Peters, Jeffrey L. TI New primers reveal the presence of a duplicate histone H3 in the marine turtle leech Ozobranchus branchiatus SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Ozobranchus branchiatus; Fibropapillomatosis; Histone H3; Primers; Gene duplication; Chelonia mydas ID PHYLOGENY; VARIANTS; MOLLUSCA; VECTOR; GENES AB Marine leeches, specific to sea turtles, have been implicated as potential vector organisms in the spread of fibropapillomatosis (FP), a pandemic neoplastic disease with Chelonia mydas having the highest affliction rate. Polymerase chain reaction identified two independent, seemingly functional histone H3 loci for marine turtle leeches Ozobranchus branchiatus collected from C. mydas in Florida and Hawaii. Primers were developed to amplify each product separately. Among the two loci, sequence differentiation (I broken vertical bar (ST) ) ranged from 0.161 to 0.182 with identical amino acid translations among the 22 samples. A maximum parsimony tree of GenBank histone H3 sequences from annelids indicated the gene duplication occurred within the Ozobranchidae family. Geographically separated populations yielded I broken vertical bar (ST) values of 0.004-0.005 but were phylogenetically distinctive. These novel markers will be useful in identifying ectoparasites in FP research, evaluating other histone variants, and chromatin dynamics regulation studies. C1 [Lavretsky, Philip; Peters, Jeffrey L.] Wright State Univ, Dept Biol Sci, Dayton, OH 45435 USA. [Truong, Triet M.; McGowin, Audrey E.] Wright State Univ, Dept Chem, Dayton, OH 45435 USA. [Balazs, George H.] NOAA, Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Honolulu Lab, Honolulu, HI 96822 USA. RP McGowin, AE (reprint author), Wright State Univ, Dept Chem, Dayton, OH 45435 USA. EM audrey.mcgowin@wright.edu RI Peters, Jeffrey/I-5116-2012 NR 19 TC 0 Z9 0 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD JUN PY 2012 VL 4 IS 2 BP 487 EP 490 DI 10.1007/s12686-011-9581-6 PG 4 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 935QZ UT WOS:000303536400067 ER PT J AU Shimoda, Y Seta, H Tashiro, MS Terada, Y Ishisaki, Y Tsujimoto, M Mitsuda, K Yasuda, T Takeda, S Hiyama, Y Masukawa, K Matsuda, K Boyce, K AF Shimoda, Y. Seta, H. Tashiro, M. S. Terada, Y. Ishisaki, Y. Tsujimoto, M. Mitsuda, K. Yasuda, T. Takeda, S. Hiyama, Y. Masukawa, K. Matsuda, K. Boyce, K. R. TI Development of a Digital Signal Processing System for the X-Ray Microcalorimeter Onboard ASTRO-H (II) SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Signal processing electronics; ASTRO-H; Microcalorimeter AB The Pulse Shape Processor is a digital signal processing electronics for the microcalorimeter instrument onboard ASTRO-H. Receiving digitized waveform (14 bit, 12.5 kHz sample) from 2x18 channels, two identical units of PSP-A and -B trigger X-ray events, assign five kinds of event grade, and perform optimal filtering to measure energy deposit on the 6x6 microcalorimeter pixels. One unit of PSP is composed of one FPGA board and two CPU boards. This paper describes the event processing algorithm to fulfill requirements for the signal processing, and task sharing between FPGA and CPU. C1 [Shimoda, Y.; Seta, H.; Tashiro, M. S.; Terada, Y.; Yasuda, T.; Takeda, S.] Saitama Univ, Sakura, Saitama 3388570, Japan. [Ishisaki, Y.; Hiyama, Y.] Tokyo Metropolitan Univ, Hachioji, Tokyo 1920397, Japan. [Tsujimoto, M.; Mitsuda, K.] ISAS JAXA, Chuo Ku, Sagamihara, Kanagawa 2298510, Japan. [Masukawa, K.; Matsuda, K.] Mitsubishi Heavy Ind Ltd MHI, Nagoya Guidance & Prop Syst Works, Komaki, Aichi, Japan. [Boyce, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shimoda, Y (reprint author), Saitama Univ, 255 Shimo Okubo, Sakura, Saitama 3388570, Japan. EM shimoda@crystal.heal.phy.saitama-u.ac.jp RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; Mitsuda, Kazuhisa/C-2649-2008 OI Terada, Yukikatsu/0000-0002-2359-1857; NR 5 TC 7 Z9 7 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 575 EP 581 DI 10.1007/s10909-012-0483-0 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600003 ER PT J AU Perinati, E Kilbourne, CA Colasanti, L Lotti, S Macculi, C Piro, L Mineo, T Mitsuda, K Bonardi, A Santangelo, A AF Perinati, E. Kilbourne, C. A. Colasanti, L. Lotti, S. Macculi, C. Piro, L. Mineo, T. Mitsuda, K. Bonardi, A. Santangelo, A. TI Monte-Carlo Simulations of the Suzaku-XRS Residual Background Spectrum SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE X-ray spectroscopy; Background; Monte-Carlo simulations ID RAYS AB Cryogenic micro-calorimeters are suitable to detect small amounts of energy deposited by electromagnetic and nuclear interactions, which makes them attractive in a variety of applications on ground and in space. The only X-ray micro-calorimeter that operated in orbit to date is the X-Ray Spectrometer on-board of the Japanese Suzaku satellite. We discuss the analysis of the components of its residual background spectrum with the support of Monte-Carlo simulations. C1 [Perinati, E.; Bonardi, A.; Santangelo, A.] Univ Tubingen, IAAT Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Perinati, E.; Mineo, T.] INAF Ist Astrofis Spaziale & Fis Cosm Palermo, I-90146 Palermo, Italy. [Kilbourne, C. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Colasanti, L.; Lotti, S.; Macculi, C.; Piro, L.] INAF Ist Astrofis Spaziale & Fis Cosm Roma, I-00133 Rome, Italy. [Piro, L.] King Abdulaziz Univ, Fac Sci, Dept Astron, Jeddah 21589, Saudi Arabia. [Mitsuda, K.] JAXA Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298150, Japan. RP Perinati, E (reprint author), Univ Tubingen, IAAT Inst Astron & Astrophys, D-72076 Tubingen, Germany. EM emanuele.perinati@uni-tuebingen.de RI PIRO, LUIGI/E-4954-2013; Mitsuda, Kazuhisa/C-2649-2008; XRAY, SUZAKU/A-1808-2009; Faculty of, Sciences, KAU/E-7305-2017; OI PIRO, LUIGI/0000-0003-4159-3984; Mineo, Teresa/0000-0002-4931-8445; Macculi, Claudio/0000-0002-7887-1485 FU ASI [I/035/10/0] FX We acknowledge ASI under contract I/035/10/0. NR 6 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 721 EP 725 DI 10.1007/s10909-012-0608-5 PN 2 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600025 ER PT J AU Eckart, ME Adams, JS Bailey, CN Bandler, SR Busch, SE Chervenak, JA Finkbeiner, FM Kelley, RL Kilbourne, CA Porter, FS Porst, JP Sadleir, JE Smith, SJ AF Eckart, M. E. Adams, J. S. Bailey, C. N. Bandler, S. R. Busch, S. E. Chervenak, J. A. Finkbeiner, F. M. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Porst, J. -P. Sadleir, J. E. Smith, S. J. TI Kilopixel X-ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Transition-edge sensors; Superconducting x-ray detectors; Astronomical x-ray instrumentation; Device characterization ID LINES; SPECTROMETER AB We are developing kilopixel arrays of TES microcalorimeters to enable high-resolution x-ray imaging spectrometers for future x-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40x40-pixel core array of 300 mu m devices with 2.5 eV energy resolution (at 6 keV). Here we present device characterization of our 32x32 arrays, including x-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (I (c) ) and transition shape to oscillate with applied magnetic field (B). We show I (c) (B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated copper backside heatsinking layer, which provides copper coverage on the four sidewalls of the silicon wells beneath each pixel. C1 [Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, S. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Porst, J. -P.; Smith, S. J.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Eckart, M. E.; Adams, J. S.; Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Eckart, M. E.; Adams, J. S.; Smith, S. J.] CRESST, Camp Springs, MD 21250 USA. [Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA. [Bandler, S. R.] CRESST, College Pk, MD 20742 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. [Porst, J. -P.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Eckart, ME (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. EM Megan.E.Eckart@nasa.gov RI Smith, Stephen/B-1256-2008; Porst, Jan-Patrick/D-2191-2012; Bandler, Simon/A-6258-2010; Kelley, Richard/K-4474-2012; Porter, Frederick/D-3501-2012; Bailey, Catherine/C-6107-2009 OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106; Porter, Frederick/0000-0002-6374-1119; FU NASA FX We thank K. D. Irwin and the Quantum Sensors Group (NIST, Boulder) for providing the SQUIDs used in this work. This research was supported in part by appointments to the NASA Postdoctoral Program (CNB, SEB), administered by ORAU. NR 15 TC 11 Z9 11 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 732 EP 740 DI 10.1007/s10909-012-0514-x PN 2 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600027 ER PT J AU Mitsuda, K Kelley, RL Boyce, KR Brown, GV Costantini, E DiPirro, MJ Ezoe, Y Fujimoto, R Gendreau, KC den Herder, JW Hoshino, A Ishisaki, Y Kilbourne, CA Kitamoto, S McCammon, D Murakami, M Murakami, H Ogawa, M Ohashi, T Okamoto, A Paltani, S Pohl, M Porter, FS Sato, Y Shinozaki, K Shirron, PJ Sneiderman, GA Sugita, H Szymkowiak, A Takei, Y Tamagawa, T Tashiro, M Terada, Y Tsujimoto, M de Vries, C Yamasaki, NY AF Mitsuda, Kazuhisa Kelley, Richard L. Boyce, Kevin R. Brown, Gregory V. Costantini, Elisa DiPirro, Michael J. Ezoe, Yuichiro Fujimoto, Ryuichi Gendreau, Keith C. den Herder, Jan-Willem Hoshino, Akio Ishisaki, Yoshitaka Kilbourne, Caroline A. Kitamoto, Shunji McCammon, Dan Murakami, Masahide Murakami, Hiroshi Ogawa, Mina Ohashi, Takaya Okamoto, Atsushi Paltani, Stephane Pohl, Martin Porter, F. Scott Sato, Yoichi Shinozaki, Keisuke Shirron, Peter J. Sneiderman, Gary A. Sugita, Hiroyuki Szymkowiak, Andrew Takei, Yoh Tamagawa, Toru Tashiro, Makoto Terada, Yukikatsu Tsujimoto, Masahiro de Vries, Cor Yamasaki, Noriko Y. TI The High-Resolution X-Ray Microcalorimeter Spectrometer, SXS, on Astro-H SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE X-ray astronomy; X-ray microcalorimeters; Space cryogenics ID SUZAKU AB The science and an overview of the Soft X-ray Spectrometer onboard the STRO-H mission are presented. The SXS consists of X-ray focusing mirrors and a microcalorimeter array and is developed by international collaboration lead by JAXA and NASA with European participation. The detector is a 6x6 format microcalorimeter array operated at a cryogenic temperature of 50 mK and covers a 3'x3' field of view of the X-ray telescope of 5.6 m focal length. We expect an energy resolution better than 7 eV (FWHM, requirement) with a goal of 4 eV. The effective area of the instrument will be 225 cm(2) at 7 keV; by a factor of about two larger than that of the X-ray microcalorimeter on board Suzaku. One of the main scientific objectives of the SXS is to investigate turbulent and/or macroscopic motions of hot gas in clusters of galaxies. C1 [Mitsuda, Kazuhisa; Ogawa, Mina; Takei, Yoh; Tsujimoto, Masahiro; Yamasaki, Noriko Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Okamoto, Atsushi; Sato, Yoichi; Shinozaki, Keisuke; Sugita, Hiroyuki] JAXA, Aerosp Res & Dev Directorate, Tsukuba, Ibaraki, Japan. [Ezoe, Yuichiro; Ishisaki, Yoshitaka; Ohashi, Takaya] Tokyo Metropolitan Univ, Hachioji, Tokyo, Japan. [Fujimoto, Ryuichi; Hoshino, Akio] Kanazwa Univ, Kanazawa, Ishikawa, Japan. [Murakami, Masahide] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Tashiro, Makoto; Terada, Yukikatsu] Saitama Univ, Saitama 3388570, Japan. [Kitamoto, Shunji; Murakami, Hiroshi] Rikkyo Univ, Tokyo 171, Japan. [Tamagawa, Toru] RIKEN, Wako, Saitama, Japan. [Kelley, Richard L.; Boyce, Kevin R.; DiPirro, Michael J.; Gendreau, Keith C.; Kilbourne, Caroline A.; Porter, F. Scott; Shirron, Peter J.; Sneiderman, Gary A.] NASA GSFC, Greenbelt, MD USA. [McCammon, Dan] Univ Wisconsin, Madison, WI USA. [Szymkowiak, Andrew] Yale Univ, New Haven, CT USA. [Brown, Gregory V.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor] SRON Netherlands Inst Space Res, Utrecht, Netherlands. [Paltani, Stephane; Pohl, Martin] Univ Geneva, Geneva, Switzerland. RP Mitsuda, K (reprint author), JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. EM mitsuda@astro.isas.jaxa.jp RI Yamasaki, Noriko/C-2252-2008; Tashiro, Makoto/J-4562-2012; Kelley, Richard/K-4474-2012; Terada, Yukikatsu/A-5879-2013; Mitsuda, Kazuhisa/C-2649-2008; Porter, Frederick/D-3501-2012 OI Terada, Yukikatsu/0000-0002-2359-1857; Porter, Frederick/0000-0002-6374-1119 NR 7 TC 15 Z9 16 U1 1 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 795 EP 802 DI 10.1007/s10909-012-0482-1 PN 2 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600036 ER PT J AU Staniszewski, Z Aikin, RW Amiri, M Benton, SJ Bischoff, C Bock, JJ Bonetti, JA Brevik, JA Burger, B Dowell, CD Duband, L Filippini, JP Golwala, SR Halpern, M Hasselfield, M Hilton, G Hristov, VV Irwin, K Kovac, JM Kuo, CL Lueker, M Montroy, T Nguyen, HT Ogburn, RW O'Brient, R Orlando, A Pryke, C Reintsema, C Ruhl, JE Schwarz, R Sheehy, C Stokes, S Thompson, KL Teply, G Tolan, JE Turner, AD Vieregg, AG Wilson, P Wiebe, D Wong, CL AF Staniszewski, Z. Aikin, R. W. Amiri, M. Benton, S. J. Bischoff, C. Bock, J. J. Bonetti, J. A. Brevik, J. A. Burger, B. Dowell, C. D. Duband, L. Filippini, J. P. Golwala, S. R. Halpern, M. Hasselfield, M. Hilton, G. Hristov, V. V. Irwin, K. Kovac, J. M. Kuo, C. L. Lueker, M. Montroy, T. Nguyen, H. T. Ogburn, R. W. O'Brient, R. Orlando, A. Pryke, C. Reintsema, C. Ruhl, J. E. Schwarz, R. Sheehy, C. Stokes, S. Thompson, K. L. Teply, G. Tolan, J. E. Turner, A. D. Vieregg, A. G. Wilson, P. Wiebe, D. Wong, C. L. TI The Keck Array: A Multi Camera CMB Polarimeter at the South Pole SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Transition edge sensor (TES) arrays; Cosmology; Cosmic microwave background; Inflation AB The Keck array is a new multi-camera Cosmic Microwave Background (CMB) polarimeter. Each camera contains 256 polarization pairs of antenna-coupled transition edge sensor (TES) bolometers. We recently deployed three of five cameras at the geographic South Pole, and plan to deploy the final two cameras in early 2012. This new telescope is an ideal instrument to search for the primordial B-mode polarization signal imprinted in the CMB by inflationary gravitational waves. We will discuss the design of the detectors and receivers, the status of current observations, and report on progress toward upgrading the instrument with the full compliment of polarized receivers. C1 [Staniszewski, Z.; Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Dowell, C. D.; Filippini, J. P.; Golwala, S. R.; Hristov, V. V.; Lueker, M.; Nguyen, H. T.; O'Brient, R.; Orlando, A.; Teply, G.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Staniszewski, Z.; Bock, J. J.; Bonetti, J. A.; Dowell, C. D.; Nguyen, H. T.; Turner, A. D.; Wilson, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kuo, C. L.; Ogburn, R. W.; Stokes, S.; Thompson, K. L.; Tolan, J. E.] KIPAC, Menlo Pk, CA 94025 USA. [Amiri, M.; Halpern, M.; Hasselfield, M.; Wiebe, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Benton, S. J.; Burger, B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Kuo, C. L.; Ogburn, R. W.; Stokes, S.; Thompson, K. L.; Tolan, J. E.] Stanford Univ, Stanford, CA 94305 USA. [Duband, L.] CEA Grenoble, Serv Basses Temp, F-38054 Grenoble, France. [Hilton, G.; Irwin, K.; Reintsema, C.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Bischoff, C.; Kovac, J. M.; Schwarz, R.; Vieregg, A. G.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sheehy, C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Pryke, C.; Sheehy, C.] Univ Minnesota, Minneapolis, MN 55455 USA. [Montroy, T.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. RP Staniszewski, Z (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM zks@caltech.edu RI Vieregg, Abigail/D-2287-2012; OI Orlando, Angiola/0000-0001-8004-5054; Bischoff, Colin/0000-0001-9185-6514 FU NASA FX The following individuals acknowledge additional support: Z. Staniszewski from the NASA Postdoctoral Program. NR 7 TC 17 Z9 17 U1 1 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 827 EP 833 DI 10.1007/s10909-012-0510-1 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600041 ER PT J AU Hubmayr, J Appel, JW Austermann, JE Beall, JA Becker, D Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crites, AT Essinger-Hileman, T Fox, A George, EM Halverson, NW Harrington, NL Henning, JW Hilton, GC Holzapfel, WL Irwin, KD Lee, AT Li, D McMahon, J Mehl, J Natoli, T Niemack, MD Newburgh, LB Nibarger, JP Parker, LP Schmitt, BL Staggs, ST Van Lanen, J Wollack, EJ Yoon, KW AF Hubmayr, J. Appel, J. W. Austermann, J. E. Beall, J. A. Becker, D. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. M. Crites, A. T. Essinger-Hileman, T. Fox, A. George, E. M. Halverson, N. W. Harrington, N. L. Henning, J. W. Hilton, G. C. Holzapfel, W. L. Irwin, K. D. Lee, A. T. Li, D. McMahon, J. Mehl, J. Natoli, T. Niemack, M. D. Newburgh, L. B. Nibarger, J. P. Parker, L. P. Schmitt, B. L. Staggs, S. T. Van Lanen, J. Wollack, E. J. Yoon, K. W. TI An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Cosmic microwave background; Polarimeter; Transition edge sensor ID TES POLARIMETERS; CMB POLARIMETRY AB Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response <-23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments. C1 [Hubmayr, J.; Beall, J. A.; Becker, D.; Cho, H. M.; Fox, A.; Hilton, G. C.; Irwin, K. D.; Li, D.; Niemack, M. D.; Nibarger, J. P.; Van Lanen, J.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Appel, J. W.; Essinger-Hileman, T.; Newburgh, L. B.; Parker, L. P.; Staggs, S. T.] Princeton Univ, Princeton, NJ 08544 USA. [Austermann, J. E.; Halverson, N. W.; Henning, J. W.] Univ Colorado, Boulder, CO 80309 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Mehl, J.; Natoli, T.] Univ Chicago, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [George, E. M.; Harrington, N. L.; Holzapfel, W. L.; Lee, A. T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [McMahon, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Schmitt, B. L.] Univ Penn, Philadelphia, PA 19104 USA. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Goddard, MD USA. [Yoon, K. W.] Stanford Univ, Palo Alto, CA 94304 USA. RP Hubmayr, J (reprint author), Natl Inst Stand & Technol, Boulder, CO 80305 USA. EM hubmayr@nist.gov; beckerd@boulder.nist.gov; bleeml@uchicago.edu; anna.fox@nist.gov; genehilton@gmail.com; irwin@nist.gov; jeffmcm@umich.edu; niemack@nist.gov; newburgh@princeton.edu; john.nibarger@nist.gov; bschm@physics.upenn.edu; staggs@princeton.edu; kiwon@stanford.edu RI Holzapfel, William/I-4836-2015; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU NIST; NSF [ANT-0638937, PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF GRFP; NASA NSTRF FX Work at NIST is supported by the NIST Innovations in Measurement Science program. The University of Chicago is supported by grants from the NSF (awards ANT-0638937 and PHY-0114422), the Kavli Foundation, and the Gordon and Betty Moore Foundation. B.L. Schmidt acknowledges support from NSF GRFP and NASA NSTRF fellowships. NR 13 TC 6 Z9 6 U1 0 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 904 EP 910 DI 10.1007/s10909-011-0420-7 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600053 ER PT J AU Chuss, DT Bennett, CL Costen, N Crowe, E Denis, K Eimer, JR Lourie, N Marriage, TA Moseley, SH Rostem, K Stevenson, TR Towner, D U-Yen, K Voellmer, G Wollack, EJ Zeng, L AF Chuss, D. T. Bennett, C. L. Costen, N. Crowe, E. Denis, K. Eimer, J. R. Lourie, N. Marriage, T. A. Moseley, S. H. Rostem, K. Stevenson, T. R. Towner, D. U-Yen, K. Voellmer, G. Wollack, E. J. Zeng, L. TI Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetry SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Transition-edge sensors; Cosmic microwave background; Polarimetry AB Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feedhorn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS). C1 [Chuss, D. T.; Costen, N.; Crowe, E.; Denis, K.; Lourie, N.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.; Towner, D.; U-Yen, K.; Voellmer, G.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bennett, C. L.; Eimer, J. R.; Marriage, T. A.; Zeng, L.] Johns Hopkins Univ, Baltimore, MD USA. RP Chuss, DT (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM David.T.Chuss@nasa.gov; kevin.l.denis@nasa.gov; harvey.moseley@nasa.gov; karwan.rostem@nasa.gov; thomas.r.stevenson@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 12 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 923 EP 928 DI 10.1007/s10909-011-0433-2 PN 2 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600056 ER PT J AU Ferri, E Arnaboldi, C Ceruti, G Faverzani, M Gatti, F Giachero, A Gotti, C Kilbourne, C Kraft-Bermuth, S Nucciotti, A Pessina, G Schaeffer, D Sisti, M AF Ferri, E. Arnaboldi, C. Ceruti, G. Faverzani, M. Gatti, F. Giachero, A. Gotti, C. Kilbourne, C. Kraft-Bermuth, S. Nucciotti, A. Pessina, G. Schaeffer, D. Sisti, M. TI MARE-1 in Milan: Status and Perspectives SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Neutrino mass; Cryogenics detector ID NEUTRINO MASS EXPERIMENT; SPECTRUM; SEARCH AB The international project MARE (Microcalorimeter Array for a Rhenium Experiment) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-eV sensitivity. Although the baseline of the MARE project consists in a large array of rhenium based thermal detectors, a different option for the isotope is also being considered. The different option is Ho-163. The potential of using Re-187 for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of Ho-163 has been so far measured with the precision required to set a useful limit on the neutrino mass. The first phase of the project (MARE-1) is a collection of activities with the aim of sorting out both the best isotope and the most suited detector technology to be used for the final experiment. One of the MARE-1 activities is carried out in Milan by the group of Milano-Bicocca in collaboration with NASA/GSFC and Wisconsin groups. The Milan MARE-1 arrays are based on semiconductor thermistors, provided by the NASA/GSFC group, with dielectric silver perrhenate absorbers, AgReO4. The experiment, which is presently being assembled, is designed to host up to 8 arrays. With 288 detectors, a sensitivity of 3 eV at 90% CL on the neutrino mass can be reached within 3 years. This contribution gives an outlook for the MARE activities for the active isotope selection. In this contribution the status and the perspectives of the MARE-1 in Milan are also reported. C1 [Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Giachero, A.; Gotti, C.; Nucciotti, A.; Pessina, G.; Sisti, M.] Univ Milano Bicocca, Milan, Italy. [Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Giachero, A.; Gotti, C.; Nucciotti, A.; Pessina, G.; Sisti, M.] INFN Milano Bicocca, Milan, Italy. [Schaeffer, D.] ABB AB, Corp Res, Vsteras, Sweden. [Kraft-Bermuth, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Kilbourne, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gatti, F.] Univ Genoa, Genoa, Italy. [Gatti, F.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. RP Ferri, E (reprint author), Univ Milano Bicocca, Milan, Italy. EM elena.ferri@mib.infn.it; marco.faverzani@gmail.com; gatti@ge.infn.it; claudio.gotti@mib.infn.it; caroline.a.kilbourne@nasa.gov; saskia.kraft-bermuth@iamp.physik.uni-giessen.de; angelo.nucciotti@mib.infn.it; pessina@mib.infn.it RI Kraft-Bermuth, Saskia/G-4007-2012; Nucciotti, Angelo/I-8888-2012; Giachero, Andrea/I-1081-2013; Gatti, Flavio/K-4568-2013; Ferri, Elena/L-8531-2014; Sisti, Monica/B-7550-2013; Faverzani, Marco/K-3865-2016; OI Kraft-Bermuth, Saskia/0000-0002-0864-7912; Nucciotti, Angelo/0000-0002-8458-1556; Giachero, Andrea/0000-0003-0493-695X; Gotti, Claudio/0000-0003-2501-9608; Ferri, Elena/0000-0003-1425-3669; Sisti, Monica/0000-0003-2517-1909; Faverzani, Marco/0000-0001-8119-2953; Pessina, Gianluigi Ezio/0000-0003-3700-9757 NR 16 TC 5 Z9 5 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 1035 EP 1040 DI 10.1007/s10909-011-0421-6 PN 2 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600072 ER PT J AU Faverzani, M Day, P Nucciotti, A Ferri, E AF Faverzani, M. Day, P. Nucciotti, A. Ferri, E. TI Developments of Microresonators Detectors for Neutrino Physics in Milan SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE MKID AB Superconducting microwave microresonators are low temperature detectors which are compatible with large-scale multiplexed frequency domain readout. We aim to adapt and further advance the technology of microresonator detectors to develop new devices applied to the problem of measuring the neutrino mass. More specifically, we aim to develop detector arrays for calorimetric measurement of the energy spectra of Ho-163 EC decay (Q similar to 2-3 keV) for a direct measurement of the neutrino mass. In order to achieve these goal, we need to find the best design and materials for the detectors. A recent advance in microwave microresonator technology was the discovery that some metal nitrides, such as TiN, possess properties consistent with very high detector sensitivity. We plan to investigate nitrides of higher-Z materials, for example TaN and HfN, that are appropriate for containing the energy of keV decay events, exploring the properties relevant to our detectors, such as quality factor, penetration depth and recombination time. C1 [Faverzani, M.; Nucciotti, A.; Ferri, E.] Univ Milano Bicocca, Milan, Italy. [Faverzani, M.; Nucciotti, A.; Ferri, E.] INFN Milano Bicocca, Milan, Italy. [Day, P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Faverzani, M (reprint author), Univ Milano Bicocca, Milan, Italy. EM marco.faverzani@mib.infn.it; peter.k.day@jpl.nasa.gov; angelo.nucciotti@mib.infn.it; elena.ferri@mib.infn.it RI Nucciotti, Angelo/I-8888-2012; Ferri, Elena/L-8531-2014; Faverzani, Marco/K-3865-2016 OI Nucciotti, Angelo/0000-0002-8458-1556; Ferri, Elena/0000-0003-1425-3669; Faverzani, Marco/0000-0001-8119-2953 FU Fondazione Cariplo FX This work is supported by Fondazione Cariplo through the project "Development of Microresonator Detectors for Neutrino Physics". NR 5 TC 6 Z9 6 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD JUN PY 2012 VL 167 IS 5-6 BP 1041 EP 1047 DI 10.1007/s10909-012-0538-2 PN 2 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 934QY UT WOS:000303461600073 ER PT J AU Czaja, AD Johnson, CM Roden, EE Beard, BL Voegelin, AR Nagler, TF Beukes, NJ Wille, M AF Czaja, Andrew D. Johnson, Clark M. Roden, Eric E. Beard, Brian L. Voegelin, Andrea R. Naegler, Thomas F. Beukes, Nicolas J. Wille, Martin TI Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ARCHEAN MOLECULAR FOSSILS; GREAT OXIDATION EVENT; BILLION YEARS AGO; TRANSVAAL SUPERGROUP; SOUTH-AFRICA; FE ISOTOPE; ATMOSPHERIC OXYGEN; CARBONATE PLATFORM; MARINE-SEDIMENTS; KAAPVAAL CRATON AB Most geochemical proxies and models of atmospheric evolution suggest that the amount of free O-2 in Earth's atmosphere stayed below 10(-5) present atmospheric level (PAL) until the Great Oxidation Event (GOE) that occurred between similar to 2.2 and 2.4 Ga, at which time free O-2 in the atmosphere increased to approximately 10(-1) to 10(-2) PAL. Although photosynthetically produced "O-2 oases" have been proposed for the photic zone of the oceans prior to the GOE, it has been difficult to constrain absolute O-2 concentrations and fluxes in such paleoenvironments. Here we constrain free O-2 levels in the photic zone of a Late Archean marine basin by the combined use of Fe and Mo isotope systematics of Ca-Mg carbonates and shales from the 2.68 to 2.50 Ga Campbellrand-Malmani carbonate platform of the Kaapvaal Craton in South Africa. Correlated Fe and Mo isotope compositions require a key role for Fe oxide precipitation via oxidation of aqueous Fe(II) by photosynthetically-derived O-2, followed by sorption of aqueous Mo to the newly formed Fe oxides. A dispersion/reaction model illustrates the effects of Fe oxide production and Mo sorption to Fe oxides, and suggests that a few to a few tens of mu M free O-2 was available in the photic zone of the Late Archean marine basin, consistent with some previous estimates. The coupling of Fe and Mo isotope systematics provides a unique view into the processes that occurred in the ancient shallow ocean after production of free O-2 began, but prior to oxygenation of the deep ocean, or significant accumulation of free O-2 in the atmosphere. These results require oxygenic photosynthesis to have evolved by at least 2.7 Ga and suggest that the Neoarchean ocean may have had a different oxygenation history than that of the atmosphere. The data also suggest that the extensive iron formation deposition that occurred during this time was unlikely to have been produced by anoxygenic photosynthetic Fe(II) oxidation. Finally, these data indicate that the ocean had significant amounts of O-2 at least 150 Myr prior to previously proposed "whiffs" of O-2 at the Archean to Proterozoic transition. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Czaja, Andrew D.; Johnson, Clark M.; Roden, Eric E.; Beard, Brian L.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Czaja, Andrew D.; Johnson, Clark M.; Roden, Eric E.; Beard, Brian L.] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Voegelin, Andrea R.; Naegler, Thomas F.] Univ Bern, Inst Geol, CH-3012 Bern, Switzerland. [Beukes, Nicolas J.] Univ Johannesburg, Dept Geol, Paleoproterozo Mineralizat Res Grp, Auckland Pk, South Africa. [Wille, Martin] Univ Tubingen, Dept Geosci, D-72076 Tubingen, Germany. RP Czaja, AD (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM aczaja@geology.wisc.edu RI Wille, Martin/A-1973-2009; Nagler, Thomas/I-8136-2015; OI Nagler, Thomas/0000-0002-6919-0151; Wille, Martin/0000-0003-1083-4730 FU NASA Astrobiology Institute; Swiss National Science Foundation [20021-126759] FX Iron isotope analyses in Madison, WI were funded by the NASA Astrobiology Institute. Molybdenum isotope work in Bern was funded by Swiss National Science Foundation Grant 20021-126759 to T.F.N. We thank H. Xu, H. Konishi, and J. Huberty for assistance with XRD analyses. We also thank D. Vance and C. Pearce, as well as two anonymous reviewers for comments on the manuscript. The manuscript also benefitted from discussions with P. Pufahl. NR 115 TC 46 Z9 51 U1 2 U2 81 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 1 PY 2012 VL 86 BP 118 EP 137 DI 10.1016/j.gca.2012.03.007 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 937RZ UT WOS:000303677400008 ER PT J AU Kis, KI Taylor, PT Wittmann, G Toronyi, B Puszta, S AF Kis, K. I. Taylor, P. T. Wittmann, G. Toronyi, B. Puszta, S. TI INTERPRETATION OF THE TOTAL MAGNETIC FIELD ANOMALIES MEASURED BY THE CHAMP SATELLITE OVER A PART OF EUROPE AND THE PANNONIAN BASIN SO ACTA GEODAETICA ET GEOPHYSICA HUNGARICA LA English DT Article DE CHAMP; exsolution of hematite-ilmenite minerals; Laplacian and Gaussian parameter distributions; regularized inversion; Simplex and Simulated Annealing methods; total magnetic anomalies ID NATURAL REMANENT MAGNETIZATION; CRUSTAL GRANULITE XENOLITHS; LAMELLAR MAGNETISM; BAYESIAN-ESTIMATION; SEISMIC INVERSION; TITANOHEMATITE; HUNGARY; REGION; ZONE AB In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies are reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions, Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals. C1 [Kis, K. I.] Eotvos Lorand Univ, Dept Geophys & Space Sci, H-1117 Budapest, Hungary. [Taylor, P. T.] NASA, Planetary Geodynam Lab, GFSC, Greenbelt, MD 20771 USA. [Wittmann, G.] MOL Hungarian Oil & Gas Co, H-1117 Budapest, Hungary. [Toronyi, B.] Inst Geodesy Cartog & Remote Sensing, H-1149 Budapest, Hungary. [Puszta, S.] Fractal Partnership, H-1155 Budapest, Hungary. RP Kis, KI (reprint author), Eotvos Lorand Univ, Dept Geophys & Space Sci, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary. EM kisk@ludens.elte.hu NR 40 TC 2 Z9 2 U1 1 U2 7 PU AKADEMIAI KIADO RT PI BUDAPEST PA PRIELLE K U 19, PO BOX 245,, H-1117 BUDAPEST, HUNGARY SN 1217-8977 J9 ACTA GEOD GEOPHYS HU JI Acta Geod. Geophys. Hung. PD JUN PY 2012 VL 47 IS 2 BP 130 EP 140 DI 10.1556/AGeod.47.2012.2.2 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 932XF UT WOS:000303323100002 ER PT J AU Tomasi, C Lupi, A Mazzola, M Stone, RS Dutton, EG Herber, A Radionov, VF Holben, BN Sorokin, MG Sakerin, SM Terpugova, SA Sobolewski, PS Lanconelli, C Petkov, BH Busetto, M Vitale, V AF Tomasi, Claudio Lupi, Angelo Mazzola, Mauro Stone, Robert S. Dutton, Ellsworth G. Herber, Andreas Radionov, Vladimir F. Holben, Brent N. Sorokin, Mikhail G. Sakerin, Sergey M. Terpugova, Svetlana A. Sobolewski, Piotr S. Lanconelli, Christian Petkov, Boyan H. Busetto, Maurizio Vitale, Vito TI An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Polar aerosol optical depth; Long-term AOD variations; Angstrom exponent variations; Polar aerosol chemical composition; Polar aerosol radiative parameters; Arctic haze; Volcanic aerosol effects ID LONG-TERM DECREASE; ARCTIC HAZE; SOUTH-POLE; BLACK CARBON; ATMOSPHERIC TURBIDITY; CHEMICAL-COMPOSITION; SIZE DISTRIBUTIONS; ANTARCTIC AEROSOL; BOUNDARY-LAYER; BARROW AB An updated set of time series of derived aerosol optical depth (AOD) and Angstrom's exponent alpha from a number of Arctic and Antarctic stations was analyzed to determine the long-term variations of these two parameters. The Arctic measurements were performed at Ny-Alesund (1991-2010), Barrow (1977-2010) and some Siberian sites (1981-1991). The data were integrated with Level 2.0 AERONET sun-photometer measurements recorded at Hornsund, Svalbard, and Barrow for recent years, and at Tiksi for the summer 2010. The Antarctic data-set comprises sun-photometer measurements performed at Mirny (1982-2009), Neumayer (1991-2004), and Terra Nova Bay (1987-2005), and at South Pole (1977-2010). Analyses of daily mean AOD were made in the Arctic by (i) adjusting values to eliminate volcanic effects due to the El Chichon, Pinatubo, Kasatochi and Sarychev eruptions, and (ii) selecting the summer background aerosol data from those affected by forest fire smoke. Nearly null values of the long-term variation of summer background AOD were obtained at Ny-Alesund (1991-2010) and at Barrow (1977-2010). No evidence of important variations in AOD was found when comparing the monthly mean values of AOD measured at Tiksi in summer 2010 with those derived from multi-filter actinometer measurements performed in the late 1980s at some Siberian sites. The long-term variations of seasonal mean AOD for Arctic Haze (AH) conditions and AH episode seasonal frequency were also evaluated, finding that these parameters underwent large fluctuations over the 35-year period at Ny-Alesund and Barrow, without presenting well-defined long-term variations. A characterization of chemical composition, complex refractive index and single scattering albedo of ground-level aerosol polydispersions in summer and winter-spring is also presented, based on results mainly found in the literature. The long-term variation in Antarctic AOD was estimated to be stable, within +/- 0.10% per year, at the three coastal sites, and nearly null at South Pole, where a weak increase was only recently observed, associated with an appreciable decrease in alpha, plausibly due to the formation of thin stratospheric layers of ageing volcanic particles. The main characteristics of chemical composition, complex refractive index and single scattering albedo of Antarctic aerosols are also presented for coastal particles sampled at Neumayer and Terra Nova Bay, and continental particles at South Pole. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Tomasi, Claudio; Lupi, Angelo; Mazzola, Mauro; Lanconelli, Christian; Petkov, Boyan H.; Busetto, Maurizio; Vitale, Vito] CNR, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy. [Stone, Robert S.; Dutton, Ellsworth G.] NOAA, GMD, ESRL, Boulder, CO USA. [Stone, Robert S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Herber, Andreas] Alfred Wegener Inst Polar & Marine Res, Climate Syst Div, Bremerhaven, Germany. [Radionov, Vladimir F.] AARI, St Petersburg, Russia. [Sorokin, Mikhail G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Sigma Space Corp, Greenbelt, MD 20771 USA. [Sakerin, Sergey M.; Terpugova, Svetlana A.] RAS, VE Zuev Inst Atmospher Opt, Siberian Branch IAO SB, Tomsk, Russia. [Sobolewski, Piotr S.] PAS, Inst Geophys, Warsaw, Poland. RP Tomasi, C (reprint author), CNR, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy. EM c.tomasi@isac.cnr.it RI Mazzola, Mauro/K-9376-2016; OI Mazzola, Mauro/0000-0002-8394-2292; Lanconelli, Christian/0000-0002-9545-1255; busetto, maurizio/0000-0003-1115-6564 FU Programma Nazionale di Ricerche in Antartide (PNRA) [2006/6.01]; International Centre for Theoretical Physics, Trieste (Italy) FX The research activity was supported by the Programma Nazionale di Ricerche in Antartide (PNRA) and developed as a part of Subproject 2006/6.01: "POLAR-AOD: a network to characterize the means, variability and trends of the climate-forcing properties of aerosols in polar regions". The authors thank R. Wagener, Principal Investigator of the Barrow AERONET site, for his effort in establishing and maintaining the activities at this important station of the Arctic region. The International Centre for Theoretical Physics, Trieste (Italy) is gratefully acknowledged for its support of the participation of B. Petkov in the framework of the Programme for Training and Research in Italian Laboratories. NR 93 TC 23 Z9 27 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2012 VL 52 SI SI BP 29 EP 47 DI 10.1016/j.atmosenv.2012.02.055 PG 19 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 929XH UT WOS:000303098500004 ER PT J AU Gatebe, CK Varnai, T Poudyal, R Ichoku, C King, MD AF Gatebe, C. K. Varnai, T. Poudyal, R. Ichoku, C. King, M. D. TI Taking the pulse of pyrocumulus clouds SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Remote sensing; Pyrocumulus; Clouds; Smoke; Fires; Biomass burning; Radiometer; Monte Carlo; Three-dimensional (3D) radiative transfer; Diffusion approximations; Airborne; CAR; NASA P-3B ID BIOMASS SMOKE INJECTION; ACTIVE FIRE DETECTION; LOWER STRATOSPHERE; RADIATIVE-TRANSFER; OPTICAL DEPTH; TRANSPORT; SCATTERING; TROPOSPHERE; CONVECTION; ALGORITHM AB Large forest fires are a known natural and dominant disturbance factor in high northern latitudes, and form pyrocumulus (pyroCu), and occasionally pyrocumulonimbus (pyroCb) clouds. These clouds can transport emissions into the upper troposphere/lower stratosphere (UT/LS) and produce significant regional and even global climate effects, as is the case with some volcanoes. However, the lack of observational data within pyroCu or pyroCb complicates our ability to investigate pyro-convection and to understand the vertical and cross-isentropic transport mechanisms responsible for UT/LS injection. Here, we report detailed airborne radiation measurements within strong pyroCu taken over boreal forest fires in Saskatchewan, Canada during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) summer field campaign in 2008. We find a prominent smoke core within the pyroCu, which is defined by strong extinction in the UV, VIS and NIR, and high gas-particle concentrations. We also find that the angular distribution of radiance within the pyroCu is closely related to the diffusion domain in water clouds, which is dominated by multiple scattering processes. The radiation field of pyroCu can be described by diffusion approximations that are comprised of simple cosine functions, which can be used to calculate the spatial and temporal characteristics of the radiance field, and applied in cloud resolving models. We demonstrate with Monte Carlo simulations that radiation transport in pyroCu is inherently a 3D problem and must account for particle absorption. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Gatebe, C. K.] Univ Space Res Assoc, Columbia, MD 21228 USA. [Gatebe, C. K.; Varnai, T.; Poudyal, R.; Ichoku, C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Varnai, T.] Univ Maryland, Baltimore, MD 21228 USA. [Poudyal, R.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [King, M. D.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. RP Gatebe, CK (reprint author), Univ Space Res Assoc, Columbia, MD 21228 USA. EM charles.k.gatebe@nasa.gov RI King, Michael/C-7153-2011; Ichoku, Charles/E-1857-2012; Gatebe, Charles/G-7094-2011 OI King, Michael/0000-0003-2645-7298; Ichoku, Charles/0000-0003-3244-4549; Gatebe, Charles/0000-0001-9261-2239 FU Science Mission Directorate of the National Aeronautics and Space Administration (NASA); NASA [NNX08A89G, NNX11AQ98G] FX This research was supported by the Science Mission Directorate of the National Aeronautics and Space Administration (NASA) as part of the Radiation Sciences Program under Hal B. Maring and Airborne Science Program under Bruce Tagg. We thank NASA P-3 crew members, and also the following individuals (R. Kahn, R. A. Marshak, R. Cahalan, W. Wiscombe, F. Ewald, A. Nenes, and T. Lathem) for insightful discussions and comments. We also thank the editor and two anonymous reviewers for their valuable comments. This work was performed under NASA Grants NNX08A89G and NNX11AQ98G. NR 43 TC 8 Z9 8 U1 1 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2012 VL 52 SI SI BP 121 EP 130 DI 10.1016/j.atmosenv.2012.01.045 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 929XH UT WOS:000303098500011 ER PT J AU Gustafson, RG Ford, MJ Adams, PB Drake, JS Emmett, RL Fresh, KL Rowse, M Spangler, EAK Spangler, RE Teel, DJ Wilson, MT AF Gustafson, Richard G. Ford, Michael J. Adams, Peter B. Drake, Jonathan S. Emmett, Robert L. Fresh, Kurt L. Rowse, Mindy Spangler, Elizabeth A. K. Spangler, Robert E. Teel, David J. Wilson, Matthew T. TI Conservation status of eulachon in the California Current SO FISH AND FISHERIES LA English DT Article DE Climate change; Endangered Species Act; forage fish; osmerid smelt; Thaleichthys pacificus ID THALEICHTHYS-PACIFICUS; POPULATION-STRUCTURE; MERLUCCIUS-PRODUCTUS; CLIMATE-CHANGE; TRAWL FISHERY; NORTH-AMERICA; OCEAN; MORTALITY; MARINE; TEMPERATURE AB Eulachon (Thaleichthys pacificus), an anadromous smelt in the Northeast Pacific Ocean was examined for listing under the USAs Endangered Species Act (ESA). A southern Distinct Population Segment (DPS) of eulachon that occurs in the California Current and is composed of numerous subpopulations that spawn in rivers from northern California to northern British Columbia was identified on the basis of ecological and environmental characteristics, and to a lesser extent, genetic and life history variation. Although the northern terrestrial boundary of this DPS remains uncertain, our consensus opinion was that this northern boundary occurs south of the Nass River and that the DPS was discrete from more northern eulachon, as well as significant to the biological species as a whole and thus is a species under the ESA. Eulachon have been nearly absent in northern California for over two decades, have declined in the Fraser River by over 97% in the past 10 years, and are at historically low levels in other British Columbia rivers in the DPS, and nearly so in the Columbia River. Major threats to southern eulachon include climate change impacts on ocean and freshwater habitat, by-catch in offshore shrimp trawl fisheries, changes in downstream flow timing and intensity owing to dams and water diversions, and predation. These threats, together with large declines in abundance, indicate that the southern DPS of eulachon is at moderate risk of extinction throughout all of its range. The southern DPS was listed as threatened under the ESA in May 2010 the first marine forage fish to be afforded these statutory protections, which apply only to waters under U.S. jurisdiction. C1 [Gustafson, Richard G.; Ford, Michael J.; Drake, Jonathan S.; Fresh, Kurt L.; Rowse, Mindy; Teel, David J.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Adams, Peter B.] Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Santa Cruz, CA 95060 USA. [Emmett, Robert L.] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Newport, OR 97365 USA. [Spangler, Elizabeth A. K.] US Fish & Wildlife Serv, Dept Interior, Anchorage, AK 99503 USA. [Spangler, Robert E.] US Forest Serv, USDA, Anchorage, AK 99503 USA. [Wilson, Matthew T.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. RP Gustafson, RG (reprint author), Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, 2725 Montlake Blvd E, Seattle, WA 98112 USA. EM Rick.Gustafson@noaa.gov FU Northwest Region of NMFS FX Numerous individual fishery scientists and managers provided information that aided in preparation of this document and deserve special thanks. We particularly thank Dr. Doug Hay, Nearshore Consulting, Nanaimo, British Columbia (Scientist Emeritus, Pacific Biological Station, Department of Fisheries and Oceans Canada); Brad James, Greg Bargmann, and Olaf Langness, Washington Department of Fish and Wildlife; and Tom Rien, Oregon Department of Fish and Wildlife. We also thank Megan Moody, Nuxalk Nation, Bella Coola, British Columbia; Andy Lecuyer, Environmental Advisor, Rio Tinto Alcan Inc., Kemano, British Columbia; Michael R. Gordon, M. R. Gordon & Associates Ltd., North Vancouver, British Columbia; and Irene Martin, Skamokawa, Washington, for providing documents or steering us towards those who could. Additional thanks go to Jeff Cowen for assistance with the figures; Laurie Weitkamp, Thomas Good, Jeff Hard, Doug Hay (external reviewer), and one anonymous reviewer for providing valuable comments on earlier versions of the manuscript; and five anonymous scientists whose reviews of an early draft of the status review substantially improved the quality of our final product. The Northwest Region of NMFS provided partial funding in support of this investigation. NR 89 TC 3 Z9 3 U1 1 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1467-2960 J9 FISH FISH JI Fish. Fish. PD JUN PY 2012 VL 13 IS 2 BP 121 EP 138 DI 10.1111/j.1467-2979.2011.00418.x PG 18 WC Fisheries SC Fisheries GA 923HM UT WOS:000302610400001 ER PT J AU Peck, J Timko, MT Yu, ZH Wong, HW Herndon, SC Yelvington, PE Miake-Lye, RC Wey, C Winstead, EL Ziemba, LD Anderson, BE AF Peck, Jay Timko, Michael T. Yu, Zhenhong Wong, Hsi-Wu Herndon, Scott C. Yelvington, Paul E. Miake-Lye, Richard C. Wey, Changlie Winstead, Edward L. Ziemba, Luke D. Anderson, Bruce E. TI Measurement of Volatile Particulate Matter Emissions From Aircraft Engines Using a Simulated Plume Aging System SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID ATLANTA-INTERNATIONAL-AIRPORT; COMMERCIAL AIRCRAFT; AEROSOL EMISSIONS; JET ENGINE; THERMOPHORETIC DEPOSITION; HYDROCARBON EMISSIONS; AIRBORNE OBSERVATIONS; PARTICLE EMISSIONS; EXHAUST; FLOW AB Aircraft exhaust contains nonvolatile (soot) particulate matter (PM), trace gas pollutants, and volatile PM precursor material. Nonvolatile soot particles are predominantly present at the engine exit plane, but volatile PM precursors form new particles or add mass to the existing ones as the exhaust is diluted and cooled. Accurately characterizing the volatile PM mass, number, and size distribution is challenging due to this evolving nature and the impact of local ambient conditions on the gas-to-particle conversion processes. To accurately and consistently measure the aircraft PM emissions, a dilution and aging sampling system that can condense volatile precursors to particle phase to simulate the atmospheric evolution of aircraft engine exhaust has been developed. In this paper, a field demonstration of its operation is described. The dilution/aging probe system was tested using both a combustor rig and on-wing CFM56-7 engines. During the combustor rig testing at NASA Glenn Research Center, the dilution/aging probe supported formation of both nucleation/growth mode particles and soot coatings. The results showed that by increasing residence time, the nucleation particles become larger in size, increase in total mass, and decrease in number. During the on-wing CFM56-7 engine testing at Chicago Midway Airport, the dilution/aging probe was able to form soot coatings along with nucleation mode particles, unlike conventional 1-m probe engine measurements. The number concentration of nucleation particles depended on the sample fraction and relative humidity of the dilution air. The performance of the instrument is analyzed and explained using computational microphysics simulations. [DOI: 10.1115/1.4005988] C1 [Peck, Jay; Timko, Michael T.; Yu, Zhenhong; Wong, Hsi-Wu; Herndon, Scott C.; Yelvington, Paul E.; Miake-Lye, Richard C.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Wey, Changlie] ASRC Aerosp Corp, Cleveland, OH USA. [Winstead, Edward L.] Sci Syst & Applicat Inc, Hampton, VA USA. [Ziemba, Luke D.; Anderson, Bruce E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Peck, J (reprint author), Aerodyne Res Inc, Billerica, MA 01821 USA. EM jpeck@aerodyne.com FU Air Force SBIR [FA9101-08-C-0013]; AEDC SBIR; NASA through NRA [NNC07CB57C]; Art Kaucher of Southwest Airlines; Matthew Marich and Aaron Frame of the City of Chicago FX This instrument development effort was supported by the Air Force SBIR program (Contract No. FA9101-08-C-0013), and the authors are grateful to the support from Robert Howard, the AEDC SBIR technical monitor. NASA provided support for ARI participation in the CE-5 combustor testing through NRA Contract No. NNC07CB57C. The authors thank Kathy Tacina as well as the entire staff at NASA GRC for the support during the CE-5 test. We appreciate the ACRP 02-03a program for providing the opportunity to perform the MDW-10 measurements. Art Kaucher of Southwest Airlines and Matthew Marich and Aaron Frame of the City of Chicago are greatly thanked for the cooperation and support during the MDW-10 measurements. NR 47 TC 2 Z9 2 U1 3 U2 17 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUN PY 2012 VL 134 IS 6 AR 061503 DI 10.1115/1.4005988 PG 8 WC Engineering, Mechanical SC Engineering GA 931ZF UT WOS:000303257300004 ER PT J AU Birrane, E Burleigh, S Kasch, N AF Birrane, Edward Burleigh, Scott Kasch, Niels TI Analysis of the contact graph routing algorithm: Bounding interplanetary paths SO ACTA ASTRONAUTICA LA English DT Article DE Delay-tolerant networks; Contact graph routing; Solar system internet AB Interplanetary communication networks comprise orbiters, deep-space relays, and stations on planetary surfaces. These networks must overcome node mobility, constrained resources, and significant propagation delays. Opportunities for wireless contact rely on calculating transmit and receive opportunities, but the Euclidean-distance diameter of these networks (measured in light-seconds and light-minutes) precludes node discovery and contact negotiation. Propagation delay may be larger than the line-of-sight contact between nodes. For example, Mars and Earth orbiters may be separated by up to 20.8 min of signal propagation time. Such spacecraft may never share line-of-sight, but may uni-directionally communicate if one orbiter knows the other's future position. The Contact Graph Routing (CGR) approach is a family of algorithms presented to solve the messaging problem of interplanetary communications. These algorithms exploit networks where nodes exhibit deterministic mobility. For CGR, mobility and bandwidth information is pre-configured throughout the network allowing nodes to construct transmit opportunities. Once constructed, routing algorithms operate on this contact graph to build an efficient path through the network. The interpretation of the contact graph, and the construction of a bounded approximate path, is critically important for adoption in operational systems. Brute force approaches, while effective in small networks, are computationally expensive and will not scale. Methods of inferring cycles or other librations within the graph are difficult to detect and will guide the practical implementation of any routing algorithm. This paper presents a mathematical analysis of a multi-destination contact graph algorithm (MD-CGR), demonstrates that it is NP-complete, and proposes realistic constraints that make the problem solvable in polynomial time, as is the case with the originally proposed CGR algorithm. An analysis of path construction to complement hop-by-hop forwarding is presented as the CGR-EB algorithm. Future work is proposed to handle the presence of dynamic changes to the network, as produced by congestion, link disruption, and errors in the contact graph. We conclude that pre-computation, and thus CGR style algorithms, is the only efficient method of routing in a multi-node, multi-path interplanetary network and that algorithmic analysis is the key to its implementation in operational systems. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Birrane, Edward] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Burleigh, Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kasch, Niels] Univ Maryland, Baltimore, MD 21250 USA. RP Birrane, E (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Edward.Birrane@jhuapl.edu; scott.c.burleigh@jpl.nasa.gov; nkasch1@umbc.edu NR 12 TC 18 Z9 19 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2012 VL 75 BP 108 EP 119 DI 10.1016/j.actaastro.2012.02.004 PG 12 WC Engineering, Aerospace SC Engineering GA 928LS UT WOS:000302984900011 ER PT J AU Springmann, JC Sloboda, AJ Klesh, AT Bennett, MW Cutler, JW AF Springmann, John C. Sloboda, Alexander J. Klesh, Andrew T. Bennett, Matthew W. Cutler, James W. TI The attitude determination system of the RAX satellite SO ACTA ASTRONAUTICA LA English DT Article DE Attitude determination; CubeSat; Nanosatellite; Subsystem design; Magnetometer; Photodiode; Sun sensor; Rate gyroscope; Kalman filter ID CALIBRATION AB The Radio Aurora Explorer (RAX) is a triple CubeSat that launched on November 19, 2010. RAX was designed to study plasma irregularities in the polar lower ionosphere (80-300 km), and is the first CubeSat mission funded by the United States National Science Foundation. The scientific mission requires attitude knowledge within 5 degrees (1-sigma), and a custom attitude determination subsystem was developed for the mission. The subsystem utilizes rate gyros, magnetometers, coarse sun sensors, and an extended Kalman filter, and was designed to be a simple, low cost solution to meet the attitude determination requirements. In this paper, we describe the design, implementation, and testing of the RAX attitude determination subsystem, including derivation of the determination requirements, sensor selection, the integrated hardware design, preflight sensor calibration, and attitude estimation algorithms. The paper is meant to serve as a resource for others in the small satellite and nanosatellite communities, as well as a critical reference for those analyzing RAX data. Lessons learned from the design and performance of the RAX determination subsystem will be used in future designs of attitude determination systems for small satellites and similar platforms, such as high altitude balloons and autonomous aerial vehicles. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Springmann, John C.; Sloboda, Alexander J.; Cutler, James W.] Univ Michigan, Ann Arbor, MI 48109 USA. [Klesh, Andrew T.; Bennett, Matthew W.] CALTECH, Jet Prop Lab, Pasadena, CA 91105 USA. RP Springmann, JC (reprint author), Univ Michigan, 1320 Beal Ave, Ann Arbor, MI 48109 USA. EM jspringm@umich.edu FU RAX team; NASA Glenn Research Center; National Science Foundation [ATM-0838054]; Department of Defense FX The authors would like to acknowledge other students who have been part of the RAX attitude determination and control subsystems teams, including Dae Young Lee, Michael Heywood, Sheryl Seagraves, Jason Anyalebechi, and Dylan Boone: students who contributed to the development of the Kalman filter, including Sara Spangelo, Eric Gustafson, and Amor Menezes; and Allison Craddock and the other members of the RAX team for their support. The authors would also like to acknowledge NASA Glenn Research Center for support of the sun sensor testing. RAX is funded by the National Science Foundation, grant ATM-0838054. Additional support came from the Department of Defense through a National Defense Science & Engineering Graduate Fellowship (NDSEG) for the first author. Part of the editing of this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 29 TC 26 Z9 26 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2012 VL 75 BP 120 EP 135 DI 10.1016/j.actaastro.2012.02.001 PG 16 WC Engineering, Aerospace SC Engineering GA 928LS UT WOS:000302984900012 ER PT J AU Kwok, R Cunningham, GF AF Kwok, R. Cunningham, G. F. TI Deformation of the Arctic Ocean ice cover after the 2007 record minimum in summer ice extent SO COLD REGIONS SCIENCE AND TECHNOLOGY LA English DT Article DE Arctic Ocean sea ice; Sea ice deformation; Mass balance ID SEA-ICE; MOTION; SYSTEM; SAR AB We examine the deformation of the Arctic Ocean sea ice cover after the record minimum in summer extent in 2007. The period spans similar to 2.5 months between September 15 and December 1. Ice drift and deformation inside the ice edge, within a domain that initially covers similar to 0.76x10(6) km(2) of the western Arctic, are derived from high-resolution RADARSAT imagery from the Alaska Satellite Facility. Poleward of 80 degrees N, we find a net convergence of more than 14% over the period. This large convergence is associated with the strength, location, and persistence of the Beaufort high-pressure pattern that led to prevailing on-shore winds north of Ellesmere Island and Greenland. This can be contrasted to the nearly 25% divergence of the ice cover, accompanied by a large regional vorticity of -0.93 (or a clockwise rotation of similar to 53 degrees) south of 80 degrees N. The same atmospheric pattern produced openings as the ice cover drifts southwest towards the unconstrained ice-free part of the southern Beaufort and Chukchi Seas. These sustained strain rates, especially convergence, impacts the area and thickness distribution of the sea ice cover in the Arctic Basin. If unaccounted for, this deformation-induced decrease in ice coverage (in this region with predominantly multiyear ice) could be incorrectly ascribed to ice export with a concurrent decrease in Arctic sea ice volume, when in fact the ice volume is conserved but with a local redistribution in thickness. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kwok, R.; Cunningham, G. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kwok, R (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM ron.kwok@jpl.nasa.gov RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU National Aeronautics and Space Administration FX We thank Lisa Nguyen for her assistance in the preparation of the ice drift data set. The AMSR-E brightness temperature and ice concentration fields are provided by World Data Center A for Glaciology/National Snow and Ice Data Center, University of Colorado, Boulder, CO. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 16 TC 6 Z9 6 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-232X EI 1872-7441 J9 COLD REG SCI TECHNOL JI Cold Reg. Sci. Tech. PD JUN PY 2012 VL 76-77 SI SI BP 17 EP 23 DI 10.1016/j.coldregions.2011.04.003 PG 7 WC Engineering, Environmental; Engineering, Civil; Geosciences, Multidisciplinary SC Engineering; Geology GA 928GH UT WOS:000302970700004 ER PT J AU Godoy, WF Liu, X AF Godoy, William F. Liu, Xu TI Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiative transfer equation (RTE); Discrete ordinates method (DOM) S-N; Flux limiters; TVD; Electromagnetic radiation; Jacobian free Newton-Krylov (JFNK); General Minimal Residual (GMRES); Householder; Gram-Schmidt; Parallel MPI; Threads; Collimated radiation ID ALGORITHM; ACCURACY; SCHEMES; SYSTEMS; FLOWS; GMRES AB The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing-emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram-Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution. (C) 2012 Elsevier Inc. All rights reserved. C1 [Godoy, William F.; Liu, Xu] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Godoy, WF (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM william.f.godoycastaneda@nasa.gov RI Richards, Amber/K-8203-2015; OI Godoy, William/0000-0002-2590-5178 FU NASA at the Langley Research Center; NASA Advanced Supercomputing (NAS) Division for the use of the Pleiades supercomputer [SMD-10-1780] FX This research was supported by an appointment to the NASA Postdoctoral Program (NPP) at the Langley Research Center, administered by Oak Ridge Associated Universities (ORAU). The authors would like to acknowledge: (i) the NASA Advanced Supercomputing (NAS) Division for the use of the Pleiades supercomputer under award SMD-10-1780 and (ii) the CLARREO mission team members, Chris Currey and Jim Davis, for the use of their dedicated cluster for the computational tests. NR 43 TC 7 Z9 7 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 1 PY 2012 VL 231 IS 11 BP 4257 EP 4278 DI 10.1016/j.jcp.2012.02.010 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 927TS UT WOS:000302933600011 ER PT J AU Marshak, A Knyazikhin, Y Chiu, JC Wiscombe, WJ AF Marshak, Alexander Knyazikhin, Yuri Chiu, J. Christine Wiscombe, Warren J. TI On spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Single scattering albedo; Droplets; Ice particles; Spectral invariance ID CLOUDS; CANOPY; ABSORPTION; MODELS AB The single scattering albedo omega(0 lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(0 lambda)(r)/omega(0 lambda)(r(0)) of two single scattering albedo spectra is a linear function of omega(0 lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(0 lambda)(r) via one known spectrum omega(0 lambda)(r(0)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals. Published by Elsevier Ltd. C1 [Marshak, Alexander; Wiscombe, Warren J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Knyazikhin, Yuri] Boston Univ, Boston, MA 02215 USA. [Chiu, J. Christine] Univ Reading, Dept Meteorol, Reading, Berks, England. RP Marshak, A (reprint author), NASA, Goddard Space Flight Ctr, Code 613, Greenbelt, MD 20771 USA. EM alexander.marshak@nasa.gov RI Wiscombe, Warren/D-4665-2012; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012 OI Wiscombe, Warren/0000-0001-6844-9849; Chiu, Christine/0000-0002-8951-6913; FU Office of Science (BER, US Department of Energy) [DE-AI02-08ER64562] FX This research was supported by the Office of Science (BER, US Department of Energy, Interagency Agreement No. DE-AI02-08ER64562) as part of the ASR programme. We also thank Drs. F. Evans, P. Gabriel, R. Kahn, A. Lyapustin, V. Martins, T. Varnai, Z. Zhang for fruitful discussions. We are grateful to Dr. P. Yang for providing a database which gives the phase function for individual ice crystals, to Dr. Y. Yang for his help with Mie calculations and to Dr. Clothiaux for providing data for Fig. 2.25 from Bohren and Clothiaux [4]. NR 15 TC 1 Z9 1 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUN PY 2012 VL 113 IS 9 BP 715 EP 720 DI 10.1016/j.jqsrt.2012.02.021 PG 6 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 927FL UT WOS:000302892400006 ER PT J AU Schepers, D Guerlet, S Butz, A Landgraf, J Frankenberg, C Hasekamp, O Blavier, JF Deutscher, NM Griffith, DWT Hase, F Kyro, E Morino, I Sherlock, V Sussmann, R Aben, I AF Schepers, D. Guerlet, S. Butz, A. Landgraf, J. Frankenberg, C. Hasekamp, O. Blavier, J. -F. Deutscher, N. M. Griffith, D. W. T. Hase, F. Kyro, E. Morino, I. Sherlock, V. Sussmann, R. Aben, I. TI Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FOURIER-TRANSFORM SPECTROMETER; ATMOSPHERIC METHANE; REFLECTED SUNLIGHT; CARBON-DIOXIDE; CO2 COLUMN; SPACE; EMISSIONS; SENSITIVITY; SCIAMACHY; NETWORK AB We compare two conceptually different methods for determining methane column-averaged mixing ratios (X-CH4) from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared (SWIR) measurements. These methods account differently for light scattering by aerosol and cirrus. The proxy method retrieves a CO2 column which, in conjunction with prior knowledge on CO2 acts as a proxy for scattering effects. The physics-based method accounts for scattering by retrieving three effective parameters of a scattering layer. Both retrievals are validated on a 19-month data set using ground-based X-CH4 measurements at 12 stations of the Total Carbon Column Observing Network (TCCON), showing comparable performance: for the proxy retrieval we find station-dependent retrieval biases from -0.312% to 0.421% of X-CH4 with a standard deviation of 0.22% and a typical precision of 17 ppb. The physics method shows biases between -0.836% and -0.081% with a standard deviation of 0.24% and a precision similar to the proxy method. Complementing this validation we compared both retrievals with simulated methane fields from a global chemistry-transport model. This identified shortcomings of both retrievals causing biases of up to 1ings and provide a satisfying validation of any methane retrieval from space-borne SWIR measurements, in our opinion it is essential to further expand the network of TCCON stations. C1 [Schepers, D.; Guerlet, S.; Landgraf, J.; Hasekamp, O.; Aben, I.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Butz, A.; Hase, F.] Karlsruhe Inst Technol, IMK ASF, Eggenstein Leopoldshafen, Germany. [Frankenberg, C.; Blavier, J. -F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Deutscher, N. M.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Deutscher, N. M.; Griffith, D. W. T.] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia. [Kyro, E.] Finnish Meteorol Inst, Arctic Res Ctr, FIN-00101 Helsinki, Finland. [Morino, I.] NIES, Tsukuba, Ibaraki, Japan. [Sherlock, V.] Natl Inst Water & Atmospher Res, Wellington, New Zealand. [Sussmann, R.] IMK IFU, Garmisch Partenkirchen, Germany. RP Schepers, D (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. EM d.schepers@sron.nl RI Sussmann, Ralf/K-3999-2012; Butz, Andre/A-7024-2013; Hase, Frank/A-7497-2013; Garmisch-Pa, Ifu/H-9902-2014; Morino, Isamu/K-1033-2014; Deutscher, Nicholas/E-3683-2015; Frankenberg, Christian/A-2944-2013 OI Butz, Andre/0000-0003-0593-1608; Morino, Isamu/0000-0003-2720-1569; Deutscher, Nicholas/0000-0002-2906-2577; Frankenberg, Christian/0000-0002-0546-5857 FU Deutsche Forschungsgemeinschaft (DFG) [BU2599/1-1] FX A.B. is supported by Deutsche Forschungsgemeinschaft (DFG) through the Emmy-Noether programme, grant BU2599/1-1 (RemoteC). Access to GOSAT data was granted through the 2nd GOSAT research announcement jointly issued by JAXA, NIES, and MOE. TCCON data were obtained from the TCCON Data Archive, operated by the California Institute of Technology from the Web site at http://tccon.ipac.caltech.edu/. GTOPO30 is available from the U. S. Geological Survey through the Earth Resources Observation and Science (EROS) Center (http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/GTOPO30_in fo). MODIS Atmosphere data are distributed through http://ladsweb.nascom.nasa.gov/data/search.html. CarbonTracker results are provided by NOAA-ESRL, Boulder, Colorado, USA through http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/. NR 36 TC 48 Z9 48 U1 3 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 30 PY 2012 VL 117 AR D10307 DI 10.1029/2012JD017549 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CI UT WOS:000304766900006 ER PT J AU Stolarski, RS Douglass, AR Remsberg, EE Livesey, NJ Gille, JC AF Stolarski, Richard S. Douglass, Anne R. Remsberg, Ellis E. Livesey, Nathaniel J. Gille, John C. TI Ozone temperature correlations in the upper stratosphere as a measure of chlorine content SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE; PERFORMANCE; CHEMISTRY; TRENDS; MODEL AB We use data from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) for the 1978-1979 period together with data from the Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS MLS) for the years 1993 to 1999, the Aura MLS for the years 2004 to 2011, and the Aura High Resolution Infrared Limb Sounder (HIRDLS) for the years 2005 to 2007 to examine ozone-temperature correlations in the upper stratosphere. Our model simulations indicate that the sensitivity coefficient of the ozone response to temperature (Delta ln(O-3)/Delta(1/T)) decreases as chlorine has increased in the stratosphere and should increase in the future as chlorine decreases. The data are in agreement with our simulation of the past. We also find that the sensitivity coefficient does not change in a constant-chlorine simulation. Thus the change in the sensitivity coefficient depends on the change in chlorine, but not on the change in greenhouse gases. We suggest that these and future data can be used to track the impact of chlorine added to the stratosphere and also to track the recovery of the stratosphere as chlorine is removed under the provisions of the Montreal Protocol. C1 [Stolarski, Richard S.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Douglass, Anne R.] NASA, Atmospher Chem & Dynam Branch, Goddard Space Flight Ctr, Greenbelt, MD USA. [Remsberg, Ellis E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Livesey, Nathaniel J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gille, John C.] Univ Colorado, Ctr Limb Atmospher Sounding, Boulder, CO 80309 USA. RP Stolarski, RS (reprint author), Johns Hopkins Univ, Dept Earth & Planetary Sci, 3400 N Charles St, Baltimore, MD 21218 USA. EM rstolar1@jhu.edu RI Douglass, Anne/D-4655-2012; Stolarski, Richard/B-8499-2013 OI Stolarski, Richard/0000-0001-8722-4012 NR 35 TC 7 Z9 7 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 30 PY 2012 VL 117 AR D10305 DI 10.1029/2012JD017456 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 952CI UT WOS:000304766900004 ER PT J AU Cantrell, JH Yost, WT AF Cantrell, John H. Yost, William T. TI Envelope solitons in acoustically dispersive vitreous silica SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DE-VRIES EQUATION; RADIATION STRESS; SOLIDS; NONLINEARITY; WAVES AB Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or 'dc' waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 +/- 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 +/- 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model. C1 [Cantrell, John H.; Yost, William T.] NASA, Res Directorate, Langley Res Ctr, Hampton, VA 23681 USA. RP Cantrell, JH (reprint author), NASA, Res Directorate, Langley Res Ctr, Hampton, VA 23681 USA. EM john.h.cantrell@nasa.gov; william.t.yost@nasa.gov NR 21 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 30 PY 2012 VL 24 IS 21 AR 215401 DI 10.1088/0953-8984/24/21/215401 PG 7 WC Physics, Condensed Matter SC Physics GA 941SS UT WOS:000303985800008 PM 22534066 ER PT J AU Cochran, CT Van Hoose, JR McGill, PB Grugel, RN AF Cochran, Calvin T. Van Hoose, James R. McGill, Preston B. Grugel, Richard N. TI Improving the strength of amalgams by including steel fibers SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Amalgam; Fiber reinforced composite; Diametral tensile strength; Peritectic reaction AB Mercury amalgams, due to their material properties, are widely and successfully used in dental practice. They are, however, also well recognized as having poor tensile strength. With the possibility of expanding amalgam applications it is demonstrated that tensile strength can be increased some 20% by including a small amount of steel fibers. Furthermore, it is shown that mercury can be replaced with a room temperature liquid gallium-indium alloy. Processing, microstructures, and mechanical test results of these novel amalgams are presented and discussed in view of means to further improve their properties. Published by Elsevier B.V. C1 [McGill, Preston B.; Grugel, Richard N.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Cochran, Calvin T.] Hendrix Coll, Conway, AR 72032 USA. [Van Hoose, James R.] Siemens, Orlando, FL 32826 USA. RP Grugel, RN (reprint author), NASA, George C Marshall Space Flight Ctr, EM30, Huntsville, AL 35812 USA. EM richard.n.grugel@nasa.gov FU Materials and Processing Laboratory of the Marshall Space Flight Center FX Appreciation is also expressed to Greg Jerman, Ms. Lisa Sharff, and Craig Stafford for their timely assistance. The Materials and Processing Laboratory of the Marshall Space Flight Center is also acknowledged for their support. NR 6 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD MAY 30 PY 2012 VL 545 BP 44 EP 50 DI 10.1016/j.msea.2012.02.084 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 939EZ UT WOS:000303791700007 ER PT J AU Narayanan, SR Prakash, GKS Manohar, A Yang, B Malkhandi, S Kindler, A AF Narayanan, S. R. Prakash, G. K. Surya Manohar, A. Yang, Bo Malkhandi, S. Kindler, Andrew TI Materials challenges and technical approaches for realizing inexpensive and robust iron-air batteries for large-scale energy storage SO SOLID STATE IONICS LA English DT Article DE Iron-air; Rechargeable battery; Large-scale energy storage; Aqueous rechargeable battery ID ELECTRODES; PERFORMANCE AB A high performance iron-air rechargeable battery has the potential of meeting the requirements of grid-scale energy storage. When successfully demonstrated, this battery technology can be transformational because of the extremely low cost of iron, the extraordinary environmental friendliness of iron and air. and the abundance of raw materials. The key technical challenges that hinder the successful commercialization of the iron-air battery are its efficiency and cycle life. An innovative multi-pronged strategy that aims at raising the round-trip energy efficiency from 50% to 80%, and the cycle life from 2000 to 5000 cycles is therefore necessary to meet the requirements of large scale energy storage. (C) 2011 Elsevier B.V. All rights reserved. C1 [Narayanan, S. R.; Prakash, G. K. Surya; Manohar, A.; Yang, Bo; Malkhandi, S.] Univ So Calif, Dept Chem, Loker Hydrocarbon Res Inst, Los Angeles, CA 90089 USA. [Kindler, Andrew] CALTECH, Jet Prop Lab, Pasadena, CA 90089 USA. RP Narayanan, SR (reprint author), Univ So Calif, Dept Chem, Loker Hydrocarbon Res Inst, Los Angeles, CA 90089 USA. RI Malkhandi, Souradip/C-3582-2009 OI Malkhandi, Souradip/0000-0003-0826-3078 NR 13 TC 41 Z9 41 U1 6 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD MAY 28 PY 2012 VL 216 SI SI BP 105 EP 109 DI 10.1016/j.ssi.2011.12.002 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 956TD UT WOS:000305111100023 ER PT J AU Liu, XM Shemansky, DE Johnson, PV Malone, CP Khakoo, MA AF Liu, Xianming Shemansky, Donald E. Johnson, Paul V. Malone, Charles P. Khakoo, Murtadha A. TI Electron and photon dissociation cross sections of the D-2 singlet ungerade continua SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID QUANTUM-DEFECT THEORY; SPONTANEOUS RADIATIVE DISSOCIATION; RESOLUTION LASER SPECTROSCOPY; DIFFUSE INTERSTELLAR BANDS; VACUUM-ULTRAVIOLET REGION; MINIMUM 1-SIGMA-G+ STATES; ANGULAR-MOMENTUM STATES; MOLECULAR-HYDROGEN; IMPACT EXCITATION; TRANSITION-PROBABILITIES AB The dissociation of H-2 and its isotopologues through excitation to the singlet ungerade continua is one of the major channels for the production of slow hydrogen atoms at high temperature (T > 10 000 K) and electron energy > 25 eV. State-specific photodissociation cross sections and oscillator strengths for molecular deuterium from the X-1 Sigma(+)(g)(v(i),J(i)) levels to the continuum levels of the B-1 Sigma(+)(u), C-1 Pi(u), B'(1)Sigma(+)(u), D-1 Pi(u), B"(B) over bar (1)Sigma(+)(u), D'(1)Pi(u) and 5p sigma(1)Sigma(+)(u) states have been calculated. The corresponding (v(i), J(i)) state-specific electron impact dissociation cross sections have been obtained for the first time over a wide energy range using calculated continuum oscillator strengths along with previously published excitation functions of the Lyman and Werner bands. Estimated cross sections to the higher (n >= 5) np sigma(1)Sigma(+)(u) and np pi(1)Pi(u) continua are also provided. Both photon and electron impact excitation cross sections show strong dependences on the initial (v(i), J(i)) quantum numbers. Thermally averaged electron impact cross sections of all singlet ungerade states increase monotonically with temperature. While excitation to the B'(1)Sigma(+)(u) continuum is the dominant dissociation channel at room temperature, the C-1 Pi(u) and B-1 Sigma(+)(u) continua become more important at high temperature (> 5000 K). The large increase of the C-1 Pi(u) and B-1 Sigma(+)(u) cross sections with (v(i), J(i)) is primarily responsible for making the continuum dissociation from a minor break-up channel at room temperature into a major one at high temperature. The electron dissociation cross section of D-2 via the singlet ungerade continua is smaller than its H-2 counterpart, although this difference decreases with temperature. This work, along with the previous calculations of H-2 by Liu et al (2009, 2012), provides the complete electron impact dissociation cross sections of H-2 and D-2 through the singlet ungerade continua. Thermally averaged electron dissociation cross sections are provided at various temperatures for applications in plasma physics. C1 [Liu, Xianming; Shemansky, Donald E.] Space Environm Technol, Planetary & Space Sci Div, Pacific Palisades, CA 90272 USA. [Johnson, Paul V.; Malone, Charles P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Malone, Charles P.; Khakoo, Murtadha A.] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92834 USA. RP Liu, XM (reprint author), Space Environm Technol, Planetary & Space Sci Div, 1676 Palisades Dr, Pacific Palisades, CA 90272 USA. EM xliu@spacenvironment.net RI Malone, Charles/A-6294-2010; Johnson, Paul/D-4001-2009 OI Malone, Charles/0000-0001-8418-1539; Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration ( NASA); NSF [AGS-0938223] FX The authors wish to thank Professor Lutoslaw Wolniewicz for making results of his ab initio calculations accessible. We thank the reviewer for bringing the work of Celiberto et al (1994) to our attention. The analysis described in this paper was carried out at Space Environment Technologies (SET) and at the California State University, Fullerton, CA. A part of this work was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with the National Aeronautics and Space Administration ( NASA). Work performed at SET was supported by NSF AGS-0938223. We acknowledge financial support through NASA's Planetary Atmospheres Research programs. NR 134 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 28 PY 2012 VL 45 IS 10 AR 105203 DI 10.1088/0953-4075/45/10/105203 PG 16 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 942NS UT WOS:000304052100007 ER PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, BS Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Charlton, P Chassande-Mottin, E Chelkowski, S Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, H Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Feroz, F Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil, S Gill, C Gleason, J Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, B Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kranz, O Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Liu, Y Liu, Z Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA McWilliams, S Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Perreca, A Persichetti, G Phelps, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sainathan, P Salemi, F Sammut, L Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schreiber, E Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Stein, LC Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Tseng, K Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ Van den Broeck, C van der Putten, S van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wang, Z Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, B. S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Feroz, F. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil, S. Gill, C. Gleason, J. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. -M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kranz, O. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McWilliams, S. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sainathan, P. Salemi, F. Sammut, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Stein, L. C. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tseng, K. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Search for gravitational waves from intermediate mass binary black holes SO PHYSICAL REVIEW D LA English DT Article ID INSPIRALLING COMPACT BINARIES; DENSE STAR-CLUSTERS; GLOBULAR-CLUSTERS; 2ND-POST-NEWTONIAN ORDER; SCIENCE RUN; GROWTH; FORMS; EVOLUTION; LIGO; 5TH AB We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450 M-circle dot and with the component mass ratios between 1: and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 M-circle dot, for nonspinning sources, the rate density upper limit is 0.13 per Mpc(3) per Myr at the 90% confidence level. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Meyer, M. S.; Murray, P. G.; Nelson, J.; Newton, G.; O'Reilly, B.; Pitkin, M.; Plissi, M. V.; Reid, S.; Riesen, R.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Li, J.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Barone, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Nolting, D.; Overmier, H.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S. M.; Aylott, B. E.; Carbone, L.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Page, A.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Smith-Lefebvre, N. D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina Pisa, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Kelley, D.; Lough, J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Shapiro, B.; Shoemaker, D. H.; Soto, J.; Stein, A. J.; Stein, L. C.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, Lab AstroParticule & Cosmol APC, CNRS IN2P3, CEA DSM IRFU,Observ Pais, F-75013 Paris, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; McWilliams, S.; Murphy, D.; Redwine, K.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, B. S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Beck, D.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Markosyan, A.; Tseng, K.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Lundgren, A. P.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, Inst Phys Rennes, CNRS, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] IN2P3 CNRS, LMA, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Gammaitoni, L.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Guidi, G. M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, Lab Kastler Brossel, ENS, CNRS,UPMC, F-75005 Paris, France. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Geng, R.; Jang, Y. J.; Liu, Y.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H.; Kim, Y. -M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Barone, F.; Byer, R. L.; Clark, J.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-37100 Laquila, Italy. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Drever, R. W. P.; Harms, J.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.] Northwestern Univ, Evanston, IL 60208 USA. [Feroz, F.; Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Gil, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Greenhalgh, R. J. S.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Vitale, S.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kandhasamy, S.; Mandic, V.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Kang, G.; Kim, B.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Kim, C.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Hild, Stefan/A-3864-2010; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Ciani, Giacomo/G-1036-2011; Mitrofanov, Valery/D-8501-2012; Marchesoni, Fabio/A-1920-2008; Bell, Angus/E-7312-2011; Santamaria, Lucia/A-7269-2012; prodi, giovanni/B-4398-2010; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Ward, Robert/I-8032-2014; Howell, Eric/H-5072-2014; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Canuel, Benjamin/C-7459-2014; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; OI Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Punturo, Michele/0000-0001-8722-4485; Vicere, Andrea/0000-0003-0624-6231; Ciani, Giacomo/0000-0003-4258-9338; Marchesoni, Fabio/0000-0001-9240-6793; Bell, Angus/0000-0003-1523-0821; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Naticchioni, Luca/0000-0003-2918-0730; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Kanner, Jonah/0000-0001-8115-0577; Husa, Sascha/0000-0002-0445-1971; Papa, M.Alessandra/0000-0002-1007-5298; Vocca, Helios/0000-0002-1200-3917; Aulbert, Carsten/0000-0002-1481-8319; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Ricci, Fulvio/0000-0001-5475-4447; Vetrano, Flavio/0000-0002-7523-4296; Milano, Leopoldo/0000-0001-9487-5876; Swinkels, Bas/0000-0002-3066-3601; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Gray, Norman/0000-0002-1941-9202; Granata, Massimo/0000-0003-3275-1186 FU United States National Science Foundation; LIGO Laboratory; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number P1100068. NR 63 TC 32 Z9 32 U1 3 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY 24 PY 2012 VL 85 IS 10 AR 102004 DI 10.1103/PhysRevD.85.102004 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 947BK UT WOS:000304401400001 ER PT J AU Wolkovich, EM Cook, BI Allen, JM Crimmins, TM Betancourt, JL Travers, SE Pau, S Regetz, J Davies, TJ Kraft, NJB Ault, TR Bolmgren, K Mazer, SJ McCabe, GJ McGill, BJ Parmesan, C Salamin, N Schwartz, MD Cleland, EE AF Wolkovich, E. M. Cook, B. I. Allen, J. M. Crimmins, T. M. Betancourt, J. L. Travers, S. E. Pau, S. Regetz, J. Davies, T. J. Kraft, N. J. B. Ault, T. R. Bolmgren, K. Mazer, S. J. McCabe, G. J. McGill, B. J. Parmesan, C. Salamin, N. Schwartz, M. D. Cleland, E. E. TI Warming experiments underpredict plant phenological responses to climate change SO NATURE LA English DT Article ID GRADIENT METHODS; TEMPERATURE AB Warming experiments are increasingly relied on to estimate plant responses to global climate change(1,2). For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing(3-5). We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated. C1 [Wolkovich, E. M.; Cleland, E. E.] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA. [Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, B. I.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Allen, J. M.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA. [Crimmins, T. M.] USA Natl Phenol Network, Tucson, AZ 85721 USA. [Betancourt, J. L.] US Geol Survey, Tucson, AZ 85719 USA. [Travers, S. E.] N Dakota State Univ, Dept Biol Sci, Fargo, ND 58108 USA. [Pau, S.; Regetz, J.] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA. [Davies, T. J.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. [Kraft, N. J. B.] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada. [Kraft, N. J. B.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Ault, T. R.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Bolmgren, K.] Swedish Univ Agr Sci, Swedish Natl Phenol Network, Unit Field Based Forest Res, SE-36030 Lammhult, Sweden. [Bolmgren, K.] Lund Univ, SE-22362 Lund, Sweden. [Mazer, S. J.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. [McCabe, G. J.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [McGill, B. J.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. [McGill, B. J.] Univ Maine, Sustainabil Solut Initiat, Orono, ME 04469 USA. [Parmesan, C.] Univ Texas Austin, Austin, TX 78712 USA. [Parmesan, C.] Univ Plymouth, Inst Marine Sci, Plymouth PL4 8AA, Devon, England. [Salamin, N.] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. [Salamin, N.] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland. [Schwartz, M. D.] Univ Wisconsin, Dept Geog, Milwaukee, WI 53201 USA. RP Wolkovich, EM (reprint author), Univ Calif San Diego, Div Biol Sci, 9500 Gilman Dr 0116, La Jolla, CA 92093 USA. EM wolkovich@biodiversity.ubc.ca RI Kraft, Nathan/A-2817-2012; Cook, Benjamin/H-2265-2012; Bolmgren, Kjell/E-1459-2016; McGill, Brian/A-3476-2008; OI Kraft, Nathan/0000-0001-8867-7806; Bolmgren, Kjell/0000-0001-9552-9684; McGill, Brian/0000-0002-0850-1913; Crimmins, Theresa/0000-0001-9592-625X FU National Center for Ecological Analysis Synthesis [EF-0553768]; National Science Foundation [DBI-0905806, IOS-0639794, DEB-0922080]; Natural Sciences and Engineering Research Council of Canada FX This work was conducted as part of the Forecasting Phenology Working Group supported by the National Center for Ecological Analysis & Synthesis (EF-0553768), with additional support from National Science Foundation grants DBI-0905806, IOS-0639794, DEB-0922080 and the Natural Sciences and Engineering Research Council of Canada CREATE Training Program. Special thanks to the many data managers, including G. Aldridge, P. Huth, D. Inouye, G. Johansson, A. Miller-Rushing, J. O'Keefe, R. Primack, S. Smiley, T. Sparks and J. Thompson. We thank M. Ayres, L. Kueppers, D. Moore and M. O'Connor for comments on earlier drafts. NR 28 TC 244 Z9 254 U1 46 U2 427 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 24 PY 2012 VL 485 IS 7399 BP 494 EP 497 DI 10.1038/nature11014 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 946IH UT WOS:000304344500041 PM 22622576 ER PT J AU Coates, AJ Wellbrock, A Lewis, GR Arridge, CS Crary, FJ Young, DT Thomsen, MF Reisenfeld, DB Sittler, EC Johnson, RE Szego, K Bebesi, Z Jones, GH AF Coates, A. J. Wellbrock, A. Lewis, G. R. Arridge, C. S. Crary, F. J. Young, D. T. Thomsen, M. F. Reisenfeld, D. B. Sittler, E. C., Jr. Johnson, R. E. Szego, K. Bebesi, Z. Jones, G. H. TI Cassini in Titan's tail: CAPS observations of plasma escape SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SATURNS MAGNETOSPHERE; ELECTRON SPECTROMETER; HYBRID SIMULATION; IONOSPHERE; HUYGENS; ENVIRONMENT; VOYAGER-1; CLOUDS; WIND; IONS AB We present observations of CAPS electron and ion spectra during Titan distant tail crossings at 5,000-10,000 km altitude by the Cassini spacecraft. In common with closer tail encounters, we identify ionospheric plasma in the tail. Some of the electron spectra indicate a direct magnetic connection to Titan's dayside ionosphere due to the presence of ionospheric photoelectrons. Ion observations reveal heavy (m/q similar to 16 and 28) and light (m/q = 1-2) ion populations streaming into the tail. Using the distant tail encounters T9, T75 and T63, we estimate total plasma loss rates from Titan via this process of (4.2, 0.96 and 2.3) x 10(24) ions s(-1) respectively for the three encounters, values which are in agreement with some simulations but slightly lower than earlier estimates based on non-differential techniques. Using the mass-separated data, this corresponds to mass loss rates of (8.9, 1.6, 4.0) x 10(25) amu s(-1) for T9, T75 and T63 respectively, an average loss rate of similar to 7 tonnes per Earth day. Remarkably, all of the tail encounters studied here indicate a split tail feature, indicating that this may be a common feature in Titan's interaction with Saturn's magnetosphere. C1 [Coates, A. J.; Wellbrock, A.; Lewis, G. R.; Arridge, C. S.; Jones, G. H.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Coates, A. J.; Wellbrock, A.; Lewis, G. R.; Arridge, C. S.; Jones, G. H.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Crary, F. J.; Young, D. T.] SW Res Inst, San Antonio, TX USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Sittler, E. C., Jr.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Johnson, R. E.] Univ Virginia, Sch Engn & Appl Sci, Charlottesville, VA USA. [Szego, K.; Bebesi, Z.] RMKI, Wigner RCP, Budapest, Hungary. RP Coates, AJ (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM ajc@mssl.ucl.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Jones, Geraint/C-1682-2008; Reisenfeld, Daniel/F-7614-2015; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Jones, Geraint/0000-0002-5859-1136 FU STFC; ESA via the UK Space Agency; NASA JPL [1243218, 1405851]; U. S. Department of Energy; NASA FX We thank MAG team members H. Wei and C.T. Russell for useful discussions. We thank L.K. Gilbert for software support. We acknowledge support of CAPS ELS science by STFC, and of the CAPS ELS operations and software team by STFC (to 2010) and by ESA via the UK Space Agency (from 2011). CSA was supported by an STFC Postdoctoral fellowship and GHJ by an STFC Advanced Fellowship. Work in the U.S. was supported by NASA JPL contracts 1243218 and 1405851 to the Southwest Research Institute. Work at Los Alamos was conducted under the auspices of the U. S. Department of Energy, with support from NASA's Cassini project. NR 50 TC 23 Z9 23 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 23 PY 2012 VL 117 AR A05324 DI 10.1029/2012JA017595 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949OV UT WOS:000304586400004 ER PT J AU McPeters, RD Labow, GJ AF McPeters, Richard D. Labow, Gordon J. TI Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of the climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data. C1 [McPeters, Richard D.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Labow, Gordon J.] Sci Syst & Applicat Inc, Lanham, MD USA. RP McPeters, RD (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 614, Greenbelt, MD 20771 USA. EM richard.d.mcpeters@nasa.gov RI McPeters, Richard/G-4955-2013 OI McPeters, Richard/0000-0002-8926-8462 FU NASA FX The Aura MLS data were obtained from the MLS team via the Aura Validation Data Center, while balloon sonde data were obtained from the WOUDC in Canada and from the SHADOZ team at GSFC. We have a deep appreciation for the great effort that goes into producing and maintaining long-term data sets. We thank the MLS team and the many people who launch ozone sondes around the world. This work was supported under NASA's MEaSUREs program for the creation of long-term multi-instrument data sets. NR 16 TC 37 Z9 37 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 23 PY 2012 VL 117 AR D10303 DI 10.1029/2011JD017006 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 949FT UT WOS:000304562800001 ER PT J AU Steffen, JH Ragozzine, D Fabrycky, DC Carter, JA Ford, EB Holman, MJ Rowe, JF Welsh, WF Borucki, WJ Boss, AP Ciardi, DR Quinn, SN AF Steffen, Jason H. Ragozzine, Darin Fabrycky, Daniel C. Carter, Joshua A. Ford, Eric B. Holman, Matthew J. Rowe, Jason F. Welsh, William F. Borucki, William J. Boss, Alan P. Ciardi, David R. Quinn, Samuel N. TI Kepler constraints on planets near hot Jupiters SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE extrasolar planets; planet formation; planetary dynamics ID EARTH-LIKE PLANETS; 1ST 4 MONTHS; EXTRASOLAR PLANETS; STATISTICAL PROPERTIES; TIMING VARIATIONS; GIANT PLANETS; LIGHT CURVES; MIGRATION; SYSTEMS; CANDIDATES AB We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2: 1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. C1 [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Ragozzine, Darin; Carter, Joshua A.; Holman, Matthew J.; Quinn, Samuel N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fabrycky, Daniel C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32111 USA. [Rowe, Jason F.; Borucki, William J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Boss, Alan P.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Steffen, JH (reprint author), Fermilab Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM jsteffen@fnal.gov RI Steffen, Jason/A-4320-2013; Carter, Joshua/A-8280-2013; Ragozzine, Darin/C-4926-2013; OI Ciardi, David/0000-0002-5741-3047; Fabrycky, Daniel/0000-0003-3750-0183 FU National Aeronautics and Space Administration's (NASA) Science Mission Directorate; NASA [NNX08AR04G, HF-51272.01-A, HF-51267.01-A]; Space Telescope Science Institute; Association of Universities for Research in Astronomy, Inc. [NAS 5-26555] FX Funding for the Kepler mission is provided by the National Aeronautics and Space Administration's (NASA) Science Mission Directorate. We thank the Kepler team for their many years of hard work. J.H.S acknowledges support from NASA under Grant NNX08AR04G under the Kepler Participating Scientist Program. D.C.F. and J.A.C. acknowledge support from NASA through Hubble Fellowship Grants HF-51272.01-A and HF-51267.01-A awarded by the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under Contract NAS 5-26555. NR 44 TC 71 Z9 71 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 22 PY 2012 VL 109 IS 21 BP 7982 EP 7987 DI 10.1073/pnas.1120970109 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 947QY UT WOS:000304445800020 PM 22566651 ER PT J AU Han, JW Oh, JS Meyyappan, M AF Han, Jin-Woo Oh, Jae Sub Meyyappan, M. TI Vacuum nanoelectronics: Back to the future?-Gate insulated nanoscale vacuum channel transistor SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-EMISSION; MICROELECTRONICS; FABRICATION; TRIODE; TUBES AB A gate-insulated vacuum channel transistor was fabricated using standard silicon semiconductor processing. Advantages of the vacuum tube and transistor are combined here by nanofabrication. A photoresist ashing technique enabled the nanogap separation of the emitter and the collector, thus allowing operation at less than 10 V. A cut-off frequency f(T) of 0.46 THz has been obtained. The nanoscale vacuum tubes can provide high frequency/power output while satisfying the metrics of lightness, cost, lifetime, and stability at harsh conditions, and the operation voltage can be decreased comparable to the modern semiconductor devices. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4717751] C1 [Han, Jin-Woo; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. [Oh, Jae Sub] Natl Nanofab Ctr, Taejon 305806, South Korea. RP Han, JW (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov NR 15 TC 34 Z9 34 U1 3 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 21 PY 2012 VL 100 IS 21 AR 213505 DI 10.1063/1.4717751 PG 4 WC Physics, Applied SC Physics GA 948FV UT WOS:000304489900078 ER PT J AU Baker, JG Thorpe, JI AF Baker, John G. Thorpe, J. I. TI Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors SO PHYSICAL REVIEW LETTERS LA English DT Article ID MATTER-WAVE; RADIATION; GRAVITY; TRACKING AB We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e. g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. C1 [Baker, John G.; Thorpe, J. I.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Baker, JG (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RI Thorpe, James/D-3150-2012 FU NASA [08-ATFP08-0126, 11-ATP11-0046] FX We thank Dr. Jan Harms for providing a copy of his report [27]. We also thank Holger Muller and Jeffrey Livas for helpful discussions and Bernard Kelly for his careful review of the manuscript. This work was partially supported by NASA Grants No. 08-ATFP08-0126 and No. 11-ATP11-0046. NR 27 TC 9 Z9 9 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 21 PY 2012 VL 108 IS 21 AR 211101 DI 10.1103/PhysRevLett.108.211101 PG 5 WC Physics, Multidisciplinary SC Physics GA 945CI UT WOS:000304250000004 PM 23003235 ER PT J AU Long, DA Cygan, A van Zee, RD Okumura, M Miller, CE Lisak, D Hodges, JT AF Long, D. A. Cygan, A. van Zee, R. D. Okumura, M. Miller, C. E. Lisak, D. Hodges, J. T. TI Frequency-stabilized cavity ring-down spectroscopy SO CHEMICAL PHYSICS LETTERS LA English DT Article ID O-2 A-BAND; ELEMENTARY CHEMICAL PROCESSES; ABSORPTION-SPECTROSCOPY; COMB SPECTROSCOPY; MOLECULAR-BEAM; NOBEL LECTURE; WATER-VAPOR; SPECTROMETER; INTENSITIES; PRESSURE AB We describe frequency-stabilized cavity ring-down spectroscopy (FS-CRDS), an ultraprecise refinement of conventional CRDS. We review the technique and highlight some recent studies that have utilized FS-CRDS to perform precision measurements of molecular transitions in the near-infrared. We describe system enhancements that are currently under implementation, including Pound-Drever-Hall locking and optical frequency comb-stabilization, which have the potential to reduce the uncertainty in both the absorption and frequency axes of our spectra by more than an order of magnitude. Finally, we describe high impact applications of this capability that can exploit frequency axis uncertainty at the 10 kHz level and signal-to-noise ratios exceeding 200000:1. (C) 2012 Elsevier B.V. All rights reserved. C1 [Long, D. A.; van Zee, R. D.; Hodges, J. T.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Cygan, A.; Lisak, D.] Uniwersytet Mikolaja Kopernika, Inst Fizyki, PL-87100 Torun, Poland. [Okumura, M.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Miller, C. E.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. RP Long, DA (reprint author), NIST, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM David.Long@nist.gov; mo@caltech.edu; jhodges@nist.gov RI Cygan, Agata/E-1393-2014; Lisak, Daniel/E-1470-2014; Okumura, Mitchio/I-3326-2013 OI Okumura, Mitchio/0000-0001-6874-1137 FU National Institute of Standards and Technology (NIST), Gaithersburg, MD; National Aeronautics and Space Administration (NASA) [NNG06GD88G, NNX09AE21G]; National Science Foundation (NSF) [CHE-0957490]; NASA Atmospheric Carbon Observations from Space (ACOS) [104127-04.02.02]; Foundation for Polish Science TEAM; EU; Polish NCN [N N202 2392 40]; National Science Centre [DEC-2011/01/B/ST2/00491] FX We acknowledge continual support from the National Institute of Standards and Technology (NIST), Gaithersburg, MD, including the NIST Greenhouse Gas Measurements and Climate Research Program, which made much of the work described herein possible. Part of the research described in this Letter was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). Additional support was provided by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission; the NASA Upper Atmospheric Research Program Grants NNG06GD88G and NNX09AE21G; National Science Foundation (NSF) Grant CHE-0957490, and the NASA Atmospheric Carbon Observations from Space (ACOS) Grant 104127-04.02.02. The research was partially supported by the Foundation for Polish Science TEAM Project co-financed by the EU European Regional Development Fund and is part of the program of the National Laboratory FAMO in Torun, Poland. A. Cygan is supported by the Polish NCN Project No. N N202 2392 40. The research was also supported by the National Science Centre, Project No. DEC-2011/01/B/ST2/00491. NR 68 TC 38 Z9 39 U1 6 U2 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAY 21 PY 2012 VL 536 BP 1 EP 8 DI 10.1016/j.cplett.2012.03.035 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 937MA UT WOS:000303661400001 ER PT J AU Vergara, A Vembu, S Ayhan, T Ryan, MA Homer, ML Huerta, R AF Vergara, Alexander Vembu, Shankar Ayhan, Tuba Ryan, Margaret A. Homer, Margie L. Huerta, Ramon TI Chemical gas sensor drift compensation using classifier ensembles SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Sensor drift; Metal-oxide sensors; Time series classification; Ensemble methods; Support vector machines ID ELECTRONIC NOSE; COUNTERACTION; ARRAYS AB Sensor drift remains to be the most challenging problem in chemical sensing. To address this problem we have collected an extensive dataset for six different volatile organic compounds over a period of three years under tightly controlled operating conditions using an array of 16 metal-oxide gas sensors. The recordings were made using the same sensor array and a robust gas delivery system. To the best of our knowledge, this is one of the most comprehensive datasets available for the design and development of drift compensation methods, which is freely reachable on-line. We introduced a machine learning approach, namely an ensemble of classifiers, to solve a gas discrimination problem over extended periods of time with high accuracy rates. Experiments clearly indicate the presence of drift in the sensors during the period of three years and that it degrades the performance of the classifiers. Our proposed ensemble method based on support vector machines uses a weighted combination of classifiers trained at different points of time. As our experimental results illustrate, the ensemble of classifiers is able to cope well with sensor drift and performs better than the baseline competing methods. (C) 2012 Elsevier B.V. All rights reserved. C1 [Vergara, Alexander; Vembu, Shankar; Huerta, Ramon] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA. [Ayhan, Tuba] Tech Univ Istanbul, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey. [Ryan, Margaret A.; Homer, Margie L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vergara, A (reprint author), Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA. EM vergara@ucsd.edu RI Huerta, Ramon/J-4316-2012 OI Huerta, Ramon/0000-0003-3925-5169 FU U.S. office of Naval Research (ONR) [N00014-07-1-0741]; Jet Propulsion Laboratory [2010-1396686]; US Army Medical and Materiel Command; United States Army Research Institute of Environmental Medicine (USARIEM) [W81XWH-10-C-0040]; Elintrix FX This work has been supported by U.S. office of Naval Research (ONR) under the contract number N00014-07-1-0741, by Jet Propulsion Laboratory under the contract number 2010-1396686, and by the US Army Medical and Materiel Command and by the United States Army Research Institute of Environmental Medicine (USARIEM), under contract number W81XWH-10-C-0040 in collaboration with Elintrix. The authors also thank Joey Reeds and Travis Wong, from Elintrix, for the helpful and fruitful discussions during the elaboration of this work as well as Joanna Zytkowicz for proofreading and revising the manuscript. NR 33 TC 77 Z9 80 U1 3 U2 44 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAY 20 PY 2012 VL 166 BP 320 EP 329 DI 10.1016/j.snb.2012.01.074 PG 10 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 959ZN UT WOS:000305356900045 ER PT J AU Dudik, RP Jordan, ME Dorland, BN Veillette, D Waczynski, A Lane, BF Loose, M Kan, E Waterman, J Rollins, C Pravdo, S AF Dudik, Rachel P. Jordan, Margaret E. Dorland, Bryan N. Veillette, Daniel Waczynski, Augustyn Lane, Benjamin F. Loose, Markus Kan, Emily Waterman, James Rollins, Chris Pravdo, Steve TI Interpixel crosstalk in Teledyne Imaging Sensors H4RG-10 detectors SO APPLIED OPTICS LA English DT Article AB Complementary metal-oxide semiconductor (CMOS)-hybrid arrays have become competitive optical detectors for use in ground-and space-based astronomy. Interpixel capacitance (IPC) is one source of error that appears in most CMOS arrays. In this paper, we use a single-pixel-reset method to model IPC. We combine this IPC model with a model for charge diffusion to estimate the total crosstalk on H4RG-10 arrays. Finally, we compare our model results to Fe-55 data obtained using an astrometric camera built to test the H4RG-10 B0 generation detectors. (C) 2012 Optical Society of America C1 [Dudik, Rachel P.; Dorland, Bryan N.; Veillette, Daniel] USN Observ, Washington, DC 20392 USA. [Jordan, Margaret E.] Computat Phys Inc, Springfield, VA 22151 USA. [Waczynski, Augustyn; Kan, Emily] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lane, Benjamin F.] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA. [Loose, Markus] Markury Sci Inc, Thousand Oaks, CA 91361 USA. [Waterman, James] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA. [Rollins, Chris] Res Support Instruments Inc, Lanham, MD 20706 USA. [Pravdo, Steve] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dudik, RP (reprint author), USN Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA. EM rpdudik@usno.navy.mil NR 17 TC 2 Z9 2 U1 1 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2012 VL 51 IS 15 BP 2877 EP 2887 DI 10.1364/AO.51.002877 PG 11 WC Optics SC Optics GA 945AY UT WOS:000304246400012 PM 22614589 ER PT J AU Merrell, WC Aslam, S Brown, AD Chervenak, JA Huang, WC Quijada, M Wollack, EJ AF Merrell, Willie C. Aslam, Shahid, II Brown, Ari D. Chervenak, James A. Huang, Wei-Chung Quijada, Manuel Wollack, Edward J. TI Compact micromachined infrared bandpass filters for planetary spectroscopy SO APPLIED OPTICS LA English DT Article ID X-RAY-DETECTORS; INTERFERENCE FILTERS; RADIATION-DAMAGE; TRANSMISSION AB The future needs of space-based, observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high-radiation and low-temperature environments. Here, we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 mu m and report good agreement between the modeled and measured response. We present a technique of using standard micromachining processes for semiconductor fabrication to make compact, free-standing, resonant, metal mesh filter arrays with silicon support frames. The process can be customized to include multiple detector array architectures, and the silicon frame provides lightweight mechanical support with low form factor. C1 [Merrell, Willie C.; Aslam, Shahid, II; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Brown, AD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM ari.d.brown@nasa.gov RI Aslam, Shahid/D-1099-2012; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 FU NASA Goddard Space Flight Center [FY2011 IRAD]; NASA FX This work was supported by a directed FY2011 IRAD award through Brook Lakew from the NASA Goddard Space Flight Center. This work was also supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 35 TC 2 Z9 2 U1 1 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAY 20 PY 2012 VL 51 IS 15 BP 3046 EP 3053 DI 10.1364/AO.51.003046 PG 8 WC Optics SC Optics GA 945AY UT WOS:000304246400032 PM 22614609 ER PT J AU Anderson, GE Gaensler, BM Slane, PO Rea, N Kaplan, DL Posselt, B Levin, L Johnston, S Murray, SS Brogan, CL Bailes, M Bates, S Benjamin, RA Bhat, NDR Burgay, M Burke-Spolaor, S Chakrabarty, D D'Amico, N Drake, JJ Esposito, P Grindlay, JE Hong, J Israel, GL Keith, MJ Kramer, M Lazio, TJW Lee, JC Mauerhan, JC Milia, S Possenti, A Stappers, B Steeghs, DTH AF Anderson, Gemma E. Gaensler, B. M. Slane, Patrick O. Rea, Nanda Kaplan, David L. Posselt, Bettina Levin, Lina Johnston, Simon Murray, Stephen S. Brogan, Crystal L. Bailes, Matthew Bates, Samuel Benjamin, Robert A. Bhat, N. D. Ramesh Burgay, Marta Burke-Spolaor, Sarah Chakrabarty, Deepto D'Amico, Nichi Drake, Jeremy J. Esposito, Paolo Grindlay, Jonathan E. Hong, Jaesub Israel, G. L. Keith, Michael J. Kramer, Michael Lazio, T. Joseph W. Lee, Julia C. Mauerhan, Jon C. Milia, Sabrina Possenti, Andrea Stappers, Ben Steeghs, Danny T. H. TI MULTI-WAVELENGTH OBSERVATIONS OF THE RADIO MAGNETAR PSR J1622-4950 AND DISCOVERY OF ITS POSSIBLY ASSOCIATED SUPERNOVA REMNANT SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G333.9+0.0); ISM: supernova remnants; pulsars: individual (PSR J1622-4950); radio continuum: stars; stars: neutron; X-rays: stars ID X-RAY PULSAR; GALACTIC PLANE SURVEY; LARGE-AREA TELESCOPE; PHOTON IMAGING CAMERA; AXP XTE J1810-197; 1E 1547.0-5408; SOURCE CATALOG; CROSS-SECTIONS; PROPER MOTIONS; 2009 OUTBURST AB We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of similar to 50 over 3.7 years, decaying exponentially with a characteristic time of tau = 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant (SNR). If G333.9+0.0 is an SNR then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggest that these two objects could be physically associated. C1 [Slane, Patrick O.; Drake, Jeremy J.; Grindlay, Jonathan E.; Hong, Jaesub; Lee, Julia C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rea, Nanda] Inst Ciencies Espai CSIC IEEC, Fac Ciencies, Barcelona 08193, Spain. [Kaplan, David L.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. [Posselt, Bettina] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Levin, Lina; Bailes, Matthew; Bhat, N. D. Ramesh] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Levin, Lina; Johnston, Simon; Burke-Spolaor, Sarah; Keith, Michael J.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Murray, Stephen S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Brogan, Crystal L.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Bates, Samuel; Kramer, Michael; Stappers, Ben] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Bates, Samuel] W Virginia Univ, Dept Phys, Morgantown, WV USA. [Benjamin, Robert A.] Univ Wisconsin, Dept Phys, Whitewater, WI 53190 USA. [Burgay, Marta; D'Amico, Nichi; Esposito, Paolo; Milia, Sabrina; Possenti, Andrea] INAF Osservatorio Astron Cagliari, I-09012 Capoterra, Italy. [Burke-Spolaor, Sarah; Lazio, T. Joseph W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chakrabarty, Deepto] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Chakrabarty, Deepto] MIT, Dept Phys, Cambridge, MA 02139 USA. [Israel, G. L.] INAF Osservatorio Astron Roma, Monteporsio Catone, Italy. [Kramer, Michael] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Mauerhan, Jon C.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Milia, Sabrina] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy. [Steeghs, Danny T. H.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Anderson, Gemma E.; Gaensler, B. M.] Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia. RP Anderson, GE (reprint author), Univ Sydney, Sch Phys A29, Sydney Inst Astron, Sydney, NSW 2006, Australia. EM g.anderson@physics.usyd.edu.au RI Bhat, Ramesh/B-7396-2013; Steeghs, Danny/C-5468-2009; Gaensler, Bryan/F-8655-2010; Rea, Nanda/I-2853-2015; Lee, Julia/G-2381-2015; OI Steeghs, Danny/0000-0003-0771-4746; Rea, Nanda/0000-0003-2177-6388; Lee, Julia/0000-0002-7336-3588; Israel, GianLuca/0000-0001-5480-6438; Burgay, Marta/0000-0002-8265-4344; Anderson, Gemma/0000-0001-6544-8007; Posselt, Bettina/0000-0003-2317-9747; Esposito, Paolo/0000-0003-4849-5092; Gaensler, Bryan/0000-0002-3382-9558 FU Australian Postgraduate Award; Australian Laureate Fellowship; NASA [NAS8-03060, NAS8-39073, GO9-0155X]; Ramon y Cajal Research Fellowship; Formosa Program [TW2010005]; Autonomous Region of Sardinia through program PO Sardegna FSE; STFC; ESA; Australian Research Council; Science Foundation for Physics within the University of Sydney; Commonwealth of Australia; NFS; Spitzer Legacy Program; [AYA2009-07391]; [SGR2009-811] FX We thank the referee for their careful reading of the manuscript and constructive suggestions. G. E. A acknowledges the support of an Australian Postgraduate Award. B. M. G. acknowledges the support of an Australian Laureate Fellowship. P.O.S. acknowledges partial support from NASA Contract NAS8-03060. N.R. is supported by a Ramon y Cajal Research Fellowship to CSIC, and grants AYA2009-07391 and SGR2009-811, as well as the Formosa Program TW2010005. J.J.D was supported by NASA contract NAS8-39073 to the Chandra X-ray Center (CXC). P. E. acknowledges financial support from the Autonomous Region of Sardinia through a research grant under the program PO Sardegna FSE 2007-2013, L. R. 7/2007. D. T. H. S. acknowledges an STFC Advanced Fellowship. Support for this work was also provided by NASA through Chandra Award Number GO9-0155X issued by the CXC, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA. This research makes use of data obtained with the Chandra X-ray Observatory, and software provided by the CXC in the application packages CIAO. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. MOST is operated with the support of the Australian Research Council and the Science Foundation for Physics within the University of Sydney. ATCA and Parkes, part of the Australia Telescope, are funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. Observing time on the 6.5 m Baade Magellan Telescope, located at Las Campanas Observatory, was allocated through the Harvard-Smithsonian Center for Astrophysics. 2MASS is a joint project of the University of Massachusetts and the IPAC/Caltech, funded by the NASA and NFS. GLIMPSE survey data are part of the Spitzer Legacy Program. The Spitzer Space Telescope is operated by the JPL/Caltech under a contract with NASA. This research has made use of NASA's Astrophysics Data System. NR 99 TC 25 Z9 26 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 53 DI 10.1088/0004-637X/751/1/53 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600053 ER PT J AU Choi, JY Shin, IG Park, SY Han, C Gould, A Sumi, T Udalski, A Beaulieu, JP Street, R Dominik, M Allen, W Almeida, LA Bos, M Christie, GW Depoy, DL Dong, S Drummond, J Gal-Yam, A Gaudi, BS Henderson, CB Hung, LW Jablonski, F Janczak, J Lee, CU Mallia, F Maury, A McCormick, J McGregor, D Monard, LAG Moorhouse, D Munoz, JA Natusch, T Nelson, C Park, BG Pogge, RW Tan, TG Thornley, G Yee, JC Abe, F Barnard, E Baudry, J Bennett, DP Bond, IA Botzler, CS Freeman, M Fukui, A Furusawa, K Hayashi, F Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Kobara, S Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Nishimoto, K Ohnishi, K Okumura, T Omori, K Perrott, YC Rattenbury, N Saito, T Skuljan, L Sullivan, DJ Suzuki, D Suzuki, K Sweatman, WL Takino, S Tristram, PJ Wada, K Yock, PCM Szymanski, MK Kubiak, M Pietrzynski, G Soszynski, I Poleski, R Ulaczyk, K Wyrzykowski, L Kozllowski, S Pietrukowicz, P Albrow, MD Bachelet, E Batista, V Bennett, CS Bowens-Rubin, R Brillant, S Cassan, A Cole, A Corrales, E Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Greenhill, J Kane, SR Menzies, J Sahu, KC Wambsganss, J Williams, A Zub, M Allan, A Bramich, DM Browne, P Clay, N Fraser, S Horne, K Kains, N Mottram, C Snodgrass, C Steele, I Tsapras, Y Alsubai, KA Bozza, V Burgdorf, MJ Novati, SC Dodds, P Dreizler, S Finet, F Gerner, T Glitrup, M Grundahl, F Hardis, S Harpsoe, K Hinse, TC Hundertmark, M Jorgensen, UG Kerins, E Liebig, C Maier, G Mancini, L Mathiasen, M Penny, MT Proft, S Rahvar, S Ricci, D Scarpetta, G Schafer, S Schonebeck, F Skottfelt, J Surdej, J Southworth, J Zimmer, F AF Choi, J. -Y. Shin, I. -G. Park, S. -Y. Han, C. Gould, A. Sumi, T. Udalski, A. Beaulieu, J. -P. Street, R. Dominik, M. Allen, W. Almeida, L. A. Bos, M. Christie, G. W. Depoy, D. L. Dong, S. Drummond, J. Gal-Yam, A. Gaudi, B. S. Henderson, C. B. Hung, L. -W. Jablonski, F. Janczak, J. Lee, C. -U. Mallia, F. Maury, A. McCormick, J. McGregor, D. Monard, L. A. G. Moorhouse, D. Munoz, J. A. Natusch, T. Nelson, C. Park, B. -G. Pogge, R. W. Tan, T. -G. TG Thornley, G. Yee, J. C. Abe, F. Barnard, E. Baudry, J. Bennett, D. P. Bond, I. A. Botzler, C. S. Freeman, M. Fukui, A. Furusawa, K. Hayashi, F. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Kobara, S. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Nishimoto, K. Ohnishi, K. Okumura, T. Omori, K. Perrott, Y. C. Rattenbury, N. Saito, To Skuljan, L. Sullivan, D. J. Suzuki, D. Suzuki, K. Sweatman, W. L. Takino, S. Tristram, P. J. Wada, K. Yock, P. C. M. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Soszynski, I. Poleski, R. Ulaczyk, K. Wyrzykowski, L. Kozllowski, S. Pietrukowicz, P. Albrow, M. D. Bachelet, E. Batista, V. Bennett, C. S. Bowens-Rubin, R. Brillant, S. Cassan, A. Cole, A. Corrales, E. Coutures, Ch. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Greenhill, J. Kane, S. R. Menzies, J. Sahu, K. C. Wambsganss, J. Williams, A. Zub, M. Allan, A. Bramich, D. M. Browne, P. Clay, N. Fraser, S. Horne, K. Kains, N. Mottram, C. Snodgrass, C. Steele, I. Tsapras, Y. Alsubai, K. A. Bozza, V. Burgdorf, M. J. Novati, S. Calchi Dodds, P. Dreizler, S. Finet, F. Gerner, T. Glitrup, M. Grundahl, F. Hardis, S. Harpsoe, K. Hinse, T. C. Hundertmark, M. Jorgensen, U. G. Kerins, E. Liebig, C. Maier, G. Mancini, L. Mathiasen, M. Penny, M. T. Proft, S. Rahvar, S. Ricci, D. Scarpetta, G. Schaefer, S. Schoenebeck, F. Skottfelt, J. Surdej, J. Southworth, J. Zimmer, F. CA FUN Collaboration MOA Collaboration OGLE Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Consortium TI CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: bulge; gravitational lensing: micro ID STELLAR ATMOSPHERE MODELS; GALACTIC BULGE; LIGHT CURVES; CHEMICAL EVOLUTION; DWARF; PHOTOMETRY; PLANETS; GIANT; SIGNATURES; SYSTEMS AB We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of theta(E) similar to 0.08 mas combined with the short timescale of t(E) similar to 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of similar to 0.84M(circle dot) is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio. C1 [Choi, J. -Y.; Shin, I. -G.; Park, S. -Y.; Han, C.] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. [Gould, A.; Gaudi, B. S.; Henderson, C. B.; McGregor, D.; Pogge, R. W.; Yee, J. C.; Batista, V.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Sumi, T.; Suzuki, D.; Wada, K.] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, L.; Kozllowski, S.; Pietrukowicz, P.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Beaulieu, J. -P.; Cassan, A.; Corrales, E.; Coutures, Ch.; Dieters, S.] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Street, R.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Dominik, M.; Browne, P.; Horne, K.; Dodds, P.; Hundertmark, M.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Almeida, L. A.; Jablonski, F.] Inst Nacl Pesquisas Espaciais MCTI, Sao Paulo, Brazil. [Bos, M.] Molehill Astron Observ, N Shore, New Zealand. [Christie, G. W.; Natusch, T.] Auckland Observ, Auckland, New Zealand. [Depoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Dong, S.] Inst Adv Study, Princeton, NJ 08540 USA. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Hung, L. -W.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Janczak, J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lee, C. -U.; Park, B. -G.; Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.; Maury, A.] Campo Catino Austral Observ, San Pedro De Atacama, Chile. [McCormick, J.] Farm Cove Observ, Auckland, New Zealand. [Monard, L. A. G.] Bronberg Observ, Pretoria, South Africa. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Munoz, J. A.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Nelson, C.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Tan, T. -G. TG] Perth Exoplanet Survey Telescope, Perth, WA, Australia. [Abe, F.; Furusawa, K.; Hayashi, F.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kobara, S.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Nishimoto, K.; Okumura, T.; Omori, K.; Suzuki, K.; Takino, S.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Barnard, E.; Baudry, J.; Botzler, C. S.; Freeman, M.; Perrott, Y. C.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Bennett, D. P.] Univ Notre Damey, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.; Lin, W.; Ling, C. H.; Skuljan, L.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Fukui, A.] Natl Inst Nat Sci, Natl Astron Observ Japan, Okayama Astrophys Observ, Kamogatacho, Okayama 7190232, Japan. [Hearnshaw, J. B.; Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Pietrzynski, G.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bachelet, E.; Dieters, S.; Fouque, P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Bennett, C. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bowens-Rubin, R.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Brillant, S.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Cole, A.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Gpo Hobart, Tas 7001, Australia. [Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wambsganss, J.; Zub, M.; Gerner, T.; Liebig, C.; Maier, G.; Proft, S.; Schoenebeck, F.; Zimmer, F.] Heidelberg Univ, Zentrum Astron, ARI, D-69120 Heidelberg, Germany. [Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Bramich, D. M.; Kains, N.] European So Observ, D-85748 Garching, Germany. [Clay, N.; Fraser, S.; Mottram, C.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Snodgrass, C.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Alsubai, K. A.] Qatar Fdn, Doha, Qatar. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dept Phys, I-84084 Fisciano, SA, Italy. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Dreizler, S.; Hundertmark, M.; Schaefer, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Glitrup, M.; Grundahl, F.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hardis, S.; Harpsoe, K.; Hinse, T. C.; Jorgensen, U. G.; Mathiasen, M.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Harpsoe, K.] Geol Museum, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Kerins, E.; Penny, M. T.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mancini, L.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Rahvar, S.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. RP Han, C (reprint author), Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. RI Williams, Andrew/K-2931-2013; Almeida, L./G-7188-2012; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Kozlowski, Szymon/G-4799-2013 OI Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855; Tan, Thiam-Guan/0000-0001-5603-6895; Ricci, Davide/0000-0002-9790-0552; Penny, Matthew/0000-0001-7506-5640; Snodgrass, Colin/0000-0001-9328-2905; Williams, Andrew/0000-0001-9080-0105; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Kozlowski, Szymon/0000-0003-4084-880X FU National Research Foundation of Korea [2009-0081561]; European Research Council under European Community [246678]; National Science Foundation [AST-1103471, 2009068160, 2011082275]; NASA [NNX08AF40G]; Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe; [JSPS17340074]; [JSPS18253002]; [JSPS20340052]; [JSPS22403003]; [JSPS23340064]; [JSPS18749004]; [MEXT19015005]; [JSPS20740104] FX Work by C. H. was supported by the Creative Research Initiative Program (2009-0081561) of the National Research Foundation of Korea. The MOA experiment was supported by JSPS17340074, JSPS18253002, JSPS20340052, JSPS22403003, and JSPS23340064. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 246678. Work by B. S. G. and A. G. was supported in part by NSF grant AST-1103471. Work by B. S. G., A. G., R. W. P., and J.C.Y. was supported in part by NASA grant NNX08AF40G. Work by J.C.Y. was supported by a National Science Foundation Graduate Research Fellowship under grant No. 2009068160. C. B. H. acknowledges the support of NSF Graduate Research Fellowship 2011082275. T. S. was supported by the grants JSPS18749004, MEXT19015005, and JSPS20740104. F. F., D. R., and J.S. were supported by the Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe. NR 53 TC 16 Z9 16 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 41 DI 10.1088/0004-637X/751/1/41 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600041 ER PT J AU Iwakiri, WB Terada, Y Mihara, T Angelini, L Tashiro, MS Enoto, T Yamada, S Makishima, K Nakajima, M Yoshida, A AF Iwakiri, W. B. Terada, Y. Mihara, T. Angelini, L. Tashiro, M. S. Enoto, T. Yamada, S. Makishima, K. Nakajima, M. Yoshida, A. TI POSSIBLE DETECTION OF AN EMISSION CYCLOTRON RESONANCE SCATTERING FEATURE FROM THE ACCRETION-POWERED PULSAR 4U 1626-67 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (4U 1626-67); stars: magnetic field; X-rays: binaries; X-rays: stars ID X-RAY PULSAR; STRONGLY MAGNETIZED PLASMA; TORQUE REVERSAL; LINE EMISSION; SUZAKU; 4U-1626-67; SPECTRUM; FIELDS; SPECTROSCOPY; HERCULES-X-1 AB We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of similar to 88 ks. The source was detected at an average 10-60 keV flux of similar to 4 x 10(-10) erg cm(-2) s(-1). The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at similar to 37 keV by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand, the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model, we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(-3) and 1.53 x 10(-5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase. C1 [Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.] Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, Saitama 3388570, Japan. [Mihara, T.] Inst Phys & Chem Res RIKEN, Wako, Saitama 3510198, Japan. [Angelini, L.; Yamada, S.] NASA, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Enoto, T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Enoto, T.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Nakajima, M.] Nihon Univ, Sch Dent Matsudo, Matsudo, Chiba 2718587, Japan. [Yoshida, A.] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2298558, Japan. RP Iwakiri, WB (reprint author), Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, 255 Shimo Okubo, Saitama 3388570, Japan. RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; XRAY, SUZAKU/A-1808-2009; Mihara, Tatehiro/C-5536-2017 OI Terada, Yukikatsu/0000-0002-2359-1857; Mihara, Tatehiro/0000-0002-6337-7943 NR 36 TC 10 Z9 10 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 35 DI 10.1088/0004-637X/751/1/35 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600035 ER PT J AU Lokas, EL Majewski, SR Kazantzidis, S Mayer, L Carlin, JL Nidever, DL Moustakas, LA AF Lokas, Ewa L. Majewski, Steven R. Kazantzidis, Stelios Mayer, Lucio Carlin, Jeffrey L. Nidever, David L. Moustakas, Leonidas A. TI THE SHAPES OF MILKY WAY SATELLITES: LOOKING FOR SIGNATURES OF TIDAL STIRRING SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: fundamental parameters; galaxies: kinematics and dynamics; galaxies: structure; Local Group ID DWARF SPHEROIDAL GALAXY; EXPLORING HALO SUBSTRUCTURE; LARGE-MAGELLANIC-CLOUD; DIGITAL SKY SURVEY; RR-LYRAE STARS; GIANT STARS; EXTENDED STRUCTURE; DARK-MATTER; LOCAL GROUP; LEO-II AB We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties such as bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available, we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened toward a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, Large Magellanic Cloud, and possibly Carina. In addition, 6 out of 11 dwarfs that we studied show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model. C1 [Lokas, Ewa L.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Majewski, Steven R.; Nidever, David L.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Kazantzidis, Stelios] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kazantzidis, Stelios] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kazantzidis, Stelios] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Mayer, Lucio] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Carlin, Jeffrey L.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lokas, EL (reprint author), Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. EM lokas@camk.edu.pl OI Moustakas, Leonidas/0000-0003-3030-2360; Carlin, Jeffrey/0000-0002-3936-9628 FU Polish National Science Centre [N N203 580940]; NSF [AST 97-02521, AST 03-07851, AST 0307417, AST 08-07945, AST 09-37523]; David and Lucile Packard Foundation; The Research Corporation; Center for Cosmology and AstroParticle Physics (CCAPP) at The Ohio State University; NASA ATFP; NASA FX This research was partially supported by the Polish National Science Centre under grant N N203 580940. We thank Gary Da Costa for providing photometric data for the Fornax dwarf in electronic form. S. R. M. is grateful for financial support from NSF grants AST 97-02521, AST 03-07851, AST 0307417, and AST 08-07945, a fellowship from the David and Lucile Packard Foundation, and a Cottrell Scholarship from The Research Corporation. He also thanks William E. Kunkel, James C. Ostheimer, Christopher Palma, Richard J. Patterson, Michael H. Siegel, Sangmo Tony Sohn, and Kyle B. Westfall for their help in producing the photometric catalogs used in this analysis. S. K. is funded by the Center for Cosmology and AstroParticle Physics (CCAPP) at The Ohio State University. J. L. C. acknowledges support from National Science Foundation grant AST 09-37523. The work of L. A. M. was carried out at the Jet Propulsion Laboratory, under a contract with NASA. L. A. M. acknowledges support from the NASA ATFP program. The numerical simulations were performed on the Cosmos cluster at the Jet Propulsion Laboratory. This work also benefited from an allocation of computing time from the Ohio Supercomputer Center (http://www.osc.edu). NR 48 TC 19 Z9 19 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 61 DI 10.1088/0004-637X/751/1/61 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600061 ER PT J AU Martin, PG Roy, A Bontemps, S Miville-Deschenes, MA Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, SR Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Mauskopf, P Netterfield, CB Olmi, L Patanchon, G Rex, M Scott, D Semisch, C Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Martin, Peter G. Roy, Arabindo Bontemps, Sylvain Miville-Deschenes, Marc-Antoine Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon R. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Mauskopf, Philip Netterfield, Calvin B. Olmi, Luca Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; dust, extinction; evolution; infrared: ISM; ISM: structure; submillimeter: ISM ID INTERSTELLAR MOLECULAR-HYDROGEN; INFRARED IMAGING SURVEY; GALACTIC PLANE SURVEY; TELESCOPE BLAST 2005; STAR-FORMING REGION; DARK CLOUD; CYGNUS-X; HI-GAL; INITIAL HIGHLIGHTS; EXTINCTION LAW AB The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 mu m and one IRAS band at 100 mu m. The proxy is the near-infrared color excess, E(J - K-s), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity sigma(e)(1200) at 1200 GHz or 250 mu m can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N-H > 10(22) cm(-2)) and small enough to ensure a uniform dust temperature. We find sigma(e)(1200) is typically (2-4) x 10 (25) cm(2) H-1 and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing sigma(e)(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted. C1 [Martin, Peter G.; Roy, Arabindo; Miville-Deschenes, Marc-Antoine] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Bontemps, Sylvain] Observ Bordeaux, F-33270 Floirac, France. [Miville-Deschenes, Marc-Antoine] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Tucker, Carole] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla 72000, Mexico. [Netterfield, Calvin B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Olmi, Luca] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00931 USA. [Patanchon, Guillaume] Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Viero, Marco P.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Martin, PG (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. RI Klein, Jeffrey/E-3295-2013; OI Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; Canadian Space Agency (CSA); UK Particle Physics & Astronomy Research Council (PPARC); Canada's Natural Sciences and Engineering Research Council (NSERC) FX The BLAST collaboration acknowledges the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the UK Particle Physics & Astronomy Research Council (PPARC), and Canada's Natural Sciences and Engineering Research Council (NSERC). We thank the Columbia Scientific Balloon Facility (CSBF) staff for their outstanding work. Finally, we appreciate the careful reading of the manuscript by the referee, B. T. Draine, which has led to some clarification and elaboration of the analysis. NR 71 TC 41 Z9 41 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 28 DI 10.1088/0004-637X/751/1/28 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600028 ER PT J AU Reese, ED Mroczkowski, T Menanteau, F Hilton, M Sievers, J Aguirre, P Appel, JW Baker, AJ Bond, JR Das, S Devlin, MJ Dicker, SR Dunner, R Essinger-Hileman, T Fowler, JW Hajian, A Halpern, M Hasselfield, M Hill, JC Hincks, AD Huffenberger, KM Hughes, JP Irwin, KD Klein, J Kosowsky, A Lin, YT Marriage, TA Marsden, D Moodley, K Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Rojas, F Sehgal, N Sifon, C Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Wollack, EJ AF Reese, Erik D. Mroczkowski, Tony Menanteau, Felipe Hilton, Matt Sievers, Jonathan Aguirre, Paula Appel, John William Baker, Andrew J. Bond, J. Richard Das, Sudeep Devlin, Mark J. Dicker, Simon R. Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hill, J. Colin Hincks, Adam D. Huffenberger, Kevin M. Hughes, John P. Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Lin, Yen-Ting Marriage, Tobias A. Marsden, Danica Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Rojas, Felipe Sehgal, Neelima Sifon, Cristobal Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Wollack, Edward J. TI THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV-ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; techniques: interferometric; X-rays: galaxies: clusters ID SOUTH-POLE TELESCOPE; DIGITAL SKY SURVEY; BACKGROUND POWER SPECTRUM; WEAK-LENSING MEASUREMENTS; RELAXED GALAXY CLUSTERS; X-RAY; RADIO-SOURCES; INTRACLUSTER MEDIUM; DARK ENERGY; 148 GHZ AB We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly discovered, massive (similar or equal to 10(15) M-circle dot), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point-source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+ 0016, also known as A2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the less than or similar to 20% level for some fraction of clusters. C1 [Reese, Erik D.; Mroczkowski, Tony; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Marsden, Danica; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Menanteau, Felipe; Baker, Andrew J.; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sievers, Jonathan; Bond, J. Richard; Hajian, Amir; Nolta, Michael R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Aguirre, Paula; Duenner, Rolando; Rojas, Felipe; Sifon, Cristobal] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Hajian, Amir; Hincks, Adam D.; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Das, Sudeep; Fowler, Joseph W.; Hajian, Amir; Hill, J. Colin; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Fowler, Joseph W.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Switzer, Eric R.] Kavli Inst Cosmol Phys, Lab Astrophys & Space Res, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Reese, ED (reprint author), Univ Penn, Dept Phys & Astron, 209 S 33rd St, Philadelphia, PA 19104 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Mroczkowski, Tony/0000-0003-3816-5372; Sifon, Cristobal/0000-0002-8149-1352 FU National Aeronautics and Space Administration (NASA) [PF0-110077]; U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation under Compute Canada; Government of Ontario; University of Toronto; Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); Alfred P. Sloan Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; United States Naval Observatory; University of Washington; NSF on behalf of the Gemini partnership; National Science Foundation; University of Chicago FX We are grateful to John Carpenter for guidance on CARMA observing, the queue, and a crash-course in Miriad. We thank the CARMA collaboration, especially Tom Plagge, for many discussions of the nitty-gritty details of the data. Support for T.M. was provided by NASA through the Einstein Fellowship Program, grant PF0-110077. The CARMA 3.5 m observations presented here were awarded in proposals c0563 and c0619.; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto. A.C.T. operates in the Parque Astronomico Atacama in northern Chile under the auspices of Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT).; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; This work made use of observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium and observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership. NR 104 TC 20 Z9 20 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 12 DI 10.1088/0004-637X/751/1/12 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600012 ER PT J AU Sahai, R Morris, MR Claussen, MJ AF Sahai, R. Morris, M. R. Claussen, M. J. TI SHOCKED AND SCORCHED: THE TAIL OF A TADPOLE IN AN INTERSTELLAR POND SO ASTROPHYSICAL JOURNAL LA English DT Article DE H II regions; ISM: individual objects: (IRAS 20324+4057); ISM: jets and outflows; open clusters and associations: individual (Cygnus OB2); stars: formation; stars: pre-main sequence ID YOUNG STELLAR OBJECTS; ORION NEBULA; PROTOPLANETARY DISKS; STAR-FORMATION; MASSIVE STARS; CYGNUS OB2; CAMERA; PHOTOEVAPORATION; PROPLYDS; FEEDBACK AB We report multi-wavelength observations of the far-infrared source IRAS 20324+4057, including high-resolution optical imaging with the Hubble Space Telescope, and ground-based near-infrared, millimeter-wave and radio observations. These data show an extended, limb-brightened, tadpole-shaped nebula with a bright, compact, cometary nebula located inside the tadpole head. Our molecular line observations indicate that the Tadpole is predominantly molecular with a total gas mass exceeding 3.7M(circle dot). Our radio continuum imaging and archival Spitzer IRAC images show the presence of additional tadpole-shaped objects in the vicinity of IRAS 20324+4057 that share a common east-west head-tail orientation: we propose that these structures are small, dense molecular cores that originated in the Cygnus cloud and are now being (1) photoevaporated by the ultraviolet radiation field of the Cyg OB2 No. 8 cluster located to the northwest; and (2) shaped by ram pressure of a distant wind source or sources located to the west, blowing ablated and photoevaporated material from their heads eastward. The ripples in the tail of the Tadpole are interpreted in terms of instabilities at the interface between the ambient wind and the dense medium of the former. C1 [Sahai, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Claussen, M. J.] Natl Radio Astron Observ, Socorro, NM 87801 USA. RP Sahai, R (reprint author), CALTECH, Jet Prop Lab, MS 183-900, Pasadena, CA 91109 USA. EM raghvendra.sahai@jpl.nasa.gov FU NASA [10536] FX We thank Anna Rosen for her valuable help in reducing the ARO on-the-fly data presented in this paper, as part of her Spring 2009 NASA/USRP student internship at JPL. We thank the staff of the Arizona Radio Observatory for granting us observing time. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. R.S.'s contribution to the research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Financial support was provided by NASA through a Long Term Space Astrophysics award to R. S. and M. M., and HST GO award 10536 to R.S. NR 31 TC 8 Z9 8 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 69 DI 10.1088/0004-637X/751/1/69 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600069 ER PT J AU Seale, JP Looney, LW Wong, T Ott, J Klein, U Pineda, JL AF Seale, Jonathan P. Looney, Leslie W. Wong, Tony Ott, Juergen Klein, Uli Pineda, Jorge L. TI THE LIFE AND DEATH OF DENSE MOLECULAR CLUMPS IN THE LARGE MAGELLANIC CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (LMC); infrared: stars; instrumentation: spectrographs; Magellanic Clouds; stars: evolution; stars: formation ID YOUNG STELLAR OBJECTS; DUST CONTINUUM EMISSION; MASSIVE STAR-FORMATION; C2D LEGACY CLOUDS; LINE OBSERVATIONS; FORMATION REGIONS; FORMING REGIONS; 1ST DETECTION; SPITZER VIEW; N 159 AB We report the results of a high spatial (parsec) resolution HCO+ (J = 1 -> 0) and HCN (J = 1 -> 0) emission survey toward the giant molecular clouds of the star formation regions N 105, N 113, N 159, and N 44 in the Large Magellanic Cloud (LMC). The HCO+ and HCN observations at 89.2 and 88.6 GHz, respectively, were conducted in the compact configuration of the Australia Telescope Compact Array. The emission is imaged into individual clumps with masses between 10(2) and 10(4) M-circle dot and radii of < 1 pc to similar to 2 pc. Many of the clumps are coincident with indicators of current massive star formation, indicating that many of the clumps are associated with deeply embedded forming stars and star clusters. We find that massive young stellar object (YSO) bearing clumps tend to be larger (greater than or similar to 1 pc), more massive (M greater than or similar to 10(3)M(circle dot)), and have higher surface densities (similar to 1 g cm(-2)), while clumps without signs of star formation are smaller (less than or similar to 1 pc), less massive (M less than or similar to 10(3) M-circle dot), and have lower surface densities (similar to 0.1 g cm(-2)). The dearth of massive (M > 10(3) M-circle dot) clumps not bearing massive YSOs suggests that the onset of star formation occurs rapidly once the clump has attained physical properties favorable to massive star formation. Using a large sample of LMC massive YSO mid-IR spectra, we estimate that similar to 2/3 of the massive YSOs for which there are Spitzer mid-IR spectra are no longer located in molecular clumps; we estimate that these young stars/clusters have destroyed their natal clumps on a timescale of at least similar to 3 x 10(5) yr. C1 [Seale, Jonathan P.; Looney, Leslie W.; Wong, Tony] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Ott, Juergen] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Klein, Uli] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Pineda, Jorge L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Seale, JP (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. FU Commonwealth of Australia for operation; NASA; NSF [AST 08-07323] FX The authors thank the anonymous referee for comments that greatly enhanced the paper. This work makes use of data collected by the Australia Telescope Compact Array. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. J.P.S, L. W. L, and T. W. acknowledge support from NSF grant AST 08-07323. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 62 TC 17 Z9 17 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 20 PY 2012 VL 751 IS 1 AR 42 DI 10.1088/0004-637X/751/1/42 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MF UT WOS:000303814600042 ER PT J AU Anglada-Escude, G Arriagada, P Vogt, SS Rivera, EJ Butler, RP Crane, JD Shectman, SA Thompson, IB Minniti, D Haghighipour, N Carter, BD Tinney, CG Wittenmyer, RA Bailey, JA O'Toole, SJ Jones, HRA Jenkins, JS AF Anglada-Escude, Guillem Arriagada, Pamela Vogt, Steven S. Rivera, Eugenio J. Butler, R. Paul Crane, Jeffrey D. Shectman, Stephen A. Thompson, Ian B. Minniti, Dante Haghighipour, Nader Carter, Brad D. Tinney, C. G. Wittenmyer, Robert A. Bailey, Jeremy A. O'Toole, Simon J. Jones, Hugh R. A. Jenkins, James S. TI A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: individual (GJ 667C); techniques: radial velocities ID RADIAL-VELOCITY SURVEYS; MAIN-SEQUENCE STARS; LOW-MASS STARS; EXTRASOLAR PLANETS; EXOPLANET; DETECTABILITY; SIMULATIONS; HARPS; I. AB We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the European Southern Observatory public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/Planet Finder Spectrograph and Keck/High Resolution Echelle Spectrometer spectrometers reveals three additional signals beyond the previously reported 7.2 day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (period similar to 10 years). The 28 day signal implies a planet candidate with a minimum mass of 4.5M. orbiting well within the canonical definition of the star's liquid water habitable zone (HZ), that is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition, and interior dynamics. The 75 day signal is less certain, being significantly affected by aliasing interactions among a potential 91 day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal-poor compared to the Sun. The presence of a super-Earth in the HZ of a metal-poor M dwarf in a triple star system supports the evidence that such worlds should be ubiquitous in the Galaxy. C1 [Anglada-Escude, Guillem; Butler, R. Paul] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Anglada-Escude, Guillem] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Arriagada, Pamela; Minniti, Dante] Pontificia Univ Catolica Chile, Dept Astron, Santiago 22, Chile. [Vogt, Steven S.; Rivera, Eugenio J.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.] Carnegie Observ, Pasadena, CA 91101 USA. [Minniti, Dante] Vatican Observ, I-00120 Vatican City, Vatican. [Minniti, Dante] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Haghighipour, Nader] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, Nader] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Carter, Brad D.] Univ So Queensland, Fac Sci, Toowoomba, Qld 4350, Australia. [Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.] Univ New S Wales, Dept Astrophys, Sch Phys, Sydney, NSW 2052, Australia. [O'Toole, Simon J.] Australian Astron Observ, Epping, NSW 1710, Australia. [Jones, Hugh R. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Jenkins, James S.] Univ Chile, Dept Astron, Santiago, Chile. RP Anglada-Escude, G (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA. EM anglada@dtm.ciw.edu RI Butler, Robert/B-1125-2009; Jenkins, James/I-5284-2016; OI Anglada Escude, Guillem/0000-0002-3645-5977; Tinney, Christopher/0000-0002-7595-0970; Jones, Hugh/0000-0003-0433-3665 FU Carnegie Postdoctoral Program; ICM [P07-021-F]; FONDAP [15010003]; BASAL-CATA [PFB-06]; NSF [AST-0307493]; NASA [NNX07AR40G, NNA04CC08A, NNX09AN05G]; ARC [DP774000]; Fondecyt [3110004] FX We thank the constructive comments given by the anonymous referee. This research has been partially supported by the Carnegie Postdoctoral Program to G. A. E.; ICM P07-021-F, FONDAP 15010003, and BASAL-CATA PFB-06 grants to D. M. and P. A.; NSF grant AST-0307493 to S. S. V.; NASA NNX07AR40G and NASA Keck PI program grants to R. P. B.; NASA grants NNA04CC08A and NNX09AN05G to N.H.; ARC grant DP774000 to C. G. T.; and Fondecyt grant 3110004 to J.S.J. This work is based on data obtained from the ESO Science Archive Facility. Observations were obtained from Las Campanas Observatory and W. M. Keck Observatory. W. M. Keck Observatory is operated jointly by Univ. of California and California Institute of Technology. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 43 TC 67 Z9 67 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2012 VL 751 IS 1 AR L16 DI 10.1088/2041-8205/751/1/L16 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MR UT WOS:000303815800016 ER PT J AU Kitiashvili, IN Kosovichev, AG Mansour, NN Wray, AA AF Kitiashvili, I. N. Kosovichev, A. G. Mansour, N. N. Wray, A. A. TI DYNAMICS OF MAGNETIZED VORTEX TUBES IN THE SOLAR CHROMOSPHERE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: chromosphere; Sun: magnetic topology; Sun: photosphere; Sun: surface magnetism ID CONVECTION SIMULATIONS; SUN; WAVES; EXCITATION; FLOWS AB We use three-dimensional radiative MHD simulations to investigate the formation and dynamics of small-scale (less than 0.5 Mm in diameter) vortex tubes spontaneously generated by turbulent convection in quiet-Sun regions with an initially weak (10 G) mean magnetic field. The results show that the vortex tubes penetrate into the chromosphere and substantially affect the structure and dynamics of the solar atmosphere. The vortex tubes are mostly concentrated in intergranular lanes and are characterized by strong (near sonic) downflows and swirling motions that capture and twist magnetic field lines, forming magnetic flux tubes that expand with height and attain magnetic field strengths ranging from 200 G in the chromosphere to more than 1 kG in the photosphere. We investigate in detail the physical properties of these vortex tubes, including thermodynamic properties, flow dynamics, and kinetic and current helicities, and conclude that magnetized vortex tubes provide an important path for energy and momentum transfer from the convection zone into the chromosphere. C1 [Kitiashvili, I. N.; Kosovichev, A. G.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Kitiashvili, I. N.] Kazan Fed Univ, Engelhardt Astron Observ, Kazan 420008, Russia. [Mansour, N. N.; Wray, A. A.] NASA Ames Res Ctr, Mountain View, CA 94040 USA. RP Kitiashvili, IN (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM irinasun@stanford.edu NR 22 TC 11 Z9 11 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2012 VL 751 IS 1 AR L21 DI 10.1088/2041-8205/751/1/L21 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MR UT WOS:000303815800021 ER PT J AU Mousis, O Lunine, JI Madhusudhan, N Johnson, TV AF Mousis, Olivier Lunine, Jonathan I. Madhusudhan, Nikku Johnson, Torrence V. TI NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: formation; planets and satellites: individual (Jupiter); protoplanetary disks ID PROBE MASS-SPECTROMETER; GIANT PLANET FORMATION; SOLAR-SYSTEM; KINETIC INHIBITION; INTERSTELLAR ICES; JOVIAN SUBNEBULA; CARBON-MONOXIDE; N-2 REDUCTION; SATURN; CONSTRAINTS AB Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) >= 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O similar to 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O = 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of similar to 2 x solar (instead of similar to 7 x solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O similar to 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions. C1 [Mousis, Olivier] Univ Franche Comte, Inst UTINAM, CNRS INSU, UMR 6213,Observ Sci Univers Besancon, F-25030 Besancon, France. [Lunine, Jonathan I.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Madhusudhan, Nikku] Yale Univ, Yale Ctr Astron & Astrophys, Dept Phys, New Haven, CT 06511 USA. [Johnson, Torrence V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mousis, O (reprint author), Univ Franche Comte, Inst UTINAM, CNRS INSU, UMR 6213,Observ Sci Univers Besancon, F-25030 Besancon, France. EM olivier.mousis@obs-besancon.fr FU CNES; Juno Project; Yale Center for Astronomy and Astrophysics; NASA FX We thank Jean-Marc Petit for valuable comments on the manuscript. O.M. is supported by CNES. J.I.L.'s contribution was supported by the Juno Project. T.V.J.'s work performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. Government sponsorship acknowledged. N.M. acknowledges support from the Yale Center for Astronomy and Astrophysics through the YCAA postdoctoral Fellowship. NR 40 TC 25 Z9 25 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 20 PY 2012 VL 751 IS 1 AR L7 DI 10.1088/2041-8205/751/1/L7 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939MR UT WOS:000303815800007 ER PT J AU Allen, M Erickson, D Kendall, W Fu, J Ott, L Pawson, S AF Allen, Melissa Erickson, David Kendall, Wesley Fu, Joshua Ott, Lesley Pawson, Steven TI The influence of internal model variability in GEOS-5 on interhemispheric CO2 exchange SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC CARBON-DIOXIDE; SEASONAL CYCLE; TRANSPORT; SINKS; SENSITIVITY; EMISSIONS; CIRCULATION; INVERSIONS; CONVECTION; DIFFUSION AB An ensemble of eight atmospheric CO2 simulations was completed employing the National Aeronautics and Space Administration (NASA) Goddard Earth Observation System, Version 5 (GEOS-5) for the years 2000-2001, each with initial meteorological conditions corresponding to different days in January 2000 to examine internal model variability. Globally, the model runs show similar concentrations of CO2 for the two years, but in regions of high CO2 concentrations due to fossil fuel emissions, large differences among different model simulations appear. The phasing and amplitude of the CO2 cycle at Northern Hemisphere locations in all of the ensemble members is similar to that of surface observations. In several southern hemisphere locations, however, some of the GEOS-5 model CO2 cycles are out of phase by as much as four months, and large variations occur between the ensemble members. This result indicates that there is large sensitivity to transport in these regions. The differences vary by latitude-the most extreme differences in the Tropics and the least at the South Pole. Examples of these differences among the ensemble members with regard to CO2 uptake and respiration of the terrestrial biosphere and CO2 emissions due to fossil fuel emissions are shown at Cape Grim, Tasmania. Integration-based flow analysis of the atmospheric circulation in the model runs shows widely varying paths of flow into the Tasmania region among the models including sources from North America, South America, South Africa, South Asia and Indonesia. These results suggest that interhemispheric transport can be strongly influenced by internal model variability. C1 [Allen, Melissa; Fu, Joshua] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Erickson, David] Oak Ridge Natl Lab, Comp Sci & Math Div, Computat Earth Sci Grp, Oak Ridge, TN USA. [Kendall, Wesley] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. [Ott, Lesley; Pawson, Steven] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Allen, M (reprint author), Univ Tennessee, Dept Civil & Environm Engn, 59 Perkins Hall, Knoxville, TN 37996 USA. EM mallen24@utk.edu RI Pawson, Steven/I-1865-2014; Ott, Lesley/E-2250-2012 OI Pawson, Steven/0000-0003-0200-717X; FU NASA Carbon Cycle Science; NASA FX We acknowledge support from the NASA Carbon Cycle Science and the NASA High-End Computing Program. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL). NR 38 TC 1 Z9 1 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 19 PY 2012 VL 117 AR D10107 DI 10.1029/2011JD017059 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 945GE UT WOS:000304260300003 ER PT J AU Fritts, DC Janches, D Hocking, WK Mitchell, NJ Taylor, MJ AF Fritts, D. C. Janches, D. Hocking, W. K. Mitchell, N. J. Taylor, M. J. TI Assessment of gravity wave momentum flux measurement capabilities by meteor radars having different transmitter power and antenna configurations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MU-RADAR; LOWER STRATOSPHERE; POKER FLAT; AIRCRAFT MEASUREMENTS; SEASONAL-VARIATION; WIND DISTURBANCES; MIDDLE ATMOSPHERE; SUMMER MESOPAUSE; MOUNTAIN WAVES; AUGUST 1987 AB Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 degrees S) and on King George Island in the Antarctic (62.1 degrees S) and conventional meteor radars at Socorro, New Mexico (34.1 degrees N, 106.9 degrees W), Bear Lake Observatory, Utah (similar to 41.9 degrees N, 111.4 degrees W), and Yellowknife, Canada (62.5 degrees N, 114.3 degrees W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide reasonable estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of similar to 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields. C1 [Fritts, D. C.] NW Res Associates Inc, Colorado Res Associates Div, Boulder, CO USA. [Janches, D.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Hocking, W. K.] Univ Western Ontario, Dept Phys, London, ON N6A 3K7, Canada. [Mitchell, N. J.] Univ Bath, Dept Elect & Elect Engn, Ctr Space Atmospher & Ocean Sci, Bath BA2 7AY, Avon, England. [Taylor, M. J.] Utah State Univ, Dept Phys, Logan, UT 84322 USA. RP Fritts, DC (reprint author), GATS Boulder, 3360 Mitchell Ln, Boulder, CO 80301 USA. EM dave@gats-inc.com RI Janches, Diego/D-4674-2012 OI Janches, Diego/0000-0001-8615-5166 FU NSF [ATM-0634650, ATM-0824742, OPP-0839084]; Secretaria for the Interministerial Commission of Sea Resources (SECIRM); PROANTAR; National Institute for Science and Technology; Antarctic Environmental Research (INCT-APA); ATMANTAR/MCT/CNPq, FAPERJ FX The research described here was performed under NSF grants ATM-0634650, ATM-0824742, and OPP-0839084. We are grateful for the valuable assistance of personnel at Estacion Astronomica Rio Grande (EARG) with the operations and maintenance of SAAMER. We are also grateful to the Secretaria for the Interministerial Commission of Sea Resources (SECIRM), the Brazilian Antarctic Program (PROANTAR), the National Institute for Science and Technology, Antarctic Environmental Research (INCT-APA), and the ATMANTAR/MCT/CNPq project, FAPERJ, for their support of this research and visits to Ferraz Station to install and service DrAAMER. Finally, the authors thank three anonymous reviewers for very valuable suggestions for revising the manuscript. NR 59 TC 13 Z9 13 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 19 PY 2012 VL 117 AR D10108 DI 10.1029/2011JD017174 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 945GE UT WOS:000304260300004 ER PT J AU Koffi, B Schulz, M Breon, FM Griesfeller, J Winker, D Balkanski, Y Bauer, S Berntsen, T Chin, MA Collins, WD Dentener, F Diehl, T Easter, R Ghan, S Ginoux, P Gong, SL Horowitz, LW Iversen, T Kirkevag, A Koch, D Krol, M Myhre, G Stier, P Takemura, T AF Koffi, Brigitte Schulz, Michael Breon, Francois-Marie Griesfeller, Jan Winker, David Balkanski, Yves Bauer, Susanne Berntsen, Terje Chin, Mian Collins, William D. Dentener, Frank Diehl, Thomas Easter, Richard Ghan, Steven Ginoux, Paul Gong, Sunling Horowitz, Larry W. Iversen, Trond Kirkevag, Alf Koch, Dorothy Krol, Maarten Myhre, Gunnar Stier, Philip Takemura, Toshihiko TI Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; SUN PHOTOMETER MEASUREMENTS; OPTICAL-PROPERTIES; SATELLITE-OBSERVATIONS; GODDARD-INSTITUTE; NORTH-ATLANTIC; CALIPSO LIDAR; GOCART MODEL; MINERAL DUST; EMISSION INVENTORIES AB The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z(alpha)) is defined to quantitatively assess the models' performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z(alpha) climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z(alpha) than observed by CALIOP, whereas over the African and Chinese dust source regions, Za is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z(alpha) is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed. C1 [Koffi, Brigitte; Schulz, Michael; Breon, Francois-Marie; Griesfeller, Jan; Balkanski, Yves] Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. [Schulz, Michael; Griesfeller, Jan; Iversen, Trond; Kirkevag, Alf] Norwegian Meteorol Inst, Oslo, Norway. [Winker, David] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Bauer, Susanne] Columbia Univ, NASA GISS, New York, NY USA. [Berntsen, Terje; Iversen, Trond] Univ Oslo, Dept Geosci, Oslo, Norway. [Berntsen, Terje; Myhre, Gunnar] Ctr Int Climate & Environm Res Oslo, Oslo, Norway. [Chin, Mian; Diehl, Thomas] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Collins, William D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dentener, Frank] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. [Diehl, Thomas] Univ Space Res Assoc, Columbia, MD USA. [Easter, Richard; Ghan, Steven] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Ginoux, Paul; Horowitz, Larry W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Gong, Sunling] Environm Canada, Air Qual Res Div, Toronto, ON, Canada. [Koch, Dorothy] US DOE, Climate & Environm Sci Div, Washington, DC USA. [Krol, Maarten] Wageningen Univ, Utrecht, Netherlands. [Krol, Maarten] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands. [Stier, Philip] Univ Oxford, Dept Phys, Oxford, England. [Takemura, Toshihiko] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan. RP Koffi, B (reprint author), Lab Sci Climat & Environm, Orme Merisiers Bat 712,Point Courrier 132, F-91191 Gif Sur Yvette, France. EM brigitte.koffi@lsce.ipsl.fr RI Breon, Francois-Marie/M-4639-2016; Stier, Philip/B-2258-2008; Ginoux, Paul/C-2326-2008; Takemura, Toshihiko/C-2822-2009; Chin, Mian/J-8354-2012; Krol, Maarten/E-3414-2013; Horowitz, Larry/D-8048-2014; Balkanski, Yves/A-6616-2011; Collins, William/J-3147-2014; Bauer, Susanne/P-3082-2014; Kyushu, RIAM/F-4018-2015; Myhre, Gunnar/A-3598-2008; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011 OI Breon, Francois-Marie/0000-0003-2128-739X; Stier, Philip/0000-0002-1191-0128; Ginoux, Paul/0000-0003-3642-2988; Takemura, Toshihiko/0000-0002-2859-6067; Horowitz, Larry/0000-0002-5886-3314; Balkanski, Yves/0000-0001-8241-2858; Collins, William/0000-0002-4463-9848; Myhre, Gunnar/0000-0002-4309-476X; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699 FU French space agency CNES (Centre National des Etudes Spatiales); Infrastructure for the European Network for Earth System Modeling (IS-ENES) European Union [228203]; U.S. Department of Energy, Office of Science; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830] FX The authors would like to thank the three reviewers for their valuable comments and suggestions that allowed significantly improving the quality of the manuscript. We thank the ICARE Data and Services Center for providing access to the CALIOP CNES/NASA data used in this study and for providing computing access and support. We also would like to thank Stefan Kinne (MPIM, Germany) and Christiane Textor (previously at LSCE, France) for their important contribution to the development and the maintenance of the AeroCom tool and website (http://aerocom.met.no/cgi-bin/aerocom/lidar_annualrs.pl). We are grateful to Oyvind Seland, who was a central developer of the UIO-GCM model. We also acknowledge Cecilia Garrec for the English revision and her general comments on the text. This work was supported by the French space agency CNES (Centre National des Etudes Spatiales) and by the Infrastructure for the European Network for Earth System Modeling (IS-ENES) European Union project (agreement 228203). S. Ghan and R. Easter were funded by the U.S. Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 127 TC 73 Z9 75 U1 3 U2 44 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 19 PY 2012 VL 117 AR D10201 DI 10.1029/2011JD016858 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 945GE UT WOS:000304260300001 ER PT J AU Peterson, WK Woods, TN Fontenla, JM Richards, PG Chamberlin, PC Solomon, SC Tobiska, WK Warren, HP AF Peterson, W. K. Woods, T. N. Fontenla, J. M. Richards, P. G. Chamberlin, P. C. Solomon, S. C. Tobiska, W. K. Warren, H. P. TI Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID IONOSPHERIC STORMS; NITRIC-OXIDE; MODEL; DENSITY; FLUX; ATMOSPHERE; ELECTRON; ION AB Solar radiation below similar to 100 nm produces photoelectrons, a substantial portion of the F region ionization, most of the E region ionization, and drives chemical reactions in the thermosphere. Unquantified uncertainties in thermospheric models exist because of uncertainties in solar irradiance models used to fill spectral and temporal gaps in solar irradiance observations. We investigate uncertainties in solar energy input to the thermosphere on solar rotation time scales using photoelectron observations from the FAST satellite. We compare observed and modeled photoelectron energy spectra using two photoelectron production codes driven by five different solar irradiance models. We observe about 1.7% of the ionizing solar irradiance power in the escaping photoelectron flux. Most of the code/model pairs used reproduce the average escaping photoelectron flux over a 109-day interval in late 2006. The code/model pairs we used do not completely reproduce the observed spectral and solar rotation variations in photoelectron power density. For the interval examined, 30% of the variability in photoelectron power density with equivalent wavelengths between 18 and 45 nm was not captured in the code/model pairs. For equivalent wavelengths below similar to 16 nm, most of the variability was missed. This result implies that thermospheric model runs based on the solar irradiance models we tested systematically underestimate the energy input from ionizing radiation on solar rotation time scales. C1 [Peterson, W. K.; Woods, T. N.; Fontenla, J. M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Richards, P. G.] George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Solomon, S. C.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Tobiska, W. K.] Utah State Univ, Space Weather Ctr, Logan, UT 84322 USA. [Warren, H. P.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Peterson, WK (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. EM bill.peterson@lasp.colorado.edu RI Chamberlin, Phillip/C-9531-2012; Solomon, Stanley/J-4847-2012; Peterson, WK/A-8706-2009 OI Chamberlin, Phillip/0000-0003-4372-7405; Solomon, Stanley/0000-0002-5291-3034; Peterson, WK/0000-0002-1513-6096 FU NASA [NNX12AD25G, NNX09AJ76G, NNX07AB68G, NNX08AQ31G]; National Science Foundation FX W.K.P. thanks Geoff Crowley, Jeff Thayer, and Jiuhou Lei for helpful discussions. W. K. P. was supported by NASA grant NNX12AD25G to the University of Colorado. P. G. Richards was supported by NASA grant NNX09AJ76G to George Mason University. Tom Woods is supported by NASA grant NNX07AB68G. S. C. Solomon is supported by NASA grant NNX08AQ31G to the National Center for Atmospheric Research. NCAR is sponsored by the National Science Foundation. NR 34 TC 11 Z9 11 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 18 PY 2012 VL 117 AR A05320 DI 10.1029/2011JA017382 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 945ID UT WOS:000304265400002 ER PT J AU Rasia, E Meneghetti, M Martino, R Borgani, S Bonafede, A Dolag, K Ettori, S Fabjan, D Giocoli, C Mazzotta, P Merten, J Radovich, M Tornatore, L AF Rasia, E. Meneghetti, M. Martino, R. Borgani, S. Bonafede, A. Dolag, K. Ettori, S. Fabjan, D. Giocoli, C. Mazzotta, P. Merten, J. Radovich, M. Tornatore, L. TI Lensing and x-ray mass estimates of clusters (simulations) SO NEW JOURNAL OF PHYSICS LA English DT Article ID DARK-MATTER HALOES; LARGE-SCALE STRUCTURE; LAMBDA-CDM CLUSTERS; ULTRA DEEP FIELD; GALAXY CLUSTERS; XMM-NEWTON; COMA CLUSTER; COSMOLOGICAL SIMULATIONS; DYNAMICAL EVOLUTION; SUNYAEV-ZELDOVICH AB We present a comparison between weak-lensing and x-ray mass estimates of a sample of numerically simulated clusters. The sample consists of the 20 most massive objects at redshift z = 0.25 and M-vir > 5x10(14)M(circle dot) h(-1). They were found in a cosmological simulation of volume 1 h(-3) Gpc(3), evolved in the framework of a WMAP-7 normalized cosmology. Each cluster has been resimulated at higher resolution and with more complex gas physics. We processed it through Skylens and X-MAS to generate optical and x-ray mock observations along three orthogonal projections. The final sample consists of 60 cluster realizations. The optical simulations include lensing effects on background sources. Standard observational tools and methods of analysis are used to recover the mass profiles of each cluster projection from the mock catalogue. The resulting mass profiles from lensing and x-ray are individually compared to the input mass distributions. Given the size of our sample, we could also investigate the dependence of the results on cluster morphology, environment, temperature inhomogeneity and mass. We confirm previous results showing that lensing masses obtained from the fit of the cluster tangential shear profiles with Navarro-Frenk-White functionals are biased low by similar to 5-10% with a large scatter (similar to 10-25%). We show that scatter could be reduced by optimally selecting clusters either having regular morphology or living in substructure-poor environment. The x-ray masses are biased low by a large amount (similar to 25-35%), evidencing the presence of both non-thermal sources of pressure in the intra-cluster medium (ICM) and temperature inhomogeneity, but they show a significantly lower scatter than weak-lensing-derived masses. The x-ray mass bias grows from the inner to the outer regions of the clusters. We find that both biases are weakly correlated with the third-order power ratio, while a stronger correlation exists with the centroid shift. Finally, the x-ray bias is strongly connected with temperature inhomogeneities. Comparison with a previous analysis of simulations leads to the conclusion that the values of x-ray mass bias from simulations are still uncertain, showing dependences on the ICM physical treatment and, possibly, on the hydrodynamical scheme adopted. C1 [Meneghetti, M.; Ettori, S.; Giocoli, C.] Osservatorio Astron Bologna, INAF, I-40127 Bologna, Italy. [Meneghetti, M.; Ettori, S.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Martino, R.; Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Borgani, S.; Tornatore, L.] Univ Trieste, Dipartmento Fis, Sez Astron, I-34131 Trieste, Italy. [Borgani, S.; Tornatore, L.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Borgani, S.; Fabjan, D.; Tornatore, L.] Ist Nazl Fis Nucl, Trieste, Italy. [Bonafede, A.] Jacobs Univ Bremen, D-28759 Bremen, Germany. [Dolag, K.] Univ Observ Munchen, D-81679 Munich, Germany. [Fabjan, D.] Ctr Excellence SPACE SI, Ljubljana 1000, Slovenia. [Fabjan, D.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Mazzotta, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Merten, J.] Heidelberg Univ, Zentrum Astron, ITA, D-6900 Heidelberg, Germany. [Merten, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Merten, J.] CALTECH, Pasadena, CA 91125 USA. [Radovich, M.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Rasia, E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. EM rasia@umich.edu; meneghetti.massimo@oabo.inaf.it RI Ettori, Stefano/N-5004-2015; Meneghetti, Massimo/O-8139-2015; Mazzotta, Pasquale/B-1225-2016; OI Ettori, Stefano/0000-0003-4117-8617; Meneghetti, Massimo/0000-0003-1225-7084; Mazzotta, Pasquale/0000-0002-5411-1748; rasia, elena/0000-0003-4175-002X; Radovich, Mario/0000-0002-3585-866X FU HPC-EUROPA2 [228398]; European Commission; National Science Foundation [PHY05-51164]; European Union; Ministry of Higher Education, Science and Technology of Slovenia; Michigan Center for Theoretical Physics; Michigan Society of Fellows; [ASI-INAF I/023/05/0]; [ASI-INAF I/088/06/0]; [PRIN-INAF-2009] FX We acknowledge financial support from contracts ASI-INAF I/023/05/0, ASI-INAF I/088/06/0, PRIN-INAF-2009 grant 'Towards an Italian Network for Computational Cosmology' and INFN PD51. This work has been performed under the HPC-EUROPA2 project (project number 228398) with the support of the European Commission-Capacities Area-Research Infrastructures. ER acknowledges the support of the Michigan Society of Fellows. MM, ER, PM, SB and SE thank the organizers of the workshop 'Galaxy cluster at the crossroads between astrophysics and cosmology', the KITP for hospitality and the National Science Foundation for financial support under grant no. PHY05-51164. SB acknowledges partial support from the European Commissions FP7 Marie Curie Initial Training Network CosmoComp (PITN-GA- 2009-238356). DF acknowledges support by the European Union and the Ministry of Higher Education, Science and Technology of Slovenia. This research was supported in part by the Michigan Center for Theoretical Physics. Simulations have been carried out at CINECA (Bologna, Italy), with CPU time allocated through an Italian SuperComputing Resource Allocation (ISCRA) project. NR 129 TC 98 Z9 98 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 17 PY 2012 VL 14 AR 055018 DI 10.1088/1367-2630/14/5/055018 PG 36 WC Physics, Multidisciplinary SC Physics GA 953NC UT WOS:000304874200003 ER PT J AU Kokorowski, M Seppala, A Sample, JG Holzworth, RH McCarthy, MP Bering, EA Turunen, E AF Kokorowski, M. Seppala, A. Sample, J. G. Holzworth, R. H. McCarthy, M. P. Bering, E. A. Turunen, E. TI Atmosphere-ionosphere conductivity enhancements during a hard solar energetic particle event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID POLAR-CAP ABSORPTION; PROTON EVENT; NEUTRAL CHEMISTRY; ELECTRIC-FIELDS; MODEL; STRATOSPHERE; MIDDLE; ION AB On 20 January 2005, a solar energetic particle (SEP) event caused the largest recorded solar proton ground level event since 1956. Serendipitously, a balloon-borne experiment intended to measure effects of relativistic electron precipitation was aloft over Antarctica (similar to 32 km; near 70 degrees S, 345 degrees E geographic) throughout the duration of the SEP event, including the fast (similar to 6 min) onset. The balloon instrumentation included dc electric field and scalar electrical conductivity sensors. The observed conductivity increased by nearly a factor of 20 above ambient with the SEP event onset and returned to within a factor of two above normal levels within 17 h. Results from a newly developed, globally applicable atmosphere-ionosphere conductivity model based on the Sodankyla Ion and Neutral Chemistry (SIC) model suggest that proton-induced ionization was directly responsible for the observed conductivity increase at the balloon. Model input for this event included estimates of ionization from energetic particle precipitation and rigidity cutoffs. Altitudes between 20 and 150 km were considered during model runs. The results show a maximum conductivity increase near 60 km of more than 600-fold directly after SEP event onset. Relatively small conductivity enhancements (two-to fivefold) are suggested to have occurred above 70 km as a result of SEP ionization, while almost no enhancement is thought to have occurred above 95 km. These results quantify the real effect that an SEP-event can have on atmosphere-ionosphere electrical conductivity on a large, nearly global scale and provide a detailed comparison to one of the few direct stratospheric conductivity observations made during an SEP event. C1 [Kokorowski, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Seppala, A.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England. [Sample, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Holzworth, R. H.; McCarthy, M. P.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Bering, E. A.] Univ Houston, Dept Phys, Houston, TX USA. [Turunen, E.] Sodankyla Geophys Observ, Sodankyla, Finland. RP Kokorowski, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Michael.Kokorowski@jpl.nasa.gov RI Seppala, Annika/C-8031-2014 OI Seppala, Annika/0000-0002-5028-8220 FU National Science Foundation [ANT-0230441, ATM-0408356, ATM-0649489]; National Aeronautics and Space Administration FX Portions of this work were funded by the National Science Foundation under grant numbers: ANT-0230441, ATM-0408356, and ATM-0649489. Other portions were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 48 TC 2 Z9 2 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 17 PY 2012 VL 117 AR A05319 DI 10.1029/2011JA017363 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 945IB UT WOS:000304265200001 ER PT J AU Nsumei, P Reinisch, BW Huang, XQ Bilitza, D AF Nsumei, Patrick Reinisch, Bodo W. Huang, Xueqin Bilitza, Dieter TI New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI model and the GIRO real time data SO RADIO SCIENCE LA English DT Article ID SCALE HEIGHT; IONOGRAMS; RADAR AB A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S-1(h) and S-2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S-2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(T) indicating the transition from an O+ to an H+-dominated profile shape. The observed transition heights range from similar to 500 km to 800 km. C1 [Reinisch, Bodo W.] Lowell Digisonde Int LLC, Lowell, MA 01854 USA. [Nsumei, Patrick; Reinisch, Bodo W.; Huang, Xueqin] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA USA. [Bilitza, Dieter] George Mason Univ, SPACS, Fairfax, VA 22030 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliospher Branch, Greenbelt, MD 20771 USA. RP Reinisch, BW (reprint author), Lowell Digisonde Int LLC, 175 Cabot St,Ste 200, Lowell, MA 01854 USA. EM bodo.reinisch@digisonde.com FU NASA LWS TRT [NNX09AJ74G]; NSF [ATM-0902965]; USAF Research Laboratory [F19628-02-C-0092]; Lowell Digisonde International, LLC. FX We thank NASA's SPDF and NSSDC for providing the ISIS-2 topside sounder data. Part of this work was completed under NASA LWS TR&T grant NNX09AJ74G and NSF grant ATM-0902965. University of Massachusetts Lowell also acknowledges partial support by the USAF Research Laboratory through contract F19628-02-C-0092, and by a grant from Lowell Digisonde International, LLC. NR 31 TC 12 Z9 12 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD MAY 17 PY 2012 VL 47 AR RS0L16 DI 10.1029/2012RS004989 PG 11 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 945GX UT WOS:000304262200002 ER PT J AU Nearing, GS Crow, WT Thorp, KR Moran, MS Reichle, RH Gupta, HV AF Nearing, G. S. Crow, W. T. Thorp, K. R. Moran, M. S. Reichle, R. H. Gupta, H. V. TI Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment SO WATER RESOURCES RESEARCH LA English DT Article ID ENSEMBLE KALMAN FILTER; FERTILIZER-N; LAND-SURFACE; SPRING WHEAT; CROP MODEL; RETRIEVAL; GROWTH; WATER AB Observing system simulation experiments were used to investigate ensemble Bayesian state-updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth. C1 [Nearing, G. S.; Gupta, H. V.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Crow, W. T.] ARS, Hydrol & Remote Sensing Lab, USDA, W Beltsville, MD USA. [Moran, M. S.] ARS, SW Watershed Res Ctr, USDA, Tucson, AZ 85719 USA. [Reichle, R. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thorp, K. R.] ARS, Arid Land Agr Res Ctr, USDA, Maricopa, AZ 85138 USA. RP Nearing, GS (reprint author), Univ Arizona, Dept Hydrol & Water Resources, Harshbarger Bldg, Tucson, AZ 85721 USA. EM grey@email.arizona.edu; wade.crow@ars.usda.gov; kelly.thorp@usda.gov; susan.moran@ars.usda.gov; rolf.reichle@nasa.gov; hoshin.gupta@hwr.arizona.edu RI Reichle, Rolf/E-1419-2012; Nearing, Grey/K-4510-2012; Thorp, Kelly/C-2013-2009; Gupta, Hoshin/D-1642-2010 OI Thorp, Kelly/0000-0001-9168-875X; Gupta, Hoshin/0000-0001-9855-2839 FU NASA; NASA SMAP Science Definition Team; [08-SMAPSDT08-0042] FX This research was jointly supported by a grant from the NASA Terrestrial Ecology program entitled "Ecological and agricultural productivity forecasting using root-zone soil moisture products derived from the NASA SMAP mission'' (principal investigator W. T. Crow), the NASA SMAP Science Definition Team, and grant 08-SMAPSDT08-0042 (principal investigator M. S. Moran). The authors would like to thank Cheryl Porter from the Department of Agricultural and Biological Engineering at the University of Florida for her help acquiring and managing DSSAT source code. NR 33 TC 14 Z9 16 U1 4 U2 53 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD MAY 17 PY 2012 VL 48 AR W05525 DI 10.1029/2011WR011420 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 945DQ UT WOS:000304253400003 ER PT J AU Tam, ND Singh, K Meyyappan, M Oye, MM AF Tam Ngo-Duc Singh, Karandeep Meyyappan, M. Oye, Michael M. TI Vertical ZnO nanowire growth on metal substrates SO NANOTECHNOLOGY LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; OPTICAL-PROPERTIES; LOW-TEMPERATURE; RAMAN-SCATTERING; OXIDE NANOWIRES; NANOROD ARRAYS; BUFFER LAYER; NANOSTRUCTURES; MECHANISM AB Vertical growth of ZnO nanowires is usually achieved on lattice-matched substrates such as ZnO or sapphire using various vapor transport techniques. Accomplishing this on silicon substrates requires thick ZnO buffer layers. Here we demonstrate growth of vertical ZnO nanowires on FeCrAl substrates. The pre-annealing prior to growth appears to preferentially segregate Al and O to the surface, thus leading to a self-forming, thin pseudo-buffer layer, which then results in vertical nanowire growth as on sapphire substrates. Metal substrates are more suitable and cheaper than others for applications in piezoelectric devices, and thin self-forming layers can also reduce interfacial resistance to electrical and thermal conduction. C1 [Tam Ngo-Duc] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. NASA, ARC, UCSC, Adv Studies Labs, Moffett Field, CA 94035 USA. RP Tam, ND (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. EM Michael.M.Oye@nasa.gov FU DARPA [W31P4Q-11-c-0230]; NASA [NNX09AQ44A] FX This work was partly supported by DARPA contract W31P4Q-11-c-0230 to the ELORET Corporation. A NASA grant NNX09AQ44A to the University of California Santa Cruz is acknowledged for the instruments in the UCSC MACS Facility within the Advanced Studies Laboratories. T Ngo-Duc and K Singh are undergraduate student interns from San Jose State University and Polytechnic Institute of NYU, respectively, and their work was supported by a NASA undergraduate internship program. J Varelas is also acknowledged for technical assistance with TEM. NR 33 TC 6 Z9 6 U1 5 U2 49 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 17 PY 2012 VL 23 IS 19 AR 194015 DI 10.1088/0957-4484/23/19/194015 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 935QI UT WOS:000303534600016 ER PT J AU Gierach, MM Lee, T Turk, D McPhaden, MJ AF Gierach, Michelle M. Lee, Tong Turk, Daniela McPhaden, Michael J. TI Biological response to the 1997-98 and 2009-10 El Nino events in the equatorial Pacific Ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TROPICAL PACIFIC; TEMPERATURE; ENSO; VARIABILITY; WINTER AB Changes in the physical environment associated with eastern Pacific (EP)-El Nino and central Pacific (CP)-El Nino events affect the biological response in the equatorial Pacific Ocean differently. However, such responses have not been adequately investigated, especially in terms of the relevant physical processes. This paper addresses the mechanistic differences in the biological response of the equatorial Pacific Ocean during the strongest CP- and EP-El Nino to date (i.e., 1997-98 EP-El Nino and 2009-10 CP-El Nino) using satellite data and water mass pathway analysis based on an ocean reanalysis product. The 1997-98 EP-El Nino was associated with a larger reduction of chlorophyll-a (chl-a) in the eastern equatorial Pacific (EEP) and the 2009-10 CP-El Nino was associated with a larger reduction of chl-a in the central equatorial Pacific (CEP). These biological responses were dependent on the strength and extent of westerly wind anomalies and their impact on horizontal and vertical processes. Horizontal advection was the primary contributor to differences in chl-a between the two El Nino events in the CEP, whereas vertical advection and mixing were the dominant processes in the EEP. Citation: Gierach, M. M., T. Lee, D. Turk, and M. J. McPhaden (2012), Biological response to the 1997-98 and 2009-10 El Nino events in the equatorial Pacific Ocean, Geophys. Res. Lett., 39, L10602, doi:10.1029/2012GL051103. C1 [Gierach, Michelle M.; Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Turk, Daniela] Dalhousie Univ, Dept Oceanog, Halifax, NS, Canada. [Turk, Daniela] Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, Palisades, NY USA. [McPhaden, Michael J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Gierach, MM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 300-323, Pasadena, CA 91109 USA. EM michelle.gierach@jpl.nasa.gov RI McPhaden, Michael/D-9799-2016; OI Gierach, Michelle/0000-0002-8161-4121 FU NASA; NOAA FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The authors would like to thank Peter Strutton and the reviewers for all their helpful comments and suggestions. MJM was supported by NOAA. PMEL contribution 3789. LDEO contribution 7542 and partial support from CERC in Ocean and Technology, Canada. NR 30 TC 21 Z9 21 U1 1 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2012 VL 39 AR L10602 DI 10.1029/2012GL051103 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 945GQ UT WOS:000304261500001 ER PT J AU Turner, DD Mlawer, EJ Bianchini, G Cadeddu, MP Crewell, S Delamere, JS Knuteson, RO Maschwitz, G Mlynzcak, M Paine, S Palchetti, L Tobin, DC AF Turner, D. D. Mlawer, E. J. Bianchini, G. Cadeddu, M. P. Crewell, S. Delamere, J. S. Knuteson, R. O. Maschwitz, G. Mlynzcak, M. Paine, S. Palchetti, L. Tobin, D. C. TI Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FOURIER-TRANSFORM SPECTROMETER; WATER-VAPOR; RADIANCE; INSTRUMENT AB A field experiment was conducted in northern Chile at an altitude of 5.3 km to evaluate the accuracy of line-by-line radiative transfer models in regions of the spectrum that are typically opaque at sea level due to strong water vapor absorption. A suite of spectrally resolved radiance instruments collected simultaneous observations that, for the first time ever, spanned the entire terrestrial thermal spectrum (i.e., from 10 to 3000 cm(-1), or 1000 to 3.3 mu m). These radiance observations, together with collocated water vapor and temperature profiles, are used to provide an initial evaluation of the accuracy of water vapor absorption in the far-infrared of two line-by-line radiative transfer models. These initial results suggest that the more recent of the two models is more accurate in the strongly absorbing water vapor pure rotation band. This result supports the validity of the Turner et al. (2012) study that demonstrated that the use of the more recent water vapor absorption model in climate simulations resulted in significant radiative and dynamical changes in the simulation relative to the older water vapor model. Citation: Turner, D. D., et al. (2012), Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions, Geophys. Res. Lett., 39, L10801, doi:10.1029/2012GL051542. C1 [Turner, D. D.] NOAA, Natl Severe Storms Lab, Norman, OK 73072 USA. [Mlawer, E. J.; Delamere, J. S.] Atmospher & Environm Res Inc, Lexington, MA USA. [Bianchini, G.; Palchetti, L.] CNR, Ist Fis Applicata Nello Carrara, Sesto Fiorentino, Italy. [Cadeddu, M. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Crewell, S.; Maschwitz, G.] Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany. [Knuteson, R. O.; Tobin, D. C.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Mlynzcak, M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Paine, S.] Smithsonian Astrophys Observ, Cambridge, MA USA. RP Turner, DD (reprint author), NOAA, Natl Severe Storms Lab, 120 David L Boren Blvd, Norman, OK 73072 USA. EM dave.turner@noaa.gov RI Crewell, Susanne/O-1640-2013; PALCHETTI, LUCA/O-1270-2015; OI Crewell, Susanne/0000-0003-1251-5805; PALCHETTI, LUCA/0000-0003-4022-8125; Paine, Scott/0000-0003-4622-5857 FU Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; NASA; Italian National Research Council; Smithsonian Institution; German Science Foundation (DFG) FX The RHUBC-II campaign was organized as part of the U. S. Department of Energy's Atmospheric Radiation Measurement (ARM) program, which is sponsored by the Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. RHUBC-II was also supported in part by NASA, the Italian National Research Council, the Smithsonian Institution, and the German Science Foundation (DFG). We would like to thank the many scientists and engineers who helped make the collection of this dataset possible, including Alex Carrizo and operations staff at AstroNorte, Kim Nitschke, Jim Mather, Charles Brinkmann, Troy Culgan, Mike Ryzcek, Rich Cageao, Glenn Farnsworth, Mike Wojcik, Jason Swasey, Joe Lee, Erik Syrstad, Dave Johnson, Julio Marin, Arlette Chacon, Toufic Hawat, Huabai Li, Marcos Diaz, Francesco Castagnoli, Denny Hackel, Ray Garcia, Hank Revercomb, Rich Coulter, and Tim Wagner. Additional information on the RHUBC-II experiment can be found at http://acrf-campaign.arm.gov/rhubc/. RHUBC-II data are available from the ARM data archive as an IOP dataset at http://www.archive.arm.gov. NR 20 TC 15 Z9 15 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 16 PY 2012 VL 39 AR L10801 DI 10.1029/2012GL051542 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 945GQ UT WOS:000304261500003 ER PT J AU Umeda, T Ashour-Abdalla, M Pickett, JS Goldstein, ML AF Umeda, Takayuki Ashour-Abdalla, Maha Pickett, Jolene S. Goldstein, Melvyn L. TI Vlasov simulation of electrostatic solitary structures in multi-component plasmas SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ELECTRIC-FIELD STRUCTURES; PHASE-SPACE HOLES; PARTICLE SIMULATIONS; GEOTAIL SPACECRAFT; POLAR OBSERVATIONS; ACOUSTIC WAVES; INSTABILITIES; GENERATION; CLUSTER; REGION AB Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation. C1 [Umeda, Takayuki] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Ashour-Abdalla, Maha] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Ashour-Abdalla, Maha] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Pickett, Jolene S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Goldstein, Melvyn L.] NASA, Goddard Space Flight Ctr, Lab Geospace Sci, Greenbelt, MD 20771 USA. RP Umeda, T (reprint author), Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. EM umeda@stelab.nagoya-u.ac.jp FU MEXT/JSPS [21740352, 23740367]; NASA Goddard Space Flight Center [NNX08AO48G, NNX07AI24G, NNX10AQ47G] FX The computer simulations were carried out as a computational joint research program at STEL, Nagoya University and RISH, Kyoto University. T.U. acknowledges support from MEXT/JSPS under grant-in-aid (KAKENHI) 21740352 and 23740367. M.A.A. acknowledges support from NASA Goddard Space Flight Center under grant NNX08AO48G. J.S.P. acknowledges support from NASA Goddard Space Flight Center under grant NNX07AI24G. M.L.G. acknowledges support from NASA Goddard Space Flight Center under grant NNX10AQ47G. NR 37 TC 1 Z9 1 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 16 PY 2012 VL 117 AR A05223 DI 10.1029/2011JA017181 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 945HY UT WOS:000304264900002 ER PT J AU Bhatia, AK AF Bhatia, A. K. TI Hybrid theory of P-wave electron-hydrogen elastic scattering SO PHYSICAL REVIEW A LA English DT Article ID POLARIZED ORBITALS; ATOMIC HYDROGEN; HELIUM AB We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and, except at the very lowest energies, they are close to the phase shifts calculated earlier by Bhatia [A. K. Bhatia, Phys. Rev. A 69, 032714 (2004)]. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only a 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts. Accurate values for the effective range parameters are also calculated. C1 NASA Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Bhatia, AK (reprint author), NASA Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. NR 20 TC 3 Z9 3 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD MAY 16 PY 2012 VL 85 IS 5 AR 052708 DI 10.1103/PhysRevA.85.052708 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 943EN UT WOS:000304103400005 ER PT J AU Martin, AM Righter, K Treiman, AH AF Martin, A. M. Righter, K. Treiman, A. H. TI Experimental constraints on the destabilization of basalt plus calcite plus anhydrite at high pressure-high temperature and implications for meteoroid impact modeling SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE meteoroid impact; sulfate-carbonate melt; basaltic melt; gas emission; experimental petrology ID CRETACEOUS-TERTIARY EXTINCTION; CARBONATE-BEARING ECLOGITE; OXYGEN FUGACITY; PHASE-RELATIONS; CHEMICAL-COMPOSITION; 1-CENTER-DOT-0 GPA; DIAMOND FORMATION; SILICATE LIQUIDS; CHICXULUB IMPACT; OXIDATION-STATE AB Calcite CaCO3 and anhydrite CaSO4 are two sedimentary components or alteration products of basalts on the Earth, Venus, and Mars. The fate of anhydrite-, calcite-bearing crust during a meteoroid impact must be addressed in order to evaluate: (1) the potential S- and C-gas release to the atmosphere, (2) the formation of S- and C-rich melts, and (3) the crystallization of S- and C-rich minerals which may be recognized by spectral analyses of planetary surfaces. We performed piston-cylinder experiments at 1 GPa, between 1200 and 1750 degrees C, on a mixture of 70 wt.% tholeiitic basalt + 15 wt.% anhydrite + 15 wt.% calcite. Up to similar to 1440 degrees C, an ultracalcic (CaO > 19.8 wt.%; CaO/Al2O3 > 1 wt.%) picrobasaltic (SiO2 similar to 39-43 wt.%; Na2O + K2O < 2 wt.%) melt containing up to 5.7 wt.% SO3 and up to 5.1 wt.% CO2 + H2O (calculated by difference) is present in equilibrium with fassaitic clinopyroxene, anhydrite, scapolite, chromian spinel and a gas composed mainly of CO and, occasionally, aliphatic thiols like CH3(CH2)(3)SH. Hydrogen was incorporated either by contact between the starting material and air or by diffusion through the capsule during the experiments. Above similar to 1440 degrees C, a CaO-rich (similar to 35 wt.%) sulfate-carbonate (SC) melt which contains 41-47 wt.% SO3, 7-12 wt.% CO2 + H2O and a few percent of Na2O, forms in equilibrium with the picrobasaltic melt. This study shows that a meteoroid impact onto an anhydrite- and calcite-bearing basaltic crust is likely to release CO gas to the atmosphere, while S is trapped in solid or liquid phases. Under hydrous conditions, however, the S/C in the gas may increase. The importance of the temperature parameter on the impact phase relations is also demonstrated. In particular, SC melt may form by meteoroid impact, and flow rapidly on a planetary surface. Physical modeling must therefore be combined with high P-high T phase diagrams of complex assemblages similar to planetary lithologies in order to evaluate the effects of a meteoroid impact. Published by Elsevier B.V. C1 [Martin, A. M.; Righter, K.] NASA, Lyndon B Johnson Space Ctr, Mailcode KT, Houston, TX 77058 USA. [Treiman, A. H.] Lunar & Planetary Inst, Houston, TX 77058 USA. RP Martin, AM (reprint author), NASA, Lyndon B Johnson Space Ctr, Mailcode KT, 2101 NASA Pkwy, Houston, TX 77058 USA. EM aud.martin23@gmail.com OI Martin, Audrey/0000-0002-1165-8866 FU NASA Postdoctoral Program at the Johnson Space Center; RTOP FX K. Pando and L R. Danielson are gratefully acknowledged for their support on the experimental devices, and A. Peslier, G. Robinson and K. Ross for their help on the microscopes. Q. Fu is also sincerely acknowledged for his help on the gas chromatograph and mass spectrometer, and E. Medard for his insightful comments. We thank R.W. Luth and an anonymous reviewer for their constructive reviews and L Stixrude for his editorial work. This research was supported by an appointment to the NASA Postdoctoral Program at the Johnson Space Center, administered by Oak Ridge Associated Universities through a contract with NASA, and by an RTOP to KR from the Mars Fundamental Research Program. Lunar and Planetary Institute Contribution #1620. NR 77 TC 2 Z9 2 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD MAY 15 PY 2012 VL 331 BP 291 EP 304 DI 10.1016/j.epsl.2012.03.026 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 969BK UT WOS:000306030500027 ER PT J AU Xu, W Chin, A Ye, L Ning, CZ Yu, HB AF Xu, Wei Chin, Alan Ye, Laura Ning, C. Z. Yu, Hongbin TI Charge transport and trap characterization in individual GaSb nanowires SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FIELD-EFFECT TRANSISTORS; LIMITED CURRENTS; ANTIMONIDE AB Charge transport of unintentionally doped GaSb nanowires was studied through the fabrication and analysis of nanowire field effect transistors (FETs). In this work, both temperature dependent and voltage dependent measurements demonstrate various operating regimes, including a transition from linear current-voltage behavior at low bias to a space-charge limited current (SCLC) at large bias. Analysis of the voltage and temperature variation in the SCLC regime provided quantitative information about the trap energy distribution in the nanowires, which, after thermal annealing, has been shown to reduce from 0.26 eV to 0.12 eV. The measurements also indicate that the GaSb nanowire FETs exhibit n-type behavior, which is likely due to oxygen impurities in the nanowires. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720080] C1 [Xu, Wei; Ning, C. Z.; Yu, Hongbin] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Chin, Alan; Ye, Laura; Ning, C. Z.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Xu, W (reprint author), Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. EM yuhb@asu.edu RI Ning, C. Z./D-4699-2009 OI Ning, C. Z./0000-0003-4583-8889 NR 25 TC 16 Z9 16 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2012 VL 111 IS 10 AR 104515 DI 10.1063/1.4720080 PG 4 WC Physics, Applied SC Physics GA 960BT UT WOS:000305363700165 ER PT J AU Fielding, EJ McKenzie, D AF Fielding, Eric J. McKenzie, Dan TI Lithospheric flexure in the Sichuan Basin and Longmen Shan at the eastern edge of Tibet SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GRAVITY-ANOMALIES; ELASTIC THICKNESS; CRUSTAL FLOW; T-E; PLATEAU; EARTHQUAKE; WENCHUAN; UPLIFT; DEFORMATION; TOPOGRAPHY AB The mountain range at the steep eastern edge of the Tibetan Plateau, the Longmen Shan, was deformed by a M-w 7.9 earthquake with oblique thrust and strike-slip motion in 2008. The tectonic processes and structure of the lithosphere beneath this range have been controversial. Gravity measurements reflect the distribution of mass within the Earth, including the large load of rock above the geoid in mountain ranges. We investigate the response of the lithosphere to the load of the Longmen Shan and estimate the flexural rigidity or effective elastic thickness T-e using new gravity data acquired by recent satellites and the combined GOCO2S and EIGEN-6c datasets. The free-air gravity anomalies over the Longmen Shan show that its mass is supported by flexure of the adjacent Sichuan Basin lithosphere, similar to the flexural support of the Himalayas. Analysis of a stacked profile of the free-air anomalies shows that the effective elastic thickness of the basin lithosphere is greater than 10 km, but has a broad minimum misfit function with no upper limit on the thickness. Two-dimensional admittance analysis shows the T-e of easternmost Tibet is very low, approximately 7 km. Citation: Fielding, E. J., and D. McKenzie (2012), Lithospheric flexure in the Sichuan Basin and Longmen Shan at the eastern edge of Tibet, Geophys. Res. Lett., 39, L09311, doi: 10.1029/2012GL051680. C1 [Fielding, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McKenzie, Dan] Univ Cambridge, Dept Earth Sci, Bullard Labs, Cambridge CB2 3EQ, England. RP Fielding, EJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM eric.j.fielding@jpl.nasa.gov RI Fielding, Eric/A-1288-2007 OI Fielding, Eric/0000-0002-6648-8067 FU NASA's Earth Surface and Interior focus area FX We thank E. Ivins for discussions and Tony Lowry and Jorg Ebbing for helpful reviews. Part of the research described in this paper was sponsored by NASA's Earth Surface and Interior focus area and performed at the Jet Propulsion Laboratory, California Institute of Technology. Some of the figures were created with GMT [Wessel and Smith, 1998]. NR 35 TC 20 Z9 22 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 15 PY 2012 VL 39 AR L09311 DI 10.1029/2012GL051680 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 945GM UT WOS:000304261100005 ER PT J AU Zheng, YX Lin, JL Shinoda, T AF Zheng, Yangxing Lin, Jia-Lin Shinoda, Toshiaki TI The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID GENERAL-CIRCULATION MODELS; DATA ASSIMILATION ANALYSIS; DOUBLE-ITCZ PROBLEM; TROPICAL PACIFIC; ATMOSPHERE INTERACTION; WALKER CIRCULATION; EL-NINO; CONVECTION PARAMETERIZATION; INTERCOMPARISON PROJECT; CLIMATE MODELS AB This study examines the contribution of ocean dynamics to sea surface temperature (SST) biases in the eastern Pacific cold tongue region in fifteen coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Twenty years (1980-1999) of the twentieth-century (20C3m) climate simulations from each model are analyzed. An excessive and narrow SST cold tongue that extends too far west into the western Pacific in comparison to observations is a common bias in CGCMs. This feature is found in CGCMs analyzed here and in many previous studies. The heat budget analysis indicates that errors in both net surface heat flux and total upper ocean heat advection significantly contribute to the excessive cold tongue in the equatorial Pacific. The stronger heat advection in the models is caused by overly strong horizontal heat advection associated with too strong zonal currents, and overly strong vertical heat advection due to excessive upwelling and the vertical gradient of temperature. The Bjerknes feedback in the coupled models is shown to be weaker than in observations, which may be related to the insufficient response of surface zonal winds to SST in the models and an erroneous subsurface temperature structure. A hypothesis that describes how the cold tongue bias is possibly developed in the CGCMs is provided based on the results of our analysis. C1 [Zheng, Yangxing] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32310 USA. [Lin, Jia-Lin] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA. [Shinoda, Toshiaki] USN, Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS USA. RP Zheng, YX (reprint author), Florida State Univ, Ctr Ocean Atmospher Predict Studies, E Paul Dirac Dr,220C RM Johnson Bldg, Tallahassee, FL 32310 USA. EM yzheng@fsu.edu RI Zheng, Yangxing/B-7965-2013; Shinoda, Toshiaki/J-3745-2016 OI Zheng, Yangxing/0000-0003-2039-1494; Shinoda, Toshiaki/0000-0003-1416-2206 FU NSF [OCE-0453046, AGS-0966844, ATM-0745897, ATM-0745872]; NOAA CPO [GC10-400]; Office of Naval Research (ONR) [601153 N]; National Aeronautics and Space Administration (NASA) FX We are greatly indebted to all those who contributed to the models and global data sets used in this study. Computational facilities have been provided by the National Oceanic and Atmospheric Administration (NOAA) and COAPS at the Florida State University. Yangxing Zheng is supported by NSF grant OCE-0453046. Toshiaki Shinoda is supported by NOAA CPO grant (GC10-400) under the Modeling, Analysis, and Prediction (MAP) Program, NSF grants OCE-0453046, AGS-0966844, and ATM-0745897, and 6.1 projects sponsored by the Office of Naval Research (ONR) under program element 601153 N. Jia-lin Lin is supported by NOAA CPO grant (GC10-400), by the National Aeronautics and Space Administration (NASA) under MAP program and by NSF grant ATM-0745872. NR 54 TC 21 Z9 21 U1 3 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD MAY 15 PY 2012 VL 117 AR C05024 DI 10.1029/2011JC007746 PG 20 WC Oceanography SC Oceanography GA 945CO UT WOS:000304250600003 ER PT J AU Lollo, A Withers, P Fallows, K Girazian, Z Matta, M Chamberlin, PC AF Lollo, Anthony Withers, Paul Fallows, Kathryn Girazian, Zachary Matta, Majd Chamberlin, P. C. TI Numerical simulations of the ionosphere of Mars during a solar flare SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PHOTOIONIZATION CROSS-SECTIONS; MARTIAN IONOSPHERE; UPPER ATMOSPHERES; GLOBAL SURVEYOR; ANALYTIC FITS; IRRADIANCE; ELECTRON; VARIABILITY; ENERGY; MODEL AB Electron densities in planetary ionospheres increase substantially during solar flares in response to the increased solar irradiance at soft X-ray and extreme ultraviolet wavelengths. Here we modify an existing model of the ionosphere of Mars to incorporate time-dependent solar irradiances and use it to simulate ionospheric conditions during the X14.4 and M7.8 solar flares of 15 and 26 April 2001, respectively. Simulations were validated by comparison to Mars Global Surveyor radio occultation measurements of vertical profiles of ionospheric electron density. Adjustments to the model's representation of the neutral atmosphere were required to adequately reproduce the observations before and during these solar flares. An accurate representation of electron-impact ionization, an important process in the lower ionosphere of Mars, is required in order to adequately simulate the doubling of electron densities that can occur in the lower ionosphere of Mars during a solar flare. We used the W-value representation of electron-impact ionization, in which the number of ion-electron pairs created per photon absorbed equals the ratio of the difference between photon energy and the ionization potential of carbon dioxide to the W-value. A range of possible W-values for Mars have been suggested in the literature, and a value of 28 eV led to the best reproduction of flare-affected observations. Simulated enhancements in the electron density are largest and persist the longest in the M1 region. We predict that the peak electron density in the M1 region can exceed that of the M2 region for short periods during intense solar flares. C1 [Lollo, Anthony; Withers, Paul; Fallows, Kathryn; Girazian, Zachary; Matta, Majd] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Lollo, Anthony] Yale Univ, Dept Phys, New Haven, CT USA. [Chamberlin, P. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fallows, K (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM kfallows@bu.edu RI Chamberlin, Phillip/C-9531-2012; Withers, Paul/H-2241-2014; OI Chamberlin, Phillip/0000-0003-4372-7405; Fallows, Kathryn/0000-0003-4432-0199 FU NASA [MFRP NNX08AN56G, LWS NNX08AP96G] FX We thank Cyril Simon Wedlund, David Morgan, and Michael Mendillo for their constructive advice and suggestions. We thank Guillaume Gronoff and Steve Bougher for valuable reviews. This work was supported, in part, by NASA grants to Boston University from the Mars Fundamental Research Program (MFRP NNX08AN56G) and the Living With a Star Program (LWS NNX08AP96G). NR 63 TC 14 Z9 14 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 15 PY 2012 VL 117 AR A05314 DI 10.1029/2011JA017399 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 945HV UT WOS:000304264600002 ER PT J AU Abadier, M Berechman, RA Neudeck, PG Trunek, AJ Skowronski, M AF Abadier, M. Berechman, R. A. Neudeck, P. G. Trunek, A. J. Skowronski, M. TI Nucleation of 3C-SiC associated with threading edge dislocations during chemical vapor deposition SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Terrace nucleation; Threading edge dislocation; Heteroepitaxy; 3C-Silicon Carbide ID SILICON-CARBIDE; SIC MESAS; GROWTH; SURFACE; HETEROEPITAXY; RELAXATION; SUBSTRATE; PROGRESS; MOSFETS; STRAIN AB Transmission electron microscopy and atomic force microscopy were used to study the origin of a preferred nucleation site on the atomically flat 3C-SiC mesas leading to the formation of tetrahedral hillocks. The hillocks exhibit a "wedding cake" structure consisting of concentric triangular terraces with a step height of 0.25 nm corresponding to the thickness of a single Si-C bilayer. KOH etching revealed the presence of a threading dislocation at the center of the hillock. Its Burgers vector was shown to lie in the basal plane with no component along the surface normal. It is argued that the strain fields around a threading edge dislocation make it a preferred nucleation site. (C) 2012 Elsevier B.V. All rights reserved. C1 [Abadier, M.; Berechman, R. A.; Skowronski, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Neudeck, P. G.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Trunek, A. J.] Ohio Aerosp Inst, Cleveland, OH 44135 USA. RP Skowronski, M (reprint author), Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM mareks@cmu.edu RI Skowronski, Marek/A-8934-2011 OI Skowronski, Marek/0000-0002-2087-0068 FU ONR [N00014.10.10532] FX This work was supported by ONR Grant no. N00014.10.10532. The authors acknowledge fruitful discussions with Prof. R. Feenstra. NR 24 TC 2 Z9 2 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAY 15 PY 2012 VL 347 IS 1 BP 45 EP 48 DI 10.1016/j.jcrysgro.2012.03.014 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 938JF UT WOS:000303729100009 ER PT J AU Grigoryan, EN Anton, HJ Poplinskaya, VA Aleinikova, KS Domaratskaya, EI Novikova, YP Almeida, E AF Grigoryan, E. N. Anton, H. J. Poplinskaya, V. A. Aleinikova, K. S. Domaratskaya, E. I. Novikova, Y. P. Almeida, E. TI Signs of Muller cell gliotic response found in the retina of newts exposed to real and simulated microgravity SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Newt; Retina; Gliosis; Muller cells; Spaceflight; Simulated microgravity ID FIBRILLARY ACIDIC PROTEIN; INTRAOCULAR-PRESSURE; EXPRESSION; GLIA; PROLIFERATION; REGENERATION; INJURY; ORGAN; RATS; AMD AB The effects of real and simulated microgravity on the eye tissue regeneration of newts were investigated. For the first time changes in Muller glial cells in the retina of eyes regenerating after retinal detachment were detected in newts exposed to clinorotation. The cells divided, were hypertrophied, and their processes were thickened. Such changes suggested reactive gliosis and were more significant in animals exposed to rotation when compared with desk-top controls. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas that were regenerating in a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of retinal macroglial cells, was found to be upregulated. In a more recent experiment onboard Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. A low level of immunoreactivity was observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher thickness of intermediate filaments. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Muller cells was to mitigate the retinal stress in newts exposed to microgravity. Taken together, the data suggest that the retinal population of macroglial cells could be sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Grigoryan, E. N.; Poplinskaya, V. A.; Aleinikova, K. S.; Domaratskaya, E. I.; Novikova, Y. P.] RAS, Koltsov Inst Dev Biol, Moscow 119991, Russia. [Anton, H. J.] Univ Cologne, Inst Zool, D-50923 Cologne, Germany. [Almeida, E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Grigoryan, EN (reprint author), RAS, Koltsov Inst Dev Biol, Vavilov Str 26, Moscow 119991, Russia. EM e.grigoryan@hotmail.com; ae-z34@uni-koeln.de; e.almeida@nasa.gov NR 35 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 15 PY 2012 VL 49 IS 10 BP 1465 EP 1471 DI 10.1016/j.asr.2012.02.025 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 936VK UT WOS:000303617900008 ER PT J AU Young, ED Dyl, KA Simon, JI AF Young, Edward D. Dyl, Kathryn A. Simon, Justin I. TI Response to the Comment by SB Simon, L. Grossman, and SR Sutton on "Valence state of titanium in the Wark-Lovering rim of a Leoville CAI as a record of progressive oxidation in the early Solar Nebula" SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Editorial Material ID EVOLUTION; PYROXENE; OLIVINE AB S. Simon et al. incorrectly suggest that in earlier work we claimed there was no Ti3+ in Wark-Lovering rim pyroxenes. In neither the paper by Simon et al. (2005) nor the subsequent paper by Dyl et al. (2011) did we assert that there was no Ti3+ in rim pyroxenes. Rather, we found that many pyroxenes have Ti3+ below detection while others have lower Ti3+/Ti4+ than is typical of CAI interiors, indicating rim formation in a relatively oxidizing environment. Dyl et al. (2011) showed through exhaustive testing that the suggestion by Simon et al. (2007) that EMPA data in the paper by Simon et al. (2005) were flawed is incorrect. Here we consider each point raised in the comment by S. Simon et al. and reiterate that our electron microprobe data and the XANES data of Simon et al. (2007) agree and demonstrate a statistically significant (similar to 2 sigma) or greater difference between rim and interior pyroxene Ti3+/Ti4+. We show that the oxidation states of Ti in Wark-Lovering rim pyroxenes, the chemistry of rim pyroxenes, and the modal abundances of rim minerals are best explained by reaction between the CAI and gas that was orders of magnitude more oxidizing than the solar-like gas from which the CAIs originally formed. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Dyl, Kathryn A.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Young, Edward D.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Simon, Justin I.] NASA, Ctr Isotope Cosmochem & Geochronol, ARES, Johnson Space Ctr, Houston, TX 77058 USA. RP Dyl, KA (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. EM kdyl@imperial.ac.uk RI Simon, Justin/D-7015-2011 NR 7 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2012 VL 85 BP 377 EP 382 DI 10.1016/j.gca.2012.01.029 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 930AH UT WOS:000303107200024 ER PT J AU Hurley, DM Lawrence, DJ Bussey, DBJ Vondrak, RR Elphic, RC Gladstone, GR AF Hurley, Dana M. Lawrence, David J. Bussey, D. Benjamin J. Vondrak, Richard R. Elphic, Richard C. Gladstone, G. Randall TI Two-dimensional distribution of volatiles in the lunar regolith from space weathering simulations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID COLD TRAPS; SOUTH-POLE; ICE; DEPOSITS; MOON; MERCURY; SURFACE; PLUME; WATER AB We present simulations of space weathering effects on ice deposits in regions of permanent shadow on the Moon. These Monte Carlo simulations follow the effects of space weathering processes on the distribution of the volatiles over time. The model output constrains the coherence of volatile deposits with depth, lateral separation, and time. The results suggest that ice sheets become broken and buried with time. As impacts begin to puncture an initially coherent surficial ice sheet, small areas with a deficit of ice compared to surrounding areas are formed first. As time progresses, holes become prevalent and the anomalous regions are local enhancements of ice concentration in a volume. The 3-D distribution is also heterogeneous because the ice is buried to varying depths in different locations. Analysis of the coherence of ice on 10 cm scales predicts that putative ice sheets in anomalous radar craters are <100 Myr old. Surface frost becomes homogenized within 20 Myr. The simulations show the data from the LCROSS impact and surrounding region are consistent with the ice deposit in Cabeus being >1000 Myr old. For future in situ analysis of cold trap volatiles, a horizontal range of 10 m is sufficient to acquire surface-based measurements of heterogeneously distributed ice. These results also support previous analyses that Mercury's cold traps are young. Citation: Hurley, D. M., D. J. Lawrence, D. B. J. Bussey, R. R. Vondrak, R. C. Elphic, and G. R. Gladstone (2012), Two-dimensional distribution of volatiles in the lunar regolith from space weathering simulations, Geophys. Res. Lett., 39, L09203, doi:10.1029/2012GL051105. C1 [Hurley, Dana M.; Lawrence, David J.; Bussey, D. Benjamin J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Vondrak, Richard R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Elphic, Richard C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gladstone, G. Randall] SW Res Inst, San Antonio, TX USA. RP Hurley, DM (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM dana.hurley@jhuapl.edu RI Hurley, Dana/F-4488-2015; Lawrence, David/E-7463-2015 OI Hurley, Dana/0000-0003-1052-1494; Lawrence, David/0000-0002-7696-6667 FU NASA Lunar Science Institute; LASER [NNA09DB31A, NNX08BA60G] FX This work was supported by the NASA Lunar Science Institute and LASER program through grants NNA09DB31A and NNX08BA60G. NR 31 TC 14 Z9 14 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 12 PY 2012 VL 39 AR L09203 DI 10.1029/2012GL051105 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 941YK UT WOS:000304005300001 ER PT J AU Sheel, V Haider, SA Withers, P Kozarev, K Jun, I Kang, S Gronoff, G Wedlund, CS AF Sheel, Varun Haider, S. A. Withers, Paul Kozarev, K. Jun, I. Kang, S. Gronoff, G. Wedlund, C. Simon TI Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID POLAR-CAP ABSORPTION; MARTIAN IONOSPHERE; HYDROGEN-ATOMS; ATMOSPHERE; DEPOSITION; ELECTRON; AURORA; MODEL; APPROXIMATION; PRECIPITATION AB We investigate the ionospheric effects of a solar energetic particle (SEP) event at Mars, specifically the 29 September 1989 event. We use its energy spectrum and a steady state ionospheric model to simulate vertical profiles of ion and electron densities. The ionospheric response to this large event would have been readily observable. It caused electron densities to exceed 10(4) cm(-3) at 30-170 km, much larger than typically observed below 100 km. It also increased the ionosphere's total electron content by half of its subsolar value and would have caused strong attenuation of radio waves. The simulated attenuation is 462 dB at 5 MHz, which demonstrates that SEP events can cause sufficient attenuation (> 13 dB) to explain the lack of surface reflections in some MARSIS topside radar sounder observations. We also develop a complementary generalized approach to the study of the ionospheric effects of SEP events. This approach predicts the threshold intensities at which a SEP event is likely to produce detectable changes in electron density profiles and radio wave attenuation measurements. An event one hundred times less intense than the 29 September 1989 event produces electron densities in excess of 3000 cm(-3) at 80 km, which should be measurable by radio occultation observations, and causes sufficient attenuation to eliminate MARSIS surface reflections. However, although enhancements in total electron content have been observed during SEP events, predicted enhancements in low altitude electron density were not confirmed by observations. C1 [Withers, Paul; Kozarev, K.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Sheel, Varun; Haider, S. A.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Jun, I.; Kang, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gronoff, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Wedlund, C. Simon] Belgian Inst Space Aeron, Brussels, Belgium. RP Withers, P (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM withers@bu.edu RI Withers, Paul/H-2241-2014; OI Gronoff, Guillaume/0000-0002-0331-7076 FU NASA [NNX08AP96G] FX P.W. acknowledges Hermann Opgenoorth and an anonymous colleague for helpful reviews, productive discussions with members of the Living With a Star Targeted Research and Technology "Extreme space weather events in the solar system" Focus Team led by Yingjuan Ma, comments from Dave Brain, a survey of MGS electron densities by Zachary Girazian, and partial support from NASA grant NNX08AP96G. NR 48 TC 19 Z9 19 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 12 PY 2012 VL 117 AR A05312 DI 10.1029/2011JA017455 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 942BR UT WOS:000304015000001 ER PT J AU AghaKouchak, A Mehran, A Norouzi, H Behrangi, A AF AghaKouchak, Amir Mehran, Ali Norouzi, Hamidreza Behrangi, Ali TI Systematic and random error components in satellite precipitation data sets SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID UNCERTAINTY; RESOLUTION; SCALES AB This study contributes to characterization of satellite precipitation error which is fundamental to develop uncertainty models and bias reduction algorithms. Systematic and random error components of several satellite precipitation products are investigated over different seasons, thresholds and temporal accumulations. The analyses show that the spatial distribution of systematic error has similar patterns for all precipitation products. However, the systematic (random) error of daily accumulations is significantly less (more) than that of high resolution 3-hr data. One should note that the systematic biases of satellite precipitation are distinctively different in the summer and winter. The systematic (random) error is remarkably higher (lower) during the winter. Furthermore, the systematic error seems to be proportional to the rain rate magnitude. The findings of this study highlight that bias removal methods should take into account the spatiotemporal characteristics of error as well as the proportionality of error to the magnitude of rain rate. Citation: AghaKouchak, A., A. Mehran, H. Norouzi, and A. Behrangi (2012), Systematic and random error components in satellite precipitation data sets, Geophys. Res. Lett., 39, L09406, doi:10.1029/2012GL051592. C1 [AghaKouchak, Amir; Mehran, Ali] Univ Calif Irvine, Dept Civil Environm Engn, Irvine, CA 92617 USA. [Norouzi, Hamidreza] CUNY, New York City Coll Technol, Dept Construct Management & Civil Engn Technol, Brooklyn, NY 11210 USA. [Behrangi, Ali] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP AghaKouchak, A (reprint author), Univ Calif Irvine, Dept Civil Environm Engn, Irvine, CA 92617 USA. EM amir9a@gmail.com OI Norouzi, Hamid/0000-0003-0405-5108 FU Bureau of Reclamation [R11AP81451]; Army Research Office [W911NF-11-1-0422] FX The authors would like to thank the editor and reviewers for their constructive comments and suggestions which improved the paper greatly. This study is supported by the Bureau of Reclamation (Award No. R11AP81451) and the Army Research Office (Award No. W911NF-11-1-0422). The editor thanks Timothy Bellerby and an anonymous reviewer. NR 15 TC 49 Z9 49 U1 6 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 11 PY 2012 VL 39 AR L09406 DI 10.1029/2012GL051592 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 941YI UT WOS:000304005100002 ER PT J AU Smith, GL Mlynczak, PE Potter, GL AF Smith, G. Louis Mlynczak, Pamela E. Potter, Gerald L. TI A technique using principal component analysis to compare seasonal cycles of Earth radiation from CERES and model computations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ENERGY SYSTEM CERES; ANGULAR-DISTRIBUTION MODELS; GENERAL-CIRCULATION MODELS; SATELLITE-OBSERVATIONS; BUDGET EXPERIMENT; TERRA SATELLITE; FLUX ESTIMATION; CLOUDS; VALIDATION; INSTRUMENT AB A method for quantitatively comparing the seasonal cycles of two global data sets is presented. The seasonal cycles of absorbed solar radiation (ASR) and outgoing longwave radiation (OLR) have been computed from an eight-year data set from the Clouds and Earth's Radiant Energy System (CERES) scanning radiometers and from a model data set produced by the NASA Goddard Space Flight Center Global Modeling and Assimilation Office. To compare the seasonal cycles from these two data sets, principal component (PC) analysis is used, where the PCs express the time variations and the corresponding empirical orthogonal functions (EOFs) describe the geographic variations. Ocean has a long thermal response time compared to land, so land and ocean are separated for the analysis. The root-mean square values for the seasonal cycles of ASR and OLR are extremely close for the two data sets. The first three PCs are quite close, showing that the time responses and magnitudes over the globe are very similar. The agreement between the two sets of PCs is quantified by computing the matrix of inner products of the two sets. For ASR over land, the first PCs of CERES and the model agree to better than 99.9%. The EOF maps are similar for most of the globe, but differ in a few places, and the agreement of the EOF maps is likewise quantified. Maps of differences between the annual cycles show regions of agreement and disagreement. C1 [Smith, G. Louis] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Smith, G. Louis; Mlynczak, Pamela E.] Sci Syst & Applicat Inc, Hampton, VA USA. [Potter, Gerald L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Smith, GL (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM george.l.smith@nasa.gov FU NASA Science Mission Directorate through Langley Research Center FX We gratefully acknowledge support by the CERES program from the NASA Science Mission Directorate through Langley Research Center to Science Systems and Applications, Inc. The CERES EBAF data product was obtained from the NASA Langley Research Center CERES ordering tool at http://ceres.larc.nasa.gov/. We must also thank the Global Modeling and Assimilation Office of Goddard Space Flight Center for the GEOS-5 data set that was used in this paper. We are grateful to Kuan-Man Xu and the reviewer for their comments and suggestions. In particular, we have incorporated comments from a reviewer in the discussion of Figure 3. We thank the reviewer for this insight. NR 26 TC 4 Z9 4 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 11 PY 2012 VL 117 AR D09116 DI 10.1029/2011JD017343 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 941ZP UT WOS:000304009200002 ER PT J AU Forbes, KF St Cyr, OC AF Forbes, Kevin F. St Cyr, O. C. TI Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission organization in North America SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID INDUCED CURRENTS AB During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit. C1 [Forbes, Kevin F.] Catholic Univ Amer, Dept Econ & Business, Washington, DC 20064 USA. [St Cyr, O. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [St Cyr, O. C.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Forbes, KF (reprint author), Catholic Univ Amer, Dept Econ & Business, 620 Michigan Ave NE, Washington, DC 20064 USA. EM Forbes@cua.edu FU U.S. National Science Foundation [0318582, 0921964] FX This research was made possible by grants from the U.S. National Science Foundation [Award #0318582 and #0921964]. We wish to thank Michael A. Forbes for writing the programs that manipulated the large quantity of geomagnetic data used in this study. We have also benefited from discussions with Mark Lively, Antti Pulkkinen, and Ernest Zampelli. We thank NGI Intelligence Press for providing us with spot gas price data. We thank Platts for providing us with the coal pricing data. We thank PJM for making its data available for analysis. The results presented in this paper rely on the data collected at the Fredericksburg, Virginia, geomagnetic observatory. We thank the USGS that supports the operations of this observatory and INTERMAGNET for promoting highstandards of magnetic observatory practice (www.intermagnet.org). Any errors are the full responsibility of the authors. NR 29 TC 6 Z9 6 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1539-4956 J9 SPACE WEATHER JI Space Weather PD MAY 11 PY 2012 VL 10 AR S05001 DI 10.1029/2011SW000752 PG 14 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 942AQ UT WOS:000304012200001 ER PT J AU Russell, CT Raymond, CA Coradini, A McSween, HY Zuber, MT Nathues, A De Sanctis, MC Jaumann, R Konopliv, AS Preusker, F Asmar, SW Park, RS Gaskell, R Keller, HU Mottola, S Roatsch, T Scully, JEC Smith, DE Tricarico, P Toplis, MJ Christensen, UR Feldman, WC Lawrence, DJ McCoy, TJ Prettyman, TH Reedy, RC Sykes, ME Titus, TN AF Russell, C. T. Raymond, C. A. Coradini, A. McSween, H. Y. Zuber, M. T. Nathues, A. De Sanctis, M. C. Jaumann, R. Konopliv, A. S. Preusker, F. Asmar, S. W. Park, R. S. Gaskell, R. Keller, H. U. Mottola, S. Roatsch, T. Scully, J. E. C. Smith, D. E. Tricarico, P. Toplis, M. J. Christensen, U. R. Feldman, W. C. Lawrence, D. J. McCoy, T. J. Prettyman, T. H. Reedy, R. C. Sykes, M. E. Titus, T. N. TI Dawn at Vesta: Testing the Protoplanetary Paradigm SO SCIENCE LA English DT Article ID PARENT BODY; EVOLUTION; DIFFERENTIATION; DIOGENITES; EUCRITE; ORIGIN; CORE; SIZE AB The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs. C1 [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Raymond, C. A.; Konopliv, A. S.; Asmar, S. W.; Park, R. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Coradini, A.; De Sanctis, M. C.] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy. [McSween, H. Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Zuber, M. T.; Smith, D. E.] MIT, Cambridge, MA 02139 USA. [Nathues, A.; Keller, H. U.; Christensen, U. R.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Jaumann, R.; Preusker, F.; Mottola, S.; Roatsch, T.] DLR, Inst Planetary Res, Berlin, Germany. [Scully, J. E. C.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Gaskell, R.; Tricarico, P.; Feldman, W. C.; Prettyman, T. H.; Reedy, R. C.; Sykes, M. E.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Toplis, M. J.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France. [Lawrence, D. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McCoy, T. J.] Smithsonian Inst, Washington, DC 20560 USA. [Titus, T. N.] US Geol Survey, Flagstaff, AZ 86001 USA. RP Russell, CT (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM ctrussell@igpp.ucla.edu RI Russell, Christopher/E-7745-2012; De Sanctis, Maria Cristina/G-5232-2013; Lawrence, David/E-7463-2015; OI Russell, Christopher/0000-0003-1639-8298; De Sanctis, Maria Cristina/0000-0002-3463-4437; Lawrence, David/0000-0002-7696-6667; Reedy, Robert/0000-0002-2189-1303; Prettyman, Thomas/0000-0003-0072-2831 FU NASA; [NNM05AA86C] FX We thank the Dawn team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Vesta. C. T. R. is supported by the Discovery Program through contract NNM05AA86C to the University of California, Los Angeles. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Dawn data are archived with the NASA Planetary Data System. NR 27 TC 205 Z9 207 U1 2 U2 42 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 11 PY 2012 VL 336 IS 6082 BP 684 EP 686 DI 10.1126/science.1219381 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 940EH UT WOS:000303872300039 PM 22582253 ER PT J AU Jaumann, R Williams, DA Buczkowski, DL Yingst, RA Preusker, F Hiesinger, H Schmedemann, N Kneissl, T Vincent, JB Blewett, DT Buratti, BJ Carsenty, U Denevi, BW De Sanctis, MC Garry, WB Keller, HU Kersten, E Krohn, K Li, JY Marchi, S Matz, KD McCord, TB McSween, HY Mest, SC Mittlefehldt, DW Mottola, S Nathues, A Neukum, G O'Brien, DP Pieters, CM Prettyman, TH Raymond, CA Roatsch, T Russell, CT Schenk, P Schmidt, BE Scholten, F Stephan, K Sykes, MV Tricarico, P Wagner, R Zuber, MT Sierks, H AF Jaumann, R. Williams, D. A. Buczkowski, D. L. Yingst, R. A. Preusker, F. Hiesinger, H. Schmedemann, N. Kneissl, T. Vincent, J. B. Blewett, D. T. Buratti, B. J. Carsenty, U. Denevi, B. W. De Sanctis, M. C. Garry, W. B. Keller, H. U. Kersten, E. Krohn, K. Li, J. -Y. Marchi, S. Matz, K. D. McCord, T. B. McSween, H. Y. Mest, S. C. Mittlefehldt, D. W. Mottola, S. Nathues, A. Neukum, G. O'Brien, D. P. Pieters, C. M. Prettyman, T. H. Raymond, C. A. Roatsch, T. Russell, C. T. Schenk, P. Schmidt, B. E. Scholten, F. Stephan, K. Sykes, M. V. Tricarico, P. Wagner, R. Zuber, M. T. Sierks, H. TI Vesta's Shape and Morphology SO SCIENCE LA English DT Article ID ASTEROID 4 VESTA; PONDED DEPOSITS; TOPOGRAPHY; EVOLUTION; 433-EROS; ORIGIN; CERES AB Vesta's surface is characterized by abundant impact craters, some with preserved ejecta blankets, large troughs extending around the equatorial region, enigmatic dark material, and widespread mass wasting, but as yet an absence of volcanic features. Abundant steep slopes indicate that impact-generated surface regolith is underlain by bedrock. Dawn observations confirm the large impact basin (Rheasilvia) at Vesta's south pole and reveal evidence for an earlier, underlying large basin (Veneneia). Vesta's geology displays morphological features characteristic of the Moon and terrestrial planets as well as those of other asteroids, underscoring Vesta's unique role as a transitional solar system body. C1 [Jaumann, R.; Preusker, F.; Carsenty, U.; Kersten, E.; Krohn, K.; Matz, K. D.; Mottola, S.; Roatsch, T.; Scholten, F.; Stephan, K.; Wagner, R.] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Jaumann, R.; Schmedemann, N.; Kneissl, T.; Neukum, G.] Free Univ Berlin, Berlin, Germany. [Williams, D. A.] Arizona State Univ, Tempe, AZ 85287 USA. [Buczkowski, D. L.; Blewett, D. T.; Denevi, B. W.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Yingst, R. A.; Garry, W. B.; Mest, S. C.; O'Brien, D. P.; Prettyman, T. H.; Sykes, M. V.; Tricarico, P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Hiesinger, H.] Univ Munster, D-4400 Munster, Germany. [Vincent, J. B.; Nathues, A.; Sierks, H.] Max Planck Inst Solar Syst Res MPS, Katlenburg Lindau, Germany. [Buratti, B. J.; Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [De Sanctis, M. C.] Ist Nazl Astrofis INAF, Ist Astrofis & Planetol Spaziali, Rome, Italy. [Keller, H. U.] Tech Univ Carolo Wilhelmina Braunschweig, Braunschweig, Germany. [Li, J. -Y.] Univ Maryland, College Pk, MD 20742 USA. [Marchi, S.] NASA, Lunar Sci Inst, Boulder, CO 80309 USA. [McCord, T. B.] Bear Fight Inst, Winthrop, WA 98862 USA. [McSween, H. Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Mittlefehldt, D. W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA. [Pieters, C. M.] Brown Univ, Planetary Geosci Dept, Providence, RI 02912 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Schenk, P.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Schmidt, B. E.] Univ Texas Austin, Inst Geophys, Austin, TX 78712 USA. [Zuber, M. T.] MIT, Cambridge, MA 02139 USA. RP Jaumann, R (reprint author), German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. EM ralf.jaumann@dlr.de RI De Sanctis, Maria Cristina/G-5232-2013; Buczkowski, Debra/I-7842-2015; Blewett, David/I-4904-2012; Denevi, Brett/I-6502-2012; Russell, Christopher/E-7745-2012; Garry, Brent/I-5920-2013 OI De Sanctis, Maria Cristina/0000-0002-3463-4437; Buczkowski, Debra/0000-0002-4729-7804; Schmidt, Britney/0000-0001-7376-8510; Prettyman, Thomas/0000-0003-0072-2831; Blewett, David/0000-0002-9241-6358; Denevi, Brett/0000-0001-7837-6663; Russell, Christopher/0000-0003-1639-8298; FU NASA; NASA Dawn; DLR FX We thank the Dawn team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Vesta. Portions of this work were performed at the DLR Institute of Planetary Research and at the Jet Propulsion Laboratory under contract with NASA and were supported by the NASA Dawn participating scientist program and the DLR. Dawn data are archived with the NASA Planetary Data System. NR 18 TC 119 Z9 119 U1 3 U2 40 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 11 PY 2012 VL 336 IS 6082 BP 687 EP 690 DI 10.1126/science.1219122 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 940EH UT WOS:000303872300040 PM 22582254 ER PT J AU Marchi, S McSween, HY O'Brien, DP Schenk, P De Sanctis, MC Gaskell, R Jaumann, R Mottola, S Preusker, F Raymond, CA Roatsch, T Russell, CT AF Marchi, S. McSween, H. Y. O'Brien, D. P. Schenk, P. De Sanctis, M. C. Gaskell, R. Jaumann, R. Mottola, S. Preusker, F. Raymond, C. A. Roatsch, T. Russell, C. T. TI The Violent Collisional History of Asteroid 4 Vesta SO SCIENCE LA English DT Article ID BELT; IMPACT; EXCITATION; EVOLUTION; ORIGIN; EJECTA; CRATER; FAMILY AB Vesta is a large differentiated rocky body in the main asteroid belt that accreted within the first few million years after the formation of the earliest solar system solids. The Dawn spacecraft extensively imaged Vesta's surface, revealing a collision-dominated history. Results show that Vesta's cratering record has a strong north-south dichotomy. Vesta's northern heavily cratered terrains retain much of their earliest history. The southern hemisphere was reset, however, by two major collisions in more recent times. We estimate that the youngest of these impact structures, about 500 kilometers across, formed about 1 billion years ago, in agreement with estimates of Vesta asteroid family age based on dynamical and collisional constraints, supporting the notion that the Vesta asteroid family was formed during this event. C1 [Marchi, S.] NASA, Lunar Sci Inst, Boulder, CO USA. [McSween, H. Y.] Univ Tennessee, Knoxville, TN USA. [O'Brien, D. P.; Gaskell, R.] Planetary Sci Inst, Tucson, AZ USA. [Schenk, P.] Lunar & Planetary Inst, Houston, TX 77058 USA. [De Sanctis, M. C.] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy. [Jaumann, R.; Mottola, S.; Preusker, F.; Roatsch, T.] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA USA. RP Marchi, S (reprint author), NASA, Lunar Sci Inst, Boulder, CO USA. EM marchi@boulder.swri.edu RI Russell, Christopher/E-7745-2012; De Sanctis, Maria Cristina/G-5232-2013 OI Russell, Christopher/0000-0003-1639-8298; De Sanctis, Maria Cristina/0000-0002-3463-4437 FU Dawn Science, Instrument, and Operations Teams; Italian Space Agency; NASA's Dawn; NASA; Istituto Nazionale d'Astrofisica FX We thank the Dawn Science, Instrument, and Operations Teams for support. This work was supported by the Italian Space Agency and NASA's Dawn at Vesta Participating Scientists Program. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. S. Marchi thanks Istituto Nazionale d'Astrofisica for the support in carrying on this work. NR 24 TC 103 Z9 104 U1 2 U2 22 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 11 PY 2012 VL 336 IS 6082 BP 690 EP 694 DI 10.1126/science.1218757 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 940EH UT WOS:000303872300041 PM 22582255 ER PT J AU Schenk, P O'Brien, DP Marchi, S Gaskell, R Preusker, F Roatsch, T Jaumann, R Buczkowski, D McCord, T McSween, HY Williams, D Yingst, A Raymond, C Russell, C AF Schenk, Paul O'Brien, David P. Marchi, Simone Gaskell, Robert Preusker, Frank Roatsch, Thomas Jaumann, Ralf Buczkowski, Debra McCord, Thomas McSween, Harry Y. Williams, David Yingst, Aileen Raymond, Carol Russell, Chris TI The Geologically Recent Giant Impact Basins at Vesta's South Pole SO SCIENCE LA English DT Article ID PARENT BODY; METEORITES; EVOLUTION; FAMILY; ORIGIN; EARTH; AGES AB Dawn's global mapping of Vesta reveals that its observed south polar depression is composed of two overlapping giant impact features. These large basins provide exceptional windows into impact processes at planetary scales. The youngest, Rheasilvia, is 500 kilometers wide and 19 kilometers deep and finds its nearest morphologic analog among large basins on low-gravity icy satellites. Extensive ejecta deposits occur, but impact melt volume is low, exposing an unusual spiral fracture pattern that is likely related to faulting during uplift and convergence of the basin floor. Rheasilvia obliterated half of another 400-kilometer-wide impact basin, Veneneia. Both basins are unexpectedly young, roughly 1 to 2 billion years, and their formation substantially reset Vestan geology and excavated sufficient volumes of older compositionally heterogeneous crustal material to have created the Vestoids and howardite-eucrite-diogenite meteorites. C1 [Schenk, Paul] Lunar & Planetary Inst, Houston, TX 77058 USA. [O'Brien, David P.; Gaskell, Robert; Yingst, Aileen] Planetary Sci Inst, Tucson, AZ 85719 USA. [Marchi, Simone] NASA, Lunar Sci Inst, Boulder, CO USA. [Preusker, Frank; Roatsch, Thomas; Jaumann, Ralf] Deutsch Zentrum Luft & Raumfahrt, Inst Planetary Res, D-80302 Berlin, Germany. [Buczkowski, Debra] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McCord, Thomas] Bear Fight Inst, Wintrop, WA 98862 USA. [McSween, Harry Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Williams, David] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Raymond, Carol] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Russell, Chris] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Schenk, P (reprint author), Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. EM schenk@lpi.usra.edu RI Buczkowski, Debra/I-7842-2015; OI Buczkowski, Debra/0000-0002-4729-7804; Russell, Christopher/0000-0003-1639-8298 FU NASA Dawn; NASA FX The authors thank D. Bogard, E. Asphaug, and H. J. Melosh for helpful discussions and comments and the NASA Dawn at Vesta Participating Scientist program for support. We thank the Dawn team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Vesta. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Dawn data are archived with the NASA Planetary Data System. NR 23 TC 100 Z9 100 U1 0 U2 12 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 11 PY 2012 VL 336 IS 6082 BP 694 EP 697 DI 10.1126/science.1223272 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 940EH UT WOS:000303872300042 PM 22582256 ER PT J AU De Sanctis, MC Ammannito, E Capria, MT Tosi, F Capaccioni, F Zambon, F Carraro, F Fonte, S Frigeri, A Jaumann, R Magni, G Marchi, S McCord, TB McFadden, LA McSween, HY Mittlefehldt, DW Nathues, A Palomba, E Pieters, CM Raymond, CA Russell, CT Toplis, MJ Turrini, D AF De Sanctis, M. C. Ammannito, E. Capria, M. T. Tosi, F. Capaccioni, F. Zambon, F. Carraro, F. Fonte, S. Frigeri, A. Jaumann, R. Magni, G. Marchi, S. McCord, T. B. McFadden, L. A. McSween, H. Y. Mittlefehldt, D. W. Nathues, A. Palomba, E. Pieters, C. M. Raymond, C. A. Russell, C. T. Toplis, M. J. Turrini, D. TI Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta SO SCIENCE LA English DT Article ID V-TYPE ASTEROIDS; PARENT BODY; DIOGENITES; EUCRITES; CONSTRAINTS; EVOLUTION; BRECCIAS; MODEL AB The mineralogy of Vesta, based on data obtained by the Dawn spacecraft's visible and infrared spectrometer, is consistent with howardite-eucrite-diogenite meteorites. There are considerable regional and local variations across the asteroid: Spectrally distinct regions include the south-polar Rheasilvia basin, which displays a higher diogenitic component, and equatorial regions, which show a higher eucritic component. The lithologic distribution indicates a deeper diogenitic crust, exposed after excavation by the impact that formed Rheasilvia, and an upper eucritic crust. Evidence for mineralogical stratigraphic layering is observed on crater walls and in ejecta. This is broadly consistent with magma-ocean models, but spectral variability highlights local variations, which suggests that the crust can be a complex assemblage of eucritic basalts and pyroxene cumulates. Overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle. C1 [De Sanctis, M. C.; Ammannito, E.; Capria, M. T.; Tosi, F.; Capaccioni, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Palomba, E.; Turrini, D.] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy. [Jaumann, R.] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Marchi, S.] NASA, Lunar Sci Inst, Boulder, CO USA. [McCord, T. B.] Bear Fight Inst, Winthrop, WA USA. [McFadden, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McSween, H. Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. [Mittlefehldt, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Nathues, A.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Pieters, C. M.] Brown Univ, Providence, RI 02912 USA. [Raymond, C. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Toplis, M. J.] Observ Midi Pyrenees, F-31400 Toulouse, France. RP De Sanctis, MC (reprint author), Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy. EM mariacristina.desanctis@iaps.inaf.it RI Russell, Christopher/E-7745-2012; McFadden, Lucy-Ann/I-4902-2013; De Sanctis, Maria Cristina/G-5232-2013; Frigeri, Alessandro/F-2151-2010; Beck, Andrew/J-7215-2015; OI Tosi, Federico/0000-0003-4002-2434; Zambon, Francesca/0000-0002-4190-6592; Russell, Christopher/0000-0003-1639-8298; McFadden, Lucy-Ann/0000-0002-0537-9975; Palomba, Ernesto/0000-0002-9101-6774; De Sanctis, Maria Cristina/0000-0002-3463-4437; Frigeri, Alessandro/0000-0002-9140-3977; Beck, Andrew/0000-0003-4455-2299; capria, maria teresa/0000-0002-9814-9588; Turrini, Diego/0000-0002-1923-7740; Capaccioni, Fabrizio/0000-0003-1631-4314 FU Italian Space Agency; Dawn Science, Instrument, and Operations Teams; NASA's Dawn; NASA FX VIR is funded by the Italian Space Agency and was developed under the leadership of INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy. The instrument was built by Selex-Galileo, Florence, Italy. The authors acknowledge the support of the Dawn Science, Instrument, and Operations Teams. This work was supported by the Italian Space Agency, and NASA's Dawn at Vesta Participating Scientists Program. A portion of this work was performed at the Jet Propulsion Laboratory under contract with NASA. NR 31 TC 141 Z9 142 U1 1 U2 18 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 11 PY 2012 VL 336 IS 6082 BP 697 EP 700 DI 10.1126/science.1219270 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 940EH UT WOS:000303872300043 PM 22582257 ER PT J AU Reddy, V Nathues, A Le Corre, L Sierks, H Li, JY Gaskell, R McCoy, T Beck, AW Schroder, SE Pieters, CM Becker, KJ Buratti, BJ Denevi, B Blewett, DT Christensen, U Gaffey, MJ Gutierrez-Marques, P Hicks, M Keller, HU Maue, T Mottola, S McFadden, LA McSween, HY Mittlefehldt, D O'Brien, DP Raymond, C Russell, C AF Reddy, Vishnu Nathues, Andreas Le Corre, Lucille Sierks, Holger Li, Jian-Yang Gaskell, Robert McCoy, Timothy Beck, Andrew W. Schroeder, Stefan E. Pieters, Carle M. Becker, Kris J. Buratti, Bonnie J. Denevi, Brett Blewett, David T. Christensen, Ulrich Gaffey, Michael J. Gutierrez-Marques, Pablo Hicks, Michael Keller, Horst Uwe Maue, Thorsten Mottola, Stefano McFadden, Lucy A. McSween, Harry Y. Mittlefehldt, David O'Brien, David P. Raymond, Carol Russell, Christopher TI Color and Albedo Heterogeneity of Vesta from Dawn SO SCIENCE LA English DT Article ID PARENT BODY; METEORITES; EUCRITE; EARTH; SIZE AB Multispectral images (0.44 to 0.98 mm) of asteroid (4) Vesta obtained by the Dawn Framing Cameras reveal global color variations that uncover and help understand the north-south hemispherical dichotomy. The signature of deep lithologies excavated during the formation of the Rheasilvia basin on the south pole has been preserved on the surface. Color variations (band depth, spectral slope, and eucrite-diogenite abundance) clearly correlate with distinct compositional units. Vesta displays the greatest variation of geometric albedo (0.10 to 0.67) of any asteroid yet observed. Four distinct color units are recognized that chronicle processes-including impact excavation, mass wasting, and space weathering-that shaped the asteroid's surface. Vesta's color and photometric diversity are indicative of its status as a preserved, differentiated protoplanet. C1 [Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille; Sierks, Holger; Schroeder, Stefan E.; Christensen, Ulrich; Gutierrez-Marques, Pablo; Maue, Thorsten] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Reddy, Vishnu; Gaffey, Michael J.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. [Li, Jian-Yang] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gaskell, Robert; O'Brien, David P.] Planetary Sci Inst, Tucson, AZ 85719 USA. [McCoy, Timothy; Beck, Andrew W.] Smithsonian Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA. [Pieters, Carle M.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Becker, Kris J.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Buratti, Bonnie J.; Hicks, Michael; Raymond, Carol] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Denevi, Brett; Blewett, David T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Keller, Horst Uwe] TU Braunschweig, Inst Geophys & Extraterr Phys, DE-38106 Braunschweig, Germany. [Mottola, Stefano] Deutsch Zentrum Luft & Raumfahrt DLR, German Aerosp Ctr, Inst Planetary Res, D-12489 Berlin, Germany. [McFadden, Lucy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McSween, Harry Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Mittlefehldt, David] NASA, Lyndon B Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA. [Russell, Christopher] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Reddy, V (reprint author), Max Planck Inst Solar Syst Res, Max Planck Str 2, D-37191 Katlenburg Lindau, Germany. EM reddy@mps.mpg.de RI Blewett, David/I-4904-2012; Denevi, Brett/I-6502-2012; Russell, Christopher/E-7745-2012; Schroder, Stefan/D-9709-2013; McFadden, Lucy-Ann/I-4902-2013; Beck, Andrew/J-7215-2015; OI Blewett, David/0000-0002-9241-6358; Denevi, Brett/0000-0001-7837-6663; Russell, Christopher/0000-0003-1639-8298; Schroder, Stefan/0000-0003-0323-8324; McFadden, Lucy-Ann/0000-0002-0537-9975; Beck, Andrew/0000-0003-4455-2299; Reddy, Vishnu/0000-0002-7743-3491; Le Corre, Lucille/0000-0003-0349-7932 FU Max Planck Society; German Space Agency, DLR; Dawn at Vesta; NASA FX We thank the Dawn team for the development, cruise, orbital insertion, and operations of the Dawn spacecraft at Vesta. The Framing Camera project is financially supported by the Max Planck Society and the German Space Agency, DLR. We also thank the Dawn at Vesta Participating Scientist Program for funding the research. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Dawn data are archived with the NASA Planetary Data System. NR 14 TC 115 Z9 115 U1 1 U2 13 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 11 PY 2012 VL 336 IS 6082 BP 700 EP 704 DI 10.1126/science.1219088 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 940EH UT WOS:000303872300044 PM 22582258 ER PT J AU Andersson, ME Verronen, PT Wang, SH Rodger, CJ Clilverd, MA Carson, BR AF Andersson, Monika E. Verronen, Pekka T. Wang, Shuhui Rodger, Craig J. Clilverd, Mark A. Carson, Bonar R. TI Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004-2009 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NORTHERN-HEMISPHERE; MIDDLE ATMOSPHERE; JANUARY 2005; SOLAR; VARIABILITY; SATELLITE; EVENTS AB Energetic particle precipitation leads to enhancement of odd hydrogen (HOx) below 80 km altitude through water cluster ion chemistry. Using measurements from the Microwave Limb Sounder (MLS/Aura) and Medium Energy Proton and Electron Detector (MEPED/POES) between 2004-2009, we study variations of nighttime OH caused by radiation belt electrons at geomagnetic latitudes 55-65 degrees. For those months with daily mean 100-300 keV electron count rate exceeding 150 counts/s in the outer radiation belt, we find a strong correlation (r >= 0.6) between OH mixing ratios at 70-78 km (0.046-0.015 hPa) and precipitating electrons. Correlations r >= 0.35, corresponding to random chance probability p <= 5%, are observed down to52 km (0.681 hPa), while no clear correlation is observed at altitudes below. This suggests that the fluxes of >= 3 MeV electrons were not high enough to cause observable changes in OH mixing ratios. At 75 km, in about 34% of the 65 months analyzed we find a correlation r >= 0.35. Although similar results are obtained for both hemispheres in general, in some cases the differences in atmospheric conditions make the OH response more difficult to detect in the South. Considering the latitude extent of electron forcing, we find clear effects on OH at magnetic latitudes 55-72 degrees, while the lower latitudes are influenced much less. Because the time period 2004-2009 analyzed here coincided with an extended solar minimum, and the year 2009 was anomalously quiet, it is reasonable to assume that our results provide a lower-limit estimation of the importance of energetic electron precipitation at the latitudes considered. C1 [Andersson, Monika E.; Verronen, Pekka T.] Finnish Meteorol Inst, Earth Observat Unit, FI-00101 Helsinki, Finland. [Wang, Shuhui] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rodger, Craig J.; Carson, Bonar R.] Univ Otago, Dept Phys, Dunedin, New Zealand. [Clilverd, Mark A.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. RP Andersson, ME (reprint author), Finnish Meteorol Inst, Earth Observat Unit, Erik Palmenin Aukio 1,POB 503, FI-00101 Helsinki, Finland. EM monika.andersson@fmi.fi RI Verronen, Pekka/G-6658-2014; Rodger, Craig/A-1501-2011 OI Verronen, Pekka/0000-0002-3479-9071; Rodger, Craig/0000-0002-6770-2707 FU Academy of Finland [136225, 140888]; National Aeronautics and Space Administration; New Zealand Marsden Fund FX M.E.A. would like to thank Marko Laine and Sanna-Mari Paivarinta for helpful comments. M. E. A., C.J.R., and M. A. C. would like to thank the International Space Science Institute (ISSI) of Bern, Switzerland, for providing the environment in which this paper could be completed. The work of M. E. A. and P. T. V. was supported by the Academy of Finland through the projects 136225 and 140888 (SPOC: Significance of Energetic Electron Precipitation to Odd Hydrogen, Ozone, and Climate). Research at the Jet Propulsion Laboratory, California Institute of Technology, is performed under contract with the National Aeronautics and Space Administration. C.J.R. was supported by the New Zealand Marsden Fund. NR 35 TC 27 Z9 27 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 10 PY 2012 VL 117 AR D09304 DI 10.1029/2011JD017246 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 941ZN UT WOS:000304008900003 ER PT J AU Page, MJ Symeonidis, M Vieira, JD Altieri, B Amblard, A Arumugam, V Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dubois, EN Dunlop, JS Dwek, E Dye, S Eales, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Rigopoulou, D Riguccini, L Rizzo, D Rodighiero, G Roseboom, IG Rowan-Robinson, M Portal, MS Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Viero, M Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Page, M. J. Symeonidis, M. Vieira, J. D. Altieri, B. Amblard, A. Arumugam, V. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dubois, E. N. Dunlop, J. S. Dwek, E. Dye, S. Eales, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Rigopoulou, D. Riguccini, L. Rizzo, D. Rodighiero, G. Roseboom, I. G. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Scott, D. Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Viero, M. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI The suppression of star formation by powerful active galactic nuclei SO NATURE LA English DT Article ID BLACK-HOLES; GALAXY FORMATION; AGN; OUTFLOWS; FEEDBACK; CATALOGS; QUASARS; FIELDS; GROWTH; MODEL AB The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge(1) results from the AGN quenching the surrounding star formation as it approaches its peak luminosity(2-4). X-rays trace emission from AGN unambiguously(5), whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths(6). Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow(7-9), expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time. C1 [Page, M. J.; Symeonidis, M.; Rawlings, J. I.; Seymour, N.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Arumugam, V.; Dunlop, J. S.; Ivison, R. J.; Roseboom, I. G.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Aussel, H.; Chanial, P.; Elbaz, D.; Madden, S.; Panuzzo, P.; Riguccini, L.] Univ Paris Diderot, CE Saclay, CEA DSM IRFU, CNRS,Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Clements, D. L.; Fox, M.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Blain, A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Cava, A.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain. [Conley, A.; Glenn, J.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dubois, E. N.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Dye, S.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Eales, S.; Gear, W.; Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Rodighiero, G.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA UCB 389, Boulder, CO 80309 USA. [Halpern, M.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Isaak, K.] European Space Res & Technol Ctr ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Lagache, G.] Univ Paris 11, IAS, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, JPL, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Seymour, N.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Trichas, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Page, MJ (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM mjp@mssl.ucl.ac.uk RI amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Dye, Simon/0000-0002-1318-8343; Rodighiero, Giulia/0000-0002-9415-2296; Altieri, Bruno/0000-0003-3936-0284 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN(Spain); SNSB(Sweden); STFC (UK); UKSA (UK); NASA (USA) FX Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and which includes: University of Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); and Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN(Spain); SNSB(Sweden); STFC, UKSA (UK); and NASA (USA). NR 29 TC 90 Z9 90 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 10 PY 2012 VL 485 IS 7397 BP 213 EP 216 DI 10.1038/nature11096 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 939HJ UT WOS:000303799800035 PM 22575961 ER PT J AU Aliu, E Archambault, S Arlen, T Aune, T Beilicke, M Benbow, W Bottcher, M Bouvier, A Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Ciupik, L Collins-Hughes, E Connolly, MP Coppi, P Cui, W Decerprit, G Dickherber, R Dumm, J Errando, M Falcone, A Feng, Q Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Godambe, S Griffin, S Grube, J Gyuk, G Hanna, D Hawkins, K Holder, J Huan, H Hughes, G Humensky, TB Kaaret, P Karlsson, N Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Lang, MJ Lee, K Madhavan, AS Maier, G Majumdar, P McArthur, S McCann, A Moriarty, P Mukherjee, R Ong, RA Orr, M Otte, AN Palma, N Park, N Perkins, JS Pichel, A Pohl, M Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Ruppel, J Saxon, DB Schroedter, M Sembroski, GH Senturk, GD Smith, AW Staszak, D Telezhinsky, I Tesic, G Theiling, M Thibadeau, S Tsurusaki, K Varlotta, A Vivier, M Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Zitzer, B Fortin, P Horan, D AF Aliu, E. Archambault, S. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Boettcher, M. Bouvier, A. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Coppi, P. Cui, W. Decerprit, G. Dickherber, R. Dumm, J. Errando, M. Falcone, A. Feng, Q. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Godambe, S. Griffin, S. Grube, J. Gyuk, G. Hanna, D. Hawkins, K. Holder, J. Huan, H. Hughes, G. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. Lee, K. Madhavan, A. S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Moriarty, P. Mukherjee, R. Ong, R. A. Orr, M. Otte, A. N. Palma, N. Park, N. Perkins, J. S. Pichel, A. Pohl, M. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Ruppel, J. Saxon, D. B. Schroedter, M. Sembroski, G. H. Sentuerk, G. D. Smith, A. W. Staszak, D. Telezhinsky, I. Tesic, G. Theiling, M. Thibadeau, S. Tsurusaki, K. Varlotta, A. Vivier, M. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Zitzer, B. Fortin, P. Horan, D. TI DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY gamma-RAY EMISSION FROM THE BLAZAR RBS 0413 SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (RBS 0413-VER J0319+187); gamma rays: galaxies ID BL-LACERTAE OBJECTS; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; LAC OBJECTS; BRIGHT BLAZARS; RADIATION; MODEL; CATALOG; MISSION AB We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) gamma-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based gamma-ray observatory, detected VHE. rays from RBS 0413 with a statistical significance of 5.5 standard deviations (sigma) and a gamma-ray flux of (1.5 +/- 0.6(stat) +/- 0.7(syst)) x 10(-8) photons m(-2) s(-1) (similar to 1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 +/- 0.68(stat) +/- 0.30(syst). Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE gamma rays from RBS 0413 with a (stat)istical significance of more than 9 sigma, a power-law photon index of 1.57 +/- 0.12(stat-0.12sys')(+0.11) and a gamma-ray flux between 300 MeV and 300 GeV of (1.64 +/- 0.43(stat-0.22sys)(+ 0.31)) x 10(-5) photons m(-2) s(-1). We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the gamma-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model. C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Archambault, S.; Griffin, S.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Arlen, T.; Majumdar, P.; Ong, R. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Bouvier, A.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; Lee, K.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Galante, N.; Roache, E.; Schroedter, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Boettcher, M.; Hawkins, K.; Palma, N.] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Decerprit, G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Collins-Hughes, E.; Khassen, Y.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Connolly, M. P.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Coppi, P.] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Karlsson, N.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gall, D.; Kaaret, P.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Huan, H.; Park, N.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Ruppel, J.; Telezhinsky, I.] DESY, D-15738 Zeuthen, Germany. [Humensky, T. B.; Sentuerk, G. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Perkins, J. S.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA. [Perkins, J. S.] NASA, Astroparticle Phys Lab, GSFC, Greenbelt, MD 20771 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Pichel, A.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Pohl, M.; Ruppel, J.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Fortin, P.; Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. RP Aliu, E (reprint author), Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. EM gunessenturk@gmail.com; fortin@llr.in2p3.fr; deirdre@llr.in2p3.fr RI Khassen, Yerbol/I-3806-2015; OI Khassen, Yerbol/0000-0002-7296-3100; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794 FU US Department of Energy Office of Science; US National Science Foundation; Smithsonian Institution; NASA; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the UK FX The VERITAS research is supported by grants from the US Department of Energy Office of Science, the US National Science Foundation, the Smithsonian Institution, and the NASA Swift Guest Investigator Program, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and by STFC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and at the collaborating institutions in the construction and operation of the instrument. NR 40 TC 27 Z9 28 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 94 DI 10.1088/0004-637X/750/2/94 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500008 ER PT J AU Dong, R Rafikov, R Zhu, Z Hartmann, L Whitney, B Brandt, T Muto, T Hashimoto, J Grady, C Follette, K Kuzuhara, M Tanii, R Itoh, Y Thalmann, C Wisniewski, J Mayama, S Janson, M Abe, L Brandner, W Carson, J Egner, S Feldt, M Goto, M Guyon, O Hayano, Y Hayashi, M Hayashi, S Henning, T Hodapp, KW Honda, M Inutsuka, S Ishii, M Iye, M Kandori, R Knapp, GR Kudo, T Kusakabe, N Matsuo, T McElwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Suto, H Suzuki, R Takami, M Takato, N Terada, H Tomono, D Turner, EL Watanabe, M Yamada, T Takami, H Usuda, T Tamura, M AF Dong, R. Rafikov, R. Zhu, Z. Hartmann, L. Whitney, B. Brandt, T. Muto, T. Hashimoto, J. Grady, C. Follette, K. Kuzuhara, M. Tanii, R. Itoh, Y. Thalmann, C. Wisniewski, J. Mayama, S. Janson, M. Abe, L. Brandner, W. Carson, J. Egner, S. Feldt, M. Goto, M. Guyon, O. Hayano, Y. Hayashi, M. Hayashi, S. Henning, T. Hodapp, K. W. Honda, M. Inutsuka, S. Ishii, M. Iye, M. Kandori, R. Knapp, G. R. Kudo, T. Kusakabe, N. Matsuo, T. McElwain, M. W. Miyama, S. Morino, J. -I. Moro-Martin, A. Nishimura, T. Pyo, T. -S. Suto, H. Suzuki, R. Takami, M. Takato, N. Terada, H. Tomono, D. Turner, E. L. Watanabe, M. Yamada, T. Takami, H. Usuda, T. Tamura, M. TI THE MISSING CAVITIES IN THE SEEDS POLARIZED SCATTERED LIGHT IMAGES OF TRANSITIONAL PROTOPLANETARY DISKS: A GENERIC DISK MODEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; protoplanetary disks; radiative transfer; stars: pre-main sequence ID T-TAURI STARS; SPECTRAL ENERGY-DISTRIBUTIONS; 2-DIMENSIONAL RADIATIVE-TRANSFER; MAIN-SEQUENCE STARS; HERBIG AE/BE STARS; PRETRANSITIONAL DISKS; CIRCUMSTELLAR DISKS; PROTOSTELLAR ENVELOPES; IMAGING POLARIMETRY; SIZE DISTRIBUTION AB Transitional circumstellar disks around young stellar objects have a distinctive infrared deficit around 10 mu m in their spectral energy distributions, recently measured by the Spitzer Infrared Spectrograph (IRS), suggesting dust depletion in the inner regions. These disks have been confirmed to have giant central cavities by imaging of the submillimeter continuum emission using the Submillimeter Array (SMA). However, the polarized near-infrared scattered light images for most objects in a systematic IRS/SMA cross sample, obtained by HiCIAO on the Subaru telescope, show no evidence for the cavity, in clear contrast with SMA and Spitzer observations. Radiative transfer modeling indicates that many of these scattered light images are consistent with a smooth spatial distribution for mu m-sized grains, with little discontinuity in the surface density of the mu m-sized grains at the cavity edge. Here we present a generic disk model that can simultaneously account for the general features in IRS, SMA, and Subaru observations. Particularly, the scattered light images for this model are computed, which agree with the general trend seen in Subaru data. Decoupling between the spatial distributions of the mu m-sized dust and mm-sized dust inside the cavity is suggested by the model, which, if confirmed, necessitates a mechanism, such as dust filtration, for differentiating the small and big dust in the cavity clearing process. Our model also suggests an inwardly increasing gas-to-dust ratio in the inner disk, and different spatial distributions for the small dust inside and outside the cavity, echoing the predictions in grain coagulation and growth models. C1 [Dong, R.; Rafikov, R.; Zhu, Z.; Brandt, T.; Janson, M.; Knapp, G. R.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hartmann, L.] Univ Michigan, Dept Astron, Ann Arbor, MI 48105 USA. [Whitney, B.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Muto, T.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Muto, T.] Kogakuin Univ, Div Liberal Arts, Shinjuku Ku, Tokyo 1638677, Japan. [Hashimoto, J.; Kuzuhara, M.; Iye, M.; Kandori, R.; Kusakabe, N.; Miyama, S.; Morino, J. -I.; Suto, H.; Tamura, M.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Grady, C.; McElwain, M. W.] NASA, Goddard Space Flight Ctr, ExoPlanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Grady, C.] Eureka Sci, Oakland, CA 96002 USA. [Follette, K.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Tanii, R.; Itoh, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Thalmann, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Wisniewski, J.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Mayama, S.] Grad Univ Adv Studies SOKENDAI, Hayama, Kanagawa 2400193, Japan. [Abe, L.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR7293, F-06300 Nice, France. [Brandner, W.; Feldt, M.; Goto, M.; Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Carson, J.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Egner, S.; Guyon, O.; Hayano, Y.; Hayashi, S.; Ishii, M.; Kudo, T.; Nishimura, T.; Pyo, T. -S.; Takato, N.; Terada, H.; Tomono, D.; Takami, H.; Usuda, T.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Hayashi, M.] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Honda, M.] Kanagawa Univ, Dept Informat Sci, Hiratsuka, Kanagawa 2591293, Japan. [Inutsuka, S.] Nagoya Univ, Grad Sch Sci, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Matsuo, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Moro-Martin, A.] INTA CSIC, CAB, Dept Astrofis, Madrid 28850, Spain. [Suzuki, R.] TMT Observ Corp, Pasadena, CA 91105 USA. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Turner, E. L.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2278568, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Sapporo, Hokkaido 0600810, Japan. [Yamada, T.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Dong, R (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM rdong@astro.princeton.edu RI Turner, Edwin/A-4295-2011; MIYAMA, Shoken/A-3598-2015; Watanabe, Makoto/E-3667-2016 OI Watanabe, Makoto/0000-0002-3656-4081 FU NSF [AST 0908269, AST 1008440, AST 1009314, AST 1009203]; NASA [NNX22SK53G]; Sloan Fellowship FX R.D. thanks Sean Andrews, Nuria Calvet, Eugene Chiang, Bruce Draine, Catherine Espaillat, Elise Furlan, and Jim Stone for useful conversations and help. This work is partially supported by NSF grants AST 0908269 (R. D., Z.Z., and R. R.), AST 1008440 (C. G.), AST 1009314 (J.W.), AST 1009203 (J.C.), NASA grant NNX22SK53G (L. H.), and the Sloan Fellowship (R. R.). We thank Pascale Garaud and Doug Lin for organizing the International Summer Institute for Modeling in Astrophysics (ISIMA) at Kavli Institute for Astronomy and Astrophysics, Beijing, which facilitated the discussion of radiative transfer modeling among R. D., L. H., T. M., and Z.Z. We also thank the anonymous referee for suggestions that improved the quality of the draft. NR 57 TC 61 Z9 61 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 161 DI 10.1088/0004-637X/750/2/161 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500075 ER PT J AU Fabrycky, DC Ford, EB Steffen, JH Rowe, JF Carter, JA Moorhead, AV Batalha, NM Borucki, WJ Bryson, S Buchhave, LA Christiansen, JL Ciardi, DR Cochran, WD Endl, M Fanelli, MN Fischer, D Fressin, F Geary, J Haas, MR Hall, JR Holman, MJ Jenkins, JM Koch, DG Latham, DW Li, J Lissauer, JJ Lucas, P Marcy, GW Mazeh, T McCauliff, S Quinn, S Ragozzine, D Sasselov, D Shporer, A AF Fabrycky, Daniel C. Ford, Eric B. Steffen, Jason H. Rowe, Jason F. Carter, Joshua A. Moorhead, Althea V. Batalha, Natalie M. Borucki, William J. Bryson, Steve Buchhave, Lars A. Christiansen, Jessie L. Ciardi, David R. Cochran, William D. Endl, Michael Fanelli, Michael N. Fischer, Debra Fressin, Francois Geary, John Haas, Michael R. Hall, Jennifer R. Holman, Matthew J. Jenkins, Jon M. Koch, David G. Latham, David W. Li, Jie Lissauer, Jack J. Lucas, Philip Marcy, Geoffrey W. Mazeh, Tsevi McCauliff, Sean Quinn, Samuel Ragozzine, Darin Sasselov, Dimitar Shporer, Avi TI TRANSIT TIMING OBSERVATIONS FROM KEPLER. IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: statistical; planetary systems; planets and satellites: detection; planets and satellites: dynamical evolution and stability; stars: individual (KID 10358759/KOI-738/Kepler-29, KID 3832474/KOI-806/Kepler-30, KID 9347899/KOI-935/Kepler-31, KID 9787239/KOI-952/Kepler-32) ID SOLAR-TYPE STARS; MEAN-MOTION RESONANCES; SPIN-ORBIT ALIGNMENT; SUPER-EARTHS; SOPHIE VELOCIMETRY; MASS PLANETS; HOT-JUPITER; EXTRASOLAR PLANETS; 3-BODY PROBLEM; HARPS SEARCH AB Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present four sets of light curves from the Kepler spacecraft, each which of shows multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates that the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets' masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems' architectures, even in cases for which high-precision Doppler follow-up is impractical. C1 [Fabrycky, Daniel C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ford, Eric B.; Moorhead, Althea V.] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32111 USA. [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Rowe, Jason F.; Christiansen, Jessie L.; Jenkins, Jon M.] SETI Inst, Mountain View, CA 94043 USA. [Fanelli, Michael N.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Carter, Joshua A.; Fressin, Francois; Geary, John; Holman, Matthew J.; Latham, David W.; Quinn, Samuel; Ragozzine, Darin; Sasselov, Dimitar] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, Dept Astrophys & Planetary Sci, DK-1350 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Ciardi, David R.] Caltech, NASA Exoplanet Sci Inst, Pasadena, CA 91126 USA. [Cochran, William D.; Endl, Michael] Univ Texas Austin, McDonald Observ, Austin, TX 78730 USA. [Fischer, Debra] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Fischer, Debra] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Hall, Jennifer R.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Lucas, Philip] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Mazeh, Tsevi] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Shporer, Avi] Las Cumbres Observ Global Telescope Network, Santa Barbara, CA 93117 USA. [Shporer, Avi] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Fabrycky, DC (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM daniel.fabrycky@gmail.com RI Carter, Joshua/A-8280-2013; Ragozzine, Darin/C-4926-2013; OI Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; /0000-0001-6545-639X; Fischer, Debra/0000-0003-2221-0861; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; National Aeronautics and Space Administration (NASA) [HF-51272.01-A, HF-51267.01-A, NAS 5-26555, NNX08AR04G]; Space Telescope Science Institute; National Science Foundation [0707203] FX Funding for this mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the many years of work that is proving so successful. We thank E. Agol for comments and G. Sokol for assistance analyzing starspot variations. D.C.F. and J.A.C. acknowledge support for this work was provided by NASA through Hubble Fellowship grants HF-51272.01-A and HF-51267.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. E.B.F acknowledges support by the National Aeronautics and Space Administration under grant NNX08AR04G issued through the Kepler Participating Scientist Program. This material is based upon work supported by the National Science Foundation under grant No. 0707203. This paper uses observations obtained with facilities of the LasCumbres Observatory Global Telescope. NR 83 TC 107 Z9 107 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 114 DI 10.1088/0004-637X/750/2/114 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500028 ER PT J AU Ford, EB Fabrycky, DC Steffen, JH Carter, JA Fressin, F Holman, MJ Lissauer, JJ Moorhead, AV Morehead, RC Ragozzine, D Rowe, JF Welsh, WF Allen, C Batalha, NM Borucki, WJ Bryson, ST Buchhave, LA Burke, CJ Caldwell, DA Charbonneau, D Clarke, BD Cochran, WD Desert, JM Endl, M Everett, ME Fischer, DA Gautier, TN Gilliland, RL Jenkins, JM Haas, MR Horch, E Howell, SB Ibrahim, KA Isaacson, H Koch, DG Latham, DW Li, J Lucas, P MacQueen, PJ Marcy, GW McCauliff, S Mullally, FR Quinn, SN Quintana, E Shporer, A Still, M Tenenbaum, P Thompson, SE Torres, G Twicken, JD Wohler, B AF Ford, Eric B. Fabrycky, Daniel C. Steffen, Jason H. Carter, Joshua A. Fressin, Francois Holman, Matthew J. Lissauer, Jack J. Moorhead, Althea V. Morehead, Robert C. Ragozzine, Darin Rowe, Jason F. Welsh, William F. Allen, Christopher Batalha, Natalie M. Borucki, William J. Bryson, Stephen T. Buchhave, Lars A. Burke, Christopher J. Caldwell, Douglas A. Charbonneau, David Clarke, Bruce D. Cochran, William D. Desert, Jean-Michel Endl, Michael Everett, Mark E. Fischer, Debra A. Gautier, Thomas N., III Gilliland, Ron L. Jenkins, Jon M. Haas, Michael R. Horch, Elliott Howell, Steve B. Ibrahim, Khadeejah A. Isaacson, Howard Koch, David G. Latham, David W. Li, Jie Lucas, Philip MacQueen, Phillip J. Marcy, Geoffrey W. McCauliff, Sean Mullally, Fergal R. Quinn, Samuel N. Quintana, Elisa Shporer, Avi Still, Martin Tenenbaum, Peter Thompson, Susan E. Torres, Guillermo Twicken, Joseph D. Wohler, Bill CA Kepler Sci Team TI TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: detection; planets and satellites: dynamical evolution and stability; stars: individual (KIC 3231341, 11512246, KOI 168, 1102, Kepler-23, Kepler-24); techniques: miscellaneous ID SOLAR-TYPE STARS; 1ST 4 MONTHS; PLANET CANDIDATES; EXTRASOLAR PLANETS; PROTOSTELLAR DISC; Y-2 ISOCHRONES; FOLLOW-UP; STELLAR; MULTIPLICITY; VALIDATION AB We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars. C1 [Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C.] Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32611 USA. [Fabrycky, Daniel C.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Ragozzine, Darin; Charbonneau, David; Desert, Jean-Michel; Quinn, Samuel N.; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Allen, Christopher; Ibrahim, Khadeejah A.; McCauliff, Sean; Wohler, Bill] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Rowe, Jason F.; Burke, Christopher J.; Caldwell, Douglas A.; Clarke, Bruce D.; Jenkins, Jon M.; Li, Jie; Mullally, Fergal R.; Quintana, Elisa; Tenenbaum, Peter; Thompson, Susan E.; Twicken, Joseph D.] SETI Inst, Mountain View, CA 94043 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Cochran, William D.; Endl, Michael; MacQueen, Phillip J.] Univ Texas Austin, McDonald Observ, Austin, TX 78730 USA. [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Fischer, Debra A.] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ron L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Horch, Elliott] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Isaacson, Howard; Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Lucas, Philip] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Shporer, Avi] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Shporer, Avi] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Still, Martin] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. RP Ford, EB (reprint author), Univ Florida, Dept Astron, Bryant Space Sci Ctr 211, Gainesville, FL 32611 USA. EM eford@astro.ufl.edu RI Kepler, S. O. /H-5901-2012; Carter, Joshua/A-8280-2013; Ragozzine, Darin/C-4926-2013; Caldwell, Douglas/L-7911-2014; OI Kepler, S. O. /0000-0002-7470-5703; Fischer, Debra/0000-0003-2221-0861; Fabrycky, Daniel/0000-0003-3750-0183; Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars A./0000-0003-1605-5666; /0000-0001-6545-639X FU NASA's Science Mission Directorate; National Aeronautics and Space Administration (NASA) [NNX08AR04G, HF-51272.01-A, HF-51267.01-A, NAS 5-26555]; National Science Foundation [0707203]; Space Telescope Science Institute FX Funding for this mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the many years of work that is proving so successful. E.B.F. acknowledges support by the National Aeronautics and Space Administration under grant NNX08AR04G issued through the Kepler Participating Scientist Program. This material is based upon work supported by the National Science Foundation under grant 0707203. D.C.F. and J.A.C. acknowledge support for this work provided by NASA through Hubble Fellowship grants HF-51272.01-A and HF-51267.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Results are based in part on observations obtained at the W.M. Keck Observatory, which is operated by the University of California and the California Institute of Technology, and at the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. NR 42 TC 51 Z9 51 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 113 DI 10.1088/0004-637X/750/2/113 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500027 ER PT J AU Gibb, EL Bonev, BP Villanueva, G DiSanti, MA Mumma, MJ Sudholt, E Radeva, Y AF Gibb, Erika L. Bonev, Boncho P. Villanueva, Geronimo DiSanti, Michael A. Mumma, Michael J. Sudholt, Emily Radeva, Yana TI CHEMICAL COMPOSITION OF COMET C/2007 N3 (LULIN): ANOTHER "ATYPICAL" COMET SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; comets: individual:(C/2007 N3 (Lulin)); methods: observational; planets and satellites: formation; techniques: spectroscopic ID O1 HALE-BOPP; SPITZER SPECTROSCOPIC SURVEY; YOUNG STELLAR OBJECTS; NARROW-BAND PHOTOMETRY; SOLID CARBON-DIOXIDE; C/1996 B2 HYAKUTAKE; ORTHO-PARA RATIO; PARENT VOLATILES; PROTOPLANETARY DISKS; ORGANIC COMPOSITION AB We measured the volatile chemical composition of comet C/2007 N3 (Lulin) on three dates from 2009 January 30 to February 1 using NIRSPEC, the high-resolution (lambda/Delta lambda approximate to 25,000), long-slit echelle spectrograph at Keck 2. We sampled nine primary (parent) volatile species (H2O, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, CO) and two product species (OH* and NH2). We also report upper limits for HDO and CH3D. C/2007 N3 (Lulin) displayed an unusual composition when compared to other comets. Based on comets measured to date, CH4 and C2H6 exhibited "normal" abundances relative to water, CO and HCN were only moderately depleted, C2H2 and H2CO were more severely depleted, and CH3OH was significantly enriched. Comet C/2007 N3 (Lulin) is another important and unusual addition to the growing population of comets with measured parent volatile compositions, illustrating that these studies have not yet reached the level where new observations simply add another sample to a population with well-established statistics. C1 [Gibb, Erika L.; Sudholt, Emily] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Bonev, Boncho P.; Villanueva, Geronimo; Radeva, Yana] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Bonev, Boncho P.; Villanueva, Geronimo; DiSanti, Michael A.; Mumma, Michael J.; Radeva, Yana] NASA, Goddard Ctr Astrobiol, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gibb, EL (reprint author), Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. EM gibbe@umsl.edu RI mumma, michael/I-2764-2013 FU NSF [NSF 0807939]; NASA [RTOPs 344-32-07, 08-PAST08-0033/34, 09-PAST09-0034, 09-PATM09-0080, 08-PATM08-0031, NNX08AW44A]; NASA through the NASA Astrobiology Institute [RTOP 344-53-51]; W. M. Keck Foundation FX E.L.G., B.P.B., and undergraduate student E.S. gratefully acknowledge support from NSF's Planetary Astronomy program (NSF 0807939). We also acknowledge support from NASA's Planetary Astronomy program for M.J.M., G.L.V., and B.P.B. (RTOPs 344-32-07, 08-PAST08-0033/34) and MAD (09-PAST09-0034; PI: M.A.D.), NASA's Planetary Atmospheres program for M.A.D. and G.L.V. (09-PATM09-0080; PI: M.A.D. and 08-PATM08-0031; PI: G.L.V.), and NASA's Astrobiology Program through the NASA Astrobiology Institute (RTOP 344-53-51 to M.J.M.). B.P.B. acknowledges support by Co-op agreement NASA#NNX08AW44A. We are grateful for the assistance of Keck support astronomer Scott Dahm during the observations. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. NR 90 TC 23 Z9 23 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 102 DI 10.1088/0004-637X/750/2/102 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500016 ER PT J AU Lissauer, JJ Marcy, GW Rowe, JF Bryson, ST Adams, E Buchhave, LA Ciardi, DR Cochran, WD Fabrycky, DC Ford, EB Fressin, F Geary, J Gilliland, RL Holman, MJ Howell, SB Jenkins, JM Kinemuchi, K Koch, DG Morehead, RC Ragozzine, D Seader, SE Tanenbaum, PG Torres, G Twicken, JD AF Lissauer, Jack J. Marcy, Geoffrey W. Rowe, Jason F. Bryson, Stephen T. Adams, Elisabeth Buchhave, Lars A. Ciardi, David R. Cochran, William D. Fabrycky, Daniel C. Ford, Eric B. Fressin, Francois Geary, John Gilliland, Ronald L. Holman, Matthew J. Howell, Steve B. Jenkins, Jon M. Kinemuchi, Karen Koch, David G. Morehead, Robert C. Ragozzine, Darin Seader, Shawn E. Tanenbaum, Peter G. Torres, Guillermo Twicken, Joseph D. TI ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: detection; techniques: photometric ID TRANSITING PLANET; TIMING VARIATIONS; LIGHT CURVES; SYSTEM; STAR; VALIDATION; CATALOG; CAMERA AB We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days. C1 [Lissauer, Jack J.; Rowe, Jason F.; Jenkins, Jon M.; Seader, Shawn E.; Tanenbaum, Peter G.; Twicken, Joseph D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Marcy, Geoffrey W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Ciardi, David R.] CALTECH, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Cochran, William D.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Fabrycky, Daniel C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ford, Eric B.; Morehead, Robert C.] Univ Florida, Bryant Space Sci Ctr 211, Gainesville, FL 32611 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Lissauer, JJ (reprint author), NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. EM Jack.Lissauer@nasa.gov RI Ragozzine, Darin/C-4926-2013; OI Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; /0000-0001-6545-639X; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; NASA [HF-51272.01-A]; STScI; [NAS 5-26555] FX Kepler was competitively selected as the 10th Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate. The authors thank the many people who gave so generously of their time to make the Kepler mission a success, chief among them Bill Borucki, who has devoted decades to developing and implementing Kepler. Useful comments were provided by Natalie Batalha, Ruth Murray-Clay, Dimitar Sasselov, Jason Steffen, and especially by Tim Brown. Kevin Zahnle and Mark Marley provided constructive comments on the manuscript. D.C.F. acknowledges NASA support through Hubble Fellowship grant No. HF-51272.01-A, awarded by STScI, operated by AURA under contract NAS 5-26555. NR 35 TC 126 Z9 126 U1 4 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 112 DI 10.1088/0004-637X/750/2/112 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500026 ER PT J AU Pritchard, TA Roming, PWA Brown, PJ Kuin, NPM Bayless, AJ Holland, ST Immler, S Milne, P Oates, SR AF Pritchard, T. A. Roming, P. W. A. Brown, P. J. Kuin, N. P. M. Bayless, Amanda J. Holland, S. T. Immler, S. Milne, P. Oates, S. R. TI EARLY ULTRAVIOLET OBSERVATIONS OF A TYPE IIn SUPERNOVA (2007pk) SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (SN 2007pk); ultraviolet: general ID ULTRA-VIOLET/OPTICAL TELESCOPE; HOBBY-EBERLY TELESCOPE; IA SUPERNOVAE; LOW-MASS; PROGENITORS; CALIBRATION; IINSN1998S; ERUPTIONS; SPECTRA; MISSION AB We present some of the earliest UV observations of a Type IIn supernova (SN)-SN 2007pk, where UV and optical observations using Swift's Ultra-Violet/Optical Telescope began 3 days after discovery or similar to 5 days after shock breakout. The SN observations commence at approximately maximum light in the UV and u-band filters, suggesting that the UV light curve peaks begin very rapidly after the initial explosion, and subsequently exhibit a linear decay of 0.20, 0.21, 0.16 mag day(-1) in the UVOT uvw2, uvm2, uvw1 (lambda(c) = 1928, 2246, 2600 angstrom) filters. Meanwhile the b- and v-band light curves begin approximately seven days before v-band peak and exhibit a shallow rise followed by a subsequent decay. A series of optical/near-IR spectra taken with the Hobby-Eberly Telescope at days 3-26 after discovery show spectra similar to that of the peculiar Type IIn 1998S. The emission from 2007pk falls below detection similar to 20 days after discovery in the UV and 50 days in the optical, showing no sign of the long duration emission seen in other Type IIn SNe. We examine the physical and spectral characteristics of 2007pk and compare its UV light curve and decay rate with other Type II SNe. C1 [Pritchard, T. A.; Roming, P. W. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Pritchard, T. A.; Roming, P. W. A.; Bayless, Amanda J.] SW Res Inst, Dept Space Sci, San Antonio, TX 78238 USA. [Brown, P. J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA. [Kuin, N. P. M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Holland, S. T.; Immler, S.] NASA, GSFC, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Milne, P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Pritchard, TA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM proming@swri.edu FU National Science Foundation [AST 0606772]; UK STFC; UK Space Agency FX This research has made use of the CfA Supernova Archive, which is funded in part by the National Science Foundation through grant AST 0606772.; This work was in part supported by the UK STFC and the UK Space Agency. NR 38 TC 10 Z9 10 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 128 DI 10.1088/0004-637X/750/2/128 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500042 ER PT J AU Radigan, J Jayawardhana, R Lafreniere, D Artigau, E Marley, M Saumon, D AF Radigan, Jacqueline Jayawardhana, Ray Lafreniere, David Artigau, Etienne Marley, Mark Saumon, Didier TI LARGE-AMPLITUDE VARIATIONS OF AN L/T TRANSITION BROWN DWARF: MULTI-WAVELENGTH OBSERVATIONS OF PATCHY, HIGH-CONTRAST CLOUD FEATURES SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; stars: individual (2MASS J21392676+0220226); stars: variables: general ID TIME-SERIES OBSERVATIONS; LOW-MASS STARS; BRIGHT ULTRACOOL DWARFS; ALL-SKY SURVEY; T-DWARFS; EXTRASOLAR PLANET; PHOTOMETRIC VARIABILITY; ABSOLUTE CALIBRATION; MODEL ATMOSPHERES; ROTATION PERIODS AB We present multiple-epoch photometric monitoring in the J, H, and K-s bands of the T1.5 dwarf 2MASS J21392676+0220226 (2M2139), revealing persistent, periodic (P = 7.721 +/- 0.005 hr) variability with a peak-to-peak amplitude as high as 26% in the J band. The light curve shape varies on a timescale of days, suggesting that evolving atmospheric cloud features are responsible. Using interpolations between model atmospheres with differing cloud thicknesses to represent a heterogeneous surface, we find that the multi-wavelength variations and the near-infrared spectrum of 2M2139 can be reproduced by either (1) cool, thick cloud features sitting above a thinner cloud layer, or (2) warm regions of low condensate opacity in an otherwise cloudy atmosphere, possibly indicating the presence of holes or breaks in the cloud layer. We find that temperature contrasts between thick and thin cloud patches must be greater than 175 K and as high as 425 K. We also consider whether the observed variability could arise from an interacting binary system, but this scenario is ruled out. 2M2139 joins the T2.5 dwarf SIMP0136 discovered by Artigau and coworkers as the second L/T transition brown dwarf to display large-amplitude variability on rotational timescales, suggesting that the fragmentation of dust clouds at the L/T transition may contribute to the abrupt decline in condensate opacity and J-band brightening observed to occur over this regime. C1 [Radigan, Jacqueline; Jayawardhana, Ray] Univ Toronto, Dept Astron, Toronto, ON M5S 3H4, Canada. [Lafreniere, David; Artigau, Etienne] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Lafreniere, David; Artigau, Etienne] Univ Montreal, Observ Mt Megant, Montreal, PQ, Canada. [Marley, Mark] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Radigan, J (reprint author), Univ Toronto, Dept Astron, 50 St George St,Room 101, Toronto, ON M5S 3H4, Canada. RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Lafreniere, David/0000-0002-6780-4252 FU Natural Sciences and Engineering Research Council; National Sciences and Engineering Research Council of Canada; two Spitzer Science Center; United States Department of Energy [DE-AC52-06NA25396]; National Aeronautics and Space Administration; National Science Foundation FX This work was supported in large part by Research Tools & Instrumentation and Discovery grants, a Steacie Fellowship, and the Canada Research Chairs program, all from the Natural Sciences and Engineering Research Council, to R.J. J.R. is supported in part by a Vanier Canada Graduate Scholarship from the National Sciences and Engineering Research Council of Canada. Work by D.S. was supported in part by two Spitzer Science Center grants and by the United States Department of Energy under contract DE-AC52-06NA25396. We thank Ian Thompson of Carnegie Observatories and the staff of the Las Campanas Observatory for their help in scheduling and carrying out the observations. This research has benefitted from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser at http://pono.ucsd.edu/adam/browndwarfs/similar to spexprism. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 80 TC 91 Z9 91 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2012 VL 750 IS 2 AR 105 DI 10.1088/0004-637X/750/2/105 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934LT UT WOS:000303446500019 ER PT J AU France, K Linsky, JL Tian, F Froning, CS Roberge, A AF France, Kevin Linsky, Jeffrey L. Tian, Feng Froning, Cynthia S. Roberge, Aki TI TIME-RESOLVED ULTRAVIOLET SPECTROSCOPY OF THE M-DWARF GJ 876 EXOPLANETARY SYSTEM SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: activity; stars: individual (GJ 876); stars: low-mass; ultraviolet: stars ID LOCAL INTERSTELLAR-MEDIUM; EXTRA-SOLAR PLANETS; DIGITAL SKY SURVEY; EARTH-LIKE PLANETS; M-CIRCLE-PLUS; TRANSITION REGION; MAGNETIC ACTIVITY; EMISSION-LINES; AU-MICROSCOPII; HARPS SEARCH AB Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (M4V). Using the COS and STIS spectrographs on board the Hubble Space Telescope, we have measured the 1150-3140 angstrom spectrum of GJ 876. We have reconstructed the stellar H I Ly alpha emission line profile, and find that the integrated Ly alpha flux is roughly equal to the rest of the integrated flux (1150-1210 angstrom + 1220-3140 angstrom) in the entire ultraviolet bandpass (F(Ly alpha)/F(FUV+NUV) approximate to 0.7). This ratio is similar to 2500x greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H-2 (T(H-2) > 2000 K). We show the light curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/quiescent flux ratios >= 10. The strong FUV radiation field of an M-star (and specifically Ly alpha) is important for determining the abundance of O-2-and the formation of biomarkers-in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars. C1 [France, Kevin; Froning, Cynthia S.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Linsky, Jeffrey L.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Linsky, Jeffrey L.] NIST, Boulder, CO 80309 USA. [Tian, Feng] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Roberge, Aki] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. RP France, K (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. EM kevin.france@colorado.edu RI Roberge, Aki/D-2782-2012; Tian, Feng/C-1344-2015 OI Roberge, Aki/0000-0002-2989-3725; Tian, Feng/0000-0002-9607-560X FU NASA [NAS 5-26555, NNX08AC146, NAS5-98043]; HST Guest Observing program [12464] FX Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.; K.F. thanks Sarah LeVine for graphic support of Project MUSCLES. We acknowledge enjoyable discussions with John Stocke, Hao Yang, and Brian Wolven. These data were obtained as part of the HST Guest Observing program No. 12464. This work was supported by NASA grants NNX08AC146 and NAS5-98043 to the University of Colorado at Boulder. NR 49 TC 29 Z9 29 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 10 PY 2012 VL 750 IS 2 AR L32 DI 10.1088/2041-8205/750/2/L32 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934MP UT WOS:000303448700006 ER PT J AU Gopalswamy, N Yashiro, S Makela, P Michalek, G Shibasaki, K Hathaway, DH AF Gopalswamy, N. Yashiro, S. Maekelae, P. Michalek, G. Shibasaki, K. Hathaway, D. H. TI BEHAVIOR OF SOLAR CYCLES 23 AND 24 REVEALED BY MICROWAVE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: chromosphere; Sun: coronal mass ejections (CMEs); Sun: filaments, prominences; Sun: photosphere; Sun: radio radiation; Sun: surface magnetism ID CORONAL MASS EJECTION; NOBEYAMA RADIOHELIOGRAPH; PROMINENCE ERUPTIONS; MAGNETIC-FIELDS; CURRENT MINIMUM; POLAR-CAP; HOLES; RADIO; ENHANCEMENT; REGIONS AB Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60 degrees N suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24. C1 [Gopalswamy, N.; Yashiro, S.; Maekelae, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Yashiro, S.; Maekelae, P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Michalek, G.] Jagielloninan Univ, Krakow, Poland. [Shibasaki, K.] Nobeyama Solar Radio Observ, Nobeyama, Japan. [Hathaway, D. H.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. FU NASA/LWS FX N.G. and S.Y. acknowledge the travel support during their visit to the Nobeyama Solar Radio Observatory, where part of this work was done. SOHO is a project of international cooperation between ESA and NASA. Work supported by NASA/LWS program. NR 29 TC 36 Z9 36 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 10 PY 2012 VL 750 IS 2 AR L42 DI 10.1088/2041-8205/750/2/L42 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934MP UT WOS:000303448700016 ER PT J AU Shinnaga, H Novak, G Vaillancourt, JE Machida, MN Kataoka, A Tomisaka, K Davidson, J Phillips, TG Dowell, CD Leeuw, L Houde, M AF Shinnaga, Hiroko Novak, Giles Vaillancourt, John E. Machida, Masahiro N. Kataoka, Akimasa Tomisaka, Kohji Davidson, Jacqueline Phillips, Thomas G. Dowell, C. Darren Leeuw, Lerothodi Houde, Martin TI MAGNETIC FIELD IN THE ISOLATED MASSIVE DENSE CLUMP IRAS 20126+4104 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: clouds; ISM: magnetic fields; polarization; stars: formation; submillimeter: ISM; techniques: polarimetric ID MOLECULAR CLOUD; STAR-FORMATION; SHARC-II; POLARIZATION; ACCRETION; OUTFLOWS; CORES; DISK; IRAS-20126+4104; ROTATION AB We measured polarized dust emission at 350 mu m toward the high-mass star-forming massive dense clump IRAS 20126+4104 using the SHARC II Polarimeter, SHARP, at the Caltech Submillimeter Observatory. Most of the observed magnetic field vectors agree well with magnetic field vectors obtained from a numerical simulation for the case when the global magnetic field lines are inclined with respect to the rotation axis of the dense clump. The results of the numerical simulation show that rotation plays an important role on the evolution of the massive dense clump and its magnetic field. The direction of the cold CO 1-0 bipolar outflow is parallel to the observed magnetic field within the dense clump as well as the global magnetic field, as inferred from optical polarimetry data, indicating that the magnetic field also plays a critical role in an early stage of massive star formation. The large-scale Keplerian disk of the massive (proto) star rotates in an almost opposite sense to the clump's envelope. The observed magnetic field morphology and the counterrotating feature of the massive dense clump system provide hints to constrain the role of magnetic fields in the process of high-mass star formation. C1 [Shinnaga, Hiroko; Phillips, Thomas G.] CALTECH, Submillimeter Observ, Hilo, HI 96720 USA. [Novak, Giles] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Vaillancourt, John E.] NASA, Ames Res Ctr, Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Machida, Masahiro N.] Kyushu Univ, Fac Sci, Dept Earth & Planetary Sci, Higashi Ku, Fukuoka 8128581, Japan. [Kataoka, Akimasa] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Tomisaka, Kohji] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Tomisaka, Kohji] Grad Univ Adv Studies SOKENDAI, Sch Phys Sci, Dept Astron, Mitaka, Tokyo 1818588, Japan. [Davidson, Jacqueline; Houde, Martin] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia. [Phillips, Thomas G.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Dowell, C. Darren] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Leeuw, Lerothodi] SETI Inst, Mountain View, CA 94043 USA. [Leeuw, Lerothodi] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Houde, Martin] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. RP Shinnaga, H (reprint author), CALTECH, Submillimeter Observ, 111 Nowelo St, Hilo, HI 96720 USA. RI Tomisaka, Kohji/E-6508-2013 OI Tomisaka, Kohji/0000-0003-2726-0892 FU NSF [AST-0540882, AST-0838261, AST 02-41356, AST 05-05230, AST-0909030, AST 05-05124]; MEXT [21740136, 21244021]; National Aeronautics and Space Administration FX This research has been supported by the NSF grants AST-0540882 and AST-0838261 to the CSO. SHARP has been supported by the NSF grants AST 02-41356, AST 05-05230, and AST-0909030 to Northwestern University and grant AST 05-05124 to the University of Chicago. Numerical computations were carried out on NEC SX-9 and the general-purpose PC farm at Center for Computational Astrophysics of National Astronomical Observatory of Japan. This work was supported by a Grants-in-Aid from MEXT (21740136,21244021). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. H. S. thanks Hua-bai Li, Roger Hildebrand, and Fumitaka Nakamura for helpful comments, and Shu-ichiro Inutsuka for valuable discussions. NR 23 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 10 PY 2012 VL 750 IS 2 AR L29 DI 10.1088/2041-8205/750/2/L29 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934MP UT WOS:000303448700003 ER PT J AU Verdini, A Grappin, R Pinto, R Velli, M AF Verdini, Andrea Grappin, Roland Pinto, Rui Velli, Marco TI ON THE ORIGIN OF THE 1/f SPECTRUM IN THE SOLAR WIND MAGNETIC FIELD SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetohydrodynamics (MHD); plasmas; solar wind; turbulence ID ALFVEN WAVES; TURBULENCE; EVOLUTION; CHROMOSPHERE; NOISE AB We present a mechanism for the formation of the low-frequency 1/f magnetic spectrum based on numerical solutions of a shell-reduced MHD model of the turbulent dynamics inside the sub-Alfvenic solar wind. We assign reasonably realistic profiles to the wind speed and the density along the radial direction, and a radial magnetic field. Alfven waves of short periodicity (600 s) are injected at the base of the chromosphere, penetrate into the corona, and are partially reflected, thus triggering a turbulent cascade. The cascade is strong for the reflected wave while it is weak for the outward propagating waves. Reflection at the transition region recycles the strong turbulent spectrum into the outward weak spectrum, which is advected beyond the Alfvenic critical point without substantial evolution. There, the magnetic field has a perpendicular power-law spectrum with slope close to the Kolmogorov -5/3. The parallel spectrum is inherited from the frequency spectrum of large (perpendicular) eddies. The shape is a double power law with slopes of similar or equal to-1 and -2 at low and high frequencies, respectively, with the position of the break depending on the injected spectrum. We suggest that the double power-law spectrum measured by Helios at 0.3 AU, where the average magnetic field is not aligned with the radial (contrary to our assumptions), results from the combination of such different spectral slopes. At low frequency the parallel spectrum dominates with its characteristic 1/f shape, while at higher frequencies its steep spectral slope (-2) is masked by the more energetic perpendicular spectrum (slope -5/3). C1 [Verdini, Andrea] Royal Observ Belgium, Solar Terr Ctr Excellence SIDC, Brussels, Belgium. [Grappin, Roland] Univ Paris Diderot, CNRS, Observ Paris, LUTH, F-92190 Meudon, France. [Grappin, Roland] Ecole Polytech, LPP, F-91128 Palaiseau, France. [Pinto, Rui] CEA Irfu, Lab AIM Paris Saclay, Gis Sur Yvette, France. [Pinto, Rui] Univ Paris Diderot, CNRS, INSU, Gis Sur Yvette, France. [Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Verdini, A (reprint author), Royal Observ Belgium, Solar Terr Ctr Excellence SIDC, Brussels, Belgium. EM verdini@oma.be; Roland.Grappin@obspm.fr; rui.pinto@cea.fr; mvelli@jpl.nasa.gov FU Belgian Federal Science Policy Office through the ESA-PRODEX FX We thank E. Buchlin for useful suggestions while implementing the background solar wind in the numerical code. A. V. acknowledges support from the Belgian Federal Science Policy Office through the ESA-PRODEX program. The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 27 TC 28 Z9 28 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 10 PY 2012 VL 750 IS 2 AR L33 DI 10.1088/2041-8205/750/2/L33 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 934MP UT WOS:000303448700007 ER PT J AU Huntzinger, DN Post, WM Wei, Y Michalak, AM West, TO Jacobson, AR Baker, IT Chen, JM Davis, KJ Hayes, DJ Hoffman, FM Jain, AK Liu, S McGuire, AD Neilson, RP Potter, C Poulter, B Price, D Raczka, BM Tian, HQ Thornton, P Tomelleri, E Viovy, N Xiao, J Yuan, W Zeng, N Zhao, M Cook, R AF Huntzinger, D. N. Post, W. M. Wei, Y. Michalak, A. M. West, T. O. Jacobson, A. R. Baker, I. T. Chen, J. M. Davis, K. J. Hayes, D. J. Hoffman, F. M. Jain, A. K. Liu, S. McGuire, A. D. Neilson, R. P. Potter, Chris Poulter, B. Price, David Raczka, B. M. Tian, H. Q. Thornton, P. Tomelleri, E. Viovy, N. Xiao, J. Yuan, W. Zeng, N. Zhao, M. Cook, R. TI North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison SO ECOLOGICAL MODELLING LA English DT Article DE Terrestrial biospheric models; Intercomparison; Carbon fluxes; North American Carbon Program; Regional ID CONTERMINOUS UNITED-STATES; PRIMARY PRODUCTIVITY NPP; COMPARING GLOBAL-MODELS; NET PRIMARY PRODUCTION; CLIMATE-CHANGE; ORGANIC-MATTER; BIOGEOCHEMISTRY MODELS; STOMATAL CONDUCTANCE; CONTINENTAL-SCALE; ANALYSIS PROJECT AB Understanding of carbon exchange between terrestrial ecosystems and the atmosphere can be improved through direct observations and experiments, as well as through modeling activities. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding to much larger terrestrial regions. Although models vary in their specific goals and approaches, their central role within carbon cycle science is to provide a better understanding of the mechanisms currently controlling carbon exchange. Recently, the North American Carbon Program (NACP) organized several interim-synthesis activities to evaluate and inter-compare models and observations at local to continental scales for the years 2000-2005. Here, we compare the results from the TBMs collected as part of the regional and continental interim-synthesis (RCIS) activities. The primary objective of this work is to synthesize and compare the 19 participating TBMs to assess current understanding of the terrestrial carbon cycle in North America. Thus, the RCIS focuses on model simulations available from analyses that have been completed by ongoing NACP projects and other recently published studies. The TBM flux estimates are compared and evaluated over different spatial (1 degrees X 1 degrees and spatially aggregated to different regions) and temporal (monthly and annually) scales. The range in model estimates of net ecosystem productivity (NEP) for North America is much narrower than estimates of productivity or respiration, with estimates of NEP varying between 0.7 and 2.2 PgC yr(-1), while gross primary productivity and heterotrophic respiration vary between 12.2 and 32.9 PgCyr(-1) and 5.6 and 13.2 PgC yr(-1), respectively. The range in estimates from the models appears to be driven by a combination of factors, including the representation of photosynthesis, the source and of environmental driver data and the temporal variability of those data, as well as whether nutrient limitation is considered in soil carbon decomposition. The disagreement in current estimates of carbon flux across North America, including whether North America is a net biospheric carbon source or sink, highlights the need for further analysis through the use of model runs following a common simulation protocol, in order to isolate the influences of model formulation, structure, and assumptions on flux estimates. (C) 2012 Elsevier B.V. All rights reserved. C1 [Huntzinger, D. N.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. [Post, W. M.; Wei, Y.; Hayes, D. J.; Hoffman, F. M.; Thornton, P.; Cook, R.] Oak Ridge Natl Lab, Div Earth Sci, Oak Ridge, TN USA. [Michalak, A. M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [West, T. O.] Joint Global Change Res Inst, College Pk, MD USA. [Jacobson, A. R.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. [Jacobson, A. R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Baker, I. T.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Chen, J. M.] Univ Toronto, Dept Geog, Toronto, ON M5S 1A1, Canada. [Chen, J. M.] Univ Toronto, Program Planning, Toronto, ON, Canada. [Davis, K. J.; Raczka, B. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Jain, A. K.] Univ Illinois, Urbana, IL 61801 USA. [Liu, S.] US Geol Survey, Natl Ctr EROS, Sioux Falls, SD USA. [McGuire, A. D.] Univ Alaska Fairbanks, US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Fairbanks, AK USA. [Neilson, R. P.] Univ Utah, Dept Bot & Plant Pathol, Salt Lake City, UT USA. [Potter, Chris] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Poulter, B.; Viovy, N.] LSCE, Gif Sur Yvette, France. [Price, David] Nat Resources Canada, No Forestry Ctr, Edmonton, AB, Canada. [Tian, H. Q.] Auburn Univ, Ecosyst Dynam & Global Ecol Lab, Auburn, AL 36849 USA. [Tomelleri, E.] Max Planck Inst Biogeochem, Jena, Germany. [Xiao, J.] Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA. [Yuan, W.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China. [Zeng, N.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Zhao, M.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. RP Huntzinger, DN (reprint author), No Arizona Univ, Sch Earth Sci & Environm Sustainabil, POB 5964, Flagstaff, AZ 86011 USA. EM deborah.huntzinger@nau.edu RI Post, Wilfred/B-8959-2012; Jain, Atul/D-2851-2016; Zhao, Maosheng/G-5706-2010; Tian, Hanqin/A-6484-2012; Hayes, Daniel/B-8968-2012; West, Tristram/C-5699-2013; Wei, Yaxing/K-1507-2013; Zeng, Ning/A-3130-2008; Thornton, Peter/B-9145-2012; Vuichard, Nicolas/A-6629-2011; Hoffman, Forrest/B-8667-2012 OI Cook, Robert/0000-0001-7393-7302; Poulter, Benjamin/0000-0002-9493-8600; Jain, Atul/0000-0002-4051-3228; Tian, Hanqin/0000-0002-1806-4091; West, Tristram/0000-0001-7859-0125; Wei, Yaxing/0000-0001-6924-0078; Zeng, Ning/0000-0002-7489-7629; Thornton, Peter/0000-0002-4759-5158; Hoffman, Forrest/0000-0001-5802-4134 FU National Aeronautics and Space Administration (NASA) [NNX06AE84G, NNH06AE47I] FX The interim-synthesis activity represents a grass-roots effort by the carbon cycle community, conducted largely on a volunteer basis. We would particularly like to thank all of the modeling teams that participated in the synthesis activities, sharing results from their ongoing work, and providing feedback during the workshops. We also thank MAST-DC at Oak Ridge National Laboratory for data management support; MAST-DC (Project NNH06AE47I) is a Carbon Cycle Interagency Working Group Project funded by NASA's Terrestrial Ecology Program. Funding was also provided by the National Aeronautics and Space Administration (NASA) under Grant No. NNX06AE84G "Constraining North American Fluxes of Carbon Dioxide and Inferring their Spatiotemporal Covariances through Assimilation of Remote Sensing and Atmospheric Data in a Geostatistical Framework" issued through the ROSES A.6 North American Carbon Program. NR 88 TC 92 Z9 93 U1 2 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD MAY 10 PY 2012 VL 232 BP 144 EP 157 DI 10.1016/j.ecolmodel.2012.02.004 PG 14 WC Ecology SC Environmental Sciences & Ecology GA 934EA UT WOS:000303424900013 ER PT J AU Mizerski, KA Lyra, W AF Mizerski, Krzysztof A. Lyra, Wladimir TI On the connection between the magneto-elliptic and magneto-rotational instabilities SO JOURNAL OF FLUID MECHANICS LA English DT Article DE instability; MHD turbulence; transition to turbulence ID LOCAL SHEAR INSTABILITY; MAGNETOHYDRODYNAMIC SIMULATIONS; ACCRETION DISKS; TURBULENCE; STABILITY; CYLINDERS; FIELD; FLOW; TRANSPORT; FLUID AB It has recently been suggested that the magneto-rotational instability (MRI) is a limiting case of the magneto-elliptic instability (MEI). This limit is obtained for horizontal modes in the presence of rotation and an external vertical magnetic field, when the aspect ratio of the elliptic streamlines tends to infinite. In this paper we unveil the link between these previously unconnected mechanisms, explaining both the MEI and the MRI as different manifestations of the same magneto-elliptic-rotation a l instability (MERI). The growth rates are found and the influence of the magnetic and rotational effects is explained, in particular the effect of the magnetic field on the range of negative Rossby numbers at which the horizontal instability is excited. Furthermore, we show how the horizontal rotational MEI in the rotating shear flow limit is linked to the MRI by the use of the local shearing box model, typically used in the study of accretion discs. In such a limit the growth rates of the two instability types coincide for any power-law-type background angular velocity radial profile with negative exponent corresponding to the value of the Rossby number of the rotating shear flow. The MRI requirement for instability is that the background angular velocity profile is a decreasing function of the distance from the centre of the disc, which corresponds to the horizontal rotational MEI requirement of negative Rossby numbers. Finally a physical interpretation of the horizontal instability, based on a balance between the strain, the Lorentz force and the Coriolis force, is given. C1 [Lyra, Wladimir] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Lyra, Wladimir] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM krzysztof.mizerski@gmail.com FU US-American National Science Foundation (NSF) [AST10-09802]; National Aeronautics and Space Administration (NASA) FX W.L. is a NASA Carl Sagan Fellow. W.L. started co-writing this paper at the American Museum of Natural History, with financial support by the US-American National Science Foundation (NSF) under grant no. AST10-09802. His co-writing was completed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 31 TC 9 Z9 9 U1 0 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD MAY 10 PY 2012 VL 698 BP 335 EP 350 DI 10.1017/jfm.2012.95 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 928EI UT WOS:000302963800016 ER PT J AU Velicogna, I Tong, J Zhang, T Kimball, JS AF Velicogna, I. Tong, J. Zhang, T. Kimball, J. S. TI Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ART.; VARIABILITY; SYSTEM AB We use monthly measurements of time-variable gravity from the GRACE ( Gravity Recovery and Climate Experiment) satellite mission to quantify changes in terrestrial water storage (TWS) in the Lena river basin, Eurasia, during the period April 2002 to September 2010. We estimate a TWS increase of 32 +/- 10 km(3)/yr for the entire basin, equivalent to an increase in water thickness of 1.3 +/- 0.4 cm/yr over a basin of 2.4 million km(2). We compare TWS estimates from GRACE with time series of precipitation (P) minus evapotranspiration (ET) from ERA-Interim reanalysis minus observational river discharge (R). We find an excellent agreement in annual and inter-annual variability between the two time series. Furthermore, we find that a bias of -20 +/- 10% in P-ET is sufficient to effectively close the water budget with GRACE. When we account for this bias, the time series of cumulative TWS from GRACE and climatological data agree to within +/- 3.8 cm of water thickness, or +/- 9% of the mean annual P. The TWS increase is not uniform across the river basin and exhibits a peak, over an area of 502,400 km(2), centered at 118.5 degrees E, 62.5 degrees N, and underlain by discontinuous permafrost. In this region, we attribute the observed TWS increase of 68 +/- 19 km(3) to an increase in subsurface water storage. This large subsurface water signal will have a significant impact on the terrestrial hydrology of the region, including increased baseflow and alteration of seasonal runoff. Citation: Velicogna, I., J. Tong, T. Zhang, and J. S. Kimball (2012), Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE, Geophys. Res. Lett., 39, L09403, doi: 10.1029/2012GL051623. C1 [Velicogna, I.; Tong, J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Velicogna, I.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Zhang, T.] Univ Colorado, CIRES, NSIDC, Boulder, CO 80309 USA. [Zhang, T.] Lanzhou Univ, MOE Key Lab W Chinas Environm Syst, Lanzhou 730000, Peoples R China. [Kimball, J. S.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. RP Velicogna, I (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 3226 Croul Hall, Irvine, CA 92697 USA. EM isabella@uci.edu FU NASA FX This work was performed at the Univ. of California Irvine and at the Jet Propulsion Laboratory, and was supported by grants from NASA's Cryospheric Science Program, Solid Earth and Natural Hazards Program, Terrestrial Hydrology Program. NR 28 TC 21 Z9 24 U1 3 U2 38 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 9 PY 2012 VL 39 AR L09403 DI 10.1029/2012GL051623 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 941YM UT WOS:000304005700005 ER PT J AU Botes, D Mecikalski, JR Jedlovec, GJ AF Botes, Danelle Mecikalski, John R. Jedlovec, Gary J. TI Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SATELLITE RADIANCE MEASUREMENTS; TORNADO FORECAST PARAMETERS; TEMPERATURE PROFILES; WEATHER FORECASTS; STATIC STABILITY; HEIGHT PROFILES; BOUNDARY-LAYER; VALIDATION; AIRS/AMSU/HSB; RETRIEVALS AB The Atmospheric Infrared Sounder (AIRS) is a hyperspectral instrument onboard the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) Aqua satellite. This study investigates the performance of AIRS soundings in characterizing the stability in the pre-convective environment of the southeastern United States. AIRS soundings are collocated with radiosonde observations within +/- 1 degree and 2 h of the Aqua overpass. For each case, the AIRS sounding with maximum PBest quality indicator (signifying the pressure level above which the sounding is of best quality) is chosen for analysis. Rapid Update Cycle soundings from 1800 UTC analyses are used to evaluate the results from AIRS. Precipitable water and stability indices including convective available potential energy, convective inhibition, Lifted Index, K-Index, and Total Totals are derived from all soundings. Results indicate that AIRS underestimates instability due to a dry bias at the surface and roughly 900 hPa. A simple method is presented for reconstructing a RAOB-like inversion (in terms of magnitude and altitude) within AIRS soundings, hence developing more representative RAOB-like soundings that can benefit the operational forecaster. C1 [Botes, Danelle; Mecikalski, John R.] Univ Alabama Huntsville, Dept Atmospher Sci, Huntsville, AL 35805 USA. [Jedlovec, Gary J.] NASA, Global Hydrol & Climate Ctr, Marshal Space Flight Ctr, Huntsville, AL USA. RP Mecikalski, JR (reprint author), Univ Alabama Huntsville, Dept Atmospher Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM johnm@nsstc.uah.edu FU National Aeronautics and Space Administration (NASA) [NAG5-12536] FX This study was supported by National Aeronautics and Space Administration (NASA) grant NAG5-12536. The authors wish to thank three anonymous reviewers for substantially improving the quality of this manuscript. NR 81 TC 3 Z9 3 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 9 PY 2012 VL 117 AR D09205 DI 10.1029/2011JD016996 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 941ZL UT WOS:000304008600001 ER PT J AU Hlavka, DL Yorks, JE Young, SA Vaughan, MA Kuehn, RE McGill, MJ Rodier, SD AF Hlavka, Dennis L. Yorks, John E. Young, Stuart A. Vaughan, Mark A. Kuehn, Ralph E. McGill, Matthew J. Rodier, Sharon D. TI Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Optical properties SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MICROPHYSICAL PROPERTIES; AEROSOL LAYERS; BACKSCATTER; EXTINCTION; PARAMETERS; RETRIEVAL; ALGORITHM; PROFILES AB The Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite was successfully launched in April 2006 to study cloud and aerosol layers using range-resolved laser remote sensing. Dedicated flights were conducted from July 26 to August 14, 2006 using the airborne Cloud Physics Lidar (CPL) to validate the CALIPSO lidar (CALIOP) data products. This paper presents results from coincident ice cloud measurements of lidar ratio, extinction coefficient, and optical depth. Flight segment case studies are shown as well as statistics for all coincident measurements during this CALIPSO-CloudSat Validation Experiment (CC-VEX). For the penetrated portion of opaque layers, CALIOP estimates of lidar ratio and extinction are substantially lower than the corresponding CPL values. Significant differences were also found for measurements of horizontally aligned ice, where different instrument viewing geometries precluded meaningful comparisons. After filtering the data set to exclude these discrepancies, overall CALIOP lidar ratio and extinction averages compared favorably to within 1% of overall CPL averages. When restricting the data further to exact coincident in-cloud point-pairs, CALIOP lidar ratios remained close to CPL values, averaging 2.1% below CPL, and the retrieved extinction and optical depth averaged 14.7% above CPL values, a result partially of higher average CALIOP attenuated backscatter but still a respectably close match. C1 [Hlavka, Dennis L.; McGill, Matthew J.] NASA, Mesoscale Atmospher Proc Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hlavka, Dennis L.; Yorks, John E.; Rodier, Sharon D.] Sci Syst & Applicat Inc, Lanham, MD USA. [Young, Stuart A.] CSIRO Marine & Atmospher Res, Aspendale, Vic, Australia. [Vaughan, Mark A.; Rodier, Sharon D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Kuehn, Ralph E.] Univ Wisconsin Madison, Cooperat Inst Meteorol Satellite Studies, Madison, WI USA. RP Hlavka, DL (reprint author), NASA, Mesoscale Atmospher Proc Lab, Goddard Space Flight Ctr, Code 612,Bldg 33,Room A415, Greenbelt, MD 20771 USA. EM dennis.l.hlavka@nasa.gov RI Young, Stuart/A-8641-2011; OI Young, Stuart/0000-0001-6434-9816; Hlavka, Dennis/0000-0002-2976-7243 FU NASA FX NASA's Radiation Sciences Program funded this study. The authors give special thanks to all the members of the CALIPSO science team for making the instrument data available. NR 52 TC 4 Z9 4 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 9 PY 2012 VL 117 AR D09207 DI 10.1029/2011JD017053 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 941ZL UT WOS:000304008600002 ER PT J AU Strode, SA Ott, LE Pawson, S Bowyer, TW AF Strode, Sarah A. Ott, Lesley E. Pawson, Steven Bowyer, Theodore W. TI Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FOREST-FIRES; RUSSIAN WILDFIRES; CS-137; DUST; SATELLITE; RESUSPENSION; FALLOUT; K-40 AB While atmospheric concentrations of cesium-137 (Cs-137) have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events. We demonstrate that high values of the Moderate Resolution Imaging Spectroradiometer aerosol optical depth coincide with detections of Cs-137, and use the relationship between Cs-137 and aerosols to model Cs-137 based on organic carbon emissions and transport with the Goddard Earth Observing System, version 5 model. The model's boreal biomass burning tracer explains approximately half of the daily variability in detected Cs-137 concentrations at a monitoring station in western Russia. Constraining the model with the station observations, we calculate Cs-137 emissions of 1.5 x 10(12) Bq from biomass burning north of 40 degrees in July and August 2010. The emissions and subsequent deposition lead to a small northward redistribution of Cs-137. C1 [Strode, Sarah A.; Ott, Lesley E.; Pawson, Steven] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Strode, Sarah A.] SAIC, Beltsville, MD USA. [Bowyer, Theodore W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Strode, SA (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, 8800 Greenbelt Rd,Code 614, Greenbelt, MD 20771 USA. EM sarah.a.strode@nasa.gov RI Strode, Sarah/H-2248-2012; Pawson, Steven/I-1865-2014; Ott, Lesley/E-2250-2012 OI Strode, Sarah/0000-0002-8103-1663; Pawson, Steven/0000-0003-0200-717X; FU NASA FX We are grateful to NASA for funding this work through the Modeling, Analysis and Prediction program and for providing high-performance computing resources on "Discover" at the NCCS. The Giovanni online data system is maintained by the NASA GES DISC. We thank Arlindo da Silva and Anton Darmenov for helpful discussions. NR 35 TC 5 Z9 5 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 9 PY 2012 VL 117 AR D09302 DI 10.1029/2011JD017382 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 941ZL UT WOS:000304008600007 ER PT J AU Gilson, ML Raeder, J Donovan, E Ge, YS Kepko, L AF Gilson, M. L. Raeder, J. Donovan, E. Ge, Y. S. Kepko, L. TI Global simulation of proton precipitation due to field line curvature during substorms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DAWN-DUSK ASYMMETRY; IMAGE SPACECRAFT; ISOTROPY BOUNDARY; CURRENT SHEET; MODEL; MAGNETOSPHERE; MAGNETOTAIL; EARTH; TAIL; IONOSPHERE AB The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 R-E for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place. C1 [Gilson, M. L.; Raeder, J.; Ge, Y. S.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Donovan, E.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Kepko, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gilson, ML (reprint author), Univ New Hampshire, Ctr Space Sci, 8 Coll Rd, Durham, NH 03824 USA. EM mgilson@artemis.sr.unh.edu RI Kepko, Larry/D-7747-2012; OI Kepko, Larry/0000-0002-4911-8208; Donovan, Eric/0000-0002-8557-4155 FU NASA [NAS5-02099]; NSF [ATM-0639658] FX This work was supported by grant NAS5-02099 from NASA. Development of the OpenGGCM is supported by grant ATM-0639658 from the NSF. The authors would also like to acknowledge CDAweb for providing plotting utilities and hosting IMAGE and other satellite data used in this study. Thanks to Stephen Mende, Harald Frey and the IMAGE team for providing data and analysis tools. Also, the authors would like to thank the reviewers for their careful attention to detail and other comments on this paper. NR 58 TC 9 Z9 9 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 9 PY 2012 VL 117 AR A05216 DI 10.1029/2012JA017562 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 942BC UT WOS:000304013500002 ER PT J AU Youn, J Dholakia, GR Huang, H Hennek, JW Facchetti, A Marks, TJ AF Youn, Jangdae Dholakia, Geetha R. Huang, Hui Hennek, Jonnathan W. Facchetti, Antonio Marks, Tobin J. TI Influence of Thiol Self-Assembled Monolayer Processing on Bottom-Contact Thin-Film Transistors Based on n-Type Organic Semiconductors SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE thiol self-assembled monolayers; n-type organic semiconductors; bottom-contact organic thin-film transistors ID FIELD-EFFECT TRANSISTORS; HIGH CARRIER MOBILITY; CHARGE INJECTION; ELECTRONIC DEVICES; SURFACE-TREATMENT; DRAIN ELECTRODES; BUILDING-BLOCKS; PERFORMANCE; PENTACENE; CHANNEL AB The performance of bottom-contact thin-film transistor (TFT) structures lags behind that of top-contact structures owing to the far greater contact resistance. The major sources of the contact resistance in bottom-contact TFTs are believed to reflect a combination of non-optimal semiconductor growth morphology on the metallic contact surface and the limited available charge injection area versus top-contact geometries. As a part of an effort to understand the sources of high charge injection barriers in n-channel TFTs, the influence of thiol metal contact treatment on the molecular-level structures of such interfaces is investigated using hexamethyldisilazane (HMDS)-treated SiO2 gate dielectrics. The focus is on the self-assembled monolayer (SAM) contact surface treatment methods for bottom-contact TFTs based on two archetypical n-type semiconductors, a,?-diperfluorohexylquarterthiophene (DFH-4T) and N,N'bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN2). TFT performance can be greatly enhanced, to the level of the top contact device performance in terms of mobility, on/off ratio, and contact resistance. To analyze the molecular-level film structural changes arising from the contact surface treatment, surface morphologies are characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). The high-resolution STM images show that the growth orientation of the semiconductor molecules at the gold/SAM/semiconductor interface preserves the molecular long axis orientation along the substrate normal. As a result, the film microstructure is well-organized for charge transport in the interfacial region. C1 [Youn, Jangdae; Huang, Hui; Hennek, Jonnathan W.; Facchetti, Antonio; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Youn, Jangdae; Huang, Hui; Hennek, Jonnathan W.; Facchetti, Antonio; Marks, Tobin J.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Dholakia, Geetha R.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA. RP Youn, J (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM gdholakia@yahoo.com; a-facchetti@northwestern.edu; t-marks@northwestern.edu FU AFOSR [FA9550-08-1-0331]; NSF-MRSEC through the Northwestern University Materials Research Science and Engineering Center [DMR-1121262] FX The authors thank AFOSR (FA9550-08-1-0331) and the NSF-MRSEC program through the Northwestern University Materials Research Science and Engineering Center (DMR-1121262) for support of this research. This article was amended on May 9, 2012. The email address of the second author, which was incorrect in the version originally published online, was corrected. NR 98 TC 41 Z9 41 U1 12 U2 119 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD MAY 9 PY 2012 VL 22 IS 9 BP 1856 EP 1869 DI 10.1002/adfm.201102312 PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 934HK UT WOS:000303434600009 ER PT J AU Gronoff, G Wedlund, CS Mertens, CJ Barthelemy, M Lillis, RJ Witasse, O AF Gronoff, Guillaume Wedlund, Cyril Simon Mertens, Christopher J. Barthelemy, Mathieu Lillis, Robert J. Witasse, Olivier TI Computing uncertainties in ionosphere-airglow models: II. The Martian airglow SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ELECTRON-TEMPERATURE DEPENDENCE; MARS GLOBAL SURVEYOR; ION STORAGE-RING; CROSS-SECTIONS; DISSOCIATIVE RECOMBINATION; 557.7 NM; IMPACT DISSOCIATION; NEUTRAL ATMOSPHERE; VENUS THERMOSPHERE; DENSITY PROFILES AB One of the objectives of spectrometers onboard space missions is to retrieve atmospheric parameters (notably density, composition and temperature). To fulfill this objective, comparisons between observations and model results are necessary. Knowledge of these model uncertainties is therefore necessary, although usually not considered, to estimate the accuracy in planetary upper atmosphere remote sensing of these parameters. In Part I of this study, "Computing uncertainties in ionosphere-airglow models: I. Electron flux and species production uncertainties for Mars" (Gronoff et al., 2012), we presented the uncertainties in the production of excited states and ionized species from photon and electron impacts, computed with a Monte-Carlo approach, and we applied this technique to the Martian upper atmosphere. In the present paper, we present the results of propagation of these production errors to the main UV emissions and the study of other sources of uncertainties. As an example, we studied several aspects of the model uncertainties in the thermosphere of Mars, and especially the O(S-1) green line (557.7 nm, with its equivalent, the trans-auroral line at 297.2 nm), the Cameron bands CO(a(3)Pi), and CO2+(B-2 Sigma(+)(u)) doublet emissions. We first show that the excited species at the origin of these emissions are mainly produced by electron and photon impact. We demonstrate that it is possible to reduce the computation time by decoupling the different sources of uncertainties; moreover, we show that emission uncertainties can be large (>30%) because of the strong sensitivity to the production uncertainties. Our study demonstrates that uncertainty calculations are a crucial step prior to performing remote sensing in the atmosphere of Mars and the other planets and can be used as a guide to subsequent adjustments of cross sections based on aeronomical observations. Finally, we compare the simulations with observations from the SPICAM spectrometer on the Mars Express spacecraft. The production of excited species at the origin of the green line, the CO Cameron bands and the CO2+(B) doublet is found to be on the dayside, consistent with photon and electron impact on CO2 as the main source of excitation of the three emissions, in contrast to the findings of Huestis et al. (2010) for the O(S-1) case. Moreover, we re-examine the cross section for the production of the Cameron bands by electron impact on CO2. C1 [Gronoff, Guillaume; Mertens, Christopher J.] NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Hampton, VA 23681 USA. [Wedlund, Cyril Simon] Belgian Inst Space Aeron, Brussels, Belgium. [Barthelemy, Mathieu] Inst Planetol & Astrophys Grenoble, Grenoble, France. [Lillis, Robert J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Witasse, Olivier] European Space Agcy, European Space Res & Technol Ctr, NL-2200 AG Noordwijk, Netherlands. RP Gronoff, G (reprint author), NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Mail Stop 401B,21 Langley Blvd, Hampton, VA 23681 USA. EM guillaume.p.gronoff@nasa.gov RI Lillis, Robert/A-3281-2008; OI Lillis, Robert/0000-0003-0578-517X; Gronoff, Guillaume/0000-0002-0331-7076 FU NASA [NNX09AD43G, NNX08AK94G, NNX11AI87G]; NASA Science Mission Directorate; Belgian BELSPO-PPS Science Policy [MO/35/019, MO/35/025] FX The authors are indebted to Jean Lilensten (IPAG, France), Shahid Aslam (NASA GSFC, USA) and Arun Gopalan (SSAI/NASA, USA) for useful discussions. The authors wish to thank the anonymous referees for their numerous comments, suggestions, and corrections. The work of G. Gronoff was supported by an appointment to the NASA Postdoctoral Program at NASA Langley Research Center, administered by Oak Ridge Associated University through a contract with NASA and funded by the NASA Science Mission Directorate. The work of R. Lillis was funded by NASA Mars Fundamental Research Program grant NNX09AD43G and the NASA Mars Data Analysis Program grants NNX08AK94G and NNX11AI87G. C. Simon Wedlund received support from the Belgian BELSPO-PPS Science Policy through the Action 1 contracts MO/35/019 and MO/35/025. NR 94 TC 15 Z9 15 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 8 PY 2012 VL 117 AR A05309 DI 10.1029/2011JA017308 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 942AX UT WOS:000304013000002 ER PT J AU Caudill, S Field, SE Galley, CR Herrmann, F Tiglio, M AF Caudill, Sarah Field, Scott E. Galley, Chad R. Herrmann, Frank Tiglio, Manuel TI Reduced basis representations of multi-mode black hole ringdown gravitational waves SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID RADIATION AB We construct compact and high-accuracy reduced basis (RB) representations of single and multiple quasinormal modes (QNMs). The RB method determines a hierarchical and relatively small set of the most relevant waveforms. We find that the exponential convergence of the method allows for a dramatic compression of template banks used for ringdown searches. Compressing a catalog with a minimal match MM = 0.99, we find that the selected RB waveforms are able to represent any QNM, including those not in the original bank, with extremely high accuracy, typically less than 10(-13). We then extend our studies to two-mode QNMs. Inclusion of a second mode is expected to help with detection, and might make it possible to infer details of the progenitor of the final black hole. We find that the number of RB waveforms needed to represent any two-mode ringdown waveform with the above high accuracy is smaller than the number of metric-based, one-mode templates with MM = 0.99. For unconstrained two modes, which would allow for consistency tests of general relativity, our high accuracy RB has around 10(4) fewer waveforms than the number of metric-based templates for MM = 0.99. The number of RB elements grows only linearly with the number of multipole modes versus exponentially with the standard approach, resulting in very compact representations even for many multiple modes. The results of this paper open the possibility of searches of multi-mode ringdown gravitational waves. C1 [Caudill, Sarah] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Field, Scott E.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Field, Scott E.; Herrmann, Frank; Tiglio, Manuel] Univ Maryland, Ctr Sci Computat & Math Modeling, Maryland Ctr Fundamental Phys, Dept Phys,Joint Space Sci Inst, College Pk, MD 20742 USA. [Galley, Chad R.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Galley, Chad R.] CALTECH, Pasadena, CA 91106 USA. RP Caudill, S (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM sarah.caudill@ligo.org FU NSF [NSF PHY-0905 184, PHY1005 632, PHY0801 213]; NSF DMS [0554 377]; OSD/AFOSR [FA9550-09-1-0613]; NASA FX We are especially grateful to Emanuele Berti and Vitor Cardoso for very valuable discussions (which motivated this work), feedback, assistance and suggestions. We also thank Evan Ochsner, Duncan Brown, Nickolas Fotopoulos, Ajith Parameswaran, Ulrich Sperhake and Bernard Whiting for very useful discussions and feedback on the manuscript. This work has been supported by NSF Grants NSF PHY-0905 184 to Louisiana State University, PHY1005 632 and PHY0801 213 to the University of Maryland, and NSF DMS 0554 377 and OSD/AFOSR FA9550-09-1-0613 to Brown University. CRG has been supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory through a contract with NASA, administered by the Oak Ridge Associated Universities. MT thanks Tryst DC Coffeehouse Bar and Lounge, where parts of this work were done, for its hospitality. NR 35 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD MAY 7 PY 2012 VL 29 IS 9 AR 095016 DI 10.1088/0264-9381/29/9/095016 PG 18 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 929ZU UT WOS:000303105600017 ER PT J AU Farassat, F Casper, J AF Farassat, F. Casper, J. TI Broadband noise prediction when turbulence simulation is available-Derivation of Formulation 2B and its statistical analysis SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID SURFACES; AIRFOIL; ANALOGY AB We show that a simple modification of Formulation 1 of Farassat results in a new analytic expression that is highly suitable for broadband noise prediction when extensive turbulence simulation is available. This result satisfies all the stringent requirements, such as permitting the use of the exact geometry and kinematics of the moving body, which we have set as our goal in the derivation of useful acoustic formulas for the prediction of rotating blade and airframe noise. We also derive a simple analytic expression for the autocorrelation of the acoustic pressure that is valid in the near and far fields. Our analysis is based on the time integral of the acoustic pressure that can easily be obtained at any resolution for any observer time interval and digitally analyzed for broadband noise prediction. We have named this result as Formulation 2B of Farassat. One significant consequence of Formulation 2B is the derivation of the acoustic velocity potential for the thickness and loading terms of the Ffowcs Williams-Hawkings (FW-H) equation. This will greatly enhance the usefulness of the Fast Scattering Code (FSC) by providing a high-fidelity boundary condition input for scattering predictions. (C) 2012 Published by Elsevier Ltd. C1 [Farassat, F.; Casper, J.] NASA, Computat AeroSci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Casper, J (reprint author), NASA, Computat AeroSci Branch, Langley Res Ctr, Mail Stop 128, Hampton, VA 23681 USA. EM jay.h.casper@nasa.gov NR 22 TC 0 Z9 0 U1 1 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD MAY 7 PY 2012 VL 331 IS 10 BP 2203 EP 2208 DI 10.1016/j.jsv.2011.07.044 PG 6 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 915OZ UT WOS:000302038600001 ER PT J AU Yong, B Hong, Y Ren, LL Gourley, JJ Huffman, GJ Chen, X Wang, W Khan, SI AF Yong, Bin Hong, Yang Ren, Li-Liang Gourley, Jonathan J. Huffman, George J. Chen, Xi Wang, Wen Khan, Sadiq I. TI Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MEASURING MISSION TRMM; GLOBAL PRECIPITATION; PASSIVE MICROWAVE; TROPICAL RAINFALL; LAND-SURFACE; ANALYSIS TMPA; SATELLITE; PRODUCTS; RESOLUTION; SYSTEM AB The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest data set of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events. C1 [Yong, Bin; Hong, Yang; Khan, Sadiq I.] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Yong, Bin; Ren, Li-Liang; Chen, Xi; Wang, Wen] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China. [Gourley, Jonathan J.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Huffman, George J.] Sci Syst & Applicat Inc, Lanham, MD USA. [Huffman, George J.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Hong, Y (reprint author), Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. EM yanghong@ou.edu RI Hong, Yang/D-5132-2009; Yong, Bin/C-2257-2014; Huffman, George/F-4494-2014; Gourley, Jonathan/C-7929-2016; Measurement, Global/C-4698-2015 OI Hong, Yang/0000-0001-8720-242X; Yong, Bin/0000-0003-1466-2091; Huffman, George/0000-0003-3858-8308; Gourley, Jonathan/0000-0001-7363-3755; FU National Natural Science Foundation of China [51190090]; 111 Project [B08048]; National Science Foundation for Young Scientists of China [40901017]; State Key Laboratory of Hydroscience and Engineering [sklhse-2011-A-01]; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering [2009585412, 2009586512] FX This work was financially supported by the Major Program of National Natural Science Foundation of China (51190090) and the 111 Project (B08048). Also this work is partially sponsored by the National Science Foundation for Young Scientists of China (40901017), the Open Fund of State Key Laboratory of Hydroscience and Engineering (sklhse-2011-A-01), and the Innovative Research Team and Independent Innovation Project of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2009585412, 2009586512). The first author acknowledges the computational facility provided by Hydrometeorology and Remote Sensing Laboratory and Atmospheric Radar Research Center at University of Oklahoma Research Campus. Additionally, the authors would like to thank three anonymous reviewers who helped to improve the earlier version of this paper. Last but not least, we wish to extend our appreciation to the helpful suggestions of Fengge Su and Jiahu Wang for the use of VIC-3L model. The TMPA data used in this study were provided by the NASA/Goddard Space Flight Center's laboratory for Atmospheres and PPS, which develop and compute the TMPA as a contribution to TRMM. NR 55 TC 53 Z9 55 U1 0 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 5 PY 2012 VL 117 AR D09108 DI 10.1029/2011JD017069 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 937SL UT WOS:000303678800002 ER PT J AU Kravitz, B Robock, A Shindell, DT Miller, MA AF Kravitz, Ben Robock, Alan Shindell, Drew T. Miller, Mark A. TI Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FOREST-FIRE SMOKE; SULFATE AEROSOLS; OZONE DEPLETION; NUCLEAR CONFLICTS; CLIMATE RESPONSE; EMISSION FACTORS; GISS MODELE; SIMULATIONS; SURFACE; SOOT AB Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC a(-1) injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 degrees C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment. C1 [Kravitz, Ben] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Robock, Alan; Miller, Mark A.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Shindell, Drew T.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Kravitz, B (reprint author), Carnegie Inst Sci, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA. EM bkravitz@carnegie.stanford.edu RI Shindell, Drew/D-4636-2012; Kravitz, Ben/P-7925-2014; Robock, Alan/B-6385-2016 OI Kravitz, Ben/0000-0001-6318-1150; FU National Aeronautics and Space Administration; NSF [ATM-070452] FX We thank Barbara Turpin, Ken Caldeira, and Anthony Broccoli for comments, as well as the reviewers for helpful suggestions. Model development and computer time at NASA Goddard Space Flight Center are supported by National Aeronautics and Space Administration climate modeling grants. The work of Kravitz and Robock is supported by NSF grant ATM-070452. NR 91 TC 14 Z9 14 U1 1 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 4 PY 2012 VL 117 AR D09203 DI 10.1029/2011JD017341 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 937SJ UT WOS:000303678600002 ER PT J AU Purucker, ME Head, JW Wilson, L AF Purucker, Michael E. Head, James W., III Wilson, Lionel TI Magnetic signature of the lunar South Pole-Aitken basin: Character, origin, and age SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ERUPTION CONDITIONS; VOLCANISM; EVOLUTION; MAGMA AB A new magnetic map of the Moon, based on Lunar Prospector magnetometer observations, sheds light on the origin of the South Pole-Aitken basin (SPA), the largest and oldest of the recognized lunar basins. A set of WNW-trending linear to arcuate magnetic features, evident in both the radial and scalar observations, covers much of a 1000 km wide region centered on the NW portion of SPA. The source bodies are not at the surface because the magnetic features show no first-order correspondence to any surface topographic or structural feature. Patchy mare basalts of possible late Imbrian-age are emplaced within SPA and are inferred to have been emplaced through dikes, directly from mantle sources. We infer that the magnetic features represent dike swarms that served as feeders for these mare basalts, as evident from the location of the Thomson/Mare Ingenii, Van de Graaff, and Leeuwenhoek mare basalts on the two largest magnetic features in the region. Modeling suggests that the dike zone is between 25 and 50 km wide at the surface, and dike magnetization contrasts are in the range of 0.2 A/m. We theorize that the basaltic dikes were emplaced in the lunar crust when a long-lived dynamo was active. Based on pressure, temperature, and stress conditions prevalent in the lunar crust, dikes are expected to be a dominantly subsurface phenomenon, consistent with the observations reported here. C1 [Purucker, Michael E.] NASA, SGT Planetary Geodynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Head, James W., III] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Wilson, Lionel] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. RP Purucker, ME (reprint author), NASA, SGT Planetary Geodynam Lab, Goddard Space Flight Ctr, Code 698, Greenbelt, MD 20771 USA. EM michael.e.purucker@nasa.gov FU NASA FX Purucker was supported by a NASA Discovery Data Analysis Program contract. GMT [Wessel and Smith, 1998] was used for the graphics. We would like to acknowledge the Lunar Prospector team for the collection of this data set. T. Sabaka, J. Nicholas, N. Tsyganenko, N. Olsen, J. Halekas, and M. Acuna provided valuable comments, data sets, or codes. We would also like to acknowledge the Editor and reviewers for their comments. NR 27 TC 12 Z9 12 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD MAY 4 PY 2012 VL 117 AR E05001 DI 10.1029/2011JE003922 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 937PM UT WOS:000303670400001 ER PT J AU Clausen, LBN Baker, JBH Ruohoniemi, JM Greenwald, RA Thomas, EG Shepherd, SG Talaat, ER Bristow, WA Zheng, Y Coster, AJ Sazykin, S AF Clausen, L. B. N. Baker, J. B. H. Ruohoniemi, J. M. Greenwald, R. A. Thomas, E. G. Shepherd, S. G. Talaat, E. R. Bristow, W. A. Zheng, Y. Coster, A. J. Sazykin, S. TI Large-scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HIGH-LATITUDE CONVECTION; COHERENT HF RADARS; ELECTRIC-FIELDS; E-REGION; PLASMA; MAGNETOSPHERE; MODEL; IRREGULARITIES; IONOSPHERE AB We present simultaneous measurements of flow velocities inside a subauroral polarization stream (SAPS) made by six midlatitude high-frequency SuperDARN radars. The instantaneous observations cover three hours of universal time and six hours of magnetic local time (MLT). From velocity variations across the field-of-view of the radars we infer the local 2D flow direction at three different longitudes. We find that the local flow direction inside the SAPS channel is remarkably constant over the course of the event. The flow speed, however, shows significant temporal and spatial variations. After correcting for the radar look direction we are able to accurately determine the dependence of the SAPS velocity on magnetic local time. We find that the SAPS velocity variation with magnetic local time is best described by an exponential function. The average velocity at 00 MLT was 1.2 km/s and it decreased with a spatial e-folding scale of two hours of MLT toward the dawn sector. We speculate that the longitudinal distribution of pressure gradients in the ring current is responsible for this dependence and find these observations in good agreement with results from ring current models. Using TEC measurements we find that the high westward velocities of the SAPS are - as expected - located in a region of low TEC values, indicating low ionospheric conductivities. C1 [Clausen, L. B. N.; Baker, J. B. H.; Ruohoniemi, J. M.; Greenwald, R. A.; Thomas, E. G.] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Shepherd, S. G.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Talaat, E. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Bristow, W. A.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Zheng, Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Coster, A. J.] MIT, Haystack Observ, Westford, MA 01886 USA. [Sazykin, S.] Rice Univ, Dept Phys & Astron, Houston, TX USA. RP Clausen, LBN (reprint author), Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. EM l.clausen@tu-braunschweig.de RI Zheng, Yihua/D-7368-2012; Sazykin, Stanislav/C-3775-2008; OI Sazykin, Stanislav/0000-0002-9401-4248; Greenwald, Raymond/0000-0002-7421-5536 FU GEM from the National Science Foundation [ATM-0924919]; Deutsches Zentrum fur Luft- und Raumfahrt [50OC1102, 50OC1001]; National Science Foundation [ATM-0838219, ATM-0946900, ATM-0838356, ATM-0838142, ATM-0838270] FX The AU, AL, Sym-H, and Asym-H index data were downloaded from the World Data Centre for Geomagnetism, Kyoto. The Kp index data were downloaded from the GFZ German Research Centre for Geosciences, Potsdam. POES-18 data were accessed through the National Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric Administration (NOAA), Boulder. The TEC data were downloaded through the Madrigal database at Haystack Observatory. LBNC acknowledges funding for his GEM postdoctoral fellowship from the National Science Foundation under grant ATM-0924919. LBNC also acknowledges funding from the Deutsches Zentrum fur Luft- und Raumfahrt under grants 50OC1102 and 50OC1001. JBHB, JMR, and RAG acknowledge the support of the National Science Foundation under grant ATM-0838219 and ATM-0946900. SGS acknowledges the support of the National Science Foundation under grant ATM-0838356. ERT acknowledges the support of the National Science Foundation under grant ATM-0838142. WAB acknowledges the support of the National Science Foundation under grant ATM-0838270. NR 41 TC 21 Z9 23 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 4 PY 2012 VL 117 AR A05306 DI 10.1029/2011JA017232 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 937QF UT WOS:000303672400002 ER PT J AU Willis, JK Church, JA AF Willis, Josh K. Church, John A. TI Regional Sea-Level Projection SO SCIENCE LA English DT Editorial Material ID RISE; IMPACTS C1 [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Church, John A.] Ctr Australian Weather & Climate Res, Hobart, Tas, Australia. RP Willis, JK (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joshua.k.willis@jpl.nasa.gov; john.church@csiro.au RI Church, John/A-1541-2012 OI Church, John/0000-0002-7037-8194 NR 14 TC 29 Z9 29 U1 0 U2 25 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 4 PY 2012 VL 336 IS 6081 BP 550 EP 551 DI 10.1126/science.1220366 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 935DJ UT WOS:000303498800033 PM 22556241 ER PT J AU Squyres, SW Arvidson, RE Bell, JF Calef, F Clark, BC Cohen, BA Crumpler, LA de Souza, PA Farrand, WH Gellert, R Grant, J Herkenhoff, KE Hurowitz, JA Johnson, JR Jolliff, BL Knoll, AH Li, R McLennan, SM Ming, DW Mittlefehldt, DW Parker, TJ Paulsen, G Rice, MS Ruff, SW Schroder, C Yen, AS Zacny, K AF Squyres, S. W. Arvidson, R. E. Bell, J. F., III Calef, F., III Clark, B. C. Cohen, B. A. Crumpler, L. A. de Souza, P. A., Jr. Farrand, W. H. Gellert, R. Grant, J. Herkenhoff, K. E. Hurowitz, J. A. Johnson, J. R. Jolliff, B. L. Knoll, A. H. Li, R. McLennan, S. M. Ming, D. W. Mittlefehldt, D. W. Parker, T. J. Paulsen, G. Rice, M. S. Ruff, S. W. Schroeder, C. Yen, A. S. Zacny, K. TI Ancient Impact and Aqueous Processes at Endeavour Crater, Mars SO SCIENCE LA English DT Article ID MERIDIANI-PLANUM; SUEVITE BRECCIA; RIES CRATER; GERMANY; ORIGIN; VEINS; HISTORY; GYPSUM; WATER; ROCK AB The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region. C1 [Squyres, S. W.; Rice, M. S.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Arvidson, R. E.; Jolliff, B. L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63031 USA. [Bell, J. F., III; Ruff, S. W.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Calef, F., III; Hurowitz, J. A.; Parker, T. J.; Yen, A. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clark, B. C.; Farrand, W. H.] Space Sci Inst, Boulder, CO 80301 USA. [Cohen, B. A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Crumpler, L. A.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA. [de Souza, P. A., Jr.] Univ Tasmania, Human Interface Technol Lab, Launceston, Tas 7250, Australia. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Grant, J.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. [Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Knoll, A. H.] Harvard Univ, Bot Museum, Cambridge, MA 02138 USA. [Li, R.] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [McLennan, S. M.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Ming, D. W.; Mittlefehldt, D. W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Paulsen, G.; Zacny, K.] Honeybee Robot & Spacecraft Mech Corp, Pasadena, CA 91103 USA. [Schroeder, C.] Univ Bayreuth, D-72076 Tubingen, Germany. [Schroeder, C.] Univ Tubingen, D-72076 Tubingen, Germany. RP Squyres, SW (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM squyres@astro.cornell.edu RI Schroder, Christian/B-3870-2009; de Souza, Paulo/B-8961-2008; Johnson, Jeffrey/F-3972-2015 OI Schroder, Christian/0000-0002-7935-6039; de Souza, Paulo/0000-0002-0091-8925; FU NASA FX This research was carried out for the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 36 TC 76 Z9 77 U1 1 U2 60 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD MAY 4 PY 2012 VL 336 IS 6081 BP 570 EP 576 DI 10.1126/science.1220476 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 935DJ UT WOS:000303498800041 PM 22556248 ER PT J AU Bottke, WF Vokrouhlicky, D Minton, D Nesvorny, D Morbidelli, A Brasser, R Simonson, B Levison, HF AF Bottke, William F. Vokrouhlicky, David Minton, David Nesvorny, David Morbidelli, Alessandro Brasser, Ramon Simonson, Bruce Levison, Harold F. TI An Archaean heavy bombardment from a destabilized extension of the asteroid belt SO NATURE LA English DT Article ID INNER SOLAR-SYSTEM; ORIGIN; IMPACT; SHERGOTTITE; EVOLUTION; PLANETS; EJECTA; PERIOD; LAYERS; AGES AB The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment(1) (LHB). Many assume the LHB ended about 3.7 to 3.8 billion years (Gyr) ago with the formation of Orientale basin(2,3). Evidence for LHB-sized blasts on Earth, however, extend into the Archaean and early Proterozoic eons, in the form of impact spherule beds: globally distributed ejecta layers created by Chicxulub-sized or larger cratering events(4). At least seven spherule beds have been found that formed between 3.23 and 3.47 Gyr ago, four between 2.49 and 2.63 Gyr ago, and one between 1.7 and 2.1 Gyr ago(5-9). Here we report that the LHB lasted much longer than previously thought, with most late impactors coming from the E belt, an extended and now largely extinct portion of the asteroid belt between 1.7 and 2.1 astronomical units from Earth. This region was destabilized by late giant planet migration(10-13). E-belt survivors now make up the high-inclination Hungaria asteroids(14,15). Scaling from the observed Hungaria asteroids, we find that E-belt projectiles made about ten lunar basins between 3.7 and 4.1 Gyr ago. They also produced about 15 terrestrial basins between 2.5 and 3.7 Gyr ago, as well as around 70 and four Chicxulub-sized or larger craters on the Earth and Moon, respectively, between 1.7 and 3.7 Gyr ago. These rates reproduce impact spherule bed and lunar crater constraints. C1 [Bottke, William F.; Vokrouhlicky, David; Minton, David; Nesvorny, David; Morbidelli, Alessandro; Brasser, Ramon; Levison, Harold F.] SW Res Inst, Boulder, CO 80302 USA. [Bottke, William F.; Vokrouhlicky, David; Minton, David; Nesvorny, David; Morbidelli, Alessandro; Brasser, Ramon; Levison, Harold F.] NASA, Lunar Sci Inst, Boulder, CO 80302 USA. [Vokrouhlicky, David] Charles Univ Prague, Inst Astron, CR-18000 Prague 8, Czech Republic. [Minton, David] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Morbidelli, Alessandro; Brasser, Ramon] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Cassiopee, F-06304 Nice 4, France. [Brasser, Ramon] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Simonson, Bruce] Oberlin Coll, Dept Geol, Oberlin, OH 44074 USA. RP Bottke, WF (reprint author), SW Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM bottke@boulder.swri.edu FU University of Hawaii; NASA's Lunar Science Institute (Center for Lunar Origin and Evolution) [NNA09DB32A]; Grant Agency of the Czech Republic; Germany's Helmholtz Alliance; NASA [NNX08AI29G]; NASA through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center FX We thank B. Cohen, C. Chapman, M. Cuk, L. Dones, D. Kring, S. Marchi, R. Malhotra, M. Norman, E. Scott, J. Taylor and K. Walsh for discussions and comments. We also thank the University of Hawaii for sponsoring W.F.B.'s recent visit, during which these ideas were first developed. This project was supported by NASA's Lunar Science Institute (Center for Lunar Origin and Evolution, grant number NNA09DB32A). D.V.'s contribution was supported by the Grant Agency of the Czech Republic. A. M. and R. B. thank Germany's Helmholtz Alliance for providing support through their "Planetary Evolution and Life" programme. B.S.'s contribution was supported by NASA grant NNX08AI29G. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 30 TC 116 Z9 122 U1 2 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAY 3 PY 2012 VL 485 IS 7396 BP 78 EP 81 DI 10.1038/nature10967 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 934NV UT WOS:000303451900037 PM 22535245 ER PT J AU Kaskaoutis, DG Gautam, R Singh, RP Houssos, EE Goto, D Singh, S Bartzokas, A Kosmopoulos, PG Sharma, M Hsu, NC Holben, BN Takemura, T AF Kaskaoutis, D. G. Gautam, R. Singh, R. P. Houssos, E. E. Goto, D. Singh, S. Bartzokas, A. Kosmopoulos, P. G. Sharma, M. Hsu, N. C. Holben, B. N. Takemura, T. TI Influence of anomalous dry conditions on aerosols over India: Transport, distribution and properties SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL-PROPERTIES; ANGSTROM EXPONENT; GANGETIC BASIN; BLACK CARBON; SUN-PHOTOMETER; SUMMER MONSOON; DUST STORMS; AERONET SUN; VARIABILITY; MODEL AB A synergy of satellite and ground-based radiometric observations, along with chemical transport modeling, was used for the assessment of the influence of drought monsoon conditions of 2002 and prolonged dry pre-monsoon period of 2003 on aerosol properties over south Asia, with emphasis over northern India. Reanalysis data are also examined for studying the dry anomalous period from the climatological mean, that show prevalence of westerlies under anticyclonic circulation and subsidence favoring the accumulation of aerosols. TRMM observations over south Asia indicate significant rainfall deficit over northwestern India in July 2002 and May-June 2003. Subsequently, the anomalous and prolonged dry conditions favored heavy aerosol buildup as indicated by strong positive anomalies (20-80%) of MODIS aerosol optical depth (AOD) as well as significant increase in TOMS aerosol index (AI) during July 2002 and May-June 2003 compared to the long-term monthly means. The largest increase in aerosol loading is observed over northern India, encompassing the Indo-Gangetic Plains (IGP) that is in the downwind region of dust outflow from the Thar Desert and long-range transport from Arabia and Middle East. Ground-based sunphotometer observations at Delhi and Kanpur also show enhanced presence of desert-dust aerosols during July 2002 and May-June 2003, characterized by large AOD and significantly low Angstrom Exponent. In addition, modifications in columnar aerosol size distribution toward larger coarse-mode fraction and higher single scattering albedo at longer wavelengths were observed, thus supporting the observation of enhanced dust influx. SPRINTARS model simulations also show the enhanced dust loading over northern India during the studied months, which is in general agreement with the satellite and ground-based observations. C1 [Singh, R. P.] Chapman Univ, Schmid Coll Sci & Technol, Sch Earth & Environm Sci, Orange, CA 92866 USA. [Kaskaoutis, D. G.; Sharma, M.] Sharda Univ, Res & Technol Dev Ctr, Greater Noida, India. [Gautam, R.] Univ Space Res Assoc, Columbia, MD USA. [Gautam, R.; Hsu, N. C.; Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Houssos, E. E.; Bartzokas, A.] Univ Ioannina, Dept Phys, Lab Meteorol, GR-45110 Ioannina, Greece. [Goto, D.] Univ Tokyo, Atmosphere & Ocean Res Inst, Chiba, Japan. [Singh, S.] Natl Phys Lab, Radio & Atmospher Sci Div, New Delhi 110012, India. [Kosmopoulos, P. G.] Univ Athens, Dept Phys, Lab Meteorol, Zografos, Greece. [Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka, Japan. RP Singh, RP (reprint author), Chapman Univ, Schmid Coll Sci & Technol, Sch Earth & Environm Sci, Orange, CA 92866 USA. EM rsingh@chapman.edu RI Gautam, Ritesh/E-9776-2010; Singh, Sachchidanand/D-1537-2009; Takemura, Toshihiko/C-2822-2009; Singh, Ramesh/G-7240-2012; Kosmopoulos, Panagiotis/E-6156-2013; Hsu, N. Christina/H-3420-2013; Kyushu, RIAM/F-4018-2015; Goto, Daisuke/A-2538-2016; U-ID, Kyushu/C-5291-2016 OI Gautam, Ritesh/0000-0002-2177-9346; Singh, Sachchidanand/0000-0003-0257-4705; Takemura, Toshihiko/0000-0002-2859-6067; Goto, Daisuke/0000-0003-2975-3738; NR 78 TC 26 Z9 26 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 2 PY 2012 VL 117 AR D09106 DI 10.1029/2011JD017314 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 937SG UT WOS:000303678300005 ER PT J AU Halekas, JS Poppe, AR Farrell, WM Delory, GT Angelopoulos, V McFadden, JP Bonnell, JW Glassmeier, KH Plaschke, F Roux, A Ergun, RE AF Halekas, J. S. Poppe, A. R. Farrell, W. M. Delory, G. T. Angelopoulos, V. McFadden, J. P. Bonnell, J. W. Glassmeier, K. H. Plaschke, F. Roux, A. Ergun, R. E. TI Lunar precursor effects in the solar wind and terrestrial magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CRUSTAL MAGNETIC-ANOMALIES; ION-CYCLOTRON INSTABILITY; UPSTREAM ULF WAVES; WHISTLER WAVES; GRIGG-SKJELLERUP; PLASMA-WAVES; FREQUENCY; THEMIS; PROSPECTOR; SURFACE AB The two ARTEMIS probes observe significant precursor activity upstream from the Moon, when magnetically connected to the dayside lunar surface. The most common signature consists of high levels of whistler wave activity near half of the electron cyclotron frequency. This precursor activity extends to distances of many thousands of km, in both the solar wind and terrestrial magnetosphere. In the magnetosphere, electrons reflect from a combination of magnetic and electrostatic fields above the lunar surface, forming loss cone distributions. In the solar wind they generally form conics, as a result of reflection from an obstacle moving with respect to the plasma frame (just as at a shock). The anisotropy associated with these reflected electrons provides the free energy source for the whistlers, with cyclotron resonance conditions met between the reflected source population and Moonward-propagating waves. These waves can in turn affect incoming plasma, and we observe significant perpendicular electron heating and plasma density depletions in some cases. In the magnetosphere, we also observe broadband electrostatic modes driven by beams of secondary electrons and/or photoelectrons accelerated outward from the surface. We also occasionally see waves near the ion cyclotron frequency in the magnetosphere. These lower frequency waves, which may result from the presence of ions of lunar origin, modulate the whistlers described above, as well as the electrons. Taken together, our observations suggest that the presence of the Moon leads to the formation of an upstream region analogous in many ways to the terrestrial electron foreshock. C1 [Halekas, J. S.; Poppe, A. R.; Delory, G. T.; McFadden, J. P.; Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; Delory, G. T.] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA. [Farrell, W. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Angelopoulos, V.; Plaschke, F.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Glassmeier, K. H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Roux, A.] Lab Phys Plasmas, Paris, France. [Ergun, R. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Halekas, JS (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM jazzman@ssl.berkeley.edu RI Farrell, William/I-4865-2013; OI Halekas, Jasper/0000-0001-5258-6128 FU NASA's Lunar Science Institute; NASA [NAS5-02099]; DLR [50 OC 0302]; German Ministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luft- und Raumfahrt [50OC1001] FX We thank NASA's Lunar Science Institute for supporting this work, and acknowledge NASA contract NAS5-02099 for supporting THEMIS/ARTEMIS. FGM was supported by DLR contract 50 OC 0302. Financial support for the work of the FGM Lead Investigator Team at the Technical University of Braunschweig by the German Ministerium fur Wirtschaft und Technologie and the Deutsches Zentrum fur Luft- und Raumfahrt under grant 50OC1001 is acknowledged. NR 57 TC 12 Z9 12 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAY 2 PY 2012 VL 117 AR A05101 DI 10.1029/2011JA017289 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 937PY UT WOS:000303671600003 ER PT J AU Lee, SMC Feiveson, AH Stenger, MB Stein, SP Platts, SH AF Lee, Stuart M. C. Feiveson, Alan H. Stenger, Michael B. Stein, Sydney P. Platts, Steven H. TI Orthostatic Hypotension After Long-duration Space Flight: NASA's Experiences From The International Space Station SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract C1 [Lee, Stuart M. C.; Stenger, Michael B.] Wyle Labs, Houston, TX USA. [Feiveson, Alan H.; Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Stein, Sydney P.] MEI Technol, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2012 VL 44 SU 2 BP 111 EP 112 PG 2 WC Sport Sciences SC Sport Sciences GA 027OT UT WOS:000310363300090 ER PT J AU Dolezal, BA Storer, T Abrazado, M Watne, R Schlegel, T Batalin, M Kaiser, W Smith, D Cooper, C AF Dolezal, Brett A. Storer, Tom Abrazado, Marlon Watne, Reed Schlegel, Todd Batalin, Maxim Kaiser, William Smith, Denise Cooper, Christ TI Deployment of an Advanced Electrocardiographic Analysis (A-ECG) to Detect Cardiovascular Risk in Career Firefighters SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract C1 [Dolezal, Brett A.; Storer, Tom; Abrazado, Marlon; Watne, Reed; Batalin, Maxim; Kaiser, William; Cooper, Christ] Univ Calif Los Angeles, Los Angeles, CA USA. [Schlegel, Todd] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Smith, Denise] Skidmore Coll, Saratoga Springs, NY 12866 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2012 VL 44 SU 2 BP 322 EP 322 PG 1 WC Sport Sciences SC Sport Sciences GA 027OT UT WOS:000310363302195 ER PT J AU Hackney, KJ Scott, JM Buxton, R Redd-Goetchius, E Crowell, JB Everett, ME Wickwire, J Ryder, J Bloomberg, JJ Ploutz-Snyder, LL AF Hackney, Kyle J. Scott, Jessica M. Buxton, Roxanne Redd-Goetchius, Elizabeth Crowell, J. Brent Everett, Meghan E. Wickwire, Jason Ryder, Jeffrey Bloomberg, Jacob J. Ploutz-Snyder, Lori L. TI Muscle Adaptations Following Short-Duration Bed Rest with Integrated Resistance, Interval, and Aerobic Exercise SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract C1 [Hackney, Kyle J.; Wickwire, Jason] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Scott, Jessica M.; Ryder, Jeffrey; Ploutz-Snyder, Lori L.] Univ Space Res Assoc, Houston, TX USA. [Buxton, Roxanne; Redd-Goetchius, Elizabeth; Everett, Meghan E.] Univ Houston, Houston, TX USA. [Crowell, J. Brent] MEI Technol, Houston, TX USA. [Bloomberg, Jacob J.] NASA, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2012 VL 44 SU 2 BP 689 EP 689 PG 1 WC Sport Sciences SC Sport Sciences GA 027OT UT WOS:000310363303663 ER PT J AU Everett, M Hackney, K Martin, D Ploutz-Snyder, L AF Everett, Meghan Hackney, Kyle Martin, David Ploutz-Snyder, Lori TI Femoral Blood Flow and Cardiac Output during Blood Flow Restricted Leg Press Exercise SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Meeting Abstract C1 [Everett, Meghan; Hackney, Kyle; Martin, David; Ploutz-Snyder, Lori] NASA JSC, Houston, TX USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2012 VL 44 SU 2 BP 732 EP 732 PG 1 WC Sport Sciences SC Sport Sciences GA 027OT UT WOS:000310363304018 ER PT J AU Davarian, F AF Davarian, Faramaz TI Prolog to the Section on Space Exploration and Science SO PROCEEDINGS OF THE IEEE LA English DT Editorial Material C1 CALTECH, Jet Prop Lab, Interplanetary Network, Pasadena, CA 91109 USA. RP Davarian, F (reprint author), CALTECH, Jet Prop Lab, Interplanetary Network, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM davarian@jpl.nasa.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD MAY PY 2012 VL 100 SI SI BP 1782 EP 1784 DI 10.1109/JPROC.2012.2187134 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 020TR UT WOS:000309838000060 ER PT J AU Launius, RD Conway, EM Johnston, AK Wang, ZC Hersch, MH Paikowsky, D Whalen, DJ Toldi, E Dougherty, K Hays, PL Levasseur, J McNutt, RL Sherwood, B AF Launius, Roger D. Conway, Erik M. Johnston, Andrew K. Wang, Zse Chien Hersch, Matthew H. Paikowsky, Deganit Whalen, David J. Toldi, Eric Dougherty, Kerrie Hays, Peter L. Levasseur, Jennifer McNutt, Ralph L., Jr. Sherwood, Brent TI Spaceflight: The Development of Science, Surveillance, and Commerce in Space SO PROCEEDINGS OF THE IEEE LA English DT Article DE Cold War; communications satellites; earth science; human presence in space; lunar science; national security; navigation and positioning; remote sensing; solar science; solar system; spaceflight ID OUTER SOLAR-SYSTEM AB To commemorate the centennial of the PROCEEDINGS OF THE IEEE, several authors from diverse areas of expertise examine space exploration from its beginnings in the middle of the last century and look onward to half a century in the future. Beginning by examining the reasons why the two 20th century superpowers believed that space exploration was an important investment, the chronological review of early developments includes discussions on science, commerce, and national security; the evolution of space-related technologies; progress and advancements in launch vehicles, spacecraft, and spacecraft payloads; and improvements in space communications and tracking. With the subjects of robotic solar system exploration and crewed missions to space discussed in some detail, the great advances of the last 60 years establish a foundation for addressing the challenges of future human flight beyond Earth's vicinity-challenges that are technical, political, social, and economic in nature. The authors take a pragmatic view in making forecasts for the future of spaceflight: they limit their conjecture, for the most part, to the next 50 years. While it is very difficult to make realistic predictions for longer periods, the authors are confident that space exploration continues to grasp the public's imagination and desire to know more about the universe, and that it continues to build on many of the same questions that inspired the space program in the mid-20th century. C1 [Launius, Roger D.; Johnston, Andrew K.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. [Sherwood, Brent] CALTECH, Jet Prop Lab, Innovat Foundry, Pasadena, CA 91109 USA. [Hersch, Matthew H.] Univ Penn, Philadelphia, PA 19104 USA. [Paikowsky, Deganit] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Whalen, David J.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. [Dougherty, Kerrie] Powerhouse Museum, Sydney, NSW 1238, Australia. [Hays, Peter L.] SAIC Inc, Washington, DC 20005 USA. [McNutt, Ralph L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD 20723 USA. RP Launius, RD (reprint author), Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. EM LauniusR@si.edu RI McNutt, Ralph/E-8006-2010 OI McNutt, Ralph/0000-0002-4722-9166 FU National Aeronautics and Space Administration FX This paper was prepared in part with the support of the National Aeronautics and Space Administration. NR 69 TC 3 Z9 3 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD MAY PY 2012 VL 100 SI SI BP 1785 EP 1818 DI 10.1109/JPROC.2012.2187143 PG 34 WC Engineering, Electrical & Electronic SC Engineering GA 020TR UT WOS:000309838000061 ER PT J AU Erkmen, BI AF Erkmen, Baris I. TI Computational ghost imaging for remote sensing SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID TURBULENT ATMOSPHERE; PROPAGATION AB Computational ghost imaging is a structured-illumination active imager coupled with a single-pixel detector that has potential applications in remote sensing. Here we report on an architecture that acquires the two-dimensional spatial Fourier transform of the target object (which can be inverted to obtain a conventional image). We determine its image signature, resolution, and signal-to-noise ratio in the presence of practical constraints such as atmospheric turbulence, background radiation, and photodetector noise. We consider a bistatic imaging geometry and quantify the resolution impact of nonuniform Kolmogorov-spectrum turbulence along the propagation paths. We show that, in some cases, short-exposure intensity averaging can mitigate atmospheric-turbulence-induced resolution loss. Our analysis reveals some key performance differences between computational ghost imaging and conventional active imaging, and identifies scenarios in which theory predicts that the former will perform better than the latter. (c) 2012 Optical Society of America C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Erkmen, BI (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM baris.i.erkmen@jpl.nasa.gov FU Defense Advanced Research Projects Agency (DARPA) InPho program [40-15391]; Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration FX The research described in this paper was supported by the Defense Advanced Research Projects Agency (DARPA) InPho program under contract PROP. 40-15391, and was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 30 TC 25 Z9 30 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 EI 1520-8532 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD MAY PY 2012 VL 29 IS 5 BP 782 EP 789 PG 8 WC Optics SC Optics GA 016UK UT WOS:000309544800016 PM 22561937 ER PT J AU Liptuga, A Morozhenko, V Pipa, V Venger, E Kostiuk, T AF Liptuga, Anatoliy Morozhenko, Vasyl Pipa, Viktor Venger, Evgen Kostiuk, Theodor TI Faraday-active Fabry-Perot resonator: transmission, reflection, and emissivity SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID LIGHT; MEDIA AB The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection, and emissivity of the resonator not only for polarized, but also for unpolarized, light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the planeparallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures. C1 [Kostiuk, Theodor] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen] V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. RP Kostiuk, T (reprint author), NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. EM theodor.kostiuk@nasa.gov RI Kostiuk, Theodor/A-3077-2014 NR 14 TC 1 Z9 1 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD MAY PY 2012 VL 29 IS 5 BP 790 EP 796 PG 7 WC Optics SC Optics GA 016UK UT WOS:000309544800017 PM 22561938 ER PT J AU Gershman, DJ Block, BP Rubin, M Benna, M Mahaffy, PR Zurbuchen, TH AF Gershman, D. J. Block, B. P. Rubin, M. Benna, M. Mahaffy, P. R. Zurbuchen, T. H. TI Comparing the performance of hyperbolic and circular rod quadrupole mass spectrometers with applied higher order auxiliary excitation SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Quadrupole mass spectrometer; Auxiliary excitation; Spaceborne mass spectrometry ID FILTER; STABILITY AB This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems. (C) 2012 Elsevier B.V. All rights reserved. C1 [Gershman, D. J.; Block, B. P.; Rubin, M.; Zurbuchen, T. H.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Benna, M.; Mahaffy, P. R.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Gershman, DJ (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM djgersh@umich.edu RI Benna, Mehdi/F-3489-2012; Rubin, Martin/I-7777-2013 OI Rubin, Martin/0000-0001-6549-3318 FU NASA [NNX08AO05G, NNX09AL50H] FX The authors would like to acknowledge Eric Raaen, Heather Franz, and Mike Barciniak for their assistance and support with interfacing to and operating the MSL/SAM test bed system. This work was supported by the NASA Planetary Instrument Definition and Development NNX08AO05G and NASA Graduate Student Research Program NNX09AL50H grants. The University of Michigan is pursuing patent protection for the presented intellectual property and is seeking commercialization partners to help bring the technology to market. NR 20 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD MAY 1 PY 2012 VL 319 BP 17 EP 24 DI 10.1016/j.ijms.2012.03.008 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 982JD UT WOS:000307038400003 ER PT J AU Vinatier, S Rannou, P Anderson, CM Bezard, B de Kok, R Samuelson, RE AF Vinatier, Sandrine Rannou, Pascal Anderson, Carrie M. Bezard, Bruno de Kok, Remco Samuelson, Robert E. TI Optical constants of Titan's stratospheric aerosols in the 70-1500 cm(-1) spectral range constrained by Cassini/CIRS observations SO ICARUS LA English DT Article DE Titan, atmosphere; Atmospheres, composition; Spectroscopy ID UPPER-ATMOSPHERE; MU-M; THOLINS; HAZE; MODEL; SIZE; LIMB AB We utilized aerosol extinction coefficient inferred from Cassini/CIRS spectra in the far and mid infrared region to derive the extinction cross-section near an altitude of 190 km at 15 degrees S (from far-IR) and 20 degrees S (from mid-IR). By comparing the extinction cross section that are derived from observations with theoretical calculations for a fractal aggregate of 3000 monomers, each having a radius of 0.05 pm, and a fractal dimension of 2, we are able to constrain the refractive index of Titan's aerosol between 70 and 1500 cm(-1) (143 and 6.7 mu m). As the real and imaginary parts of the refractive index are related by the Kramers-Kronig equation, we apply an iterative process to determine the optical constants in the thermal infrared. The resulting spectral dependence of the imaginary index displays several spectral signatures, some of which are also seen for some Titan's aerosol analogues (tholins) produced in laboratory experiments. We find that Titan's aerosols are less absorbent than tholins in the thermal infrared. The most prominent emission bands observed in the mid-infrared are due to C-H bending vibrations in methyl and methylene groups. It appears that Titan's aerosols predominantly display vibrations implying carbon and hydrogen atoms and perhaps marginally nitrogen. In the mid infrared, all the aerosol spectral signatures are observed at three additional latitudes (56 degrees S, 5 degrees N and 30 degrees N) and in the 193-274 km altitude range, which implies that Titan's aerosols exhibit the same chemical composition in all investigated latitude and altitude regions. (c) 2012 Elsevier Inc. All rights reserved. C1 [Vinatier, Sandrine; Bezard, Bruno] Univ Paris 06, CNRS, Observ Paris, LESIA,UPMC, F-75252 Paris 05, France. [Rannou, Pascal] Univ Reims, UMR CNRS 6089, GSMA, Reims, France. [Rannou, Pascal] Univ Versailles, UMR CNRS 8190, LATMOS, Guyancourt, France. [Anderson, Carrie M.; Samuelson, Robert E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [de Kok, Remco] SRON, Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Samuelson, Robert E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Vinatier, S (reprint author), Univ Paris 06, CNRS, Observ Paris, LESIA,UPMC, F-75252 Paris 05, France. EM sandrine.vinatier@obspm.fr RI RANNOU, Pascal/I-9059-2012; Anderson, Carrie/C-8097-2012 FU NASA Postdoctoral Program at the NASA Goddard Space Flight Center; Centre National d'Etudes Spatiales; Programme National de Planetologie (INSU) FX This research was partly supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Space Flight Center, administrated by Oak Ridge Associated Universities through a contract with NASA. This work was also funded by the Centre National d'Etudes Spatiales and the Programme National de Planetologie (INSU). We also thank R. West and an anonymous referee for their helpful comments, which helped to improve this paper. NR 44 TC 27 Z9 27 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2012 VL 219 IS 1 BP 5 EP 12 DI 10.1016/j.icarus.2012.02.009 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975WA UT WOS:000306541000003 ER PT J AU Stock, JW Boxe, CS Lehmann, R Grenfell, JL Patzer, ABC Rauer, H Yung, YL AF Stock, Joachim W. Boxe, Christopher S. Lehmann, Ralph Grenfell, J. Lee Patzer, A. Beate C. Rauer, Heike Yung, Yuk L. TI Chemical pathway analysis of the Martian atmosphere: CO2-formation pathways SO ICARUS LA English DT Article DE Atmospheres, Chemistry; Atmospheres, Composition; Mars; Mars, Atmosphere; Photochemistry ID SENSITIVITY-ANALYSIS; REACTION SYSTEMS; MARS; STABILITY; ALGORITHM; CO; OH AB The chemical composition of a planetary atmosphere plays an important role for atmospheric structure, stability, and evolution. Potentially complex interactions between chemical species do not often allow for an easy understanding of the underlying chemical mechanisms governing the atmospheric composition. In particular, trace species can affect the abundance of major species by acting in catalytic cycles. On Mars, such cycles even control the abundance of its main atmospheric constituent CO2. The identification of catalytic cycles (or more generally chemical pathways) by hand is quite demanding. Hence, the application of computer algorithms is beneficial in order to analyze complex chemical reaction networks. Here, we have performed the first automated quantified chemical pathways analysis of the Martian atmosphere with respect to CO2-production in a given reaction system. For this, we applied the Pathway Analysis Program (PAP) to output data from the Caltech/JPL photochemical Mars model. All dominant chemical pathways directly related to the global CO2-production have been quantified as a function of height up to 86 km. We quantitatively show that CO2-production is dominated by chemical pathways involving HOx and O-x. In addition, we find that NOx in combination with HOx and O-x exhibits a non-negligible contribution to CO2-production, especially in Mars' lower atmosphere. This study reveals that only a small number of chemical pathways contribute significantly to the atmospheric abundance of CO2 on Mars; their contributions to CO2-production vary considerably with altitude. This analysis also endorses the importance of transport processes in governing CO2-stability in the Martian atmosphere. Lastly, we identify a previously unknown chemical pathway involving HOx, O-x, and HO2-photodissociation, contributing 8% towards global CO2-production by chemical pathways using recommended up-to-date values for reaction rate coefficients. (c) 2012 Elsevier Inc. All rights reserved. C1 [Stock, Joachim W.; Rauer, Heike] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Planetenforsch, D-12489 Berlin, Germany. [Boxe, Christopher S.] CALTECH, Jet Prop Lab, Earth & Space Sci Div, Pasadena, CA 91109 USA. [Lehmann, Ralph] Alfred Wegener Inst Polar & Meeresforsch AWI, D-14473 Potsdam, Germany. [Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike] Tech Univ Berlin, Zentrum Astron & Astrophys, D-10623 Berlin, Germany. [Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Boxe, Christopher S.] CUNY, Medgar Evers Coll, Dept Phys Environm & Comp Sci, Brooklyn, NY 11235 USA. RP Stock, JW (reprint author), Deutsch Zentrum Luft & Raumfahrt DLR, Inst Planetenforsch, Rutherfordstr 2, D-12489 Berlin, Germany. EM joachim.stock@dlr.de FU Helmholtz Association through the research alliance "Planetary Evolution and Life" FX This research has been partly supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life". NR 28 TC 12 Z9 12 U1 3 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2012 VL 219 IS 1 BP 13 EP 24 DI 10.1016/j.icarus.2012.02.010 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975WA UT WOS:000306541000004 ER PT J AU Castillo-Rogez, JC Johnson, TV Thomas, PC Choukroun, M Matson, DL Lunine, JI AF Castillo-Rogez, Julie C. Johnson, T. V. Thomas, P. C. Choukroun, M. Matson, D. L. Lunine, J. I. TI Geophysical evolution of Saturn's satellite Phoebe, a large planetesimal in the outer Solar System SO ICARUS LA English DT Article DE Saturn, Satellites; Geophysics; Planetesimals ID KUIPER-BELT OBJECTS; CHONDRITE PARENT BODIES; DENSITY AMORPHOUS ICE; LOW THERMAL-CONDUCTIVITY; WATER-ICE; CLATHRATE-HYDRATE; CHEMICAL-COMPOSITION; IRREGULAR SATELLITES; ASTROPHYSICAL IMPLICATIONS; RHEOLOGICAL PROPERTIES AB Saturn's satellite Phoebe is the best-characterized representative of large outer Solar System planetesimals, thanks to the close flyby by the Cassini spacecraft in June 2004. We explore the information contained in Phoebe's physical properties, density and shape, which are significantly different from those of other icy objects in its size range. Phoebe's higher density has been interpreted as evidence that it was captured, probably from the proto-Kuiper-Belt. First, we demonstrate that Phoebe's shape is globally relaxed and consistent with a spheroid in hydrostatic equilibrium with its rotation period. This distinguishes the satellite from 'rubble-piles' that are thought to result from the disruption of larger proto-satellites. We numerically model the geophysical evolution of Phoebe, accounting for the feedback between porosity and thermal state. We compare thermal evolution models for different assumptions on the formation of Phoebe, in particular the state of its water, amorphous or crystalline. We track the evolution of porosity and thermal conductivity as well as the destabilization of amorphous ice or clathrate hydrates. While rubble-piles may never reach temperatures suitable for porous ice to creep and relax, we argue that Phoebe's shape could have relaxed due to heat from the decay of Al-26, provided that this object formed less than 3 Myr after the production of the calcium-aluminum inclusions. This is consistent with the idea that Phoebe could be an exemplar of planetesimals that formed in the transneptunian region and later accreted onto outer planet satellites, either during the satellite's formation stage, or still later, during the late heavy bombardment. (c) 2012 Elsevier Inc. All rights reserved. C1 [Castillo-Rogez, Julie C.; Johnson, T. V.; Choukroun, M.; Matson, D. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thomas, P. C.; Lunine, J. I.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. RP Castillo-Rogez, JC (reprint author), CALTECH, Jet Prop Lab, M-S 79-24,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Julie.C.Castillo@jpl.nasa.gov RI Choukroun, Mathieu/F-3146-2017 OI Choukroun, Mathieu/0000-0001-7447-9139 NR 177 TC 10 Z9 10 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY PY 2012 VL 219 IS 1 BP 86 EP 109 DI 10.1016/j.icarus.2012.02.002 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975WA UT WOS:000306541000010 ER PT J AU Hinson, DP Wang, HQ Smith, MD AF Hinson, David P. Wang, Huiqun Smith, Michael D. TI A multi-year survey of dynamics near the surface in the northern hemisphere of Mars: Short-period baroclinic waves and dust storms SO ICARUS LA English DT Article DE Mars, Atmosphere; Mars, Climate; Atmospheres, Dynamics; Meteorology ID ASYNOPTIC SATELLITE-OBSERVATIONS; WESTERN BOUNDARY CURRENTS; TES NADIR DATA; MARTIAN ATMOSPHERE; GLOBAL SURVEYOR; SPECTRAL-ANALYSIS; ORBITER CAMERA; THERMAL TIDES; MGS TES; INTERANNUAL VARIABILITY AB Baroclinic waves figure prominently in the dynamics of the northern hemisphere of Mars, and extensive observations by the Viking Landers and two atmospheric sounders on Mars Global Surveyor have revealed many of their basic properties. However, previous investigations considered these data sets individually, so that their cumulative value is not fully appreciated. We have re-examined these data to extract new information about the dynamics near the surface at mid-to-high northern latitudes. By applying the same method of spectral analysis to each type of observation, we derive a uniform, multi-year characterization of basic elements of martian weather. This survey documents the time evolution of baroclinic waves among modes with different periods and zonal wave numbers. We devote particular attention to a recurring "wave-3 mode", which is distinguished by its capacity to initiate regional dust storms in the topographic basins of the northern hemisphere. Our results include a detailed case study that shows how the intermittence of this mode and the strong zonal modulation of its amplitude influence the timing and location of these distinctive "flushing" dust storms. More generally, we find that the properties of the wave-3 mode are largely the same whenever it appears and that its intermittence plays an important role in the annual dust cycle. (c) 2012 Elsevier Inc. All rights reserved. C1 [Hinson, David P.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Hinson, David P.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Wang, Huiqun] Smithsonian Astrophys Observ, Atom & Mol Phys Div, Cambridge, MA 02138 USA. [Smith, Michael D.] NASA, Planetary Syst Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hinson, DP (reprint author), SETI Inst, Carl Sagan Ctr, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM dhinson@seti.org FU NASA of the Mars Data Analysis Program [NNX08AL24G] FX Funding for this research was provided by NASA under Grant NNX08AL24G (Hinson) of the Mars Data Analysis Program. NR 54 TC 11 Z9 11 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2012 VL 219 IS 1 BP 307 EP 320 DI 10.1016/j.icarus.2012.03.001 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975WA UT WOS:000306541000029 ER PT J AU Reddy, V Gaffey, MJ Abell, PA Hardersen, PS AF Reddy, Vishnu Gaffey, Michael J. Abell, Paul A. Hardersen, Paul S. TI Constraining albedo, diameter and composition of near-Earth asteroids via near-infrared spectroscopy SO ICARUS LA English DT Article DE Asteroids, Composition; Near-Earth objects; Spectroscopy; Meteorites ID MAIN-BELT; SPECTRAL REFLECTANCE; THERMAL-MODEL; OLIVINE; SPECTROGRAPH; RADIOMETRY; METEORITE; MIXTURES; SURFACES; TARGETS AB We present a method to constrain the albedo and diameters of near-Earth asteroids (NEAs) based on thermal flux in their near-infrared spectra (0.7-2.5 mu m) using the Standard Thermal Model. Near-infrared spectra obtained with the SpeX instrument on NASA Infrared Telescope Facility are used to estimate the albedo and diameters of 12 NEAs (1992 JE, 1992 UY4, 1999 JD6, 2004 XP14, 2005 YY93, 2007 DS84, 2005 AD13, 2005 WJ56, 1999 JM8, 2005 RC34, 2003 YE45, and 2008 QS11). Albedo estimates were compared with average albedo for various taxonomic classes outlined by Thomas et al. (Thomas, C.A. et al. [2011]. Astron. J. 142(3)) and are consistent with their results. Spectral band parameters, like band centers, are derived and compared to spectra of laboratory mineral mixtures and meteorites to constrain their composition and possible meteorite analogs. Based on our study we estimate the albedos and diameters of these NEAs and compare them with those obtained by other techniques such as ground-based mid-infrared, Spitzer thermal infrared and Arecibo radar. Our results are broadly consistent with the results from other direct methods like radar. Determining the compositions of low albedo asteroids is a challenge due to the lack of deep silicate absorption features. However, based on weak absorption features and albedo, we suggest possible meteorite analogs for these NEAs, which include black chondrites, CM2 carbonaceous chondrites and enstatite achondrites. We did not find any specific trends in albedo and composition among the asteroids we observed. (c) 2012 Elsevier Inc. All rights reserved. C1 [Reddy, Vishnu; Gaffey, Michael J.; Hardersen, Paul S.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. [Reddy, Vishnu] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Abell, Paul A.] NASA, Astromat Res & Explorat Sci Directorate, Johnson Space Ctr, Houston, TX 77058 USA. RP Reddy, V (reprint author), Univ N Dakota, Dept Space Studies, Room 520,Box 9008, Grand Forks, ND 58202 USA. EM reddy@space.edu RI Hardersen, Paul/N-9343-2014; OI Hardersen, Paul/0000-0002-0440-9095; Reddy, Vishnu/0000-0002-7743-3491 FU University of Hawaii [NNX-08AE38A]; National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program; NASA NEOO Program Grant [NNX07AL29G]; NASA Planetary Geology and Geophysics Grant [NNX07AP73G] FX Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement No. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.; This research was supported by NASA NEOO Program Grant NNX07AL29G, and NASA Planetary Geology and Geophysics Grant NNX07AP73G. We thank the IRTF TAC for awarding time to this project, and to the IRTF TOs and MKSS staff for their support. NR 68 TC 8 Z9 8 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2012 VL 219 IS 1 BP 382 EP 392 DI 10.1016/j.icarus.2012.03.005 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975WA UT WOS:000306541000034 ER PT J AU Barnouin, OS Zuber, MT Smith, DE Neumann, GA Herrick, RR Chappelow, JE Murchie, SL Prockter, LM AF Barnouin, Olivier S. Zuber, Maria T. Smith, David E. Neumann, Gregory A. Herrick, Robert R. Chappelow, John E. Murchie, Scott L. Prockter, Louise M. TI The morphology of craters on Mercury: Results from MESSENGER flybys SO ICARUS LA English DT Article DE Mercury; Impact processes; Image proecessing ID LASER ALTIMETER; CALORIS BASIN; IMPACT CRATERS; MARS; VOLCANISM; SATELLITES; EVOLUTION; HISTORY; PLAINS; ORIGIN AB Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data. (c) 2012 Elsevier Inc. All rights reserved. C1 [Barnouin, Olivier S.; Murchie, Scott L.; Prockter, Louise M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Zuber, Maria T.; Smith, David E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Neumann, Gregory A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Herrick, Robert R.] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA. [Chappelow, John E.] SAGA Inc, Fairbanks, AK 99709 USA. RP Barnouin, OS (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM olivier.barnouin@jhuapl.edu RI Neumann, Gregory/I-5591-2013; Murchie, Scott/E-8030-2015; Barnouin, Olivier/I-7475-2015 OI Neumann, Gregory/0000-0003-0644-9944; Murchie, Scott/0000-0002-1616-8751; Barnouin, Olivier/0000-0002-3578-7750 FU MESSENGER project; NASA Discovery Program; NASA Planetary Mission Data Analysis Program FX This study was made possible with support from the MESSENGER project funded by the NASA Discovery Program and a grant to R. Herrick from the NASA Planetary Mission Data Analysis Program. We are also grateful to two anonymous reviewers who comments greatly improved the text. NR 62 TC 19 Z9 19 U1 0 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2012 VL 219 IS 1 BP 414 EP 427 DI 10.1016/j.icarus.2012.02.029 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975WA UT WOS:000306541000036 ER PT J AU Farrell, WM Wahlund, JE Morooka, M Gurnett, DA Kurth, WS MacDowall, RJ AF Farrell, William M. Wahlund, Jan-Erik Morooka, Michiko Gurnett, Donald A. Kurth, William S. MacDowall, Robert J. TI The electromagnetic pickup of submicron-sized dust above Enceladus's northern hemisphere SO ICARUS LA English DT Article DE Saturn; Saturn, satellites; Saturn, magnetosphere; Enceladus ID E-RING; PLASMA TORUS; SOUTH-POLE; CASSINI; SPECTROMETER; ATMOSPHERE; COROTATION; PLUME AB As the saturnian magnetoplasma sweeps past Enceladus, it experiences both a decrease in electron content and sharp slowdown in the northern hemisphere region within similar to 5 Enceladus Radii (R-e). This slowdown is observed by Cassini in regions not obviously associated with the southern directed plume-originating ions. We suggest herein that the decrease in northern hemisphere electron content and plasma slowdown could both be related to the presence of fine dust grains that are being accelerated by the Lorentz force created within the saturnian magnetic field system. Published by Elsevier Inc. C1 [Farrell, William M.; MacDowall, Robert J.] NASA, Goddard SFC, Columbia, MD 21044 USA. [Wahlund, Jan-Erik; Morooka, Michiko] Swedish Inst Space Phys, Uppsala, Sweden. [Gurnett, Donald A.; Kurth, William S.] Univ Iowa, Iowa City, IA 52242 USA. RP Farrell, WM (reprint author), NASA, Goddard SFC, Columbia, MD 21044 USA. EM william.m.farrell@nasa.gov RI MacDowall, Robert/D-2773-2012; Farrell, William/I-4865-2013; OI Kurth, William/0000-0002-5471-6202 NR 25 TC 6 Z9 6 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD MAY PY 2012 VL 219 IS 1 BP 498 EP 501 DI 10.1016/j.icarus.2012.02.033 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975WA UT WOS:000306541000042 ER PT J AU Hendler, J Holm, J Musialek, C Thomas, G AF Hendler, James Holm, Jeanne Musialek, Chris Thomas, George TI US Government Linked Open Data: Semantic.data.gov SO IEEE INTELLIGENT SYSTEMS LA English DT Article C1 [Hendler, James] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Holm, Jeanne] NASA, Jet Prop Lab, Washington, DC USA. RP Hendler, J (reprint author), Rensselaer Polytech Inst, Troy, NY 12181 USA. EM hendler@cs.rpi.edu; jeanne.m.holm@jpl.nasa.gov; christopher.musialek@gsa.gov; george.thomas1@hhs.gov RI Holm, Jeanne/B-3687-2013; Trivedi, Kruti/E-7558-2015 FU Microsoft Research Laboratories; US National Science Foundation FX Rensselaer Polytechnic Institute acknowledges sponsorship from Microsoft Research Laboratories, which provides support to the Tetherless World Constellation, and from the US National Science Foundation, which awarded an Early-Concept Grant for Exploratory Research for exploring next-generation Semantic Web Technologies. NR 5 TC 16 Z9 17 U1 11 U2 55 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1541-1672 J9 IEEE INTELL SYST JI IEEE Intell. Syst. PD MAY-JUN PY 2012 VL 27 IS 3 BP 25 EP 31 PG 7 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 974QG UT WOS:000306450800007 ER PT J AU Johnston, CO Kleb, B AF Johnston, Christopher O. Kleb, Bil TI Uncertainty Analysis of Air Radiation for Lunar-Return Shock Layers SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Atmospheric Flight Mechanics Conference and Exhibit CY AUG 18-21, 2008 CL Honolulu, HI SP AIAA ID OSCILLATOR-STRENGTH MEASUREMENTS; PHOTOIONIZATION CROSS-SECTIONS; VACUUM ULTRAVIOLET LINES; NEUTRAL NITROGEN LINES; TRANSITION-PROBABILITIES; CONTINUUM RADIATION; RATE COEFFICIENTS; ELECTRON-IMPACT; ATOMIC NITROGEN; SPECTRAL-LINES AB By leveraging a new uncertainty markup technique, two risk analysis methods are used to compute the uncertainty of lunar-return shock-layer radiation predicted by the High-temperature Aerothermodynamic Radiation Algorithm (HARA). The effects of epistemic uncertainty, or uncertainty due to a lack of knowledge, are considered for the following modeling parameters: atomic-line oscillator strengths, atomic-line Stark broadening widths, atomic photoionization cross sections, negative-ion photodetachment cross sections; molecular-band oscillator strengths, and electron-impact excitation rates. First, a simplified shock-layer problem consisting of two constant-property equilibrium layers is considered. The results of this simplified problem show that the atomic-nitrogen oscillator strengths and Stark broadening widths in both the vacuum ultraviolet and infrared spectral regions, along with the negative-ion continuum, are the dominant uncertainty contributors. Next, three variable-property stagnation-line shock-layer casts are analyzed: a typical lunar-return case and two Fire 11 entry-vehicle cases. For the near-equilibrium lunar-return and Fire 1643 s cases, the resulting uncertainties are similar to the simplified case. Conversely, the relatively nonequilibrium 1636 s case shows significantly larger influence from electron-impact excitation rates of both atoms and molecules. For all cases, the total uncertainty in radiative heat flux to the wall due to epistemic uncertainty in modeling parameters is +/- 30% as opposed to the erroneously small uncertainty levels (+/- 6%) found when treating model parameter uncertainties as aleatory (due to chance) instead of epistemic (due to lack of knowledge). C1 [Johnston, Christopher O.; Kleb, Bil] NASA, Langley Res Ctr, Aerothermodynam Branch, Res Technol Directorate, Hampton, VA 23681 USA. RP Johnston, CO (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, Res Technol Directorate, Hampton, VA 23681 USA. NR 68 TC 4 Z9 4 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAY-JUN PY 2012 VL 49 IS 3 BP 425 EP 434 DI 10.2514/1.A32161 PG 10 WC Engineering, Aerospace SC Engineering GA 957XF UT WOS:000305199700001 ER PT J AU Hollis, BR AF Hollis, Brian R. TI Blunt-Body Entry Vehicle Aerothermodynamics: Transition and Turbulent Heating SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 40th AIAA Fluid Dynamics Conference and Exhibit CY JUN 28-JUL 01, 2010 CL Chicago, IL SP AIAA ID CREW EXPLORATION VEHICLE; CAVITIES AB Recent, current, and planned NASA missions that employ blunt-body entry vehicles pose aerothermodyamic problems that challenge state-of-the-art experimental and computational methods. The issues of boundary-layer transition and turbulent heating on the heat shield have become important in the designs of both the Mars Science Laboratory and Crew Exploration Vehicle. While considerable experience in these general areas exists, that experience is mainly derived from simple geometries; e.g., sharp-cones and flat-plates, or from lifting bodies such as the Space Shuttle Orbiter. For blunt-body vehicles, application of existing data, correlations, and comparisons is questionable because an all, or mostly, subsonic flowfield is produced behind the bow shock, as compared with the supersonic (or even hypersonic) flow of other configurations. Because of the need for design and validation data for projects such as Mars Science Laboratory and Crew Exploration Vehicle, many new experimental studies have been conducted in the last decade to obtain detailed boundary-layer transition and turbulent heating data on this class of vehicle. In this paper, details of several of the test programs are reviewed. The laminar and turbulent data from these various test are shown to correlate in terms of edge-based Stanton and Reynolds number functions. Correlations are developed from the data for transition onset and turbulent heating augmentation as functions of momentum thickness Reynolds number. These correlations can be employed as engineering-level design and analysis tools. C1 NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23681 USA. RP Hollis, BR (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23681 USA. NR 26 TC 2 Z9 2 U1 0 U2 14 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAY-JUN PY 2012 VL 49 IS 3 BP 435 EP 449 DI 10.2514/1.51864 PG 15 WC Engineering, Aerospace SC Engineering GA 957XF UT WOS:000305199700002 ER PT J AU Horneck, G Moeller, R Cadet, J Douki, T Mancinelli, RL Nicholson, WL Panitz, C Rabbow, E Rettberg, P Spry, A Stackebrandt, E Vaishampayan, P Venkateswaran, KJ AF Horneck, Gerda Moeller, Ralf Cadet, Jean Douki, Thierry Mancinelli, Rocco L. Nicholson, Wayne L. Panitz, Corinna Rabbow, Elke Rettberg, Petra Spry, Andrew Stackebrandt, Erko Vaishampayan, Parag Venkateswaran, Kasthuri J. TI Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes-Experiment PROTECT of the EXPOSE-E Mission SO ASTROBIOLOGY LA English DT Article DE Planetary protection; Bacterial spores; Space experiment; Simulated Mars mission ID BACILLUS-SUBTILIS SPORES; ASSEMBLY FACILITY; ATMOSPHERIC-PRESSURE; ACTION SPECTRA; UV RESISTANCE; SURVIVAL; MARS; PUMILUS; MICROORGANISMS; ENVIRONMENTS AB Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (lambda >= 110 nm) as well as the martian UV spectrum (lambda >= 200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. C1 [Horneck, Gerda; Moeller, Ralf; Rabbow, Elke; Rettberg, Petra] German Aerosp Ctr DLR, Inst Aerosp Med, Radiat Biol Dept, D-51147 Cologne, Germany. [Cadet, Jean; Douki, Thierry] SCIB UMR E 3 CEA UJF Inst Nanosci & Cryogenie CEA, Lab Les Acides Nucle, Grenoble, France. [Mancinelli, Rocco L.] NASA Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA USA. [Nicholson, Wayne L.] Univ Florida, Dept Microbiol & Cell Sci, Space Life Sci Lab, Kennedy Space Ctr, FL USA. [Panitz, Corinna] Tech Univ RWTH, Inst Flugmed, Aachen, Germany. [Spry, Andrew; Vaishampayan, Parag; Venkateswaran, Kasthuri J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Stackebrandt, Erko] German Collect Microorganisms & Cell Cultures Gmb, Braunschweig, Germany. RP Horneck, G (reprint author), German Aerosp Ctr DLR, Inst Aerosp Med, Radiat Biol Dept, D-51147 Cologne, Germany. EM gerda.horneck@dlr.de RI Rettberg, Petra/K-2378-2015; Mancinelli, Rocco/L-8971-2016 OI Rettberg, Petra/0000-0003-4439-2395; FU DLR [475, D/316/67120270]; BMWi [Fondsnummer 360 224, Forderkennzeichen 50 WB 0528]; NASA [NNA06CB58G, NNX10AK33A]; NRA ROSES FX The PROTECT team thanks Martin Zell, Head of ESA ISS Utilisation and Astronaut Support Department; Pietro Baglioni and Rene Demets of ESA-ESTEC for their invaluable support in realizing the EXPOSE-E mission; the astronauts who were involved in the exposure and retrieval of EXPOSE-E; the NASA teams responsible for flights STS-122 and STS-128; the teams at ESA-ESTEC during the planning, operation, and evaluation period of EXPOSE-E; the teams at the companies KT and RedShift; and the team at MUSC DLR during the preparation, EVT, EST, and MGR of EXPOSE-E. The project was supported by DLR grant DLR-FuE-Projekt ISS-Nutzung in der Biodiagnostik, Programm RF-FuW, Teilprogramm 475 (to P. R., R. M., and E. R.), DLR contract no. D/316/67120270 (to G. H.), BMWi grant Fondsnummer 360 224, Forderkennzeichen 50 WB 0528 (to C. P.), NASA Planetary Protection grant NNA06CB58G (to W.L.N.), and NASA cooperative agreement NNX10AK33A (to R. L. M). The research described in this publication was partly carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was funded by a 2007 NRA ROSES grant (to K. V.). We are grateful to all the members of the JPL Biotechnology and Planetary Protection Group for technical assistance. K. V., W.L.N., and R. L. M. especially thank J. Rummel and C. Conley of the NASA Planetary Protection office for their unflagging support. NR 57 TC 33 Z9 33 U1 4 U2 29 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAY PY 2012 VL 12 IS 5 BP 445 EP + DI 10.1089/ast.2011.0737 PG 13 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 957PQ UT WOS:000305175400009 PM 22680691 ER PT J AU Vaishampayan, PA Rabbow, E Horneck, G Venkateswaran, KJ AF Vaishampayan, Parag A. Rabbow, Elke Horneck, Gerda Venkateswaran, Kasthuri J. TI Survival of Bacillus pumilus Spores for a Prolonged Period of Time in Real Space Conditions SO ASTROBIOLOGY LA English DT Article DE Bacillus pumilus; Spores; Space conditions; International Space Station; Mars atmosphere; UV radiation ID GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE; ASSEMBLY FACILITY; BACTERIAL-SPORES; SUBTILIS SPORES; UV-IRRADIATION; ENVIRONMENTS; RESISTANCE; MARS; ENDOSPORES; PROTECTION AB To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110 nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a similar to 7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (similar to 3-log reduction in viability for "UV-Mars," and similar to 4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection. C1 [Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. [Rabbow, Elke; Horneck, Gerda] German Aerosp Ctr DLR, Inst Aerosp Med, Cologne, Germany. RP Venkateswaran, KJ (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, M-S 89-2,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov FU NASA; Caltech Amgen; JPL FX The research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology (Caltech), under a contract with the National Aeronautics and Space Administration. This research was funded by a 2007 NASA Research Announcement Research Opportunities in Space and Earth Sciences (NRA ROSES) grant. The authors acknowledge the technical assistance of students hired through the NASA Undergraduate Student Research Program (A. Chopra), the Caltech Amgen Scholarship (B. Chen), and the JPL Graduate Fellowship Program (P. Schwendner). We are grateful to J. Rummel and C. Conley for useful discussion and to J. A. Spry for encouragement and reviewing the manuscript. The PROTECT team thanks the astronauts who were involved in the exposure and retrieval of EXPOSE-E; the team at ESA's European Space Research and Technology Centre during EXPOSE-E planning, operation, and evaluation; the KT and RedShift teams; and the team at DLR Microgravity User Support Center, who contributed to the EXPOSE-E preparation, engineering verification testing, EST, and MGR. (c) 2011. All rights reserved. NR 47 TC 28 Z9 29 U1 2 U2 26 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAY PY 2012 VL 12 IS 5 BP 487 EP + DI 10.1089/ast.2011.0738 PG 12 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 957PQ UT WOS:000305175400012 PM 22680694 ER PT J AU Onofri, S de la Torre, R de Vera, JP Ott, S Zucconi, L Selbmann, L Scalzi, G Venkateswaran, KJ Rabbow, E Inigo, FJS Horneck, G AF Onofri, Silvano de la Torre, Rosa de Vera, Jean-Pierre Ott, Sieglinde Zucconi, Laura Selbmann, Laura Scalzi, Giuliano Venkateswaran, Kasthuri J. Rabbow, Elke Sanchez Inigo, Francisco J. Horneck, Gerda TI Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space SO ASTROBIOLOGY LA English DT Article DE Astrobiology; Lithopanspermia; Radiation resistance; Survival; Vacuum ID MARTIAN METEORITES; IMPACT EJECTION; BLACK FUNGI; MARS; PLANETS; MICROORGANISMS; LICHENS; LIFE AB Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. So far, the hardiness of these terrestrial organisms in the severe and hostile conditions of space has not been tested over extended periods of time. A first long-term (1.5 years) exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms at the International Space Station on board the European EXPOSE-E facility. Organisms were selected that are especially adapted to cope with the environmental extremes of their natural habitats. It was found that some-but not all-of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, our data provide first evidence of the differential hardiness of cryptoendolithic communities in space. C1 [Onofri, Silvano; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano] Univ Tuscia, Dept Ecol & Biol Sci, Viterbo, Italy. [de la Torre, Rosa; Sanchez Inigo, Francisco J.] Spanish Aerosp Res Estab INTA, Dept Earth Observat, Madrid, Spain. [de Vera, Jean-Pierre] German Aerosp Ctr DLR, Inst Planetary Res, Berlin, Germany. [Ott, Sieglinde] Univ Dusseldorf, Inst Bot, Dusseldorf, Germany. [Scalzi, Giuliano; Venkateswaran, Kasthuri J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rabbow, Elke; Horneck, Gerda] German Aerosp Ctr DLR, Inst Aerosp Med, Cologne, Germany. RP Onofri, S (reprint author), Largo Univ Snc, Dept Ecol & Biol Sci DEB, I-01100 Viterbo, Italy. EM onofri@unitus.it RI Sanchez Inigo, Francisco Javier/H-9691-2013; Selbmann, Laura/L-3056-2013; OI Zucconi, Laura/0000-0001-9793-2303 FU Antarctic Research and National Antarctic Museum; European Coordination Action for Research Activities on life in Extreme Environments (CAREX); Spanish Ministry of Science and Education [ESP2005-25292-E]; INTA FX We thank the staff at the European Space Agency for the provision and operations of the EXPOSE-E facility and Thomas Berger for the cosmic ray dosimetry data. We also thank the Italian National Program of Antarctic Research and National Antarctic Museum for funding the collection of Antarctic samples, strains, and sample analyses, as well as the European Coordination Action for Research Activities on life in Extreme Environments (CAREX) for one ToK Grant to G. S. Collection and preparation of samples, and CLSM and photosynthetic activity analyses of X. elegans have been supported partly by the Helmholtz Association through the research alliance "Planetary Evolution and Life" and the BMWi, 50WB0614; the selection and preparation of the Rhizocarpon geographicum samples have been financed by the Space Program of the Spanish Ministry of Science and Education (ESP2005-25292-E) and INTA. We thank Philipp Holzwig, Isabella Halezki, Eva-Maria Posthoff, and the Institute of Genetics at the Heinrich-Heine-Universitat Dusseldorf for skillful technical assistance. Special thanks also go to Prof. Giovanni Bignami for his scientific advice. NR 29 TC 57 Z9 59 U1 2 U2 44 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAY PY 2012 VL 12 IS 5 BP 508 EP + DI 10.1089/ast.2011.0736 PG 10 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 957PQ UT WOS:000305175400014 PM 22680696 ER PT J AU Gerlach, E Haghighipour, N AF Gerlach, Enrico Haghighipour, Nader TI Can GJ 876 host four planets in resonance? SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Stability; Resonance; Hamiltonian systems; Numerical methods; Planetary systems; Laplace resonance; Gliese 876 ID GLOBAL DYNAMICS; SYMPLECTIC INTEGRATORS; CLOSE ENCOUNTERS; ORBITING GJ-876; SYSTEM; STABILITY; INDICATORS; BODIES; PAIR; STAR AB Prior to the detection of its outermost Uranus-mass object, it had been suggested that GJ 876 could host an Earth-sized planet in a 15-day orbit. Observation, however, did not support this idea, but instead revealed evidence for the existence of a larger body in a similar to 125-day orbit, near a three-body resonance with the two giant planets of this system. In this paper, we present a detailed analysis of the dynamics of the four-planet system of GJ 876, and examine the possibility of the existence of other planetary objects interior to its outermost body. We have developed a numerical scheme that enables us to search the orbital parameter-space very effectively and, in a short time, identify regions where an object may be stable. We present details of this integration method and discuss its application to the GJ 876 four-planet system. The results of our initial analysis suggested possible stable orbits at regions exterior to the orbit of the outermost planet and also indicated that an island of stability may exist in and around the 15-day orbit. However, examining the long-term stability of an object in that region by direct integration revealed that the 15-day orbit becomes unstable and that the system of GJ 876 is most likely dynamically full. We present the results of our study and discuss their implications for the formation and final orbital architecture of this system. C1 [Gerlach, Enrico] Tech Univ Dresden, Inst Planetary Geodesy, Lohrmann Observ, D-01062 Dresden, Germany. [Haghighipour, Nader] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, Nader] Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Gerlach, E (reprint author), Tech Univ Dresden, Inst Planetary Geodesy, Lohrmann Observ, D-01062 Dresden, Germany. EM enrico.gerlach@tu-dresden.de; nader@ifa.hawaii.edu FU DFG research unit [FOR584]; NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA09DA77A]; NASA/EXOB [NNX09AN05G] FX The authors would like to thank R. Dvorak for organizing the 8th Alexander von Humboldt Colloquium for Celestial Mechanics in Bad Hofgastein, Salzburg, Austria (March 20-26, 2011) and for his kind invitation to the conference where this project was initiated. EG would like to acknowledge support from the DFG research unit FOR584. NH acknowledges support from the NASA Astrobiology Institute under Cooperative Agreement NNA09DA77A at the Institute for Astronomy, University of Hawaii, and from NASA/EXOB program under grant NNX09AN05G. The authors would also like to thank the anonymous referees for very useful comments and suggestions that helped to improve the clarity of the paper. NR 38 TC 6 Z9 6 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD MAY PY 2012 VL 113 IS 1 SI SI BP 35 EP 47 DI 10.1007/s10569-012-9408-0 PG 13 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA 958CH UT WOS:000305213300003 ER PT J AU Lake, JR Cheng, A Selverston, S Tanaka, Z Koehne, J Meyyappan, M Chen, B AF Lake, John R. Cheng, Arthur Selverston, Steve Tanaka, Zuki Koehne, Jessica Meyyappan, M. Chen, Bin TI Graphene metal oxide composite supercapacitor electrodes SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ELECTROPHORETIC DEPOSITION; GRAPHITE OXIDE; FILM; PERFORMANCE; REDUCTION; FABRICATION; BATTERY AB This study presents composite electrode materials based on graphene oxide (GO) and transition metal oxide nanostructures for supercapacitor applications. Electrophoretic deposition of GO on a conductive substrate was used to form reduced graphene oxide (rGO) films through chemical reduction. The specific capacitance of the rGO was calculated up to 117 F/g at 100 mV/s scan rate from KOH (1 M) electrolyte using an Ag/AgCl reference electrode. The strong interaction of GO with Co3O4 and MnO2 nanostructures was demonstrated in the self-assembled Langmuir-Blodgett monolayer composite, showing the potential to fabricate thin film supercapacitor electrodes without using binder materials. This two-step process is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4712537] C1 [Lake, John R.; Cheng, Arthur; Selverston, Steve; Tanaka, Zuki; Koehne, Jessica; Meyyappan, M.; Chen, Bin] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Tanaka, Zuki; Chen, Bin] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. RP Lake, JR (reprint author), NASA, Ames Res Ctr, MS239-24, Moffett Field, CA 94035 USA. EM m.meyyappan@nasa.gov; bin.chen-1@nasa.gov FU NASA; NASA SMD [NNX08AQ41 A, NNX08AT59 A]; U.S. Army AMRDEC [MIPR2-DO80R2388] FX The authors thank Alex LeGrande and Eddie Zhou for their assistance in material preparation. J.R.L. from Columbia University is supported by an undergraduate student research fellowship and S.S. is a student intern from San Jose State University. Z.T. is supported by the NASA graduate student research program. Partial support from NASA SMD research grants (Nos. NNX08AQ41 A and NNX08AT59 A) and U.S. Army AMRDEC (MIPR2-DO80R2388) are greatly appreciated. NR 21 TC 10 Z9 11 U1 3 U2 119 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY-JUN PY 2012 VL 30 IS 3 AR 03D118 DI 10.1116/1.4712537 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 955SU UT WOS:000305042000058 ER PT J AU Zaman, KBMQ Milanovic, I AF Zaman, K. B. M. Q. Milanovic, I. TI Control of a jet-in-cross-flow by periodically oscillating tabs SO PHYSICS OF FLUIDS LA English DT Article DE flow control; flow instability; flow visualisation; fluid oscillations; jets; vortices; wakes ID PULSED JETS; TURBULENT JETS; PENETRATION; OPTIMIZATION AB A technique for active control of a jet-in-cross-flow (JICF) is explored in this study. Two triangular tabs are placed at the 90 degrees and 270 degrees edges of the jet orifice, relative to the direction of the cross-flow. An asymmetry in the placement of the two tabs is reversed periodically. This causes a profound oscillation of the flow field that persists as far downstream as permitted by the measurements in the facility (100 orifice diameters). Parametric dependence of the unsteadiness and its impact on the flow field is investigated. It is found that the effect becomes more pronounced with increasing value of the momentum flux ratio (J) while there is little or no effect in the range, J < 15. The effective frequencies of oscillation are low - more than an order of magnitude lower than that found with oscillatory blowing technique in previous studies. Flow visualization indicates that the oscillation has no impact on the "wake vortices". The kidney-shaped cross section of the JICF is seen to tilt side-to-side periodically. The flow mechanism apparently involves a direct perturbation of the counter-rotating streamwise vortex pair of the flow. [http://dx.doi.org/10.1063/1.4719150] C1 [Zaman, K. B. M. Q.; Milanovic, I.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Milanovic, I.] Univ Hartford, Dept Mech Engn, Hartford, CT 06117 USA. RP Zaman, KBMQ (reprint author), NASA Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM khairul.b.zaman@nasa.gov OI Milanovic, Ivana/0000-0002-9985-6014 NR 20 TC 0 Z9 0 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2012 VL 24 IS 5 AR 055107 DI 10.1063/1.4719150 PG 15 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 952WR UT WOS:000304826100033 ER PT J AU Collinson, GA Dorelli, JC Avanov, LA Lewis, GR Moore, TE Pollock, C Kataria, DO Bedington, R Arridge, CS Chornay, DJ Gliese, U Mariano, A Barrie, AC Tucker, C Owen, CJ Walsh, AP Shappirio, MD Adrian, ML AF Collinson, Glyn A. Dorelli, John C. Avanov, Levon A. Lewis, Gethyn R. Moore, Thomas E. Pollock, Craig Kataria, Dhiren O. Bedington, Robert Arridge, Chris S. Chornay, Dennis J. Gliese, Ulrik Mariano, Al Barrie, Alexander C. Tucker, Corey Owen, Christopher J. Walsh, Andrew P. Shappirio, Mark D. Adrian, Mark L. TI The geometric factor of electrostatic plasma analyzers: A case study from the Fast Plasma Investigation for the Magnetospheric Multiscale mission (vol 83, 033303, 2012) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Collinson, Glyn A.; Dorelli, John C.; Avanov, Levon A.; Moore, Thomas E.; Pollock, Craig; Chornay, Dennis J.; Gliese, Ulrik; Mariano, Al; Barrie, Alexander C.; Tucker, Corey; Shappirio, Mark D.; Adrian, Mark L.] NASA Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20071 USA. [Collinson, Glyn A.; Lewis, Gethyn R.; Kataria, Dhiren O.; Bedington, Robert; Arridge, Chris S.; Owen, Christopher J.; Walsh, Andrew P.] Univ Coll London, Mullard Space Sci Lab, Holmbury, Surrey, England. [Avanov, Levon A.] Innovim, Maryland Trade Ctr 3, Greenbelt, MD 20770 USA. [Arridge, Chris S.] UCL Birkbeck, Ctr Planetary Sci, London, England. [Chornay, Dennis J.] Univ Maryland, College Pk, MD 20740 USA. [Gliese, Ulrik] SGT Inc, Lanham, MD 20706 USA. [Barrie, Alexander C.] Millennium Engn & Integrat, Arlington, VA 22202 USA. [Tucker, Corey] Global Sci & Technol Inc, Greenbelt, MD 20770 USA. RP Collinson, GA (reprint author), NASA Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20071 USA. EM glyn.a.collinson@nasa.gov RI Arridge, Christopher/A-2894-2009; Owen, Christopher/C-2999-2008; Dorelli, John/C-9488-2012 OI Arridge, Christopher/0000-0002-0431-6526; Owen, Christopher/0000-0002-5982-4667; NR 1 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2012 VL 83 IS 5 AR 059901 DI 10.1063/1.4717726 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 952VM UT WOS:000304821500080 ER PT J AU Zheng, QH Zheng, YH Fok, MC Lui, ATY AF Zheng, Qiuhua Zheng, Yihua Fok, Mei-Ching Lui, Anthony T. Y. TI Electron energy diffusion and advection due to non-linear electron-chorus wave interactions SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Magnetosphere; Simulation; Chorus; Non-linear effects ID COHERENT VLF WAVES; PITCH-ANGLE; MAGNETOSPHERE; COEFFICIENTS; EMISSIONS; FIELD AB Non-linear plasma waves effects such as phase bunching and phase trapping can cause drastic changes (tens keys) in the energies of electrons in the magnetosphere at the timescale of a few seconds. Previous studies of non-linear wave effects mainly focused on the energy changes of an electron passing through a plasma wave region, thus covering only a fraction of the electron's single-trip trajectory between its two mirror points. In this study, we use a test-particle method to study the cumulative non-linear wave effects over multiple electron bounce periods. From our simulation results and analyses, we find that non-linear wave-particle interactions are rather common with the presence of chorus waves. The non-linear wave effects take the form of energy advection, which can accelerate electrons rather efficiently. However, energy advection is often accompanied by electron pitch angle advection, causing electron pitch angles to decrease and constraining electron energy advection. The test particle approach we present here can be used to estimate nonlinear transport coefficients, which need to be incorporated into global radiation belt models. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Zheng, Qiuhua] Univ Maryland, Dept Astron, College Pk, MD 20773 USA. [Zheng, Qiuhua; Zheng, Yihua; Fok, Mei-Ching] NASA, Goddard Sci Flight Ctr, Heliophys Div, Greenbelt, MD 20770 USA. [Lui, Anthony T. Y.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Zheng, QH (reprint author), NASA, Goddard Sci Flight Ctr, Code 673,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Qiuhua.Zheng@nasa.gov RI Fok, Mei-Ching/D-1626-2012 FU NSF [ATM-0852508] FX We would like to thank Alex Glocer for his careful reading of this manuscript. This work is supported by NSF grant ATM-0852508. NR 30 TC 7 Z9 7 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD MAY PY 2012 VL 80 BP 152 EP 160 DI 10.1016/j.jastp.2012.01.011 PG 9 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 953SR UT WOS:000304894000016 ER PT J AU Turnbull, MC Glassman, T Roberge, A Cash, W Noecker, C Lo, A Mason, B Oakley, P Bally, J AF Turnbull, Margaret C. Glassman, Tiffany Roberge, Aki Cash, Webster Noecker, Charley Lo, Amy Mason, Brian Oakley, Phil Bally, John TI The Search for Habitable Worlds. 1. The Viability of a Starshade Mission SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID ULTRA DEEP FIELD; DEBRIS DISKS; OBSCURATIONAL COMPLETENESS; LUMINOSITY FUNCTION; BETA-PICTORIS; WHITE-DWARFS; DUST CLOUD; PLANETS; EARTH; SPECTRUM AB As part of NASA's mission to explore habitable planets orbiting nearby stars, this article explores the detection and characterization capabilities of a 4 m space telescope plus 50 m starshade located at the Earth-Sun L2 point, known as the New Worlds Observer (NWO). Our calculations include the true spectral types and distribution of stars on the sky, an iterative target selection protocol designed to maximize efficiency based on prior detections, and realistic mission constraints. We conduct simulated observing runs for a wide range in exozodiacal background levels (epsilon = 1-100 times the local zodi brightness) and overall prevalence of Earth-like terrestrial planets (eta(circle plus) = 0.1-1). We find that even without any return visits, the NWO baseline architecture (IWA = 65 mas, limiting FPB = 4 x 10(-11)) can achieve a 95% probability of detecting and spectrally characterizing at least one habitable Earth-like planet and an expectation value of similar to 3 planets found, within the mission lifetime and Delta V budgets, even in the worst-case scenario (eta(circle plus) = 0.1 and epsilon = 100 zodis for every target). This achievement requires about 1 yr of integration time spread over the 5 yr mission, leaving the remainder of the telescope time for UV-NIR general astrophysics. Cost and technical feasibility considerations point to a "sweet spot" in starshade design near a 50 m starshade effective diameter, with 12 or 16 petals, at a distance of 70,000-100,000 km from the telescope. C1 [Turnbull, Margaret C.] Global Sci Inst, Antigo, WI 54409 USA. [Glassman, Tiffany; Lo, Amy] Northrop Grumman Corp, Redondo Beach, CA 90278 USA. [Roberge, Aki] NASA Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Cash, Webster; Bally, John] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Noecker, Charley] Ball Aerosp & Technol Corp, Civil Space Syst, Boulder, CO 80301 USA. [Mason, Brian] USN Observ, Washington, DC 20392 USA. [Oakley, Phil] MIT, Cambridge, MA 02139 USA. RP Turnbull, MC (reprint author), Global Sci Inst, POB 252, Antigo, WI 54409 USA. EM turnbull.maggie@gmail.com RI Roberge, Aki/D-2782-2012 OI Roberge, Aki/0000-0002-2989-3725 FU Northrop Grumman Aerospace Systems; NASA; ASU "Follow the Elements" NASA Astrobiology Institute Team FX The New Worlds Observer Team would like to sincerely thank the anonymous referee for many helpful comments that greatly clarified our discussions and led us to discover the error in previous completeness calculations. M. Turnbull is grateful to R. Windhorst of Arizona State University (ASU) for helpful discussion regarding the galactic and extragalactic backgrounds, to A. Anbar for helpful discussions within the astrobiology community, and to Northrop Grumman Aerospace Systems for support of this work. This work was partly funded by the 2008 NASA Astrophysics Strategic Mission Concept Study and by the ASU "Follow the Elements" NASA Astrobiology Institute Team. NR 74 TC 20 Z9 20 U1 1 U2 8 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2012 VL 124 IS 915 BP 418 EP 447 DI 10.1086/666325 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 956DH UT WOS:000305069500003 ER PT J AU Seo, KW Waliser, DE Tian, B Kim, BM Park, SC Cocke, S Sohn, BJ Ishii, M AF Seo, Ki-Weon Waliser, Duane E. Tian, Baijun Kim, Baek-Min Park, Seong-Chan Cocke, Steve Sohn, Byung-Ju Ishii, Masayoshi TI Evidence of the Recent Decade Change in Global Fresh Water Discharge and Evapotranspiration Revealed by Reanalysis and Satellite Observations SO ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES LA English DT Article DE Discharge; evapotranspiration; water cycle; remote sensing; reanalysis ID PRECIPITATION; EVAPORATION; OCEAN; TRENDS; LAND; GPCP AB Variations of global evapotranspiration (ET) and fresh water discharge from land to oceans (D) are important components of global climate change, but have not been well monitored. In this study, we present an estimate of twenty years (1989 to 2008) variations of global D and ET derived from satellite remote-sensed measurements and recent reanalysis products, ERA-Interim and CFSR, by using a novel application of the water balance equations separately over land and over oceans. Time series of annual mean global D and ET from both satellite observations and reanalyses show clear positive and negative trends, respectively, as a result of modest increase of oceanic evaporation (E-o ). The inter-annual variations of D are similar to the in-situ-based observations, and the negative trend of ET supports the previous result that relative humidity has decreased while temperature has increased on land. The results suggest considerable sensitivity of the terrestrial hydrological cycles (e.g., D and ET) to small changes in precipitation and oceanic evaporation. C1 [Seo, Ki-Weon; Kim, Baek-Min] Korea Polar Res Inst, Inchon 406840, South Korea. [Waliser, Duane E.; Tian, Baijun] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Park, Seong-Chan; Sohn, Byung-Ju] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea. [Park, Seong-Chan] Korea Meteorol Adm, Observat Policy Div, Seoul, South Korea. [Cocke, Steve] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Ishii, Masayoshi] Meteorol Res Inst, Climate Res Dept, Tsukuba, Ibaraki 305, Japan. RP Seo, KW (reprint author), Korea Polar Res Inst, 12 Gaetbeal Ro, Inchon 406840, South Korea. EM seo.kiweon@kopri.re.kr RI Tian, Baijun/A-1141-2007; Kim, Baek-Min/A-4634-2015 OI Tian, Baijun/0000-0001-9369-2373; FU Korea Polar Research Institute (KOPRI) [PE11070]; National Aeronautics and Space Administration FX This work is supported by Korea Polar Research Institute (KOPRI) projects (PE11070). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 30 TC 1 Z9 1 U1 0 U2 5 PU KOREAN METEOROLOGICAL SOC PI SEOUL PA SHINKIL-DONG 508, SIWON BLDG 704, YONGDUNGPO-GU, SEOUL, 150-050, SOUTH KOREA SN 1976-7633 EI 1976-7951 J9 ASIA-PAC J ATMOS SCI JI Asia-Pac. J. Atmos. Sci. PD MAY PY 2012 VL 48 IS 2 BP 153 EP 158 DI 10.1007/s13143-012-0015-5 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 948ET UT WOS:000304487100005 ER PT J AU Abadie, J Abbott, BP Abbott, R Abbott, TD Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Agathos, M Agatsuma, K Ajith, P Allen, B Ceron, EA Amariutei, D Anderson, SB Anderson, WG Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barayoga, JCB Barker, D Barone, F Barr, B Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Batch, J Bauchrowitz, J Bauer, TS Bebronne, M Beck, D Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Berliner, JM Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Braccini, S Bradaschia, C Brady, PR Braginsky, VB Branchesi, M Brau, JE Breyer, J Briant, T Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, CD Carbognani, F Carbone, L Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Charlton, P Chassande-Mottin, E Chelkowski, S Chen, W Chen, X Chen, Y Chincarini, A Chiummo, A Cho, HS Chow, J Christensen, N Chua, SSY Chung, CTY Chung, S Ciani, G Clara, F Clark, DE Clark, J Clayton, JH Cleva, F Coccia, E Cohadon, PF Colacino, CN Colas, J Colla, A Colombini, M Conte, A Conte, R Cook, D Corbitt, TR Cordier, M Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Couvares, P Coward, DM Cowart, M Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Cumming, A Cunningham, L Cuoco, E Cutler, RM Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dattilo, V Daudert, B Daveloza, H Davier, M Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Del Pozzo, W del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MDP Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Drago, M Drever, RWP Driggers, JC Du, Z Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Endroczi, G Engel, R Etzel, T Evans, K Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Feroz, F Ferrante, I Fidecaro, F Finn, LS Fiori, I Fisher, RP Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fujimoto, MK Fulda, PJ Fyffe, M Gair, J Galimberti, M Gammaitoni, L Garcia, J Garufi, F Gaspar, ME Gemme, G Geng, R Genin, E Gennai, A Gergely, LA Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gil-Casanova, S Gill, C Gleason, J Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Graff, PB Granata, M Grant, A Gras, S Gray, C Gray, N Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Ha, T Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Heefner, J Heidmann, A Heintze, MC Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Holtrop, M Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Izumi, K Jacobson, M James, E Jang, YJ Jaranowski, P Jesse, E Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kang, G Kanner, JB Kasturi, R Katsavounidis, E Katzman, W Kaufer, H Kawabe, K Kawamura, S Kawazoe, F Kelley, D Kells, W Keppel, DG Keresztes, Z Khalaidovski, A Khalili, FY Khazanov, EA Kim, BK Kim, C Kim, H Kim, K Kim, N Kim, YM King, PJ Kinzel, DL Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Koranda, S Korth, WZ Kowalska, I Kozak, D Kranz, O Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lastzka, N Lawrie, C Lazzarini, A Leaci, P Lee, CH Lee, HK Lee, HM Leong, JR Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Liu, Y Liu, Z Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lough, J Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Macleod, DM Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N Mazzolo, G McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIver, J McKechan, DJA McWilliams, S Meadors, GD Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mori, T Morriss, SR Mosca, S Mossavi, K Mours, B Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Naticchioni, L Necula, V Nelson, J Neri, I Newton, G Nguyen, T Nishizawa, A Nitz, A Nocera, F Nolting, D Normandin, ME Nuttall, L Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Peiris, P Pekowsky, L Penn, S Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Prestegard, T Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, LG Puncken, O Punturo, M Puppo, P Quetschke, V Quitzow-James, R Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rodriguez, C Rodruck, M Rolland, L Rollins, JG Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S RuDiger, A Ruggi, P Ryan, K Sainathan, P Salemi, F Sammut, L Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Sassolas, B Sathyaprakash, BS Sato, S Saulson, PR Savage, RL Schilling, R Schnabel, R Schofield, RMS Schreiber, E Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Seifert, F Sellers, D Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, GR Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Stein, LC Steinert, E Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, SE Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Tacca, M Taffarello, L Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Tokmakov, KV Tomlinson, C Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Tseng, K Ugolini, D Vahlbruch, H Vajente, G van den Brand, JFJ van den Broeck, C van der Putten, S Van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vitale, S Vocca, H Vorvick, C Vyatchanin, SP Wade, A Wade, L Wade, M Waldman, SJ Wallace, L Wan, Y Wang, M Wang, X Wang, Z Wanner, A Ward, RL Was, M Weinert, M Weinstein, AJ Weiss, R Wen, L Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Williams, R Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Wittel, H Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yancey, CC Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zadrozny, A Zanolin, M Zendri, JP Zhang, F Zhang, L Zhang, W Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abbott, T. D. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Agathos, M. Agatsuma, K. Ajith, P. Allen, B. Ceron, E. Amador Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barayoga, J. C. B. Barker, D. Barone, F. Barr, B. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Batch, J. Bauchrowitz, J. Bauer, Th. S. Bebronne, M. Beck, D. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Berliner, J. M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Branchesi, M. Brau, J. E. Breyer, J. Briant, T. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. D. Carbognani, F. Carbone, L. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, W. Chen, X. Chen, Y. Chincarini, A. Chiummo, A. Cho, H. S. Chow, J. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Ciani, G. Clara, F. Clark, D. E. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cohadon, P. -F. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, A. Conte, R. Cook, D. Corbitt, T. R. Cordier, M. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Couvares, P. Coward, D. M. Cowart, M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Cumming, A. Cunningham, L. Cuoco, E. Cutler, R. M. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Del Pozzo, W. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Drago, M. Drever, R. W. P. Driggers, J. C. Du, Z. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Endroczi, G. Engel, R. Etzel, T. Evans, K. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Feroz, F. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Fisher, R. P. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fujimoto, M. -K. Fulda, P. J. Fyffe, M. Gair, J. Galimberti, M. Gammaitoni, L. Garcia, J. Garufi, F. Gaspar, M. E. Gemme, G. Geng, R. Genin, E. Gennai, A. Gergely, L. A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gil-Casanova, S. Gill, C. Gleason, J. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Graff, P. B. Granata, M. Grant, A. Gras, S. Gray, C. Gray, N. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Ha, T. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Heefner, J. Heidmann, A. Heintze, M. C. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Holtrop, M. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Izumi, K. Jacobson, M. James, E. Jang, Y. J. Jaranowski, P. Jesse, E. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Kasturi, R. Katsavounidis, E. Katzman, W. Kaufer, H. Kawabe, K. Kawamura, S. Kawazoe, F. Kelley, D. Kells, W. Keppel, D. G. Keresztes, Z. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kranz, O. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lastzka, N. Lawrie, C. Lazzarini, A. Leaci, P. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Liu, Y. Liu, Z. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lough, J. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Macleod, D. M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIver, J. McKechan, D. J. A. McWilliams, S. Meadors, G. D. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mori, T. Morriss, S. R. Mosca, S. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Naticchioni, L. Necula, V. Nelson, J. Neri, I. Newton, G. Nguyen, T. Nishizawa, A. Nitz, A. Nocera, F. Nolting, D. Normandin, M. E. Nuttall, L. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Peiris, P. Pekowsky, L. Penn, S. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Prestegard, T. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. G. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rodriguez, C. Rodruck, M. Rolland, L. Rollins, J. G. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sainathan, P. Salemi, F. Sammut, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Sassolas, B. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. L. Schilling, R. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Seifert, F. Sellers, D. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. R. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Stein, L. C. Steinert, E. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. E. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Tacca, M. Taffarello, L. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Tokmakov, K. V. Tomlinson, C. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Tseng, K. Ugolini, D. Vahlbruch, H. Vajente, G. van den Brand, J. F. J. van den Broeck, C. van der Putten, S. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vitale, S. Vocca, H. Vorvick, C. Vyatchanin, S. P. Wade, A. Wade, L. Wade, M. Waldman, S. J. Wallace, L. Wan, Y. Wang, M. Wang, X. Wang, Z. Wanner, A. Ward, R. L. Was, M. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Williams, R. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Wittel, H. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yancey, C. C. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zadrozny, A. Zanolin, M. Zendri, J. -P. Zhang, F. Zhang, L. Zhang, W. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. TI First low-latency LIGO plus Virgo search for binary inspirals and their electromagnetic counterparts SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational waves ID GAMMA-RAY BURSTS; COMPACT BINARIES; HOST GALAXIES; PROGENITOR; EVENTS AB Aims. The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods. During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results. Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Basti, A.; Belletoile, A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T. D.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Gray, N.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Bebronne, M.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yu, P.; Yvert, M.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; DeRosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Romano, R.] Complesso Univ Monte S Angelo, INFN, Sez Napoli, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Complesso Univ Monte S Angelo, Univ Naples Federico II, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Danzmann, K.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kranz, O.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Wittel, H.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Miyakawa, O.; Mori, T.; Nishizawa, A.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Giampanis, S.; Goggin, L. M.; Hammer, D.; Hughey, B.; Koranda, S.; Mercer, R. A.; Moe, B.; Ochsner, E.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA. [Amariutei, D.; Arain, M. A.; Ciani, G.; Dooley, K. L.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Heintze, M. C.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Sainathan, P.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S. M.; Aylott, B. E.; Carbone, L.; Chelkowski, S.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Hallam, J. M.; Kokeyama, K.; Lodhia, D.; Mandel, I.; Page, A.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Bulik, T.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] European Gravitat Observ, I-56021 Cascina, PI, Italy. [Ballmer, S.; Brown, D. A.; Capano, C. D.; Couvares, P.; Kelley, D.; Lough, J.; Nitz, A.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Katsavounidis, E.; Kissel, J. S.; MacInnis, M.; Mandel, I.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Shapiro, B.; Shoemaker, D. H.; Smith-Lefebvre, N. D.; Soto, J.; Stein, A. J.; Stein, L. C.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Irfu,Observ Paris, F-75205 Paris 13, France. [Bartos, I.; Belopolski, I.; Marka, S.; Marka, Z.; Matone, L.; McWilliams, S.; Murphy, D.; Redwine, K.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Beck, D.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Markosyan, A.; Tseng, K.] Stanford Univ, Stanford, CA 94305 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Benacquista, M.; Biswas, R.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA. [Basti, A.; Belletoile, A.; Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [Blackburn, L.; Camp, J. B.; Cannizzo, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bondarescu, R.; Finn, L. S.; Fisher, R. P.; Lundgren, A. P.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Branchesi, M.; Cagnoli, G.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, Lab Kastler Brossel, ENS, CNRS,UPMC, F-75005 Paris, France. [Buonanno, A.; Kanner, J. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, Palma de Mallorca 07122, Spain. [Cadonati, L.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts Amherst, Amherst, MA 01003 USA. [Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Chen, W.; Du, Z.; Geng, R.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Wang, Z.; Zhang, F.; Zhang, W.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Hong, T.; Luan, J.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea. [Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; Macleod, D. M.; McKechan, D. J. A.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Conte, A.; Postiglione, F.] Univ Salerno, I-84084 Fisciano, Salerno, Italy. [Conte, R.; Pinto, I. M.; Postiglione, F.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, WIGNER RCP, H-1121 Budapest, Hungary. [Drago, M.; Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Trento, Italy. [del Prete, M.; Drago, M.; Liguori, N.; Prodi, G. A.; Yamamoto, K.] Univ Trent, I-38050 Trento, Italy. [Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Yamamoto, K.] Univ Padua, I-35131 Padua, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Farr, B. F.; Fazi, D.; Jang, Y. J.; Kalogera, V.; Krishnamurthy, S.; Raymond, V.; Rodriguez, C.] Northwestern Univ, Evanston, IL 60208 USA. [Feroz, F.; Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, M.; Peiris, P.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Jesse, E.; Vitale, S.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Ha, T.; Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea. [Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kandhasamy, S.; Mandic, V.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, S-22100 Lund, Sweden. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. EM larry.price@ligo.org RI Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring, Tobias/A-8596-2016; Howell, Eric/H-5072-2014; Heidmann, Antoine/G-4295-2016; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Lee, Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg, Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri, Igor/F-1482-2010; Shaddock, Daniel/A-7534-2011; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Martin, Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Gammaitoni, Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Bilenko, Igor/D-5172-2012; Nelson, John/H-7215-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Vyatchanin, Sergey/J-2238-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; CONTE, ANDREA/J-6667-2012; Gemme, Gianluca/C-7233-2008; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Strain, Kenneth/D-5236-2011; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Marchesoni, Fabio/A-1920-2008; Bell, Angus/E-7312-2011; Santamaria, Lucia/A-7269-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Ciani, Giacomo/G-1036-2011; Mitrofanov, Valery/D-8501-2012; prodi, giovanni/B-4398-2010; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Prato, Mirko/D-8531-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017 OI Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817; Heidmann, Antoine/0000-0002-0784-5175; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Ferrante, Isidoro/0000-0002-0083-7228; Lee, Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Pitkin, Matthew/0000-0003-4548-526X; Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958; Nelson, John/0000-0002-6928-617X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Strain, Kenneth/0000-0002-2066-5355; Zhao, Chunnong/0000-0001-5825-2401; Steinlechner, Sebastian/0000-0003-4710-8548; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Marchesoni, Fabio/0000-0001-9240-6793; Bell, Angus/0000-0003-1523-0821; Vicere, Andrea/0000-0003-0624-6231; Ciani, Giacomo/0000-0003-4258-9338; prodi, giovanni/0000-0001-5256-915X; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517; Vocca, Helios/0000-0002-1200-3917; Gray, Norman/0000-0002-1941-9202; Fairhurst, Stephen/0000-0001-8480-1961; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Husa, Sascha/0000-0002-0445-1971; Vitale, Salvatore/0000-0003-2700-0767; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Nitz, Alexander/0000-0002-1850-4587; Murphy, David/0000-0002-8538-815X; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; FU gravitational-wave research by these agencies; Australian Research Council; Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; FOCUS of Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of gravitational-wave research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 26 TC 50 Z9 50 U1 3 U2 44 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A155 DI 10.1051/0004-6361/201218860 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900155 ER PT J AU Bertini, I Barbieri, C Ho, TM Lazzarin, M Cremonese, G Kuppers, M Magrin, S Marchi, S AF Bertini, I. Barbieri, C. Ho, T. -M. Lazzarin, M. Cremonese, G. Kueppers, M. Magrin, S. Marchi, S. TI Photometric observations of comet 81P/Wild 2 during the 2010 perihelion passage SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: general; comets: individual: 81P/Wild 2; techniques: photometric ID JUPITER-FAMILY COMETS; STARDUST SPACECRAFT; ACTIVITY EVOLUTION; DUST ENVIRONMENT; MISSION TARGET; SOLAR NEBULA; DEEP IMPACT; C/2000 WM1; NUCLEUS; SURFACE AB Context. The Jupiter-family comet 81P/Wild 2, target of the NASA Stardust mission, is very important in the context of the studies of pristine objects in the solar system. First, it was only recently deflected into the present orbit, having spent at least 300 yr at higher heliocentric distance prior to the orbital change in 1974. It is therefore likely that the comet experienced a recent activation with consequent low alteration of its original material. Second, it is the only comet whose coma material was brought back to Earth for laboratory analysis. We observed the object between 2010 February 9 and September 9 for a total of 11 nights during the 2010 perihelion passage. Aims. The goals of the campaign were the characterization of the comet's dust activity and the comparison with previous apparitions to derive hints on the secular behavior of the object. Methods. Broadband R- and I-images were acquired using three instruments: ALFOSC, CAMELOT, and TCP. The first one is mounted at the Nordic Optical Telescope on La Palma, while the second and the third are mounted at the Instituto de Astrofisica de Canarias 0.82-m telescope on Tenerife. We analyzed the presence and variability of dust structures in the coma with image-enhancing techniques, the radial profile of the dust brightness, and we measured the dust production rate and the dust reddening. Results. We found evidence of a long-lasting sunward fan and anti-solar tail activity throughout all our observations up to a heliocentric distance of 2.42 AU. Af rho measurements suggest a pre-perihelion peak of the activity, caused by a seasonal effect, plus two post-perihelion outbursts. Both spatial and Af rho radial profiles indicate a steady-state coma at nucleocentric distances greater than similar to 1000-2000 km. The color analysis reveals a moderately reddened dust with a 6-9%/1000 angstrom reddening, consistent with the current picture of cometary dust. The second outburst emitted dust with lower reddening. Conclusions. The comparison with previous perihelion passages points toward a recurrent main activity always driven by the same areas on the nucleus, producing dust with similar characteristics and in similar coma structures in different years. Our Af rho measurement at the longest heliocentric distance suggests the comet was less dust-productive in 2010, pointing toward a possible secular aging of the object and its activity. The change of dust colors during the unusual second outburst suggests that an internal part of the nucleus has different physical properties compared with those that produce the recurrent main activity, pointing toward a heterogeneous comet. C1 [Bertini, I.; Barbieri, C.] Univ Padua, Ctr Studies & Act Space CISAS G Colombo, I-35131 Padua, Italy. [Barbieri, C.; Lazzarin, M.; Magrin, S.] Univ Padua, Dept Phys & Astron Galileo Galilei, I-35122 Padua, Italy. [Ho, T. -M.] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Raumfahrtsyst, D-28359 Bremen, Germany. [Cremonese, G.] Astron Observ Padua, INAF, I-35122 Padua, Italy. [Kueppers, M.] ESAC, ESA, Madrid 28691, Spain. [Marchi, S.] NASA, Lunar Sci Inst, Ctr Lunar Origin & Evolut, SW Res Inst, Boulder, CO 80302 USA. RP Bertini, I (reprint author), Univ Padua, Ctr Studies & Act Space CISAS G Colombo, Via Venezia 15, I-35131 Padua, Italy. EM ivano.bertini@unipd.it OI Cremonese, Gabriele/0000-0001-9021-1140 NR 56 TC 4 Z9 4 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A159 DI 10.1051/0004-6361/201118004 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900159 ER PT J AU Carter, JA Bodewits, D Read, AM Immler, S AF Carter, J. A. Bodewits, D. Read, A. M. Immler, S. TI Simultaneous Swift X-ray and UV views of comet C/2007 N3 (Lulin) SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: general; comets: individual: C/2007 N3 (Lulin); ultraviolet: general ID EXTREME-ULTRAVIOLET EMISSION; CORONAL MASS EJECTIONS; SOLAR-WIND IONS; ALL-SKY SURVEY; CHANDRA OBSERVATIONS; CHARGE-TRANSFER; HEAVY-IONS; XMM-NEWTON; TELESCOPE; CALIBRATION AB Aims. We present an analysis of simultaneous X-Ray and UV observations of comet C/2007 N3 (Lulin) taken on three days between January 2009 and March 2009 using the Swift observatory. Methods. For our X-ray observations, we used basic transforms to account for the movement of the comet to allow the combination of all available data to produce an exposure-corrected image. We fit a simple model to the extracted spectrum and measured an X-ray flux of 4.3 +/- 1.3 x 10 (13) erg cm(-2) s(-1) in the 0.3 to 1 keV band. In the UV, we acquired large-aperture photometry and used a coma model to derive water production rates given assumptions regarding the distribution of water and its dissociation into OH molecules about the comet's nucleus. Results. We compare and discuss the X-ray and UV morphology of the comet. We show that the peak of the cometary X-ray emission is offset sunward of the UV peak emission, assumed to be the nucleus, by approximately 35 000 km. The offset observed, the shape of X-ray emission and the decrease of the X-ray emission comet-side of the peak, suggested that the comet was indeed collisionally thick to charge exchange, as expected from our measurements of the comet's water production rate (6-8 x 10(28) mol s(-1)). The X-ray spectrum is consistent with solar wind charge exchange emission, and the comet most likely interacted with a solar wind depleted of very highly ionised oxygen. We show that the measured X-ray lightcurve can be very well explained by variations in the comet's gas production rates, the observing geometry and variations in the solar wind flux. C1 [Carter, J. A.; Read, A. M.] Univ Leicester, Dept Phys & Astron, Leicester LE1 1RH, Leics, England. [Bodewits, D.; Immler, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Immler, S.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Carter, JA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 1RH, Leics, England. EM jac48@star.le.ac.uk; dennis@astro.umd.edu; amr30@star.le.ac.uk; stefan.m.immler@nasa.gov OI Bodewits, Dennis/0000-0002-2668-7248 FU Science and Technology Facilities Council, UK FX The authors would like to thank the Swift instrument teams for all their help and advice, and T. L. Farnham (University of Maryland) for a most helpful discussion on the observing geometry and for running his synchrone/syndine calculation for these observations. The authors also thank S. Lepri (University of Michigan) for the interpretation of the space weather data. J. A. Carter and A. M. Read gratefully acknowledge funding by the Science and Technology Facilities Council, UK. We thank the anonymous referee for the suggestions for improvement which have greatly enhanced the manuscript. NR 61 TC 0 Z9 0 U1 1 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A70 DI 10.1051/0004-6361/201117950 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900070 ER PT J AU Eckert, D Vazza, F Ettori, S Molendi, S Nagai, D Lau, ET Roncarelli, M Rossetti, M Snowden, SL Gastaldello, F AF Eckert, D. Vazza, F. Ettori, S. Molendi, S. Nagai, D. Lau, E. T. Roncarelli, M. Rossetti, M. Snowden, S. L. Gastaldello, F. TI The gas distribution in the outer regions of galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; galaxies: clusters: general ID X-RAY-CLUSTERS; SURFACE BRIGHTNESS PROFILES; ROSAT PSPC OBSERVATIONS; ACTIVE GALACTIC NUCLEI; LAMBDA-CDM CLUSTERS; INTRACLUSTER MEDIUM; VIRIAL RADIUS; XMM-NEWTON; REPRESENTATIVE SAMPLE; TEMPERATURE PROFILES AB Aims. We present our analysis of a local (z = 0.04-0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We have exploited the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We stacked the density profiles to detect a signal beyond r(200) and measured the typical density and scatter in cluster outskirts. We also computed the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compared our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond similar to r(500). Comparing our density profiles with simulations, we find that bibradiative runs predict density profiles that are too steep, whereas runs including additional physics and/or treating gas clumping agree better with the observed gas distribution. We report high-confidence detection of a systematic difference between cool-core and non cool-core clusters beyond similar to 0.3r(200), which we explain by a different distribution of the gas in the two classes. Beyond similar to r(500), galaxy clusters deviate significantly from spherical symmetry, with only small differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the ENZO simulations. Conclusions. Comparing our results with numerical simulations, we find that bibradiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior agrees more closely with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and consideration of gas clumping is required to construct realistic models of the outer regions of clusters. C1 [Eckert, D.; Molendi, S.; Rossetti, M.; Gastaldello, F.] INAF IASF Milano, I-20133 Milan, Italy. [Eckert, D.] Observ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Vazza, F.] Jacobs Univ Bremen, D-28759 Bremen, Germany. [Ettori, S.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Ettori, S.] INFN, Sez Bologna, I-40127 Bologna, Italy. [Nagai, D.; Lau, E. T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Lau, E. T.] Shanghai Astron Observ, Shanghai 200030, Peoples R China. [Roncarelli, M.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Rossetti, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Snowden, S. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gastaldello, F.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Eckert, D (reprint author), INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. EM Dominique.Eckert@unige.ch RI Gastaldello, Fabio/N-4226-2015; Ettori, Stefano/N-5004-2015; OI Gastaldello, Fabio/0000-0002-9112-0184; Ettori, Stefano/0000-0003-4117-8617; vazza, franco/0000-0002-2821-7928; Eckert, Dominique/0000-0001-7917-3892; Molendi, Silvano/0000-0002-2483-278X FU National Science Foundation [NSF PHY05-51164]; IASF Milano; NSF [AST-1009811]; NASA [NNX11AE07G]; [ASI-INAF I/023/05/0]; [I/009/10/0]; [I/088/06/0] FX We thank Klaus Dolag for kindly prodiving the data of his GADGET runs. S. E., S. M., and D.N. acknowledge the support from the National Science Foundation under Grant No. NSF PHY05-51164 for attending the workshop on "Galaxy Clusters: The Crossroads of Astrophysics and Cosmology", where part of this project has been discussed. D. E. was supported by the Occhialini fellowship of IASF Milano. M. R. and F. G. acknowledge the financial contribution from contracts ASI-INAF I/023/05/0, I/009/10/0 and I/088/06/0. F. V. acknowledges the collaboration of G. Brunetti, C. Gheller, and R. Brunino in the production of ENZO runs studied in this work. D.N. was supported in part by the NSF AST-1009811, by NASA NNX11AE07G, and by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center. NR 72 TC 58 Z9 58 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A57 DI 10.1051/0004-6361/201118281 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900057 ER PT J AU Ertel, S Wolf, S Marshall, JP Eiroa, C Augereau, JC Krivov, AV Lohne, T Absil, O Ardila, D Arevalo, M Bayo, A Bryden, G del Burgo, C Greaves, J Kennedy, G Lebreton, J Liseau, R Maldonado, J Montesinos, B Mora, A Pilbratt, GL Sanz-Forcada, J Stapelfeldt, K White, GJ AF Ertel, S. Wolf, S. Marshall, J. P. Eiroa, C. Augereau, J. -C. Krivov, A. V. Loehne, T. Absil, O. Ardila, D. Arevalo, M. Bayo, A. Bryden, G. del Burgo, C. Greaves, J. Kennedy, G. Lebreton, J. Liseau, R. Maldonado, J. Montesinos, B. Mora, A. Pilbratt, G. L. Sanz-Forcada, J. Stapelfeldt, K. White, G. J. TI A peculiar class of debris disks from Herschel/DUNES A steep fall off in the far infrared SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE circumstellar matter; stars: individual: HIP 103389; infrared: planetary systems; stars: individual: HIP 107350; infrared: stars; stars: individual: HIP 114948 ID SUN-LIKE STARS; GENEVA-COPENHAGEN SURVEY; MAIN-SEQUENCE STARS; NEARBY STARS; SOLAR NEIGHBORHOOD; BOLOMETRIC CORRECTIONS; EFFECTIVE TEMPERATURES; CIRCUMSTELLAR DISK; DUST; SPITZER AB Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims. We present photometric data of debris disks around HIP 103389 (HD199260), HIP 107350 (HNPeg, HD206860), and HIP 114948 (HD219482), obtained in the context of our Herschel open time key program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3 sigma sensitivity of a few mJy at 100 mu m and 160 mu m. In addition, we obtained Herschel/PACS photometric data at 70 mu m for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated thermal annealing as well as a classical grid search method. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths >= 70 mu m. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. C1 [Ertel, S.; Augereau, J. -C.; Lebreton, J.] UJF Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Ertel, S.; Wolf, S.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. [Marshall, J. P.; Eiroa, C.; Maldonado, J.] Univ Autonoma Madrid, Fac Ciencias, Dpt Fis Teor, E-28049 Madrid, Spain. [Krivov, A. V.; Loehne, T.] Univ Jena, Inst Astrophys, D-07745 Jena, Germany. [Krivov, A. V.; Loehne, T.] Univ Jena, Univ Sternwarte, D-07745 Jena, Germany. [Absil, O.] Univ Liege, Inst Astrophys & Geophys, B-4000 Sart Tilman Par Liege, Belgium. [Ardila, D.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Arevalo, M.] CSIC INTA, CAB, Ctr Astrobiol, Dept Astrophys, Madrid, Spain. [Bayo, A.; Montesinos, B.; Sanz-Forcada, J.] European Space Observ, Santiago 19, Chile. [Bryden, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [del Burgo, C.] UNINOVA CA3, P-2825149 Monte De Caparica, Caparica, Portugal. [Greaves, J.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Kennedy, G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Liseau, R.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Mora, A.] ESA ESAC Gaia SOC, Madrid 28691, Spain. [Pilbratt, G. L.] ESTEC SRE SA, ESA Astrophys & Fundamental Phys Missions Div, NL-2201 AZ Noordwijk, Netherlands. [Stapelfeldt, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [White, G. J.] Open Univ, Dept Phys & Astrophys, Milton Keynes MK7 6AA, Bucks, England. [White, G. J.] Rutherford Appleton Lab, Chilton OX11 0QX, England. RP Ertel, S (reprint author), UJF Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. EM steve.ertel@obs.ujf-grenoble.fr RI Sanz-Forcada, Jorge/C-3176-2017; Montesinos, Benjamin/C-3493-2017; OI Sanz-Forcada, Jorge/0000-0002-1600-7835; Montesinos, Benjamin/0000-0002-7982-2095; Marshall, Jonathan/0000-0001-6208-1801; Kennedy, Grant/0000-0001-6831-7547 FU DFG [WO857/7-1, KR2164/9-1, LO1715/1-1]; PNP-CNES; F.R.S.-FNRS; French National Research Agency (ANR) [ANR-2010 BLAN-0505-01]; Fundacao para a Ciencia e a Tecnologia (FCT) [PEst-OE/EEI/UI0066/2011]; [AYA 2008/01727] FX We thank Kate Su for the re-reduction of the Spitzer/MIPS photometry used in this work. Furthermore, we thank the whole DUNES team for valuable discussion. S. Ertel thanks for financial support from DFG under contract WO857/7-1 and for general support from K. Ertel. C. Eiroa, J. Maldonado, J. P. Marshall, and B. Montesinos are partially supported by Spanish grant AYA 2008/01727. J.-C. Augereau and J. Lebreton thank financial support through PNP-CNES. A. V. Krivov ans T. Lohne thank for financial support from DFG under contracts KR2164/9-1 and LO1715/1-1. O. Absil is supported by an F.R.S.-FNRS Postdoctoral Fellowship. S. Ertel, J.-C. Augereau and J. Lebreton thank the French National Research Agency (ANR) for financial support through contract ANR-2010 BLAN-0505-01 (EXOZODI). This work was partly funded by the Fundacao para a Ciencia e a Tecnologia (FCT) through the project PEst-OE/EEI/UI0066/2011. NR 63 TC 18 Z9 18 U1 1 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A148 DI 10.1051/0004-6361/201118077 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900148 ER PT J AU Giommi, P Polenta, G Lahteenmaki, A Thompson, DJ Capalbi, M Cutini, S Gasparrini, D Gonzalez-Nuevo, J Leon-Tavares, J Lopez-Caniego, M Mazziotta, MN Monte, C Perri, M Raino, S Tosti, G Tramacere, A Verrecchia, F Aller, HD Aller, MF Angelakis, E Bastieri, D Berdyugin, A Bonaldi, A Bonavera, L Burigana, C Burrows, DN Buson, S Cavazzuti, E Chincarini, G Colafrancesco, S Costamante, L Cuttaia, F D'Ammando, F de Zotti, G Frailis, M Fuhrmann, L Galeotta, S Gargano, F Gehrels, N Giglietto, N Giordano, F Giroletti, M Keihanen, E King, O Krichbaum, TP Lasenby, A Lavonen, N Lawrence, CR Leto, C Lindfors, E Mandolesi, N Massardi, M Max-Moerbeck, W Michelson, PF Mingaliev, M Natoli, P Nestoras, I Nieppola, E Nilsson, K Partridge, B Pavlidou, V Pearson, TJ Procopio, P Rachen, JP Readhead, A Reeves, R Reimer, A Reinthal, R Ricciardi, S Richards, J Riquelme, D Saarinen, J Sajina, A Sandri, M Savolainen, P Sievers, A Sillanpaa, A Sotnikova, Y Stevenson, M Tagliaferri, G Takalo, L Tammi, J Tavagnacco, D Terenzi, L Toffolatti, L Tornikoski, M Trigilio, C Turunen, M Umana, G Ungerechts, H Villa, F Wu, J Zacchei, A Zensus, JA Zhou, X AF Giommi, P. Polenta, G. Lahteenmaki, A. Thompson, D. J. Capalbi, M. Cutini, S. Gasparrini, D. Gonzalez-Nuevo, J. Leon-Tavares, J. Lopez-Caniego, M. Mazziotta, M. N. Monte, C. Perri, M. Raino, S. Tosti, G. Tramacere, A. Verrecchia, F. Aller, H. D. Aller, M. F. Angelakis, E. Bastieri, D. Berdyugin, A. Bonaldi, A. Bonavera, L. Burigana, C. Burrows, D. N. Buson, S. Cavazzuti, E. Chincarini, G. Colafrancesco, S. Costamante, L. Cuttaia, F. D'Ammando, F. de Zotti, G. Frailis, M. Fuhrmann, L. Galeotta, S. Gargano, F. Gehrels, N. Giglietto, N. Giordano, F. Giroletti, M. Keihanen, E. King, O. Krichbaum, T. P. Lasenby, A. Lavonen, N. Lawrence, C. R. Leto, C. Lindfors, E. Mandolesi, N. Massardi, M. Max-Moerbeck, W. Michelson, P. F. Mingaliev, M. Natoli, P. Nestoras, I. Nieppola, E. Nilsson, K. Partridge, B. Pavlidou, V. Pearson, T. J. Procopio, P. Rachen, J. P. Readhead, A. Reeves, R. Reimer, A. Reinthal, R. Ricciardi, S. Richards, J. Riquelme, D. Saarinen, J. Sajina, A. Sandri, M. Savolainen, P. Sievers, A. Sillanpaa, A. Sotnikova, Y. Stevenson, M. Tagliaferri, G. Takalo, L. Tammi, J. Tavagnacco, D. Terenzi, L. Toffolatti, L. Tornikoski, M. Trigilio, C. Turunen, M. Umana, G. Ungerechts, H. Villa, F. Wu, J. Zacchei, A. Zensus, J. A. Zhou, X. TI Simultaneous Planck, Swift, and Fermi observations of X-ray and gamma-ray selected blazars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE relativistic processes; BL Lacertae objects: general; quasars: general; galaxies: active ID BL-LACERTAE OBJECTS; LARGE-AREA TELESCOPE; ACTIVE GALACTIC NUCLEI; SPECTRAL ENERGY-DISTRIBUTIONS; PROBE WMAP OBSERVATIONS; DIGITAL SKY SURVEY; SOURCE CATALOG; HOST GALAXIES; PHOTOMETRIC SEQUENCES; OPTICAL SPECTROSCOPY AB We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands, with additional 5GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large Area Telescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with similar to 0 up to about 70GHz, above which it steepens to similar to -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (nu(S)(peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with = 10(13.1+.1) Hz, while the mean inverse Compton peak frequency, , ranges from 10(21) to 10(22) Hz. The distributions of nu(S)(peak) and nu(S)(peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars, defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with gamma-ray selected blazars peaking at similar to 7 or more, and radio-selected blazars at values close to 1, thus implying that the common assumption that the blazar power budget is largely dominated by high-energy emission is a selection effect. A comparison of our multi-frequency data with theoretical predictions shows that simple homogeneous SSC models cannot explain the simultaneous SEDs of most of the gamma-ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and nu(S)(peak) predicted by the blazar sequence. C1 [Giommi, P.; Polenta, G.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Perri, M.; Verrecchia, F.; Cavazzuti, E.; Leto, C.; Natoli, P.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Lahteenmaki, A.; Leon-Tavares, J.; Lavonen, N.; Nieppola, E.; Savolainen, P.; Tammi, J.; Tornikoski, M.; Turunen, M.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Giommi, P.] Agenzia Spaziale Italiana, Rome, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Thompson, D. J.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bonavera, L.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Pearson, T. J.] CALTECH, Pasadena, CA 91125 USA. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Sajina, A.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Keihanen, E.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Bastieri, D.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Monte, C.; Raino, S.; Giglietto, N.; Giordano, F.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Nieppola, E.; Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Lahteenmaki, A.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Trigilio, C.; Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy. [Tagliaferri, G.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [de Zotti, G.; Massardi, M.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.; Colafrancesco, S.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Tavagnacco, D.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Mandolesi, N.; Natoli, P.; Procopio, P.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [D'Ammando, F.] INAF IASF, Sez Palermo, I-90146 Palermo, Italy. [Tramacere, A.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Pearson, T. J.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Riquelme, D.; Sievers, A.; Ungerechts, H.] Inst Radioastron Millimetr IRAM, Granada 18012, Spain. [Reimer, A.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Lopez-Caniego, M.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Mazziotta, M. N.; Monte, C.; Raino, S.; Gargano, F.; Giglietto, N.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bastieri, D.; Buson, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Lawrence, C. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Wu, J.; Zhou, X.] Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. [Rachen, J. P.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Angelakis, E.; Fuhrmann, L.; Krichbaum, T. P.; Nestoras, I.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [King, O.; Max-Moerbeck, W.; Pavlidou, V.; Readhead, A.; Reeves, R.; Richards, J.; Stevenson, M.] CALTECH, Owens Valley Radio Observ, Pasadena, CA 91125 USA. [Gonzalez-Nuevo, J.; Bonavera, L.; de Zotti, G.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mingaliev, M.; Sotnikova, Y.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Berdyugin, A.; Lindfors, E.; Reinthal, R.; Saarinen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, Dept Phys & Astron, Piikkio 21500, Finland. [Chincarini, G.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Costamante, L.; Michelson, P. F.; Reimer, A.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Costamante, L.; Michelson, P. F.; Reimer, A.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. RP Giommi, P (reprint author), ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Via Galileo Galilei, Frascati, Italy. EM giommi@asdc.asi.it RI giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Lopez-Caniego, Marcos/M-4695-2013; Lahteenmaki, Anne/L-5987-2013; Reeves, Rodrigo/H-2812-2014; Toffolatti, Luigi/K-5070-2014; Pavlidou, Vasiliki/C-2944-2011; Gonzalez-Nuevo, Joaquin/I-3562-2014; Pearson, Timothy/N-2376-2015; Gargano, Fabio/O-8934-2015; Mazziotta, Mario /O-8867-2015; bonavera, laura/E-9368-2017; OI Verrecchia, Francesco/0000-0003-3455-5082; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Lopez-Caniego, Marcos/0000-0003-1016-9283; Umana, Grazia/0000-0002-6972-8388; Giordano, Francesco/0000-0002-8651-2394; giommi, paolo/0000-0002-2265-5003; Frailis, Marco/0000-0002-7400-2135; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; giglietto, nicola/0000-0002-9021-2888; Reeves, Rodrigo/0000-0001-5704-271X; Toffolatti, Luigi/0000-0003-2645-7386; Pavlidou, Vasiliki/0000-0002-0870-1368; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pearson, Timothy/0000-0001-5213-6231; Gargano, Fabio/0000-0002-5055-6395; Mazziotta, Mario /0000-0001-9325-4672; bonavera, laura/0000-0001-8039-3876; De Zotti, Gianfranco/0000-0003-2868-2595 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA [NNX08AW31G, NNG06GG1G, NAS8-03060]; DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Academy of Finland [212656, 210338, 121148, 127740, 122352]; NSF [AST-0808050]; University of Michigan; Chinese National Natural Science Foundation [10633020, 10778714, 11073032]; National Basic Research Program of China (973 Program) [2007CB815403]; Keck Institute for Space Studies; Fulbright-CONICYT FX We thank the entire Swift team for the help and support and especially the Science Planners and Duty Scientists for their invaluable help and professional support with the planning and execution of a large number of ToOs. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A full description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. We thank the Planck team and in particular the members of the Data Processing Centers for their support in the reduction of LFI and HFI data carried out specifically for this work. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana (ASI) and the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France is gratefully acknowledged. The Metsahovi team acknowledges the support from the Academy of Finland to our projects (numbers 212656, 210338, 121148, and others). This work was also supported by grants 127740 and 122352 of the Academy of Finland. UMRAO is supported by a series of grants from the NSF and NASA, and by the University of Michigan. This publication is partly based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. This research is partly based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut fur Radioastronomie) at Effelsberg, the IRAM 30-m telescope, and the Medicina (Noto) telescope operated by INAF - Istituto di Radioastronomia. J. Wu and X. Zhou are supported by the Chinese National Natural Science Foundation grants 10633020, 10778714, and 11073032, and by the National Basic Research Program of China (973 Program) No. 2007CB815403. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G and NNG06GG1G and NSF grant AST-0808050. O. G. King acknowledges the support of a Keck Institute for Space Studies Fellowship. W. Max-Moerbeck acknowledges support from a Fulbright-CONICYT scholarship. V.; Pavlidou acknowledges support provided by NASA through Einstein Postdoctoral Fellowship grant number PF8-90060 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This paper makes use of observations obtained at the Very Large Array (VLA) which is an instrument of the National Radio Astronomy Observatory (NRAO). The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We acknowledge the use of data and software facilities from the ASI Science Data Center (ASDC), managed by the Italian Space Agency (ASI). Part of this work is based on archival data and on bibliographic information obtained from the NASA/IPAC Extragalactic Database (NED) and from the Astrophysics Data System (ADS). We thank the anonymous referee for his/her useful and constructive comments. NR 139 TC 78 Z9 80 U1 5 U2 17 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A160 DI 10.1051/0004-6361/201117825 PG 59 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900160 ER PT J AU Gonzalez-Alfonso, E Fischer, J Gracia-Carpio, J Sturm, E Hailey-Dunsheath, S Lutz, D Poglitsch, A Contursi, A Feuchtgruber, H Veilleux, S Spoon, HWW Verma, A Christopher, N Davies, R Sternberg, A Genzel, R Tacconi, L AF Gonzalez-Alfonso, E. Fischer, J. Gracia-Carpio, J. Sturm, E. Hailey-Dunsheath, S. Lutz, D. Poglitsch, A. Contursi, A. Feuchtgruber, H. Veilleux, S. Spoon, H. W. W. Verma, A. Christopher, N. Davies, R. Sternberg, A. Genzel, R. Tacconi, L. TI Herschel/PACS spectroscopy of NGC 4418 and Arp 220: H2O, (H2O)-O-18, OH, (OH)-O-18, OI, HCN, and NH3 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: ISM; line: formation; ISM: kinematics and dynamics; infrared: galaxies; submillimeter: galaxies ID ULTRALUMINOUS INFRARED GALAXIES; ACTIVE GALACTIC NUCLEI; LINE-OF-SIGHT; WAVE-ASTRONOMY-SATELLITE; DENSE MOLECULAR GAS; STAR-FORMATION; WATER-VAPOR; INTERSTELLAR-MEDIUM; MARKARIAN 231; CO EMISSION AB Full range Herschel/PACS spectroscopy of the (ultra) luminous infrared galaxies NGC 4418 and Arp 220, observed as part of the SHINING key programme, reveals high excitation in H2O, OH, HCN, and NH3. In NGC 4418, absorption lines were detected with E-lower > 800 K (H2O), 600 K (OH), 1075 K (HCN), and 600 K (NH3), while in Arp 220 the excitation is somewhat lower. While outflow signatures in moderate excitation lines are seen in Arp 220 as have been seen in previous studies, in NGC 4418 the lines tracing its outer regions are redshifted relative to the nucleus, suggesting an inflow with. (M) over dot less than or similar to 12 M-circle dot yr(-1). Both galaxies have compact and warm (T-dust greater than or similar to 100 K) nuclear continuum components, together with a more extended and colder component that is much more prominent and massive in Arp 220. A chemical dichotomy is found in both sources: on the one hand, the nuclear regions have high H2O abundances, similar to 10(-5), and high HCN/H2O and HCN/NH3 column density ratios of 0.1-0.4 and 2-5, respectively, indicating a chemistry typical of evolved hot cores where grain mantle evaporation has occurred. On the other hand, the high OH abundance, with OH/H2O ratios of similar to 0.5, indicates the effects of X-rays and/or cosmic rays. The nuclear media have high surface brightnesses (greater than or similar to 10(13) L-circle dot/kpc(2)) and are estimated to be very thick (N-H greater than or similar to 10(25) cm(-2)). While NGC 4418 shows weak absorption in (H2O)-O-18 and (OH)-O-18, with a O-16-to-O-18 ratio of greater than or similar to 250-500, the relatively strong absorption of the rare isotopologues in Arp 220 indicates O-18 enhancement, with O-16-to-O-18 of 70-130. Further away from the nuclear regions, the H2O abundance decreases to less than or similar to 10(-7) and the OH/H2O ratio is reversed relative to the nuclear region to 2.5-10. Despite the different scales and morphologies of NGC 4418, Arp 220, and Mrk 231, preliminary evidence is found for an evolutionary sequence from infall, hot-core like chemistry, and solar oxygen isotope ratio to high velocity outflow, disruption of the hot core chemistry and cumulative high mass stellar processing of O-18. C1 [Gonzalez-Alfonso, E.] Univ Alcala de Henares, Dept Fis, Madrid 28871, Spain. [Fischer, J.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [Gracia-Carpio, J.; Sturm, E.; Hailey-Dunsheath, S.; Lutz, D.; Poglitsch, A.; Contursi, A.; Feuchtgruber, H.; Davies, R.; Genzel, R.; Tacconi, L.] Max Planck Inst Extraterr Phys MPE, D-85748 Garching, Germany. [Veilleux, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Veilleux, S.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Spoon, H. W. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Verma, A.; Christopher, N.] Univ Oxford, Oxford OX1 3RH, England. [Sternberg, A.] Tel Aviv Univ, Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Gonzalez-Alfonso, E (reprint author), Univ Alcala de Henares, Dept Fis, Campus Univ, Madrid 28871, Spain. EM eduardo.gonzalez@uah.es FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); Spanish Ministerio de Ciencia e Innovacion [AYA2010-21697-C05-01]; US ONR; NHSC; NASA [RSA 1427277] FX We thank David S. N. Rupke for deriving the redshift of NGC 4418 from SDSS, Kazushi Sakamoto for providing us with the spectra of the HCO+ (3-2) and (4-3) lines in the nuclei of Arp 220, and the referee Christian Henkel for many useful indications and comments that much improved the manuscript. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM(France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). E.G.-A. thanks the support by the Spanish Ministerio de Ciencia e Innovacion under project AYA2010-21697-C05-01, and is a Research Associate at the Harvard-Smithsonian Center for Astrophysics. Basic research in IR astronomy at NRL is funded by the US ONR; J.F. also acknowledges support from the NHSC. S. V. thanks NASA for partial support of this research via Research Support Agreement RSA 1427277. He also acknowledges support from a Senior NPP Award from NASA and thanks his host institution, the Goddard Space Flight Center. This research has made use of NASA's Astrophysics Data System (ADS) and of GILDAS software (http://www.iram.fr/IRAMFR/GILDAS) NR 119 TC 41 Z9 41 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A4 DI 10.1051/0004-6361/201118029 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900004 ER PT J AU Kallinger, T Hekker, S Mosser, B De Ridder, J Bedding, TR Elsworth, YP Gruberbauer, M Guenther, DB Stello, D Basu, S Garcia, RA Chaplin, WJ Mullally, F Still, M Thompson, SE AF Kallinger, T. Hekker, S. Mosser, B. De Ridder, J. Bedding, T. R. Elsworth, Y. P. Gruberbauer, M. Guenther, D. B. Stello, D. Basu, S. Garcia, R. A. Chaplin, W. J. Mullally, F. Still, M. Thompson, S. E. TI Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: late-type; stars: oscillations; stars: fundamental parameters; stars: interiors ID SOLAR-LIKE OSCILLATIONS; 1ST 4 MONTHS; P-MODES; ASTEROSEISMIC DIAGRAMS; STELLAR MODELS; MIXED-MODES; STARS; COROT; PARAMETERS; MISSION AB Context. It was recently discovered that the period spacings of mixed pressure/gravity dipole modes in red giants permit a distinction between the otherwise unknown evolutionary stage of these stars. The Kepler space mission is reaching continuous observing times long enough to also start studying the fine structure of the observed pressure-mode spectra. Aims. In this paper, we aim to study the signature of stellar evolution on the radial and pressure-dominated l = 2 modes in an ensemble of red giants that show solar-type oscillations. Methods. We use established methods to automatically identify the mode degree of l = 0 and 2 modes and measure the large (Delta nu(c)) and small (delta nu(02)) frequency separation around the central radial mode. We then determine the phase shift epsilon(c) of the central radial mode, i.e. the linear offset in the asymptotic fit to the acoustic modes. Furthermore we measure the individual frequencies of radial modes and investigate their average curvature. Results. We find that epsilon(c) is significantly different for red giants at a given Delta nu(c) but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observables (Delta nu(c), epsilon(c)) can be used as an evolutionary stage discriminator that turned out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between epsilon(c) and Delta nu(c) for RGB stars and unlike less evolved stars we find no indication that epsilon(c) depends on other properties of the star. It appears that the difference in epsilon(c) between the two populations becomes smaller and eventually indistinguishable if we use an average of several radial orders, instead of a local, i.e. only around the central radial mode, large separation to determine the phase shift. This indicates that the information on the evolutionary stage is encoded locally, more precisely in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial mode frequencies for a sequence of red-giant models and find them to qualitatively confirm our findings. We also find that, at least in our models, the local Delta nu is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average Delta nu. Finally, we investigate the signature of the evolutionary stage on delta nu(02) and quantify the mass dependency of this seismic parameter. C1 [Kallinger, T.; De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Kallinger, T.] Univ Vienna, Inst Astron IfA, A-1180 Vienna, Austria. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Hekker, S.; Elsworth, Y. P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Mosser, B.] Univ Paris 07, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Bedding, T. R.; Stello, D.; Chaplin, W. J.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Gruberbauer, M.; Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Garcia, R. A.] Univ Paris 07, CEA DSM CNRS, IRFU SAp, Lab AIM,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Mullally, F.; Thompson, S. E.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. RP Kallinger, T (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM thomas.kallinger@ster.kuleuven.be OI Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; FWO-Flanders [O6260 - G.0728.11]; Netherlands Organisation for Scientific Research (NWO) FX The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to making the Kepler mission possible. Funding for the Kepler Discovery mission is provided by NASA's Science Mission Directorate. T. K. and J.D.R. are supported by the FWO-Flanders under project O6260 - G.0728.11. S.H. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO). NR 61 TC 30 Z9 30 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A51 DI 10.1051/0004-6361/201218854 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900051 ER PT J AU Liseau, R Goldsmith, PF Larsson, B Pagani, L Bergman, P Le Bourlot, J Bell, TA Benz, AO Bergin, EA Bjerkeli, P Black, JH Bruderer, S Caselli, P Caux, E Chen, JH de Luca, M Encrenaz, P Falgarone, E Gerin, M Goicoechea, JR Hjalmarson, A Hollenbach, DJ Justtanont, K Kaufman, MJ Le Petit, F Li, D Lis, DC Melnick, GJ Nagy, Z Olofsson, AOH Olofsson, G Roueff, E Sandqvist, A Snell, RL van der Tak, FFS van Dishoeck, EF Vastel, C Viti, S Yildiz, UA AF Liseau, R. Goldsmith, P. F. Larsson, B. Pagani, L. Bergman, P. Le Bourlot, J. Bell, T. A. Benz, A. O. Bergin, E. A. Bjerkeli, P. Black, J. H. Bruderer, S. Caselli, P. Caux, E. Chen, J. -H. de Luca, M. Encrenaz, P. Falgarone, E. Gerin, M. Goicoechea, J. R. Hjalmarson, A. Hollenbach, D. J. Justtanont, K. Kaufman, M. J. Le Petit, F. Li, D. Lis, D. C. Melnick, G. J. Nagy, Z. Olofsson, A. O. H. Olofsson, G. Roueff, E. Sandqvist, Aa. Snell, R. L. van der Tak, F. F. S. van Dishoeck, E. F. Vastel, C. Viti, S. Yildiz, U. A. TI Multi-line detection of O-2 toward rho Ophiuchi A SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; ISM: molecules; ISM: lines and bands; ISM: clouds; ISM: individual objects: rho Oph A SM1; stars: formation ID INTERSTELLAR HYDROGEN-PEROXIDE; C-I EMISSION; DARK-CLOUD; MOLECULAR CLOUDS; SUBMILLIMETER OBSERVATIONS; PHOTODISSOCIATION REGIONS; ODIN SATELLITE; DUST GRAINS; MAIN CLOUD; OPH CLOUD AB Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O-2, and water, H2O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O-2 in the dense star-forming interstellar medium. Aims. Only toward rho OphA did Odin detect a very weak line of O-2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O-2 emission and pinpoint its origin. Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O-2 spectra toward selected positions in the rho Oph A core. These data are analysed using standard techniques for O2 excitation and compared to recent PDR-like chemical cloud models. Results. The N-J = 3(3)-1(2) line at 487.2 GHz is clearly detected toward all three observed positions in the rho Oph A core. In addition, an oversampled map of the 5(4)-3(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O-2 emitting gas appears to vary quite substantially, with warm gas (greater than or similar to 50 K) being adjacent to a much colder region, of temperatures lower than 30 K. Conclusions. The exploited models predict that the O-2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O-2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O-2) = 3 to greater than or similar to 6 x 10(15) cm(-2). Beam-averaged O-2 abundances are about 5 x 10(-8) relative to H-2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire rho Oph A core. We speculate that one of the reasons for the generally very low detection rate of O-2 is the short period of time during which O-2 molecules are reasonably abundant in molecular clouds. C1 [Liseau, R.; Bjerkeli, P.; Black, J. H.; Hjalmarson, A.; Justtanont, K.] Onsala Space Observ, Chalmers Univ Technol, Dept Earth & Space Sci, S-43992 Onsala, Sweden. [Goldsmith, P. F.; Chen, J. -H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Larsson, B.; Olofsson, G.; Sandqvist, Aa.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Pagani, L.; Encrenaz, P.] Observ Paris, LERMA, F-75014 Paris, France. [Pagani, L.; Encrenaz, P.] Observ Paris, UMR 8112, CNRS, F-75014 Paris, France. [Bergman, P.; Olofsson, A. O. H.] Chalmers, Onsala Space Observ, S-43992 Onsala, Sweden. [Le Bourlot, J.; de Luca, M.; Le Petit, F.; Roueff, E.] Observ Paris, LUTH, F-75014 Paris, France. [Bell, T. A.; Goicoechea, J. R.] Ctr Astrobiol, CSICINTA, Madrid 28850, Spain. [Benz, A. O.; Bruderer, S.] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Caselli, P.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Caux, E.; Vastel, C.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Caux, E.; Vastel, C.] CNRS, IRAP, F-31028 Toulouse 4, France. [Falgarone, E.; Gerin, M.] Observ Paris, UMR8112, CNRS, LRA LERMA, F-75231 Paris 05, France. [Falgarone, E.; Gerin, M.] Ecole Normale Super, F-75231 Paris 05, France. [Hollenbach, D. J.] SETI Inst, Mountain View, CA 94043 USA. [Kaufman, M. J.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Li, D.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Li, D.; Lis, D. C.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Melnick, G. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Nagy, Z.; van der Tak, F. F. S.] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [Nagy, Z.; van der Tak, F. F. S.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Snell, R. L.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [van Dishoeck, E. F.; Yildiz, U. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bruderer, S.; van Dishoeck, E. F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Viti, S.] UCL, Dept Phys & Astron, London, England. RP Liseau, R (reprint author), Onsala Space Observ, Chalmers Univ Technol, Dept Earth & Space Sci, S-43992 Onsala, Sweden. EM rene.liseau@chalmers.se RI Yildiz, Umut/C-5257-2011; Goldsmith, Paul/H-3159-2016 OI Yildiz, Umut/0000-0001-6197-2864; NR 63 TC 46 Z9 46 U1 1 U2 9 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A73 DI 10.1051/0004-6361/201118575 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900073 ER PT J AU Maire, AL Galicher, R Boccaletti, A Baudoz, P Schneider, J Cahoy, KL Stam, DM Traub, WA AF Maire, A. -L. Galicher, R. Boccaletti, A. Baudoz, P. Schneider, J. Cahoy, K. L. Stam, D. M. Traub, W. A. TI Atmospheric characterization of cold exoplanets using a 1.5-m coronagraphic space telescope SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary systems; methods: numerical; techniques: high angular resolution; techniques: image processing; techniques: imaging spectroscopy ID EXTRASOLAR GIANT PLANETS; SELF-COHERENT CAMERA; HR 8799; MASS COMPANION; IMAGING SPECTROSCOPY; EVOLUTIONARY MODELS; BETA-PICTORIS; BROWN DWARFS; SUPER-EARTH; STAR AB Context. High-contrast imaging is currently the only available technique for the study of the thermodynamical and compositional properties of exoplanets in long-period orbits, comparable to the range from Venus to Jupiter. The SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) project is a coronagraphic space telescope dedicated to the spectropolarimetric analysis of gaseous and icy giant planets as well as super-Earths at visible wavelengths. So far, studies for high-contrast imaging instruments have mainly focused on technical feasibility because of the challenging planet/star flux ratio of 10(-8)-10(-10) required at short separations (200 mas or so) to image cold exoplanets. However, the main interest of such instruments, namely the analysis of planet atmospheric/surface properties, has remained largely unexplored. Aims. The aim of this paper is to determine which planetary properties SPICES or an equivalent direct imaging mission can measure, considering realistic reflected planet spectra and instrument limitation. Methods. We use numerical simulations of the SPICES instrument concept and theoretical planet spectra to carry out this performance study. We also define a criterion on the signal-to-noise ratio of the measured spectrum to determine under which conditions SPICES can retrieve planetary physical properties. Results. We find that the characterization of the main planetary properties (identification of molecules, effect of metallicity, presence of clouds and type of surfaces) would require a median signal-to-noise ratio of at least 30. In the case of a solar-type star <= 10 pc, SPICES will be able to study Jupiters and Neptunes up to similar to 5 and similar to 2 AU respectively, because of the drastic flux decrease with separation. It would also analyze cloud and surface coverage of super-Earths of radius 2.5 Earth radii at 1 AU. Finally, we determine the potential targets in terms of planet separation, radius and distance for several stellar types. For a Sun analog, we show that SPICES could characterize Jupiters (M >= 30 Earth masses) as small as 0.5 Jupiter radii at less than or similar to 2 AU upto 10 pc, and super-Earths at 1-2 AU for the handful of stars that exist within 4-5 pc. Potentially, SPICES could perform analysis of a hypothetical Earth-size planet around alpha Cen A and B. However, these results depend on the planetary spectra we use, which are derived for a few planet parameters assuming a solar-type host star. Grids of model spectra are needed for a further performance analysis. Our results obtained for SPICES are also applicable to other small (1-2 m) coronagraphic space telescopes. C1 [Maire, A. -L.; Boccaletti, A.; Baudoz, P.] Univ Paris 06, CNRS, Observ Paris, LESIA, F-92195 Meudon, France. [Maire, A. -L.; Boccaletti, A.; Baudoz, P.; Schneider, J.] Univ Paris 07, F-92195 Meudon, France. [Galicher, R.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Galicher, R.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Maire, A. -L.; Boccaletti, A.; Baudoz, P.] Observ Paris, Grp Interet Sci Partenariat Haute Resolut Angulai, LAM, CNRS,IPAG, Paris, France. [Schneider, J.] Observ Paris, CNRS, LUTh, F-92195 Meudon, France. [Cahoy, K. L.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Stam, D. M.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Traub, W. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schneider, J.] Univ Denis Diderot Paris 7, F-92195 Meudon, France. RP Maire, AL (reprint author), Univ Paris 06, CNRS, Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM anne-lise.maire@obspm.fr; raphael.galicher@nrc-cnrc.gc.ca FU Ministerede l'Education Nationale, de la Recherche et de la Technologie FX The authors wish to thank the SPICES team members for their work in the definition of the science cases and the instrument concept. We also thank the referee for his/her constructive comments on the manuscript. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. A.-L.M. is supported through a doctoral fellowship from the Ministerede l'Education Nationale, de la Recherche et de la Technologie. NR 88 TC 7 Z9 7 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A83 DI 10.1051/0004-6361/201218954 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900083 ER PT J AU Raymond, SN Armitage, PJ Moro-Martin, A Booth, M Wyatt, MC Armstrong, JC Mandell, AM Selsis, F West, AA AF Raymond, S. N. Armitage, P. J. Moro-Martin, A. Booth, M. Wyatt, M. C. Armstrong, J. C. Mandell, A. M. Selsis, F. West, A. A. TI Debris disks as signposts of terrestrial planet formation II. Dependence of exoplanet architectures on giant planet and disk properties SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: formation; planets and satellites: dynamical evolution and stability; infrared: stars; circumstellar matter; methods: numerical; astrobiology ID MAIN-SEQUENCE STARS; EARTH-LIKE PLANETS; SOLAR-TYPE STARS; SUN-LIKE STARS; HIGH-RESOLUTION SIMULATIONS; STEADY-STATE EVOLUTION; KUIPER-BELT; GAS DISKS; PROTOPLANETARY DISK; ECCENTRICITY DISTRIBUTION AB We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at lambda similar to 70 mu m. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M less than or similar to 30 M-circle plus) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of similar to Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of > 1 Gyrold solar-type stars with observed 24 mu m excesses. Our simulations do not sample the full range of plausible initial conditions for planetary systems. However, among the configurations explored, the best candidates for hosting terrestrial planets at similar to 1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 mu m but with no currently-known giant planets. These systems combine evidence for the presence of ample rocky building blocks, with giant planet properties that are least likely to undergo destructive dynamical evolution. Thus, we predict two correlations that should be detected by upcoming surveys: an anti-correlation between debris disks and eccentric giant planets and a positive correlation between debris disks and terrestrial planets. C1 [Raymond, S. N.; Selsis, F.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Raymond, S. N.; Selsis, F.] CNRS, UMR 5804, Lab Astrophys Bordeaux, F-33271 Floirac, France. [Armitage, P. J.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Armitage, P. J.] NIST, Boulder, CO 80309 USA. [Armitage, P. J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Moro-Martin, A.] Ctr Astrobiol, Dept Astrophys, Madrid 28850, Spain. [Moro-Martin, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Booth, M.; Wyatt, M. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Booth, M.] Univ Victoria, Victoria, BC V8P 1A1, Canada. [Armstrong, J. C.] Weber State Univ, Dept Phys, Ogden, UT 84408 USA. [Mandell, A. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [West, A. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Raymond, SN (reprint author), Univ Bordeaux, Observ Aquitain Sci Univers, 2 Rue Observ,BP 89, F-33271 Floirac, France. EM raymond@obs.u-bordeaux1.fr RI Mandell, Avi/F-9361-2012; West, Andrew/H-3717-2014; OI Armstrong, John/0000-0003-2009-1459; Booth, Mark/0000-0001-8568-6336 FU NSF; NASA [NNX09AB90G, NNX11AE12G]; NSF's Division of Astronomical Sciences [0807471]; European Research Council (ERC) [209622: E3ARTHs] FX We thank the referee, Hal Levison, for a careful and thorough report that helped us improve the paper. Simulations were run at Weber State University and at Purdue University (supported in part by the NSF through TeraGrid resources). S.N.R. acknowledges the CNRS's PNP and EPOV programs, the Conseil Regional d'Aquitaine, and NASA Astrobiology Institute's Virtual Planetary Laboratory lead team. P.J.A. acknowledges funding from NASA's Origins of solar systems program (NNX09AB90G), NASA's Astrophysics Theory program (NNX11AE12G), and the NSF's Division of Astronomical Sciences (0807471). F. S. acknowledges support from the European Research Council (ERC Grant 209622: E3ARTHs). This paper is dedicated to S.N.R.'s son Zachary Max Raymond, whose birth on June 14, 2011 caused a long but absolutely worthwhile delay of the publication of this paper. NR 127 TC 32 Z9 32 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A11 DI 10.1051/0004-6361/201117049 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900011 ER PT J AU Ribas, A Merin, B Ardila, DR Bouy, H AF Ribas, A. Merin, B. Ardila, D. R. Bouy, H. TI Warm debris disks candidates in transiting planets systems SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planetary systems; planet-disk interactions ID SUN-LIKE STARS; OPEN CLUSTER; SKY SURVEY; COLLISIONS; EVOLUTION; CATALOG; SEARCH; DUST AB We have bandmerged candidate transiting planetary systems (from the Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 mu m and/or 22 mu m. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. If confirmed, our sample similar to doubles the number of currently known warm excess disks around old main sequence stars. The ratios between the measured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system. C1 [Ribas, A.; Merin, B.] European Space Astron Ctr ESA, Herschel Sci Ctr, Madrid 28691, Spain. [Ardila, D. R.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. [Bouy, H.] CSIC, Ctr Astrobiol, INTA, Madrid 28691, Spain. RP Ribas, A (reprint author), European Space Astron Ctr ESA, Herschel Sci Ctr, POB 78, Madrid 28691, Spain. OI Bouy, Herve/0000-0002-7084-487X FU ESA; ESAC; Herschel Science Centre; National Aeronautics and Space Administration's Science Mission Directorate (NASA); Spanish MICINN [AyA2008-02156]; National Science Foundation; Multimission Archive at the Space Telescope Science Institute (MAST); Association of Universities for Research in Astronomy, Inc., under NASA [NAS5-26555]; MAST; NASA Office of Space Science [NNX09AF08G] FX We thank the referee for valuable comments that helped improving the contents of this paper. This work has been possible thanks to the support from the ESA Trainee and ESAC Space Science Faculty and of the Herschel Science Centre. This publication is based on observations made with the Kepler Spacecraft. Funding for this mission is provided by National Aeronautics and Space Administration's Science Mission Directorate (NASA). This study also makes use of VOSA, developed under the Spanish Virtual Observatory project supported from the Spanish MICINN through grant AyA2008-02156; data products from the Wide-field Infrared Survey Explorer, a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL)/California Institute of Technology (Caltech); the NASA Infrared Processing and Analysis Center (IPAC) Science Archive and the NASA/IPAC/NExScI Star and Exoplanet Database, operated by JPL/Caltech, and funded by NASA; the SIMBAD database and the Vizier service, operated at the Centre de Donnees astronomiques de Strasbourg, France; the data products from the Two Micron All Sky Survey (2MASS), a joint project of the University of Massachusetts and IPAC/Caltech, funded by NASA and the National Science Foundation; the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 31 TC 9 Z9 9 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR A38 DI 10.1051/0004-6361/201118306 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900038 ER PT J AU Velusamy, T Langer, WD Pineda, JL Goldsmith, PF AF Velusamy, T. Langer, W. D. Pineda, J. L. Goldsmith, P. F. TI [C II] 158 mu m line detection of the warm ionized medium in the Scutum-Crux spiral arm tangency SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: structure; ISM: general; submillimeter: ISM; infrared: ISM ID RECOMBINATION LINES; INTERSTELLAR-MEDIUM; MILKY-WAY; HERSCHEL; REGIONS; CLOUDS; DISK AB Context. The Herschel HIFI GOT C+ Galactic plane [C II] spectral survey has detected strong emission at the spiral arm tangencies. Aims. We use the unique viewing geometry of the Scutum-Crux (S-C) tangency near l = 30 degrees to detect the warm ionized medium (WIM) component traced by [C II] and to study the effects of spiral density waves on Interstellar Medium (ISM) gas. Methods. We compare [C II] velocity features with ancillary H I, (CO)-C-12 and (CO)-C-13 data near tangent velocities at each longitude to separate the cold neutral medium and the warm neutral + ionized components in the S-C tangency, then we identify [C II] emission at the highest velocities without any contribution from (CO)-C-12 clouds, as WIM. Results. We present the GOT C+ results for the S-C tangency. We interpret the diffuse and extended excess [C II] emission at and above the tangent velocities as arising in the electron-dominated warm ionized gas in the WIM. We derive an electron density in the range of 0.2-0.9 cm(-3) at each longitude, a factor of several higher than the average value from H alpha and pulsar dispersion. Conclusions. We interpret the excess [C II] in S-C tangency as shock compression of the WIM induced by the spiral density waves. C1 [Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Velusamy, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Thangasamy.Velusamy@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 NR 20 TC 15 Z9 15 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2012 VL 541 AR L10 DI 10.1051/0004-6361/201219303 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 946XN UT WOS:000304390900178 ER PT J AU Nguyen, AT Kwok, R Menemenlis, D AF Nguyen, An T. Kwok, Ronald Menemenlis, Dimitris TI Source and Pathway of the Western Arctic Upper Halocline in a Data-Constrained Coupled Ocean and Sea Ice Model SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID DENSE WATER FORMATION; OFFSHORE TRANSPORT; CONTINENTAL-SHELF; COASTAL POLYNYAS; CHUKCHI SHELF; CIRCULATION; ALASKAN; VARIABILITY; SHALLOW; LAYER AB A coupled ocean and sea ice model is used to investigate dense water (DW) formation in the Chukchi and Bering shelves and the pathways by which this water feeds the upper halocline. Two 1992-2008 data-constrained solutions at 9- and 4-km horizontal grid spacing show that 1) winter sea ice growth results in brine rejection and DW formation; 2) the DW flows primarily down Barrow and Central-Herald Canyons in the form of bottom-trapped, intermittent currents to depths of 50-150 m from the late winter to late summer seasons; and 3) eddies with diameters similar to 30 km carry the cold DW from the shelf break into the Canada Basin interior at depths of 50-150 m. The 4-km data-constrained solution does not show eddy transport across the Chukchi Shelf at shallow depths; instead, advection of DW downstream of polynya regions is driven by a strong (similar to 0.1 m s(-1)) mean current on the Chukchi Shelf. Upper halocline water (UHW) formation rate was obtained from two methods: one is based on satellite data and on a simple parameterized approach, and the other is computed from the authors' model solution. The two methods yield 5740 +/- 61420 km(3) yr(-1) and 4190-4860 +/- 61440 km(3) yr(-1), respectively. These rates imply a halocline replenishment period of 10-21 yr. Passive tracers also show that water with highest density forms in the Gulf of Anadyr and along the eastern Siberian coast immediately north of the Bering Strait. These results provide a coherent picture of the seasonal development of UHW at high spatial and temporal resolutions and serve as a guide for improving understanding of water-mass formation in the western Arctic Ocean. C1 [Nguyen, An T.] MIT, Cambridge, MA 02139 USA. [Kwok, Ronald; Menemenlis, Dimitris] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Nguyen, AT (reprint author), MIT, 54-1410,77 Massachusetts Ave, Cambridge, MA 02139 USA. EM atnguyen@mit.edu RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU ECCO2 project [NSF ARC-1023499]; NASA Advanced Supercomputing (NAS) Division; JPL Supercomputing and Visualization Facility (SVF) FX This work is funded by the ECCO2 project, a contribution to the NASA Modeling Analysis and Prediction (MAP) program, and by Grant NSF ARC-1023499. We gratefully acknowledge computational resources and support from the NASA Advanced Supercomputing (NAS) Division and from the JPL Supercomputing and Visualization Facility (SVF). The research described in this paper was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank R. Woodgate for providing data of fluxes across Bering Strait and for helpful discussion and R. Pickart and V. A. Wilken-Jon and I. Fenty for discussion of hydrographic profiles and eddy transport in the Chukchi Sea. Finally, we thank two anonymous reviewers for valuable comments. NR 45 TC 17 Z9 17 U1 1 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD MAY PY 2012 VL 42 IS 5 BP 802 EP 823 DI 10.1175/JPO-D-11-040.1 PG 22 WC Oceanography SC Oceanography GA 948ZO UT WOS:000304544000008 ER PT J AU Herman, DA Soulas, GC Van Noord, JL Patterson, MJ AF Herman, Daniel A. Soulas, George C. Van Noord, Jonathan L. Patterson, Michael J. TI NASA's Evolutionary Xenon Thruster Long-Duration Test Results SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 46th Joint Propulsion Conference and Exhibit CY JUL 25-29, 2010 CL Nashville, TN SP AIAA, ASME, SAE, ASEE AB NASA's Evolutionary Xenon Thruster program is developing the next-generation solar-electric ion propulsion system to provide future NASA science missions with enhanced in-space propulsion capabilities. As part of a comprehensive thruster service life assessment using both testing and analyses, a long-duration test was initiated in June 2005 to verify the thruster service life modeling and to demonstrate the thruster propellant throughput capability. In July 2010, the NASA's Evolutionary Xenon Thruster long-duration test surpassed 30,352 h of operation, processed more than 495 kg of xenon propellant, and demonstrated greater than 18.2 MN . s total impulse. The purpose of this paper is to provide an overview of NASA's Evolutionary Xenon Thruster long-duration test results up to 30,352 h of operation, when it surpassed the NASA Solar Electric Propulsion Technology Application Readiness ion thruster total hours demonstrated. Discussion will include the demonstrated metrics, thruster performance, and observed component erosion. NASA's Evolutionary Xenon Thruster has set records for total hours of operation, total propellant throughput processed, and total impulse demonstrated for any ion or Hall thruster. NASA's Evolutionary Xenon Thruster design improvements have successfully mitigated several ion thruster lifetime-limiting mechanisms, including the first failure mode of the NASA Solar Electric Propulsion Technology Application Readiness ion thruster, namely, failure to prevent electron backstreaming. Thruster performance has been steady with negligible degradation throughout the test. Measured thruster component erosion rates compare favorably to pretest predictions verifying thruster service models. Assuming full-power operation for the remainder of the test, thruster life models and extrapolated erosion measurements both predict penetration of the accelerator grid grooves after greater than 45,000 h of operation and processing more than 800 kg of xenon propellant. Groove penetration is not a failure mechanism in and of itself, but it anticipates thruster failure due to degradation of the accelerator grid structural integrity. C1 [Herman, Daniel A.; Soulas, George C.; Van Noord, Jonathan L.] NASA, John H Glenn Res Ctr, Lewis Field, Prop & Propellants Branch, Cleveland, OH 44135 USA. RP Herman, DA (reprint author), NASA, John H Glenn Res Ctr, Lewis Field, Prop & Propellants Branch, 21000 Brookpk Rd,Mail Stop 16-1, Cleveland, OH 44135 USA. NR 31 TC 3 Z9 4 U1 1 U2 29 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD MAY-JUN PY 2012 VL 28 IS 3 BP 625 EP 635 DI 10.2514/1.B34321 PG 11 WC Engineering, Aerospace SC Engineering GA 945OS UT WOS:000304286500018 ER PT J AU Luedtke, A Stahl, HP AF Luedtke, Alexander Stahl, H. Philip TI Commentary on multivariable parametric cost model for ground optical telescope assembly SO OPTICAL ENGINEERING LA English DT Article DE ground; telescope; optical; assembly; cost; model; learning; curves AB In 2005, Stahl et al. published a multivariable parametric cost model for ground telescopes that included primary mirror diameter, diffraction-limited wavelength, and year of development. The model also included a factor for primary mirror segmentation and/or duplication. While the original multivariable model is still relevant, we better explain the rationale behind the model and present a model framework that may better account for prescription similarities. Also, we correct the single-variable diameter model presented in the 2005 Stahl paper with the addition of a leading multiplier. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.5.059701] C1 [Luedtke, Alexander] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Stahl, H. Philip] NASA MSFC, Huntsville, AL 35821 USA. RP Luedtke, A (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA. EM alexander_luedtke@brown.edu NR 3 TC 2 Z9 2 U1 0 U2 2 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD MAY PY 2012 VL 51 IS 5 AR 059701 DI 10.1117/1OE.51.5.059701 PG 4 WC Optics SC Optics GA 949YU UT WOS:000304615300048 ER PT J AU Russell, CT Colaprete, A AF Russell, C. T. Colaprete, A. TI Foreword. The Lunar Crater Observation Sensing Satellite (LCROSS) SO SPACE SCIENCE REVIEWS LA English DT Editorial Material C1 [Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Colaprete, A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Russell, CT (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM ctrussel@igpp.ucla.edu RI Russell, Christopher/E-7745-2012 OI Russell, Christopher/0000-0003-1639-8298 NR 0 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2012 VL 167 IS 1-4 BP 1 EP 2 DI 10.1007/s11214-012-9883-3 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949YO UT WOS:000304614600001 ER PT J AU Colaprete, A Elphic, RC Heldmann, J Ennico, K AF Colaprete, Anthony Elphic, Richard C. Heldmann, Jennifer Ennico, Kimberly TI An Overview of the Lunar Crater Observation and Sensing Satellite (LCROSS) SO SPACE SCIENCE REVIEWS LA English DT Review DE Moon; Missions; Water; Solar system ID DEEP IMPACT AB The Lunar Crater Observation Sensing Satellite (LCROSS), an accompanying payload to the Lunar Reconnaissance Orbiter (LRO) mission (Vondrak et al. 2010), was launched with LRO on 18 June 2009. The principle goal of the LCROSS mission was to shed light on the nature of the materials contained within permanently shadowed lunar craters. These Permanently Shadowed Regions (PSRs) are of considerable interest due to the very low temperatures, < 120 K, found within the shadowed regions (Paige et al. 2010a, 2010b) and the possibility of accumulated, cold-trapped volatiles contained therein. Two previous lunar missions, Clementine and Lunar Prospector, have made measurements that indicate the possibility of water ice associated with these PSRs. LCROSS used the spent LRO Earth-lunar transfer rocket stage, an Atlas V Centaur upper stage, as a kinetic impactor, impacting a PSR on 9 October 2009 and throwing ejecta up into sunlight where it was observed. This impactor was guided to its target by a Shepherding Spacecraft (SSC) which also contained a number of instruments that observed the lunar impact. A campaign of terrestrial ground, Earth orbital and lunar orbital assets were also coordinated to observe the impact and subsequent crater and ejecta blanket. After observing the Centaur impact, the SSC became an impactor itself. The principal measurement goals of the LCROSS mission were to establish the form and concentration of the hydrogen-bearing material observed by Lunar Prospector, characterization of regolith within a PSR (including composition and physical properties), and the characterization of the perturbation to the lunar exosphere caused by the impact itself. C1 [Colaprete, Anthony; Elphic, Richard C.; Heldmann, Jennifer; Ennico, Kimberly] NASA, Div Space Sci & Astrobiol, Ames Res Ctr, Moffett Field, CA USA. RP Colaprete, A (reprint author), NASA, Div Space Sci & Astrobiol, Ames Res Ctr, Moffett Field, CA USA. EM Anthony.Colaprete-1@nasa.gov RI Ennico, Kimberly/L-9606-2014 NR 50 TC 5 Z9 5 U1 2 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2012 VL 167 IS 1-4 BP 3 EP 22 DI 10.1007/s11214-012-9880-6 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949YO UT WOS:000304614600002 ER PT J AU Ennico, K Shirley, M Colaprete, A Osetinsky, L AF Ennico, Kimberly Shirley, Mark Colaprete, Anthony Osetinsky, Leonid TI The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight SO SPACE SCIENCE REVIEWS LA English DT Review DE Moon; Mission; Spectroscopy; Impactor; LCROSS; LRO; Class D AB The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload's instrument complement. C1 [Ennico, Kimberly; Shirley, Mark; Colaprete, Anthony; Osetinsky, Leonid] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ennico, K (reprint author), NASA, Ames Res Ctr, Mail Stop N245-6, Moffett Field, CA 94035 USA. EM Kimberly.Ennico@nasa.gov RI Ennico, Kimberly/L-9606-2014 FU NASA's Exploration Systems Mission Directorate FX We thank Diane Wooden, Jennifer Heldmann, David Landis, David Day and Kimberly Mjaseth for their work on calibrating the payload instruments. This research has made use of the SIM-BAD database, operated at CDS, Strasbourg, France. We wish to thank the LCROSS payload engineering team Glen Sasaki, Jim Hanratty, Gil Kojima, Dana Lynch, Frank Buchey, Lynn Hofland, Dave Scimeca, and Jerry Wang, the NASA ARC project support Dan Andrews, Leonard Hee, and Robert Barber, and NGST system engineering for their guidance. The LCROSS project was funded by NASA's Exploration Systems Mission Directorate. NR 32 TC 9 Z9 9 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2012 VL 167 IS 1-4 BP 23 EP 69 DI 10.1007/s11214-011-9753-4 PG 47 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949YO UT WOS:000304614600003 ER PT J AU Marshall, W Shirley, M Moratto, Z Colaprete, A Neumann, G Smith, D Hensley, S Wilson, B Slade, M Kennedy, B Gurrola, E Harcke, L AF Marshall, William Shirley, Mark Moratto, Zachary Colaprete, Anthony Neumann, Gregory Smith, David Hensley, Scott Wilson, Barbara Slade, Martin Kennedy, Brian Gurrola, Eric Harcke, Leif TI Locating the LCROSS Impact Craters SO SPACE SCIENCE REVIEWS LA English DT Review DE Astrodynamics; Lunar; Image Registration; LCROSS AB The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated similar to 9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft's trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of -84.6796A degrees, -48.7093A degrees, with a 1 sigma uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is -84.719A degrees, -49.61A degrees, with a 1 sigma uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region. C1 [Marshall, William; Shirley, Mark; Moratto, Zachary; Colaprete, Anthony] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Neumann, Gregory; Smith, David] NASA, Goddard Spaceflight Ctr, Greenbelt, MD 20769 USA. [Hensley, Scott; Wilson, Barbara; Slade, Martin; Kennedy, Brian; Gurrola, Eric; Harcke, Leif] CALTECH, Jet Prop Lab, Pasadena, CA 91011 USA. RP Marshall, W (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM william.s.marshall@nasa.gov RI Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 FU Mission Operations Support team at NASA-Ames Research Center (ARC); Mission Design Team at ARC; Maneuver Design Team at NASA-Goddard Spaceflight Center (GSFC); Orbit Determination Team at the Jet Propulsion Laboratory FX We would like to acknowledge the efforts and support of the following teams/entities without whom this analysis would not have been possible: the Mission Operations Support team at NASA-Ames Research Center (ARC), the Mission Design Team at ARC, the Maneuver Design Team at NASA-Goddard Spaceflight Center (GSFC), the Orbit Determination Team at the Jet Propulsion Laboratory, the Subsystem analysts and engineers at Northrup Grumman Space Technology and Northrup Grumman Technical Services and the operators of the DSN facilities at Goldstone, Madrid and Canberra. NR 14 TC 2 Z9 2 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2012 VL 167 IS 1-4 BP 71 EP 92 DI 10.1007/s11214-011-9765-0 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949YO UT WOS:000304614600004 ER PT J AU Heldmann, JL Colaprete, A Wooden, DH Ackermann, RF Acton, DD Backus, PR Bailey, V Ball, JG Barott, WC Blair, SK Buie, MW Callahan, S Chanover, NJ Choi, YJ Conrad, A Coulson, DM Crawford, KB DeHart, R de Pater, I Disanti, M Forster, JR Furusho, R Fuse, T Geballe, T Gibson, JD Goldstein, D Gregory, SA Gutierrez, DJ Hamilton, RT Hamura, T Harker, DE Harp, GR Haruyama, J Hastie, M Hayano, Y Hinz, P Hong, PK James, SP Kadono, T Kawakita, H Kelley, MS Kim, DL Kurosawa, K Lee, DH Long, M Lucey, PG Marach, K Matulonis, AC McDermid, RM McMillan, R Miller, C Moon, HK Nakamura, R Noda, H Okamura, N Ong, L Porter, D Puschell, JJ Rayner, JT Rembold, JJ Roth, KC Rudy, RJ Russell, RW Ryan, EV Ryan, WH Sekiguchi, T Sekine, Y Skinner, MA Soma, M Stephens, AW Storrs, A Suggs, RM Sugita, S Sung, EC Takatoh, N Tarter, JC Taylor, SM Terada, H Trujillo, CJ Vaitheeswaran, V Vilas, F Walls, BD Watanabe, J Welch, WJ Woodward, CE Yim, HS Young, EF AF Heldmann, Jennifer L. Colaprete, Anthony Wooden, Diane H. Ackermann, Robert F. Acton, David D. Backus, Peter R. Bailey, Vanessa Ball, Jesse G. Barott, William C. Blair, Samantha K. Buie, Marc W. Callahan, Shawn Chanover, Nancy J. Choi, Young-Jun Conrad, Al Coulson, Dolores M. Crawford, Kirk B. DeHart, Russell de Pater, Imke Disanti, Michael Forster, James R. Furusho, Reiko Fuse, Tetsuharu Geballe, Tom Gibson, J. Duane Goldstein, David Gregory, Stephen A. Gutierrez, David J. Hamilton, Ryan T. Hamura, Taiga Harker, David E. Harp, Gerry R. Haruyama, Junichi Hastie, Morag Hayano, Yutaka Hinz, Phillip Hong, Peng K. James, Steven P. Kadono, Toshihiko Kawakita, Hideyo Kelley, Michael S. Kim, Daryl L. Kurosawa, Kosuke Lee, Duk-Hang Long, Michael Lucey, Paul G. Marach, Keith Matulonis, Anthony C. McDermid, Richard M. McMillan, Russet Miller, Charles Moon, Hong-Kyu Nakamura, Ryosuke Noda, Hirotomo Okamura, Natsuko Ong, Lawrence Porter, Dallan Puschell, Jeffery J. Rayner, John T. Rembold, J. Jedadiah Roth, Katherine C. Rudy, Richard J. Russell, Ray W. Ryan, Eileen V. Ryan, William H. Sekiguchi, Tomohiko Sekine, Yasuhito Skinner, Mark A. Soma, Mitsuru Stephens, Andrew W. Storrs, Alex Suggs, Robert M. Sugita, Seiji Sung, Eon-Chang Takatoh, Naruhisa Tarter, Jill C. Taylor, Scott M. Terada, Hiroshi Trujillo, Chadwick J. Vaitheeswaran, Vidhya Vilas, Faith Walls, Brian D. Watanabe, Jun-ihi Welch, William J. Woodward, Charles E. Yim, Hong-Suh Young, Eliot F. TI LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned SO SPACE SCIENCE REVIEWS LA English DT Review DE Moon; Missions; Observations; Telescopes ID DEEP IMPACT; POLES; WATER; DEPOSITS; MOON AB NASA's LCROSS (Lunar Crater Observation and Sensing Satellite) mission was designed to explore the nature of previously detected enhanced levels of hydrogen near the lunar poles. The LCROSS mission impacted the spent upper stage of the launch vehicle into a permanently shadowed region of the lunar surface to create an ejecta plume. The resultant impact crater and plume were then observed by the LCROSS Shepherding Spacecraft as well as a cadre of telescopes on the Earth and in space to determine the nature of the materials contained within the permanently shadowed region. The Shepherding Spacecraft then became a second impactor which was also observed by multiple assets. The LCROSS Observation Campaign was a key component of the LCROSS mission. The goal of the Observation Campaign was to realize the scientific benefits of extending the LCROSS observations to multiple ground and space-based assets. This paper describes the LCROSS Observation Campaign and provides an overview of the Campaign coordination and logistics as well as a summary of the observation techniques utilized at a multitude of observatories. Lessons learned from the LCROSS Observation Campaign are also discussed to assist with the planning of future unique observing events. C1 [Heldmann, Jennifer L.; Colaprete, Anthony; Wooden, Diane H.] NASA, Div Space Sci & Astrobiol, Ames Res Ctr, Moffett Field, CA USA. [Ackermann, Robert F.; Crawford, Kirk B.; Gutierrez, David J.; Kim, Daryl L.; Rudy, Richard J.; Russell, Ray W.] Aerosp Corp, Los Angeles, CA 90009 USA. [Acton, David D.; Marach, Keith; Taylor, Scott M.] Raytheon Vis Syst, Goleta, CA USA. [Backus, Peter R.; Barott, William C.; Blair, Samantha K.; Harp, Gerry R.; Tarter, Jill C.] SETI Inst, Mountain View, CA USA. [Bailey, Vanessa; Hinz, Phillip; Vaitheeswaran, Vidhya] Univ Arizona, Steward Observ, Tucson, AZ USA. [Ball, Jesse G.; Coulson, Dolores M.; Geballe, Tom; Matulonis, Anthony C.; McDermid, Richard M.; Roth, Katherine C.; Stephens, Andrew W.; Trujillo, Chadwick J.; Walls, Brian D.] Gemini Observ, Hilo, HI USA. [Buie, Marc W.; Young, Eliot F.] SW Res Inst, Boulder, CO USA. [Callahan, Shawn; Gibson, J. Duane; Hastie, Morag; Porter, Dallan; Vilas, Faith] MMT Observ, Tucson, AZ USA. [Chanover, Nancy J.; Hamilton, Ryan T.; McMillan, Russet; Miller, Charles] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Choi, Young-Jun; Lee, Duk-Hang; Moon, Hong-Kyu; Sung, Eon-Chang; Yim, Hong-Suh] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Conrad, Al] Keck Observ, Mauna Kea, HI USA. [DeHart, Russell] Honeywell Technol Solut Inc, Greenbelt, MD USA. [de Pater, Imke; Forster, James R.; Welch, William J.] Univ Calif Berkeley, Berkeley, CA USA. [Disanti, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Furusho, Reiko; Noda, Hirotomo; Soma, Mitsuru; Watanabe, Jun-ihi] Natl Astron Observ Japan, Subaru Telescope, Mitaka, Tokyo 1818588, Japan. [Fuse, Tetsuharu; Hayano, Yutaka; Takatoh, Naruhisa; Terada, Hiroshi] Natl Astron Observ Japan, Hilo, HI, Japan. [Goldstein, David] Univ Texas Austin, Austin, TX 78712 USA. [Gregory, Stephen A.; Skinner, Mark A.] Boeing LTS, Kihei, HI USA. [Hamura, Taiga; Hong, Peng K.; Kurosawa, Kosuke; Okamura, Natsuko; Sekine, Yasuhito] Univ Tokyo, Dept Complex Sci & Engn, Kashiwa, Chiba, Japan. [Harker, David E.] Univ Calif San Diego, Ctr Astron & Space Sci, San Diego, CA 92103 USA. [Haruyama, Junichi] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [James, Steven P.] Capt USAF, AFRL RDSM Det 15, AF Maui Opt & Supercomp Site AMOS, Kihei, HI USA. [Kadono, Toshihiko] Osaka Univ, Inst Laser Engn, Suita, Osaka 565, Japan. [Kawakita, Hideyo] Kyoto Sangyo Univ, Dept Phys, Kita Ku, Kyoto 603, Japan. [Kelley, Michael S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Lee, Duk-Hang] Univ Sci & Technol, Taejon 305350, South Korea. [Long, Michael] Premiere Wireless, Orange, CA USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [McMillan, Russet] Apache Point Observ, Sunspot, NM USA. [Nakamura, Ryosuke] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Ong, Lawrence] NASA Goddard Sci Syst & Applicat Inc, Greenbelt, MD USA. [Puschell, Jeffery J.] Raytheon Space & Airborne Syst, El Segundo, CA USA. [Rayner, John T.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Rembold, J. Jedadiah; Ryan, Eileen V.; Ryan, William H.] New Mexico Inst Min & Technol, Socorro, NM USA. [Sekiguchi, Tomohiko] Hokkaido Univ, Kita Ku, Sapporo, Hokkaido, Japan. [Storrs, Alex] Towson Univ, Towson, MD USA. [Suggs, Robert M.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Sugita, Seiji] Univ Tokyo, Tokyo, Japan. [Woodward, Charles E.] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. RP Heldmann, JL (reprint author), NASA, Div Space Sci & Astrobiol, Ames Res Ctr, Moffett Field, CA USA. EM Jennifer.Heldmann@nasa.gov RI Kurosawa, Kosuke/N-2291-2015; OI Kurosawa, Kosuke/0000-0003-4965-4585; Harker, David/0000-0001-6397-9082; Kelley, Michael/0000-0002-6702-7676; Bailey, Vanessa/0000-0002-5407-2806 FU NASA's Exploration Systems Mission Directorate (ESMD) at NASA Headquarters; NASA's Science Mission Directorate; Aerospace Corporation; Universities Space Research Association [03450-32]; NASA Education and Public Outreach (EPO); NSF [AST-0706980]; NASA [NAS5-26555]; NASA through the Space Telescope Science Institute [HST-GO-11806.02-A] FX The LCROSS mission was funded by NASA's Exploration Systems Mission Directorate (ESMD) at NASA Headquarters. The authors gratefully acknowledge NASA's ESMD and the LCROSS Project Office at NASA Ames Research Center for managing the LCROSS mission. NASA's Science Mission Directorate also supported the LCROSS Astronomer Workshop and science analysis of the data. The Lunar and Planetary Institute (LPI) provided logistical support for both the LCROSS Site Selection and Astronomer workshops. NASA worked with USRA to provide support to several Astronomer teams for data collection, analysis, and data delivery to the Planetary Data System. In particular we thank Susie Slavney and Ed Guinness for assistance with archiving the ground-based observations within the Planetary Data System. We also thank each of the observatories and all of the individuals that supported the LCROSS Observation Campaign.; The AEOS team is grateful to B. Hema and E. Agader, the telescope operators at AEOS. This work was partially supported by the Independent Research and Development program of The Aerospace Corporation. This work is based on data from the Maui Space Surveillance System, which is operated by Detachment 15 of the U.S. Air Force Research Laboratory's Directed Energy Directorate.; The NMSU-NASA/MSFC team acknowledges the Universities Space Research Association, who supported the APO observations through contract number 03450-32. The NASA/MSFC team acknowledges partial support from the NASA Meteoroid Environment Office.; NASA Education and Public Outreach (EPO) provided funding to Mount Wilson Institute for use of the 60-inch telescope during the pre-impact test run and LCROSS impacts. Raytheon donated use of the 1280 x 1024 pixel format infrared camera used at Mount Wilson. Premiere Wireless donated use of an AG-6001 wireless ethernet system operating in FCC approved bands from 4910 to 5825 MHz to enable real time transmission of video data from Mount Wilson to the LCROSS team at NASA Ames.; Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). C.E.W. and D.E.H. also acknowledge support from the NSF (AST-0706980), and NASA through a grant to SWRI.; Support for Hubble Space Telescope observations (program number HST-GO-11806.02-A) was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. Many thanks to Tony Roman for help at all stages of planning and implementation of these observations. NR 49 TC 7 Z9 7 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2012 VL 167 IS 1-4 BP 93 EP 140 DI 10.1007/s11214-011-9759-y PG 48 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 949YO UT WOS:000304614600005 ER PT J AU Nakamura-Messenger, K Clemett, SJ Rubin, AE Choi, BG Zhang, SL Rahman, Z Oikawa, K Keller, LP AF Nakamura-Messenger, Keiko Clemett, Simon J. Rubin, Alan E. Choi, Byeon-Gak Zhang, Shouliang Rahman, Zia Oikawa, Katsunari Keller, Lindsay P. TI Wassonite: A new titanium monosulfide mineral in the Yamato 691 enstatite chondrite SO AMERICAN MINERALOGIST LA English DT Article DE New mineral; wassonite; TiS; Antarctic meteorite; TEM; electron diffraction ID ISOTOPE HETEROGENEITY; CONSTRAINTS; METEORITES; ORIGIN; SYSTEM AB Wassonite, ideally stoichiometric TiS, is a titanium monosulfide not previously observed in nature, that was discovered within the Yamato 691 EH3 enstatite chondrite. Twelve Ti-S phase grains were identified in a rare barred olivine (BO) chondrule; three of the grains were extracted by the focused ion beam technique. Because of the submicrometer size of the wassonite grains, it was not possible to determine conventional macroscopic properties. However, the chemical composition and crystal structure were well constrained by extensive quantitative energy-dispersive X-ray analysis and electron diffraction using transmission electron microscopy (TEM). The crystal system for wassonite is rhombohedral (a = 3.42 +/- 0.07, c = 26.50 +/- 0.53 angstrom) with space group: R (3) over barm, cell volume: 268.4 +/- 0.53 angstrom(3), Z = 9, density (calculated): 4.452 g/cm(3), empirical formula: (Ti-0.93,Fe-0.06,Cr-0.01)S. The wassonite grains crystallized from the chondrule melt that was itself formed in the solar nebula, not on the parent asteroid. The other crystalline phases in the BO chondrule include forsterite, enstatite, troilite, metallic Fe-Ni, and osbornite (as well as the new Ti-S-bearing minerals and schollhornite) are highly reduced and indicate formation at low-oxygen fugacities. C1 [Nakamura-Messenger, Keiko; Rahman, Zia] Jacobs Technol, ESCG, Houston, TX 77058 USA. [Nakamura-Messenger, Keiko; Clemett, Simon J.; Zhang, Shouliang; Rahman, Zia; Keller, Lindsay P.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Robert M Walker Lab Space Sci, Houston, TX 77058 USA. [Clemett, Simon J.] ERC Inc, ESCG, Houston, TX 77058 USA. [Rubin, Alan E.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Choi, Byeon-Gak] Seoul Natl Univ, Seoul 151748, South Korea. [Zhang, Shouliang] Lunar & Planetary Inst, Houston, TX 77058 USA. [Zhang, Shouliang] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Oikawa, Katsunari] Tohoku Univ, Grad Sch Engn, Dept Met, Sendai, Miyagi 9808579, Japan. RP Nakamura-Messenger, K (reprint author), Jacobs Technol, ESCG, Houston, TX 77058 USA. EM keiko.nakamura-1@nasa.gov RI Oikawa, Katsunari/C-6660-2009 OI Oikawa, Katsunari/0000-0002-5269-8426 FU NASA; NASA Cosmochemistry [NNG06GF95G, NNH10ZDA001N]; Korean NRFMEST [2011-0027574] FX This paper benefitted from helpful comments by Chi Ma, Klaus Keil, an anonymous reviewer, and associate editor Rhian Jones. We thank the JARE-10 team for their life-risking expedition to collect Antarctic meteorites including Yamato 691. We thank NIPR for preparing and loaning the specimen. We are grateful to John Wasson for allowing us to use his name for this new mineral. The JEOL 2500 SE field-emission STEM was obtained through a grant from the NASA SRLIDAP program. This work was supported by NASA Cosmochemistry grants NNG06GF95G (A.E.R.), NNH10ZDA001N (K.N.-M., L.P.K.), and Korean NRFMEST grant 2011-0027574 (B.-G.C.). NR 34 TC 2 Z9 2 U1 1 U2 10 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2012 VL 97 IS 5-6 BP 807 EP 815 DI 10.2138/am.2012.3946 PG 9 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 944OE UT WOS:000304212900005 ER PT J AU Li, L Sola, F Xia, ZH Yang, YQ AF Li, L. Sola, F. Xia, Z. H. Yang, Y. Q. TI Effect of amorphous carbon coatings on the mechanical behavior of silicon carbide nanowire SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BETA-SIC NANOWIRES; FIELD-EMISSION PROPERTIES; CERAMIC COMPOSITES; MATRIX COMPOSITES; HEATING METHOD; SIMULATION; STRENGTH; NANORODS; NANOTUBES; SYSTEMS AB Silicon carbide nanowires (NWs) are promising candidates for structural applications owing to their excellent mechanical, thermal, and electronic properties. The effect of amorphous carbon coatings on the mechanical behavior of the nanowires was studied via molecular dynamics methods at room temperature. The results show that the amorphous carbon coatings can shield opening cracks on silicon carbide nanowires, making them damage-tolerant. With increasing the defect size, the tensile strength and fracture energy of uncoated silicon carbide nanowires rapidly decrease; however, the properties of coated nanowires maintain nearly constant. Increasing the coating thickness leads to a brittle-to-ductile transition for the nanowires. Careful tailoring of the coatings permits engineering of these nanostructures for higher strength and damage tolerance at submicron scales. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711090] C1 [Li, L.; Xia, Z. H.] Univ N Texas, Dept Chem, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Li, L.; Yang, Y. Q.] NW Polytech Univ, Sch Mat, Xian 710072, Peoples R China. [Sola, F.] NASA Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. RP Xia, ZH (reprint author), Univ N Texas, Dept Chem, Dept Mat Sci & Engn, Denton, TX 76203 USA. EM Zhenhai.Xia@unt.edu FU National Science Foundation [CMMI 825990]; "111" project of China [B08040]; NASA Glenn Research Center [06-SSFW2-0043] FX We thank the support of this work by National Science Foundation through the Contract No. # CMMI 825990, and by the "111" project (B08040) of China. The authors also gratefully acknowledge the support of this work by NASA Glenn Research Center, project 06-SSFW2-0043. NR 39 TC 8 Z9 8 U1 5 U2 41 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2012 VL 111 IS 9 AR 094306 DI 10.1063/1.4711090 PG 5 WC Physics, Applied SC Physics GA 943GY UT WOS:000304109900120 ER PT J AU Magnotti, G Cutler, AD Herring, GC Tedder, SA Danehy, PM AF Magnotti, Gaetano Cutler, Andrew D. Herring, G. C. Tedder, Sarah A. Danehy, Paul M. TI Saturation and Stark broadening effects in dual-pump CARS of N2, O2, and H2 SO JOURNAL OF RAMAN SPECTROSCOPY LA English DT Article DE coherent anti-Stokes Raman spectroscopy; stimulated Raman pumping; Stark broadening; saturation; combustion ID STOKES-RAMAN-SCATTERING; PULSED MOLECULAR-BEAM; SUPERSONIC COMBUSTOR; LINE-SHAPES; SPECTROSCOPY; SPECTRA; TEMPERATURE; TRANSITIONS; HYDROGEN; NITROGEN AB The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) technique is frequently employed in the study of turbulent flames, but the applicability of this technique is limited by low signal-to-noise ratios at high temperatures. The signal-to-noise ratio can be increased by increasing the energy of the lasers. Unfortunately, there is a limit to the amount of energy that can be added before the signal is affected by high irradiance perturbation effects such as Stark broadening and stimulated Raman pumping (saturation). Such effects alter the spectral shape of the CARS signal and compromise the measurement accuracy. To explore these effects, dual-pump CARS spectra containing the N2 and O2 Q-branch manifolds and three S-branch H2 rotational lines were acquired in H2-air flames while varying the irradiances of the different input beams. For fuel-lean flames at 1180K and 1atm., absolute mole fraction measurements are affected by Stark broadening when the total irradiance is above 250 GW/cm2, and by saturation when the product of the pump and Stokes irradiances is above 2 x 103 GW2/cm4. The H2 S-branch is more sensitive to Stark broadening, and small variations in the line amplitude are observed for total irradiance of 170 GW/cm2. Temperature measurements are not sensitive to Stark broadening, but they are affected by saturation when the pump-Stokes irradiances product is above 2 x 104 GW2/cm4. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Magnotti, Gaetano; Cutler, Andrew D.] George Washington Univ, Dept Mech & Aerosp Engn, Newport News, VA 23602 USA. [Herring, G. C.; Danehy, Paul M.] NASA, Langley Res Ctr, Adv Sensing & Opt Measurements Branch, Hampton, VA 23681 USA. [Tedder, Sarah A.] NASA, Glenn Res Ctr, Combust Branch, Cleveland, OH 44107 USA. RP Magnotti, G (reprint author), George Washington Univ, Dept Mech & Aerosp Engn, 1 Old Oyster Point Rd,Suite 200, Newport News, VA 23602 USA. EM gaetano.magnotti@gmail.com OI Magnotti, Gaetano/0000-0002-1723-5258 FU NASA; NASA-AFOSR FX This work was supported by the NASA Fundamental Aeronautics Program, Hypersonics Project and the NASA-AFOSR-sponsored National Center for Hypersonic Combined Cycle Propulsion. The authors would like to thank Lloyd G. Wilson for assistance in performing these experiments. NR 37 TC 9 Z9 9 U1 2 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0377-0486 J9 J RAMAN SPECTROSC JI J. Raman Spectrosc. PD MAY PY 2012 VL 43 IS 5 SI SI BP 611 EP 620 DI 10.1002/jrs.3133 PG 10 WC Spectroscopy SC Spectroscopy GA 943UD UT WOS:000304149900005 ER PT J AU Sears, DWG AF Sears, Derek W. G. TI Oral Histories in Meteoritics and Planetary Science - XV: John Wood SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID PARENT PLANETS; CHONDRITES AB John Wood (Fig. 1) was trained in Geology at Virginia Tech and M.I.T. To fulfill a minor subject requirement at M.I.T., he studied astronomy at Harvard, taking courses with Fred Whipple and others. Disappointed at how little was known in the 1950s about the origin of the earth, he seized an opportunity to study a set of thin sections of stony meteorites, on the understanding that these might shed light on the topic. This study became his Ph.D. thesis. He recognized that chondrites form a metamorphic sequence, and that idea proved surprisingly hard to sell. After brief service in the Army and a year at Cambridge University, John served for 3 years as a research associate with Ed Anders at the University of Chicago. He then returned to the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, where he spent the remainder of his career. At Chicago, he investigated the formation of the Widmanstatten structure, and found that the process informs us of the cooling rates of iron meteorites. Back in Cambridge, he collaborated with W. R. Van Schmus on a chondrite classification that incorporates metamorphic grade, and published on metal grains in chondrites, before becoming absorbed by preparations for the return of lunar samples by the Apollo astronauts. His groups work on Apollo samples helped to establish the character of the lunar crust, and the need for a magma ocean to form it. Wood served as President of the Meteoritical Society in 1971-72 and received the Leonard Medal in 1978.. C1 NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. RP Sears, DWG (reprint author), NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. EM derek.sears@nasa.gov FU NASA FX This interview was recorded on April 22nd, 2011, and edited by the author and JW. As of 22nd April 2011, a CV, publication list and other information appear on http://home.earthlink.net/similar to jawood/. The Harvard Mineralogical Museum and Raquel Perez kindly furnished access to the box of J. Lawrence Smith thin sections one more time. I am grateful to NASA for financial support and to Ursula Marvin and Hazel Sears for reviews and Hazel also for proofing. NR 11 TC 0 Z9 0 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAY PY 2012 VL 47 IS 5 BP 903 EP 915 DI 10.1111/j.1945-5100.2012.01349.x PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 945UD UT WOS:000304300900008 ER PT J AU Sears, DWG AF Sears, Derek W. G. TI Oral Histories in Meteoritics and Planetary Science - XVII: Joseph Goldstein SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID WIDMANSTATTEN PATTERN; IRON METEORITE; COOLING RATES; SAMPLES; GROWTH AB In this interview, Joseph Goldstein (Fig. 1) recounts how he became interested in meteorites during his graduate studies working with Robert Ogilvie at MIT. By matching the Ni profiles observed across taenite fields in the Widmanstatten structure of iron meteorites with profiles he computed numerically he was able to determine cooling rates as the meteorites cooled through 650-400 degrees C. Upon graduating, he worked with a team of meteorite researchers led by Lou Walter at Goddard Space Flight Center where for 4 years he attempted to understand metallographic structures by reproducing them in the laboratory. Preferring an academic environment, Joe accepted a faculty position in the rapidly expanding metallurgy department at Lehigh University where he was responsible for their new electron microprobe. He soon became involved in studying the metal from lunar soils and identifying the metallic component from its characteristic iron and nickel compositions. Over the next two decades he refined these studies of Ni diffusion in iron meteorites, particularly the effect of phosphorus in the process, which resulted in superior Fe-Ni-P phase diagrams and improved cooling rates for the iron meteorites. After a period as vice president for research at Lehigh, in 1993 he moved to the University of Massachusetts to serve as dean of engineering, but during these administrative appointments Joe produced a steady stream of scientific results. Joe has served as Councilor, Treasurer, Vice President, and President of the Meteoritical Society. He received the Leonard Medal in 2005, the Sorby Award in 1999, and the Dumcumb Award for in 2008. 1 Joseph Goldstein. C1 NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA 94035 USA. RP Sears, DWG (reprint author), NASA, Space Sci & Astrobiol Div, Ames Res Ctr, MS 245-3, Mountain View, CA 94035 USA. EM derek.sears@nasa.gov FU NASA FX This interview was recorded on March 7th, 2011, and edited by the author and JG. I am grateful to NASA for financial support. I am also grateful to Tim Jull, John Wood, and Hazel Sears for reviews and Hazel Sears for proofing. NR 12 TC 1 Z9 1 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAY PY 2012 VL 47 IS 5 BP 916 EP 926 DI 10.1111/j.1945-5100.2012.01358.x PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 945UD UT WOS:000304300900009 ER PT J AU Bauschlicher, CW Lawson, JW AF Bauschlicher, Charles W., Jr. Lawson, John W. TI Ab initio investigation of the structural stability and optical properties of low-density amorphous carbon doped with N, B, and Fe SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Article DE Amorphous carbon; DFT; Surfaces; Dopants; Cohesive energy; Optical properties ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRONIC-PROPERTIES; VIBRATIONAL PROPERTIES; RAMAN CHARACTERIZATION; MOLECULAR-DYNAMICS; NITRIDE SYSTEMS; FILMS; MICROSTRUCTURE; IRON AB The addition of iron or boron and/or nitrogen, up to 20 %, to amorphous carbon with a density of about 2.0 gm/cm(3) was studied using density functional theory. The bulk cohesive energy decreases with increasing iron, nitrogen, or boron concentration. The decrease is largest for iron and smallest for boron. The trends in the bulk moduli are consistent with the cohesive energies. The optical properties (absorbance and reflectivity) of the samples with nitrogen and/or boron added are very similar to those of the original amorphous carbon. Addition of iron results in larger, energy dependent, changes when compared with either boron or nitrogen. The effect of dopants on low-density amorphous carbon shows some differences with those for higher density amorphous carbon. C1 [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Entry Syst & Technol Div, Moffett Field, CA 94035 USA. [Lawson, John W.] NASA, Ames Res Ctr, Thermal Protect Mat Branch, Moffett Field, CA 94035 USA. RP Bauschlicher, CW (reprint author), NASA, Ames Res Ctr, Entry Syst & Technol Div, Mail Stop 230-3, Moffett Field, CA 94035 USA. EM Charles.W.Bauschlicher@nasa.gov; John.W.Lawson@nasa.gov NR 56 TC 0 Z9 0 U1 1 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD MAY PY 2012 VL 131 IS 5 AR 1228 DI 10.1007/s00214-012-1228-5 PG 9 WC Chemistry, Physical SC Chemistry GA 946PA UT WOS:000304363700002 ER PT J AU Jennings, AT Gross, C Greer, F Aitken, ZH Lee, SW Weinberger, CR Greer, JR AF Jennings, A. T. Gross, C. Greer, F. Aitken, Z. H. Lee, S. -W. Weinberger, C. R. Greer, J. R. TI Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars SO ACTA MATERIALIA LA English DT Article DE Dislocation boundaries; Copper; Compression test; Nanostructure ID DISCRETE DISLOCATION ANALYSIS; MICRO-PILLAR PLASTICITY; SINGLE-CRYSTALS; NICKEL MICROCRYSTALS; DEFORMATION-BEHAVIOR; THIN-FILMS; SIZE; SIMULATIONS; SCALE; MICROPILLARS AB Our current understanding of size-dependent strength in nano- and microscale crystals is centered around the idea that the overall strength is determined by the stress required to propagate dislocation sources. The nature and type of these dislocation sources is the subject of extensive debate, however, one commonality amongst these theories is that the ability of the free surface to absorb dislocations is a necessary condition for transition to a source controlled regime. In this work we demonstrate that atomic layer deposition (ALD) of conformal 5-25 nm thick TiO2/Al2O3 coatings onto electroplated single crystalline copper pillars with diameters ranging from 75 nm to 1 mu m generally inhibits the ability of a dislocation to vanish at the free surface. Uniaxial compression tests reveal increased strength and hardening relative to uncoated pillars at equivalent diameters, as well as a notable recovery of plastic strain during unloading, i.e. the Bauschinger effect. Unlike previous reports, these coated pillars retained the stochastic signature in their stress strain curves. We explain these observations within the framework of a size-dependent strength theory based on a single arm source model, dislocation theory, and microstructural analysis by transmission electron microscopy. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Jennings, A. T.; Aitken, Z. H.; Lee, S. -W.; Greer, J. R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Gross, C.] Northwestern Univ, Evanston, IL 60208 USA. [Greer, F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Weinberger, C. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Greer, JR (reprint author), CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM jrgreer@caltech.edu RI Lee, Seok-Woo/D-8205-2011; Weinberger, Christopher/E-2602-2011; OI Weinberger, Christopher/0000-0001-9550-6992; Lee, Seok-Woo/0000-0001-6752-5694 FU National Science Foundation [DMR-0748267]; KNI; Sandia Corp. under US Department of Energy [DE-AC04-94AL85000]; National Aeronautics and Space Administration FX A.T.J., Z.H.A., and J.R.G. gratefully acknowledge the financial support of the National Science Foundation through a NSF Graduate Research Fellowship to A.T.J. and JRG's a Career Grant (DMR-0748267) to J.R.G. The experiments were partly performed at the Kavli Nanoscience Institute (KNI). S.W.L. acknowledges the KNI for fellowship support. This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corp. (a wholly owned subsidiary of Lockheed Martin Corp.) as Operator of Sandia National Laboratories under US Department of Energy Contract No. DE-AC04-94AL85000. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 75 TC 33 Z9 33 U1 4 U2 68 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2012 VL 60 IS 8 BP 3444 EP 3455 DI 10.1016/j.actamat.2012.03.013 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 942CR UT WOS:000304020300020 ER PT J AU Abeysekara, AU Aguilar, JA Aguilar, S Alfaro, R Almaraz, E Alvarez, C Alvarez-Romero, JD Alvarez, M Arceo, R Arteaga-Velazquez, JC Badillo, C Barber, A Baughman, BM Bautista-Elivar, N Belmont, E Benitez, E BenZvi, SY Berley, D Bernal, A Bonamente, E Braun, J Caballero-Lopez, R Cabrera, I Carraminana, A Carrasco, L Castillo, M Chambers, L Conde, R Condreay, P Cotti, U Cotzomi, J D'Olivo, JC de la Fuente, E De Leon, C Delay, S Delepine, D DeYoung, T Diaz, L Diaz-Cruz, L Dingus, BL Duvernois, MA Edmunds, D Ellsworth, RW Fick, B Florino, DW Flandes, A Fraija, NI Galindo, A Garcia-Luna, JL Garcia-Torales, G Garfias, F Gonzalez, LX Gonzalez, MM Goodman, JA Grabski, V Gussert, M Guzman-Ceron, C Hampel-Arias, Z Harris, T Hays, E Hernandez-Cervantes, L Huntemeyer, PH Imran, A Iriarte, A Jimenez, JJ Karn, P Kelley-Hoskins, N Kieda, D Langarica, R Lara, A Lauer, R Lee, WH Linares, EC Linnemann, JT Longo, M Luna-Garcia, R Martinez, H Martinez, J Martinez, LA Martinez, O Martinez-Castro, J Martos, M Matthews, J McEnery, JE Medina-Tanco, G Mendoza-Torres, JE Miranda-Romagnoli, PA Montaruli, T Moreno, E Mostafa, M Napsuciale, M Nava, J Nellen, L Newbold, M Noriega-Papaqui, R Oceguera-Becerra, T Tapia, AO Orozco, V Perez, V Perez-Perez, EG Perkins, JS Pretz, J Ramirez, C Ramirez, I Rebello, D Renteria, A Reyes, J Rosa-Gonzalez, D Rosado, A Ryan, JM Sacahui, JR Salazar, H Salesa, F Sandoval, A Santos, E Schneider, M Shoup, A Silich, S Sinnis, G Smith, AJ Sparks, K Springer, W Suarez, F Suarez, N Taboada, I Tellez, AF Tenorio-Tagle, G Tepe, A Toale, PA Tollefson, K Torres, I Ukwatta, TN Valdes-Galicia, J Vanegas, P Vasileiou, V Vazquez, O Vazquez, X Villasenor, L Wall, W Walters, JS Warner, D Westerhoff, S Wisher, IG Wood, J Yodh, GB Zaborov, D Zepeda, A AF Abeysekara, A. U. Aguilar, J. A. Aguilar, S. Alfaro, R. Almaraz, E. Alvarez, C. Alvarez-Romero, J. de D. Alvarez, M. Arceo, R. Arteaga-Velazquez, J. C. Badillo, C. Barber, A. Baughman, B. M. Bautista-Elivar, N. Belmont, E. Benitez, E. BenZvi, S. Y. Berley, D. Bernal, A. Bonamente, E. Braun, J. Caballero-Lopez, R. Cabrera, I. Carraminana, A. Carrasco, L. Castillo, M. Chambers, L. Conde, R. Condreay, P. Cotti, U. Cotzomi, J. D'Olivo, J. C. de la Fuente, E. De Leon, C. Delay, S. Delepine, D. DeYoung, T. Diaz, L. Diaz-Cruz, L. Dingus, B. L. Duvernois, M. A. Edmunds, D. Ellsworth, R. W. Fick, B. Florino, D. W. Flandes, A. Fraija, N. I. Galindo, A. Garcia-Luna, J. L. Garcia-Torales, G. Garfias, F. Gonzalez, L. X. Gonzalez, M. M. Goodman, J. A. Grabski, V. Gussert, M. Guzman-Ceron, C. Hampel-Arias, Z. Harris, T. Hays, E. Hernandez-Cervantes, L. Huentemeyer, P. H. Imran, A. Iriarte, A. Jimenez, J. J. Karn, P. Kelley-Hoskins, N. Kieda, D. Langarica, R. Lara, A. Lauer, R. Lee, W. H. Linares, E. C. Linnemann, J. T. Longo, M. Luna-Garcia, R. Martinez, H. Martinez, J. Martinez, L. A. Martinez, O. Martinez-Castro, J. Martos, M. Matthews, J. McEnery, J. E. Medina-Tanco, G. Mendoza-Torres, J. E. Miranda-Romagnoli, P. A. Montaruli, T. Moreno, E. Mostafa, M. Napsuciale, M. Nava, J. Nellen, L. Newbold, M. Noriega-Papaqui, R. Oceguera-Becerra, T. Olmos Tapia, A. Orozco, V. Perez, V. Perez-Perez, E. G. Perkins, J. S. Pretz, J. Ramirez, C. Ramirez, I. Rebello, D. Renteria, A. Reyes, J. Rosa-Gonzalez, D. Rosado, A. Ryan, J. M. Sacahui, J. R. Salazar, H. Salesa, F. Sandoval, A. Santos, E. Schneider, M. Shoup, A. Silich, S. Sinnis, G. Smith, A. J. Sparks, K. Springer, W. Suarez, F. Suarez, N. Taboada, I. Tellez, A. F. Tenorio-Tagle, G. Tepe, A. Toale, P. A. Tollefson, K. Torres, I. Ukwatta, T. N. Valdes-Galicia, J. Vanegas, P. Vasileiou, V. Vazquez, O. Vazquez, X. Villasenor, L. Wall, W. Walters, J. S. Warner, D. Westerhoff, S. Wisher, I. G. Wood, J. Yodh, G. B. Zaborov, D. Zepeda, A. TI On the sensitivity of the HAWC observatory to gamma-ray bursts SO ASTROPARTICLE PHYSICS LA English DT Article DE Gamma-ray bursts; Gamma ray ID HIGH-ENERGY EMISSION; FERMI OBSERVATIONS; SPECTRAL COMPONENT; BLACK-HOLES; GRB 090510; CONSTRAINTS; SUPERNOVAE; TELESCOPE; MILAGRITO; AFTERGLOW AB We present the sensitivity of HAWC to gamma ray bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles. (c) 2012 Elsevier B.V. All rights reserved. C1 [Harris, T.; Rebello, D.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Harris, T.; Rebello, D.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Abeysekara, A. U.; Edmunds, D.; Linnemann, J. T.; Tollefson, K.; Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Aguilar, J. A.; BenZvi, S. Y.; Duvernois, M. A.; Florino, D. W.; Hampel-Arias, Z.; Montaruli, T.; Westerhoff, S.; Wisher, I. G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Aguilar, S.; Alfaro, R.; Almaraz, E.; Alvarez, M.; Badillo, C.; Belmont, E.; Cabrera, I.; Grabski, V.; Martinez, J.; Orozco, V.; Perez, V.; Ramirez, I.; Renteria, A.; Sandoval, A.; Suarez, F.; Vanegas, P.; Vazquez, O.; Vazquez, X.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Alvarez, C.; Arceo, R.; Jimenez, J. J.; Santos, E.] Univ Autonoma Chiapas, CEFYMAP, Tuxtla Gutierrez 29040, Chiapas, Mexico. [Alvarez-Romero, J. de D.; Arteaga-Velazquez, J. C.; Cotti, U.; De Leon, C.; Linares, E. C.; Villasenor, L.] Univ Michocana San Nicolas de Hidalgo, Morelia 58040, Mich, Mexico. [Barber, A.; Kieda, D.; Newbold, M.; Springer, W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Baughman, B. M.; Berley, D.; Braun, J.; Goodman, J. A.; Smith, A. J.; Wood, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bautista-Elivar, N.; Perez-Perez, E. G.] Univ Politecn Pachuca, Pachuca, Hidalgo, Mexico. [Benitez, E.; Bernal, A.; Fraija, N. I.; Garfias, F.; Gonzalez, M. M.; Guzman-Ceron, C.; Hernandez-Cervantes, L.; Iriarte, A.; Langarica, R.; Lee, W. H.; Martinez, L. A.; Martos, M.; Sacahui, J. R.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Bonamente, E.; Fick, B.; Huentemeyer, P. H.; Kelley-Hoskins, N.; Lara, A.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Caballero-Lopez, R.; Flandes, A.; Valdes-Galicia, J.] Univ Nacl Autonoma Mexico, Inst Geofis, Cu Mexico 04510, DF, Mexico. [Carraminana, A.; Carrasco, L.; Galindo, A.; Gonzalez, L. X.; Mendoza-Torres, J. E.; Nava, J.; Olmos Tapia, A.; Reyes, J.; Rosa-Gonzalez, D.; Silich, S.; Suarez, N.; Tenorio-Tagle, G.; Torres, I.; Wall, W.; Walters, J. S.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Castillo, M.; Conde, R.; Cotzomi, J.; Diaz-Cruz, L.; Martinez, O.; Moreno, E.; Ramirez, C.; Rosado, A.; Salazar, H.; Tellez, A. F.] Benemerita Univ Autonoma Puebla, FCFM, Puebla 72000, Mexico. [Chambers, L.; Condreay, P.; DeYoung, T.; Sparks, K.; Zaborov, D.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [D'Olivo, J. C.; Diaz, L.; Medina-Tanco, G.; Nellen, L.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [de la Fuente, E.; Garcia-Luna, J. L.; Garcia-Torales, G.; Oceguera-Becerra, T.] Univ Guadalajara, CUCEA, CU VALLES, CUCEI, Guadalajara 44430, Jalisco, Mexico. [Delay, S.; Karn, P.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Delepine, D.; Napsuciale, M.] Univ Guanajuato, Dept Phys, Col Loma Del Campestre 37150, Leon, Mexico. [Dingus, B. L.; Imran, A.; Pretz, J.; Sinnis, G.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Ellsworth, R. W.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Gussert, M.; Longo, M.; Mostafa, M.; Salesa, F.; Warner, D.] Colorado State Univ, Ft Collins, CO 80525 USA. [Hays, E.; McEnery, J. E.; Perkins, J. S.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lauer, R.; Matthews, J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Luna-Garcia, R.; Martinez-Castro, J.] Inst Politecn Nacl, Ctr Invest Comp, Mexico City 07738, DF, Mexico. [Martinez, H.; Zepeda, A.] IPN, Ctr Invest & Estudios Avanzados, Dept Phys, Mexico City 07000, DF, Mexico. [Miranda-Romagnoli, P. A.; Noriega-Papaqui, R.] Univ Autonoma Estado Hidalgo, Pachuca, Hidalgo, Mexico. [Ryan, J. M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Schneider, M.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Shoup, A.] Ohio State Univ, Lima, OH 45804 USA. [Toale, P. A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Taboada, I (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. EM ignacio.taboada@physics.gatech.edu RI Hays, Elizabeth/D-3257-2012; Aguilar Sanchez, Juan Antonio/H-4467-2015; Fernandez Tellez, Arturo/E-9700-2017; OI Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Fernandez Tellez, Arturo/0000-0003-0152-4220; Caballero, Rogelio/0000-0001-8954-1927; Dingus, Brenda/0000-0001-8451-7450; Fernandez Tellez, Arturo/0000-0001-5092-9748 FU National Science Foundation; US Department of Energy Office of High-Energy Physics; LDRD of Los Alamos National Laboratory; Consejo Nacional de Ciencia y Tecnologia [55155, 103520, 105033, 105666, 122331, 132197]; Red de Fisica de Altas Energias, DGAPA-UNAM [IN105211, IN112910, IN121309, IN115409]; VIEP-BUAP [161-EXC-2011]; University of Wisconsin Alumni Research Foundation FX This work has been supported by: the National Science Foundation, the US Department of Energy Office of High-Energy Physics, the LDRD program of Los Alamos National Laboratory, Consejo Nacional de Ciencia y Tecnologia (grants 55155, 103520, 105033, 105666, 122331 and 132197), Red de Fisica de Altas Energias, DGAPA-UNAM (grants IN105211, IN112910 and IN121309, IN115409), VIEP-BUAP (grant 161-EXC-2011) and the University of Wisconsin Alumni Research Foundation. NR 54 TC 39 Z9 39 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2012 VL 35 IS 10 BP 641 EP 650 DI 10.1016/j.astropartphys.2012.02.001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 944RD UT WOS:000304220600006 ER PT J AU Sritrairat, S Peteet, DM Kenna, TC Sambrotto, R Kurdyla, D Guilderson, T AF Sritrairat, Sanpisa Peteet, Dorothy M. Kenna, Timothy C. Sambrotto, Ray Kurdyla, Dorothy Guilderson, Tom TI A history of vegetation, sediment and nutrient dynamics at Tivoli North Bay, Hudson Estuary, New York SO ESTUARINE COASTAL AND SHELF SCIENCE LA English DT Article DE paleoecology; tidal marshes; palynology; stable isotopes; nitrogen cycle; climate change; Medieval Warm period; Little Ice Age; European settlement; invasive species; Typha angustifolia; Phragmites australis; New York ID SOUTHEASTERN NEW-YORK; CHESAPEAKE BAY; PHRAGMITES-AUSTRALIS; TYPHA-ANGUSTIFOLIA; NEW-ENGLAND; HOLOCENE VEGETATION; COASTAL WETLANDS; PLANT DIVERSITY; ATLANTIC OCEAN; POLLEN RECORDS AB We conduct a stratigraphic paleoecological investigation at a Hudson River National Estuarine Research Reserve (HRNERR) site, Tivoli Bays, spanning the past 1100 years. Marsh sediment cores were analyzed for ecosystem changes using multiple proxies, including pollen, spores, macrofossils, charcoal, sediment bulk chemistry, and stable carbon and nitrogen isotopes. The results reveal climatic shifts such as the warm and dry Medieval Warm Period (MWP) followed by the cooler Little Ice Age (LIA), along with significant anthropogenic influence on the watershed ecosystem. A five-fold expansion of invasive species, including Typha angustifolia and Phragmites australis, is documented along with marked changes in sediment composition and nutrient input. During the last century, a ten-fold sedimentation rate increase due to land-use changes is observed. The large magnitude of shifts in vegetation, sedimentation, and nutrients during the last few centuries suggest that human activities have made the greatest impact to the marshes of the Hudson Estuary during the last millennium. Climate variability and ecosystem changes similar to those observed at other marshes in northeastern and mid-Atlantic estuaries, attest to the widespread regional signature recorded at Tivoli Bays. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Sritrairat, Sanpisa; Peteet, Dorothy M.; Kenna, Timothy C.; Sambrotto, Ray] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Peteet, Dorothy M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kurdyla, Dorothy; Guilderson, Tom] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Sritrairat, S (reprint author), Lamont Doherty Earth Observ, 61 Rt 9 W, Palisades, NY 10964 USA. EM sanpisa@ldeo.columbia.edu FU New York Sea Grant; Hudson River National Estuarine Research Reserves Graduate Fellowship; National Estuarine Research Reserves Fellowship; Lamont-Doherty Earth Observatory Climate Center FX The project was funded by New York Sea Grant and Hudson River National Estuarine Research Reserves Graduate Fellowship, the National Estuarine Research Reserves Fellowship, and the Lamont-Doherty Earth Observatory Climate Center. Thanks to Betsy Blair, Chuck Nieder, Geof Eckerlin, and Sarah Fernald who facilitated our field work. We also thank Eric Kiviat and an anonymous reviewer for input and discussion on modern vegetation and history. NR 86 TC 5 Z9 5 U1 1 U2 37 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0272-7714 J9 ESTUAR COAST SHELF S JI Estuar. Coast. Shelf Sci. PD MAY 1 PY 2012 VL 102 BP 24 EP 35 DI 10.1016/j.ecss.2012.03.003 PG 12 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 936ZN UT WOS:000303628900003 ER PT J AU Stanford, MK Thomas, DK DellaCorte, C AF Stanford, Malcolm K. Thomas, David K. DellaCorte, Christopher TI MECHANICAL AND PHYSICAL PROPERTIES OF A PM COMPOSITE SOLID-LUBRICANT BUSHING SO INTERNATIONAL JOURNAL OF POWDER METALLURGY LA English DT Article AB Selected mechanical and the rmophysical properties of PM300, a composite solid lubricant composed of a nickel-chromium alloy, chromia, silver, and an alkaline earth fluoride made by conventional powder metallurgy (PM) techniques, have been determined. Poisson's ratio, Young's modulus, and shear modulus were recorded at room temperature. Compressive strength was essentially the same at room temperature and at 425 C, beyond which it began to decline. Thermal conductivity and thermal diffusivity were recorded from room temperature to 500 C and 300 C, respectively. The results indicate that the PM composite would be compatible with and suitable for mechanical components experiencing low-speed sliding contact under moderate loading in extreme environments such as bushings for high-temperature conveyor chain or variable stator vanes. C1 [Stanford, Malcolm K.; DellaCorte, Christopher] NASA, Glenn Res Ctr, Cleveland, OH USA. [Thomas, David K.] Univ Dayton, Dayton, OH 45469 USA. RP Stanford, MK (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH USA. EM Malcolm.K.Stanford@nasa.gov NR 19 TC 0 Z9 0 U1 0 U2 4 PU AMER POWDER METALLURGY INST PI PRINCETON PA 105 COLLEGE ROAD EAST, PRINCETON, NJ 08540 USA SN 0888-7462 J9 INT J POWDER METALL JI Int. J. Powder Metall. PD MAY-JUN PY 2012 VL 48 IS 3 BP 41 EP 49 PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 944EU UT WOS:000304182900005 ER PT J AU Joshi, SM Patre, P Tao, G AF Joshi, Suresh M. Patre, Parag Tao, Gang TI Adaptive Control of Systems with Actuator Failures Using an Adaptive Reference Model SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID AIRCRAFT; SCHEME AB This paper considers model reference adaptive control of uncertain plants under actuator failures when the plant model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking to compensate for model errors and actuator failures and simultaneous estimation of the plant model mismatch. Because of mismatch resulting from large changes in the plant, the original reference model may no longer be appropriate, and it may be desirable to track the state of a modified reference model that still provides satisfactory performance. The reference model is redesigned if the estimated plant model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The proposed controller is a hybrid direct indirect adaptive controller that offers asymptotic state tracking in the presence of plant model mismatch, parameter deviations, and actuator failures. C1 [Joshi, Suresh M.; Patre, Parag] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Tao, Gang] Univ Virginia, Charlottesville, VA 22904 USA. RP Joshi, SM (reprint author), NASA Langley Res Ctr, Hampton, VA 23681 USA. NR 24 TC 5 Z9 5 U1 0 U2 3 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD MAY-JUN PY 2012 VL 35 IS 3 BP 938 EP 949 DI 10.2514/1.54332 PG 12 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 940PD UT WOS:000303904600022 ER PT J AU Danielson, ALR Lehmer, BD Alexander, DM Brandt, WN Luo, B Miller, N Xue, YQ Stott, JP AF Danielson, A. L. R. Lehmer, B. D. Alexander, D. M. Brandt, W. N. Luo, B. Miller, N. Xue, Y. Q. Stott, J. P. TI The cosmic history of hot gas cooling and radio active galactic nucleus activity in massive early-type galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: evolution; X-rays: galaxies ID DEEP-FIELD-SOUTH; YALE-CHILE MUSYC; SUPERMASSIVE BLACK-HOLE; NEAR-INFRARED CATALOG; POINT-SOURCE CATALOGS; 1.4 GHZ OBSERVATIONS; X-RAY LUMINOSITY; ELLIPTIC GALAXIES; PHOTOMETRIC REDSHIFTS; JET POWER AB We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approximate to 0.0-1.2 in the Chandra Deep Fields (CDFs). To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approximate to 4 Ms CDF-South and approximate to 2 Ms CDF-North and z = 0.1-0.6 in the approximate to 250 ks Extended-CDF-South where the contribution from individually undetected active galactic nuclei (AGN) is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in X-ray, and 12 of these galaxies have properties consistent with being passive hot-gas-dominated systems (i.e. systems not dominated by an X-ray bright AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keV to B-band luminosity ratio (L-X/L-B proportional to [1 + z](1.2)) since z approximate to 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGN in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approximate to 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approximate to 1.4-2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approximate to 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies. C1 [Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Stott, J. P.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brandt, W. N.; Xue, Y. Q.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.; Xue, Y. Q.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Luo, B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Miller, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Danielson, ALR (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. EM a.l.r.danielson@durham.ac.uk RI Brandt, William/N-2844-2015; OI Brandt, William/0000-0002-0167-2453; Stott, John/0000-0002-1679-9983; Alexander, David/0000-0002-5896-6313 FU STFC; Einstein Fellowship program; CXC [SP1-12007A] FX We thank the anonymous referee for their helpful comments. ALRD acknowledges an STFC studentship. We would like to thank Ian Smail for useful comments and feedback on this work. We also thank Philip Best for providing us with his sample for comparing to our work and Laura Birzan for useful advice. BDL acknowledges financial support from the Einstein Fellowship program. WNB and YQX thank CXC grant SP1-12007A. DMA acknowledges financial support from STFC. NR 87 TC 9 Z9 9 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 1 BP 494 EP 509 DI 10.1111/j.1365-2966.2012.20626.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940SE UT WOS:000303912600055 ER PT J AU Gressel, O Nelson, RP Turner, NJ AF Gressel, Oliver Nelson, Richard P. Turner, Neal J. TI Dead zones as safe havens for planetesimals: influence of disc mass and external magnetic field SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; MHD; methods: numerical; planets and satellites: formation; protoplanetary discs ID ANGULAR-MOMENTUM TRANSPORT; TURBULENT PROTOPLANETARY DISCS; MRI-DRIVEN TURBULENCE; SPIRAL DENSITY WAVES; WEAKLY IONIZED DISKS; T TAURI DISKS; MAGNETOROTATIONAL INSTABILITY; ACCRETION DISKS; PROTOSTELLAR DISKS; NONLINEAR EVOLUTION AB Planetesimals embedded in a protoplanetary disc are stirred by gravitational torques exerted by density fluctuations in the surrounding turbulence. In particular, planetesimals in a disc supporting fully developed magnetorotational turbulence are readily excited to velocity dispersions above the threshold for catastrophic disruption, halting planet formation. We aim to examine the stirring of planetesimals lying instead in a magnetically decoupled mid-plane dead zone, stirred only by spiral density waves propagating out of the disc's magnetically coupled turbulent surface layers. We extend previous studies to include a wider range of disc models, and explore the effects of varying the disc column density and external magnetic field strength. We measure the stochastic torques on swarms of test particles in three-dimensional resistive-magnetohydrodynamics stratified shearing-box calculations with ionization by stellar X-rays, cosmic rays, and recombination on dust grains. The strength of the stirring is found to be independent of the gas surface density, which is contrary to the increase with disc mass expected from a simple linear wave picture. The discrepancy arises from the shearing out of density waves as they propagate into the dead zone, resulting in density structures near the mid-plane that exert weaker stochastic torques on average. We provide a simple analytic fit to our numerically obtained torque amplitudes that accounts for this effect. The stirring, on the other hand, depends sensitively on the net vertical magnetic flux, up to a saturation level above which magnetic forces dominate in the turbulent layers. For the majority of our models, the equilibrium planetesimal velocity dispersions lie between the thresholds for disrupting strong and weak aggregates, suggesting that collision outcomes will depend on material properties. However, discs with relatively weak magnetic fields yield reduced stirring, and their dead zones provide safe havens even for the weakest planetesimals against collisional destruction. C1 [Gressel, Oliver; Nelson, Richard P.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gressel, O (reprint author), Queen Mary Univ London, Astron Unit, Mile End Rd, London E1 4NS, England. EM o.gressel@qmul.ac.uk; r.p.nelson@qmul.ac.uk; neal.turner@jpl.nasa.gov RI Gressel, Oliver/D-3683-2014; OI Gressel, Oliver/0000-0002-5398-9225; Turner, Neal/0000-0001-8292-1943 FU Jet Propulsion Laboratory, California Institute of Technology; NASA; Alexander von Humboldt Foundation FX We thank the anonymous referee for her/his detailed report. This work used the NIRVANA-III code developed by Udo Ziegler at the Leibniz Institute for Astrophysics (AIP). All computations were performed on the QMUL HPC facility, purchased under the SRIF initiative. NJT was supported by the Jet Propulsion Laboratory, California Institute of Technology, the NASA Origins and Outer Planets programmes, and the Alexander von Humboldt Foundation. NR 90 TC 30 Z9 30 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 2 BP 1140 EP 1159 DI 10.1111/j.1365-2966.2012.20701.x PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940SG UT WOS:000303912800019 ER PT J AU Barclay, T Still, M Jenkins, JM Howell, SB Roettenbacher, RM AF Barclay, Thomas Still, Martin Jenkins, Jon M. Howell, Steve B. Roettenbacher, Rachael M. TI Serendipitous Kepler observations of a background dwarf nova of SU UMa type SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; methods: data analysis; stars: dwarf novae; novae, cataclysmic variables ID CATACLYSMIC VARIABLES; V344 LYRAE; INSTABILITY MODEL; ACCRETION DISKS; SPACE DENSITY; URSAE MAJORIS; LIGHT-CURVE; SUPERHUMPS; CATALOG; SUPEROUTBURST AB We have discovered a dwarf nova (DN) of type SU UMa in Kepler data which is 7.0 arcsec from the G-type exoplanet survey target KIC 4378554. The DN appears as a background source in the pixel aperture of the foreground G star. We extracted only the pixels where the DN is present and observed the source to undergo five outbursts - one a superoutburst - over a time span of 22 months. The superoutburst was triggered by a normal outburst, a feature that has been seen in all DNe superoutbursts observed by Kepler. Superhumps during the superoutburst had a period of 1.842 +/- 0.004 h, and we see a transition from disc-dominated superhump signal to a mix of disc and accretion stream impact. Predictions of the number of DNe present in Kepler data based on previously published space densities vary from 0.3 to 258. An investigation of the background pixel targets would lead to firmer constraints on the space density of DNe. C1 [Barclay, Thomas; Jenkins, Jon M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Barclay, Thomas; Still, Martin] Bay Area Environm Res Inst Inc, Sonoma, CA 95476 USA. [Roettenbacher, Rachael M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. RP Barclay, T (reprint author), NASA, Ames Res Ctr, SETI Inst, M-S 244-40, Moffett Field, CA 94035 USA. EM thomas.barclay@nasa.gov OI Barclay, Thomas/0000-0001-7139-2724 FU NASA's Science Mission Directorate; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G]; Space Telescope Science Institute under US Government [NAG W-2166] FX Kepler was selected as the 10th Discovery mission. Funding for Kepler is provided by NASA's Science Mission Directorate. This paper made extensive use of the PYKE tools provided by the Kepler Guest Observer Office for the use of the community. All of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. We used images from The Digitized Sky Surveys which were produced at the Space Telescope Science Institute under US Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. NR 48 TC 17 Z9 17 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 2 BP 1219 EP 1230 DI 10.1111/j.1365-2966.2012.20700.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940SG UT WOS:000303912800026 ER PT J AU Guillemot, L Freire, PCC Cognard, I Johnson, TJ Takahashi, Y Kataoka, J Desvignes, G Camilo, F Ferrara, EC Harding, AK Janssen, GH Keith, M Kerr, M Kramer, M Parent, D Ransom, SM Ray, PS Parkinson, PMS Smith, DA Stappers, BW Theureau, G AF Guillemot, L. Freire, P. C. C. Cognard, I. Johnson, T. J. Takahashi, Y. Kataoka, J. Desvignes, G. Camilo, F. Ferrara, E. C. Harding, A. K. Janssen, G. H. Keith, M. Kerr, M. Kramer, M. Parent, D. Ransom, S. M. Ray, P. S. Parkinson, P. M. Saz Smith, D. A. Stappers, B. W. Theureau, G. TI Discovery of the millisecond pulsar PSR J2043+1711 in a Fermi source with the Nancay Radio Telescope SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE pulsars: general; pulsars: individual: PSR J2043+1711; gamma-rays: general ID LARGE-AREA TELESCOPE; GAMMA-RAY PULSAR; LIGHT CURVES; GENERAL-RELATIVITY; GLOBULAR-CLUSTER; SHAPIRO DELAY; EMISSION; POPULATION; EVOLUTION; RADIATION AB We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d less than or similar to 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 mu s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 M-circle dot can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date. C1 [Guillemot, L.; Freire, P. C. C.; Desvignes, G.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Cognard, I.; Theureau, G.] CNRS INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Cognard, I.; Theureau, G.] LPCE UMR 6115 CNRS, Lab Phys & Chim Environm, F-45071 Orleans 02, France. [Johnson, T. J.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20010 USA. [Ray, P. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Takahashi, Y.; Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Ferrara, E. C.; Harding, A. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Janssen, G. H.; Kramer, M.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Keith, M.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kerr, M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Kerr, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Parent, D.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. USN, Res Lab, Washington, DC 20375 USA. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Smith, D. A.] Univ Bordeaux 1, Ctr Etudes Nucl Bordeaux Gradignan, CNRS IN2p3, F-33175 Gradignan, France. RP Guillemot, L (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM guillemo@mpifr-bonn.mpg.de; pfreire@mpifr-bonn.mpg.de; icognard@cnrs-orleans.fr RI Harding, Alice/D-3160-2012; Saz Parkinson, Pablo Miguel/I-7980-2013; XRAY, SUZAKU/A-1808-2009; OI Ransom, Scott/0000-0001-5799-9714; Ray, Paul/0000-0002-5297-5278 FU LAT FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the US, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. NR 53 TC 26 Z9 26 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 2 BP 1294 EP 1305 DI 10.1111/j.1365-2966.2012.20694.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940SG UT WOS:000303912800033 ER PT J AU Pablo, H Kawaler, SD Reed, MD Bloemen, S Charpinet, S Hu, H Telting, J Ostensen, RH Baran, AS Green, EM Hermes, JJ Barclay, T O'Toole, SJ Mullally, F Kurtz, DW Christensen-Dalsgaard, J Caldwell, DA Christiansen, JL Kinemuchi, K AF Pablo, Herbert Kawaler, Steven D. Reed, M. D. Bloemen, S. Charpinet, S. Hu, H. Telting, J. Ostensen, R. H. Baran, A. S. Green, E. M. Hermes, J. J. Barclay, T. O'Toole, S. J. Mullally, Fergal Kurtz, D. W. Christensen-Dalsgaard, J. Caldwell, Douglas A. Christiansen, Jessie L. Kinemuchi, K. TI Seismic evidence for non-synchronization in two close sdb plus dM binaries from Kepler photometry SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: close; stars: horizontal branch; stars: oscillations; stars: rotation; subdwarfs ID SUBDWARF-B-STARS; HORIZONTAL-BRANCH STARS; COMPACT PULSATORS; ROTATION VELOCITIES; MODE; ASTEROSEISMOLOGY; PARAMETERS; ORIGIN AB We report on extended photometry of two pulsating subdwarf B (sdB) stars in close binaries. For both cases, we use rotational splitting of the pulsation frequencies to show that the sdB component rotates much too slowly to be in synchronous rotation. We use a theory of tidal interaction in binary stars to place limits on the mass ratios that are independent of estimates based on the radial velocity curves. The companions have masses below 0.26 M-circle dot. The pulsation spectra show the signature of high-overtone g-mode pulsation. One star, KIC 11179657, has a clear sequence of g modes with equal period spacings as well as several periodicities that depart from that trend. KIC 02991403 shows a similar sequence, but has many more modes that do not fit the simple pattern. C1 [Pablo, Herbert; Kawaler, Steven D.; Baran, A. S.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Pablo, Herbert; Kawaler, Steven D.; Bloemen, S.; Charpinet, S.; Hu, H.; Christensen-Dalsgaard, J.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Reed, M. D.; Baran, A. S.] Missouri State Univ, Dept Phys Astron & Mat Sci, Springfield, MO 65897 USA. [Bloemen, S.; Ostensen, R. H.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Charpinet, S.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Hu, H.] Univ Cambridge Inst Astron, Inst Astron, Cambridge CB3 0HA, England. [Telting, J.] Nord Opt Telescope, Santa Cruze De La Palma 38700, Spain. [Green, E. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Hermes, J. J.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Barclay, T.; Kinemuchi, K.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [O'Toole, S. J.] Anglo Australian Observ, Epping, NSW 1710, Australia. [Mullally, Fergal; Caldwell, Douglas A.; Christiansen, Jessie L.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RP Pablo, H (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM hpablo@iastate.edu RI Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Charpinet, Stephane/0000-0002-6018-6180; Barclay, Thomas/0000-0001-7139-2724; Kawaler, Steven/0000-0002-6536-6367 FU NASA's Science Mission Directorate; National Science Foundation of the United States [NSF PHY05-51164]; European Research Council under the European Community [227224]; Research Council of K.U. Leuven [GOA/2008/04]; Netherlands Organization for Scientific Research (NWO); KITP [V446211N] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors gratefully acknowledge the entire Kepler team, whose efforts have made these results possible. The authors also acknowledge the KITP staff of UCSB for their warm hospitality during the research program 'Asteroseismology in the Space Age'. This KITP program was supported in part by the National Science Foundation of the United States under Grant No. NSF PHY05-51164. The research leading to these results has also received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 227224 (PROSPERITY), as well as from the Research Council of K.U. Leuven grant agreement GOA/2008/04. Haili Hu is supported by the Netherlands Organization for Scientific Research (NWO). Steven Bloemen acknowledges the travel grant (no. V446211N) he received from Fund for Scientific Research of Flanders (FWO) for his stay at KITP. NR 34 TC 23 Z9 23 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 2 BP 1343 EP 1351 DI 10.1111/j.1365-2966.2012.20707.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940SG UT WOS:000303912800037 ER PT J AU Guidorzi, C Margutti, R Amati, L Campana, S Orlandini, M Romano, P Stamatikos, M Tagliaferri, G AF Guidorzi, C. Margutti, R. Amati, L. Campana, S. Orlandini, M. Romano, P. Stamatikos, M. Tagliaferri, G. TI Average power density spectrum of Swift long gamma-ray bursts in the observer and in the source-rest frames SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; gamma-ray burst: general ID INTERNAL SHOCK MODEL; LIGHT CURVES; COSMOLOGICAL PARAMETERS; CENTRAL ENGINE; VARIABILITY; ACCRETION; DURATION; ORIGIN; GRB; EMISSION AB We calculate the average power density spectra (PDSs) of 244 long gamma-ray bursts detected with the Swift Burst Alert Telescope (BAT) in the 15-150 keV band from 2005 January to 2011 August. For the first time we derived the average PDS in the source-rest frame of 97 gamma-ray bursts (GRBs) with known redshift. For 49 of them an average PDS was also obtained in a common source-frame energy band to account for the dependence of time profiles on energy. Previous results obtained on Burst and Transient Source Experiment (BATSE) GRBs with unknown redshift showed that the average spectrum in the 25-2000 keV band could be modelled with a power law with a 5/3 index over nearly two decades of frequency with a break at similar to 1 Hz. Depending on the normalization and on the subset of GRBs considered, our results show analogous to steeper slopes (between 1.7 and 2.0) of the power law. However, no clear evidence for the break at similar to 1 Hz was found, although the softer energy band of BAT compared with BATSE might account for that. We instead find a break at lower frequency corresponding to a typical source-rest-frame characteristic time of a few seconds. We furthermore find no significant differences between observer-and source-rest frames. Notably, no distinctive PDS features are found for GRBs with different intrinsic properties of the prompt emission either. Finally, the average PDS of GRBs at higher redshifts shows possibly shallower power-law indices than that of low-z GRBs. It is not clear whether this is due to an evolution with z of the average PDS. C1 [Guidorzi, C.] Univ Ferrara, Dept Phys, I-44122 Ferrara, Italy. [Margutti, R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Amati, L.; Orlandini, M.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Campana, S.; Tagliaferri, G.] INAF, Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Romano, P.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-90146 Palermo, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Guidorzi, C (reprint author), Univ Ferrara, Dept Phys, Via Saragat 1, I-44122 Ferrara, Italy. EM guidorzi@fe.infn.it RI Amati, Lorenzo/N-5586-2015; Orlandini, Mauro/H-3114-2014; OI Amati, Lorenzo/0000-0001-5355-7388; Orlandini, Mauro/0000-0003-0946-3151; Campana, Sergio/0000-0001-6278-1576; Tagliaferri, Gianpiero/0000-0003-0121-0723 FU ASI [I/088/06/0] FX CG acknowledges ASI for financial support (ASI-INAF contract I/088/06/0). NR 50 TC 15 Z9 15 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 2 BP 1785 EP 1803 DI 10.1111/j.1365-2966.2012.20758.x PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940SG UT WOS:000303912800075 ER PT J AU Bartlett, ES Coe, MJ Haberl, F McBride, VA Corbet, RHD AF Bartlett, E. S. Coe, M. J. Haberl, F. McBride, V. A. Corbet, R. H. D. TI The search for high-mass X-ray binaries in the Phoenix dwarf galaxy SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: individual: Phoenix dwarf; X-rays: binaries; X-rays: galaxies ID SMALL-MAGELLANIC-CLOUD; STAR-FORMATION HISTORY; XMM-NEWTON OBSERVATIONS; PHOTON IMAGING CAMERA; LOCAL GROUP; INTERSTELLAR-MEDIUM; OPTICAL-PROPERTIES; BLACK-HOLES; CHANDRA; POPULATIONS AB We report on the first X-ray images of the Phoenix dwarf galaxy, taken with XMMNewton in 2009 July. This Local Group dwarf galaxy shares similarities with the Small Magellanic Cloud (SMC) including a burst of star formation similar to 50 Myr ago. The SMC has an abundance of high-mass X-ray binaries (HMXBs) and so we have investigated the possibility of an HMXB population in Phoenix with the intention of furthering the understanding of the HMXBstar formation rate relation. The data from the combined European Photon Imaging Cameras (EPIC) were used to distinguish between different source classes [foreground stars, background galaxies, active galactic nuclei (AGN) and supernova remnants] using EPIC hardness ratios and correlations with optical and radio catalogues. Of the 81 X-ray sources in the field of view, six are foreground stars, four are galaxies and one is an AGN. The remaining sources with optical counterparts have log(fX/fopt) consistent with AGN in the local Universe. Further investigation of five sources in the field of view suggests that they are all background AGN. Their position behind the gas cloud associated with Phoenix makes them a possible tool for further probing the metallicity of this region. We find no evidence for any HMXBs in Phoenix at this time. This rules out the existence of the X-ray persistent supergiant X-ray binary systems. However, the transient nature of the Be/X-ray binaries means we cannot rule out a population of these sources but can conclude that it is not extensive. C1 [Bartlett, E. S.; Coe, M. J.; McBride, V. A.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Haberl, F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Bartlett, ES (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM e.s.bartlett@soton.ac.uk OI Haberl, Frank/0000-0002-0107-5237; Bartlett, Elizabeth/0000-0003-0634-4405 FU ESA Member States; NASA; National Aeronautics and Space Administration; Science and Technology Facilities Council FX Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This research has made use of the SIMBAD data base, operated at CDS, Strasbourg, France, and the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. ESB acknowledges support from a Science and Technology Facilities Council studentship. NR 59 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 3 BP 2302 EP 2313 DI 10.1111/j.1365-2966.2012.20791.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939YZ UT WOS:000303858400035 ER PT J AU Marcolino, WLF Bouret, JC Walborn, NR Howarth, ID Naze, Y Fullerton, AW Wade, GA Hillier, DJ Herrero, A AF Marcolino, W. L. F. Bouret, J-C Walborn, N. R. Howarth, I. D. Naze, Y. Fullerton, A. W. Wade, G. A. Hillier, D. J. Herrero, A. TI HST/STIS spectroscopy of the magnetic Of?p star HD 108: the low state at ultraviolet wavelengths SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: atmospheres; stars: magnetic field; stars: massive; stars: winds, outflows ID DRIVEN STELLAR WINDS; THETA(1) ORIONIS-C; O-STAR; DYNAMICAL SIMULATIONS; FIELD; HD-191612; SPECTRA; VARIABILITY; DISCOVERY; CLUES AB We present the first ultraviolet spectrum of the peculiar, magnetic Of?p star HD 108 obtained in its spectroscopic low state. The new data, obtained with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope, reveal significant changes compared to IUE spectra obtained in the high state: N v?1240, Si iv?1400 and C iv?1550 present weaker P Cygni profiles (less absorption) in the new data, while N iv?1718 absorption is deeper, without the clear wind signature evident in the high state. Such changes contrast with those found in other magnetic massive stars, where more absorption is observed in the resonance doublets when the sightline is close to the plane of the magnetic equator. The new data show also that the photospheric Fe iv forest, at similar to 16001700 angstrom, has strengthened compared to previous observations. The ultraviolet variability is large compared to that found in typical, non-magnetic O stars, but moderate when compared to the high-/low-state changes reported in the optical spectrum of HD 108 over several decades. We use non-local thermodynamic equilibrium (non-LTE) expanding-atmosphere models to analyse the new STIS observations. Overall, the results are in accord with a scenario in which the optical variability is mainly produced by magnetically constrained gas, close to the photosphere. The relatively modest changes found in the main ultraviolet wind lines suggest that the stellar wind is not substantially variable on a global scale. Nonetheless, multidimensional radiative-transfer models may be needed to understand some of the phenomena observed. C1 [Marcolino, W. L. F.] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [Bouret, J-C] Univ Aix Marseille 1, F-13388 Marseille 13, France. [Bouret, J-C] CNRS, LAM UMR6110, F-13388 Marseille 13, France. [Bouret, J-C] NASA, GSFC, Greenbelt, MD 20771 USA. [Walborn, N. R.; Fullerton, A. W.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Howarth, I. D.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Naze, Y.] Univ Liege, Dept AGO, FNRS GAPHE, B-400 Liege, Belgium. [Wade, G. A.] Royal Mil Coll Canada, Dept Phys, Kingston, ON K7K 7B4, Canada. [Hillier, D. J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Herrero, A.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Herrero, A.] Univ La Laguna, Dept Astrofis, E-38071 Tenerife, Spain. RP Marcolino, WLF (reprint author), Univ Fed Rio de Janeiro, Observ Valongo, Ladeira Pedro Antonio 43, BR-20080090 Rio De Janeiro, Brazil. EM wagner@astro.ufrj.br RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Marcolino, Wagner/M-7428-2014; OI Naze, Yael/0000-0003-4071-9346 FU Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ/APQ1); NASA from STScI [GO-12179.01]; NASA [NAS5-26555]; Fonds National de la Recherche Scientifique (Belgium); Communaute Francais de Belgique; PRODEX XMM; Action de Recherche Concertee (CFWB-Academie Wallonie Europe); Natural Sciences and Engineering Research Council of Canada (NSERC); Spanish Ministerio de Ciencia e Innovacion [AYA2010-21697-C05-04]; Consolider-Ingenio Programme [CSD2006-00070]; Gobierno de Canarias [PID2010119]; French Agence Nationale de la Recherche (ANR) FX WLFM acknowledges support from the Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ/APQ1). NRW acknowledges support provided by NASA through grant GO-12179.01 from STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555. YN acknowledges support from the Fonds National de la Recherche Scientifique (Belgium), the Communaute Francais de Belgique, the PRODEX XMM and Integral contracts, and the 'Action de Recherche Concertee (CFWB-Academie Wallonie Europe). GAW acknowledges Discovery Grant support from the Natural Sciences and Engineering Research Council of Canada (NSERC). AH thanks support by the Spanish Ministerio de Ciencia e Innovacion (grant AYA2010-21697-C05-04), the Consolider-Ingenio 2010 Programme (CSD2006-00070) and the Gobierno de Canarias (grant PID2010119). We thank the French Agence Nationale de la Recherche (ANR) for financial support. We also thank F. Martins, J. Sundqvist and A. ud-Doula for valuable comments in an earlier version of the manuscript. NR 29 TC 7 Z9 7 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 3 BP 2314 EP 2321 DI 10.1111/j.1365-2966.2012.20820.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939YZ UT WOS:000303858400036 ER PT J AU Levin, L Bailes, M Bates, SD Bhat, NDR Burgay, M Burke-Spolaor, S D'Amico, N Johnston, S Keith, MJ Kramer, M Milia, S Possenti, A Stappers, B van Straten, W AF Levin, L. Bailes, M. Bates, S. D. Bhat, N. D. R. Burgay, M. Burke-Spolaor, S. D'Amico, N. Johnston, S. Keith, M. J. Kramer, M. Milia, S. Possenti, A. Stappers, B. van Straten, W. TI Radio emission evolution, polarimetry and multifrequency single pulse analysis of the radio magnetar PSR J1622-4950 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: magnetars; pulsars: individual: PSR J1622-4950 ID X-RAY PULSARS; 1E 1547.0-5408; XTE J1810-197; 2009 OUTBURST; VELA PULSAR; 21 CM; POLARIZATION; MICROSTRUCTURE; 1E-1547.0-5408; MAGNETOSPHERES AB Here we report on observations of the radio magnetar PSR J1622-4950 at frequencies from 1.4 to 17 GHz. We show that although its flux density is varying up to a factor of similar to 10 within a few days, it has on average decreased by a factor of 2 over the last 700 days. At the same time, timing analysis indicates a trend of decreasing spin-down rate over our entire data set, again of about a factor of 2 over 700 days, but also an erratic variability in the spin-down rate within this time span. Integrated pulse profiles are often close to 100 per cent linearly polarized, but large variations in both the profile shape and fractional polarization are regularly observed. Furthermore, the behaviour of the position angle of the linear polarization is very complex offsets in both the absolute position angle and the phase of the position angle sweep are often seen and the occasional presence of orthogonal mode jumps further complicates the picture. However, model fitting indicates that the magnetic and rotation axes are close to aligned. Finally, a single pulse analysis has been carried out at four observing frequencies, demonstrating that the wide pulse profile is built up of narrow spikes of emission, with widths that scale inversely with observing frequency. All three of the known radio magnetars seem to have similar characteristics, with highly polarized emission, time-variable flux density and pulse profiles, and with spectral indices close to zero. C1 [Levin, L.; Bailes, M.; Bhat, N. D. R.; van Straten, W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Levin, L.; Burke-Spolaor, S.; Johnston, S.; Keith, M. J.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Bailes, M.; Bhat, N. D. R.; van Straten, W.] Univ Sydney, Sch Phys A28, ARC Ctr All Sky Astron CAASTRO, Sydney, NSW 2006, Australia. [Bates, S. D.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Bates, S. D.; Stappers, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Burgay, M.; D'Amico, N.; Milia, S.; Possenti, A.] INAF Osservatorio Astron Cagliari, I-09012 Capoterra, Italy. [Burke-Spolaor, S.] NASA Jet Prop Lab, Pasadena, CA 91106 USA. [Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Milia, S.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, CA, Italy. RP Levin, L (reprint author), Swinburne Univ Technol, Ctr Astrophys & Supercomp, Mail H30,POB 218, Hawthorn, Vic 3122, Australia. EM llevin@astro.swin.edu.au RI Bhat, Ramesh/B-7396-2013; OI Burgay, Marta/0000-0002-8265-4344; van Straten, Willem/0000-0003-2519-7375 FU Commonwealth of Australia FX We wish to thank M. Livingstone for suggesting the glitch hypothesis in the timing section of this paper. The Parkes Observatory is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. NR 53 TC 19 Z9 21 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 3 BP 2489 EP 2500 DI 10.1111/j.1365-2966.2012.20807.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939YZ UT WOS:000303858400052 ER PT J AU Smith, DM Markwardt, CB Swank, JH Negueruela, I AF Smith, D. M. Markwardt, C. B. Swank, J. H. Negueruela, I. TI Fast X-ray transients towards the Galactic bulge with the Rossi X-ray Timing Explorer SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; binaries: symbiotic; stars: neutron; supergiants; X-rays: binaries ID IGR J17544-2619; XTE J1739-302; ORBITAL PERIOD; NEUTRON-STAR; M-GIANTS; SAX J1818.6-1703; DISCOVERY; BINARY; SWIFT; ASCA AB In X-ray binaries, rapid variability in X-ray flux of greater than an order of magnitude on time-scales of a day or less appears to be a signature of wind accretion from a supergiant companion. When the variability takes the form of rare, brief, bright outbursts with only faint emission between them, the systems are called supergiant fast X-ray transients (SFXTs). We present data from twice-weekly scans of the Galactic bulge by the Rossi X-ray Timing Explorer that allow us to compare the behaviour of known SFXTs and possible SFXT candidates with the persistently bright supergiant X-ray binary 4U 1700-377. We independently confirm the orbital periods reported by other groups for SFXTs SAX J1818.6-1703 and IGR J17544-2619. The new data do not independently reproduce the orbital period reported for XTE J1739-302, but slightly improve the significance of the original result when the data are combined. The bulge source XTE J1743-363 shows a combination of fast variability and a long-term decline in activity, the latter behaviour not being characteristic of supergiant X-ray binaries. A far-red spectrum of the companion suggests that it is a symbiotic neutron star binary rather than a high-mass binary, and the reddest known of this class: the spectral type is approximately M8 III. C1 [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Markwardt, C. B.; Swank, J. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Negueruela, I.] Univ Alicante, Dept Fis Ingn Sistemas & Teoria Senal, E-03080 Alicante, Spain. RP Smith, DM (reprint author), Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA. EM dsmith8@ucsc.edu RI Swank, Jean/F-2693-2012; Negueruela, Ignacio/L-5483-2014 OI Negueruela, Ignacio/0000-0003-1952-3680 FU National Aeronautics and Space Administration; Spanish Ministerio de Ciencia y Tecnologia [AYA2010-21697-C05-05, CSD2006-70] FX The 2MASS image (Fig. 13) was retrieved from the NASA/IPAC IR Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; IN is partially supported by the Spanish Ministerio de Ciencia y Tecnologia under grants AYA2010-21697-C05-05 and CSD2006-70. NR 78 TC 13 Z9 13 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 3 BP 2661 EP 2674 DI 10.1111/j.1365-2966.2012.20836.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 939YZ UT WOS:000303858400069 ER PT J AU Tombesi, F Cappi, M Reeves, JN Braito, V AF Tombesi, F. Cappi, M. Reeves, J. N. Braito, V. TI Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; galaxies: active; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; SHELL ABSORPTION-LINES; X-RAY-EMISSION; SEYFERT-GALAXIES; QUASAR FEEDBACK; UNIFIED MODEL; MASSES; SIMULATIONS; CONNECTION AB Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval similar to 0.0003-0.03 pc (similar to 10(2)-10(4)r(s)) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between similar to 0.01 and 1 M-circle dot yr(-1), corresponding to greater than or similar to 5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log. (E) over dot(K) similar or equal to 42.6-44.6 erg s(-1). However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies. C1 [Tombesi, F.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cappi, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Reeves, J. N.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Braito, V.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. RP Tombesi, F (reprint author), NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. EM ftombesi@astro.umd.edu RI Cappi, Massimo/F-4813-2015; OI Cappi, Massimo/0000-0001-6966-8920; Braito, Valentina/0000-0002-2629-4989 FU ASI [INAF/ASI I009/10/0] FX FT particularly thanks G. G. C. Palumbo and R. M. Sambruna for their support. FT thanks R. F. Mushotzky, C. S. Reynolds and M. Dadina for useful discussions. MC acknowledge support from ASI under contract INAF/ASI I009/10/0. The authors thank the referee for suggestions that led to improvements in the Letter. NR 53 TC 57 Z9 59 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY PY 2012 VL 422 IS 1 BP L1 EP L5 DI 10.1111/j.1745-3933.2012.01221.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940SE UT WOS:000303912600001 ER PT J AU Emmons, MC Kim, HKD Carman, GP Richards, WL AF Emmons, Michael C. Kim, Hyungsuk K. D. Carman, Gregory P. Richards, W. Lance TI Magneto-optic field coupling in optical fiber Bragg gratings SO OPTICAL FIBER TECHNOLOGY LA English DT Article DE Optical fiber Bragg gratings; Magneto-optic coupling; Magnetometer; Iron oxide particles; Evanescent field coupling ID MAGNETIC-FIELD; REFRACTIVE-INDEX; SENSORS; BEHAVIOR; FILMS AB A magnetic sensor utilizing direct magneto-optic field coupling in an optical fiber Bragg grating (FBG) is experimentally demonstrated. The FBG's cladding is etched to expose the propagating evanescent light to the fiber's surroundings. The etched FBG is surrounded with iron oxide nanoparticles and placed in a magnetic field perpendicular to the fiber. Measurements demonstrate that the lambda(B) shifts nonlinearly as a function of magnetic field, i.e. comparable to the magnetization versus magnetic field behavior of the nanoparticles measured by a SQUID magnetometer. This direct manipulation of light with magnetic fields provides an approach to develop future sensors relying on electromagnetic interactions. (C) 2012 Elsevier Inc. All rights reserved. C1 [Emmons, Michael C.; Kim, Hyungsuk K. D.; Carman, Gregory P.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [Richards, W. Lance] NASA Dryden Flight Res Ctr, Edwards AFB, CA 93523 USA. RP Emmons, MC (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. EM MEmmons@ucla.edu FU NASA Dryden Flight Research Center; Aero Institute [AERO-503]; Air Force Office of Scientific Research [FA9550-09-1-0677] FX The authors would like to thank NASA Dryden Flight Research Center and Aero Institute award #AERO-503. Additional thanks goes to Air Force Office of Scientific Research Grant No. FA9550-09-1-0677 managed by Byung-Lip (Les) Lee. NR 27 TC 4 Z9 4 U1 3 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1068-5200 J9 OPT FIBER TECHNOL JI Opt. Fiber Technol. PD MAY PY 2012 VL 18 IS 3 BP 157 EP 160 DI 10.1016/j.yofte.2012.02.006 PG 4 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA 941CF UT WOS:000303939500006 ER PT J AU Norbury, JW Miller, J Adamczyk, AM Heilbronn, LH Townsend, LW Blattnig, SR Norman, RB Guetersloh, SB Zeitlin, CJ AF Norbury, John W. Miller, Jack Adamczyk, Anne M. Heilbronn, Lawrence H. Townsend, Lawrence W. Blattnig, Steve R. Norman, Ryan B. Guetersloh, Stephen B. Zeitlin, Cary J. TI Nuclear data for space radiation SO RADIATION MEASUREMENTS LA English DT Article DE Heavy ion reactions; Nuclear data; Space radiation ID FRAGMENTATION CROSS-SECTIONS; 670A MEV NE-20; LIQUID-HYDROGEN TARGET; RELATIVISTIC NUCLEI; CARBON TARGETS; NICKEL PROJECTILES; TRANSPORT-THEORY; TOTAL CHARGE; COSMIC-RAYS; HELIUM AB Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross-section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n-10 GeV/n. The majority of data are for projectile fragmentation partial and total cross-sections, including both charge changing and isotopic cross-sections. The cross-section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made. Published by Elsevier Ltd. C1 [Norbury, John W.; Blattnig, Steve R.; Norman, Ryan B.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Miller, Jack] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.] Univ Tennessee, Knoxville, TN 37996 USA. [Guetersloh, Stephen B.] Texas A&M Univ, College Stn, TX 77843 USA. [Zeitlin, Cary J.] SW Res Inst, Boulder, CO 80302 USA. RP Norbury, JW (reprint author), NASA Langley Res Ctr, Hampton, VA 23681 USA. EM john.w.norbury@nasa.gov; miller@lbl.gov; aadamczy@utk.edu; lheilbro@utk.edu; ltownsen@utk.edu; steves.r.blattnig@nasa.gov; guetersloh@tamu.edu; zeitlin@boulder.swri.edu RI Heilbronn, Lawrence/J-6998-2013; Norman, Ryan/D-5095-2017 OI Heilbronn, Lawrence/0000-0002-8226-1057; Norman, Ryan/0000-0002-9103-7225 NR 39 TC 11 Z9 11 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD MAY PY 2012 VL 47 IS 5 BP 315 EP 363 DI 10.1016/j.radmeas.2012.03.004 PG 49 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 944EC UT WOS:000304181100001 ER PT J AU Griffith, RL Cooper, MC Newman, JA Moustakas, LA Stern, D Comerford, JM Davis, M Lotz, JM Barden, M Conselice, CJ Capak, PL Faber, SM Kirkpatrick, JD Koekemoer, AM Koo, DC Noeske, KG Scoville, N Sheth, K Shopbell, P Willmer, CNA Weiner, B AF Griffith, Roger L. Cooper, Michael C. Newman, Jeffrey A. Moustakas, Leonidas A. Stern, Daniel Comerford, Julia M. Davis, Marc Lotz, Jennifer M. Barden, Marco Conselice, Christopher J. Capak, Peter L. Faber, S. M. Kirkpatrick, J. Davy Koekemoer, Anton M. Koo, David C. Noeske, Kai G. Scoville, Nick Sheth, Kartik Shopbell, Patrick Willmer, Christopher N. A. Weiner, Benjamin TI THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: evolution; galaxies: photometry; galaxies: structure; surveys ID DEEP FIELD-SOUTH; EMISSION-LINE GALAXIES; ACTIVE GALACTIC NUCLEI; LYMAN BREAK GALAXIES; GOODS-N FIELD; SIMILAR-TO 1; REDSHIFT SURVEY; PHOTOMETRIC REDSHIFTS; SPECTROSCOPIC SURVEY; OPTICAL SPECTROSCOPY AB We present the Advanced Camera for Surveys General Catalog (ACS-GC), a photometric and morphological database using publicly available data obtained with the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope. The goal of the ACS-GC database is to provide a large statistical sample of galaxies with reliable structural and distance measurements to probe the evolution of galaxies over a wide range of look-back times. The ACS-GC includes approximately 470,000 astronomical sources (stars + galaxies) derived from the AEGIS, COSMOS, GEMS, and GOODS surveys. Galapagos was used to construct photometric (SEXTRACTOR) and morphological (GALFIT) catalogs. The analysis assumes a single Sersic model for each object to derive quantitative structural parameters. We include publicly available redshifts from the DEEP2, COMBO-17, TKRS, PEARS, ACES, CFHTLS, and zCOSMOS surveys to supply redshifts (spectroscopic and photometric) for a considerable fraction (similar to 74%) of the imaging sample. The ACS-GC includes color postage stamps, GALFIT residual images, and photometry, structural parameters, and redshifts combined into a single catalog. C1 [Griffith, Roger L.; Kirkpatrick, J. Davy] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Cooper, Michael C.] Univ Calif Irvine, Dept Phys & Astron, Ctr Galaxy Evolut, Irvine, CA 92697 USA. [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh Particle Phys Astrophys & Cosmol Ctr, Pittsburgh, PA 15260 USA. [Moustakas, Leonidas A.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Comerford, Julia M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Davis, Marc] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Lotz, Jennifer M.; Koekemoer, Anton M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Barden, Marco] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Conselice, Christopher J.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Capak, Peter L.; Scoville, Nick; Sheth, Kartik; Shopbell, Patrick] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Noeske, Kai G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Willmer, Christopher N. A.; Weiner, Benjamin] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Griffith, RL (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RI Conselice, Christopher/B-4348-2013; Moustakas, Leonidas/F-3052-2014; OI Moustakas, Leonidas/0000-0003-3030-2360; Conselice, Christopher/0000-0003-1949-7638; Weiner, Benjamin/0000-0001-6065-7483; Koekemoer, Anton/0000-0002-6610-2048 FU NASA/ESA [GO-10134, GO-09822, GO-09425.01, GO-09583.01, GO-9500]; NASA [NAS 5-26555]; NSF [AST00-71048]; NASA LTSA [NNG04GC89G]; ESO Paranal Observatory [LP175.A-0839] FX This work is based on (GO-10134, GO-09822, GO-09425.01, GO-09583.01, GO-9500) program observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Work on this paper is based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope ( CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Funding for the DEEP2 Galaxy Redshift Survey has been provided in part by NSF grant AST00-71048 and NASA LTSA grant NNG04GC89G. This work is also based on zCOSMOS observations carried out using the Very Large Telescope at the ESO Paranal Observatory under Program ID: LP175.A-0839. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. NR 63 TC 15 Z9 15 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2012 VL 200 IS 1 AR 9 DI 10.1088/0067-0049/200/1/9 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940YF UT WOS:000303928300009 ER PT J AU Kochanek, CS Eisenstein, DJ Cool, RJ Caldwell, N Assef, RJ Jannuzi, BT Jones, C Murray, SS Forman, WR Dey, A Brown, MJI Eisenhardt, P Gonzalez, AH Green, P Stern, D AF Kochanek, C. S. Eisenstein, D. J. Cool, R. J. Caldwell, N. Assef, R. J. Jannuzi, B. T. Jones, C. Murray, S. S. Forman, W. R. Dey, A. Brown, M. J. I. Eisenhardt, P. Gonzalez, A. H. Green, P. Stern, D. TI AGES: THE AGN AND GALAXY EVOLUTION SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: general; quasars: general ID WIDE-FIELD SURVEY; IRAC SHALLOW SURVEY; DIGITAL-SKY-SURVEY; RESOLUTION SPECTRAL TEMPLATES; QUASAR LUMINOSITY FUNCTION; ACTIVE GALACTIC NUCLEI; FIBER-FED SPECTROGRAPH; VLT DEEP SURVEY; X-RAY SURVEY; STELLAR MASS AB The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg(2) of the Bootes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B-W, R, I, J, K, IRAC3.6, 4.5, 5.8, and 8.0 mu m, and MIPS 24 mu m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples in all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 mu m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples. C1 [Kochanek, C. S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Eisenstein, D. J.; Caldwell, N.; Jones, C.; Murray, S. S.; Forman, W. R.; Green, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cool, R. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cool, R. J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Assef, R. J.; Eisenhardt, P.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jannuzi, B. T.; Dey, A.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Murray, S. S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Brown, M. J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Gonzalez, A. H.] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. RP Kochanek, CS (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. RI Brown, Michael/B-1181-2015 OI Brown, Michael/0000-0002-1207-9137 FU NASA at Jet Propulsion Laboratory; NSF; NOAO; Smithsonian Institution; NASA [NAS8-38248, NAS8-01130, NAS8- 39073, NAS8-03060, GO3-4176A] FX We thank the Hectospec instrument team and all the MMT Hectospec queue observers for making this project possible. We also thank T. Soifer, D. Weedman, J. Houck, M. Rieke, and collaborators for permission to use the results of their GTO Spitzer/MIPS survey of the Bootes field. R.J.A. is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. B.T.J. and A.D. are supported by the NSF through its funding of NOAO, which is operated for the NSF by AURA under a cooperative agreement. C.J., S.S.M., and W.R.F. acknowledge support from the Smithsonian Institution and by NASA contracts NAS8-38248, NAS8-01130, NAS8- 39073, and NAS8-03060, and NASA grant GO3-4176A. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona. This work made use of images and/or data products provided by the NOAO Deep Wide-Field Survey, which is supported by the National Optical Astronomy Observatory (NOAO). NOAO is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 74 TC 76 Z9 76 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2012 VL 200 IS 1 AR 8 DI 10.1088/0067-0049/200/1/8 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 940YF UT WOS:000303928300008 ER PT J AU Xiu, P Chai, F Xue, HJ Shi, L Chao, Y AF Xiu, Peng Chai, Fei Xue, Huijie Shi, Lei Chao, Yi TI Modeling the mesoscale eddy field in the Gulf of Alaska SO DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS LA English DT Article DE Mesoscale eddy; Gulf of Alaska; Model; Eddy transport; Haida eddies; Vertical velocity ID NORTHEAST PACIFIC-OCEAN; HAIDA EDDIES; INTERANNUAL VARIABILITY; ANTICYCLONIC EDDIES; EASTERN GULF; EL-NINO; HORIZONTAL DISPERSION; COASTAL ORIGIN; HEAT-FLUX; TRANSPORT AB Mesoscale anticyclonic eddies are a common feature in the Gulf of Alaska (GOA). A three-dimensional circulation model is used to examine the general characteristics of eddies in the GOA during 1993-2009. Using an eddy detection algorithm, we tracked on average 6.5 eddies formed each year from the modeled results and 6.9 eddies from altimeter data. Modeled eddy characteristics agree with the remote sensing derived eddy statistics in terms of eddy magnitude, propagation speed, and eddy-core diameter. From the model results, strong seasonal and interannual variations were found in both the number and areal coverage of GOA eddies. At the seasonal scale, more eddies are observed to form from March to May, while the eddy-covered area usually peaks around October. At the interannual scale, our results suggest the years with large eddy-covered area do not necessarily have more eddies generated. The long-term variation of eddy-covered area in the GOA is modulated by El Nino/Southern Oscillation (ENSO) events through altering the local wind stress. Model results indicate one typical Haida eddy could transport 37 x 10(18) J of heat and 27 km(3) of freshwater from the shelf to the central gulf. The equivalent fluxes caused by Haida eddies are comparable with the annual mean of net heat flux and freshwater flux from the atmosphere into the ocean in the Haida region, implying that mesoscale eddies are important sources contributing to the heat and freshwater budgets. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Xiu, Peng; Chai, Fei; Xue, Huijie; Shi, Lei] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA. [Chao, Yi] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xiu, P (reprint author), Univ Maine, Sch Marine Sci, 5706 Aubert Hall, Orono, ME 04469 USA. EM peng.xiu@maine.edu RI Xiu, Peng/O-6724-2014 FU National Aeronautics and Space Administration (NASA) FX The research described in this paper was carried out, in part, at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). Computing support from the JPL Supercomputing and NASA Advanced Supercomputing is acknowledged. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.oceanobs.com/duacs/). NR 57 TC 11 Z9 13 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0637 EI 1879-0119 J9 DEEP-SEA RES PT I JI Deep-Sea Res. Part I-Oceanogr. Res. Pap. PD MAY PY 2012 VL 63 BP 102 EP 117 DI 10.1016/j.dsr.2012.01.006 PG 16 WC Oceanography SC Oceanography GA 936VV UT WOS:000303619000008 ER PT J AU Gupta, V Discenza, M Guyon, JR Kunkel, LM Beggs, AH AF Gupta, Vandana Discenza, Marie Guyon, Jeffrey R. Kunkel, Louis M. Beggs, Alan H. TI alpha-Actinin-2 deficiency results in sarcomeric defects in zebrafish that cannot be rescued by alpha-actinin-3 revealing functional differences between sarcomeric isoforms SO FASEB JOURNAL LA English DT Article DE skeletal muscle; cytoskeletal; myofibrillogenesis; gene duplication; evolution ID ALPHA-ACTININ GENE; DILATED CARDIOMYOPATHY; MUSCLE METABOLISM; BINDING PROTEINS; EXPRESSION; MUTATIONS; RECEPTOR; CLONING; MUTANT; CELLS AB alpha-Actinins are actin-binding proteins that can be broadly divided into Ca2+-sensitive cytoskeletal and Ca2+-insensitive sarcomeric isoforms. To date, little is known about functional differences between the isoforms due to their indistinguishable activities in most in vitro assays. To identify functional differences in vivo between sarcomeric isoforms, we employed computational and molecular approaches to characterize the zebrafish (Danio rerio) genome, which contains orthologoues of each human alpha-actinin gene, including duplicated copies of actn3. Each isoform exhibits a distinct and unique pattern of gene expression as assessed by mRNA in situ hybridization, largely sharing similar expression profiles as seen in humans. The spatial conservation of expression of these genes from lower invertebrates to humans suggests that regulation and subsequent functions of these genes are conserved during evolution. Morpholino-based knockdown of the sarcomeric isoform, actn2, leads to skeletal muscle, cardiac, and ocular defects evident over the first week of development. Remarkably, despite the high degree of sequence conservation between actn2 and actn3, the phenotypes of alpha-actinin-2 deficient zebrafish can be rescued by overexpression of alpha-actinin-2 but not by alpha-actinin-3 mRNAs from zebrafish or human. These data provide functional evidence that the primary sequences of alpha-actinin-2 and alpha-actinin-3 evolved differences to optimize their functions.-Gupta, V., Discenza, M., Guyon, J. R., Kunkel, L. M., Beggs, A. H. alpha-Actinin-2 deficiency results in sarcomeric defects in zebrafish that cannot be rescued by alpha-actinin-3 revealing functional differences between sarcomeric isoforms. FASEB J. 26, 1892-1908 (2012). www.fasebj.org C1 [Gupta, Vandana; Discenza, Marie; Guyon, Jeffrey R.; Kunkel, Louis M.; Beggs, Alan H.] Harvard Univ, Sch Med, Childrens Hosp Boston, Manton Ctr Orphan Dis Res,Div Genet, Boston, MA 02115 USA. [Gupta, Vandana; Discenza, Marie; Guyon, Jeffrey R.; Kunkel, Louis M.; Beggs, Alan H.] Harvard Univ, Sch Med, Childrens Hosp Boston, Manton Ctr Orphan Dis Res,Genom Program, Boston, MA 02115 USA. [Guyon, Jeffrey R.] Ted Stevens Marine Res Inst, Auke Bay Labs, Natl Marine Fisheries Serv, Juneau, AK USA. RP Beggs, AH (reprint author), Harvard Univ, Sch Med, Childrens Hosp Boston, Manton Ctr Orphan Dis Res,Div Genet, CLSB 15026,300 Longwood Ave, Boston, MA 02115 USA. EM beggs@enders.tch.harvard.edu FU U.S. National Institute for Child Health and Human Development; U.S. National Institutes of Health (NIH) [NIH-P30-HD-18655]; NIH, National Institute of Arthritis and Musculoskeletal and Skin Disease [R01 AR044345]; Muscular Dystrophy Association [MDA201302]; Lee and Penny Anderson Family Foundation; William Hearst Foundation FX The authors gratefully thank Dr. Genri Kawahara and Dr. Yukio Nakamura (Children's Hospital Boston, Boston, MA, USA) for sharing reagents. The authors thank Ryan Darnall for technical help in these studies and Dr. Yi Zhao for help with zebrafish genomic analysis. The authors thank members of the A. H. B. and L. M. K. laboratories for critically reading the manuscript. The authors also thank Chris Lawrence and Jason Best (Zebrafish Facility, Children's Hospital Boston) for sharing their wonderful expertise with zebrafish. Antibodies F59 and F310 (developed by F. E. Stockdale) and MF20 (developed by D. A. Fischman) were obtained from the Developmental Studies Hybridoma Bank supported under the auspices of the U.S. National Institute for Child Health and Human Development and maintained by The University of Iowa Department of Biology (Iowa City, IA, USA). Confocal microscopy was performed at Children's Hospital Boston Intellectual and Developmental Disability Research Center imaging core, supported by U.S. National Institutes of Health (NIH) grant NIH-P30-HD-18655. This work was supported by funding from the NIH, National Institute of Arthritis and Musculoskeletal and Skin Disease (R01 AR044345), the Muscular Dystrophy Association (MDA201302), and the Lee and Penny Anderson Family Foundation to A. H. B. and a William Hearst Foundation fellowship to V.G. NR 38 TC 9 Z9 9 U1 1 U2 4 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 J9 FASEB J JI Faseb J. PD MAY PY 2012 VL 26 IS 5 BP 1892 EP 1908 DI 10.1096/fj.11-194548 PG 17 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA 937TD UT WOS:000303680800018 PM 22253474 ER PT J AU Ponchak, GE AF Ponchak, George E. TI 2011 RFIC Symposium Mini-Special Issue Editorial SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Editorial Material C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Ponchak, GE (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD MAY PY 2012 VL 60 IS 5 BP 1185 EP 1185 DI 10.1109/TMTT.2012.2189285 PG 1 WC Engineering, Electrical & Electronic SC Engineering GA 935LB UT WOS:000303519100001 ER PT J AU Noroozian, O Day, PK Eom, BH LeDuc, HG Zmuidzinas, J AF Noroozian, Omid Day, Peter K. Eom, Byeong Ho LeDuc, Henry G. Zmuidzinas, Jonas TI Crosstalk Reduction for Superconducting Microwave Resonator Arrays SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Crosstalk; submillimeter wave astronomy; superconducting microwave resonator; superconducting photon detector ID KINETIC INDUCTANCE DETECTORS; MILLIMETER AB Large-scale arrays of microwave kinetic inductance detectors (MKIDs) are attractive candidates for use in imaging instruments for next generation submillimeter-wave telescopes such as CCAT. We have designed and fabricated tightly packed similar to 250-pixelMKID arrays using lumped-element resonators etched from a thin layer of superconducting TiNx deposited on a silicon substrate. The high pixel packing density in our initial design resulted in large microwave crosstalk due to electromagnetic coupling between the resonators. Our second design eliminates this problem by adding a grounding shield and using a double-wound geometry for the meander inductor to allow conductors with opposite polarity to be in close proximity. In addition, the resonator frequencies are distributed in a checkerboard pattern across the array. We present details for the two resonator and array designs and describe a circuit model for the full array that predicts the distribution of resonator frequencies and the crosstalk level. We also show results from a new experimental technique that conveniently measures crosstalk without the need for an optical setup. Our results reveal an improvement in crosstalk from 57% in the initial design down to <= 2% in the second design. The general procedure and design guidelines in this work are applicable to future large arrays employing microwave resonators. C1 [Noroozian, Omid] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. [Noroozian, Omid; Eom, Byeong Ho] CALTECH, Submillimeter Astron Res Grp, Pasadena, CA 91125 USA. [Day, Peter K.; LeDuc, Henry G.; Zmuidzinas, Jonas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zmuidzinas, Jonas] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. RP Noroozian, O (reprint author), CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. EM omid@caltech.edu; peter.k.day@jpl.nasa.gov; ebh@caltech.edu; henry.g.leduc@jpl.nasa.gov; jonas@caltech.edu RI Noroozian, Omid/G-3519-2011 OI Noroozian, Omid/0000-0002-9904-1704 FU Jet Propulsion Laboratory (JPL) under National Aeronautics and Space Administration (NASA) [NNG06GC71G, NNX10AC83G]; Gordon and Betty Moore Foundation; Keck Institute for Space Studies FX This work was supported in part by the Jet Propulsion Laboratory (JPL) under National Aeronautics and Space Administration (NASA) Grant NNG06GC71G and Grant NNX10AC83G, the Gordon and Betty Moore Foundation, and the Keck Institute for Space Studies. NR 27 TC 18 Z9 18 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD MAY PY 2012 VL 60 IS 5 BP 1235 EP 1243 DI 10.1109/TMTT.2012.2187538 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 935LB UT WOS:000303519100007 ER PT J AU Bernhardt, PA Ballenthin, JO Baumgardner, JL Bhatt, A Boyd, ID Burt, JM Caton, RG Coster, A Erickson, PJ Huba, JD Earle, GD Kaplan, CR Foster, JC Groves, KM Haaser, RA Heelis, RA Hunton, DE Hysell, DL Klenzing, JH Larsen, MF Lind, FD Pedersen, TR Pfaff, RF Stoneback, RA Roddy, PA Rodriquez, SP San Antonio, GS Schuck, PW Siefring, CL Selcher, CA Smith, SM Talaat, ER Thomason, JF Tsunoda, RT Varney, RH AF Bernhardt, P. A. Ballenthin, J. O. Baumgardner, J. L. Bhatt, A. Boyd, I. D. Burt, J. M. Caton, R. G. Coster, A. Erickson, P. J. Huba, J. D. Earle, G. D. Kaplan, C. R. Foster, J. C. Groves, K. M. Haaser, R. A. Heelis, R. A. Hunton, D. E. Hysell, D. L. Klenzing, J. H. Larsen, M. F. Lind, F. D. Pedersen, T. R. Pfaff, R. F. Stoneback, R. A. Roddy, P. A. Rodriquez, S. P. San Antonio, G. S. Schuck, P. W. Siefring, C. L. Selcher, C. A. Smith, S. M. Talaat, E. R. Thomason, J. F. Tsunoda, R. T. Varney, R. H. TI Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Environmental factors; ionosphere; plasma measurements; plasma waves ID ATMOSPHERIC MODIFICATION EXPERIMENT; F-REGION; SHUTTLE; DYNAMICS; RELEASE; ARECIBO; EXHAUST; PLUMES AB On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments. C1 [Bernhardt, P. A.; Huba, J. D.; Siefring, C. L.] USN, Res Lab, Div Plasma Phys, Washington, DC 20374 USA. [Ballenthin, J. O.; Caton, R. G.; Groves, K. M.; Hunton, D. E.; Pedersen, T. R.; Roddy, P. A.; Selcher, C. A.] USAF, Res Lab, Kirtland AFB, NM 87117 USA. [Baumgardner, J. L.; Smith, S. M.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Bhatt, A.; Coster, A.; Erickson, P. J.; Foster, J. C.; Lind, F. D.] MIT, Haystack Observ, Westford, MA 01886 USA. [Boyd, I. D.; Burt, J. M.] Univ Michigan, Ann Arbor, MI 48109 USA. [Earle, G. D.; Haaser, R. A.; Heelis, R. A.; Klenzing, J. H.; Stoneback, R. A.] Univ Texas Dallas, Richardson, TX 75080 USA. [Kaplan, C. R.] USN, Res Lab, Lab Computat Phys & Fluid Dynam, Washington, DC 20374 USA. [Hysell, D. L.; Varney, R. H.] Cornell Univ, Ithaca, NY 14853 USA. [Larsen, M. F.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Pfaff, R. F.; Schuck, P. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rodriquez, S. P.; San Antonio, G. S.; Thomason, J. F.] USN, Res Lab, Div Radar, Washington, DC 20374 USA. [Talaat, E. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Tsunoda, R. T.] SRI Int, Menlo Pk, CA 94025 USA. RP Bernhardt, PA (reprint author), USN, Res Lab, Div Plasma Phys, Washington, DC 20374 USA. EM bern@ppd.nrl.navy.mil; jeffreyb@bu.edu; abhatt@haystack.mit.edu; ajc@haystack.mit.edu RI Klenzing, Jeff/E-2406-2011; Larsen, Miguel/A-1079-2013; Pfaff, Robert/F-5703-2012; OI Klenzing, Jeff/0000-0001-8321-6074; Pfaff, Robert/0000-0002-4881-9715; Varney, Roger/0000-0002-5976-2638; Bhatt, Asti/0000-0002-8881-5348; Stoneback, Russell/0000-0001-7216-4336 FU Office of Naval Research; DoD; NRL; National Aeronautics and Space Administration FX Work was supported by the Office of Naval Research. The CARE, SIMPLEX and SEITE Missions are supported by the DoD Space Test Program.; This research was supported by the NRL Base Program. The rocket engine burns were provided by the DoD STP with support from the National Aeronautics and Space Administration. NR 36 TC 17 Z9 17 U1 5 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAY PY 2012 VL 40 IS 5 SI SI BP 1267 EP 1286 DI 10.1109/TPS.2012.2185814 PN 1 PG 20 WC Physics, Fluids & Plasmas SC Physics GA 940LB UT WOS:000303889900002 ER PT J AU Foster, J Sommers, BS Gucker, SN Blankson, IM Adamovsky, G AF Foster, John Sommers, Bradley S. Gucker, Sarah Nowak Blankson, Isaiah M. Adamovsky, Grigory TI Perspectives on the Interaction of Plasmas With Liquid Water for Water Purification SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Atmospheric pressure plasmas; high voltage techniques; organic compounds; plasma applications; plasma chemistry; waste water; water pollution; water pollution control ID ADVANCED OXIDATION PROCESSES; DISINFECTION BY-PRODUCTS; PULSED CORONA DISCHARGE; GLIDING ARC DISCHARGES; HIGH-VOLTAGE DISCHARGE; DRINKING-WATER; WASTE-WATER; ELECTRICAL DISCHARGES; HYDROGEN-PEROXIDE; METHYLENE-BLUE AB Plasma production or plasma injection in liquid water affords one the opportunity to nonthermally inject advanced oxidation processes into water for the purpose of purification or chemical processing. Such technology could potentially revolutionize the treatment of drinking water, as well as current methods of chemical processing through the elimination of physical catalysts. Presented here is an overview of current water treatment technology, its limitations, and the future, which may feature plasma-based advanced oxidation techniques. As such, this field represents an emerging and active area of research. The role that plasma-driven water chemistry can play in addressing emerging threats to the water supply is discussed using case study examples. Limitations of conventional plasma injection approaches include limited throughput capacity, electrode erosion, and reduced process volume. At the University of Michigan, we are investigating two potential approaches designed to circumvent such issues. These include direct plasma injection using an underwater DBD plasma jet and the direct production of plasmas in isolated underwater bubbles via a pulsed electric field. These approaches are presented here, along with the results. C1 [Foster, John; Sommers, Bradley S.; Gucker, Sarah Nowak] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Blankson, Isaiah M.] NASA Glenn Res Ctr, R&T Directorate, Cleveland, OH USA. RP Foster, J (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. FU NSF [0939879]; NASA FX This work was supported by the NSF CBET #0939879 and the NASA Glenn Faculty Fellowship Program. NR 95 TC 28 Z9 31 U1 9 U2 53 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAY PY 2012 VL 40 IS 5 SI SI BP 1311 EP 1323 DI 10.1109/TPS.2011.2180028 PN 1 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 940LB UT WOS:000303889900006 ER PT J AU Wang, JX Wolff, DB AF Wang, Jianxin Wolff, David B. TI Evaluation of TRMM Rain Estimates Using Ground Measurements over Central Florida SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID PASSIVE MICROWAVE SENSORS; MEASURING MISSION TRMM; PRECIPITATION RADAR; GLOBAL PRECIPITATION; TROPICAL RAINFALL; PROFILING ALGORITHM; GAUGE MEASUREMENTS; DIURNAL CYCLE; VALIDATION; PRODUCTS AB This study evaluates space-based rain estimates from the Tropical Rainfall Measuring Mission (TRMM) satellite using ground-based measurements from the radar (GR) and tipping-bucket rain gauges (TG) over the TRMM Ground Validation (GV) site at Melbourne, Florida. The satellite rain products are derived from the TRMM Microwave Imager (TMI), precipitation radar (PR), and combined (COM) rain algorithms using observations from both instruments. The TRMM satellite and GV rain products are spatiotemporally matched and are intercompared at multiple time scales over the 12-yr period from 1998 to 2009. On monthly and yearly scales, the TG agree excellently with the GR because the GR rain rates are generated using the TG data as a constraint on a monthly basis. However, large disagreements exist between the GR and TG at shorter time scales because of their significantly different spatial and temporal sampling modes. The yearly biases relative to the GR for the PR and TMI are generally negative, with a few exceptions. The COM bias fluctuates from year to year over the 12-yr period. The PR, TMI, and COM are in good overall agreement with the GR in the lower range of rain rates, but the agreement is notably worse at higher rain rates. The diurnal cycle of rainfall is captured well by all products, but the peak satellite-derived rainfall (PR, TMI, and COM) lags the peak from the ground measurements (GR and TG) by similar to 1 h. C1 [Wang, Jianxin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Sci Syst & Applicat Inc, Lanham, MD USA. RP Wang, JX (reprint author), NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM jianxin.wang@nasa.gov RI Wolff, David/H-5502-2012 FU NASA [NNG06HX18C]; TRMM; GPM; Kennedy Space Center; South Florida Water Management District; John's River Water Management District for their routine operation of the rain gauge networks FX This study was funded under NASA Grant NNG06HX18C. The authors thank Dr. Ramesh Kakar (NASA Headquarters), Dr. Scott Braun (TRMM Project Scientist), and Dr. Arthur Hou (GPM Project Scientist) for their support of this effort. We also greatly appreciate the efforts of Dr. Erich Stocker of the TRMM Science and Data Information System (TSDIS) and NASA Precipitation Processing System (PPS) for generating the 0.25 degrees TRMM data used in this study. We also thank TRMM GV colleagues D. A. Marks and J. L. Pippitt for providing TRMM Standard Product 2A53 and KMLB radar gap information. Thanks also are given to support staff at Kennedy Space Center, the South Florida Water Management District, and St. John's River Water Management District for their routine operation of the rain gauge networks. Special thanks are given to two anonymous reviewers for their insightful comments and stimulating questions. NR 46 TC 7 Z9 7 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2012 VL 51 IS 5 BP 926 EP 940 DI 10.1175/JAMC-D-11-080.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 939RM UT WOS:000303831500008 ER PT J AU Abdul-Aziz, A Bhatt, RT AF Abdul-Aziz, Ali Bhatt, Ramakrishna T. TI Modeling of thermal residual stress in environmental barrier coated fiber reinforced ceramic matrix composites SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE EBC; SiC/SiC composites; residual stress; finite element; barium strontium aluminum silicate; ytterbium disilicate; ytterbium monosilicate; BSAS; Mullite ID SILICON-CARBIDE; OXIDATION; COATINGS; CONDUCTIVITY; STABILITY AB For SiC/SiC composites to replace metallic materials in future turbine engines, prime reliant environmental barrier coatings (EBCs) are required. However, due to the mismatch in thermal expansion and elastic modulus between the substrate and the coating, thermal residual stresses are generated in the coating after processing as well as during exposure to turbine engine operating conditions. The nature and magnitude of the thermal stresses will have a profound effect on the durability and reliability of the EBC. To estimate the magnitude of in-plane (x- and y-directions) and through-the-thickness (z-direction) thermal residual stresses in the coating, a finite element model (FEM) was developed. Using FEM, the residual stresses were predicted for three multilayered EBC systems considered for the SiC/SiC composites: (1) barium strontium aluminum silicate, (2) ytterbium disilicate, and (3) ytterbium monosilicate. Influence of thickness and modulus of the coating layer on the thermal residual stress were modeled. Results indicate that thermal residual stresses in the SiC/SiC composite substrate are compressive and in all the three coatings tensile. Further examination indicates that in the z-direction, tensile stresses in all three systems are negligible, but in-plane tensile stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. Comparison of predicted thermal residual stresses in the three systems shows that the ytterbium monosilicate system has the highest stress (similar to 395 MPa), while the other two systems averaged about 80 MPa in one of the coating layers. A parametric analysis conducted indicates that lowering the modulus of the coating can lower the thermal residual stresses. C1 [Abdul-Aziz, Ali; Bhatt, Ramakrishna T.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Abdul-Aziz, Ali] Cleveland State Univ, Dept Chem & Biomed Engn, Cleveland, OH 44115 USA. [Bhatt, Ramakrishna T.] USA, Vehicle Technol Directorate, AMSRD ARL VT SG, Cleveland, OH USA. RP Abdul-Aziz, A (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM ali.abdul-aziz-1@nasa.gov NR 16 TC 3 Z9 3 U1 5 U2 56 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 J9 J COMPOS MATER JI J. Compos Mater. PD MAY PY 2012 VL 46 IS 10 BP 1211 EP 1218 DI 10.1177/0021998311414950 PG 8 WC Materials Science, Composites SC Materials Science GA 940YG UT WOS:000303928400007 ER PT J AU Suselj, K Teixeira, J Matheou, G AF Suselj, Kay Teixeira, Joao Matheou, Georgios TI Eddy Diffusivity/Mass Flux and Shallow Cumulus Boundary Layer: An Updraft PDF Multiple Mass Flux Scheme SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID SURFACE-GENERATED CONVECTION; MIXING-LENGTH FORMULATION; PART II; MOIST CONVECTION; UNIFIED PARAMETERIZATION; DRY CONVECTION; MODEL; CLOUDS; SIMULATION; TRANSPORT AB In this study, the eddy diffusivity/mass flux (EDMF) approach is used to combine parameterizations of nonprecipitating moist convection and boundary layer turbulence. The novel aspect of this EDMF version is the use of a probability density function (PDF) to describe the moist updraft characteristics. A single bulk dry updraft is initialized at the surface and integrated vertically. At each model level, the possibility of condensation within the updraft is considered based on the PDF of updraft moist conserved variables. If the updraft partially condenses, it is split into moist and dry updrafts, which are henceforth integrated separately. The procedure is repeated at each of the model levels above. The single bulk updraft ends up branching into numerous moist and dry updrafts. With this new approach, the need to define a cloud-base closure is circumvented. This new version of EDMF is implemented in a single-column model (SCM) and evaluated using large-eddy simulation (LES) results for the Barbados Oceanographic and Meteorological Experiment (BOMEX) representing steady-state convection over ocean and the Atmospheric Radiation Measurement (ARM) case representing time-varying convection over land. The new EDMF scheme is able to represent the properties of shallow cumulus and turbulent fluxes in cumulus-topped boundary layers realistically. The parameterized updraft properties partly account for the behavior of the tail of the PDF of moist conserved variables. It is shown that the scheme is not particularly sensitive to the vertical resolution of the SCM or the main model parameters. C1 [Suselj, Kay; Teixeira, Joao; Matheou, Georgios] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Suselj, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kay.suselj@jpl.nasa.gov FU Office of Naval Research [N0001408IP20064]; NASA MAP; NOAA MAPP/CPO FX We thank two anonymous reviewers who helped us improve the manuscript. The authors thank Dr. Bridget Samuels for her invaluable help editing the manuscript. The authors acknowledge the support provided by the Office of Naval Research, Marine Meteorology Program under award N0001408IP20064, by the NASA MAP Program and by the NOAA MAPP/CPO Program. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 40 TC 10 Z9 11 U1 1 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAY PY 2012 VL 69 IS 5 BP 1513 EP 1533 DI 10.1175/JAS-D-11-090.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 936YK UT WOS:000303625700004 ER PT J AU Chao, WC AF Chao, Winston C. TI Correction of Excessive Precipitation over Steep and High Mountains in a GCM SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID GENERAL-CIRCULATION; PART I; MODEL; STRATOSPHERE; CONVECTION AB Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and mesoscale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, it was found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by heated boundary layer on the subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes investigated include 1) a poorly designed horizontal moisture flux in the terrain-following coordinates, 2) the conditions for cumulus convection being too easily satisfied at mountaintops. 3) conditional instability of the computational kind, and 4) the absence of blocked flow drag. They are all minor or inconsequential. The ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) have been parameterized by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using the NASA Goddard Earth Observing System GCM version 5 (GEOS-5) have shown that the EPSM problem is largely solved. C1 NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chao, WC (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Mail Code 610-1, Greenbelt, MD 20771 USA. EM winston.c.chao@nasa.gov FU NASA under WBS [802678.02.17.01.25] FX Technical help from Larry Takacs, Max Suarez, and Andrea Molod, all of GMAO/GSFC/NASA, in using the GEOS-5 GCM is gratefully acknowledged. This research was supported by NASA's Modeling, Analysis and Prediction program under WBS 802678.02.17.01.25. Computing resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Computational Sciences (NCCS) at Goddard Space Flight Center. NR 23 TC 10 Z9 10 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD MAY PY 2012 VL 69 IS 5 BP 1547 EP 1561 DI 10.1175/JAS-D-11-0216.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 936YK UT WOS:000303625700006 ER PT J AU Dowsett, HJ Robinson, MM Haywood, AM Hill, DJ Dolan, AM Stoll, DK Chan, WL Abe-Ouchi, A Chandler, MA Rosenbloom, NA Otto-Bliesner, BL Bragg, FJ Lunt, DJ Foley, KM Riesselman, CR AF Dowsett, Harry J. Robinson, Marci M. Haywood, Alan M. Hill, Daniel J. Dolan, Aisling M. Stoll, Danielle K. Chan, Wing-Le Abe-Ouchi, Ayako Chandler, Mark A. Rosenbloom, Nan A. Otto-Bliesner, Bette L. Bragg, Fran J. Lunt, Daniel J. Foley, Kevin M. Riesselman, Christina R. TI Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models SO NATURE CLIMATE CHANGE LA English DT Article ID NORTH-ATLANTIC OCEAN; FORAMINIFER TRANSFER-FUNCTION; EQUATORIAL PACIFIC; LATE PLEISTOCENE; PALEOCEANOGRAPHY; RECONSTRUCTION; DEPOSITS AB In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3-3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate. C1 [Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.; Foley, Kevin M.; Riesselman, Christina R.] US Geol Survey, Eastern Geol & Paleoclimate Sci Ctr, Reston, VA 20192 USA. [Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Hill, Daniel J.] British Geol Survey, Climate Change Grp, Nottingham NG12 5GG, England. [Chan, Wing-Le; Abe-Ouchi, Ayako] Univ Tokyo, Atmosphere & Ocean Res Inst, Tokyo 2778564, Japan. [Abe-Ouchi, Ayako] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Yokohama, Kanagawa 2360001, Japan. [Chandler, Mark A.] Columbia Univ, NASA, GISS, New York, NY 10025 USA. [Rosenbloom, Nan A.; Otto-Bliesner, Bette L.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Bragg, Fran J.; Lunt, Daniel J.] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. RP Dowsett, HJ (reprint author), US Geol Survey, Eastern Geol & Paleoclimate Sci Ctr, Reston, VA 20192 USA. EM hdowsett@usgs.gov RI Lunt, Daniel/G-9451-2011; Riesselman, Christina/H-5037-2012; Abe-Ouchi, Ayako/M-6359-2013; Bragg, Fran/C-6198-2015; OI Lunt, Daniel/0000-0003-3585-6928; Abe-Ouchi, Ayako/0000-0003-1745-5952; Bragg, Fran/0000-0002-8179-4214; Hill, Daniel/0000-0001-5492-3925; Dolan, Aisling/0000-0002-9585-9648; Dowsett, Harry/0000-0003-1983-7524 FU US Geological Survey; NASA; European Research Council under European Union [278636]; Leverhulme Early Career Fellowship [ECF-2011-205]; British Geological Survey; National Centre for Atmospheric Science; Natural Environment Research Council [NE/H006273/1]; US National Science Foundation; National Science Foundation FX H.J.D., M.M.R., D.K.S. and K.M.F. acknowledge the continued support of the US Geological Survey Climate and Land Use Change Research and Development Program; C.R.R. thanks the US Geological Survey Mendenhall Postdoctoral Fellowship Program; H.J.D., M.M.R. and M.A.C. thank the US Geological Survey John Wesley Powell Center for Analysis and Synthesis; M.A.C. acknowledges support from the NASA Climate Modelling Program. A.M.H. acknowledges financial support from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 278636. D.J.H. undertook his contribution as part of a Leverhulme Early Career Fellowship (ECF-2011-205), co-financially supported by the British Geological Survey and National Centre for Atmospheric Science; D.J.L. and F.J.B. acknowledge the Natural Environment Research Council grant NE/H006273/1. B.L.O-B. and N.A.R. recognize the National Center for Atmospheric Research is sponsored by the US National Science Foundation and computing resources were provided by the Climate Simulation Laboratory at the National Center for Atmospheric Research's Computational and Information Systems Laboratory sponsored by the National Science Foundation and other agencies. This research used samples and/or data provided by the Integrated Ocean Drilling Program. This is a product of the PRISM Project and the Pliocene Model Intercomparison Project. NR 46 TC 68 Z9 68 U1 6 U2 60 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD MAY PY 2012 VL 2 IS 5 BP 365 EP 371 DI 10.1038/NCLIMATE1455 PG 7 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 942EH UT WOS:000304024800022 ER PT J AU Hatipoglu, G Liu, Y Zhao, R Yoonessi, M Tigelaar, DM Tadigadapa, S Zhang, QM AF Hatipoglu, Gokhan Liu, Yang Zhao, Ran Yoonessi, Mitra Tigelaar, Dean M. Tadigadapa, Srinivas Zhang, Q. M. TI A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators SO SMART MATERIALS AND STRUCTURES LA English DT Article ID LONG-WAVELENGTH PROPAGATION; NETWORK COMPOSITE ACTUATORS; METAL COMPOSITES; LIQUIDS; PERFORMANCE; INCLUSIONS; MORPHOLOGY; BEHAVIOR; SENSORS; MEDIA AB A high modulus, sulfonated ionomer synthesized from 4,6-bis(4-hydroxyphenyl)-N,N-diphenyl-1,3,5-triazin-2-amine and 4,4'-biphenol with bis(4-fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS: BP is that it can have a high ionic liquid (IL) uptake and consequently generates a high intrinsic strain response, which is >1.1% under 1.6 V while maintaining a high elastic modulus (i.e. 600 MPa for 65 vol% IL uptake). Moreover, such a high modulus of the active ionomer, originating from the highly aromatic backbone and side-chain-free structure, allows for the fabrication of free-standing thin film micro-actuators (down to 5 mu m thickness) via the solution cast method and focused-ion-beam milling, which exhibits a much higher bending actuation, i.e. 43 mu m tip displacement and 180 kPa blocking stress for a 200 mu m long and 5 mu m thick cantilever actuator, compared with the ionic actuators based on traditional ionomers such as Nafion, which has a much lower elastic modulus (50 MPa) and actuation strain. C1 [Hatipoglu, Gokhan; Liu, Yang; Zhao, Ran; Tadigadapa, Srinivas; Zhang, Q. M.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Yoonessi, Mitra; Tigelaar, Dean M.] Ohio Aerosp Inst, Cleveland, OH 44135 USA. [Yoonessi, Mitra; Tigelaar, Dean M.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Zhang, Q. M.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. RP Hatipoglu, G (reprint author), Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. EM qxz1@psu.edu OI Tadigadapa, Srinivas/0000-0002-8700-2476 FU US Army Research Office [W911NF-07-1-0452]; Scientific and Technical Research Council of Turkey (TUBITAK) FX This research is supported by the US Army Research Office under grant no. W911NF-07-1-0452 Ionic Liquids in Electro-Active Devices (ILEAD) MURI. GH acknowledges partial support from the Scientific and Technical Research Council of Turkey (TUBITAK) for a 2213-International PhD Fellowship Program. The authors acknowledge the Penn State University Materials Research Institute Nanofabrication Laboratory for the FIB tool utilization. NR 36 TC 6 Z9 6 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 J9 SMART MATER STRUCT JI Smart Mater. Struct. PD MAY PY 2012 VL 21 IS 5 AR 055015 DI 10.1088/0964-1726/21/5/055015 PG 7 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA 938VF UT WOS:000303760600017 ER PT J AU Anderson, SW Smrekar, SE Stofan, ER AF Anderson, Steven W. Smrekar, Suzanne E. Stofan, Ellen R. TI Tumulus development on lava flows: insights from observations of active tumuli and analysis of formation models SO BULLETIN OF VOLCANOLOGY LA English DT Article DE Lava; Inflation; Tumuli; Modeling; Viscosity ID FLOOD-BASALT EMPLACEMENT; KILAUEA VOLCANO; PULSED INFLATION; LOBE TUMULI; MAGMA FLOW; MOUNT-ETNA; PAHOEHOE; HAWAII; FIELD; ICELAND AB Here, we use observations of active flows along with detailed morphometric field measurements of more than 70 tumuli on flows at Mount Etna (Italy), Kilauea, and Hualalai (US) volcanoes to constrain a previously published model that estimates the pressure needed to form tumuli. In an attempt to discover the nature and magnitude of pressure variations within active lava flow interiors, we then consider how tumuli differ from idealized circular plates. We incorporate observations of active tumuli and find that they may grow asymmetrically yet produce a symmetrical tumulus and can form where the flow path significantly changes direction. Bending models of clamped edges provide the most reasonable head estimates for the tumuli in our study. Tumulus formation requires the proper combination of cooling and effusion rate. If cooling is too extensive and effusion rate too low, the crust will provide too much resistance to bending. If cooling is too limited and effusion rates too high, crusts will not develop or have insufficient strength to resist fracture and subsequent breakouts. We do not find it surprising that tumuli are rarely found over well-established lava tubes that typically have rigid, walls/overlying crusts that exceed 2 m in thickness and provide too much resistance to bending. Silicic flows lack tumuli because the viscosity gradients within the flow are insufficient to concentrate stress in a localized area. C1 [Anderson, Steven W.] Univ No Colorado, MAST Inst, Greeley, CO 80639 USA. [Smrekar, Suzanne E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stofan, Ellen R.] Proxemy Res, Laytonville, MD 20882 USA. RP Anderson, SW (reprint author), Univ No Colorado, MAST Inst, 1210 Ross Hall, Greeley, CO 80639 USA. EM steven.anderson@unco.edu FU NASA [NNG05GL55G] FX The authors wish to acknowledge John Guest, Angus Duncan, Jeff Byrnes, David Crown, and Mike Ramsey for discussions in the field that helped us develop the ideas presented here. Anderson acknowledges support from grant NNG05GL55G from the NASA Mars Fundamental Research Program. We also thank Agust Gudmundsson and an anonymous reviewer for their extremely thorough and thoughtful critiques that helped us focus and clarify this work. NR 45 TC 9 Z9 9 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0258-8900 EI 1432-0819 J9 B VOLCANOL JI Bull. Volcanol. PD MAY PY 2012 VL 74 IS 4 BP 931 EP 946 DI 10.1007/s00445-012-0576-2 PG 16 WC Geosciences, Multidisciplinary SC Geology GA 933ZZ UT WOS:000303408700011 ER PT J AU Bender, FAM Ramanathan, V Tselioudis, G AF Bender, Frida A-M. Ramanathan, V. Tselioudis, George TI Changes in extratropical storm track cloudiness 1983-2008: observational support for a poleward shift SO CLIMATE DYNAMICS LA English DT Article ID RADIATION BUDGET EXPERIMENT; CLIMATE-CHANGE; CYCLONE ACTIVITY; CARBON-DIOXIDE; ISCCP; CLOUDS; VARIABILITY; MULTIMODEL; REANALYSIS; AEROSOL AB Climate model simulations suggest that the extratropical storm tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the International Satellite Cloud Climatology Project, ISCCP. Potential shifts in the storm tracks are examined using the observed cloud structures as proxies for cyclone activity. Different data analysis methods are employed, with the objective to address difficulties and uncertainties in using ISCCP data for regional trend analysis. In particular, three data filtering techniques are explored; excluding specific problematic regions from the analysis, regressing out a spurious viewing geometry effect, and excluding specific cloud types from the analysis. These adjustments all, to varying degree, moderate the cloud trends in the original data but leave the qualitative aspects of those trends largely unaffected. Therefore, our analysis suggests that ISCCP data can be used to interpret regional trends in cloudiness, provided that data and instrumental artefacts are recognized and accounted for. The variation in magnitude between trends emerging from application of different data correction methods, allows us to estimate possible ranges for the observational changes. It is found that the storm tracks, here represented by the extent of the midlatitude-centered band of maximum cloud cover over the studied ocean basins, experience a poleward shift as well as a narrowing over the 25 year period covered by ISCCP. The observed magnitudes of these effects are larger than in current generation climate models (CMIP3). The magnitude of the shift is particularly large in the northern hemisphere Atlantic. This is also the one of the four regions in which imperfect data primarily prevents us from drawing firm conclusions. The shifted path and reduced extent of the storm track cloudiness is accompanied by a regional reduction in total cloud cover. This decrease in cloudiness can primarily be ascribed to low level clouds, whereas the upper level cloud fraction actually increases, according to ISCCP. Independent satellite observations of radiative fluxes at the top of the atmosphere are consistent with the changes in total cloud cover. The shift in cloudiness is also supported by a shift in central position of the mid-troposphere meridional temperature gradient. We do not find support for aerosols playing a significant role in the satellite observed changes in cloudiness. The observed changes in storm track cloudiness can be related to local cloud-induced changes in radiative forcing, using ERBE and CERES radiative fluxes. The shortwave and the longwave components are found to act together, leading to a positive (warming) net radiative effect in response to the cloud changes in the storm track regions, indicative of positive cloud feedback. Among the CMIP3 models that simulate poleward shifts in all four storm track areas, all but one show decreasing cloud amount on a global mean scale in response to increased CO2 forcing, further consistent with positive cloud feedback. Models with low equilibrium climate sensitivity to a lesser extent than higher-sensitivity models simulate a poleward shift of the storm tracks. C1 [Bender, Frida A-M.; Ramanathan, V.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Clouds Chem & Climate C4, La Jolla, CA 92093 USA. [Tselioudis, George] Columbia Univ, NASA Goddard Inst Space Studies, New York, NY USA. RP Bender, FAM (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Clouds Chem & Climate C4, La Jolla, CA 92093 USA. EM fbender@ucsd.edu FU National Science Foundation, through the Atmospheric Science Division [ATM0721142] FX This work was funded by the National Science Foundation, through the Atmospheric Science Division, ATM0721142. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U. S. Department of Energy. CRU data are obtained from http://www.metoffice.gov.uk/hadobs, ERA data from the ECMWF Data Server, ERBE and CERES data from the Atmospheric Science Data Center at NASA Langley Research Center, ISCCP data from http://isccp.giss.nasa.gov/products/onlineData.html. NR 46 TC 46 Z9 46 U1 1 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAY PY 2012 VL 38 IS 9-10 BP 2037 EP 2053 DI 10.1007/s00382-011-1065-6 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 934ML UT WOS:000303448300022 ER PT J AU Michalski, J Niles, PB AF Michalski, Joseph Niles, Paul B. TI Atmospheric origin of Martian interior layered deposits: Links to climate change and the global sulfur cycle SO GEOLOGY LA English DT Article ID MERIDIANI-PLANUM; EARLY MARS; ICE; CHEMISTRY; REGION; RECORD; LIFE; AGES AB Since the first photogeologic exploration of Mars, vast mounds of layered sediments found within the Valles Marineris troughs (interior layered deposits, ILDs) have remained unexplained. Recent spectroscopic results showing that these materials contain coarse-grained hematite and sulfate suggest that they are fundamentally similar to layered sulfate deposits seen elsewhere on Mars, and are therefore a key piece of the global aqueous history of Mars. In this work we constrain the origin of the ILDs by considering mass balance equations. One model involving formation of the ILDs by groundwater upwelling requires that a significant fraction of the global Martian sulfur budget was concentrated in the Valles Marineris at the time when the ILDs formed. It also necessitates high deposition and erosion rates in the Hesperian. We favor an alternative model in which the ILDs formed in a configuration similar to what is observed today through atmospherically driven deposition of ice, dust, and volcanogenic sulfuric acid. Such a model is easily compatible with the global sulfur budget, and does not require significant erosion rates or large volumes of liquid water. We propose that formation of sulfate-rich layered sediments on Mars was governed through time by volcanogenic SO2 and H2O emission rates and dust production against a backdrop of obliquity variation in a largely cold and dry climate. C1 [Michalski, Joseph] Planetary Sci Inst, Tucson, AZ 85719 USA. [Michalski, Joseph] Nat Hist Museum, London SW7 5BD, England. [Niles, Paul B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Michalski, J (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Suite 106, Tucson, AZ 85719 USA. EM michalski@psi.edu FU National Aeronautics and Space Administration [NNX09AN16G] FX This work was funded through the National Aeronautics and Space Administration Mars Data Analysis Program (grant NNX09AN16G). We thank Jeff Andrews-Hanna, Ernst Hauber, and an anonymous reviewer for comments that improved the manuscript. NR 34 TC 24 Z9 24 U1 0 U2 20 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD MAY PY 2012 VL 40 IS 5 BP 419 EP 422 DI 10.1130/G32971.1 PG 4 WC Geology SC Geology GA 933YZ UT WOS:000303404700012 ER PT J AU Spry, DJ Lukco, D AF Spry, D. J. Lukco, D. TI A Bondable Metallization Stack That Prevents Diffusion of Oxygen and Gold into Monolithically Integrated Circuits Operating Above 500A degrees C SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Iridium; wire bond; high temperature AB We investigate use of tantalum silicide (TaSi2, 400 nm)/platinum (Pt, 200 nm)/iridium (Ir, 200 nm)/platinum (Pt, 200 nm) as both a bond metal and a diffusion barrier to prevent oxygen (from air) and gold (from the wire bond) from infiltrating silicon carbide (SiC) monolithically integrated circuits operating above 500A degrees C for over 1000 h in air. The TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. It can be used directly on ohmic contact metals, dielectric insulating layers, or interconnect metal, because it adheres to silicon dioxide (SiO2), silicon nitride (Si3N4), and titanium (Ti). In this study, we investigate use of the new metallization of TaSi2/Pt/Ir/Pt (in deposition order) with TaSi2 resting on top of a Ti-SiC contact annealed at 600A degrees C for 30 min in nitrogen, which allows the TaSi2 layer to react with the bottom platinum layer to form the Pt2Si diffusion barrier at the Pt-Ir interface. Since the iridium layer does not readily form a silicide, it prevents the silicon from migrating into the topmost platinum layer during further annealing or high-temperature integrated circuit operation. This leaves a pure platinum layer at the surface, ideal for gold wire bonding. We discuss the characteristics of the TaSi2/Pt/Ir/Pt metallization at 500A degrees C after 10 h, 100 h, and 1000 h in air ambient and N-2 ambient. Auger electron spectroscopy (AES) depth profiles of the metallization and field-emission scanning electron microscopy-focused ion beam (FESEM-FIB) cross-sections are also discussed. C1 [Spry, D. J.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Lukco, D.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. RP Spry, DJ (reprint author), NASA Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM David.J.Spry@nasa.gov FU NASA FX We would like to thank Liangyu Chen, Jose Gonzalez, Carl Chang, and Phil Neudeck at the NASA Glenn Research Center and Amir Avishai from Case Western Reserve University. Funding for this work came from NASA's Vehicle Systems Safety Technologies project. NR 12 TC 1 Z9 1 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD MAY PY 2012 VL 41 IS 5 BP 915 EP 920 DI 10.1007/s11664-011-1792-9 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 935BX UT WOS:000303495000019 ER PT J AU Norris, KJ Lohn, AJ Onishi, T Coleman, E Wong, V Shakouri, A Tompa, GS Kobayashi, NP AF Norris, Kate J. Lohn, Andrew J. Onishi, Takehiro Coleman, Elane Wong, Vernon Shakouri, Ali Tompa, Gary S. Kobayashi, Nobuhiko P. TI MOCVD Growth of Erbium Monoantimonide Thin Film and Nanocomposites for Thermoelectrics SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE InGaSb; InSbAs; MOCVD; ErSb; Thermoelectric; Thermal conductivity ID THERMAL TRANSPORT; NANOPARTICLES AB We report the growth of erbium monoantimonide (ErSb) thin films on indium antimonide (100) substrates by low-pressure metalorganic chemical vapor deposition. The growth rate of ErSb thin films shows strong dependency on the growth temperature and the Sb/Er precursor molar flow rate ratio. Scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffractometry (XRD) were employed to study the ErSb thin films grown under the growth conditions that gave the maximum growth rate in the range we investigated. We also report the growth of two types of nanocomposites in which ErSb nanocolumns or nanoslabs with lengths similar to 500 nm and diameters 20 nm to 30 nm are embedded in Zn-doped InGaSb (ErSb/InGaSb:Zn) and ErSb nanoparticles with diameters of similar to 30 nm are embedded in Zn-doped InSbAs (ErSb/InSbAs:Zn). These nanocomposites were intended to increase phonon scattering in a mid-to-long phonon wavelength range to reduce lattice thermal conductivity. We used time-domain thermoreflectance to measure total thermal conductivity for the two types of nanocomposites, obtaining 4.0 +/- A 0.6 W/mK and 6.7 +/- A 0.8 W/mK for the ErSb/InAsSb:Zn and ErSb/InGaSb:Zn nanocomposites, respectively, which suggests that the thermal conductivity was close to or slightly smaller than the alloy limit of the two ternary alloy hosts. The two nanocomposites were further studied by transmission electron microscopy (TEM) to reveal their microscopic features and by XRD to assess their crystalline structures. C1 [Norris, Kate J.; Lohn, Andrew J.; Onishi, Takehiro; Wong, Vernon; Shakouri, Ali; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Norris, Kate J.; Lohn, Andrew J.; Wong, Vernon; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Nanostructured Energy Convers Technol & Res NECTA, Adv Studies Labs ASL, Santa Cruz, CA 95064 USA. [Norris, Kate J.; Lohn, Andrew J.; Wong, Vernon; Kobayashi, Nobuhiko P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Coleman, Elane; Tompa, Gary S.] Struct Mat Ind Inc, Piscataway, NJ 08854 USA. RP Norris, KJ (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. EM katejeannenorris@gmail.com RI Kobayashi, Nobuhiko/E-3834-2012 FU DARPA/DSO; DoE; ONR; Hewlett-Packard Labs (Palo Alto, CA) FX This work was supported by DARPA/DSO, DoE, and ONR. We would like to thank Dr. Jae Hun Seol of UC Berkeley and Dr. Gilles Pernot of UC Santa Cruz for sample preparation and TDTR measurement. The authors are grateful to Dr. Stephan Kraemer, Dr. Hong Lu, and Prof. Art Gossard for the TEM imaging at UC Santa Barbara. The authors would also like to thank Hewlett-Packard Labs (Palo Alto, CA) for their support and use of equipment. NR 18 TC 3 Z9 3 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD MAY PY 2012 VL 41 IS 5 BP 971 EP 976 DI 10.1007/s11664-012-2094-6 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 935BX UT WOS:000303495000028 ER PT J AU Loomis, BD Nerem, RS Luthcke, SB AF Loomis, Bryant D. Nerem, R. S. Luthcke, S. B. TI Simulation study of a follow-on gravity mission to GRACE SO JOURNAL OF GEODESY LA English DT Article DE GRACE; Time-variable gravity; Mass transport; Satellite gravimetry ID TIME-VARIABLE GRAVITY; MASS; FIELD; OCEAN AB The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by un-modeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace & Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to similar to 0.6 nm/s as compared to similar to 0.2 mu m/s for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (similar to 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of similar to 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing. C1 [Nerem, R. S.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. [Luthcke, S. B.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Loomis, BD (reprint author), SGT Inc, Greenbelt, MD USA. EM bloomis@sgt-inc.com RI Luthcke, Scott/D-6283-2012 FU NASA Headquarters [NGT5]; NASA through ESTO at NASA/GSFC FX This work was supported by NASA Headquarters under the Earth System Science Fellowship Grant NGT5 and the NASA Instrument Incubator Program (IIP) through ESTO at NASA/GSFC. NR 30 TC 27 Z9 34 U1 1 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD MAY PY 2012 VL 86 IS 5 BP 319 EP 335 DI 10.1007/s00190-011-0521-8 PG 17 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 934PA UT WOS:000303455100002 ER PT J AU Jacob, T Wahr, J Gross, R Swenson, S Geruo, A AF Jacob, Thomas Wahr, John Gross, Richard Swenson, Sean Geruo, A. TI Estimating geoid height change in North America: past, present and future SO JOURNAL OF GEODESY LA English DT Article DE Geoid change; Hydrology; Subduction earthquakes; GRACE ID POSTSEISMIC GRAVITY CHANGES; SUMATRA-ANDAMAN EARTHQUAKE; TIME-VARIABLE GRAVITY; ICE-AGE EARTH; CLIMATE EXPERIMENT; SATELLITE GRAVITY; 2004 DECEMBER; MASS-LOSS; GRACE; SURFACE AB The forthcoming GRAV-D gravimetric geoid model over the United States is to be updated regularly to account for changes in geoid height. Its baseline precision is to be at the 10-20 mm level over non-mountainous regions. The aim of this study is to provide an estimate of the magnitude, time scale, and spatial footprint of geoid height change over North America, from mass redistribution processes of hydrologic, cryospheric and solid Earth nature. Geoid height changes from continental water storage changes over the past 50 years and predicted over the next century are evaluated and are highly dependent on the used model. Groundwater depletion from anthropogenic pumping in regional scale aquifers may lead to geoid changes of 10 mm magnitude every 50-100 years. The GRACE time varying gravity fields are used to (i) assess the errors in a glacial isostatic adjustment model, which, if used to correct the GRAV-D model, may induce errors at the 10 mm geoid height level after similar to 20 years, (ii), evaluate geoid height change over ice mass loss regions of North America, which, if they remain unchanged in the future, may lead to geoid height changes at the 10 mm level in under a decade and (iii), compute sea level rise and its effect on the geoid, which is found to be negligible. Coseismic gravitational changes from past North American earthquakes are evaluated, and lead to geoid change at the 10-mm level for only the largest thrust earthquakes. Finally, geoid change from volcanic processes are assessed and found to be significant with respect to the GRAV-D geoid model baseline precision for cataclysmic events, such as that of the 1980 Mt. St. Helens eruption. Recommendations on how to best monitor geoid change in the future are given. C1 [Jacob, Thomas; Wahr, John; Geruo, A.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Jacob, Thomas; Wahr, John; Geruo, A.] Univ Colorado, Cooperat Inst Environm Studies, Boulder, CO 80309 USA. [Gross, Richard] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Swenson, Sean] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Jacob, T (reprint author), Bur Rech Geol & Minieres, BP 6009, F-45060 Orleans, France. EM t.jacob@brgm.fr FU NASA [NNX08AF02G]; JPL [1390432]; Earth Surface and Interior Focus Area of NASA's Science Mission Directorate FX We thank the three anonymous reviewers for their insightful comments. We thank Vicky Childers and Dan Roman for fruitful conversations and Matt Rodell and Hiroko Kato Beaudoing for providing the GLDAS products. We also thank Leonard Konikow and Fred Tillman for their aquifer depletion estimates. Work at the University of Colorado (CU) was partially supported by NASA grant NNX08AF02G, and by JPL contract 1390432. The work of RG described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Support for that work was provided by the Earth Surface and Interior Focus Area of NASA's Science Mission Directorate. NR 73 TC 2 Z9 3 U1 1 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD MAY PY 2012 VL 86 IS 5 BP 337 EP 358 DI 10.1007/s00190-011-0522-7 PG 22 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 934PA UT WOS:000303455100003 ER PT J AU Cheng, AN Xu, KM Hu, YX Kato, S AF Cheng, Anning Xu, Kuan-Man Hu, Yongxiang Kato, Seiji TI Impact of a cloud thermodynamic phase parameterization based on CALIPSO observations on climate simulation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; COMMUNITY ATMOSPHERE MODEL; MICROPHYSICS SCHEME; CONVECTIVE CLOUDS; STRATIFORM CLOUDS; LIQUID FRACTION; WATER-CONTENT; ARCTIC CLOUD; VERSION 3; SENSITIVITY AB This study examines the impact of a new cloud thermodynamic phase parameterization on climate simulation. The new parameterization is based on CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and replaces the default parameterization in the Community Atmosphere Model version 4. It is shown that the application of the new cloud phase parameterization results in a small increase in global-mean liquid water path (LWP) and a small decrease in global-mean ice water path (IWP). Large regional increases in LWP mainly occur in tropical regions such as the western Pacific warm pool and northeastern Indian Ocean and middle latitudes, while large decreases in IWP occur in the midlatitude storm track regions. The increase in zonal-mean cloud water content occurs at temperatures between -15 degrees C and -30 degrees C and cloud fraction increases occur at higher altitudes near the -30 degrees C isotherm. Two other sensitivity experiments that favor more ice-phase clouds also increase cloud fractions at the same altitudes, but decrease cloud water content at slightly lower altitudes. It is found that relative humidity increases at the same altitudes where the cloud fraction increases, caused by radiative cooling that is induced by cloud fraction increases but not changes in cloud water content. This result points to a deficiency in cloud fraction parameterizations that rely solely on ambient humidity without taking cloud water/ice content into account. Zonal-mean cloud albedo forcing is sensitive to LWP in mixed-phase clouds and the comparison with observations suggests that the CALIPSO and default parameterizations perform well in the extratropical regions. C1 [Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Cheng, Anning; Xu, Kuan-Man; Hu, Yongxiang; Kato, Seiji] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA USA. RP Cheng, AN (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM a.cheng@larc.nasa.gov RI Hu, Yongxiang/K-4426-2012; Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU DOE [DE-SC0005450]; NASA Modeling FX This work has been supported by DOE Atmospheric System Research Program under Interagency agreement DE-SC0005450. This work was also partially supported by NASA Modeling, Analysis and Prediction program managed by David Considine. The computation resources from NCAR BlueGene supercomputer were provided by the Teragrid organization. Thanks to Kirk Ayers and Zachary Eitzen of SSAI for reading drafts of this paper. NR 62 TC 10 Z9 10 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 1 PY 2012 VL 117 AR D09103 DI 10.1029/2011JD017263 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 937SF UT WOS:000303678100003 ER PT J AU Hu, SW Cucinotta, FA AF Hu, Shaowen Cucinotta, Francis A. TI Computational studies on full-length Ku70 with DNA duplexes: base interactions and a helical path SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE Binding free energy; DNA repair; Ku70; Ku-DNA binding; Molecular dynamics simulation ID DEPENDENT PROTEIN-KINASE; STRAND BREAK REPAIR; V(D)J RECOMBINATION; MOLECULAR-DYNAMICS; BINDING; END; HETERODIMER; KU80; COMPLEXES; ANTIGEN AB The Ku70/80 heterodimer is among the first responding proteins to recognize and bind the DNA double strand breaks (DSBs). Once Ku is loaded at the DSB, it works as a scaffold to recruit other repair factors in non-homologous end joining thereby facilitates the following repair processes. In this work, we characterized the detailed interactions and binding free energies between a Ku70 subunit and several DNA duplexes, by using some well-established computational methods. The results reveal that the structure of the protein may suffer certain contractions without the company of Ku80, and may experience large conformational changes in the presence of different DNA duplexes. Notably, we observe the closest interactions between Ku70 and DNA can be easily strengthened to form H-bonds with the bases in the minor groove, which is unexpected. However, this finding is supported by the presence of a similar bond between Ku80 and DNA in the published crystal structure (PDB code 1JEY). We suggest that these interactions are responsible for the observed pausing sites when Ku translocates along DNA and the subtle difference in binding with AT- and GC-rich DNA ends. Additionally, simulations indicate the inner surface of the ring encircling the DNA is not flat, but contains a delicate clamp like structure, which is ideal to grip the two strands of DNA in the minor groove and confine the movement of the duplex in a unique helical path. C1 [Hu, Shaowen] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Hu, SW (reprint author), Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. EM Shaowen.Hu-1@nasa.gov FU NASA FX This work was supported by the NASA Space Radiation Program, Risk Assessment Project. NR 49 TC 0 Z9 0 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 J9 J MOL MODEL JI J. Mol. Model. PD MAY PY 2012 VL 18 IS 5 BP 1935 EP 1949 DI 10.1007/s00894-011-1220-3 PG 15 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA 935SW UT WOS:000303541900023 PM 21870196 ER PT J AU Hu, SW Pluth, JM Cucinotta, FA AF Hu, Shaowen Pluth, Janice M. Cucinotta, Francis A. TI Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE Binding free energy; DNA repair; Ku70-SAP; Ku-DNA binding; Molecular dynamics simulation ID CONFORMATIONAL SEARCH; CONTINUUM SOLVENT; NUCLEIC-ACIDS; FREE-ENERGY; PROTEIN; END; KU; HETERODIMER; DOCKING; REPAIR AB The channel structure of the Ku protein elegantly reveals the mechanistic basis of sequence-independent DNA-end binding, which is essential to genome integrity after exposure to ionizing radiation or in V(D)J recombination. However, contradicting evidence indicates that this protein is also involved in the regulation of gene expression and in other regulatory processes with intact chromosomes. This computational study predicts that a putative DNA binding domain of this protein, the SAP domain, can form DNA-bound complexes with relatively high affinities (Delta G a parts per thousand -20 kcal mol(-1)). The binding modes are searched by low frequency vibration modes driven by the fully flexible docking method while binding affinities are calculated by the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. We find this well defined 5 kDa domain with a helix-extended loop-helix structure is suitable to form favorable electrostatic and hydrophobic interactions with either the major groove or the minor groove of DNA. The calculation also reveals the sequence specified binding preference which may relate to the observed pause sites when Ku translocates along DNA and the perplex binding of Ku with circular DNA. C1 [Hu, Shaowen] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Hu, SW (reprint author), Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. EM Shaowen.hu-1@nasa.gov FU NASA FX The authors thank Dr. Istvan Kolossvary for kind help on LMOD calculations. Part of computations was performed on computers at TLC2 of the University of Houston. Funding for this study was provided by the NASA Space Radiation Program, Risk Assessment Project. NR 41 TC 6 Z9 7 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 J9 J MOL MODEL JI J. Mol. Model. PD MAY PY 2012 VL 18 IS 5 BP 2163 EP 2174 DI 10.1007/s00894-011-1234-x PG 12 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA 935SW UT WOS:000303541900043 PM 21947447 ER PT J AU Kort, EA Wofsy, SC Daube, BC Diao, M Elkins, JW Gao, RS Hintsa, EJ Hurst, DF Jimenez, R Moore, FL Spackman, JR Zondlo, MA AF Kort, E. A. Wofsy, S. C. Daube, B. C. Diao, M. Elkins, J. W. Gao, R. S. Hintsa, E. J. Hurst, D. F. Jimenez, R. Moore, F. L. Spackman, J. R. Zondlo, M. A. TI Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north SO NATURE GEOSCIENCE LA English DT Article ID SURFACE-WATER; SEA AB Uncertainty in the future atmospheric burden of methane, a potent greenhouse gas(1), represents an important challenge to the development of realistic climate projections. The Arctic is home to large reservoirs of methane, in the form of permafrost soils and methane hydrates(2), which are vulnerable to destabilization in a warming climate. Furthermore, methane is produced in the surface ocean(3) and the surface waters of the Arctic Ocean are supersaturated with respect to methane(4,5). However, the fate of this oceanic methane is uncertain. Here, we use airborne observations of methane to assess methane efflux from the remote Arctic Ocean, up to latitudes of 82 degrees north. We report layers of increased methane concentrations near the surface ocean, with little or no enhancement in carbon monoxide levels, indicative of a non-combustion source. We further show that high methane concentrations are restricted to areas over open leads and regions with fractional sea-ice cover. Based on the observed gradients in methane concentration, we estimate that sea-air fluxes amount to around 2 mg d(-1) m(-2), comparable to emissions seen on the Siberian shelf. We suggest that the surface waters of the Arctic Ocean represent a potentially important source of methane, which could prove sensitive to changes in sea-ice cover. C1 [Kort, E. A.; Wofsy, S. C.; Daube, B. C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Kort, E. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Diao, M.; Zondlo, M. A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USA. [Elkins, J. W.; Gao, R. S.; Hintsa, E. J.; Hurst, D. F.; Moore, F. L.; Spackman, J. R.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Hintsa, E. J.; Hurst, D. F.; Moore, F. L.] Univ Colorado, CIRES, Boulder, CO 80305 USA. [Jimenez, R.] Univ Nacl Colombia, Dept Chem & Environm Engn, Air Qual Res Grp, Bogota, Colombia. [Spackman, J. R.] Sci & Technol Corp, Boulder, CO 80305 USA. RP Kort, EA (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM Eric.A.Kort@jpl.nasa.gov RI Kort, Eric/F-9942-2012; Gao, Ru-Shan/H-7455-2013; Diao, Minghui/A-4437-2015; Hurst, Dale/D-1554-2016; Zondlo, Mark/R-6173-2016; OI Kort, Eric/0000-0003-4940-7541; Diao, Minghui/0000-0003-0324-0897; Hurst, Dale/0000-0002-6315-2322; Zondlo, Mark/0000-0003-2302-9554; JIMENEZ, Rodrigo/0000-0002-8665-9484 FU NSF [ATM-0628575, ATM-0628519, ATM-0628388]; NCAR FX HIPPO was supported by NSF grants ATM-0628575, ATM-0628519 and ATM-0628388 and by NCAR. NCAR is supported by NSF. Participation by NOAA instruments were supported in part by the NSF through its Atmospheric Chemistry Program to CIRES, NOAA through its Atmospheric Composition and Climate Program and the Office of Oceanic and Atmospheric Research, and NASA through its Upper Atmosphere Research Program and Radiation Sciences Program. We thank the pilots, mechanics, technicians and scientific crew working on HIPPO. We thank C. Sweeney and D. Fitzjarrald for aiding in interpretation of results and D. Nance for his contribution to H2O observations. The authors gratefully acknowledge the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.php) used in this publication. NR 27 TC 50 Z9 55 U1 2 U2 74 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD MAY PY 2012 VL 5 IS 5 BP 318 EP 321 DI 10.1038/NGEO1452 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 934RP UT WOS:000303464100010 ER PT J AU Zerkle, AL Claire, M Domagal-Goldman, SD Farquhar, J Poulton, SW AF Zerkle, Aubrey L. Claire, Markw. Domagal-Goldman, Shawn D. Farquhar, James Poulton, Simon W. TI A bistable organic-rich atmosphere on the Neoarchaean Earth SO NATURE GEOSCIENCE LA English DT Article ID MASS-INDEPENDENT FRACTIONATION; SULFUR ISOTOPE RECORDS; TRANSVAAL SUPERGROUP; ARCHEAN ATMOSPHERE; KAAPVAAL CRATON; SOUTH-AFRICA; CYCLE; OXYGENATION; OCEAN; PHOTOLYSIS AB It has been hypothesized that, before widespread oxygenation about 2.45 billion years ago, the Earth's atmosphere contained an organic haze similar to that on Titan. However, these theoretical predictions have not been substantiated by geological evidence. Here we use multiproxy geochemical analyses of sediments from the 2.65-2.5-billion-year-old Ghaap Group, in South Africa, to reconstruct ocean and atmospheric chemistry during this time. We find evidence for oxygen production in microbial mats and localized oxygenation of surface waters. Carbon and sulphur isotopes indicate that this oxygen production occurred under a reduced atmosphere that was periodically rich in methane, consistent with the prediction of a hydrocarbon haze. We use a photochemical model to corroborate our geochemical data. Our simulations predict transitions between two stable atmospheric states, one with organic haze and the other haze-free. The transitions are presumably governed by variations in the amount of biological methane production during the Archaean eon. We find that the isotopic signatures we observe are evident in other data sets from this period and conclude that methane was an important component of the atmosphere throughout the Archaean. C1 [Zerkle, Aubrey L.; Poulton, Simon W.] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Claire, Markw.; Domagal-Goldman, Shawn D.] Univ Washington, Virtual Planetary Lab, Seattle, WA 98195 USA. [Claire, Markw.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Domagal-Goldman, Shawn D.] Oak Ridge Associate Univ, NASA Headquarters, NASA Postdoctoral Program, Washington, DC 20546 USA. [Farquhar, James] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Farquhar, James] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. RP Zerkle, AL (reprint author), Newcastle Univ, Sch Civil Engn & Geosci, Drummond Bldg, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. EM aubrey.zerkle@ncl.ac.uk RI Domagal-Goldman, Shawn/F-3521-2012; OI Domagal-Goldman, Shawn/0000-0003-0354-9325; Zerkle, Aubrey/0000-0003-2324-1619 FU NASA; NASA Astrobiology Institute; Natural Environment Research Council; NASA Astrobiology Institute Virtual Planetary Laboratory FX We thank J. Kirschvink, J. Grotzinger, A. Knoll and the Agouron Institute for organizing and financially supporting the Agouron drilling project. We also thank M. Thiemens for constructive comments on the manuscript. This study was financially supported by the NASA Exobiology Program and NASA Astrobiology Institute (A.L.Z. and J.F.) and a Natural Environment Research Council Fellowship (to A.L.Z.). M.W.C and S.D.D-G. would like to acknowledge support from the NASA Astrobiology Institute Virtual Planetary Laboratory and the NASA Postdoctoral Program. NR 36 TC 64 Z9 64 U1 5 U2 56 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD MAY PY 2012 VL 5 IS 5 BP 359 EP 363 DI 10.1038/NGEO1425 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 934RP UT WOS:000303464100018 ER PT J AU Dao, E Kelley, MC Hysell, DL Retterer, JM Su, YJ Pfaff, RF Roddy, PA Ballenthin, JO AF Dao, E. Kelley, M. C. Hysell, D. L. Retterer, J. M. Su, Y. -J. Pfaff, R. F. Roddy, P. A. Ballenthin, J. O. TI On the distribution of ion density depletion along magnetic field lines as deduced using C/NOFS SO RADIO SCIENCE LA English DT Article ID EQUATORIAL SPREAD-F; MODEL; IONOSPHERE; SATELLITE AB To investigate ion density depletion along magnetic field lines, we compare in situ-measured ion density fluctuations as seen from C/NOFS and compare them to the field-line-integrated depletion of the whole bubble as inferred from electric field measurements. Results show that, within C/NOFS' range, local measurement of the normalized density depletion, Delta n/n(0), near the apex may be far less than at other points on the same field line. We argue that the distribution of Delta n/n(0) is a weighted distribution concentrated at latitudes of the Appleton anomalies and becomes more heavily weighted the closer the field-aligned bubble rises to the peak of the anomalies. A three-dimensional simulation of an ionospheric bubble verifies our arguments. C1 [Dao, E.; Kelley, M. C.] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. [Hysell, D. L.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Retterer, J. M.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02467 USA. [Su, Y. -J.; Roddy, P. A.; Ballenthin, J. O.] USAF, Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. [Pfaff, R. F.] NASA, Goddard Space Flight Ctr, Extraterr Phys Lab, Greenbelt, MD 20771 USA. RP Dao, E (reprint author), Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. EM mck13@cornell.edu RI Pfaff, Robert/F-5703-2012 OI Pfaff, Robert/0000-0002-4881-9715 FU National Aeronautics and Space Administration [NNH09AK05I, NNH09AM20I]; Office of Naval Research [N00014-09-1-0975]; Air Force Research Laboratory; Department of Defense; Naval Research Laboratory; Aerospace Corporation FX The C/NOFS mission is supported by the Air Force Research Laboratory, the Department of Defense Space Test Program, the National Aeronautics and Space Administration, the Naval Research Laboratory, and the Aerospace Corporation. The analysis was supported in part by NASA grants NNH09AK05I and NNH09AM20I to the Air Force Research Laboratory. Work at Cornell was funded by the Office of Naval Research under grant N00014-09-1-0975. NR 17 TC 2 Z9 2 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 EI 1944-799X J9 RADIO SCI JI Radio Sci. PD MAY 1 PY 2012 VL 47 AR RS3001 DI 10.1029/2011RS004967 PG 8 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 937QN UT WOS:000303673300002 ER PT J AU Andersen, MPS Nielsen, OJ Wallington, TJ Karpichev, B Sander, SP AF Andersen, Mads P. Sulbaek Nielsen, Ole J. Wallington, Timothy J. Karpichev, Boris Sander, Stanley P. TI Assessing the Impact on Global Climate from General Anesthetic Gases SO ANESTHESIA AND ANALGESIA LA English DT Article ID STRATOSPHERIC OZONE; HYDROFLUOROCARBONS; SEVOFLURANE; ISOFLURANE; DESFLURANE; LIFETIMES; RADICALS AB Although present in the atmosphere with a combined concentration approximately 100,000 times lower than carbon dioxide (i.e., the principal anthropogenic driver of climate change), halogenated organic compounds are responsible for a warming effect of approximately 10% to 15% of the total anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge regarding the impact of anesthetic gas release on the environment, with particular focus on its contribution to the radiative forcing of climate change. (Anesth Analg 2012;114:1081-5) C1 [Andersen, Mads P. Sulbaek; Karpichev, Boris; Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nielsen, Ole J.] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. [Wallington, Timothy J.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Andersen, MPS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 183-901, Pasadena, CA 91109 USA. EM mads@sulbaek.dk RI Sulbaek Andersen, Mads/C-4708-2008; Nielsen, Ole/B-9988-2011 OI Sulbaek Andersen, Mads/0000-0002-7976-5852; Nielsen, Ole/0000-0002-0088-3937 FU Danish Natural Science Research Council; Villum Kann Rasmussen Foundation; EUROCHAMP2; National Aeronautics and Space Administration FX OJN acknowledges financial support from the Danish Natural Science Research Council, the Villum Kann Rasmussen Foundation, and EUROCHAMP2. MPSA is supported by an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. This work was performed partly at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 17 TC 6 Z9 6 U1 2 U2 17 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0003-2999 J9 ANESTH ANALG JI Anesth. Analg. PD MAY PY 2012 VL 114 IS 5 BP 1081 EP 1085 DI 10.1213/ANE.0b013e31824d6150 PG 5 WC Anesthesiology SC Anesthesiology GA 931PI UT WOS:000303231400024 ER PT J AU Abdo, AA Allen, BT Atkins, R Aune, T Benbow, W Berley, D Blaufuss, E Bonamente, E Bussons, J Chen, C Christopher, GE Coyne, DG DeYoung, T Dingus, BL Dorfan, DE Ellsworth, RW Falcone, A Fleysher, L Fleysher, R Galbraith-Frew, J Gonzalez, MM Goodman, JA Haines, TJ Hays, E Hoffman, CM Huntemeyer, PH Kelley, LA Kolterman, BE Lansdell, CP Linnemann, JT McCullough, J McEnery, JE Morgan, T Mincer, AI Morales, MF Nemethy, P Noyes, D Pretz, J Ryan, JM Samuelson, FW Parkinson, PMS Shoup, A Sinnis, G Smith, AJ Sullivan, GW Vasileiou, V Walker, GP Wascko, M Williams, DA Westerhoff, S Yodh, GB AF Abdo, A. A. Allen, B. T. Atkins, R. Aune, T. Benbow, W. Berley, D. Blaufuss, E. Bonamente, E. Bussons, J. Chen, C. Christopher, G. E. Coyne, D. G. DeYoung, T. Dingus, B. L. Dorfan, D. E. Ellsworth, R. W. Falcone, A. Fleysher, L. Fleysher, R. Galbraith-Frew, J. Gonzalez, M. M. Goodman, J. A. Haines, T. J. Hays, E. Hoffman, C. M. Huentemeyer, P. H. Kelley, L. A. Kolterman, B. E. Lansdell, C. P. Linnemann, J. T. McCullough, J. McEnery, J. E. Morgan, T. Mincer, A. I. Morales, M. F. Nemethy, P. Noyes, D. Pretz, J. Ryan, J. M. Samuelson, F. W. Parkinson, P. M. Saz Shoup, A. Sinnis, G. Smith, A. J. Sullivan, G. W. Vasileiou, V. Walker, G. P. Wascko, M. Williams, D. A. Westerhoff, S. Yodh, G. B. TI OBSERVATION AND SPECTRAL MEASUREMENTS OF THE CRAB NEBULA WITH MILAGRO SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; astroparticle physics; gamma rays: general; pulsars: individual (Crab Pulsar) ID GAMMA-RAY EMISSION; AIR-SHOWER ARRAY; ATIC EXPERIMENT; ENERGY-SPECTRA; TEV EMISSION; PULSAR; DISCOVERY; FLARES AB The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV-100 TeV gamma-ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between similar to 1 and similar to 100 TeV. The TeV emission is believed to be caused by inverse-Compton upscattering of ambient photons by an energetic electron population. The location of a TeV steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fitted. The differential photon energy spectrum, including the statistical errors from the fit, obtained using a simple power-law hypothesis for data between 2005 September and 2008 March is (6.5 +/- 0.4) x 10(-14)(E/10 TeV)(-3.1 +/- 0.1) (cm(2) s TeV)(-1) between similar to 1 TeV and similar to 100 TeV. Allowing for a possible exponential cutoff, the photon energy spectrum is fitted as (2.5(-0.4)(+0.7)) x 10(-12)(E/3 TeV)(-2.5 +/- 0.4) exp(-E/32(-18)(+39) TeV) (cm(2) s TeV)(-1). The results are subject to an similar to 30% systematic uncertainty in the overall flux and an similar to 0.1 systematic uncertainty in the power-law indices quoted. Uncertainty in the overall energy scale has been absorbed into these errors. Fixing the spectral index to values that have been measured below 1 TeV by IACT experiments (2.4-2.6), the fit to the Milagro data suggests that Crab exhibits a spectral steepening or cutoff between about 20-40 TeV. C1 [Abdo, A. A.; Linnemann, J. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Abdo, A. A.; Ellsworth, R. W.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Allen, B. T.; Chen, C.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Atkins, R.; Westerhoff, S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Aune, T.; Benbow, W.; Coyne, D. G.; Dorfan, D. E.; Kelley, L. A.; McCullough, J.; Morales, M. F.; Parkinson, P. M. Saz; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Berley, D.; Blaufuss, E.; Bussons, J.; Goodman, J. A.; Lansdell, C. P.; Noyes, D.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bonamente, E.; Huentemeyer, P. H.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Bussons, J.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain. [Christopher, G. E.; Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] NYU, Dept Phys, New York, NY 10003 USA. [DeYoung, T.; Falcone, A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Dingus, B. L.; Haines, T. J.; Hoffman, C. M.; Pretz, J.; Samuelson, F. W.; Sinnis, G.; Walker, G. P.] Los Alamos Natl Lab, Grp P23, Los Alamos, NM 87545 USA. [Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Hays, E.; McEnery, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Morgan, T.; Ryan, J. M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Shoup, A.] Ohio State Univ, Dept Phys, Lima, OH 45804 USA. [Wascko, M.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. RP Abdo, AA (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RI Saz Parkinson, Pablo Miguel/I-7980-2013; OI Wascko, Morgan/0000-0002-8348-4447; Dingus, Brenda/0000-0001-8451-7450; Mincer, Allen/0000-0002-6307-1418 FU National Science Foundation [PHY-0245234, PHY-0302000, PHY-0400424, PHY-0504201, PHY-0601080, ATM-0002744]; US Department of Energy (Office of High-Energy Physics and Office of Nuclear Physics); Los Alamos National Laboratory; University of California; Institute of Geophysics and Planetary Physics FX We gratefully acknowledge Scott Delay and Michael Schneider for their dedicated efforts in the construction and maintenance of the Milagro experiment. This work has been supported by the National Science Foundation (under grants PHY-0245234, PHY-0302000, PHY-0400424, PHY-0504201, PHY-0601080, and ATM-0002744), the US Department of Energy (Office of High-Energy Physics and Office of Nuclear Physics), Los Alamos National Laboratory, the University of California, and the Institute of Geophysics and Planetary Physics. NR 24 TC 10 Z9 10 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 63 DI 10.1088/0004-637X/750/1/63 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500063 ER PT J AU Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S de Angelis, A de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Falletti, L Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Fukazawa, Y Funk, S Fusco, P Gaggero, D Gargano, F Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grove, JE Guiriec, S Gustafsson, M Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hays, E Horan, D Hou, X Hughes, RE Johannesson, G Johnson, AS Johnson, RP Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pesce-Rollins, M Pierbattista, M Piron, F Pivato, G Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Sadrozinski, HFW Sgro, C Siskind, EJ Spandre, G Spinelli, P Strong, AW Suson, DJ Takahashi, H Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Tinivella, M Torres, DF Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Wood, M Yang, Z Ziegler, M Zimmer, S AF Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Falletti, L. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gaggero, D. Gargano, F. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hou, X. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pesce-Rollins, M. Pierbattista, M. Piron, F. Pivato, G. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Sadrozinski, H. F. -W. Sgro, C. Siskind, E. J. Spandre, G. Spinelli, P. Strong, A. W. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Wood, M. Yang, Z. Ziegler, M. Zimmer, S. TI FERMI-LAT OBSERVATIONS OF THE DIFFUSE gamma-RAY EMISSION: IMPLICATIONS FORCOSMIC RAYS AND THE INTERSTELLAR MEDIUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; dust, extinction; gamma rays: general; gamma rays: ISM; ISM: general; radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; INVERSE COMPTON-SCATTERING; MILKY-WAY-GALAXY; COLD ATOMIC GAS; COSMIC-RAY; RADIAL-DISTRIBUTION; GALACTIC PLANE; INFRARED-EMISSION; HELIUM SPECTRA; MOLECULAR GAS AB The gamma-ray sky >100MeVis dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse gamma-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X-CO factor, the ratio between integrated CO-line intensity and H-2 column density, the fluxes and spectra of the gamma-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as gamma-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic-ray sources, a larger cosmic-ray halo, or greater gas density than is usually assumed. Our results in the outer Galaxy are consistent with other Fermi-LAT studies of this region that used different analysis methods than employed in this paper. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.; Wood, M.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chekhtman, A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Razzano, M.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Razzano, M.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Gaggero, D.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Naumann-Godo, M.; Pierbattista, M.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Brandt, T. J.; Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEE CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Rome, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Cohen-Tanugi, J.; Falletti, L.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Universe & Particules Montpellier, Montpellier, France. [Conrad, J.; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Ferrara, E. C.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fukazawa, Y.; Hanabata, Y.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hou, X.; Lemoine-Goumard, M.; Lott, B.] Univ Bordeaux 1, IN2P3, CNRS, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Katagiri, H.] Ibaraki Univ, Coll Sci, Bunkyo Ku, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Lee, S. -H.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Parent, D.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM gudlaugu@glast2.stanford.edu; tporter@stanford.edu; aws@mpe.mpg.de RI Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Harding, Alice/D-3160-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X FU NASA [NNX09AC15G, NNX10AE78G]; European Community [ERC-StG-259391] FX GALPROP development is partially funded via NASA grants NNX09AC15G and NNX10AE78G.; Funded by contract ERC-StG-259391 from the European Community. NR 155 TC 186 Z9 189 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 3 DI 10.1088/0004-637X/750/1/3 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500003 ER PT J AU Ghavamian, P Long, KS Blair, WP Park, S Fesen, R Gaensler, BM Hughes, JP Rho, J Winkler, PF AF Ghavamian, Parviz Long, Knox S. Blair, William P. Park, Sangwook Fesen, Robert Gaensler, B. M. Hughes, John P. Rho, Jeonghee Winkler, P. Frank TI Spitzer IMAGING AND SPECTRAL MAPPING OF THE OXYGEN-RICH SUPERNOVA REMNANT G292.0+1.8 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (G292.0+1.8); ISM: kinematics and dynamics; ISM: supernova remnants; plasmas; shock waves ID LARGE-MAGELLANIC-CLOUD; PULSAR WIND NEBULA; CIRCUMSTELLAR MEDIUM; PSR J1124-5916; EJECTA; DUST; EMISSION; SHOCK; SPECTROSCOPY; CONSTRAINTS AB We present mid-infrared continuum and emission line images of the Galactic oxygen-rich supernova remnant (SNR) G292.0+1.8, acquired using the MIPS and IRS instruments on the Spitzer Space Telescope. The MIPS 24 mu m and 70 mu m images of G292.0+1.8 are dominated by continuum emission from a network of filaments encircling the SNR. The morphology of the SNR, as seen in the mid-infrared, resembles that seen in X-rays with the Chandra X-Ray Observatory. Most of the mid-infrared emission in the MIPS images is produced by circumstellar dust heated in the non-radiative shocks around G292.0+1.8, confirming the results of earlier mid-IR observations with AKARI. In addition to emission from hot dust, we have also mapped atomic line emission between 14 mu m and 36 mu m using IRS spectral maps. The line emission is primarily associated with the bright oxygen-rich optical knots, but is also detected from fast-moving knots of ejecta. We confirm our earlier detection of 15-25 mu m emission characteristic of magnesium silicate dust in spectra of the radiatively shocked ejecta. We do not detect silicon line emission from any of the radiatively shocked ejecta in the southeast of the SNR, possibly because the reverse shock has not yet penetrated most of the Si-rich ejecta in that region. This may indicate that G292.0+1.8 is less evolved in the southeast than the rest of the SNR, and may be further evidence in favor of an asymmetric SN explosion as proposed in recent X-ray studies of G292.0+1.8. C1 [Ghavamian, Parviz] Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Blair, William P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Park, Sangwook] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Fesen, Robert] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH USA. [Gaensler, B. M.] Univ Sydney, Sydney Inst Astron, Sch Phys A29, Sydney, NSW 2006, Australia. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Rho, Jeonghee] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. RP Ghavamian, P (reprint author), Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA. RI Gaensler, Bryan/F-8655-2010; OI Gaensler, Bryan/0000-0002-3382-9558 FU NASA; HST [GO-10916.08]; NSF [AST-0908566] FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for the work of P. G. was supported by NASA through the Spitzer Guest Observer Program, as well as HST grant GO-10916.08. P. F. W. acknowledges support from the NSF through grant AST-0908566. NR 29 TC 10 Z9 10 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 39 DI 10.1088/0004-637X/750/1/39 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500039 ER PT J AU Harrison, RA Davies, JA Mostl, C Liu, Y Temmer, M Bisi, MM Eastwood, JP de Koning, CA Nitta, N Rollett, T Farrugia, CJ Forsyth, RJ Jackson, BV Jensen, EA Kilpua, EKJ Odstrcil, D Webb, DF AF Harrison, R. A. Davies, J. A. Moestl, C. Liu, Y. Temmer, M. Bisi, M. M. Eastwood, J. P. de Koning, C. A. Nitta, N. Rollett, T. Farrugia, C. J. Forsyth, R. J. Jackson, B. V. Jensen, E. A. Kilpua, E. K. J. Odstrcil, D. Webb, D. F. TI Y AN ANALYSIS OF THE ORIGIN AND PROPAGATION OF THE MULTIPLE CORONAL MASS EJECTIONS OF 2010 AUGUST 1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar-terrestrial relations; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: filaments, prominences; Sun: flares; Sun: heliosphere ID IN-SITU OBSERVATIONS; CME-CME INTERACTION; SOLAR-WIND; STEREO MISSION; IMAGER SMEI; II BURST; RADIO; KINEMATICS; SIGNATURES; DENSITY AB On 2010 August 1, the northern solar hemisphere underwent significant activity that involved a complex set of active regions near central meridian with, nearby, two large prominences and other more distant active regions. This activity culminated in the eruption of four major coronal mass ejections (CMEs), effects of which were detected at Earth and other solar system bodies. Recognizing the unprecedented wealth of data from the wide range of spacecraft that were available-providing the potential for us to explore methods for CME identification and tracking, and to assess issues regarding onset and planetary impact-we present a comprehensive analysis of this sequence of CMEs. We show that, for three of the four major CMEs, onset is associated with prominence eruption, while the remaining CME appears to be closely associated with a flare. Using instrumentation on board the Solar Terrestrial Relations Observatory spacecraft, three of the CMEs could be tracked out to elongations beyond 50 degrees; their directions and speeds have been determined by various methods, not least to assess their potential for Earth impact. The analysis techniques that can be applied to the other CME, the first to erupt, are more limited since that CME was obscured by the subsequent, much faster event before it had propagated far from the Sun; we discuss the speculation that these two CMEs interact. The consistency of the results, derived from the wide variety of methods applied to such an extraordinarily complete data set, has allowed us to converge on robust interpretations of the CME onsets and their arrivals at 1 AU. C1 [Harrison, R. A.; Davies, J. A.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Moestl, C.; Temmer, M.; Rollett, T.] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Moestl, C.; Temmer, M.; Rollett, T.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Moestl, C.; Liu, Y.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Liu, Y.] Chinese Acad Sci, State Key Lab Space Weather, Natl Space Sci Ctr, Beijing, Peoples R China. [Bisi, M. M.] Aberystwyth Univ, Inst Math & Phys, Ceredigion SY23 3BZ, Wales. [Bisi, M. M.; Jackson, B. V.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Eastwood, J. P.; Forsyth, R. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [de Koning, C. A.] NOAA, Space Weather Predict Ctr, Boulder Colorado, CO 80305 USA. [Nitta, N.] Lockheed Martin Adv Technol Ctr, Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Farrugia, C. J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Farrugia, C. J.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Jensen, E. A.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Kilpua, E. K. J.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Odstrcil, D.] George Mason Univ, Dept Computat & Data Sci, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Webb, D. F.] Boston Coll, Inst Sci Res, Newton, MA 02459 USA. RP Harrison, RA (reprint author), Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. EM Richard.Harrison@stfc.ac.uk RI Yong, Liu/H-5333-2011; Kilpua, Emilia/G-8994-2012; OI Liu, Ying/0000-0002-3483-5909; Moestl, Christian/0000-0001-6868-4152; Amerstorfer, Tanja/0000-0001-9024-6706; Temmer, Manuela/0000-0003-4867-7558 FU Austrian Science Fund (FWF) [P20145-N16, V195-N16]; STFC at ICL; Academy of Finland [130298]; NASA [NNX09AJ84G, NN11AB50G, NNX10AQ29G]; STFC; NSF [ATM-0925023, ATM-0852246, AGS-1053766, AGS-1140211]; European Union [263252]; European Community; Navy [N00173-07-1-G016, N00173-10-1-G001]; UK Space Agency; CNES; USAF FX We dedicate this paper to the memory of Andy Breen-the strong and gentle voice we knew in heliospheric physics is now silent. We acknowledge enthusiastic discussions by the attendees of three workshops, which were crucial in bringing together this paper. These workshops were held in January 2011 in Abingdon, England, in March 2011 in Graz, Austria, and in June 2011 in Aberystwyth, Wales. C. M., M. T., and T. R. recognize support by the Austrian Science Fund (FWF), P20145-N16 and V195-N16. J.P.E. is funded through an STFC Advanced Fellowship at ICL. EKJK acknowledges the financial support of the Academy of Finland, project 130298. C.A.d.K. was supported by a NASA Living with a Star TR&T grant, NNX09AJ84G. M. M. B. was partly funded for activities relevant to this work by an STFC standard grant to Aberystwyth University and also by NSF award ATM-0925023. The SMEI analysis group at the UCSD acknowledges funding from NASA award NN11AB50G and NSF awards ATM-0852246 and AGS-1053766. This work has also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 263252 (COMESEP). This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. C.J.F. acknowledges support from NASA grant NNX10AQ29G and NSF grant AGS-1140211. The work of D. F. W. was supported by Navy contracts N00173-07-1-G016 and N00173-10-1-G001. We acknowledge and thank the members of the STEREO/HI, EUVI, COR, and S/WAVES instrument teams and the SDO and SMEI instrument teams and acknowledge the funding that supports those instruments from NASA, the UK Space Agency, CNES, and the USAF. NR 50 TC 44 Z9 44 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 45 DI 10.1088/0004-637X/750/1/45 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500045 ER PT J AU Horn, B Lyra, W Mac Low, MM Sandor, Z AF Horn, Brandon Lyra, Wladimir Mac Low, Mordecai-Mark Sandor, Zsolt TI ORBITAL MIGRATION OF INTERACTING LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE TURBULENT MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; planets and satellites: formation; planet-disk interactions; protoplanetary disks ID ISOTHERMAL GASEOUS DISK; PROTOPLANETARY DISKS; ACCRETION DISKS; GIANT PLANETS; 3-DIMENSIONAL INTERACTION; MAGNETIZED DISKS; STRATIFIED DISKS; HORSESHOE DRAG; MHD TURBULENCE; TORQUE FORMULA AB The torques exerted by a locally isothermal disk on an embedded planet lead to rapid inward migration. Recent work has shown that modeling the thermodynamics without the assumption of local isothermality reveals regions where the net torque on an embedded planet is positive, leading to outward migration of the planet. When a region with negative torque lies directly exterior to this, planets in the inner region migrate outward and planets in the outer region migrate inward, converging where the torque is zero. We incorporate the torques from an evolving non-isothermal disk into an N-body simulation to examine the behavior of planets or planetary embryos interacting in the convergence zone. We find that mutual interactions do not eject objects from the convergence zone. Small numbers of objects in a laminar disk settle into near resonant orbits that remain stable over the 10 Myr periods that we examine. However, either or both increasing the number of planets or including a correlated, stochastic force to represent turbulence drives orbit crossings and mergers in the convergence zone. These processes can build gas giant cores with masses of order 10 Earth masses from sub-Earth mass embryos in 2-3 Myr. C1 [Horn, Brandon; Mac Low, Mordecai-Mark] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Lyra, Wladimir; Mac Low, Mordecai-Mark] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Lyra, Wladimir] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mac Low, Mordecai-Mark; Sandor, Zsolt] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Sandor, Zsolt] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. RP Horn, B (reprint author), Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA. EM bhorn@astro.columbia.edu; wlyra@amnh.org; mordecai@amnh.org; zsolt.sandor@uibk.ac.at OI Mac Low, Mordecai-Mark/0000-0003-0064-4060 FU NASA [NNX07AI74G]; NSF [AST10-09802] FX Partial support for this work comes from NASA grant NNX07AI74G and NSF grant AST10-09802. Some of the computations were performed at the AMNH Parallel Computing Center. Wladimir Lyra completed co-writing this work at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 54 TC 21 Z9 21 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 34 DI 10.1088/0004-637X/750/1/34 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500034 ER PT J AU Martin, AM Giovanelli, R Haynes, MP Guzzo, L AF Martin, Ann M. Giovanelli, Riccardo Haynes, Martha P. Guzzo, Luigi TI THE CLUSTERING CHARACTERISTICS OF H I-SELECTED GALAXIES FROM THE 40% ALFALFA SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: distances and redshifts; large-scale structure of universe; radio lines: galaxies; surveys ID FAST ALPHA SURVEY; REDSHIFT SURVEY; SOURCE CATALOG; COLOR DEPENDENCE; HIPASS CATALOG; IRAS GALAXIES; MASS FUNCTION; POWER-LAW; LUMINOSITY; REGION AB The 40% Arecibo Legacy Fast ALFA survey catalog (alpha.40) of similar to 10,150 H I-selected galaxies is used to analyze the clustering properties of gas-rich galaxies. By employing the Landy-Szalay estimator and a full covariance analysis for the two-point galaxy-galaxy correlation function, we obtain the real-space correlation function and model it as a power law, xi(r) = (r/r(0))(-gamma), on scales <10 h(-1) Mpc. As the largest sample of blindly H I-selected galaxies to date, alpha.40 provides detailed understanding of the clustering of this population. We find gamma = 1.51 +/- 0.09 and r(0) = 3.3 + 0.3, -0.2 h(-1) Mpc, reinforcing the understanding that gas-rich galaxies represent the most weakly clustered galaxy population known; we also observe a departure from a pure power-law shape at intermediate scales, as predicted in Lambda CDM halo occupation distribution models. Furthermore, we measure the bias parameter for the alpha.40 galaxy sample and find that H I galaxies are severely antibiased on small scales, but only weakly antibiased on large scales. The robust measurement of the correlation function for gas-rich galaxies obtained via the alpha.40 sample constrains models of the distribution of H I in simulated galaxies, and will be employed to better understand the role of gas in environmentally dependent galaxy evolution. C1 [Martin, Ann M.] NASA, Langley Res Ctr, Postdoctoral Program, Hampton, VA 23618 USA. [Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Guzzo, Luigi] INAF Osservatorio Astron Brera, Milan, Italy. RP Martin, AM (reprint author), NASA, Langley Res Ctr, Postdoctoral Program, Hampton, VA 23618 USA. EM ann.m.martin@nasa.gov; riccardo@astro.cornell.edu; haynes@astro.cornell.edu; luigi.guzzo@brera.inaf.it FU National Science Foundation [AST-1100968, AST-0607007, AST-1107390]; National Defense Science and Engineering Graduate (NDSEG); Brinson Foundation; LaRC FX The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Mendez-Universidad Metropolitana, and the Universities Space Research Association.; This work was supported by NSF grants AST-0607007 and AST-1107390, and by grants from the National Defense Science and Engineering Graduate (NDSEG) fellowship and from the Brinson Foundation. A. M. M. was partially supported by an appointment to the NASA Postdoctoral Program at the LaRC, administered by Oak Ridge Associated Universities through a contract with NASA. NR 43 TC 23 Z9 23 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 38 DI 10.1088/0004-637X/750/1/38 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500038 ER PT J AU Meyers, J Aldering, G Barbary, K Barrientos, LF Brodwin, M Dawson, KS Deustua, S Doi, M Eisenhardt, P Faccioli, L Fakhouri, HK Fruchter, AS Gilbank, DG Gladders, MD Goldhaber, G Gonzalez, AH Hattori, T Hsiao, E Ihara, Y Kashikawa, N Koester, B Konishi, K Lidman, C Lubin, L Morokuma, T Oda, T Perlmutter, S Postman, M Ripoche, P Rosati, P Rubin, D Rykoff, E Spadafora, A Stanford, SA Suzuki, N Takanashi, N Tokita, K Yasuda, N AF Meyers, J. Aldering, G. Barbary, K. Barrientos, L. F. Brodwin, M. Dawson, K. S. Deustua, S. Doi, M. Eisenhardt, P. Faccioli, L. Fakhouri, H. K. Fruchter, A. S. Gilbank, D. G. Gladders, M. D. Goldhaber, G. Gonzalez, A. H. Hattori, T. Hsiao, E. Ihara, Y. Kashikawa, N. Koester, B. Konishi, K. Lidman, C. Lubin, L. Morokuma, T. Oda, T. Perlmutter, S. Postman, M. Ripoche, P. Rosati, P. Rubin, D. Rykoff, E. Spadafora, A. Stanford, S. A. Suzuki, N. Takanashi, N. Tokita, K. Yasuda, N. CA Supernova Cosmology Project TI THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < z < 1.46 SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark energy; distance scale; galaxies: clusters: general; galaxies: elliptical and lenticular, cD; supernovae: general ID EARLY-TYPE GALAXIES; COLOR-MAGNITUDE RELATION; HIGH-REDSHIFT CLUSTERS; DIGITAL SKY SURVEY; SIMILAR-TO 1; INITIAL MASS FUNCTION; AMES ELLIPTIC GALAXIES; RECENT STAR-FORMATION; IRAC SHALLOW SURVEY; DISTANT CLUSTERS AB Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields, we search for correlations between the properties of SNe and their host galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify 6 SN Ia hosts that are early-type cluster members and 11 SN Ia hosts that are early-type field galaxies. We confirm for the first time at z > 0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson & Chary, we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found atz > 0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B - V) less than or similar to 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type-hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia. C1 [Meyers, J.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Perlmutter, S.; Rubin, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Meyers, J.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K.; Goldhaber, G.; Hsiao, E.; Perlmutter, S.; Ripoche, P.; Rubin, D.; Rykoff, E.; Spadafora, A.; Suzuki, N.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barrientos, L. F.] Pontificia Univ Catolica Chile, Dept Astron, Santiago, Chile. [Brodwin, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Dawson, K. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Deustua, S.; Fruchter, A. S.; Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Doi, M.; Ihara, Y.; Morokuma, T.; Tokita, K.] Univ Tokyo, Grad Sch Sci, Inst Astron, Mitaka, Tokyo 1810015, Japan. [Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilbank, D. G.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Gladders, M. D.; Koester, B.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Hattori, T.] Natl Inst Nat Sci, Natl Astron Observ Japan, Hilo, HI 96720 USA. [Kashikawa, N.; Morokuma, T.; Takanashi, N.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Koester, B.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Konishi, K.; Yasuda, N.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Lidman, C.] Australian Astron Observ, Epping, NSW 1710, Australia. [Lubin, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95618 USA. [Oda, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Rosati, P.] ESO, D-85748 Garching, Germany. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Meyers, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jmeyers314@berkeley.edu RI Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Meyers, Joshua/0000-0002-2308-4230 FU NASA from the Space Telescope Science Institute [GO-10496]; NASA [NAS 5-26555]; Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy [AC02-05CH11231]; JSPS [20040003] FX We thank a very helpful referee for suggestions that improved the quality of this paper. We also thank Pasquale Temi for comments on the infrared dust properties of nearby early-type galaxies. Financial support for this work was provided by NASA through program GO-10496 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This work was also supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy under Contract No. AC02-05CH11231, as well as a JSPS core-to-core program "International Research Network for Dark Energy" and by a JSPS research grant (20040003). The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Finally, this work would not have been possible without the dedicated efforts of the daytime and nighttime support staff at the Cerro Paranal Observatory. NR 154 TC 18 Z9 18 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 1 DI 10.1088/0004-637X/750/1/1 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500001 ER PT J AU Moore, RL Falconer, DA Sterling, AC AF Moore, Ronald L. Falconer, David A. Sterling, Alphonse C. TI THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: magnetic topology; Sun: surface magnetism ID CORONAL MASS EJECTIONS; FIELD PROPERTIES; VECTOR MAGNETOGRAMS; FLARE PRODUCTIVITY; FLUX ROPES; EVOLUTION; MODEL; LINE; NONPOTENTIALITY; RECONNECTION AB It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode. C1 [Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.] NASA, George C Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, Huntsville, AL 35812 USA. [Falconer, David A.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Falconer, David A.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. RP Moore, RL (reprint author), NASA, George C Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, ZP13, Huntsville, AL 35812 USA. EM ron.moore@nasa.gov FU NASA's Science Mission Directorate; Hinode Project; Living With a Star Targeted Research & Technology Program FX This work was funded by NASA's Science Mission Directorate through the Heliophysics Guest Investigators Program, the Hinode Project, and the Living With a Star Targeted Research & Technology Program. NR 48 TC 10 Z9 10 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 24 DI 10.1088/0004-637X/750/1/24 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500024 ER PT J AU Nielsen, EL Liu, MC Wahhaj, Z Biller, BA Hayward, TL Boss, A Bowler, B Kraus, A Shkolnik, EL Tecza, M Chun, M Clarke, F Close, LM Ftaclas, C Hartung, M Males, JR Reid, IN Skemer, AJ Alencar, SHP Burrows, A Dal Pino, ED Gregorio-Hetem, J Kuchner, M Thatte, N Toomey, DW AF Nielsen, Eric L. Liu, Michael C. Wahhaj, Zahed Biller, Beth A. Hayward, Thomas L. Boss, Alan Bowler, Brendan Kraus, Adam Shkolnik, Evgenya L. Tecza, Matthias Chun, Mark Clarke, Fraser Close, Laird M. Ftaclas, Christ Hartung, Markus Males, Jared R. Reid, I. Neill Skemer, Andrew J. Alencar, Silvia H. P. Burrows, Adam Dal Pino, Elisabethe de Gouveia Gregorio-Hetem, Jane Kuchner, Marc Thatte, Niranjan Toomey, Douglas W. TI THE GEMINI NICI PLANET-FINDING CAMPAIGN: DISCOVERY OF A MULTIPLE SYSTEM ORBITING THE YOUNG A STAR HD 1160 SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; instrumentation: adaptive optics; planetary systems; planets and satellites: detection; stars: individual (HD 1160) ID LOW-MASS STARS; CANDIDATE SUBSTELLAR COMPANION; SPECTRAL ENERGY-DISTRIBUTIONS; EXTRASOLAR GIANT PLANETS; BROWN DWARF COMPANION; NEAR-INFRARED SPECTRA; HR 8799; ADAPTIVE OPTICS; STANDARD STARS; MIDINFRARED PHOTOMETRY AB We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50(-40)(+50) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22(-0.04)(+0.03) M-circle dot, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33(-9)(+12) M-Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun. C1 [Nielsen, Eric L.; Liu, Michael C.; Wahhaj, Zahed; Bowler, Brendan; Kraus, Adam; Chun, Mark; Ftaclas, Christ] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Biller, Beth A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Hayward, Thomas L.] AURA, So Operat Ctr, Gemini Observ, La Serena, Chile. [Boss, Alan] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Shkolnik, Evgenya L.; Thatte, Niranjan] Lowell Observ, Flagstaff, AZ 86001 USA. [Tecza, Matthias; Clarke, Fraser] Univ Oxford, Dept Astron, DWB, Oxford OX1 3RH, England. [Close, Laird M.; Hartung, Markus; Males, Jared R.; Skemer, Andrew J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Reid, I. Neill] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Alencar, Silvia H. P.] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30270901 Belo Horizonte, MG, Brazil. [Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Dal Pino, Elisabethe de Gouveia; Gregorio-Hetem, Jane] Univ Sao Paulo, IAG USP, Dept Astron, BR-05508900 Sao Paulo, Brazil. [Kuchner, Marc] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Toomey, Douglas W.] Mauna Kea Infrared LLC, Hilo, HI 96720 USA. RP Nielsen, EL (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. RI Kuchner, Marc/E-2288-2012; Alencar, Silvia/C-2803-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Gregorio-Hetem, Jane/A-5924-2013; de Gouveia Dal Pino, Elisabete/H-9560-2013; OI de Gouveia Dal Pino, Elisabete/0000-0001-8058-4752; Biller, Beth/0000-0003-4614-7035; Skemer, Andrew/0000-0001-6098-3924; Nielsen, Eric/0000-0001-6975-9056 FU Space Telescope Science Institute [HST-HF-01204.01-A]; National Aeronautics and Space Administration [NAS 5-26555]; National Science Foundation [AST-0713881, AST-0709484] FX B.A.B was supported by Hubble Fellowship grant HST-HF-01204.01-A awarded by the Space Telescope Science Institute, which is operated by AURA for NASA, under contract NAS 5-26555. This work was supported in part by NSF grants AST-0713881 and AST-0709484. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina). Based on observations made with the European Southern Observatory telescopes obtained from the ESO/ST-ECF Science Archive Facility. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This paper uses data from the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement No. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. NR 87 TC 24 Z9 24 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 53 DI 10.1088/0004-637X/750/1/53 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500053 ER PT J AU Park, SH Cho, KS Bong, SC Kumar, P Chae, J Liu, R Wang, HM AF Park, Sung-Hong Cho, Kyung-Suk Bong, Su-Chan Kumar, Pankaj Chae, Jongchul Liu, Rui Wang, Haimin TI THE OCCURRENCE AND SPEED OF CMEs RELATED TO TWO CHARACTERISTIC EVOLUTION PATTERNS OF HELICITY INJECTION IN THEIR SOLAR SOURCE REGIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: magnetic topology; Sun: photosphere; Sun: surface magnetism ID CORONAL MASS EJECTIONS; FREE MAGNETIC-FIELDS; ACTIVE REGIONS; FLUX ROPES; FILAMENT ERUPTIONS; FLARES; MODEL; ENERGY; PROMINENCE; EMERGENCE AB Long-term (a few days) variation of magnetic helicity injection was calculated for 28 solar active regions that produced 47 coronal mass ejections (CMEs) to find its relationship to the CME occurrence and speed using SOHO/MDI line-of-sight magnetograms. As a result, we found that the 47 CMEs can be categorized into two different groups by two characteristic evolution patterns of helicity injection in their source active regions, which appeared for similar to 0.5-4.5 days before their occurrence: (1) a monotonically increasing pattern with one sign of helicity (Group A; 30 CMEs in 23 active regions) and (2) a pattern of significant helicity injection followed by its sign reversal (Group B; 17 CMEs in 5 active regions). We also found that CME speed has a correlation with average helicity injection rate with linear correlation coefficients of 0.85 and 0.63 for Group A and Group B, respectively. In addition, these two CME groups show different characteristics as follows: (1) the average CME speed of Group B (1330 km s(-1)) is much faster than that of Group A (870 km s(-1)), (2) the CMEs in Group A tend to be single events whereas those in Group B mainly consist of successive events, and (3) flares related to the CMEs in Group B are relatively more energetic and impulsive than those in Group A. Our findings therefore suggest that the two CME groups have different pre-CME conditions in their source active regions and different CME characteristics. C1 [Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Cho, Kyung-Suk] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cho, Kyung-Suk] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Chae, Jongchul] Seoul Natl Univ, Astron Program, Dept Phys & Astron, Seoul 151742, South Korea. [Liu, Rui; Wang, Haimin] New Jersey Inst Technol, Space Weather Res Lab, Newark, NJ 07102 USA. [Liu, Rui] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Dept Geophys & Planetary Sci, Hefei 230026, Anhui, Peoples R China. RP Park, SH (reprint author), Korea Astron & Space Sci Inst, Taejon 305348, South Korea. EM freemler@kasi.re.kr RI Park, Sung-Hong/K-1578-2014; Liu, Rui/B-4107-2012 OI Park, Sung-Hong/0000-0001-9149-6547; Liu, Rui/0000-0003-4618-4979 FU "Development of Korea Space Weather Prediction Center" of KASI; KASI; NSF [AGS-0839216, AGS-0849453]; NASA [NNX08AJ23G, NNX11AC05G] FX The authors thank the SOHO/MDI team for the 96 minute full-disk photospheric magnetogram data and the SOHO/LASCO team for the CME catalog, which is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We have made use of NASA's Astrophysics Data System Abstract Service. This work has been supported by the "Development of Korea Space Weather Prediction Center" project of KASI and the KASI basic research fund. R. L. and H. W. are supported by NSF Grants AGS-0839216 and AGS-0849453 and NASA Grants NNX08AJ23G and NNX11AC05G. NR 59 TC 7 Z9 7 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 48 DI 10.1088/0004-637X/750/1/48 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500048 ER PT J AU Saumon, D Marley, MS Abel, M Frommhold, L Freedman, RS AF Saumon, Didier Marley, Mark S. Abel, Martin Frommhold, Lothar Freedman, Richard S. TI NEW H-2 COLLISION-INDUCED ABSORPTION AND NH3 OPACITY AND THE SPECTRA OF THE COOLEST BROWN DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; opacity; stars: atmospheres ID MOLECULAR SPECTROSCOPIC DATABASE; GIANT PLANET ATMOSPHERES; ALL-SKY SURVEY; T-DWARFS; LINE LIST; CHEMICAL-EQUILIBRIUM; GLIESE 229B; L-SUBDWARF; UGPS J072227.51-054031.2; INFRARED PHOTOMETRY AB We present new cloudy and cloudless model atmospheres for brown dwarfs using recent ab initio calculations of the line list of ammonia (NH3) and of the collision-induced absorption of molecular hydrogen (H-2). We compare the new synthetic spectra with models based on an earlier description of the H-2 and NH3 opacities. We find a significant improvement in fitting the nearly complete spectral energy distribution of the T7p dwarf Gliese 570D and in near-infrared color-magnitude diagrams of field brown dwarfs. We apply these new models to the identification of NH3 absorption in the H-band peak of very late T dwarfs and the new Y dwarfs and discuss the observed trend in the NH3-H spectral index. The new NH3 line list also allows a detailed study of the medium-resolution spectrum of the T9/T10 dwarf UGPS J072227.51-054031.2 where we identify several specific features caused by NH3. C1 [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Freedman, Richard S.] NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Abel, Martin; Frommhold, Lothar] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Freedman, Richard S.] SETI Inst, Mountain View, CA 94043 USA. RP Saumon, D (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop F663, Los Alamos, NM 87545 USA. EM dsaumon@lanl.gov; Mark.S.Marley@nasa.gov; mabel@physics.utexas.edu; frommhold@physics.utexas.edu; freedman@darkstar.arc.nasa.gov RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943 FU NASA [NNH11AQ54I]; NSF [AST0708496, AST0709106] FX D.S., M.S.M., and R.S.F. acknowledge support from NASA Astrophysics Theory grant NNH11AQ54I. L.F. and M.A. thank K.L.C. Hunt and her associates for the quantum chemical results provided to us prior to publication, which made their work possible. L.F. and M.A. also acknowledge NSF support through grants AST0708496 and AST0709106. NR 104 TC 50 Z9 50 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 74 DI 10.1088/0004-637X/750/1/74 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500074 ER PT J AU Simoes, F Pfaff, R Hamelin, M Klenzing, J Freudenreich, H Beghin, C Berthelier, JJ Bromund, K Grard, R Lebreton, JP Martin, S Rowland, D Sentman, D Takahashi, Y Yair, Y AF Simoes, Fernando Pfaff, Robert Hamelin, Michel Klenzing, Jeffrey Freudenreich, Henry Beghin, Christian Berthelier, Jean-Jacques Bromund, Kenneth Grard, Rejean Lebreton, Jean-Pierre Martin, Steven Rowland, Douglas Sentman, Davis Takahashi, Yukihiro Yair, Yoav TI USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites: composition; planets and satellites: formation; planets and satellites: physical evolution; protoplanetary disks; space vehicles: instruments; waves ID EARTH-IONOSPHERE CAVITY; PHYSICAL-CHARACTERISTICS; ELECTRICAL-CONDUCTIVITY; ATMOSPHERIC ELECTRICITY; MAGNETIC-FIELD; JUPITER; TITAN; NEPTUNE; ORIGIN; URANUS AB The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content. C1 [Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Space Weather Lab, Greenbelt, MD USA. [Hamelin, Michel; Berthelier, Jean-Jacques] UPMC, IPSL, LATMOS, Paris, France. [Beghin, Christian; Lebreton, Jean-Pierre] Univ Orleans, CNRS, LPC2E, F-45067 Orleans, France. [Grard, Rejean] ESA, Estec, Res Sci Support Dept, Noordwijk, Netherlands. [Lebreton, Jean-Pierre] Observ Paris, LESIA, Paris, France. [Sentman, Davis] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Takahashi, Yukihiro] Tohoku Univ, Dept Geophys, Sendai, Miyagi 980, Japan. [Yair, Yoav] Open Univ Israel, Dept Life Nat Sci, Raanana, Israel. RP Simoes, F (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Space Weather Lab, Code 674, Greenbelt, MD USA. RI Simoes, Fernando/D-7731-2012; Klenzing, Jeff/E-2406-2011; Rowland, Douglas/F-5589-2012; Pfaff, Robert/F-5703-2012 OI Klenzing, Jeff/0000-0001-8321-6074; Rowland, Douglas/0000-0003-0948-6257; Pfaff, Robert/0000-0002-4881-9715 FU NASA FX F.S. and J.K. are supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 75 TC 8 Z9 8 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY PY 2012 VL 750 IS 1 AR 85 DI 10.1088/0004-637X/750/1/85 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929LB UT WOS:000303063500085 ER PT J AU Bowman, CDD AF Bowman, Catherine D. D. TI Student use of animated pedagogical agents in a middle school science inquiry program SO BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY LA English DT Article ID INNOVATIONS; REALISM AB Animated pedagogical agents (APAs) have the potential to provide one-on-one, just-in-time instruction, guidance or mentoring in classrooms where such individualized human interactions may be infeasible. Much current APA research focuses on a wide range of design variables tested with small samples or in laboratory settings, while overlooking important practical issues relating to large-scale, school-based implementations. The present study provides an early step in addressing this gap by investigating the patterns, affordances and challenges of sustained classroom use of APAs. During a 15-class-period science curriculum, middle school students in the treatment groups (nDr C-1 = 191; nDr C-2 = 181) had uninterrupted classroom access to one of the two APAs, while control group students (n = 149) completed the same curriculum without APA access. Usage patterns indicate that students accessed the APAs on a fluctuating, as needed, basis corresponding to the introductory, information-gathering, and synthesis and reporting segments of the curriculum. Survey results revealed no statistically significant difference in student feelings toward the APAs between the two treatments. While treatment students reported that the APAs were unique, reliable, timely resources, interviews indicate little difference between their experiences with the curriculum and those of the control group. Results presented here provide guidance for researchers and practitioners. C1 [Bowman, Catherine D. D.] NASA, Mars Publ Engagement Program, Jet Prop Lab, Pasadena, CA USA. RP Bowman, CDD (reprint author), Raytheon Web Solut, 299 N Euclid Ave,Suite 500, Pasadena, CA 91101 USA. EM cbowman@jpl.nasa.gov NR 41 TC 4 Z9 4 U1 3 U2 12 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0007-1013 J9 BRIT J EDUC TECHNOL JI Br. J. Educ. Technol. PD MAY PY 2012 VL 43 IS 3 BP 359 EP 375 DI 10.1111/j.1467-8535.2011.01198.x PG 17 WC Education & Educational Research SC Education & Educational Research GA 927UU UT WOS:000302936500018 ER PT J AU Kainulainen, J Colliander, A Closa, J Martin-Neira, M Oliva, R Buenadicha, G Alcaine, PR Hakkarainen, A Hallikainen, MT AF Kainulainen, Juha Colliander, Andreas Closa, Josep Martin-Neira, Manuel Oliva, Roger Buenadicha, Guillermo Rubiales Alcaine, Pilar Hakkarainen, Anssi Hallikainen, Martti T. TI Radiometric Performance of the SMOS Reference Radiometers-Assessment After One Year of Operation SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; radiometry; remote sensing; stability; synthetic aperture imaging ID APERTURE SYNTHESIS RADIOMETRY; NOISE INJECTION RADIOMETER; BRIGHTNESS TEMPERATURE; L-BAND; CALIBRATION; SENSITIVITY; SPACE AB In this paper, we present an analysis of the radiometric performance of the three 1.4-GHz noise injection radiometers of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite. The units measure the antenna temperature, which contributes to the average brightness temperature level of SMOS retrievals. We assess the radiometric resolution of the receivers, the similarity between their measurements, and their thermal stability. For these purposes, we use SMOS measurement data gathered during the first year of the orbital operations of the satellite, which was launched in November 2009. The main results from the analysis are that the units meet the design requirements with a margin. Also, we present a new thermal model for the radiometers to further enhance their stability. C1 [Kainulainen, Juha; Hakkarainen, Anssi; Hallikainen, Martti T.] Aalto Univ, Sch Elect Engn, Dept Radio Sci & Engn, Aalto 00076, Finland. [Colliander, Andreas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Closa, Josep; Rubiales Alcaine, Pilar] EADS CASA Espacio, Madrid 28022, Spain. [Martin-Neira, Manuel] European Space Agcy, European Space Res & Technol Ctr, NL-2200 AG Noordwijk, Netherlands. [Oliva, Roger; Buenadicha, Guillermo] European Space Agcy, European Space Astron Ctr, Villanueva De La Canada 28692, Spain. RP Kainulainen, J (reprint author), Aalto Univ, Sch Elect Engn, Dept Radio Sci & Engn, Aalto 00076, Finland. EM juha.kainulainen@aalto.fi; andreas.colliander@jpl.nasa.gov; josep.closa@astrium.eads.net; manuel.martin-neira@esa.int; roger.oliva.balague@esa.int; guillermo.buenadicha@esa.int; pilar.rubiales@astrium.eads.net; aphakkar@cc.hut.fi; martti.hallikainen@tkk.fi RI Hallikainen, Martti/A-4201-2011 FU European Space Agency (ESA) [19686/06]; EADS CASA Espacio [35988A]; Finnish Funding Agency for Technology and Innovation (TEKES) under ESA [1731/31/06]; Academy of Finland; Jenny and Antti Wihuri Foundation; National Aeronautics and Space Administration FX This work was supported in part by the European Space Agency (ESA) under Contract 19686/06, by EADS CASA Espacio under Contract 35988A, by the Finnish Funding Agency for Technology and Innovation (TEKES) under ESA Announcement of Opportunity Contract 1731/31/06, by the Academy of Finland under Project GlobSMOS, by the Jenny and Antti Wihuri Foundation, and by the National Aeronautics and Space Administration. NR 31 TC 16 Z9 17 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2012 VL 50 IS 5 SI SI BP 1367 EP 1383 DI 10.1109/TGRS.2011.2177273 PN 1 PG 17 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 931GU UT WOS:000303205200003 ER PT J AU Misra, S Ruf, CS AF Misra, Sidharth Ruf, Christopher S. TI Analysis of Radio Frequency Interference Detection Algorithms in the Angular Domain for SMOS SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Interferometry; microwave radiometry; radio frequency interference (RFI); Soil Moisture and Ocean Salinity (SMOS) ID SOIL-MOISTURE RETRIEVAL; MICROWAVE RADIOMETRY; RADIOFREQUENCY INTERFERENCE; RFI DETECTION; MITIGATION; MISSION AB Radio frequency interference (RFI) detection techniques have different challenges and opportunities for interferometric radiometers such as the Microwave Imaging Radiometer using Aperture Synthesis on the Soil Moisture and Ocean Salinity (SMOS) mission. SMOS does not have highly oversampled temporal resolution or subband filters for oversampled spectral resolution, as do other radiometers with enhanced RFI detection capabilities. It does, however, have multisampled angular resolution in the sense that a single location is viewed from many different angles of incidence. This paper compares and contrasts RFI detection algorithms that use measurements made at a variety of different levels of SMOS signal processing, including the visibility domain, brightness temperature spatial domain, and brightness temperature angular domain. The angular domain detection algorithm, in particular, is developed and characterized in detail. Examples of the algorithms applied to cases with RFI (to assess detection skill) and without RFI (to assess false-alarm behavior) are considered. C1 [Misra, Sidharth] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ruf, Christopher S.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Ruf, Christopher S.] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA. RP Misra, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM sidharth.misra@jpl.nasa.gov; cruf@umich.edu RI Ruf, Christopher/I-9463-2012 FU National Aeronautics and Space Administration (NASA) [NNX08AU76H] FX This work was supported in part by the National Aeronautics and Space Administration (NASA) under the NASA Earth and Space Science Fellowship (NNX08AU76H). NR 26 TC 20 Z9 22 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2012 VL 50 IS 5 SI SI BP 1448 EP 1457 DI 10.1109/TGRS.2011.2176949 PN 1 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 931GU UT WOS:000303205200009 ER PT J AU Zhang, QY Middleton, EM Gao, BC Cheng, YB AF Zhang, Qingyuan Middleton, Elizabeth M. Gao, Bo-Cai Cheng, Yen-Ben TI Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll (fAPAR(chl)) and Leaf Water Content (LWC) SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Earth Observing One (EO-1) Hyperion; fAPAR(canopy); fAPAR(chl); foliar moisture content; Hyperspectral Infrared Imager (HyspIRI); leaf water content (LWC); terrestrial carbon cycle ID LIGHT-USE EFFICIENCY; GROSS PRIMARY PRODUCTION; DECIDUOUS BROADLEAF FOREST; SURFACE PARAMETERIZATION SIB2; ATMOSPHERIC GCMS; MOISTURE-CONTENT; MODIS DATA; EOS-MODIS; BOREAL; CANOPY AB This paper presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetically active radiation (PAR) absorbed by chlorophyll of a canopy (fAPAR(chl)) and leaf water content (LWC), for future HyspIRI implementation at 60-m spatial resolution. For this, we used existing 30-m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRI-like images were atmospherically corrected to obtain surface reflectance and spectrally resampled to produce 60-m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPAR(chl) and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest. With this paper, we provide additional evidence that the fAPAR(chl) product is more realistic in describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPAR(canopy)), and thus, it should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle and ecosystem studies. C1 [Zhang, Qingyuan] Univ Space Res Assoc USRA, Goddard Earth Sci Technol & Res GESTAR, Columbia, MD 21044 USA. [Zhang, Qingyuan; Middleton, Elizabeth M.; Cheng, Yen-Ben] NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gao, Bo-Cai] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [Cheng, Yen-Ben] Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. RP Zhang, QY (reprint author), Univ Space Res Assoc USRA, Goddard Earth Sci Technol & Res GESTAR, Columbia, MD 21044 USA. EM qyz72@yahoo.com; elizabeth.m.middleton@nasa.gov; bo-cai.gao@nrl.navy.mil; yen-ben.cheng-1@nasa.gov RI Cheng, Yen-Ben/G-1311-2012 FU NASA; Earth Observing One (EO-1) Mission Science Office; Goddard Space Flight Center (NASA/GSFC) FX This work was supported by two NASA Headquarters sponsored programs, the Earth Observing One (EO-1) Mission Science Office (Sponsor, Garik Gutman), and the HyspIRI science support project at the Goddard Space Flight Center (NASA/GSFC) through William (Woody) Turner. NR 35 TC 25 Z9 25 U1 0 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2012 VL 50 IS 5 BP 1844 EP 1852 DI 10.1109/TGRS.2011.2169267 PN 2 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 931GW UT WOS:000303205400011 ER PT J AU Kim, SB Tsang, L Johnson, JT Huang, S van Zyl, JJ Njoku, EG AF Kim, Seung-Bum Tsang, Leung Johnson, Joel T. Huang, Shaowu van Zyl, Jakob J. Njoku, Eni G. TI Soil Moisture Retrieval Using Time-Series Radar Observations Over Bare Surfaces SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Land hydrology; L-band radar; soil moisture; surface roughness ID L-BAND SAR; INVERSION TECHNIQUE; ROUGHNESS; MODEL; PARAMETERIZATION; BACKSCATTERING AB A time-series algorithm is proposed to retrieve bare surface soil moisture and rms height using two copolarized (HH and VV) L-band backscattering coefficients (sigma(0)). The retrieval approach inverts a forward model for radar scattering from an isotropic bare surface. Because real-time inversion of a complex forward model is often computationally impractical, the inversion is implemented using a precomputed lookup table representation of s0 obtained from numerical Maxwell model in 3-D simulations. The retrieval process assumes that surface roughness properties are constant during the time-series interval, so that only a single rms height estimate is produced for the entire time series. The use of this rms height estimate as a constraint simplifies the associated soil moisture retrievals at each time step. A Monte-Carlo simulation of this algorithm with 0.7 dB radar measurement error (1-sigma) shows that retrievals using six time steps outperform a "snapshot" method (which retrieves rms height and soil moisture at each time step) by a factor of about two in rms soil moisture error. A second study using measured data having 6 to 11 time steps shows an rms error of 0.044 cm(3)/cm(3) for soil moisture with a correlation coefficient of 0.89 between retrieved and in situ data. Surface rms height estimates are also found accurate to 10 to 30% of in situ measurements. It is also shown that retrieval performance is not sensitive to errors in knowledge of the surface roughness correlation length for most of the bare surface conditions examined. C1 [Kim, Seung-Bum; van Zyl, Jakob J.; Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tsang, Leung; Huang, Shaowu] Univ Washington, Seattle, WA 98195 USA. [Johnson, Joel T.] Ohio State Univ, Columbus, OH 43210 USA. RP Kim, SB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM seungbum.kim@jpl.nasa.gov NR 34 TC 29 Z9 29 U1 0 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2012 VL 50 IS 5 BP 1853 EP 1863 DI 10.1109/TGRS.2011.2169454 PN 2 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 931GW UT WOS:000303205400012 ER PT J AU Markham, BL Haque, MO Barsi, JA Micijevic, E Helder, DL Thome, KJ Aaron, D Czapla-Myers, JS AF Markham, Brian L. Haque, Md. Obaidul Barsi, Julia A. Micijevic, Esad Helder, Dennis L. Thome, Kurtis J. Aaron, David Czapla-Myers, Jeffrey S. TI Landsat-7 ETM+: 12 Years On-Orbit Reflective-Band Radiometric Performance SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; Enhanced Thematic Mapper Plus (ETM plus ); Landsat; radiometry ID CALIBRATION; SENSORS; SITES AB The Landsat-7 ETM+ sensor has been operating on orbit for more than 12 years, and characterizations of its performance have been ongoing over this period. In general, the radiometric performance of the instrument has been remarkably stable: 1) noise performance has degraded by 2% or less overall, with a few detectors displaying step changes in noise of 2% or less; 2) coherent noise frequencies and magnitudes have generally been stable, though the within-scan amplitude variation of the 20 kHz noise in bands 1 and 8 disappeared with the failure of the scan line corrector and a new similar frequency noise (now about 18 kHz) has appeared in two detectors in band 5 and increased in magnitude with time; 3) bias stability has been better than 0.25 DN out of a normal value of 15 DN in high gain; 4) relative gains, the differences in response between the detectors in the band, have generally changed by 0.1% or less over the mission, with the exception of a few detectors with a step response change of 1% or less; and 5) gain stability averaged across all detectors in a band, which is related to the stability of the absolute calibration, has been more stable than the techniques used to measure it. Due to the inability to confirm changes in the gain (beyond a few detectors that have been corrected back to the band average), ETM+ reflective band data continues to be calibrated with the prelaunch measured gains. In the worst case, some bands may have changed as much as 2% in uncompensated absolute calibration over the 12 years. C1 [Markham, Brian L.; Thome, Kurtis J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Haque, Md. Obaidul; Micijevic, Esad] USGS Earth Resources Observat & Sci EROS Ctr, Sioux Falls, SD 57198 USA. [Haque, Md. Obaidul; Micijevic, Esad] SGT Inc, Greenbelt, MD USA. [Barsi, Julia A.] SSAI Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Helder, Dennis L.] S Dakota State Univ, Coll Engn, Brookings, SD 57007 USA. [Aaron, David] S Dakota State Univ, Dept Phys, Brookings, SD 57007 USA. [Czapla-Myers, Jeffrey S.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Markham, BL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Brian.L.Markham@nasa.gov; ohaque@usgs.gov; Julia.A.Barsi@nasa.gov; emicijevic@usgs.gov; Dennis.Helder@SDSTATE.edu; Kurtis.Thome@nasa.gov; David.Aaron@SDSTATE.edu; j.czapla-myers@optics.arizona.edu RI Thome, Kurtis/D-7251-2012; Markham, Brian/M-4842-2013; OI Markham, Brian/0000-0002-9612-8169; Czapla-Myers, Jeffrey/0000-0003-4804-5358 FU NASA Land Cover and Land Use Change (LCLUC) Project office; USGS [G10PC00044] FX Manuscript received June 13, 2011; revised August 17, 2011; accepted September 11, 2011. Date of publication November 3, 2011; date of current version April 18, 2012. The NASA Land Cover and Land Use Change (LCLUC) Project office supported this effort. USGS support was provided through contract G10PC00044. NR 9 TC 19 Z9 19 U1 6 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2012 VL 50 IS 5 BP 2056 EP 2062 DI 10.1109/TGRS.2011.2169803 PN 2 PG 7 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 931GW UT WOS:000303205400028 ER PT J AU DellaCorte, C AF DellaCorte, Christopher TI Oil-Free shaft support system rotordynamics: Past, present and future challenges and opportunities SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING LA English DT Article DE Oil-Free turbomachinery; Foil bearings; Hybrid foil-magnetic bearings; Rotordynamics ID FREE TURBOMACHINERY; BEARINGS; PERFORMANCE AB Recent breakthroughs in Oil-Free technologies have enabled new high-speed rotor systems and turbomachinery. Such technologies can include compliant-surface gas bearings, magnetic bearings and advanced solid lubricants and tribo-materials. This presentation briefly reviews critical technology developments and the current state-of-the-art, emerging Oil-Free rotor systems and discusses obstacles preventing more widespread use. Key examples of "best practices" for deploying Oil-Free technologies will be presented and remaining major technical questions surrounding Oil-Free technologies will be brought forward. Published by Elsevier Ltd. C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP DellaCorte, C (reprint author), NASA, Glenn Res Ctr, 21000 Brook Pk Rd, Cleveland, OH 44135 USA. EM Christopher.Dellacorte@nasa.gov NR 32 TC 13 Z9 13 U1 1 U2 6 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0888-3270 J9 MECH SYST SIGNAL PR JI Mech. Syst. Signal Proc. PD MAY PY 2012 VL 29 SI SI BP 67 EP 76 DI 10.1016/j.ymssp.2011.07.024 PG 10 WC Engineering, Mechanical SC Engineering GA 932DO UT WOS:000303270800006 ER PT J AU Hurley, J Irwin, PGJ Fletcher, LN Moses, JI Hesman, B Sinclair, J Merlet, C AF Hurley, J. Irwin, P. G. J. Fletcher, L. N. Moses, J. I. Hesman, B. Sinclair, J. Merlet, C. TI Observations of upper tropospheric acetylene on Saturn: No apparent correlation with 2000 km-sized thunderstorms SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Atmospheres; Acetylene; Infrared; Lightning; Optimal-estimation ID MERIDIONAL VARIATIONS; JOVIAN ATMOSPHERE; THERMAL STRUCTURE; ELECTROSTATIC DISCHARGES; PLANETARY-ATMOSPHERES; LIGHTNING GENERATION; RADIATIVE-TRANSFER; EQUATORIAL REGION; CARBON-MONOXIDE; CLOUD STRUCTURE AB Thunderstorm activity has been observed on Saturn via radio emissions from lightning discharges and optical detections of the lightning flashes on the planet's nightside. Thunderstorms provide extreme environments in which specific atmospheric chemistry can be induced namely through energy release via lightning discharges, and fast vertical transport resulting in rapid advection of tropospheric species. It is thus theorised that certain atmospheric trace species - such as C2H2, HCN, and CO - can be generated in the troposphere by large bursts of energy in the form of lightning, and transported upward towards the upper troposphere by the extreme dynamics of thunderstorms, where they should be observable by satellite instruments. In this work, high-spectral-resolution Cassini/CIRS observations from October 2005 through April 2009 are used to study whether there is an observable increase in upper tropospheric acetylene in regions of known normal thunderstorm activity. Using both individual measurements in which there is known thunderstorm activity, as well as large coadditions of data to study latitudinal-dependencies over the full disc, no systematic enhancement in upper tropospheric (100 mbar) C2H2 was detected around regions in which there are known occurrences of normally sized (2000 km) thunderstorms, or in normally sized thunderstorm-prone regions such as 40 degrees S. It is likely that the magnitude of the enhancement theorised is too generous or that enhancements are not advected into the upper troposphere as vertical mixing rates in models would suggest, since Cassini/CIRS can only detect C2H2 above the 200 mbar level although the massive northern hemisphere thunderstorm of 2010/2011 seems able to decrease stratospheric concentrations of C2H2. From this, it can be asserted that lightning from normal thunderstorm activity cannot be the key source for upper tropospheric C2H2 on Saturn, since the upper-tropospheric concentrations retrieved agree with the concentrations stemming from the photolysis of CH4 (2-3 ppbv) from solar radiation penetrating through the Saturnian atmosphere, with an upper limit for lightning-induced C2H2 volume mixing ratio of 10(-9). (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hurley, J.; Irwin, P. G. J.; Fletcher, L. N.; Sinclair, J.; Merlet, C.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Hesman, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moses, J. I.] Space Sci Inst, Seabrook, TX 77586 USA. RP Hurley, J (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM hurley@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011; Moses, Julianne/I-2151-2013; OI Fletcher, Leigh/0000-0001-5834-9588; Moses, Julianne/0000-0002-8837-0035; Irwin, Patrick/0000-0002-6772-384X NR 97 TC 6 Z9 6 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2012 VL 65 IS 1 BP 21 EP 37 DI 10.1016/j.pss.2011.12.026 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 930KC UT WOS:000303137300003 ER PT J AU Nurge, MA AF Nurge, Mark A. TI In situ dielectric spectroscopy for water detection on the lunar surface SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Dielectric spectroscopy; Capacitance; Lunar ice detection ID ICE; RELAXATION; MOON AB Published literature suggests that water ice might be unambiguously detected in the presence of background contaminants by developing a frequency swept sensor to obtain the dielectric spectrum. Such a sensor could be incorporated into the tip of a spike and driven into the lunar regolith to detect moisture as a function of depth. A sensor was created to test this concept for varying concentrations of ice in lunar soil simulant under vacuum conditions. Ice relaxation occurs at frequencies well below 1 Hz at temperatures present on the Lunar surface, making it difficult to distinguish ice from the surrounding regolith. So, a heating element was incorporated with the sensor to capture the dielectric spectra as the ice warms, allowing the relaxation to be detected in a shorter period of time. The test results show the ability of this sensor to detect the presence of varying quantities of ice in the soil simulant and the need for more complex non-linear mixing models to quantify the amount of ice present in the mixture. Published by Elsevier Ltd. C1 NASA, Kennedy Space Ctr, FL 32899 USA. RP Nurge, MA (reprint author), NASA, Mail Code NE-L5, Kennedy Space Ctr, FL 32899 USA. EM Mark.A.Nurge@nasa.gov NR 21 TC 0 Z9 0 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2012 VL 65 IS 1 BP 76 EP 82 DI 10.1016/j.pss.2012.01.010 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 930KC UT WOS:000303137300007 ER PT J AU Matijevic, G Prsa, A Orosz, JA Welsh, WF Bloemen, S Barclay, T AF Matijevic, Gal Prsa, Andrej Orosz, Jerome A. Welsh, William F. Bloemen, Steven Barclay, Thomas TI KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; methods: data analysis; methods: numerical ID AUTOMATED SUPERVISED CLASSIFICATION; PERIODIC VARIABLE-STARS; DATA RELEASE; I.; DIMENSIONALITY; METHODOLOGY; PERFORMANCE; PULSATIONS; PHOTOMETRY; SPECTRA AB We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of "detachedness" of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator. C1 [Matijevic, Gal] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Prsa, Andrej] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA. [Orosz, Jerome A.; Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Bloemen, Steven] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Barclay, Thomas] NASA, Ames Res Ctr, BAER Inst, Moffett Field, CA 94035 USA. RP Matijevic, G (reprint author), Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia. EM gal.matijevic@fmf.uni-lj.si; andrej.prsa@villanova.edu FU NASA's Science Mission Directorate; Slovenian Research Agency; European Research Council under the European Community [227224]; Research Council of K. U. Leuven [GOA/2008/04] FX Funding for the Kepler mission is provided by NASA's Science Mission Directorate. G. M. acknowledges support from the Slovenian Research Agency. A. P. acknowledges the Kepler Participating Scientist Program NSR 303065. S. B. acknowledges funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 227224 (PROSPERITY), as well as from the Research Council of K. U. Leuven grant agreement GOA/2008/04. NR 27 TC 49 Z9 50 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAY PY 2012 VL 143 IS 5 AR 123 DI 10.1088/0004-6256/143/5/123 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 928BI UT WOS:000302954200020 ER PT J AU Bond, NA Benford, DJ Gardner, JP Amblard, A Fleuren, S Blain, AW Dunne, L Smith, DJB Maddox, SJ Hoyos, C Baes, M Bonfield, D Bourne, N Bridge, C Buttiglione, S Cava, A Clements, D Cooray, A Dariush, A de Zotti, G Driver, S Dye, S Eales, S Eisenhardt, P Hopwood, R Ibar, E Ivison, RJ Jarvis, MJ Kelvin, L Robotham, ASG Temi, P Thompson, M Tsai, CW van der Werf, P Wright, EL Wu, JW Yan, L AF Bond, Nicholas A. Benford, Dominic J. Gardner, Jonathan P. Amblard, Alexandre Fleuren, Simone Blain, Andrew W. Dunne, Loretta Smith, Daniel J. B. Maddox, Steve J. Hoyos, Carlos Baes, Maarten Bonfield, David Bourne, Nathan Bridge, Carrie Buttiglione, Sara Cava, Antonio Clements, David Cooray, Asantha Dariush, Ali de Zotti, Gianfranco Driver, Simon Dye, Simon Eales, Steve Eisenhardt, Peter Hopwood, Rosalind Ibar, Edo Ivison, Rob J. Jarvis, Matt J. Kelvin, Lee Robotham, Aaron S. G. Temi, Pasquale Thompson, Mark Tsai, Chao-Wei van der Werf, Paul Wright, Edward L. Wu, Jingwen Yan, Lin TI THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; galaxies: general; galaxies: high-redshift; galaxies: statistics; infrared: galaxies; surveys ID ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; REDSHIFT SURVEY; DATA RELEASE; SUBMILLIMETER; PERFORMANCE; POPULATION; TELESCOPE; EVOLUTION; SELECTION AB We describe the infrared properties of sources detected over similar to 36 deg(2) of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5 sigma point-source depths of 34 and 0.048 mJy at 250 mu m and 3.4 mu m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of similar to 630 deg(-2). Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 mu m and that at 250 mu m, with +/- 50% scatter over similar to 1.5 orders of magnitude in luminosity, similar to 10(9)-10(10.5) L-circle dot. By contrast, the matched sources without previously measured redshifts (r greater than or similar to 20.5) have 250-350 mu m flux density ratios which suggest either high-redshift galaxies (z greater than or similar to 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T less than or similar to 20). Their small 3.4-250 mu m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Lambda rp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction (similar to 30%) in a 12 mu m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample. C1 [Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Cosmol Lab Code 665, Greenbelt, MD 20771 USA. [Amblard, Alexandre; Temi, Pasquale] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Fleuren, Simone] Univ London, Sch Math Sci, London E1 4NS, England. [Blain, Andrew W.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan; Dye, Simon] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Smith, Daniel J. B.; Bonfield, David; Jarvis, Matt J.; Thompson, Mark] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Baes, Maarten] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Bridge, Carrie] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Buttiglione, Sara; de Zotti, Gianfranco] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Cava, Antonio] Univ Complutense Madrid, Dept Astrofis, Fac CC Fis, E-28040 Madrid, Spain. [Clements, David] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dariush, Ali; Hopwood, Rosalind] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [de Zotti, Gianfranco] SISSA, I-34136 Trieste, Italy. [Driver, Simon; Kelvin, Lee; Robotham, Aaron S. G.] Univ Western Australia, Int Ctr Radio Astron Res ICRAR, Crawley, WA 6009, Australia. [Driver, Simon; Kelvin, Lee; Robotham, Aaron S. G.; Wu, Jingwen] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Eales, Steve] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Eisenhardt, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ibar, Edo; Ivison, Rob J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, Matt J.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa. [Tsai, Chao-Wei] CALTECH, IPAC, Pasadena, CA 91125 USA. [van der Werf, Paul] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Wright, Edward L.] UCLA Astron, Los Angeles, CA 90095 USA. [Yan, Lin] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Bond, NA (reprint author), NASA, Goddard Space Flight Ctr, Cosmol Lab Code 665, Greenbelt, MD 20771 USA. RI Baes, Maarten/I-6985-2013; Robotham, Aaron/H-5733-2014; amblard, alexandre/L-7694-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; Benford, Dominic/D-4760-2012; Cava, Antonio/C-5274-2017; OI Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Baes, Maarten/0000-0002-3930-2757; Robotham, Aaron/0000-0003-0429-3579; amblard, alexandre/0000-0002-2212-5395; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Benford, Dominic/0000-0002-9884-4206; Cava, Antonio/0000-0002-4821-1275; De Zotti, Gianfranco/0000-0003-2868-2595; Maddox, Stephen/0000-0001-5549-195X; De Hoyos Fernandez De Cordova, Carlos/0000-0003-3120-6856 FU National Aeronautics and Space Administration; NASA through JPL FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.; Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia with significant participation from NASA. U.S. participants in Herschel ATLAS acknowledge support provided by NASA through a contract issued from JPL. NR 40 TC 8 Z9 8 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2012 VL 750 IS 1 AR L18 DI 10.1088/2041-8205/750/1/L18 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929CV UT WOS:000303039700018 ER PT J AU Luna, M Karpen, J AF Luna, M. Karpen, J. TI LARGE-AMPLITUDE LONGITUDINAL OSCILLATIONS IN A SOLAR FILAMENT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: corona; Sun: filaments, prominences; Sun: flares; Sun: oscillations ID MAGNETOHYDRODYNAMIC WAVES; THERMAL NONEQUILIBRIUM; PROMINENCE FORMATION; PERIODIC MOTION; MAGNETIC-FIELD; CORONA; MODEL AB We have developed the first self-consistent model for the observed large-amplitude oscillations along filament axes that explains the restoring force and damping mechanism. We have investigated the oscillations of multiple threads formed in long, dipped flux tubes through the thermal nonequilibrium process, and found that the oscillation properties predicted by our simulations agree with the observed behavior. We then constructed a model for the large-amplitude longitudinal oscillations that demonstrates that the restoring force is the projected gravity in the tube where the threads oscillate. Although the period is independent of the tube length and the constantly growing mass, the motions are strongly damped by the steady accretion of mass onto the threads by thermal nonequilibrium. The observations and our model suggest that a nearby impulsive event drives the existing prominence threads along their supporting tubes, away from the heating deposition site, without destroying them. The subsequent oscillations occur because the displaced threads reside in magnetic concavities with large radii of curvature. Our model yields a powerful seismological method for constraining the coronal magnetic field and radius of curvature of dips. Furthermore, these results indicate that the magnetic structure is most consistent with the sheared-arcade model for filament channels. C1 [Luna, M.] CRESST, Greenbelt, MD 20771 USA. [Luna, M.] Space Weather Lab NASA GSFC, Greenbelt, MD 20771 USA. [Karpen, J.] NASA GSFC, Greenbelt, MD 20771 USA. RP Luna, M (reprint author), CRESST, Greenbelt, MD 20771 USA. RI Karpen, Judith/E-1484-2012 FU NASA; University of Maryland at College Park; CRESST; NASA Center for Climate Simulation at GSFC; ISSI FX This work has been supported by the NASA Heliophysics SR&T program. M.L. also acknowledges support from the University of Maryland at College Park and the people of CRESST. Resources supporting this work were provided by the NASA High-End Computing Program through the NASA Center for Climate Simulation at GSFC. We are grateful to our colleagues on international teams on solar prominences hosted by the International Space Science Institute (ISSI) in Bern, Switzerland, especially team leader N. Labrosse, and acknowledge the support of ISSI. We thank H. Gilbert and the referee for constructive comments. NR 30 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2012 VL 750 IS 1 AR L1 DI 10.1088/2041-8205/750/1/L1 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929CV UT WOS:000303039700001 ER PT J AU Pogorelov, NV Borovikov, SN Zank, GP Burlaga, LF Decker, RA Stone, EC AF Pogorelov, N. V. Borovikov, S. N. Zank, G. P. Burlaga, L. F. Decker, R. A. Stone, E. C. TI RADIAL VELOCITY ALONG THE VOYAGER 1 TRAJECTORY: THE EFFECT OF SOLAR CYCLE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: kinematics and dynamics; magnetic fields; solar wind ID INTERSTELLAR MAGNETIC-FIELD; OUTER HELIOSPHERE; 3-DIMENSIONAL FEATURES; TERMINATION SHOCK; HELIOSHEATH; WIND; FLOW; HELIOPAUSE; PLASMA; ATOMS AB As Voyager 1 and Voyager 2 are approaching the heliopause (HP)-the boundary between the solar wind (SW) and the local interstellar medium (LISM)-we expect new, unknown features of the heliospheric interface to be revealed. A seeming puzzle reported recently by Krimigis et al. concerns the unusually low, even negative, radial velocity components derived from the energetic ion distribution. Steady-state plasma models of the inner heliosheath (IHS) show that the radial velocity should not be equal to zero even at the surface of the HP. Here we demonstrate that the velocity distributions observed by Voyager 1 are consistent with time-dependent simulations of the SW-LISM interaction. In this Letter, we analyze the results from a numerical model of the large-scale heliosphere that includes solar cycle effects. Our simulations show that prolonged periods of low to negative radial velocity can exist in the IHS at substantial distances from the HP. It is also shown that Voyager 1 was more likely to observe such regions than Voyager 2. C1 [Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [Pogorelov, N. V.; Borovikov, S. N.; Zank, G. P.] Univ Alabama, Ctr Space Phys & Aeron Res, Huntsville, AL 35805 USA. [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Decker, R. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Stone, E. C.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. RP Pogorelov, NV (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. FU NASA [NNX08AJ21G, NNX08AE41G, NNX09AW44G, NNH09AG62G, NNH09-AM47I, NNX09AP74A, NNX09AG63G, NNX10AE46G, NNX12AB30G, NNN06AA01C, SMD-10-1691]; NSF XSEDE [MCA07S033]; ORNL [PSS0006]; IBEX mission, NASA FX The authors are grateful to S. T. Suess for valuable comments. This work is supported by NASA grants NNX08AJ21G, NNX08AE41G, NNX09AW44G, NNH09AG62G, NNH09-AM47I, NNX09AP74A, NNX09AG63G, NNX10AE46G, NNX12AB30G, and NASA contract NNN06AA01C. Super-computer time allocations were provided on SGI Pleiades by NASA High-End Computing Program award SMD-10-1691, Cray XT5 Kraken by NSF XSEDE project MCA07S033, and on Cray XT5 Jaguar by ORNL Director Discretion project PSS0006. This work was also supported by the IBEX mission as a part of NASA's Explorer program. NR 29 TC 24 Z9 25 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2012 VL 750 IS 1 AR L4 DI 10.1088/2041-8205/750/1/L4 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929CV UT WOS:000303039700004 ER PT J AU Yukita, M Swartz, DA AF Yukita, Mihoko Swartz, Douglas A. TI X-RAY EMISSION FROM THE SUPERGIANT SHELL IN IC 2574 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: individual (IC 2574); galaxies: starburst; X-rays: binaries; X-rays: galaxies ID H-II REGIONS; STAR-FORMATION; DWARF GALAXIES; M81 GROUP; EVOLUTION AB The M81 group member dwarf galaxy IC 2574 hosts a supergiant shell of current and recent star formation activity surrounding a 1000 x 500 pc hole in the ambient Hi gas distribution. Chandra X-ray Observatory imaging observations reveal a luminous, L-X similar to 6.5 x 10(38) erg s(-1) in the 0.3-8.0 keV band, point-like source within the hole but offset from its center and fainter diffuse emission extending throughout and beyond the hole. The star formation history at the location of the point source indicates a burst of star formation beginning similar to 25 Myr ago and currently weakening and there is a young nearby star cluster, at least 5 Myr old, bracketing the likely age of the X-ray source at between 5 and similar to 25 Myr. The source is thus likely a bright high-mass X-ray binary-either a neutron star or black hole accreting from an early B star undergoing thermal-timescale mass transfer through Roche lobe overflow. The properties of the residual diffuse X-ray emission are consistent with those expected from hot gas associated with the recent star formation activity in the region. C1 [Yukita, Mihoko] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Swartz, Douglas A.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. RP Yukita, M (reprint author), Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. FU NASA [NNX08AJ49G] FX We gratefully acknowledge the referee, Leisa Townsley, for her expert critique and especially for alerting us to the possibility of pileup of the point source. Support for this research was provided in part by NASA through an Astrophysics Data Analysis Program grant NNX08AJ49G. NR 22 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2012 VL 750 IS 1 AR L16 DI 10.1088/2041-8205/750/1/L16 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 929CV UT WOS:000303039700016 ER PT J AU Sturdevant, MV Fergusson, E Hillgruber, N Reese, C Orsi, J Focht, R Wertheimer, A Smoker, B AF Sturdevant, Molly V. Fergusson, Emily Hillgruber, Nicola Reese, Carl Orsi, Joe Focht, Rick Wertheimer, Alex Smoker, Bill TI Lack of trophic competition among wild and hatchery juvenile chum salmon during early marine residence in Taku Inlet, Southeast Alaska SO ENVIRONMENTAL BIOLOGY OF FISHES LA English DT Article DE Juvenile Pacific salmon; Hatchery-wild; Trophic interactions; Emigration; Oncorhynchus keta; Chum salmon; Diet; Energy density; Early marine; Prey partitioning ID PRINCE-WILLIAM-SOUND; ONCORHYNCHUS-KETA; PINK SALMON; BRITISH-COLUMBIA; PACIFIC SALMON; FEEDING-HABITS; ENERGY DENSITY; HIGH SURVIVAL; SMALL ESTUARY; LIFE-HISTORY AB Early marine trophic interactions of wild and hatchery chum salmon (Oncorhynchus keta) were examined as a potential cause for the decline in harvests of adult wild chum salmon in Taku Inlet, Southeast Alaska. In 2004 and 2005, outmigrating juvenile chum salmon were sampled in nearshore habitats of the inlet (spring) and in epipelagic habitat at Icy Strait (summer) as they approached the Gulf of Alaska. Fish were frozen for energy density determination or preserved for diet analyses, and hatchery stocks were identified from the presence of thermal marks on otoliths. We compared feeding intensity, diets, energy density, and size relationships of wild and hatchery stocks (n = 3123) across locations and weeks. Only hatchery fish feeding intensity was negatively correlated with fish abundance. In both years, hatchery chum salmon were initially larger and had greater energy density than wild fish, but lost condition in early weeks after release as they adapted to feeding on wild prey assemblages. Diets differed between the stocks at all inlet locations, but did not differ for hatchery salmon between littoral and neritic habitats in the outer inlet, where the stocks overlapped most. Both diets and energy density converged by late June. Therefore, if density-dependent interactions affect wild chum salmon, these effects must be very rapid because survivors in Icy Strait showed few differences. Our study also demonstrates that hatchery release strategies used near Taku Inlet successfully promote early spatial segregation and prey partitioning, which reduce the probability of competition between wild and hatchery chum salmon stocks. C1 [Sturdevant, Molly V.; Fergusson, Emily; Orsi, Joe; Wertheimer, Alex] Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, Juneau, AK 99801 USA. [Hillgruber, Nicola; Smoker, Bill] Univ Alaska Fairbanks, Juneau Ctr, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. [Reese, Carl] Alaska Dept Environm Conservat, Juneau, AK 99801 USA. [Focht, Rick] Douglas Isl Pink & Chum Inc, Juneau, AK 99801 USA. RP Sturdevant, MV (reprint author), Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM molly.sturdevant@noaa.gov FU Pacific Coast Salmon Restoration Fund; Pacific Salmon Commission FX This cooperative investigation by the Alaska Fisheries Science Center's Auke Bay Laboratories, the University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, the Alaska Department of Fish and Game (ADFG), and DIPAC Incorporated was supported by the Pacific Coast Salmon Restoration Fund administered by the ADFG through the Southeast Sustainable Salmon Fund. The SECM work was also supported by the Pacific Salmon Commission Northern Fund. We dedicate this work to J. Landingham and L. Macaulay, and we thank D. Teersteg, B. Meredith, M. Wunderlich, S. Ballard, K. Hock, C. Farrington, B. Howard, M. Kohan, J. Mitchell, D. Rhea-Fournier, the officers and crew of NOAA ship John N. Cobb, and Capt. R. Dobrydnia of the chartered vessel F/V Teasha for field sampling and laboratory assistance, and two anonymous reviewers. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. NR 67 TC 7 Z9 6 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0378-1909 J9 ENVIRON BIOL FISH JI Environ. Biol. Fishes PD MAY PY 2012 VL 94 IS 1 SI SI BP 101 EP 116 DI 10.1007/s10641-011-9899-7 PG 16 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 925EB UT WOS:000302742500008 ER PT J AU Heard, WR AF Heard, William R. TI Overview of salmon stock enhancement in southeast Alaska and compatibility with maintenance of hatchery and wild stocks SO ENVIRONMENTAL BIOLOGY OF FISHES LA English DT Article DE Alaska; Salmon hatcheries; Straying; Wild stocks; Aquaculture associations ID PRINCE-WILLIAM-SOUND; KODIAK ISLAND; PINK SALMON; PROGRAMS AB Modern salmon hatcheries in Southeast Alaska were established in the 1970s when wild runs were at record low levels. Enhancement programs were designed to help rehabilitate depressed fisheries and to protect wild salmon stocks through detailed planning and permitting processes that included focused policies on genetics, pathology, and management. Hatcheries were located away from significant wild stocks, local sources were used to develop hatchery broodstocks, and juveniles are marked so management can target fisheries on hatchery fish. Initially conceived as a state-run system, the Southeast Alaska (SEAK) program has evolved into a private, non-profit concept centered around regional aquaculture associations run by fishermen and other stakeholders that pay for hatchery operations through landing fees and sale of fish. Today there are 15 production hatcheries and 2 research hatcheries in SEAK that between 2005 and 2009 released from 474 to 580 million (average 517 million) juvenile salmon per year. During this same period commercial harvest of salmon in the region ranged from 28 to 71 million salmon per year (average 49 million). Contributions of hatchery-origin fish to this harvest respectively averaged 2%, 9%, 19%, 20%, and 78% for pink, sockeye, Chinook, coho, and chum salmon. Both hatchery and wild salmon stocks throughout much of Alaska have experienced high marine survivals since the 1980s and 1990s resulting in record harvests over the past two decades. Although some interactions between hatchery salmon and wild salmon are unavoidable including increasing concerns over straying of hatchery fish into wild salmon streams, obvious adverse impacts from hatcheries on production of wild salmon populations in this region are not readily evident. C1 Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, Juneau, AK 99801 USA. RP Heard, WR (reprint author), Natl Marine Fisheries Serv, Auke Bay Labs, Alaska Fisheries Sci Ctr, NOAA, 17109 Pt Lena Loop Rd, Juneau, AK 99801 USA. EM bill.heard@noaa.gov NR 26 TC 5 Z9 5 U1 4 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0378-1909 J9 ENVIRON BIOL FISH JI Environ. Biol. Fishes PD MAY PY 2012 VL 94 IS 1 SI SI BP 273 EP 283 DI 10.1007/s10641-011-9855-6 PG 11 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 925EB UT WOS:000302742500020 ER PT J AU Harmon, T Schoeberl, M Kirner, R Klefstad, R Kim, KH Lowry, MR AF Harmon, Trevor Schoeberl, Martin Kirner, Raimund Klefstad, Raymond Kim, Kwang H. Lowry, Michael R. TI Fast, Interactive Worst-Case Execution Time Analysis With Back-Annotation SO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS LA English DT Article DE Performance analysis; real-time systems; safety; software algorithms; software performance; software reliability ID WCET ANALYSIS; JAVA PROCESSOR; EMBEDDED SOFTWARE; INSTRUCTION CACHE; ARCHITECTURE; HIERARCHIES; PREDICTION; FRAMEWORK; SYSTEMS; TREE AB For hard real-time systems, static code analysis is needed to derive a safe bound on the worst-case execution time (WCET). Virtually all prior work has focused on the accuracy of WCET analysis without regard to the speed of analysis. The resulting algorithms are often too slow to be integrated into the development cycle, requiring WCET analysis to be postponed until a final verification phase. In this paper, we propose interactive WCET analysis as a new method to provide near-instantaneous WCET feedback to the developer during software programming. We show that interactive WCET analysis is feasible using tree-based WCET calculation. The feedback is realized with a plugin for the Java editor jEdit, where the WCET values are back-annotated to the Java source at the statement level. Comparison of this tree-based approach with the implicit path enumeration technique (IPET) shows that tree-based analysis scales better with respect to program size and gives similar WCET values. C1 [Harmon, Trevor; Lowry, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schoeberl, Martin] DTU Informat, DK-2800 Lyngby, Denmark. [Kirner, Raimund] Univ Hertfordshire, Hatfield AL10 9AB, Herts, England. [Klefstad, Raymond] Univ Calif Riverside, Riverside, CA 92521 USA. [Kim, Kwang H.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Harmon, T (reprint author), Intel Corp, Santa Clara, CA 95054 USA. EM trevor@vocaro.com; masca@imm.dtu.dk; r.kirner@herts.ac.uk; Klefstad@cs.ucr.edu; lowry@email.arc.nasa.gov FU National Science Foundation; NASA; IST [IST-2010-248828] FX The majority of this work was conducted at the University of California, Irvine, with funding provided by the National Science Foundation's Graduate Research Fellowship Program. The work was also supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. The research leading to these results has received funding from the IST FP7 research project "Asynchronous and Dynamic Virtualization through Performance Analysis to support Concurrency Engineering (ADVANCE)" under Contract IST-2010-248828. Paper no. TII-11-01-0009. NR 58 TC 8 Z9 8 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1551-3203 EI 1941-0050 J9 IEEE T IND INFORM JI IEEE Trans. Ind. Inform. PD MAY PY 2012 VL 8 IS 2 BP 366 EP 377 DI 10.1109/TII.2012.2187457 PG 12 WC Automation & Control Systems; Computer Science, Interdisciplinary Applications; Engineering, Industrial SC Automation & Control Systems; Computer Science; Engineering GA 924VS UT WOS:000302720000016 ER PT J AU Small, RJ Carniel, S Campbell, T Teixeira, J Allard, R AF Small, R. J. Carniel, S. Campbell, T. Teixeira, J. Allard, R. TI The response of the Ligurian and Tyrrhenian Seas to a summer Mistral event: A coupled atmosphere-ocean approach SO OCEAN MODELLING LA English DT Article DE Air-sea interaction; Coupled modeling; Ocean heat budget; Ocean circulation; Ocean winds; Ocean temperature ID WESTERN MEDITERRANEAN-SEA; BOUNDARY-LAYER; GENERAL-CIRCULATION; PREDICTION SYSTEM; MIXED-LAYER; MODEL; CYCLOGENESIS; GULF; WIND; SIMULATIONS AB In this paper the effect of a summer Mistral event on the Ligurian and Tyrrhenian Seas in the northwestern Mediterranean is discussed, using a coupled numerical model and satellite and in situ observations. The focus is on the spatial and temporal distribution of the ocean mixed layer response to the strong winds, and on how this is affected by atmosphere-ocean coupling. The model used is the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS (R) 1), developed at the Naval Research Laboratory. This system includes an atmospheric sigma coordinate, non-hydrostatic model, coupled to a hydrostatic sigma-z level ocean model ( Naval Coastal Ocean Model), using the Earth System Modeling Framework (ESMF). The model is run at high ( km scale) resolution to capture the fine structure of wind jets and surface cooling. Two non-assimilating numerical experiments, coupled and uncoupled, are run for a 3-day period of a Mistral event, to examine more closely the impact of coupling on the surface flux and sea surface temperature (SST) fields. The cooling of SST up to 3 degrees C over 72 h in the coupled run significantly reduced the surface momentum and heat fluxes, relative to the uncoupled simulation, where the SST was kept fixed at the initial value. Mixed layer depths increase by as much as 30 m during the event. A heat budget analysis for the ocean is carried out to further explain and investigate the SST evolution. Shear-induced mixing in inertial waves is found to be important to the surface cooling. Effects of coupling on the atmospheric boundary layer are found to be significant, but overall the effect of coupling on the synoptic low pressure system is small. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Small, R. J.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80305 USA. [Carniel, S.] CNR, ISMAR, I-30122 Venice, Italy. [Campbell, T.; Allard, R.] USN, Res Lab, Stennis Space Ctr, MS 39529 USA. [Teixeira, J.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Small, RJ (reprint author), Natl Ctr Atmospher Res, Climate & Global Dynam Div, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM jsmall@ucar.edu RI Carniel, Sandro/J-9278-2012; CNR, Ismar/P-1247-2014; OI Carniel, Sandro/0000-0001-8317-1603; CNR, Ismar/0000-0001-5351-1486; Allard, Richard/0000-0002-6066-2722 FU Battlespace Environments Institute; NRL [PE 0602435N]; EU [242284] FX Three anonymous reviewers are thanked for their significant comments which improved the paper. Sue Chen (NRL) is thanked for her development of COAMPS code and willingness to answer questions. Travis Smith (NRL) helped test and set up the model experiments and provided helpful discussions. Roberto Bozzano (CNR ISSIA) allowed access to ODAS data as part of the LASIE07 experiment. Pierre-Marie Poulain (OGS) allowed access to drifter data and figures. We are grateful to Joerg Forster (Forschungsanstalt der Bundeswehr fur Wasserschall und Geophysik, Kiel, Germany) and colleagues for providing RV Planet data. Lakshmi Kantha provided helpful comments on the Richardson number and shear analysis. RJS, TC, and RA were supported by the High Performance Computing Modernization Program's Battlespace Environments Institute and NRL's 6.2 Core Program "Coupled Ocean-Wave Modeling System'' (Program Element PE 0602435N). SC acknowledges the support from the EU funded "FIELD_AC'' Project, Grant Agreement 242284. NR 65 TC 12 Z9 12 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 J9 OCEAN MODEL JI Ocean Model. PD MAY PY 2012 VL 48 BP 30 EP 44 DI 10.1016/j.ocemod.2012.02.003 PG 15 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 927TF UT WOS:000302932300003 ER PT J AU He, F Zhang, XX Chen, B Fok, M AF He Fei Zhang XiaoXin Chen Bo Fok, MeiChing TI Plasmaspheric trough evolution under different conditions of subauroral ion drift SO SCIENCE CHINA-TECHNOLOGICAL SCIENCES LA English DT Article DE subauroral ion drift; plasmaspheric trough; dynamic global core plasma model; simulation ID ELECTRIC-FIELD; POLARIZATION JET; MODEL; CONVECTION; PRECIPITATION; DISTURBANCES; SATELLITE; SUBSTORM; DYNAMICS; FREJA AB The statistical characteristics of the subauroral ion drift (SAID) in the ionosphere and the plasmaspheric trough evolution under different conditions of SAID were investigated in this paper, based on 566 SAID events observed by Akebono, Astrid-2, DE-2, and Freja satellites. The relationships between the latitudinal location of SAID and the Kp, AL, and Dst indices for these events were also discussed. It was found that the SAID events happened mainly at invariant latitude (ILAT) of 60.4 degrees and magnetic local time (MLT) of 21.6 MLT and that 92.4% of the events happened when the Kp index was below 5.0, indicating a medium geomagnetic activity. The latitudinal half-width of SAID varied from 0.5 degrees to 3.0 degrees with a typical half-width of 1.0 degrees. The SAID would happen at low latitudes if the geomagnetic activity was high. The effects of SAID on equatorial outer plasmasphere trough evolutions were studied with the dynamic global core plasma model (DGCPM) driven by the statistical results of SAID signatures. It was noted that locations, shapes and density of troughs vary with ILAT, MLT, latitudinal width, cross polar cap potential and lifetime of SAID events. The evolution of a trough is determined by the extent of SAID electric field penetrating into plasmasphere and not all SAID events can result in trough formations. C1 [Zhang XiaoXin] China Meteorol Adm, Natl Ctr Space Weather, Beijing 100081, Peoples R China. [He Fei; Chen Bo] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China. [Fok, MeiChing] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhang, XX (reprint author), China Meteorol Adm, Natl Ctr Space Weather, Beijing 100081, Peoples R China. EM xxzhang@cma.gov.cn RI Fok, Mei-Ching/D-1626-2012 FU National Natural Science Foundation of China [40890160, 40804030, 10878004, 40974093]; National Basic Research Program of China ("973" Program) [2011CB811400, 2012CB957800]; National Hi-Tech Research and Development Program of China ("863" Program) [2010AA-122205]; Special Fund for Public Welfare Industry [GYHY200806024, GYHY200906013] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 40890160, 40804030, 10878004, and 40974093), the National Basic Research Program of China ("973" Program) (Grant No. 2011CB811400, 2012CB957800), the National Hi-Tech Research and Development Program of China ("863" Program) (Grant No. 2010AA-122205), and the Special Fund for Public Welfare Industry (Grant Nos. GYHY200806024 and GYHY200906013). DE-2 IDM data used in this study are downloaded from NSSDC (NASA Space Science Data Center, http://nssdcftp.gsfc.nasa.gov/). The Akebono data are provided by Dr. A. MATSUOKA at Institute of Space and Astronautical Science (ISAS). The Freja data are provided by Dr. T. KARLSSON in Royal Institute of Technology (KTH) in Sweden. The Astrid-2 data are downloaded from the Alfven Laboratory at http://www.spp.ee.kth.se/res/tools/astrid-2. All the geomagnetic indices are obtained from Kyoto World Data Center for Geomagnetism at http://swdcwww.kugi.kyoto-u.ac.jp/index.html. NR 28 TC 4 Z9 4 U1 2 U2 5 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7321 J9 SCI CHINA TECHNOL SC JI Sci. China-Technol. Sci. PD MAY PY 2012 VL 55 IS 5 BP 1287 EP 1294 DI 10.1007/s11431-012-4781-1 PG 8 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 927RV UT WOS:000302928700019 ER PT J AU Singh, M Fernandez, JM Asthana, R Rico, JR AF Singh, M. Martinez Fernandez, J. Asthana, R. Ramirez Rico, J. TI Interfacial characterization of silicon nitride/silicon nitride joints brazed using Cu-base active metal interlayers SO CERAMICS INTERNATIONAL LA English DT Article DE Joining; Electron microscopy; Interfaces; Si3N4; Active metal interlayer ID DIFFRACTION PATTERNS; CERAMICS; ALLOY; MICROSTRUCTURE; STEEL AB Silicon nitride/silicon nitride joints were vacuum brazed at 1317 K for 5 min and 30 min using ductile Cu-base active metal interlayers. The joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). An inhomogeneous Ti-rich reaction layer (similar to 2-3 mu m thick) formed in 5 min at the Si3N4/braze interface. The inhomogeneity disappeared after brazing for 30 min and was replaced with a compact and featureless reaction zone. TEM studies revealed fine grains in the reaction layer, and larger grains in the inner part of the joint interfaces. The joints were crack-free and presented features associated with plastic deformation, which indicated accommodation of strain associated with CTE mismatch. Electron Backscatter diffraction (EBSD) revealed a highly textured braze alloy interlayer and its crystallographic orientation was determined. The formation of additional phases at the joint interface during brazing is discussed. (C) 2011 Elsevier Ltd and Techna Group Sri. All rights reserved. C1 [Martinez Fernandez, J.; Ramirez Rico, J.] Univ Seville, CSIC, Dpto Fis Mat Condensada, ICMSE, Seville 41012, Spain. [Singh, M.] NASA, Ohio Aerosp Inst, Glenn Res Ctr, Cleveland, OH 44135 USA. [Asthana, R.] Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. RP Fernandez, JM (reprint author), Univ Seville, CSIC, Dpto Fis Mat Condensada, ICMSE, Avda Reina Mercedes S-N, Seville 41012, Spain. EM martinez@us.es RI Ramirez-Rico, Joaquin/A-7006-2009; MARTINEZ FERNANDEZ, JULIAN/K-1826-2012 OI Ramirez-Rico, Joaquin/0000-0002-1184-0756; MARTINEZ FERNANDEZ, JULIAN/0000-0002-1199-6638 FU NASA Glenn Research Center FX Rajiv Asthana and Julian Martinez-Fernandez acknowledge the support received from the NASA Glenn Research Center. Technical assistance received from F. M. Varela-Feria (CITIUS, University of Seville) in SEM and TEM observations is also thankfully acknowledged. NR 33 TC 7 Z9 7 U1 3 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 J9 CERAM INT JI Ceram. Int. PD MAY PY 2012 VL 38 IS 4 BP 2793 EP 2802 DI 10.1016/j.ceramint.2011.11.050 PG 10 WC Materials Science, Ceramics SC Materials Science GA 922BV UT WOS:000302522700025 ER PT J AU Wu, LL Percak-Dennett, EM Beard, BL Roden, EE Johnson, CM AF Wu, Lingling Percak-Dennett, Elizabeth M. Beard, Brian L. Roden, Eric E. Johnson, Clark M. TI Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID OXIDE REDUCTION; FE(II)-FE(III) ELECTRON; MICROBIAL REDUCTION; CRYSTAL-CHEMISTRY; ADSORPTION; EXCHANGE; SEAWATER; LIGANDS; SURFACE; CRYSTALLIZATION AB Iron isotope fractionation between aqueous Fe(II) (Fe(II)(aq)) and two amorphous Fe(III) oxide Si coprecipitates was investigated in an aqueous medium that simulated Archean marine conditions, including saturated amorphous silica, low sulfate, and zero dissolved oxygen. The equilibrium isotope fractionation (in Fe-56/Fe-54) between Fe(II)(aq) and Fe(III)-Si coprecipitates at circum-neutral pH, as inferred by the three-isotope method, was -3.51 +/- 0.20 (2 sigma)parts per thousand and 3.99 +/- 0.17 (2 sigma)parts per thousand for coprecipitates that had Fe:Si molar ratios of 1:2 and 1:3, respectively. These results, when combined with earlier work, indicate that the equilibrium isotope fractionation factor between Fe(II)(aq) and Fe(III)-Si coprecipitates changes as a function of Fe:Si ratio of the solid. Isotopic fractionation was least negative when Fe:Si = 1:1 and most negative when Fe:Si = 1: 3. This change corresponds with changes in the local structure of iron, as revealed by prior spectroscopic studies. The kinetics of isotopic exchange was controlled by movement of Fe(II) and Si, where sorption of Fe(II) from aqueous to solid phase facilitated atom exchange, but sorption of Si hindered isotopic exchange through blockage of reactive surface sites. Although Fe(II)-Fe(III) isotopic exchange rates were a function of solid and solution compositions in the current study, in all cases they were much higher than that determined in previous studies of aqueous Fe(III) and ferrihydrite interaction, highlighting the importance of electron exchange in promoting Fe atom exchange. When compared to analogous microbial reduction experiments of overlapping Fe(II) to Fe(III) ratios, isotopic exchange rates were faster in the biological experiments, likely due to promotion of atom exchange by the solid- phase Fe(II) produced in the biological experiments. These results provide constraints for interpreting the relatively large range of Fe isotope compositions in Precambrian marine sedimentary rocks, and highlight important differences between modern and ancient marine environments due to the absence or presence of dissolved silica. Evidence can be found in the Fe isotope compositions of the ancient rock record for both abiologic and biologic processes, distinction of which becomes apparent when sedimentological and diagenetic processes are fully explored, as well as Fe mass balance. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Wu, Lingling] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. NASA Astrobiol Inst, Madison, WI 53706 USA. RP Wu, LL (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM lwu@geology.wisc.edu RI Wu, Lingling/E-4087-2010 OI Wu, Lingling/0000-0002-8211-5754 FU NASA Astrobiology Institute FX This research was supported by the NASA Astrobiology Institute. We thank Hiromi Konishi for TEM work and Huifang Xu for discussion on the local structure of Fe-Si coprecipitates. NR 69 TC 26 Z9 26 U1 5 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 1 PY 2012 VL 84 BP 14 EP 28 DI 10.1016/j.gca.2012.01.007 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 925OF UT WOS:000302770000002 ER PT J AU Crossley, D de Linage, C Hinderer, J Boy, JP Famiglietti, J AF Crossley, David de Linage, Caroline Hinderer, Jacques Boy, Jean-Paul Famiglietti, James TI A comparison of the gravity field over Central Europe from superconducting gravimeters, GRACE and global hydrological models, using EOF analysis SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time series analysis; Satellite gravity; Time variable gravity ID DATA ASSIMILATION SYSTEM; TIME-VARIABLE GRAVITY; TEMPORAL GRAVITY; ENERGY BALANCES; LOCAL HYDROLOGY; SURFACE LOADS; LAND WATER; BALTIC SEA; VARIABILITY; METSAHOVI AB We analyse data from seven superconducting gravimeter (SG) stations in Europe from 2002 to 2007 from the Global Geodynamics Project (GGP) and compare seasonal variations with data from GRACE and several global hydrological modelsGLDAS, WGHM and ERA-Interim. Our technique is empirical orthogonal function (EOF) decomposition of the fields that allows for the inherent incompatibility of length scales between ground and satellite observations. GGP stations below the ground surface pose a problem because part of the attraction from soil moisture comes from above the gravimeter, and this gives rise to a complex (mixed) gravity response. The first principle component (PC) of the EOF decomposition is the main indicator for comparing the fields, although for some of the series it accounts for only about 50 per cent of the variance reduction. PCs for GRACE solutions RL04 from CSR and GFZ are filtered with a cosine taper (degrees 2040) and a Gaussian window (350 km). Significant differences are evident between GRACE solutions from different groups and filters, though they all agree reasonably well with the global hydrological models for the predominantly seasonal signal. We estimate the first PC at 10-d sampling to be accurate to 1 mu Gal for GGP data, 1.5 mu Gal for GRACE data and 1 mu Gal between the three global hydrological models. Within these limits the CNES/GRGS solution and ground GGP data agree at the 79 per cent level, and better when the GGP solution is restricted to the three above-ground stations. The major limitation on the GGP side comes from the water mass distribution surrounding the underground instruments that leads to a complex gravity effect. To solve this we propose a method for correcting the SG residual gravity series for the effects of soil moisture above the station. C1 [Crossley, David] St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63108 USA. [de Linage, Caroline; Famiglietti, James] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Hinderer, Jacques; Boy, Jean-Paul] Univ Strasbourg, CNRS, Ecole Sci Terre, Strasbourg, France. [Hinderer, Jacques; Boy, Jean-Paul] Univ Strasbourg, CNRS, Observ Sci Terre, Strasbourg, France. [Boy, Jean-Paul] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Famiglietti, James] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA USA. RP Crossley, D (reprint author), St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63108 USA. EM crossley@eas.slu.edu RI Boy, Jean-Paul/E-6677-2017 OI Boy, Jean-Paul/0000-0003-0259-209X FU National Science Foundation [0409381]; CNRS (French Research Ministry); GRACE Science Team [NNG04GE99G] FX We thank the GGP station operators for supplying the data for this paper, especially in some cases directly to us in advance, and also the B. Ducarme (ICET) and B. Ritschel (ISDC) in maintaining the GGP database. This material is based upon work supported by the National Science Foundation under Grant No. 0409381, the CNRS (French Research Ministry) and GRACE Science Team Grant No. NNG04GE99G. During this study J-PB was visiting NASA Goddard Space Flight Center, with a Marie Curie International Outgoing Fellowship (No PIOF-GA-2008-221753). The GLDAS data used in this effort were acquired as part of the activities of NASA's Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We also acknowledge the authors of the generic mapping tools GMT for the availability of this exceptional software. NR 99 TC 15 Z9 16 U1 3 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD MAY PY 2012 VL 189 IS 2 BP 877 EP 897 DI 10.1111/j.1365-246X.2012.05404.x PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 923MO UT WOS:000302623600013 ER PT J AU SunSpiral, V Wheeler, DW Chavez-Clemente, D Mittman, D AF SunSpiral, Vytas Wheeler, D. W. Chavez-Clemente, Daniel Mittman, David TI Development and field testing of the FootFall planning system for the ATHLETE robots SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID COLLISION CHECKING; WALKING ROBOT; DESIGN; SINGLE AB The FootFall Planning System is a ground-based planning and decision support system designed to facilitate the control of walking activities for the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) family of robots. ATHLETE was developed at NASA's Jet Propulsion Laboratory and is a large, six-legged robot designed to serve multiple roles during manned and unmanned missions to the moon; its roles include transportation, construction, and exploration. Over the 4 years from 2006 through 2010 the FootFall Planning System was developed and adapted to two generations of the ATHLETE robots and tested at two analog field sites [the Human Robotic Systems Project's Integrated Field Test at Moses Lake, Washington, June 2008, and the Desert Research and Technology Studies (D-RATS), held at Black Point Lava Flow in Arizona, September 2010]. Having 42 degrees of kinematic freedom, standing to a maximum height of just over 4 m, and having a payload capacity of 450 kg in Earth gravity, the current version of the ATHLETE robot is a uniquely complex system. A central challenge to this work was the compliance of the high-degree-of-freedom robot, especially the compliance of the wheels, which affected many aspects of statically stable walking. This paper reviews the history of the development of the FootFall system, sharing design decisions, field test experiences, and the lessons learned concerning compliance and self-awareness. (c) 2012 Wiley Periodicals, Inc. C1 [SunSpiral, Vytas; Wheeler, D. W.] SGT Inc NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Chavez-Clemente, Daniel] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Mittman, David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP SunSpiral, V (reprint author), SGT Inc NASA Ames Res Ctr, Moffett Field, CA 94035 USA. EM vytas.sunspiral@nasa.gov; dw.wheeler@nasa.gov; dchavezc@alumni.stanford.edu; David.S.Mittman@jpl.nasa.gov FU ATHLETE team; NASA [NNA08CG83C]; National Aeronautics and Space Administration; Aerospace Robotics Lab at Stanford FX This work was made possible by the support and commitment of Brian Wilcox and the entire ATHLETE team. In particular, the authors thank Jay Torres, Curtis Collins, Julie Townsend, Jaret Mathews, Chet Joswig, Michael McHenry, Matt Heverly, and everyone else from JPL who pitched in and made FootFall a success. Likewise, many members of the Intelligent Robotics Group and the Planning and Scheduling Group at NASA Ames contributed to this effort, and we thank Terry Fong, Leslie Keely, Michael Broxton, Mark Allan, Tristan Smith, Javier Barreiro, David Smith, and our two interns, Patrick Mihelich and James Snow, who helped develop many critical components of the FootFall system. Finally, from Stanford we thank Steve Rock and Kris Hauser. This research was carried out as part of the Human-Robotic Systems (HRS) project, which is funded by NASA's Exploration Technology Development Program under NASA Ames Prime Contract No. NNA08CG83C. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Further support was provided by the Aerospace Robotics Lab at Stanford and the NASA Ames Education Associates Program. NR 48 TC 5 Z9 7 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAY-JUN PY 2012 VL 29 IS 3 SI SI BP 483 EP 505 DI 10.1002/rob.20410 PN 1 PG 23 WC Robotics SC Robotics GA 921HX UT WOS:000302469800007 ER PT J AU Kumar, MM Afessa, B Atkinson, JL Johnson, L Nayagam, V AF Kumar, M. M. Afessa, B. Atkinson, J. L. Johnson, L. Nayagam, V. TI RAPID INDUCTION OF THERAPEUTIC HYPOTHERMIA THROUGH AUGMENTED HEAT LOSS FROM THE LUNGS: A FEASIBILITY STUDY IN SWINE SO ANESTHESIA AND ANALGESIA LA English DT Meeting Abstract CT Annual Meeting of the International-Anesthesia-Research-Society CY MAY 18-21, 2012 CL Boston, MA C1 [Kumar, M. M.; Afessa, B.; Atkinson, J. L.; Johnson, L.] Mayo Clin, Rochester, MN USA. [Nayagam, V.] NASA, Natl Ctr Space Explorat Res, Glenn Res Ctr, Cleveland, OH USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0003-2999 J9 ANESTH ANALG JI Anesth. Analg. PD MAY PY 2012 VL 114 SU 1 MA S-160 PG 1 WC Anesthesiology SC Anesthesiology GA V45WL UT WOS:000209846600063 ER PT J AU Siegel, PH AF Siegel, Peter H. TI Electro-Thermal Model for Multi-Anode Schottky Diode Multipliers SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Editorial Material DE Electro-thermal model; gallium arsenide (GaAs); high power submillimeter-wave generation; self-heating; thermal analysis; frequency multiplier; Schottky diodes AB We present a self-consistent electro-thermal model for multi-anode Schottky diode multiplier circuits. The thermal model is developed for n-anode multiplier via a thermal resistance matrix approach. The nonlinear temperature responses of the material are taken into consideration by using a linear temperature-dependent approximation for the thermal resistance. The electrothermal model is capable of predicting the hot spot temperature, providing useful information for circuit reliability study as well as high power circuit design and optimization. Examples of the circuit analysis incorporating the electro-thermal model for a substrateless- and a membrane-based multiplier circuits, operating up to 200 GHz, are demonstrated. Compared to simulations without thermal model, the simulations with electro-thermal model agree better with the measurement results. For the substrateless multiplier, the error between the simulated and measured peak output power is reduced from similar to 13% to similar to 4% by including the thermal effect. C1 [Siegel, Peter H.] CALTECH, Pasadena, CA 91125 USA. [Siegel, Peter H.] CALTECH, Jet Prop Lab, SWAT, Pasadena, CA USA. RP Siegel, PH (reprint author), CALTECH, Pasadena, CA 91125 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD MAY PY 2012 VL 2 IS 3 BP 261 EP 264 DI 10.1109/TTHZ.2012.2196069 PG 4 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 142AC UT WOS:000318766900001 ER PT J AU Siegel, PH AF Siegel, Peter H. TI Terahertz Pioneers A Series of Interviews With Significant Contributors to Terahertz Science and Technology SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Siegel, Peter H.] CALTECH, Dept Biol, Pasadena, CA 91109 USA. [Siegel, Peter H.] CALTECH, Dept Elect Engn, Pasadena, CA 91109 USA. [Siegel, Peter H.] NASA, Jet Prop Lab, SWAT, Pasadena, CA 91109 USA. RP Siegel, PH (reprint author), CALTECH, Dept Biol, Pasadena, CA 91109 USA. NR 0 TC 1 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD MAY PY 2012 VL 2 IS 3 BP 265 EP 265 DI 10.1109/TTHZ.2012.2190869 PG 1 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 142AC UT WOS:000318766900002 ER PT J AU Siegel, PH AF Siegel, Peter H. TI Terahertz Pioneer: Richard J. Saykally Water, Water Everywhere... SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Biographical-Item C1 [Siegel, Peter H.] CALTECH, Dept Biol, Pasadena, CA 91109 USA. [Siegel, Peter H.] CALTECH, Dept Elect Engn, Pasadena, CA 91109 USA. [Siegel, Peter H.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Siegel, PH (reprint author), CALTECH, Dept Biol, Pasadena, CA 91109 USA. EM phs@caltech.edu NR 0 TC 1 Z9 1 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD MAY PY 2012 VL 2 IS 3 BP 266 EP 270 DI 10.1109/TTHZ.2012.2190870 PG 5 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 142AC UT WOS:000318766900003 ER PT J AU Boussaha, FM Kawamura, JH Stern, JA Skalare, A White, V AF Boussaha, Faouzi M. Kawamura, Jonathan H. Stern, Jeffery A. Skalare, Anders White, Victor TI A Low Noise 2.7 THz Waveguide-Based Superconducting Mixer SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Terahertz frequency; hot electron bolometer; heterodyne detection; waveguide ID BOLOMETER; RECEIVER AB We report on a low noise waveguide-based heterodyne mixer utilizing a superconductiang NbN hot electron bolometer (HEB) operating near 2.7 THz. The mixer is an NbN nano-bridge integrated with a gold bowtie planar antenna on an ultra-thin silicon substrate of similar to 2-3 mu m thickness. To produce the waveguide embedding circuit for use at such a high frequency, we adopted a novel approach combining UV-lithography and micro-plating techniques. The mixer response agreed precisely with model predictions, and we measured a minimum uncorrected DSB receiver noise temperature of 965 K at an LO frequency of 2.74 THz. C1 [Boussaha, Faouzi M.; Kawamura, Jonathan H.; Stern, Jeffery A.; Skalare, Anders; White, Victor] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Boussaha, FM (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA. EM faouzi.m.boussaha@jpl.nasa.gov; jonathan.h.kawamura@jpl.nasa.gov; anders.skalare@jpl.nasa.gov; victor.e.white@jpl.nasa.gov FU Oak Ridge Associated Universities through the NASA Postdoctoral Program (NPP) FX This work is supported in part by Oak Ridge Associated Universities through the NASA Postdoctoral Program (NPP). NR 24 TC 9 Z9 9 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD MAY PY 2012 VL 2 IS 3 BP 284 EP 289 DI 10.1109/TTHZ.2012.2189393 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 142AC UT WOS:000318766900006 ER PT J AU Tang, AY Schlecht, E Lin, R Chattopadhyay, G Lee, C Gill, J Mehdi, I Stake, J AF Tang, Aik Yean Schlecht, Erich Lin, Robert Chattopadhyay, Goutam Lee, Choonsup Gill, John Mehdi, Imran Stake, Jan TI Electro-Thermal Model for Multi-Anode Schottky Diode Multipliers SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Electro-thermal model; gallium arsenide (GaAs); high power submillimeter-wave generation; self-heating; thermal analysis; frequency multiplier; Schottky diodes ID FREQUENCY-MULTIPLIERS; MILLIMETER-WAVE; DESIGN; TECHNOLOGY; VARACTORS; GAAS; HBTS; INP AB We present a self-consistent electro-thermal model for multi-anode Schottky diode multiplier circuits. The thermal model is developed for an-anode multiplier via a thermal resistance matrix approach. The nonlinear temperature responses of the material are taken into consideration by using a linear temperature-dependent approximation for the thermal resistance. The electrothermal model is capable of predicting the hot spot temperature, providing useful information for circuit reliability study as well as high power circuit design and optimization. Examples of the circuit analysis incorporating the electro-thermal model for a substrateless- and a membrane-based multiplier circuits, operating up to 200 GHz, are demonstrated. Compared to simulations without thermal model, the simulations with electro-thermal model agree better with the measurement results. For the substrateless multiplier, the error between the simulated and measured peak output power is reduced from similar to 13% to similar to 4% by including the thermal effect. C1 [Tang, Aik Yean; Stake, Jan] Chalmers, Dept Nanosci & Microtechnol, Terahertz & Millimetre Wave Lab, SE-42196 Gothenburg, Sweden. [Schlecht, Erich; Lin, Robert; Chattopadhyay, Goutam; Lee, Choonsup; Gill, John; Mehdi, Imran] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Tang, AY (reprint author), Chalmers, Dept Nanosci & Microtechnol, Terahertz & Millimetre Wave Lab, SE-42196 Gothenburg, Sweden. EM aik-yean.tang@chalmers.se RI Stake, Jan/C-4383-2008 OI Stake, Jan/0000-0002-8204-7894 FU VINNOVA; Security Link; Ericsson's Research Foundation; Solveig och Karl G Eliassons Minnesfond; Chalmersska Forskningsfonden FX This work was supported by the VINNOVA, Security Link, Ericsson's Research Foundation, Solveig och Karl G Eliassons Minnesfond, and Chalmersska Forskningsfonden 2010. NR 35 TC 12 Z9 12 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD MAY PY 2012 VL 2 IS 3 BP 290 EP 298 DI 10.1109/TTHZ.2012.2189913 PG 9 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 142AC UT WOS:000318766900007 ER PT J AU Powell, D Clowers, K Keefer, M Zhang, SN AF Powell, Douglas Clowers, Kurt Keefer, Maria Zhang, Songning TI Alterations in neuromuscular activation patterns associated with walking in short-leg walking boots SO JOURNAL OF SPORT AND HEALTH SCIENCE LA English DT Article DE Electromyography; Gait; Short-leg walker; Walking; Walking boot AB Background: Short-leg walking boots are a common intervention for acute and chronic lower extremity injury. Few studies have examined the neuromuscular adaptations associated with short-leg walking boots and no previous study has investigated timing characteristics of muscle activation during gait. The purpose of the current study was to examine the timing and amplitudes of muscle activation of the extrinsic ankle musculature during walking in two types of short-leg walking boots. Methods: Eleven healthy young adults performed five level walking trials at a self-selected pace in each of three conditions: normal walking, Gait Walker and Equalizer short-leg walking boots. Ground reaction forces were collected from a force platform while surface electromyography (EMG) was collected from the tibialis anterior, peroneus longus and medial gastrocnemius. EMG signals were rectified and smoothed using the root mean squared with a 20-ms smoothing window and were normalized to the largest mean of the normal walking trials. A repeated measures analysis of variance was used to assess the effect of short-leg walking boots on the onset, duration and amplitude of muscle activation. Results: Short-leg walking boots were generally associated with earlier onsets of muscle activation and longer durations of muscle activation. However, there was no reduction in EMG amplitude. Conclusion: The findings of this study show that the induced alterations in muscle activation patterns may limit the short-leg walking boots. Copyright (C) 2012, Shanghai University of Sport. Production and hosting by Elsevier B. V. All rights reserved. C1 [Powell, Douglas] Fairmont State Univ, Neuromuscular Biomech Lab, Fairmont, WV USA. [Clowers, Kurt] NASA Johnson Space Ctr, Anthropometry & Biomech Facil, Houston, TX USA. [Keefer, Maria] Univ Texas Hlth Sci Ctr Houston, Houston, TX 77030 USA. [Zhang, Songning] Univ Tennessee, Biomech Sports Med Lab, Knoxville, TN 37996 USA. RP Zhang, SN (reprint author), Univ Tennessee, Biomech Sports Med Lab, Knoxville, TN 37996 USA. EM szhang@utk.edu OI Zhang, Songning/0000-0002-3712-9129 FU DeRoyal Industries, Inc., Powell, TN, USA FX This study was funded in part by a grant from DeRoyal Industries, Inc., Powell, TN, USA. NR 17 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2095-2546 EI 2213-2961 J9 J SPORT HEALTH SCI JI J. Sport Health Sci. PD MAY PY 2012 VL 1 IS 1 BP 43 EP 48 DI 10.1016/j.jshs.2012.02.003 PG 6 WC Hospitality, Leisure, Sport & Tourism; Sport Sciences SC Social Sciences - Other Topics; Sport Sciences GA V30SR UT WOS:000208836200010 ER PT J AU Huang, M Carmichael, GR Kulkarni, S Streets, DG Lu, ZF Zhang, Q Pierce, RB Kondo, Y Jimenez, JL Cubison, MJ Anderson, B Wisthaler, A AF Huang, Min Carmichael, Gregory R. Kulkarni, Sarika Streets, David G. Lu, Zifeng Zhang, Qiang Pierce, R. Bradley Kondo, Yutaka Jimenez, Jose L. Cubison, Michael J. Anderson, Bruce Wisthaler, Armin TI Sectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Black carbon; Sectoral and geographical contributions; Warming potential ID AIR-QUALITY; WESTERN US; EMISSIONS; AEROSOLS; PARTICLES; TRANSPORT; OZONE; MODEL; MASS AB The sectoral and regional contributions from northern hemisphere anthropogenic and biomass burning emission sectors to black carbon (BC) distributions over the continental United States (CONUS) in summer 2008 are studied using the Sulfur Transport and dEposition Model (STEM). North American (NA) emissions heavily (>70% of total emissions) affect the BC levels from the surface to similar to 5 km, while non-NA plumes compose more than half of the BC above similar to 5 km. Among all sectors, NA and non-NA biomass burning, NA transportation and non-NA residential emissions are the major contributors. The sectoral contributions vary among ten regions defined by the US Environmental Protection Agency (EPA): NA anthropogenic emissions enhance northeastern US BC levels; biomass burning strongly impacts northern California and southeastern US; and the influence of extra-regional plumes is largest in the northwestern US but extends to eastern US. The mean contribution from non-NA sources to US surface BC is similar to 0.05 mu g m(-3), with a maximum value of similar to 0.11 mu g m(-3) in the northwestern US. The non-NA contributions to column BC are higher than to surface BC, ranging from 30% to 80%, depending on region. EPA region 8 is most sensitive to extra-regional BC, partially explaining the observed increasing BC trend there during the past decades associated with the increasing Asian BC emissions. Measurements from the June 24 DC-8 flight during the ARCTAS-CARB field campaign show that BC/(organic matter + nitrate + sulfate) mass ratios fairly well represent BC's warming potential over southern California, which can be approximated by BC/(organic matter + sulfate) and BC/sulfate for plumes affected and unaffected by fires, respectively. The responses of BC/(organic matter + sulfate) and BC/sulfate to removing each emission sector are further discussed, indicating that mitigating NA transportation emissions has the highest potential for regional air quality and climate co-benefits. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Huang, Min; Carmichael, Gregory R.; Kulkarni, Sarika] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Streets, David G.; Lu, Zifeng] Argonne Natl Lab, Argonne, IL 60439 USA. [Zhang, Qiang] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Pierce, R. Bradley] NOAA, NESDIS, Madison, WI USA. [Kondo, Yutaka] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo, Japan. [Jimenez, Jose L.; Cubison, Michael J.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Jimenez, Jose L.; Cubison, Michael J.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Anderson, Bruce] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Wisthaler, Armin] Univ Innsbruck, A-6020 Innsbruck, Austria. RP Huang, M (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. EM mhuang1@engineering.uiowa.edu RI Jimenez, Jose/A-5294-2008; Pierce, Robert Bradley/F-5609-2010; Zhang, Qiang/D-9034-2012; Lu, Zifeng/F-3266-2012; Kondo, Yutaka/D-1459-2012; OI Jimenez, Jose/0000-0001-6203-1847; Pierce, Robert Bradley/0000-0002-2767-1643; Streets, David/0000-0002-0223-1350 FU NASA [NNX08AH56G, NNX11AI52G, NNX08AD39G]; EPA [RD-83503701-0]; Austrian Research Promotion Agency (FFG-ALR); Tiroler Zukunftstiftung FX We thank two anonymous reviewers for their constructive comments. We thank the ARCTAS science team. We thank CGRER members A. D'Allura, B. Adhikary and C. Wei who contributed to building the STEM forecast modeling system for ARCTAS. The Iowa group was supported by NASA awards (NNX08AH56G and NNX11AI52G) and an EPA award (RD-83503701-0). M. J. Cubison and J. L. Jimenez were supported by a NASA award (NNX08AD39G). Acetonitrile measurements were supported by the Austrian Research Promotion Agency (FFG-ALR) and the Tiroler Zukunftstiftung and were carried out with the help/support of T. Mikoviny, M. Graus, A. Hansel and T. D. Maerk. NR 39 TC 5 Z9 5 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2012 VL 51 BP 165 EP 174 DI 10.1016/j.atmosenv.2012.01.021 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 921WK UT WOS:000302508600019 ER PT J AU Chen, Z Torres, O McCormick, MP Smith, W Ahn, C AF Chen, Zhong Torres, Omar McCormick, M. Patrick Smith, William Ahn, Changwoo TI Comparative study of aerosol and cloud detected by CALIPSO and OMI SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Aerosol; Satellite measurements; Comparative analysis ID LIDAR; SMOKE; RADIATION; SPACE; DUST AB Aerosol and cloud play important roles in the atmosphere and climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a very important task. This paper presents a comparative analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Level 2 Vertical Feature Mask (VFM) product with the Ozone Monitoring Instrument (OMI) UV Aerosol Index (UVAI) and reflectivity datasets for a full year of 2007 from regional to global scales. Based on CALIPSO and OMI observations, the vertical and horizontal extent of clouds and aerosols are determined and effects of aerosol type, load and cloud fraction on aerosol identification are discussed. It was found that the spatial-temporal correlation found between CALIPSO and OMI observations, is strongly dependent on aerosol types and cloud contamination. CALIPSO is more sensitivity to cloud and often misidentifies aerosol as cloud, while some small scale aerosol layers as well as some pollution aerosols are unidentified by OMI UVAI. Large differences in aerosol distribution patterns between CALIPSO and OMI are observed, especially for the smoke and pollution aerosol dominated areas. In addition, the results found a significant correlation between CALIPSO lidar 1064 nm backscatter and the OMI UVAI over the study regions. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Chen, Zhong; McCormick, M. Patrick; Smith, William] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. [Chen, Zhong; Ahn, Changwoo] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Torres, Omar] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chen, Z (reprint author), Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. EM zhongchen528@yahoo.com RI Torres, Omar/G-4929-2013 NR 23 TC 6 Z9 7 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2012 VL 51 BP 187 EP 195 DI 10.1016/j.atmosenv.2012.01.024 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 921WK UT WOS:000302508600021 ER PT J AU Stoner, AW AF Stoner, Allan W. TI Evaluating vitality and predicting mortality in spot prawn, Pandalus platyceros, using reflex behaviors SO FISHERIES RESEARCH LA English DT Article DE Prawn; Mortality; Bycatch; Discard; Handling; Behavior ID COLLATERAL MORTALITY; METAPENAEUS-MACLEAYI; CHIONOECETES-BAIRDI; NEPHROPS-NORVEGICUS; DISCARD MORTALITY; SCHOOL PRAWNS; AIR EXPOSURE; TANNER CRABS; LOBSTER; IMPAIRMENT AB Evaluating vitality and predicting mortality in commercially exploited crustaceans is increasingly important for reducing discard mortality and for improving handling and shipping for live markets. A suite of 10 reflex actions were identified in spot prawns (Pandalus platyceros) that vary in sensitivity to injury and type of stressor. After establishing a baseline for stereotypic reflexes, prawns were subjected to physiological stress (emersion up to 60 min) and physical trauma (dropping). The prawns were tolerant of air exposure up to 40 min, but susceptible to injuries from dropping and the results within treatments were variable. However, mortality of individuals over a 30-day recovery period was closely related to a simple reflex impairment score calculated as the sum of reflexes lost (range = 0-10) and the effects of different injuries were additive. Logistic regression indicated that reflex impairment was an excellent predictor of delayed mortality (87.5% correct predictions) across prawn size (35-48 mm carapace length) and treatment types. A sigmoid curve describing the relationship between impairment and mortality was termed a Reflex Action Mortality Predictor. This RAMP approach should be a valuable tool in practical experiments related to both discard mortality and handling live crustaceans without the need for tagging or long-term holding. Published by Elsevier B.v. C1 Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, NOAA, Newport, OR 97365 USA. RP Stoner, AW (reprint author), Natl Marine Fisheries Serv, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, NOAA, 2030 Marine Sci Dr, Newport, OR 97365 USA. EM al.stoner@noaa.gov NR 36 TC 7 Z9 7 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD MAY PY 2012 VL 119 BP 108 EP 114 DI 10.1016/j.fishres.2011.12.014 PG 7 WC Fisheries SC Fisheries GA 920WV UT WOS:000302440400011 ER PT J AU Lomeli, MJM Wakefield, WW AF Lomeli, Mark J. M. Wakefield, W. Waldo TI Efforts to reduce Chinook salmon (Oncorhynchus tshawytscha) and rockfish (Sebastes spp.) bycatch in the U.S. west coast Pacific hake (Merluccius productus) fishery SO FISHERIES RESEARCH LA English DT Article DE Bycatch reduction devices; Escape windows; Chinook salmon; Pacific hake; Fish behavior ID POLLOCK THERAGRA-CHALCOGRAMMA; WALLEYE POLLOCK; SEAWATER TEMPERATURE; HERDING BEHAVIOR; LIGHT-INTENSITY; TRAWL FISHERY; FISHING GEARS; NET; MORTALITY; SELECTIVITY AB This study examined two versions of an open escape window bycatch reduction device (BRD) designed to reduce bycatch of Chinook salmon (Oncorhynchus tshawytscha) and rockfish (Sebastes spp.) in the U.S. Pacific coast Pacific hake (Merluccius productus) fishery. Tests were conducted off central Oregon during 2009 and 2010 aboard a midwater trawler. Data on fish behavior and gear performance were observed using autonomous high-resolution low-light color video cameras and artificial lights. During this study, one of the BRD versions reduced both Chinook salmon and widow rockfish (S. entomelas) bycatch. The use of artificial light was also noted to influence the behavior of Chinook salmon. The mean escape time of Chinook salmon differed significantly between the two versions examined. Escapement of Pacific hake, the target species, was rarely observed. Results of this study suggest that there is potential for reducing Chinook salmon and widow rockfish bycatch in the Pacific hake fishery using open escape window BRDs. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lomeli, Mark J. M.] Pacific States Marine Fisheries, Newport, OR 97365 USA. [Wakefield, W. Waldo] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Newport, OR 97365 USA. RP Lomeli, MJM (reprint author), Pacific States Marine Fisheries, 2032 SE OSU Dr, Newport, OR 97365 USA. EM mlomeli@psmfc.org FU NOAA FX We would like to thank the F/V Miss Sue for their assistance with this research. We would also like to thank Robert Hannah (Oregon Department of Fish and Wildlife), Craig Rose (NOAA Fisheries Service-Alaska Fisheries Science Center), Kurt Cochran (F/V Marathon), and Foulweather Trawl, LLC as they had important roles in developing the two BRD designs examined. Funding for this study was provided by the NOAA Fisheries Service Bycatch Reduction Engineering Program. NR 22 TC 7 Z9 7 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD MAY PY 2012 VL 119 BP 128 EP 132 DI 10.1016/j.fishres.2011.11.003 PG 5 WC Fisheries SC Fisheries GA 920WV UT WOS:000302440400013 ER PT J AU Bailey, CN Adams, JS Bandler, SR Brekosky, RP Chervenak, JA Eckart, ME Finkbeiner, FM Kelley, RL Kelly, DP Kilbourne, CA Porter, FS Sadleir, JE Smith, SJ AF Bailey, C. N. Adams, J. S. Bandler, S. R. Brekosky, R. P. Chervenak, J. A. Eckart, M. E. Finkbeiner, F. M. Kelley, R. L. Kelly, D. P. Kilbourne, C. A. Porter, F. S. Sadleir, J. E. Smith, S. J. TI Implications of Weak Link Effects on Thermal Characteristics of Transition-Edge Sensors SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Transition edge sensor (TES); Thermal conductance; Weak link effects; Kapitza resistance; Electron-phonon coupling AB Weak link behavior in transition-edge sensor (TES) microcalorimeters creates the need for a more careful characterization of a device's thermal characteristics through its transition. This is particularly true for small TESs where a small change in the bias current results in large changes in effective transition temperature. To correctly interpret measurements, especially complex impedance, it is crucial to know the temperature-dependent thermal conductance, G(T), and heat capacity, C(T), at each point through the transition. We present data illustrating these effects and discuss how we overcome the challenges that are present in accurately determining G and T from I-V curves. We also show how these weak link effects vary with TES size. Additionally, we use this improved understanding of G(T) to determine that, for these TES microcalorimeters, Kaptiza boundary resistance dominates the G of devices with absorbers while the electron-phonon coupling also needs to be considered when determining G for devices without absorbers. C1 [Bailey, C. N.] NASA, Goddard Space Flight Ctr, Postdoctoral Program, Greenbelt, MD 20771 USA. [Adams, J. S.; Eckart, M. E.; Smith, S. J.] CRESST, Bethesda, MD 21250 USA. [Adams, J. S.; Eckart, M. E.; Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Bandler, S. R.] CRESST, College Pk, MD 20742 USA. [Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA. [Brekosky, R. P.] Northrop Grumman Informat Technol, Mclean, VA 22102 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. [Kelly, D. P.] Muniz Engn Inc, Seabrook, MD 20706 USA. RP Bailey, CN (reprint author), NASA, Goddard Space Flight Ctr, Postdoctoral Program, Greenbelt, MD 20771 USA. EM catherine.n.bailey@gmail.com RI Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; Bailey, Catherine/C-6107-2009 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675; Porter, Frederick/0000-0002-6374-1119; NR 13 TC 5 Z9 5 U1 2 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 121 EP 128 DI 10.1007/s10909-012-0562-2 PN 1 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500006 ER PT J AU Bonetti, JA Turner, AD Bock, JJ Brevik, JA Day, PK Filippini, J Golwala, SR Holmes, W Jones, WC Kenyon, M Kovac, JM Kuo, CL LeDuc, HG Lueker, M Nguyen, HT O'brient, R Orlando, A Runyan, M Staniszewski, Z Sudiwala, R Trangsrud, A AF Bonetti, J. A. Turner, A. D. Bock, J. J. Brevik, J. A. Day, P. K. Filippini, J. Golwala, S. R. Holmes, W. Jones, W. C. Kenyon, M. Kovac, J. M. Kuo, C. L. LeDuc, H. G. Lueker, M. Nguyen, H. T. O'brient, R. Orlando, A. Runyan, M. Staniszewski, Z. Sudiwala, R. Trangsrud, A. TI Characterization and Fabrication of the TES Arrays for the Spider, Keck and BICEP2 CMB Polarimeters SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE CMB polarization; TES AB Spider, the Keck Array, and BICEP2 are projects to study the polarization of the cosmic microwave background (CMB). All three use large format arrays of antenna-coupled, membrane-isolated, transition edge sensors (TES's). Although similar, each project requires its own set of device parameters, such as thermal conductance, time constants, and normal state resistances. We have perfected a fabrication process that achieves two primary objectives: (1) high device yields of 95% or greater, and (2) very low spreads in devices parameters. Currently our arrays are taking science data at the South Pole in both the BICEP2 and Keck array telescopes. The focal planes for Spider, a high altitude balloon mission, are on schedule for a 2012 deployment. An overview of fabrication and development is given as well as a snapshot of scientific data. C1 [Bonetti, J. A.; Turner, A. D.; Bock, J. J.; Day, P. K.; Holmes, W.; Kenyon, M.; LeDuc, H. G.; Nguyen, H. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.; Brevik, J. A.; Filippini, J.; Golwala, S. R.; Lueker, M.; O'brient, R.; Orlando, A.; Runyan, M.; Staniszewski, Z.; Trangsrud, A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Kovac, J. M.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Kuo, C. L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, S Glam, Wales. RP Bonetti, JA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joseph.bonetti@jpl.nasa.gov OI Orlando, Angiola/0000-0001-8004-5054 NR 5 TC 0 Z9 0 U1 0 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 146 EP 151 DI 10.1007/s10909-012-0529-3 PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500010 ER PT J AU Smith, SJ Adams, JS Bailey, CN Bandler, SR Chervenak, JA Eckart, ME Finkbeiner, FM Kelley, RL Kilbourne, CA Porter, FS Sadleir, JE AF Smith, S. J. Adams, J. S. Bailey, C. N. Bandler, S. R. Chervenak, J. A. Eckart, M. E. Finkbeiner, F. M. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Sadleir, J. E. TI Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Solar physics; Microcalorimeter; X-Ray detector; Weak-link; Transition-edge sensor ID LOW-TEMPERATURE DETECTORS; X-RAY SPECTROSCOPY; LINES; MICROCALORIMETERS; DESIGN AB We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35x35 mu m(2) Mo/Au TESs with 4.5 mu m thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between the stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 +/- 0.03 eV at an energy of 1.5 keV, 1.58 +/- 0.07 eV at 5.9 keV and 1.96 +/- 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size. C1 [Smith, S. J.; Adams, J. S.; Eckart, M. E.] CRESST, Bethesda, MD 21250 USA. [Smith, S. J.; Adams, J. S.; Eckart, M. E.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Bailey, C. N.] NASA, Goddard Space Flight Ctr, Postdoctoral Program, Greenbelt, MD 20771 USA. [Bandler, S. R.] CRESST, College Pk, MD 20742 USA. [Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. RP Smith, SJ (reprint author), CRESST, Bethesda, MD 21250 USA. EM stephen.j.smith@nasa.gov RI Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; Bailey, Catherine/C-6107-2009 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675; Porter, Frederick/0000-0002-6374-1119; NR 20 TC 34 Z9 34 U1 0 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 168 EP 175 DI 10.1007/s10909-012-0574-y PN 1 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500013 ER PT J AU Beyer, AD Kenyon, ME Echternach, PM Chui, T Eom, BH Day, PK Bock, JJ Holmes, WA Bradford, CM AF Beyer, A. D. Kenyon, M. E. Echternach, P. M. Chui, T. Eom, B. -H. Day, P. K. Bock, J. J. Holmes, W. A. Bradford, C. M. TI Ultra-sensitive Transition-Edge Sensors for the Background Limited Infrared/Sub-mm Spectrograph (BLISS) SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Transition-edge sensor; Superconducting bolometer; Far-infrared spectrometer; Sub-mm spectrometer AB We report progress in fabricating ultra-sensitive superconducting transition-edge sensors (TESs) for BLISS. BLISS is a suite of grating spectrometers covering 35-433 mu m with R similar to 700 cooled to 50 mK that is proposed to fly on the Japanese space telescope SPICA. The detector arrays for BLISS are TES bolometers readout with a time domain SQUID multiplexer. The required noise equivalent power (NEP) for BLISS is NEP=10(-19) W/Hz(1/2) with an ultimate goal of NEP=5x10(-20) W/Hz(1/2) to achieve background limited noise performance. The required and goal response times are tau=150 ms and tau=50 ms respectively to achieve the NEP at the required and goal optical chop frequency 1-5 Hz. We measured prototype BLISS arrays and have achieved NEP=6x10(-18) W/Hz(1/2) and tau=1.4 ms with a Ti TES (T (C)=565 mK) and NEP similar to 2.5x10(-19) W/Hz(1/2) and tau similar to 4.5 ms with an Ir TES (T (C)=130 mK). Dark power for these tests is estimated at 1-5 fW. C1 [Beyer, A. D.; Kenyon, M. E.; Echternach, P. M.; Chui, T.; Eom, B. -H.; Day, P. K.; Bock, J. J.; Holmes, W. A.; Bradford, C. M.] CALTECH, Dept Phys, Jet Prop Lab, Pasadena, CA 91125 USA. RP Beyer, AD (reprint author), CALTECH, Dept Phys, Jet Prop Lab, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM beyer@caltech.edu NR 6 TC 3 Z9 3 U1 1 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 182 EP 187 DI 10.1007/s10909-011-0447-9 PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500015 ER PT J AU Barrentine, EM Brandl, DE Brown, AD Denis, KL Finkbeiner, FM Hsieh, WT Nagler, PC Stevenson, TR Timbie, PT U-Yen, K AF Barrentine, E. M. Brandl, D. E. Brown, A. D. Denis, K. L. Finkbeiner, F. M. Hsieh, W. T. Nagler, P. C. Stevenson, T. R. Timbie, P. T. U-Yen, K. TI Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES? SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Superconducting sensors; Proximity effect; Micro-bolometers ID SNS MICROBRIDGES; FABRICATION; BEHAVIOR; LENGTH AB Recent measurements of micron-sized Mo/Au bilayer TESs have demonstrated that the TES can behave like an S-S'-S weak link due to the lateral proximity effect from superconducting leads. In this regime the T (c) is a function of bias current, and the effective T (c) shifts from the bilayer T (c) towards the lead T (c) . We explore the idea that a micron-sized S-N-S weak link could provide a new method to engineer the TES T (c) . This method would be particularly useful when small size requirements for a bilayer TES (such as for a hot-electron microbolometer) lead to undesirable shifts in the bilayer T (c) . We present measurements of a variety of micron-sized normal Au 'TES' devices with Nb leads. We find no evidence of a superconducting transition in the Au film of these devices, in dramatic contrast to the strong lateral proximity effect seen in micron-sized Mo/Au bilayer devices. The absence of a transition in these devices is also in disagreement with theoretical predictions for S-N-S weak links. We hypothesize that a finite contact resistance between the Nb and Au may be weakening the effect. We conclude that the use of the lateral proximity effect to create a superconducting transition will be difficult given current fabrication procedures. C1 [Barrentine, E. M.; Brandl, D. E.; Timbie, P. T.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Brown, A. D.; Denis, K. L.; Finkbeiner, F. M.; Hsieh, W. T.; Nagler, P. C.; Stevenson, T. R.; U-Yen, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Barrentine, EM (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM barrentine@wisc.edu NR 17 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 195 EP 201 DI 10.1007/s10909-012-0578-7 PN 1 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500017 ER PT J AU Gottardi, L Adams, J Bailey, C Bandler, S Bruijn, M Chervenak, J Eckart, M Finkbeiner, F den Hartog, R Hoevers, H Kelley, R Kilbourne, C de Korte, P van der Kuur, J Lindeman, M Porter, F Sadlier, J Smith, S AF Gottardi, L. Adams, J. Bailey, C. Bandler, S. Bruijn, M. Chervenak, J. Eckart, M. Finkbeiner, F. den Hartog, R. Hoevers, H. Kelley, R. Kilbourne, C. de Korte, P. van der Kuur, J. Lindeman, M. Porter, F. Sadlier, J. Smith, S. TI Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE x-ray detector; SQUID; rf-SQUID; TES; LC resonator ID CONNECTED SUPERCONDUCTING RINGS AB At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E (FWHM) =3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterised the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter. C1 [Gottardi, L.; Bruijn, M.; den Hartog, R.; Hoevers, H.; de Korte, P.; van der Kuur, J.; Lindeman, M.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Kilbourne, C.; Porter, F.; Sadlier, J.; Smith, S.] NASA GSFC, Greenbelt, MD 20771 USA. RP Gottardi, L (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. EM l.gottardi@sron.nl RI Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; Bailey, Catherine/C-6107-2009 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675; Porter, Frederick/0000-0002-6374-1119; NR 12 TC 10 Z9 10 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 214 EP 219 DI 10.1007/s10909-012-0494-x PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500020 ER PT J AU Bailey, CN Adams, JS Bandler, SR Chervenak, JA Eckart, ME Ewin, AJ Finkbeiner, FM Kelley, RL Kilbourne, CA Porter, FS Sadleir, JE Smith, SJ Sultana, M AF Bailey, C. N. Adams, J. S. Bandler, S. R. Chervenak, J. A. Eckart, M. E. Ewin, A. J. Finkbeiner, F. M. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Sadleir, J. E. Smith, S. J. Sultana, M. TI Development of a TES-Based Anti-coincidence Detector for Future x-Ray Observatories SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Transition edge sensor (TES); Anti-coincidence detector; Quasiparticle trapping AB Microcalorimeters onboard future x-ray observatories require an anti-coincidence detector to remove environmental backgrounds. In order to most effectively integrate this anti-coincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials. C1 [Bailey, C. N.] NASA, Goddard Space Flight Ctr, Postdoctoral Program, Greenbelt, MD 20771 USA. [Adams, J. S.; Eckart, M. E.; Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Bandler, S. R.] CRESST, College Pk, MD 20742 USA. [Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA. [Finkbeiner, F. M.] Wyle Informat Syst, Mclean, VA 22102 USA. RP Bailey, CN (reprint author), NASA, Goddard Space Flight Ctr, Postdoctoral Program, Greenbelt, MD 20771 USA. EM catherine.n.bailey@gmail.com RI Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; Bailey, Catherine/C-6107-2009 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675; Porter, Frederick/0000-0002-6374-1119; NR 8 TC 4 Z9 4 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 236 EP 241 DI 10.1007/s10909-012-0567-x PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500024 ER PT J AU Bandler, SR Irwin, KD Kelly, D Nagler, PN Porst, JP Rotzinger, H Sadleir, JE Seidel, GM Smith, SJ Stevenson, TR AF Bandler, S. R. Irwin, K. D. Kelly, D. Nagler, P. N. Porst, J. -P. Rotzinger, H. Sadleir, J. E. Seidel, G. M. Smith, S. J. Stevenson, T. R. TI Magnetically Coupled Microcalorimeters SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Microcalorimeters; Cryogenic; Detectors ID TRANSITION-EDGE SENSORS; X-RAY SPECTROSCOPY; CALORIMETERS; PERFORMANCE; DETECTORS; ARRAYS AB Magnetic calorimeters have been under development for over 20 years targeting a wide variety of different applications that require very high resolution spectroscopy. They have a number of properties that distinguish them from other low temperature detectors. In this paper we review these properties and emphasize the types of application to which they are most suited. We will describe what has been learned about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. While most magnetic calorimeter research has concentrated on the use of paramagnets to provide the temperature sensitivity, recently magnetically coupled microcalorimeters have been in development that utilize the diamagnetic response of superconductors. We will contrast some of the properties of the two different magnetic sensor types. C1 [Bandler, S. R.; Porst, J. -P.; Smith, S. J.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Bandler, S. R.; Porst, J. -P.; Smith, S. J.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Bandler, S. R.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Irwin, K. D.] NIST, Boulder, CO 80305 USA. [Kelly, D.; Nagler, P. N.; Sadleir, J. E.; Stevenson, T. R.] NASA, Goddard Space Flight Ctr, Detector Syst Branch, Greenbelt, MD 20771 USA. [Porst, J. -P.; Seidel, G. M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Rotzinger, H.] Karlsruher Inst Technol, Inst Phys, D-76128 Karlsruhe, Germany. RP Bandler, SR (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. EM Simon.R.Bandler@nasa.gov RI Porst, Jan-Patrick/D-2191-2012; Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675 NR 21 TC 11 Z9 11 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 254 EP 268 DI 10.1007/s10909-012-0544-4 PN 1 PG 15 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500027 ER PT J AU Diener, P Leduc, HG Yates, SJC Lankwarden, YJY Baselmans, JJA AF Diener, P. Leduc, H. G. Yates, S. J. C. Lankwarden, Y. J. Y. Baselmans, J. J. A. TI Design and Testing of Kinetic Inductance Detectors Made of Titanium Nitride SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Kinetic inductance detector; Superconducting microresonator; Titanium nitride; Microwave design ID QUASI-PARTICLE AB To use highly resistive material for Kinetic Inductance Detectors (KID), new designs have to be done, in part due to the impedance match needed between the KID chip and the whole 50 Omega readout circuit. Chips from two new hybrid designs, with an aluminum throughline coupled to titanium nitride microresonators, have been measured and compared to a TiN only chip. In the hybrid chips, parasitic temperature dependent box resonances are absent. The dark KID properties have been measured in a large set of resonators. A surprisingly long lifetime, up to 5.6 ms is observed in a few KIDs. For the other more reproducible devices, the mean electrical Noise Equivalent Power is 5.4 x 10(-19) W root Hz. C1 [Diener, P.; Yates, S. J. C.; Lankwarden, Y. J. Y.; Baselmans, J. J. A.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Leduc, H. G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Diener, P (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands. EM p.diener@sron.nl RI Baselmans, Jochem/A-4515-2017 OI Baselmans, Jochem/0000-0002-3385-7305 NR 10 TC 7 Z9 7 U1 1 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 305 EP 310 DI 10.1007/s10909-012-0484-z PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500032 ER PT J AU Moore, DC Golwala, S Bumble, B Cornell, B Mazin, BA Gao, J Day, PK LeDuc, HG Zmuidzinas, J AF Moore, D. C. Golwala, S. Bumble, B. Cornell, B. Mazin, B. A. Gao, J. Day, P. K. LeDuc, H. G. Zmuidzinas, J. TI Phonon Mediated Microwave Kinetic Inductance Detectors SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE LEKIDs; Athermal phonon-mediated particle detectors AB We are developing athermal-phonon mediated particle detectors using microwave kinetic inductance detectors (MKIDs) as the phonon sensing elements. Since MKIDs are easily multiplexed, hundreds of sensors patterned on a single dielectric substrate can be read out simultaneously, leading to a precise, time-resolved measurement of the phonon flux at each point on the detector surface. In addition to providing a high-resolution measurement of the location of the interaction, the energy deposited by the particle can be reconstructed with an expected baseline resolution of tens of eV. The complexity of the cryogenic readout electronics is significantly reduced relative to designs based on multiplexed transition edge sensors (TES). Initial proof-of-principle devices demonstrate energy resolutions as good as 0.7 keV at 30 keV, dominated by the position dependence of the phonon signal. New designs are aimed at improving this resolution by more than an order of magnitude. Such high-resolution phonon mediated detectors would have applications including direct detection of dark matter, hard X-ray/soft gamma-ray astrophysics, neutrinoless double beta decay, and coherent neutrino-nucleus scattering. C1 [Moore, D. C.; Golwala, S.; Cornell, B.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Bumble, B.; Day, P. K.; LeDuc, H. G.; Zmuidzinas, J.] Jet Prop Lab, Pasadena, CA 91101 USA. [Mazin, B. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gao, J.] NIST, Boulder, CO 80305 USA. RP Moore, DC (reprint author), CALTECH, Pasadena, CA 91125 USA. EM davidm@caltech.edu RI Mazin, Ben/B-8704-2011 OI Mazin, Ben/0000-0003-0526-1114 NR 13 TC 4 Z9 4 U1 0 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 329 EP 334 DI 10.1007/s10909-011-0434-1 PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500035 ER PT J AU Schlaerth, JA Czakon, NG Day, PK Downes, TP Duan, R Glenn, J Golwala, SR Hollister, MI LeDuc, HG Maloney, PR Mazin, BA Nguyen, HT Noroozian, O Sayers, J Siegel, S Zmuidzinas, J AF Schlaerth, J. A. Czakon, N. G. Day, P. K. Downes, T. P. Duan, R. Glenn, J. Golwala, S. R. Hollister, M. I. LeDuc, H. G. Maloney, P. R. Mazin, B. A. Nguyen, H. T. Noroozian, O. Sayers, J. Siegel, S. Zmuidzinas, J. TI The Status of Music: A Multicolor Sub/millimeter MKID Instrument SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Radio telescopes and instrumentation; Superconducting infrared; Submillimeter and millimeter-wave detectors AB We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation. C1 [Schlaerth, J. A.; Czakon, N. G.; Downes, T. P.; Duan, R.; Golwala, S. R.; Hollister, M. I.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Schlaerth, J. A.; Glenn, J.; Maloney, P. R.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Day, P. K.; LeDuc, H. G.; Nguyen, H. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mazin, B. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Schlaerth, JA (reprint author), CALTECH, Pasadena, CA 91125 USA. EM schlaert@caltech.edu RI Noroozian, Omid/G-3519-2011; Mazin, Ben/B-8704-2011 OI Noroozian, Omid/0000-0002-9904-1704; Mazin, Ben/0000-0003-0526-1114 NR 11 TC 8 Z9 8 U1 0 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 347 EP 353 DI 10.1007/s10909-012-0541-7 PN 1 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500038 ER PT J AU Calvo, M Hoffman, C Benoit, A Boudou, N Cruciani, A Doyle, S Giordano, C Hoarau, C LeDuc, H Mauskopf, P Monfardini, A Roesch, M Schuster, K AF Calvo, M. Hoffman, C. Benoit, A. Boudou, N. Cruciani, A. Doyle, S. Giordano, C. Hoarau, C. LeDuc, H. Mauskopf, P. Monfardini, A. Roesch, M. Schuster, K. TI LEKIDs Developments for mm-Wave Astronomy SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Kinetic Inductance Detectors; mm-wave astronomy ID KINETIC INDUCTANCE DETECTORS; ARRAYS; CAMERA AB Microwave Kinetic Inductance Detectors (MKIDs) have recently drawn the attention of the low-temperature detectors community. Easy fabrication, high sensitivity, small time constants and most notably the intrinsic capability to frequency multiplexing open new possibilities to applications that need very large array sizes and/or high speed read-out. Lumped Element Kinetic Inductance Detectors (LEKIDs) designed and fabricated in our collaboration have already shown good on sky performances, but new developments are needed for future multi-thousands-pixels instruments. In this contribution we present such ongoing developments: a new LEKIDs design, optimized to be dual polarization sensitive; use of new materials such as TiN in order to reach better signal to noise ratios; new solutions to minimize the cross-talk between pixels in order to achieve a better control of the resonance positions in frequency space. We discuss present lab measurements of the optical performances and recent improvements of the read-out electronics. C1 [Calvo, M.; Hoffman, C.; Benoit, A.; Boudou, N.; Hoarau, C.; Monfardini, A.] Inst Neel, F-38042 Grenoble, France. [Calvo, M.; Hoffman, C.; Benoit, A.; Boudou, N.; Hoarau, C.; Monfardini, A.] Univ Grenoble 1, CNRS, F-38042 Grenoble, France. [Cruciani, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Doyle, S.; Mauskopf, P.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Giordano, C.] Fdn Bruno Kessler, I-38123 Povo, Italy. [LeDuc, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Roesch, M.; Schuster, K.] IRAM, F-38406 St Martin Dheres, France. RP Calvo, M (reprint author), Inst Neel, BP 166, F-38042 Grenoble, France. EM martino.calvo@grenoble.cnrs.fr RI Cruciani, Angelo/G-3465-2015; OI Cruciani, Angelo/0000-0003-2247-8067 NR 8 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 379 EP 385 DI 10.1007/s10909-012-0553-3 PN 1 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500043 ER PT J AU Nagler, PC Adams, JS Balvin, MA Bandler, SR Denis, KL Hsieh, WT Kelly, DP Porst, JP Sadleir, JE Seidel, GM Smith, SJ Stevenson, TR AF Nagler, P. C. Adams, J. S. Balvin, M. A. Bandler, S. R. Denis, K. L. Hsieh, W. -T. Kelly, D. P. Porst, J. -P. Sadleir, J. E. Seidel, G. M. Smith, S. J. Stevenson, T. R. TI Performance of Magnetic Penetration Thermometers for X-ray Astronomy SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Microcalorimeters; Cryogenic; Detectors ID CALORIMETERS; ARRAYS AB The ideal X-ray camera for astrophysics would have more than a million pixels and provide an energy resolution of better than 1 eV FWHM for energies up to 10 keV. We have microfabricated and characterized thin-film magnetic penetration thermometers (MPTs) that show great promise towards meeting these capabilities. MPTs operate in similar fashion to metallic magnetic calorimeters (MMCs), except that a superconducting sensor takes the place of a paramagnetic sensor and it is the temperature dependence of the superconductor's diamagnetic response that provides the temperature sensitivity. We present a description of the design and performance of our prototype thin-film MPTs with MoAu bilayer sensors, which have demonstrated an energy resolution of similar to 2 eV FWHM at 1.5 keV and 4.3 eV FWHM at 5.9 keV. C1 [Nagler, P. C.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W. -T.; Kelly, D. P.; Porst, J. -P.; Sadleir, J. E.; Smith, S. J.; Stevenson, T. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nagler, P. C.; Porst, J. -P.; Seidel, G. M.] Brown Univ, Providence, RI 02912 USA. [Bandler, S. R.] CRESST, College Pk, MD USA. [Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA. [Adams, J. S.; Smith, S. J.] CRESST, Baltimore, MD USA. [Adams, J. S.; Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. RP Nagler, PC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM peter.c.nagler@nasa.gov RI Porst, Jan-Patrick/D-2191-2012; Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675 NR 10 TC 5 Z9 5 U1 2 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 455 EP 460 DI 10.1007/s10909-012-0516-8 PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500055 ER PT J AU Bonetti, JA Jones, WC Holmes, W AF Bonetti, J. A. Jones, W. C. Holmes, W. TI A Novel Superconducting Detector Based on Fluxoid Quantization SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Superconducting devices; Fluxoid; Bolometer AB Future astrophysics missions will require ever more capable detectors demanding new concepts beyond simple improvements to existing technology. We describe the development of a novel detector whose operation relies on the superconducting phenomenon known as fluxoid quantization. The device is appropriately named the fluxoid quantization detector (FQD) and has several significant advantages over existing superconducting detectors. Most importantly the device can be modulated, allowing for lock-in detection. Equally exciting is the device's impressive responsivity. The responsivity is estimated to be two orders of magnitude higher than that of state of the art transition edge sensors (TESs). All foreseeable space missions must use detectors that are scalable into large format arrays. In addition, the detectors must be fabricated using reproducible, proven methods. The proposed device technology meets these demands due to its natural compatibility with existing multiplexing and processing techniques. The main applications will be instrumentation for studies of the cosmic microwave back-ground, X-ray calorimetry, far-infrared astrophysics and dark matter detection. C1 [Bonetti, J. A.; Holmes, W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Bonetti, JA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joseph.bonetti@jpl.nasa.gov NR 4 TC 0 Z9 0 U1 1 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 461 EP 466 DI 10.1007/s10909-012-0565-z PN 1 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500056 ER PT J AU O'Brient, RC Bock, JJ Bonnetti, J Day, P Hui, H Kuo, CL Llombert, N Lueker, M Ngyen, H Stanizewski, Z Teply, G Turner, A Yoon, K AF O'Brient, R. C. Bock, J. J. Bonnetti, J. Day, P. Hui, H. Kuo, C. L. Llombert, N. Lueker, M. Ngyen, H. Stanizewski, Z. Teply, G. Turner, A. Yoon, K. TI Suppressing Beam Systematics in Antenna-Coupled TES Bolometers for CMB Polarimetry SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Cosmic microwave background polarimetry; Submillimeter astrophysics; Cosmology; Antenna-coupled TES bolometers; Beam systematics; Microstrip crosstalk AB We have deployed arrays of antenna-coupled TES bolometers for cosmic microwave background (CMB) polarimetry in the BICEP2 and Keck array experiments and will deploy similar detectors in SPIDER and Polar-1. Each pixel receives optical power centered at 146 GHz with a 20% bandwidth (-10 dB edges) through an integrated dual-polarized phased-array antenna. In past deployments, these detectors have shown offsets in the two polarizations' beam centroids (differential 'steering'), but we have redesigned the feed networks by strategically spacing lines and adding intentional phase delays to suppress this unwanted effect. We expect that the focal planes in this season's deployment of Keck and in SPIDER will have detectors with less than 5' steering, which is 0.5% of the 14.2A degrees nominal antenna's FWHM (i.e. without lenses). We have also redesigned the antenna-array's illumination pattern to suppress side-lobe response in anticipation of the Polar-1 experiment, reducing spillover by a factor of 2.5. C1 [O'Brient, R. C.; Bock, J. J.; Hui, H.; Lueker, M.; Stanizewski, Z.; Teply, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [O'Brient, R. C.; Bock, J. J.; Bonnetti, J.; Day, P.; Ngyen, H.; Stanizewski, Z.; Turner, A.] NASA, Jet Prop Lab, Pasadena, CA 91001 USA. [Kuo, C. L.; Yoon, K.] Stanford Univ, Dept Phys, Palo Alto, CA 94305 USA. [Llombert, N.] Univ Complutense Madrid, Dept Opt, Madrid, Spain. RP O'Brient, RC (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA. EM rogero@caltech.edu NR 6 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 497 EP 503 DI 10.1007/s10909-011-0435-0 PN 1 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500061 ER PT J AU Chervenak, JA Adams, JM Bailey, CN Bandler, S Brekosky, RP Eckart, ME Ewin, AE Finkbeiner, FM Kelley, RL Kilbourne, CA Porter, FS Sadlier, JE Smith, SJ AF Chervenak, J. A. Adams, J. M. Bailey, C. N. Bandler, S. Brekosky, R. P. Eckart, M. E. Ewin, A. E. Finkbeiner, F. M. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Sadlier, J. E. Smith, S. J. TI Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article; Proceedings Paper CT 14th International Workshop on Low Temperature Particle Detection (LTD) CY AUG 01-05, 2011 CL Heidelberg Univ, Kirchhoff-Inst Phys, Heidelberg, GERMANY SP European Microkelvin Collaborat, Oxford Instruments, Max-Planck Inst Nucl Phys Heidelberg, Entropy GmbH, Heidelberg Instruments Mikrotechnik GmbH HO Heidelberg Univ, Kirchhoff-Inst Phys DE Transition edge sensor; Fabrication; Large format array AB We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R (n) , G, and T (c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring. C1 [Chervenak, J. A.; Adams, J. M.; Bailey, C. N.; Bandler, S.; Brekosky, R. P.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadlier, J. E.; Smith, S. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chervenak, JA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM James.A.Chervenak@nasa.gov RI Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; Bailey, Catherine/C-6107-2009 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675; Porter, Frederick/0000-0002-6374-1119; NR 9 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAY PY 2012 VL 167 IS 3-4 BP 547 EP 553 DI 10.1007/s10909-012-0552-4 PN 1 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 916IA UT WOS:000302093500069 ER PT J AU Semiatin, SL McClary, KE Rollett, AD Roberts, CG Payton, EJ Zhang, F Gabb, TP AF Semiatin, S. L. McClary, K. E. Rollett, A. D. Roberts, C. G. Payton, E. J. Zhang, F. Gabb, T. P. TI Microstructure Evolution during Supersolvus Heat Treatment of a Powder Metallurgy Nickel-Base Superalloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID SECONDARY HARDENING STEELS; COARSENING KINETICS; GRAIN-GROWTH; COMPUTER-SIMULATION; HIGH-STRENGTH; M2C CARBIDES; CEMENTITE; ALLOYS; RESISTANCE; PARTICLES AB Microstructure evolution during the supersolvus heat treatment of a powder-metallurgy, low-solvus, high-refractory (LSHR) superalloy was established. For this purpose, three lots of LSHR with varying initial carbon/boron composition and thermomechanical history were subjected to a series of short-time (induction) and long-time (furnace) heat treatments followed by scanning electron microscopy/electron backscatter diffraction and quantitative metallography. The size of the (pinned) gamma grains exhibited a limited dependence on heating rate and soak time at peak temperature, and it was generally smaller than the predictions based on the classic Smith-Zener model. The differences were rationalized in terms of stereological and pinning-particle location effects. Observations of limited coarsening of the carbide/boride pinning particles were interpreted in the context of prior experimental observations and a modified Lifshitz-Slyosov-Wagner model applied previously for the coarsening of compound phases in steels. C1 [Semiatin, S. L.] USAF, Res Lab, Mat & Mfg Directorate, AFRL RXLM, Dayton, OH 45433 USA. [McClary, K. E.] Wright State Univ, Dept Phys, Dayton, OH 45435 USA. [Rollett, A. D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Roberts, C. G.] Vallourec & Mannesmann USA Corp, Youngstown, OH 44510 USA. [Payton, E. J.] Ruhr Univ Bochum, Inst Werkstoffe, Bochum, Germany. [Zhang, F.] Computherm LLC, Madison, WI 53719 USA. [Gabb, T. P.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Semiatin, SL (reprint author), USAF, Res Lab, Mat & Mfg Directorate, AFRL RXLM, Dayton, OH 45433 USA. EM lee.semiatin@wpafb.af.mil RI Rollett, Anthony/A-4096-2012; SEMIATIN, SHELDON/E-7264-2017; OI Rollett, Anthony/0000-0003-4445-2191; Payton, Eric/0000-0001-7478-9372 FU Air Force STW-21 Initiative [F33615-01-2-5225]; MRSEC at Carnegie Mellon University, NSF [DMR-0520425]; Metals Branch of the Air Force Research Laboratory's Materials and Manufacturing Directorate FX This work was conducted as part of the in-house research of the Metals Branch of the Air Force Research Laboratory's Materials and Manufacturing Directorate. The support and encouragement of the Laboratory management are gratefully acknowledged. The assistance of P.N. Fagin and T.M. Brown in conducting the experiments is appreciated. Technical discussions with J. Gayda and J. Telesman (NASA GRC) are also much appreciated. Two authors (A. D. R. and C.G.R.) also acknowledge support from the Air Force STW-21 Initiative, Contract F33615-01-2-5225, and the MRSEC at Carnegie Mellon University, NSF Grant Number DMR-0520425. NR 47 TC 17 Z9 17 U1 3 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2012 VL 43A IS 5 BP 1649 EP 1661 DI 10.1007/s11661-011-1035-y PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 916JG UT WOS:000302097400031 ER PT J AU Johansson, M Duda, E Sremba, A Banks, M Peterson, W AF Johansson, Mattias Duda, Elizabeth Sremba, Angela Banks, Michael Peterson, William TI Assessing population-level variation in the mitochondrial genome of Euphausia superba using 454 next-generation sequencing SO MOLECULAR BIOLOGY REPORTS LA English DT Article DE Euphausia superba; mtDNA; Mitogenome; Variability; Control region ID ANTARCTIC KRILL; CONTROL REGION; SOUTHERN-OCEAN; SEA-ICE; DNA; PCR; EVOLUTION; ATLANTIC AB The Antarctic krill (Euphausia superba Dana 1852) is widely distributed throughout the Southern Ocean, where it provides a key link between primary producers and upper trophic levels and supports a major commercial fishery. Despite its ecological and commercial importance, genetic population structure of the Antarctic krill remains poorly described. In an attempt to illuminate genetic markers for future population and phylogenetic analysis, five E. superba mitogenomes, from samples collected west of the Antarctic Peninsula, were sequenced using new 454 next-generation sequencing techniques. The sequences, of lengths between 13,310 and 13,326 base pairs, were then analyzed in the context of two previously-published near-complete sequences. Sequences revealed relatively well-conserved partial mitochondrial genomes which included complete sequences for 11 of 13 protein-coding genes, 16 of 23 tRNAs, and the large ribosomal subunit. Partial sequences were also recovered for cox1 and the small ribosomal subunit. Sequence analysis suggested that the cox2, nad5, and nad6 genes would be the best candidates for future population genetics analyses, due to their high number of variable sites. Future work to reveal the noncoding control region remains. C1 [Johansson, Mattias; Duda, Elizabeth; Sremba, Angela; Banks, Michael] Oregon State Univ, Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, Newport, OR 97365 USA. [Duda, Elizabeth] Pomona Coll, Claremont, CA 91711 USA. [Peterson, William] NOAA, Natl Marine Fisheries Serv, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. RP Johansson, M (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, Cooperat Inst Marine Resources Studies, Newport, OR 97365 USA. EM mattias.johansson@oregonstate.edu RI Johansson, Mattias/F-1049-2011 OI Johansson, Mattias/0000-0003-3042-750X FU ASSURE of the Department of Defense; National Science Foundation REU [NSF OCE-1004947] FX The authors would like to thank D. Jacobson, E. Slikas, D. Steel, and A. Alexander for their support with the 454 sequencing and analysis, C. Shaw for the samples used in this study, and M. O'Connor for assistance in constructing our sampling map. This research was co-funded by the ASSURE program of the Department of Defense in partnership with the National Science Foundation REU Site program under Grant No. NSF OCE-1004947. NR 30 TC 2 Z9 2 U1 0 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0301-4851 J9 MOL BIOL REP JI Mol. Biol. Rep. PD MAY PY 2012 VL 39 IS 5 BP 5755 EP 5760 DI 10.1007/s11033-011-1385-y PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 917BU UT WOS:000302147800082 PM 22219085 ER PT J AU Wu, AS Xie, Y Xiong, XX Chu, IW AF Wu, Aisheng Xie, Yong Xiong, Xiaoxiong Chu, I-Wen TI Assess Calibration Consistency of MODIS and AVHRR Thermal Infrared Bands Using SNO Observations Corrected for Atmospheric Effects SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Advanced Very High Resolution Radiometer (AVHRR); calibration; MODerate Resolution Imaging Spectroradiometer (MODIS); MODerate resolution atmospheric TRANsmission (MODTRAN); simultaneous nadir overpass (SNO); temperature ID HIGH-RESOLUTION RADIOMETER; AQUA MODIS; SURFACE; VALIDATION; CHANNELS; TERRA; RETRIEVAL AB Monitoring environmental changes from space requires extremely well-calibrated observations to achieve the necessary high accuracy and stability. The calibration differences between the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR) thermal bands provide a valuable quality assessment of the instrument performance. This letter compares the calibration differences between the Aqua MODIS and NOAA-18 AVHRR bands at 11.0 and 12.0 mu m using simultaneous nadir overpass observations obtained in nearly parallel orbits. Impacts due to the relative spectral-response differences between the two sensors are estimated by MODTRAN simulations with real-time atmospheric profiles of temperature, water vapor, atmospheric pressure and ozone, and surface skin temperatures. Results show that the temperature difference after the removal of atmospheric impacts is within 0.30 K (or 0.40% in radiance) across the effective calibration range for the 11.0-mu m band/channel. For the 12.0-mu m band, the differences are 0.40 K (or 0.50%) at the typical radiance and up to 0.70 K (or 0.90%) close to the maximum radiance, indicating an excellent calibration consistency between MODIS and AVHRR for both bands. C1 [Wu, Aisheng; Xie, Yong; Chu, I-Wen] Sigma Space Corp, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Wu, AS (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. EM aisheng.wu@sigmaspace.com; yong.xie@sigmaspace.com; xiaoxiong-1@nasa.gov; mike.chu@sigmaspace.com NR 21 TC 3 Z9 3 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD MAY PY 2012 VL 9 IS 3 BP 487 EP 491 DI 10.1109/LGRS.2011.2172677 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 904YV UT WOS:000301236900034 ER PT J AU Cacio, E Cohn, SE Spigler, R AF Cacio, Emanuela Cohn, Stephen E. Spigler, Renato TI Numerical treatment of degenerate diffusion equations via Feller's boundary classification, and applications SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE Feller classification of boundary points; Feller theory; finite-difference schemes; parabolic equations singular and degenerate at the boundary; preconditioning of degenerate parabolic problems ID DIMENSIONAL RANDOM MEDIUM; PRICING AMERICAN OPTIONS; POWER REFLECTION; OSCILLATORS AB A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration. (c) 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011 C1 [Cacio, Emanuela; Spigler, Renato] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy. [Cohn, Stephen E.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Spigler, R (reprint author), Univ Roma Tre, Dipartimento Matemat, 1 Largo SL Murialdo, I-00146 Rome, Italy. EM spigler@mat.uniroma3.it RI Cohn, Stephen/K-1954-2012; Spigler, Renato/A-2657-2008 OI Cohn, Stephen/0000-0001-8506-9354; Spigler, Renato/0000-0002-4561-4845 FU NATO FX Contract grant sponsor: NATO Collaborative Research Grant NR 32 TC 1 Z9 1 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0749-159X J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD MAY PY 2012 VL 28 IS 3 BP 807 EP 833 DI 10.1002/num.20657 PG 27 WC Mathematics, Applied SC Mathematics GA 903KY UT WOS:000301116600005 ER PT J AU Liou, MS Lee, BJ AF Liou, Meng-Sing Lee, Byung Joon TI Minimizing Inlet Distortion for Hybrid Wing Body Aircraft SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article ID DISCRETE ADJOINT APPROACH; SCHEME AB A study of boundary-layer-ingesting flow in an upper-mounted offset inlet in NASA's hybrid wing body transport concept for achieving environmental and performance requirements has been carried out. This study aims specifically at minimizing flow distortion stemming from the ingested low-momentum fluid to the level acceptable to the operation of fan blades. In this paper, we will focus on using a discrete adjoint method to arrive at an optimized wall geometry, which is parametrically represented by design variables, for transonic turbulent flows described by 3D Navier-Stokes equations supplemented with kappa-omega-SST turbulence model. Of special interest herein is the flow physics resulting from optimization, revealing the intricate connections to the remarkable reduction in flow distortion and total pressure losses at the engine face. It is discovered that the counter-rotating vortex pair commonly seen in an S-inlet is eliminated by energizing both the core and boundary layer fluids through the change of wall shape by a series of peaks and valleys. Their exact forms, magnitudes, and locations, unknown a priori, are determined by the discrete adjoint method. The optimal shape, moreover, still holds similar level of superior performance at off-design conditions. The result may suggest a possible paradigm shift in flow control concept, away from disruptive penalty ridden devices, by properly conditioning and guiding the flow. [DOI: 10.1115/1.4003072] C1 [Liou, Meng-Sing] NASA, Aeroprop Div, Glenn Res Ctr, Cleveland, OH 44135 USA. [Lee, Byung Joon] NASA, NASA Postdoctoral Program, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Liou, MS (reprint author), NASA, Aeroprop Div, Glenn Res Ctr, Cleveland, OH 44135 USA. EM meng-sing.liou@nasa.gov; mdo.bjlee@gmail.com FU NASA FX The authors wish to acknowledge the support of the Subsonic Fixed Wing Project, NASA Fundamental Aeronautics Program. William Haller of Glenn Research Center is Associate Project Investigator for the Systems Analysis and Design Optimization Task. NR 29 TC 3 Z9 3 U1 0 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD MAY PY 2012 VL 134 IS 3 AR 031020 DI 10.1115/1.4003072 PG 10 WC Engineering, Mechanical SC Engineering GA 792UK UT WOS:000292775700020 ER PT J AU Winslow, RM Johnson, CL Anderson, BJ Korth, H Slavin, JA Purucker, ME Solomon, SC AF Winslow, Reka M. Johnson, Catherine L. Anderson, Brian J. Korth, Haje Slavin, James A. Purucker, Michael E. Solomon, Sean C. TI Observations of Mercury's northern cusp region with MESSENGER's Magnetometer SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOLAR-WIND INTERACTION; MAGNETIC-FIELD; HIGH-ALTITUDE; POLAR CUSP; MAGNETOSPHERE; MAGNETOPAUSE; SIMULATIONS; SURFACE; MODEL AB The magnetic cusp of a planetary magnetosphere allows solar wind plasma to gain access to the planet's magnetosphere and, for Mercury, the surface. From measurements by the MESSENGER Magnetometer we have characterized the magnetic field in the northern cusp region of Mercury. The first six months of orbital measurements indicate a mean latitudinal extent of the cusp of similar to 11 degrees, and a mean local time extent of 4.5 hrs, at spacecraft altitudes. From the average magnetic pressure deficit in the cusp, we estimate that (1.1 +/- 0.6) x 10(24) protons s(-1) bombard the surface over an area of (5.2 +/- 1.6) x 10(11) m(2) near the northern cusp. Plasma pressures in the cusp are 40% higher when the interplanetary magnetic field (IMF) is anti-sunward than when it is sunward. The influence of the IMF direction does not overcome the north-south asymmetry of Mercury's internal field, and particle flux to the surface near the southern cusp is predicted to be a factor of 4 greater than in the north. The higher particle flux impacting the surface in the south should lead to a greater exospheric source from the south and a higher rate of space weathering than in the area of the northern cusp. Citation: Winslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon (2012), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472. C1 [Winslow, Reka M.; Johnson, Catherine L.] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V6T 1Z4, Canada. [Johnson, Catherine L.] Planetary Sci Inst, Tucson, AZ USA. [Anderson, Brian J.; Korth, Haje] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Slavin, James A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Purucker, Michael E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. RP Winslow, RM (reprint author), Univ British Columbia, Dept Earth & Ocean Sci, 6339 Stores Rd, Vancouver, BC V6T 1Z4, Canada. EM rwinslow@eos.ubc.ca RI Anderson, Brian/I-8615-2012; Slavin, James/H-3170-2012 OI Slavin, James/0000-0002-9206-724X FU NASA [NAS5-97271, NASW-00002]; MESSENGER [NNX11AB84G, NNH08CC05C]; Natural Sciences and Engineering Research Council of Canada FX The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. CLJ and MEP are supported by MESSENGER Participating Scientist grants NNX11AB84G and NNH08CC05C. RMW and CLJ acknowledge support from the Natural Sciences and Engineering Research Council of Canada. We thank two anonymous reviewers for helpful comments on an earlier version of this paper. We also thank the Community Coordinated Modeling Center for providing ENLIL model runs. NR 25 TC 33 Z9 35 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2012 VL 39 AR L08112 DI 10.1029/2012GL051472 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 933AM UT WOS:000303331600005 ER PT J AU Landerer, FW Swenson, SC AF Landerer, F. W. Swenson, S. C. TI Accuracy of scaled GRACE terrestrial water storage estimates SO WATER RESOURCES RESEARCH LA English DT Article ID CLIMATE EXPERIMENT GRACE; TIME-VARIABLE GRAVITY; RECOVERY; FIELD AB We assess the accuracy of global-gridded terrestrial water storage (TWS) estimates derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites. The TWS data set has been corrected for signal modification due to filtering and truncation. Simulations of terrestrial water storage variations from land-hydrology models are used to infer relationships between regional time series representing different spatial scales. These relationships, which are independent of the actual GRACE data, are used to extrapolate the GRACE TWS estimates from their effective spatial resolution (length scales of a few hundred kilometers) to finer spatial scales (similar to 100 km). Gridded, scaled data like these enable users who lack expertise in processing and filtering the standard GRACE spherical harmonic geopotential coefficients to estimate the time series of TWS over arbitrarily shaped regions. In addition, we provide gridded fields of leakage and GRACE measurement errors that allow users to rigorously estimate the associated regional TWS uncertainties. These fields are available for download from the GRACE project website (available at http://grace.jpl.nasa.gov). Three scaling relationships are examined: a single gain factor based on regionally averaged time series, spatially distributed (i.e., gridded) gain factors based on time series at each grid point, and gridded-gain factors estimated as a function of temporal frequency. While regional gain factors have typically been used in previously published studies, we find that comparable accuracies can be obtained from scaled time series based on gridded gain factors. In regions where different temporal modes of TWS variability have significantly different spatial scales, gain factors based on the first two methods may reduce the accuracy of the scaled time series. In these cases, gain factors estimated separately as a function of frequency may be necessary to achieve accurate results. C1 [Landerer, F. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Swenson, S. C.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. RP Landerer, FW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM landerer@jpl.nasa.gov FU National Aeronautic and Space Administration; National Science Foundation; U.S. Department of Energy BER [DE-FC03-97ER62402/A010] FX F.W.L.'s contribution to this paper presents results of one phase of research that was carried out at the Jet Propulsion Laboratory/California Institute of Technology, sponsored by the National Aeronautic and Space Administration. NCAR is sponsored by the National Science Foundation. S. C. S. is supported by funding from the U.S. Department of Energy BER, as part of its Climate Change Prediction Program, cooperative agreement DE-FC03-97ER62402/A010. NR 22 TC 215 Z9 223 U1 8 U2 70 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 27 PY 2012 VL 48 AR W04531 DI 10.1029/2011WR011453 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 932UB UT WOS:000303314900002 ER PT J AU Nuth, JA Johnson, NM AF Nuth, Joseph A., III Johnson, Natasha M. TI Complex Protostellar Chemistry SO SCIENCE LA English DT Editorial Material ID SOLAR NEBULA; METEORITES; TRANSPORT; SYSTEM; ORIGIN; DUST C1 [Nuth, Joseph A., III; Johnson, Natasha M.] NASAs Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Nuth, JA (reprint author), NASAs Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM joseph.a.nuth@nasa.gov RI Johnson, Natasha/E-3093-2012; Nuth, Joseph/E-7085-2012 NR 15 TC 4 Z9 4 U1 0 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 27 PY 2012 VL 336 IS 6080 BP 424 EP 425 DI 10.1126/science.1219709 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 931QC UT WOS:000303233400032 PM 22461497 ER PT J AU Ciesla, FJ Sandford, SA AF Ciesla, Fred J. Sandford, Scott A. TI Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula SO SCIENCE LA English DT Article ID PROTOPLANETARY DISKS; CIRCUMSTELLAR DISKS; RESIDENCE TIMES; UV-IRRADIATION; INTERSTELLAR; EVOLUTION; MOLECULES; ANALOGS; PHOTOLYSIS; PARTICLES AB Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments to which they were exposed. We found that icy grains originating in the outer disk, where temperatures were less than 30 kelvin, experienced ultraviolet irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural by-products of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own. C1 [Ciesla, Fred J.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60430 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ciesla, FJ (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60430 USA. EM fciesla@uchicago.edu FU NASA; Astrobiology Institute FX F.J.C. and S. A. S. acknowledge funding from NASA's Origins of Solar Systems program. S. A. S. also thanks the Astrobiology Institute for funds. NR 30 TC 58 Z9 58 U1 2 U2 40 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 27 PY 2012 VL 336 IS 6080 BP 452 EP 454 DI 10.1126/science.1217291 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 931QC UT WOS:000303233400041 PM 22461502 ER PT J AU Ksendzov, A Forouhar, S Briggs, RM Frez, C Franz, KJ Bagheri, M AF Ksendzov, A. Forouhar, S. Briggs, R. M. Frez, C. Franz, K. J. Bagheri, M. TI Linewidth measurement of high power diode laser at 2 mu m for carbon dioxide detection SO ELECTRONICS LETTERS LA English DT Article ID SEMICONDUCTOR-LASER; NOISE AB The linewidth of a gallium antimonide-based laterally-coupled 2.05 mu m DFB laser emitting 40 mW of power at 9 C is measured. The measured linewidth is 1.7 MHz for 500 ms and 1.4 MHz for 10 ms observation time, respectively. The combination of high power and low frequency jitter makes this laser useful for detecting CO2 in air in both in-situ and remote sensing applications. The linewidth measurement is also discussed. C1 [Ksendzov, A.; Forouhar, S.; Briggs, R. M.; Frez, C.; Franz, K. J.; Bagheri, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ksendzov, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM alexander.ksendzov@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX This work was sponsored by the Research and Technology Development Program through the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 8 TC 4 Z9 4 U1 0 U2 6 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 J9 ELECTRON LETT JI Electron. Lett. PD APR 26 PY 2012 VL 48 IS 9 BP 520 EP 521 DI 10.1049/el.2012.0363 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 930SB UT WOS:000303158500035 ER PT J AU Prigent, C Papa, F Aires, F Jimenez, C Rossow, WB Matthews, E AF Prigent, C. Papa, F. Aires, F. Jimenez, C. Rossow, W. B. Matthews, E. TI Changes in land surface water dynamics since the 1990s and relation to population pressure SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA-LEVEL; STORAGE; LAKES AB We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, Geophys. Res. Lett., 39, L08403, doi:10.1029/2012GL051276. C1 [Prigent, C.; Jimenez, C.] Observ Paris, CNRS LERMA, F-75014 Paris, France. [Papa, F.] IRD, LEGOS, F-31400 Toulouse, France. [Aires, F.] Estellus, F-75002 Paris, France. [Rossow, W. B.] CUNY City Coll, NOAA CREST, New York, NY 10025 USA. [Matthews, E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Prigent, C (reprint author), Observ Paris, CNRS LERMA, 61 Ave Observ, F-75014 Paris, France. EM catherine.prigent@obspm.fr RI Papa, Fabrice/D-3695-2009; Rossow, William/F-3138-2015 OI Papa, Fabrice/0000-0001-6305-6253; FU European Commission; French Agence Nationale pour la Recherche; European Space Agency; NASA [NNDX7AO90E] FX This research was supported in part by the Sixth Framework Program of the European Commission (Water & Global Change), by the French Agence Nationale pour la Recherche (IMPACT-Boreal), by the European Space Agency (ALANIS-Methane), and by NASA (NEWS grant NNDX7AO90E). We thank the Editor and two reviewers for valuable comments. The authors thank Bertrand Decharme and Frederic Frappart for very productive discussions and comments. NR 19 TC 47 Z9 49 U1 5 U2 41 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 26 PY 2012 VL 39 AR L08403 DI 10.1029/2012GL051276 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 933AG UT WOS:000303331000002 ER PT J AU Ten Hoeve, JE Jacobson, MZ Remer, LA AF Ten Hoeve, John E. Jacobson, Mark Z. Remer, Lorraine A. TI Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DEEP CONVECTIVE CLOUDS; GENERAL-CIRCULATION MODEL; MIXED-LAYER MODEL; BLACK CARBON; OPTICAL-PROPERTIES; SIZE DISTRIBUTIONS; AIR-POLLUTION; INTERANNUAL VARIABILITY; MODIS OBSERVATIONS; EMISSION FACTORS AB Biomass burning (BB) aerosol particles affect clouds through competing microphysical and radiative (semi-direct and cloud absorption) effects, each of which dominates at different degrees of aerosol loading. Here, we analyze the influence of competing aerosol effects on mixed-phase clouds, precipitation, and radiative fields over the Amazon with a climate-air pollution-weather forecast model that treats aerosol-cloud-radiative interactions physically. Extensive comparisons with remotely sensed observations and in situ measurements are performed. Both observations and model results suggest an increase in cloud optical depth (COD) with increasing aerosol optical depth (AOD) at low AODs, and a decrease in COD with increasing AOD at higher AODs in accord with previous observational and modeling studies. The increase is attributed to a combination of microphysical and dynamical effects, whereas the decrease is attributed to a dominance of radiative effects that thin and darken clouds. An analogous relationship is shown for other modeled cloud variables as well. The similarity between the remotely sensed observations and model results suggests that these correlations are physically based and are not dominated by satellite retrieval artifacts. Cloud brightening due to BB is found to dominate in the early morning, whereas cloud inhibition is found to dominate in the afternoon and at night. BB decreased the net top of the atmosphere solar+IR irradiance modestly, but with large diurnal variation. We conclude that models that exclude treatment of aerosol radiative effects are likely to over-predict the microphysical effects of aerosols and underestimate the warming due to aerosols containing black and brown carbon. C1 [Ten Hoeve, John E.; Jacobson, Mark Z.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Remer, Lorraine A.] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ten Hoeve, JE (reprint author), Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. EM tenhoeve@stanford.edu FU Stanford University; NASA [NN07AN25G]; NASA High-End Computing Center; U.S. EPA [RD-83337101-O] FX We thank Brent Holben and Paulo Artaxo for establishing and maintaining the eight AERONET sites used in this investigation. We also thank James T. Randerson for providing access to the GFEDv2 database. This work was sponsored by the Stanford University Graduate Fellowship, the NASA Earth System Science Fellowship, the NASA High-End Computing Center, NASA grant NN07AN25G, and U.S. EPA grant RD-83337101-O. NR 122 TC 17 Z9 17 U1 1 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 26 PY 2012 VL 117 AR D08203 DI 10.1029/2011JD016856 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 932UJ UT WOS:000303315700004 ER PT J AU Stern, A AF Stern, Alan TI Commercial space flight is a game-changer SO NATURE LA English DT Editorial Material C1 [Stern, Alan] NASA, Washington, DC 20546 USA. RP Stern, A (reprint author), NASA, Washington, DC 20546 USA. EM astern2010@aol.com NR 0 TC 2 Z9 2 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 26 PY 2012 VL 484 IS 7395 BP 417 EP 417 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 931FF UT WOS:000303200400009 PM 22538563 ER PT J AU Wilson, LB Koval, A Szabo, A Breneman, A Cattell, CA Goetz, K Kellogg, PJ Kersten, K Kasper, JC Maruca, BA Pulupa, M AF Wilson, L. B., III Koval, A. Szabo, A. Breneman, A. Cattell, C. A. Goetz, K. Kellogg, P. J. Kersten, K. Kasper, J. C. Maruca, B. A. Pulupa, M. TI Observations of electromagnetic whistler precursors at supercritical interplanetary shocks SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EARTHS BOW SHOCK; WIND SPACECRAFT; PERPENDICULAR SHOCKS; MACH NUMBER; SOLAR-WIND; PLASMA; WAVES; SIMULATIONS; DISSIPATION AB We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field ( spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(ci) < f << f(ce) and wave numbers 0.02 less than or similar to k rho(ce) less than or similar to 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Although the precursors can have delta B/B-o as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events. Citation: Wilson, L. B., III, et al. (2012), Observations of electromagnetic whistler precursors at supercritical interplanetary shocks, Geophys. Res. Lett., 39, L08109, doi:10.1029/2012GL051581. C1 [Wilson, L. B., III; Koval, A.; Szabo, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20707 USA. [Koval, A.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, Baltimore, MD 21228 USA. [Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Kasper, J. C.; Maruca, B. A.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Pulupa, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Wilson, LB (reprint author), NASA, Goddard Space Flight Ctr, Code 672, Greenbelt, MD 20707 USA. EM lynn.b.wilsoniii@gmail.com RI Kasper, Justin/D-1152-2010; Wilson III, Lynn/D-4425-2012; OI Kasper, Justin/0000-0002-7077-930X; Wilson III, Lynn/0000-0002-4313-1970; Pulupa, Marc/0000-0002-1573-7457; Cattell, Cynthia/0000-0002-3805-320X FU NESSF [NNX07AU72H, NNX07AI05G]; Leonard Burlaga/Arctowski Medal Fellowship; NASA [NNX10AT09G] FX We thank S. D. Bale, J. R. Wygant, and R. Lysak for useful discussions of the physics involved in our study. All Wind spacecraft data were produced under Wind MO&DA grants. This research was partially supported by NESSF grant NNX07AU72H, grant NNX07AI05G, the Leonard Burlaga/Arctowski Medal Fellowship, and UCB work sponsored by NASA grant NNX10AT09G. NR 29 TC 22 Z9 22 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 25 PY 2012 VL 39 AR L08109 DI 10.1029/2012GL051581 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 933AF UT WOS:000303330900005 ER PT J AU Breneman, A Cattell, C Wygant, J Kersten, K Wilson, LB Dai, L Colpitts, C Kellogg, PJ Goetz, K Paradise, A AF Breneman, A. Cattell, C. Wygant, J. Kersten, K. Wilson, L. B., III Dai, L. Colpitts, C. Kellogg, P. J. Goetz, K. Paradise, A. TI Explaining polarization reversals in STEREO wave data SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SIDE-BAND; IONOSPHERE; RADIO; MODE AB Recently, Breneman et al. (2011) reported observations of large amplitude lightning and transmitter whistler mode waves from two STEREO passes through the inner radiation belt (L < 2). Hodograms of the electric field in the plane transverse to the magnetic field showed that the transmitter waves underwent periodic polarization reversals. Specifically, their polarization would cycle through a pattern of right-hand to linear to left-hand polarization at a rate of roughly 200 Hz. The lightning whistlers were observed to be left-hand polarized at frequencies greater than the lower hybrid frequency and less than the transmitter frequency (21.4 kHz) and right-hand polarized otherwise. Only right-hand polarized waves in the inner radiation belt should exist in the frequency range of the whistler mode and these reversals were not explained in the previous paper. We show, with a combination of observations and simulated wave superposition, that these polarization reversals are due to the beating of an incident electromagnetic whistler mode wave at 21.4 kHz and linearly polarized, symmetric lower hybrid sidebands Doppler-shifted from the incident wave by +/- 200 Hz. The existence of the lower hybrid waves is consistent with the parametric decay mechanism of Lee and Kuo (1984) whereby an incident whistler mode wave decays into symmetric, short wavelength lower hybrid waves and a purely growing (zero-frequency) mode. Like the lower hybrid waves, the purely growing mode is Doppler-shifted by similar to 200 Hz as observed on STEREO. This decay mechanism in the upper ionosphere has been previously reported at equatorial latitudes and is thought to have a direct connection with explosive spread F enhancements. As such it may represent another dissipation mechanism of VLF wave energy in the ionosphere and may help to explain a deficit of observed lightning and transmitter energy in the inner radiation belts as reported by Starks et al. (2008). C1 [Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Dai, L.; Colpitts, C.; Kellogg, P. J.; Goetz, K.; Paradise, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Wilson, L. B., III] NASA, Goddard Space Flight Ctr, Heliophys Div, Greenbelt, MD 20707 USA. RP Breneman, A (reprint author), Univ Minnesota Twin Cities, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM awbrenem@hotmail.com RI Wilson III, Lynn/D-4425-2012; OI Wilson III, Lynn/0000-0002-4313-1970; Cattell, Cynthia/0000-0002-3805-320X FU NASA [NNX07AF23G, NAS5-01072] FX We thank D. Shklyar, S. Bale and T. Bell for discussion of relevant topics. This research was supported by NASA grants NNX07AF23G and NAS5-01072. NR 24 TC 4 Z9 4 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 25 PY 2012 VL 117 AR A04317 DI 10.1029/2011JA017425 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932TP UT WOS:000303313700003 ER PT J AU Glocer, A Kitamura, N Toth, G Gombosi, T AF Glocer, A. Kitamura, N. Toth, G. Gombosi, T. TI Modeling solar zenith angle effects on the polar wind SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MASS-SPECTROMETER OBSERVATIONS; FIELD-ALIGNED CURRENT; TEMPERATURE ANISOTROPY; THERMOSPHERIC MODEL; ION COMPOSITION; HIGH-LATITUDE; OUTFLOW; PLASMA; ATMOSPHERE; SATELLITE AB We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum. The PWOM solves the gyrotropic transport equations for O+, H+, and He+ along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. (2011) of electron density which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites. The data and model agree reasonably well, albeit with some differences. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results of electron density, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide an initial validation of the PWOM's ability to model the quiet time "background" solution. C1 [Glocer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toth, G.; Gombosi, T.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Kitamura, N.] Tohoku Univ, Dept Geophys, Sendai, Miyagi 9808578, Japan. RP Glocer, A (reprint author), NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM alex.glocer-1@nasa.gov RI Glocer, Alex/C-9512-2012; Gombosi, Tamas/G-4238-2011; Toth, Gabor/B-7977-2013; feggans, john/F-5370-2012 OI Glocer, Alex/0000-0001-9843-9094; Gombosi, Tamas/0000-0001-9360-4951; Toth, Gabor/0000-0002-5654-9823; FU NASA through NASA Advanced Supercomputing (NAS) Division at Ames Research Center; NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center FX Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center and the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. NR 38 TC 17 Z9 17 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 25 PY 2012 VL 117 AR A04318 DI 10.1029/2011JA017136 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 932TP UT WOS:000303313700001 ER PT J AU Radhakrishnan, S Bellan, J AF Radhakrishnan, Senthilkumaran Bellan, Josette TI Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of compressible single-phase flow SO JOURNAL OF FLUID MECHANICS LA English DT Article DE compressible turbulence; turbulence modelling; turbulence simulation ID TEMPORAL MIXING LAYER; SUBGRID-SCALE MODELS; NUMERICAL ERRORS; BOUNDARY-CONDITIONS; TURBULENT FLOWS; STRESS; FIELDS AB In large-eddy simulation (LES), it is often assumed that the filter width is equal to the grid spacing. Predictions from such LES are grid-spacing dependent since any subgrid-scale (SGS) model used in the LES equations is dependent on the resolved flow field which itself varies with grid spacing. Moreover, numerical errors affect the flow field, especially the smallest resolved scales. Thus, predictions using this approach are affected by both modelling and numerical choices. However, grid-spacing-independent LES predictions unaffected by numerical choices are necessary to validate LES models through comparison with a trusted template. First, such a template is created here through direct numerical simulation (DNS). Then, simulations are conducted using the conventional LES equations and also LES equations which are here reformulated so that the small-scale-producing nonlinear terms in these equations are explicitly filtered (EF) to remove scales smaller than a fixed filter width; this formulation is called EFLES. First, LES is conducted with four SGS models, then EFLES is performed with two of the SGS models used in LES; the results from all these simulations are compared to those from DNS and from the filtered DNS (FDNS). The conventional LES solution is both grid-spacing and spatial discretization-order dependent, thus showing that both of these numerical aspects affect the flow prediction. The solution from the EFLES equations is grid independent for a high-order spatial discretization on all meshes tested. However, low-order discretizations require a finer mesh to reach grid independence. With an eighth-order discretization, a filter-width to grid-spacing ratio of two is sufficient to reach grid independence, while a filter-width to grid-spacing ratio of four is needed to reach grid independence when a fourth-or a sixth-order discretization is employed. On a grid fine enough to be utilized in a DNS, the EFLES solution exhibits grid independence and does not converge to the DNS solution. The velocity-fluctuation spectra of EFLES follow those of FDNS independent of the grid spacing used, in concert with the original concept of LES. The reasons for the different predictions of conventional LES or EFLES according to the SGS model used, and the different characteristics of the EFLES predictions compared to those from conventional LES are analysed. C1 [Radhakrishnan, Senthilkumaran; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bellan, Josette] CALTECH, Pasadena, CA 91125 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM josette.bellan@jpl.nasa.gov RI Radhakrishnan, Senthilkumaran/E-6101-2010 OI Radhakrishnan, Senthilkumaran/0000-0001-7595-4210 FU National Aeronautics and Space Administration (NASA); NASA Glenn Research Center; NASA Exploration Systems Mission Directorate/Advanced Capabilities Division FX This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology and sponsored by the National Aeronautics and Space Administration (NASA) under the Fundamental Aeronautics Program, Subsonic Wing Program from NASA Glenn Research Center with Drs Dan Bulzan and Nan-Suey Liu serving as program monitors and by the NASA Exploration Systems Mission Directorate/Advanced Capabilities Division under the LASER program. The computational resources were provided by the JPL Supercomputing Center and by the NASA AMES Supercomputing Center. NR 41 TC 6 Z9 7 U1 1 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD APR 25 PY 2012 VL 697 BP 399 EP 435 DI 10.1017/jfm.2012.73 PG 37 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 920TK UT WOS:000302430500015 ER PT J AU Yamaoka, K Allured, R Kaaret, P Kennea, JA Kawaguchi, T Gandhi, P Shaposhnikov, N Ueda, Y Nakahira, S Kotani, T Negoro, H Takahashi, I Yoshida, A Kawai, N Sugita, S AF Yamaoka, Kazutaka Allured, Ryan Kaaret, Philip Kennea, Jamie A. Kawaguchi, Toshihiro Gandhi, Poshak Shaposhnikov, Nicholai Ueda, Yoshihiro Nakahira, Satoshi Kotani, Taro Negoro, Hitoshi Takahashi, Ichiro Yoshida, Atsumasa Kawai, Nobuyuki Sugita, Satoshi TI Combined Spectral and Timing Analysis of the Black Hole Candidate MAXI J1659-152, Discovered by MAXI and Swift SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE accretion, accretion disks; black hole physics; stars: individual (MAXI J1659-152); X-rays: stars ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; NOVA XTE J1550-564; ACCRETION DISKS; MUSCAE 1991; STATE; EXPLORER; OUTBURST; FREQUENCY; EVOLUTION AB We report on X-ray spectral and timing results of a new black hole candidate (BHC), MAXI J1659-152, with an orbital period of 2.41 hr (shortest among BHCs) in a 2010 outburst from 65 Rossi X-ray Timing Explorer (RXTE) observations and 8 simultaneous Swift and RXTE observations. According to the definitions of the spectral states in Remillard and McClintock (2006, ARA&A, 44, 49), most of the observations have been classified into the intermediate state. All of the X-ray broadband spectra can be modeled by a multi-color disk plus a power-law with an exponential cutoff or a multi-color disk plus a Comptonization component. During the initial phase of the outburst, a high-energy cutoff was visible at 30-40 keV. The innermost radius of the disk gradually decreased by a factor of more than 3 from the onset of the outburst, and reached a constant value of 35 d(10)cos i(-1/2) km, where d(10) is the distance in units of 10 kpc and i is the inclination. The type-C quasi-periodic oscillation (QPO) frequency varied from 1.6 Hz to 7.3 Hz in association with a change of the innermost radius, while the innermost radius remained constant during the type-B QPO detections at 1.6-4.1 Hz. Hence, we suggest that the origin of the type-B QPOs is different from that of type-C QPOs, the latter of which would originate from the disk truncation radius. Assuming the constant innermost radius in the latter phase of the outburst as the innermost stable circular orbit, the black hole mass in MAXI J1659-152 is estimated to be 3.6-8.0 M-circle dot for a distance of 5.3-8.6 kpc and an inclination angle of 60 degrees-75 degrees. C1 [Yamaoka, Kazutaka; Takahashi, Ichiro; Yoshida, Atsumasa] Aoyama Gakuin Univ, Dept Phys & Math, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan. [Allured, Ryan; Kaaret, Philip] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kennea, Jamie A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Kawaguchi, Toshihiro] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Gandhi, Poshak] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Shaposhnikov, Nicholai] Univ Maryland, Dept Astron, CRESST, College Pk, MD 20742 USA. [Shaposhnikov, Nicholai] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Ueda, Yoshihiro] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Nakahira, Satoshi] RIKEN, MAXI Team, Wako, Saitama 3510198, Japan. [Kotani, Taro] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Negoro, Hitoshi] Nihon Univ, Dept Phys, Chiyoda Ku, Tokyo 1018308, Japan. [Kawai, Nobuyuki] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Sugita, Satoshi] Nagoya Univ, EcoTopia Sci Inst, Chikusa Ku, Nagoya, Aichi 4648603, Japan. RP Yamaoka, K (reprint author), Aoyama Gakuin Univ, Dept Phys & Math, Chuo Ku, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 2525258, Japan. EM yamaoka@phys.aoyama.ac.jp NR 71 TC 19 Z9 19 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD APR 25 PY 2012 VL 64 IS 2 AR 32 DI 10.1093/pasj/64.2.32 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 942FJ UT WOS:000304028200012 ER PT J AU Ackermann, M Ajello, M Albert, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bloom, ED Bonamente, E Borgland, AW Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cuoco, A Cutini, S D'Ammando, F de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Fortin, P Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Germani, S Giglietto, N Giroletti, M Glanzman, T Godfrey, G Gomez-Vargas, GA Gregoire, T Grenier, IA Grove, JE Guiriec, S Gustafsson, M Hadasch, D Hayashida, M Hayashi, K Hou, X Hughes, RE Johannesson, G Johnson, AS Kamae, T Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Linden, T Lionetto, AM Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Norris, JP Nuss, E Ohsugi, T Okumura, A Orienti, M Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pavlidou, V Pesce-Rollins, M Pierbattista, M Piron, F Pivato, G Raino, S Rando, R Reimer, A Reimer, O Roth, M Sbarra, C Schmitt, J Sgro, C Siegal-Gaskins, J Siskind, EJ Spandre, G Spinelli, P Strong, AW Suson, DJ Takahashi, H Tanaka, T Thayer, JB Tibaldo, L Tinivella, M Torres, DF Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Winer, BL Wood, KS Wood, M Yang, Z Zimmer, S Komatsu, E AF Ackermann, M. Ajello, M. Albert, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bloom, E. D. Bonamente, E. Borgland, A. W. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cuoco, A. Cutini, S. D'Ammando, F. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fortin, P. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Germani, S. Giglietto, N. Giroletti, M. Glanzman, T. Godfrey, G. Gomez-Vargas, G. A. Gregoire, T. Grenier, I. A. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Hayashida, M. Hayashi, K. Hou, X. Hughes, R. E. Johannesson, G. Johnson, A. S. Kamae, T. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Linden, T. Lionetto, A. M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pavlidou, V. Pesce-Rollins, M. Pierbattista, M. Piron, F. Pivato, G. Raino, S. Rando, R. Reimer, A. Reimer, O. Roth, M. Sbarra, C. Schmitt, J. Sgro, C. Siegal-Gaskins, J. Siskind, E. J. Spandre, G. Spinelli, P. Strong, A. W. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Tibaldo, L. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Winer, B. L. Wood, K. S. Wood, M. Yang, Z. Zimmer, S. Komatsu, E. CA Fermi LAT Collaboration TI Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER ANNIHILATION; LARGE-AREA TELESCOPE; POWER SPECTRUM; RADIATION; EMISSION; BLAZARS; SATELLITE; GALAXIES; ORIGIN; SIGNAL AB The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes vertical bar b vertical bar > 30 degrees in four energy bins spanning 1-50 GeV. At multipoles l >= 155, corresponding to angular scales less than or similar to 2 degrees, angular power above the photon noise level is detected at >99.99% confidence level in the 1-2 GeV, 2-5 GeV, and 5-10 GeV energy bins, and at >99% confidence level at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C-P/< I >(2) 9.05 +/- 0.84 x 10(-6) sr, while the energy dependence of C-P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma(s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Orlando, E.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Okumura, A.; Orlando, E.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Albert, A.; Hughes, R. E.; Siegal-Gaskins, J.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Schmitt, J.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Sbarra, C.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Gregoire, T.; Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Brandt, T. J.; Gregoire, T.; Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] M Merlin Univ, Dipartimento Fis, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEE CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Parent, D.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ciprini, S.; Conrad, J.; Cutini, S.; Gasparrini, D.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Conrad, J.; Garde, M. Llena; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Cuoco, A.; Garde, M. Llena; Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Troja, E.] NASA, Postdoctoral Program, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fukazawa, Y.; Hayashi, K.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Gomez-Vargas, G. A.; Lionetto, A. M.; Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gomez-Vargas, G. A.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Gomez-Vargas, G. A.] Univ Autonoma Madrid, Inst Fis Teor IFT UAM CSIC, E-28049 Madrid, Spain. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hou, X.; Lemoine-Goumard, M.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Lemoine-Goumard, M.; Linden, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Lemoine-Goumard, M.; Linden, T.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Lionetto, A. M.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Parent, D.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Pavlidou, V.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Komatsu, E.] Univ Texas Austin, Texas Cosmol Ctr, Austin, TX 78712 USA. [Komatsu, E.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM cuoco@fysik.su.se; tlinden@ucsc.edu; mazziotta@ba.infn.it; jsg@tapir.caltech.edu; vincenzo.vitale@roma2.infn.it; komatsu@astro.as.utexas.edu RI Baldini, Luca/E-5396-2012; Komatsu, Eiichiro/A-4361-2011; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Pavlidou, Vasiliki/C-2944-2011; Gomez-Vargas, German/C-7138-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Pavlidou, Vasiliki/0000-0002-0870-1368; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; NSF [AST-0807649, PHY-0758153]; NASA [NNX08AL43G, PF1-120089]; Chandra X-ray Center; Smithsonian Astrophysical Observatory for NASA [NAS8-03060]; European Community [ERC-StG-259391] FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. Some of the results in this paper have been derived using the HEALPIX package. E. Komatsu is supported in part by NSF Grants No. AST-0807649 and No. PHY-0758153, and NASA Grant No. NNX08AL43G. J. Siegal-Gaskins thanks the Galileo Galilei Institute for Theoretical Physics for hospitality, and acknowledges support from NASA through Einstein Postdoctoral Fellowship Grant No. PF1-120089 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS8-03060. J. Conrad acknowledges support from a grant from the K.A. Wallenberg Foundation, and M. Lemoine-Goumard is supported by Contract No. ERC-StG-259391 from the European Community. NR 55 TC 78 Z9 78 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR 24 PY 2012 VL 85 IS 8 AR 083007 DI 10.1103/PhysRevD.85.083007 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 930VL UT WOS:000303170000001 ER PT J AU Korenblit, Y Kajdos, A West, WC Smart, MC Brandon, EJ Kvit, A Jagiello, J Yushin, G AF Korenblit, Yair Kajdos, Adam West, William C. Smart, Marshall C. Brandon, Erik J. Kvit, Alexander Jagiello, Jacek Yushin, Gleb TI In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE carbon; electrodes; electrolytes; supercapacitors; microporous materials ID DOUBLE-LAYER CAPACITOR; NANOPOROUS CARBON SUPERCAPACITORS; CARBIDE-DERIVED CARBONS; ELECTROCHEMICAL PERFORMANCE; PORE-SIZE; NANOTUBE ELECTRODES; ACTIVATED CARBONS; ENERGY DENSITY; ELECTROLYTES; ADSORPTION AB The ability to quickly store and deliver a significant amount of electrical energy at ultralow temperatures is critical for the energy-efficient operation of high altitude aircraft and spacecraft, exploration of natural resources in polar regions and extreme altitudes, and astronomical observatories exposed to ultralow temperatures. Commercial high-power electrochemical capacitors fail to operate at temperatures below 40 degrees C. According to conventional wisdom, mesoporous electrochemical capacitor electrodes with pores large enough to accommodate fully solvated ions are needed for sufficiently rapid ion transport at lower temperatures. It is demonstrated that strictly microporous carbon electrodes with much higher volumetric capacitance can be efficiently used at temperatures as low as 70 degrees C. The critical parameters, with respect to electrolyte properties and electrode porosity and microstructure, needed for achieving both rapid ion transport and efficient ion electroadsorption in porous carbons are discussed. As an example, the fabrication of an electrochemical capacitor with an outstanding performance at temperatures as low as 60 and 70 degrees C is demonstrated. At such low temperatures the capacitance of the synthesized electrodes is up to 123 F g-1 (similar to 76 F cm-3), which is 50100% higher than that of the most common commercial electrochemical capacitor electrode at room temperature. At 60 degrees C selected cells based on similar to 0.2 mm electrodes exhibited characteristic chargedischarge time constants of less than 9 s, which is faster than the majority of commercial devices at room temperature. The achieved combination of high energy and power densities at such ultralow temperatures is unprecedented and extremely promising for the advancement of energy storage systems. C1 [Korenblit, Yair; Kajdos, Adam; Yushin, Gleb] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [West, William C.; Smart, Marshall C.; Brandon, Erik J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kvit, Alexander] Univ Wisconsin, Ctr Mat Sci, Madison, WI 53706 USA. [Kvit, Alexander] Univ Wisconsin, Dept Mat Sci, Madison, WI 53706 USA. [Jagiello, Jacek] Micromerit Instrument Corp, Norcross, GA 30093 USA. [Yushin, Gleb] Streamline Nanotechnol Inc, Atlanta, GA 30332 USA. RP Korenblit, Y (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM yushin@gatech.edu RI Yushin, Gleb/B-4529-2013 OI Yushin, Gleb/0000-0002-3274-9265 FU AFOSR [FA9550-09-1-0176]; NSF [IIP-1046948]; JPL FX This work was partially supported by the AFOSR under grant # FA9550-09-1-0176 and by the NSF under grant # IIP-1046948. This work was also partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, funded through the JPL Research and Technology Development fund. NR 54 TC 34 Z9 37 U1 5 U2 81 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD APR 24 PY 2012 VL 22 IS 8 BP 1655 EP 1662 DI 10.1002/adfm.201102573 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 925XC UT WOS:000302794400012 ER PT J AU Xie, H Odstrcil, D Mays, L St Cyr, OC Gopalswamy, N Cremades, H AF Xie, H. Odstrcil, D. Mays, L. St Cyr, O. C. Gopalswamy, N. Cremades, H. TI Understanding shock dynamics in the inner heliosphere with modeling and Type II radio data: The 2010-04-03 event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTION; SOLAR-WIND; STEREO MISSION; INTERPLANETARY SHOCKS; PROPAGATION; CME; MORPHOLOGY; TRACKING; AU AB The 2010 April 03 solar event was studied using observations from STEREO SECCHI, SOHO LASCO, and Wind kilometric Type II data (kmTII) combined with WSA-Cone-ENLIL model simulations performed at the Community Coordinated Modeling Center (CCMC). In particular, we identified the origin of the coronal mass ejection (CME) using STEREO EUVI and SOHO EIT images. A flux-rope model was fit to the SECCHI A and B, and LASCO images to determine the CME's direction, size, and actual speed. J-maps from STEREO COR2/HI-1/HI-2 and simulations from CCMC were used to study the formation and evolution of the shock in the inner heliosphere. In addition, we also studied the time-distance profile of the shock propagation from kmTII radio burst observations. The J-maps together with in-situ data from the Wind spacecraft provided an opportunity to validate the simulation results and the kmTII prediction. Here we report on a comparison of two methods of predicting interplanetary shock arrival time: the ENLIL model and the kmTII method; and investigate whether or not using the ENLIL model density improves the kmTII prediction. We found that the ENLIL model predicted the kinematics of shock evolution well. The shock arrival times (SAT) and linear-fit shock velocities in the ENLIL model agreed well with those measurements in the J-maps along both the CME leading edge and the Sun-Earth line. The ENLIL model also reproduced most of the large scale structures of the shock propagation and gave the SAT prediction at Earth with an error of similar to 1 +/- 7 hours. The kmTII method predicted the SAT at Earth with an error of similar to 15 hours when using n(0) = 4.16 cm(-3), the ENLIL model plasma density near Earth; but it improved to similar to 2 hours when using n(0) = 6.64 cm(-3), the model density near the CME leading edge at 1 AU. C1 [Xie, H.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Odstrcil, D.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. [Mays, L.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN 37831 USA. [St Cyr, O. C.; Gopalswamy, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cremades, H.] UTN FRM CONICET, Mendoza, Argentina. RP Xie, H (reprint author), Catholic Univ Amer, Dept Phys, 200 Hannan Hall, Washington, DC 20064 USA. EM hong.xie@nasa.gov FU STEREO; SOHO; WIND teams; NASA LWS TRT [08-LWSTRT08-0029]; NASA FX The authors would like to thank the support of STEREO, SOHO, WIND teams. The STEREO SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). The SOHO LASCO data are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut fur Aeronomie (Germany), Laboratoire d'Astronomie (France), and the University of Birmingham (UK). We acknowledge magnetogram data from NSO/GONG (Global Oscillation Network Group) and the WIND data from NASA's Space Physics Data Facility. This work was supported by NASA LWS TR&T program (08-LWSTRT08-0029). H. C. is member of Carrera del Investigador Cientifico, CONICET. M. L. Mays acknowledges support from an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 36 TC 9 Z9 9 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 21 PY 2012 VL 117 AR A04105 DI 10.1029/2011JA017304 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 930FZ UT WOS:000303124400003 ER PT J AU Hammerling, DM Michalak, AM O'Dell, C Kawa, SR AF Hammerling, Dorit M. Michalak, Anna M. O'Dell, Christopher Kawa, S. Randolph TI Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT) SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPECTROMETER; MISSION AB January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X-CO2) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a 1 degrees x 1.25 degrees grid, at six-day resolution capture much of the synoptic scale and regional variability of X-CO2, in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X-CO2 variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2. Citation: Hammerling, D. M., A. M. Michalak, C. O'Dell, and S. R. Kawa (2012), Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT), Geophys. Res. Lett., 39, L08804, doi: 10.1029/2012GL051203. C1 [Hammerling, Dorit M.; Michalak, Anna M.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Kawa, S. Randolph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [O'Dell, Christopher] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Hammerling, DM (reprint author), Univ Michigan, Dept Civil & Environm Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA. EM michalak@stanford.edu RI Kawa, Stephan/E-9040-2012; OI Hammerling, Dorit/0000-0003-3583-3611 FU National Aeronautics and Space Administration [NNX08AJ92G] FX This material is based upon work supported by the National Aeronautics and Space Administration under Grant NNX08AJ92G issued through the Research Opportunities in Space and Earth Sciences (ROSES) Carbon Cycle Science program. We are grateful to the ACOS and GOSAT teams for the availability of GOSAT observations and thank various members of these teams for their helpful contributions to this study. NR 13 TC 16 Z9 17 U1 1 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 21 PY 2012 VL 39 AR L08804 DI 10.1029/2012GL051203 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 930DD UT WOS:000303116100003 ER PT J AU Thollot, P Mangold, N Ansan, V Le Mouelic, S Milliken, RE Bishop, JL Weitz, CM Roach, LH Mustard, JF Murchie, SL AF Thollot, Patrick Mangold, Nicolas Ansan, Veronique Le Mouelic, Stephane Milliken, Ralph E. Bishop, Janice L. Weitz, Catherine M. Roach, Leah H. Mustard, John F. Murchie, Scott L. TI Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID NEAR-INFRARED SPECTROSCOPY; BASALTIC GLASS DISSOLUTION; MERIDIANI-PLANUM; HYDROTHERMAL ALTERATION; FERRIC SULFATES; HYDROXYL-GROUPS; CLAY-MINERALS; MAWRTH VALLIS; DEPOSITS; SILICA AB A closed depression in the Noctis Labyrinthus region of Mars (at 10.4 degrees S, 98.6 degrees W), believed to have formed in the Late Hesperian, holds an inner pit partially filled with several hundred meters of stratified material. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) visible-near infrared reflectance data reveal signatures of numerous hydrated minerals including halloysite/kaolinite, Fe-smectite, Si-OH bearing phases and Fe-sulfates (polyhydrated, monohydrated, and hydroxylated types, including jarosite). We use CRISM data, high resolution imagery (HiRISE) and HRSC (High Resolution Stereo Camera) derived elevation to analyze the morphology, composition and stratigraphy of these materials. We propose an alteration sequence including formation of acid sulfate solutions from groundwater and magmatic sulfur, which then locally altered the basaltic bedrock and layered sediments mainly deposited from volcanic tephra, forming Fe-smectite and Fe-sulfates. The mineral variability can mostly be explained by local variations in the pH of the altering fluids, with original acidity being buffered by dissolution of primary minerals; and by variable fluid input and evaporation and/or freezing rates (resulting in various water/rock ratios). This site shows local formation of almost all classes of minerals identified thus far on Mars without invoking global conditions. Processes related to local volcanic activity and associated hydrothermalism were able to produce, during an era in which the climate is believed to have been cold, a large variety of hydrated minerals. This study highlights the importance of the geological setting of hydrated minerals in the understanding of Mars geologic and climatic evolution. C1 [Thollot, Patrick; Mangold, Nicolas; Ansan, Veronique; Le Mouelic, Stephane] CNRS, Lab Planetol & Geodynam, F-44322 Nantes 3, France. [Thollot, Patrick; Mangold, Nicolas; Ansan, Veronique; Le Mouelic, Stephane] Univ Nantes, UMR6112, F-44322 Nantes 3, France. [Milliken, Ralph E.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [Bishop, Janice L.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Bishop, Janice L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Weitz, Catherine M.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Roach, Leah H.] Frontier Technol Inc, Beverly, MA 01915 USA. [Mustard, John F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Thollot, P (reprint author), CNRS, Lab Planetol & Geodynam, 2 Rue Houssiniere,BP 92205, F-44322 Nantes 3, France. EM patrick.thollot@univ-nantes.fr RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 FU Centre National d'Etudes Spatiales (CNES); Agence Nationale de la Recherche [ANR-08-JCJC-0126]; Institut National des Sciences de l'Univers (INSU-CNRS) FX This research benefited from financial supports of the Centre National d'Etudes Spatiales (CNES), the Agence Nationale de la Recherche under grant ANR-08-JCJC-0126 "MADMACS," and the Programme National de Planetologie (PNP) of Institut National des Sciences de l'Univers (INSU-CNRS). We thank K. Lichtenberg and an anonymous reviewer for their insightful comments. NR 112 TC 28 Z9 28 U1 0 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 21 PY 2012 VL 117 AR E00J06 DI 10.1029/2011JE004028 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 930EM UT WOS:000303120100001 ER PT J AU MacMynowski, DG Roberts, LC Shelton, JC Chanan, G Bonnet, H AF MacMynowski, Douglas G. Roberts, Lewis C., Jr. Shelton, J. Chris Chanan, Gary Bonnet, Henri TI In-plane effects on segmented-mirror control SO APPLIED OPTICS LA English DT Article ID TELESCOPES AB Extremely large optical telescopes are being designed with primary mirrors composed of hundreds of segments. The "out-of-plane" piston, tip, and tilt degrees of freedom of each segment are actively controlled using feedback from relative height measurements between neighboring segments. The "in-plane" segment translations and clocking (rotation) are not actively controlled; however, in-plane motions affect the active control problem in several important ways, and thus need to be considered. We extend earlier analyses by constructing the "full" interaction matrix that relates the height, gap, and shear motion at sensor locations to all six degrees of freedom of segment motion, and use this to consider three effects. First, in-plane segment clocking results in height discontinuities between neighboring segments that can lead to a global control system response. Second, knowledge of the in-plane motion is required both to compensate for this effect and to compensate for sensor installation errors, and thus, we next consider the estimation of in-plane motion and the associated noise propagation characteristics. In-plane motion can be accurately estimated using measurements of the gap between segments, but with one unobservable mode in which every segment clocks by an equal amount. Finally, we examine whether in-plane measurements (gap and/or shear) can be used to estimate out-of-plane segment motion; these measurements can improve the noise multiplier for the "focus-mode" of the segmented-mirror array, which involves pure dihedral angle changes between segments and is not observable with only height measurements. (C) 2012 Optical Society of America C1 [MacMynowski, Douglas G.] CALTECH, Pasadena, CA 91125 USA. [Roberts, Lewis C., Jr.; Shelton, J. Chris] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chanan, Gary] Univ Calif Irvine, Irvine, CA 92697 USA. [Bonnet, Henri] European So Observ, D-8046 Garching, Germany. RP MacMynowski, DG (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM macmardg@cds.caltech.edu RI MacMartin, Douglas/A-6333-2016; OI MacMartin, Douglas/0000-0003-1987-9417; Roberts, Lewis/0000-0003-3892-2900 FU Association of Canadian Universities for Research in Astronomy (ACURA); California Institute of Technology; University of California; Gordon and Betty Moore Foundation; Canada Foundation for Innovation; Ontario Ministry of Research and Innovation; National Research Council of Canada; Natural Sciences and Engineering Research Council of Canada; British Columbia Knowledge Development Fund; Association of Universities for Research in Astronomy (AURA); U.S. National Science Foundation FX The TMT Project gratefully acknowledges the support of the TMT partner institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology and the University of California. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA). and the U.S. National Science Foundation. NR 8 TC 4 Z9 4 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 20 PY 2012 VL 51 IS 12 BP 1929 EP 1938 DI 10.1364/AO.51.001929 PG 10 WC Optics SC Optics GA 932AU UT WOS:000303262200013 PM 22534898 ER PT J AU Sundberg, T Boardsen, SA Slavin, JA Anderson, BJ Korth, H Zurbuchen, TH Raines, JM Solomon, SC AF Sundberg, Torbjoern Boardsen, Scott A. Slavin, James A. Anderson, Brian J. Korth, Haje Zurbuchen, Thomas H. Raines, Jim M. Solomon, Sean C. TI MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury's magnetopause SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETIC-FIELD; LARMOR RADIUS; MAGNETOSPHERIC BOUNDARY; MAGNETOTAIL BOUNDARY; GEOTAIL OBSERVATIONS; SOLAR-WIND; 1ST FLYBY; INSTABILITY; FLOW; VORTICES AB We present a survey of Kelvin-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orbit. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with nonlinear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still subsonic, which implies that instability growth rates at Mercury's magnetopause are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of 100 nT or more, and the wave periods were similar to 10-20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the postnoon and duskside sectors of the magnetopause. This asymmetry is likely related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere. C1 [Sundberg, Torbjoern; Boardsen, Scott A.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Anderson, Brian J.; Korth, Haje] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Slavin, James A.; Zurbuchen, Thomas H.; Raines, Jim M.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Solomon, Sean C.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Boardsen, Scott A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Sundberg, T (reprint author), NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM torbjorn.sundberg@nasa.gov RI Anderson, Brian/I-8615-2012; Slavin, James/H-3170-2012 OI Slavin, James/0000-0002-9206-724X FU NASA [NAS5-97271, NASW-00002] FX We thank two anonymous reviewers for constructive comments that improved the manuscript. The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. This research was also supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 55 TC 34 Z9 34 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 20 PY 2012 VL 117 AR A04216 DI 10.1029/2011JA017268 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 930FX UT WOS:000303124200001 ER PT J AU Wang, J Xu, XG Henze, DK Zeng, J Ji, Q Tsay, SC Huang, JP AF Wang, Jun Xu, Xiaoguang Henze, Daven K. Zeng, Jing Ji, Qiang Tsay, Si-Chee Huang, Jianping TI Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ASIA; ALGORITHM; CHINA AB Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOS-Chem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS (Moderate Resolution Imaging Spectroradiometer) reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR (Multi-angle Imaging SpectroRadiometer) AOD and MODIS Deep Blue AOD over the dust source region and surface PM10 concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health. Citation: Wang, J., X. Xu, D. K. Henze, J. Zeng, Q. Ji, S.-C. Tsay, and J. Huang (2012), Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model, Geophys. Res. Lett., 39, L08802, doi:10.1029/2012GL051136. C1 [Wang, Jun; Xu, Xiaoguang; Zeng, Jing] Univ Nebraska, Dept Earth & Atmospher Sci, Lincoln, NE 68588 USA. [Henze, Daven K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Huang, Jianping] Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. [Ji, Qiang] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Ji, Qiang; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wang, J (reprint author), Univ Nebraska, Dept Earth & Atmospher Sci, 303 Bessey Hall, Lincoln, NE 68588 USA. EM jwang7@unl.edu RI Chem, GEOS/C-5595-2014; Tsay, Si-Chee/J-1147-2014; Xu, Xiaoguang/B-8203-2016; Wang, Jun/A-2977-2008 OI Xu, Xiaoguang/0000-0001-9583-980X; Wang, Jun/0000-0002-7334-0490 FU NASA [NNX11AB91G, NNX10AG60G] FX This study is supported by the NASA Radiation Sciences Program managed by Dr. Hal B. Maring, NASA Glory project (NNX11AB91G), and NASA Atmospheric Chemistry Modeling and Analysis Program (NNX10AG60G) managed by Dr. Richard S. Eckman. NR 25 TC 34 Z9 34 U1 3 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 20 PY 2012 VL 39 AR L08802 DI 10.1029/2012GL051136 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 930DB UT WOS:000303115900001 ER PT J AU Li, JL Andrews-Hanna, JC Sun, YS Phillips, RJ Plaut, JJ Zuber, MT AF Li, Junlun Andrews-Hanna, Jeffrey C. Sun, Youshun Phillips, Roger J. Plaut, Jeffrey J. Zuber, Maria T. TI Density variations within the south polar layered deposits of Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ICE DEPOSITS; GRAVITY; CAP; TOPOGRAPHY; HYDROGEN; DRAINAGE; ODYSSEY; REGION AB The south polar layered deposits (SPLD) constitute the largest known reservoir of water on Mars. Previous studies solved for the best fit uniform density of the deposits using a forward approach. Here we invert for the lateral density variations in the layered deposit using gravity data from radio tracking of Mars Reconnaissance Orbiter, topography from MOLA on board Mars Global Surveyor, and radar sounding data from MARSIS on board Mars Express. We use the gravity anomalies outside the SPLD to construct a Wiener filter, which is applied to the gravitational signature of the SPLD to remove the short-wavelength anomalies over the SPLD that are spectrally consistent with an origin in the crust or mantle. We then use a constrained inversion for the vertically averaged density within the SPLD as a function of position. The results suggest significant density variations within the SPLD. An inverse relationship between the density and thickness of the SPLD suggests that thicker portions of the cap contain less dust. Alternatively, the Dorsa Argentea Formation may extend beneath the SPLD and result in the observed high gravity anomaly in the marginal area of the SPLD. We find these conclusions to be robust against the choice of inversion constraint and perturbations to the applied filter. A synthetic test is also performed to verify the recoverability of the density variation in our approach. C1 [Li, Junlun; Sun, Youshun; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA. [Plaut, Jeffrey J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Li, JL (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, 77 Mass Ave, Cambridge, MA 02139 USA. EM junlunli@mit.edu FU NASA FX We thank Sue Smrekar and Shane Byrne for reviewing and giving constructive comments to improve our paper. We also thank Editor Mark Wieczorek for providing helpful comments on our paper. The work was supported by the NASA Mars Reconnaissance Orbiter Radio Science Gravity investigation. NR 33 TC 1 Z9 1 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 20 PY 2012 VL 117 AR E04006 DI 10.1029/2011JE003937 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 930EI UT WOS:000303119700002 ER PT J AU Sprague, AL Boynton, WV Forget, F Lian, Y Richardson, M Starr, R Metzger, AE Hamara, D Economou, T AF Sprague, Ann L. Boynton, William V. Forget, Francois Lian, Yuan Richardson, Mark Starr, Richard Metzger, Albert E. Hamara, David Economou, Thanasis TI Interannual similarity and variation in seasonal circulation of Mars' atmospheric Ar as seen by the Gamma Ray Spectrometer on Mars Odyssey SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID GENERAL-CIRCULATION; NUMERICAL-SIMULATION; CARBON-DIOXIDE; MODEL; CO; EXPRESS; CLOUDS; WINTER AB More than 3 Mars' years (MY) of atmospheric argon (Ar) measurements are used to study annual and seasonal variations in atmospheric transport and mixing. Data are obtained over the period 20 May 2002 to 4 May 2008 by the Gamma Subsystem (GS) of the Gamma Ray Spectrometer (GRS) on the Mars Odyssey spacecraft in orbit around Mars. Here we augment previous studies of Mars' Ar in which strong seasonal variations were observed and horizontal meridional mixing coefficients for the southern hemisphere were computed. Comparison of year-to-year seasonal abundance shows strong similarity but also some short-period (similar to 15 degrees-30 degrees L-s) and interannual variations. Evidence for short periods of strong eddy transport is exhibited during autumn and winter. The seasonal change in Ar concentration for southern latitudes is relatively gradual and well defined, but seasonal changes at high northern latitudes are chaotic and indicate that atmospheric disturbance is ubiquitous. Major topographic landforms (Elysium, Tharsis, Noachis Terra, Hellas) apparently have little control over seasonal Ar concentration at the spatial resolution of the GRS data set. Some indication of local enhanced Ar concentration is present from 30 degrees N to 60 degrees N for the Hellas and Tharsis sectors in late winter and early spring. The data show some significant (3 sigma) differences between MY 26 and MY 27 in geographical sectors that are likely produced by local weather. The GS data do not show seasonal variation of Ar at equatorial and low-latitude zones, in contrast to those from the Alpha Particle X-ray Spectrometer (APXS) measurements from the Mars Exploration Rovers. C1 [Sprague, Ann L.; Boynton, William V.; Hamara, David] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Economou, Thanasis] Univ Chicago, Lab Astrophys & Space Res, Chicago, IL 60637 USA. [Forget, Francois] Univ Paris 06, Lab Meteorol Dynam, CNRS, F-75005 Paris 05, France. [Lian, Yuan; Richardson, Mark] Ashima Res, Pasadena, CA 91106 USA. [Metzger, Albert E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Starr, Richard] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Sprague, AL (reprint author), Univ Arizona, Lunar & Planetary Lab, 1629 E Univ Blvd, Tucson, AZ 85721 USA. EM sprague@lpl.arizona.edu FU NASA [1228726] FX We acknowledge the contributions of the entire GRS team, Bob Haberle for providing great discussion and the NASA ARC MGCM output 2002.17 for analysis purposes, and funding from NASA contract 1228726. Mike Finch provided the topographic computations and maps, and Kris Kelly provided the initial summing of Ar data used by S2004 and S2007. In addition, we thank two reviewers who kindly helped to improve this paper. NR 45 TC 7 Z9 7 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR 20 PY 2012 VL 117 AR E04005 DI 10.1029/2011JE003873 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 930EI UT WOS:000303119700001 ER PT J AU Stancil, DD Adamson, P Alania, M Aliaga, L Andrews, M Del Castillo, CA Bagby, L Alba, JLB Bodek, A Boehnlein, D Bradford, R Brooks, WK Budd, H Butkevich, A Caicedo, DAM Capista, DP Castromonte, CM Chamorro, A Charlton, E Christy, ME Chvojka, J Conrow, PD Danko, I Day, M Devan, J Downey, JM Dytman, SA Eberly, B Fein, JR Felix, J Fields, L Fiorentini, GA Gago, AM Gallagher, H Gran, R Grange, J Griffin, J Griffin, T Hahn, E Harris, DA Higuera, A Hobbs, JA Hoffman, CM Hughes, BL Hurtado, K Judd, A Kafka, T Kephart, K Kilmer, J Kordosky, M Kulagin, SA Kuznetsov, VA Lanari, M Le, T Lee, H Loiacono, L Maggi, G Maher, E Manly, S Mann, WA Marshall, CM Mcfarland, KS Mislivec, A Mcgowan, AM Morfin, JG Da Motta, H Mousseau, J Nelson, JK Niemiec-Gielata, JA Ochoa, N Osmanov, B Osta, J Palomino, JL Paradis, JS Paolone, V Park, J Pena, C Perdue, G Lara, CEP Peterman, AM Pla-Dalmau, A Pollock, B Prokoshin, F Ransome, RD Ray, H Reyhan, M Rubinov, P Ruggiero, D Sands, OS Schellman, H Schmitz, DW Schulte, EC Simon, C Salinas, CJS Stefanski, R Stevens, RG Tagg, N Takhistov, V Tice, BG Tilden, RN Velasquez, JP Vergalosova, I Voirin, J Walding, J Walker, BJ Walton, T Wolcott, J Wytock, TP Zavala, G Zhang, D Zhu, LY Ziemer, BP AF Stancil, D. D. Adamson, P. Alania, M. Aliaga, L. Andrews, M. Araujo Del Castillo, C. Bagby, L. Bazo Alba, J. L. Bodek, A. Boehnlein, D. Bradford, R. Brooks, W. K. Budd, H. Butkevich, A. Caicedo, D. A. M. Capista, D. P. Castromonte, C. M. Chamorro, A. Charlton, E. Christy, M. E. Chvojka, J. Conrow, P. D. Danko, I. Day, M. Devan, J. Downey, J. M. Dytman, S. A. Eberly, B. Fein, J. R. Felix, J. Fields, L. Fiorentini, G. A. Gago, A. M. Gallagher, H. Gran, R. Grange, J. Griffin, J. Griffin, T. Hahn, E. Harris, D. A. Higuera, A. Hobbs, J. A. Hoffman, C. M. Hughes, B. L. Hurtado, K. Judd, A. Kafka, T. Kephart, K. Kilmer, J. Kordosky, M. Kulagin, S. A. Kuznetsov, V. A. Lanari, M. Le, T. Lee, H. Loiacono, L. Maggi, G. Maher, E. Manly, S. Mann, W. A. Marshall, C. M. Mcfarland, K. S. Mislivec, A. Mcgowan, A. M. Morfin, J. G. Da Motta, H. Mousseau, J. Nelson, J. K. Niemiec-Gielata, J. A. Ochoa, N. Osmanov, B. Osta, J. Palomino, J. L. Paradis, J. S. Paolone, V. Park, J. Pena, C. Perdue, G. Perez Lara, C. E. Peterman, A. M. Pla-Dalmau, A. Pollock, B. Prokoshin, F. Ransome, R. D. Ray, H. Reyhan, M. Rubinov, P. Ruggiero, D. Sands, O. S. Schellman, H. Schmitz, D. W. Schulte, E. C. Simon, C. Solano Salinas, C. J. Stefanski, R. Stevens, R. G. Tagg, N. Takhistov, V. Tice, B. G. Tilden, R. N. Velasquez, J. P. Vergalosova, I. Voirin, J. Walding, J. Walker, B. J. Walton, T. Wolcott, J. Wytock, T. P. Zavala, G. Zhang, D. Zhu, L. Y. Ziemer, B. P. TI DEMONSTRATION OF COMMUNICATION USING NEUTRINOS SO MODERN PHYSICS LETTERS A LA English DT Article DE Neutrino; communication ID BEAMS AB Beams of neutrinos have been proposed as a vehicle for communications under unusual circumstances, such as direct point-to-point global communication, communication with submarines, secure communications and interstellar communication. We report on the performance of a low-rate communications link established using the NuMI beam line and the MINERvA detector at Fermilab. The link achieved a decoded data rate of 0.1 bits/sec with a bit error rate of 1% over a distance of 1.035 km, including 240 m of earth. C1 [Stancil, D. D.; Hughes, B. L.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. [Adamson, P.; Andrews, M.; Bagby, L.; Boehnlein, D.; Capista, D. P.; Griffin, T.; Hahn, E.; Harris, D. A.; Kephart, K.; Kilmer, J.; Mcfarland, K. S.; Morfin, J. G.; Osta, J.; Pla-Dalmau, A.; Rubinov, P.; Schmitz, D. W.; Stefanski, R.; Voirin, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Alania, M.; Chamorro, A.; Hurtado, K.; Solano Salinas, C. J.] Univ Nacl Ingn, Lima, Peru. [Aliaga, L.; Araujo Del Castillo, C.; Bazo Alba, J. L.; Gago, A. M.; Ochoa, N.; Perez Lara, C. E.; Velasquez, J. P.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Bodek, A.; Bradford, R.; Budd, H.; Chvojka, J.; Conrow, P. D.; Day, M.; Griffin, J.; Hoffman, C. M.; Judd, A.; Lee, H.; Loiacono, L.; Manly, S.; Marshall, C. M.; Mcfarland, K. S.; Mislivec, A.; Mcgowan, A. M.; Niemiec-Gielata, J. A.; Paradis, J. S.; Park, J.; Perdue, G.; Ruggiero, D.; Wolcott, J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Brooks, W. K.; Maggi, G.; Pena, C.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Butkevich, A.; Kulagin, S. A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Caicedo, D. A. M.; Castromonte, C. M.; Fiorentini, G. A.; Da Motta, H.; Palomino, J. L.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Charlton, E.; Devan, J.; Kordosky, M.; Nelson, J. K.; Pollock, B.; Walding, J.; Zhang, D.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Christy, M. E.; Walton, T.; Zhu, L. Y.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Danko, I.; Dytman, S. A.; Eberly, B.; Fein, J. R.; Paolone, V.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Downey, J. M.; Sands, O. S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Felix, J.; Higuera, A.; Zavala, G.] Univ Guanajuato, Dept Fis, Guanajuato 37150, Mexico. [Fields, L.; Hobbs, J. A.; Kuznetsov, V. A.; Peterman, A. M.; Schellman, H.; Tilden, R. N.; Walker, B. J.; Wytock, T. P.] Northwestern Univ, Evanston, IL 60208 USA. [Gallagher, H.; Kafka, T.; Mann, W. A.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Gran, R.; Lanari, M.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Le, T.; Ransome, R. D.; Reyhan, M.; Schulte, E. C.; Takhistov, V.; Tice, B. G.; Vergalosova, I.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Loiacono, L.; Stevens, R. G.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Maher, E.] Massachusetts Coll Liberal Arts, N Adams, MA 01247 USA. [Simon, C.; Ziemer, B. P.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. RP Stancil, DD (reprint author), N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. RI Stancil, Daniel/D-1339-2013; Brooks, William/C-8636-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Prokoshin, Fedor/E-2795-2012; OI Schmitz, David/0000-0003-2165-7389; Stancil, Daniel/0000-0002-2010-1381; Brooks, William/0000-0001-6161-3570; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Prokoshin, Fedor/0000-0001-6389-5399; , Daniel/0000-0001-7741-1893; Gago Medina, Alberto Martin/0000-0002-0019-9692; Solano Salinas, Carlos Javier/0000-0001-7821-498X; Walker, Brandon/0000-0003-3986-1994; Hurtado Anampa, Kenyi/0000-0002-9779-3566 FU Fermi National Accelerator Laboratory [DE-AC02-07CH11359]; United States National Science foundation under NSF [PHY-0619727]; University of Rochester; NASA; NSF; DOE (USA); CAPES; CNPq (Brazil); CoNaCyT (Mexico); CONICYT (Chile); CONCYTEC; DGI-PUCP; IDI-UNI(Peru); American Center for Physics (CLAF); FASI (Russia); Jeffress Memorial Trust; Research Corporation FX This work was supported by the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359, including the MINERvA construction project, with the United States Department of Energy. Construction support also was granted by the United States National Science foundation under NSF Award PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NASA, NSF and DOE (USA) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI-UNI(Peru), by Latin American Center for Physics (CLAF) and by FASI (Russia). Additional support came from Jeffress Memorial Trust (M.K.), and Research Corporation (E.M.). Finally, the authors are grateful to the staff of Fermilab for their contribution to this effort, in particular to Jim Hylen for his tireless support of the NuMI neutrino beamline. NR 15 TC 9 Z9 9 U1 3 U2 17 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD APR 20 PY 2012 VL 27 IS 12 AR 1250077 DI 10.1142/S0217732312500770 PG 10 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 928AC UT WOS:000302950900009 ER PT J AU Adams, JD Herter, TL Osorio, M Macias, E Megeath, ST Fischer, WJ Ali, B Calvet, N D'Alessio, P De Buizer, JM Gull, GE Henderson, CP Keller, LD Morris, MR Remming, IS Schoenwald, J Shuping, RY Stacey, G Stanke, T Stutz, A Vacca, W AF Adams, Joseph D. Herter, Terry L. Osorio, Mayra Macias, Enrique Megeath, S. Thomas Fischer, William J. Ali, Babar Calvet, Nuria D'Alessio, Paola De Buizer, James M. Gull, George E. Henderson, Charles P. Keller, Luke D. Morris, Mark R. Remming, Ian S. Schoenwald, Justin Shuping, Ralph Y. Stacey, Gordon Stanke, Thomas Stutz, Amelia Vacca, William TI FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: PROPERTIES OF INTERMEDIATE-LUMINOSITY PROTOSTARS AND CIRCUMSTELLAR DISKS IN OMC-2 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; infrared: stars; protoplanetary disks; radiative transfer; stars: formation ID MULTIBAND IMAGING PHOTOMETER; ORION-NEBULA-CLUSTER; ABSOLUTE CALIBRATION; MOLECULAR CLOUD; STAR-FORMATION; ARRAY CAMERA; DISTANCE; SPITZER; MODELS; DUST AB We examine eight young stellar objects in the OMC-2 star-forming region based on observations from the SOFIA/FORCAST early science phase, the Spitzer Space Telescope, the Herschel Space Observatory, Two Micron All Sky Survey, Atacama Pathfinder Experiment, and other results in the literature. We show the spectral energy distributions (SED) of these objects from near-infrared to millimeter wavelengths, and compare the SEDs with those of sheet collapse models of protostars and circumstellar disks. Four of the objects can be modeled as protostars with infalling envelopes, two as young stars surrounded by disks, and the remaining two objects have double-peaked SEDs. We model the double-peaked sources as binaries containing a young star with a disk and a protostar. The six most luminous sources are found in a dense group within a 0.15 x 0.25 pc region; these sources have luminosities ranging from 300 L-circle dot to 20 L-circle dot. The most embedded source (OMC-2 FIR 4) can be fit by a class 0 protostar model having a luminosity of similar to 50 L-circle dot and mass infall rate of similar to 10(-4) M-circle dot yr(-1). C1 [Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin; Stacey, Gordon] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Osorio, Mayra; Macias, Enrique] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Megeath, S. Thomas; Fischer, William J.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Ali, Babar] CALTECH, IPAC, NHSC, Pasadena, CA 91125 USA. [Calvet, Nuria] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [D'Alessio, Paola] Univ Nacl Autonoma Mexico, Ctr Radioastron & Astrofis, Morelia 58089, Michoacan, Mexico. [De Buizer, James M.; Shuping, Ralph Y.; Vacca, William] NASA, SOFIA Univ Space Res Assoc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Keller, Luke D.] Ithaca Coll, Dept Phys, Ctr Nat Sci 264, Ithaca, NY 14850 USA. [Morris, Mark R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Remming, Ian S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Stanke, Thomas] ESO, D-85748 Garching, Germany. [Stutz, Amelia] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Adams, JD (reprint author), Cornell Univ, Dept Astron, Space Sci Bldg, Ithaca, NY 14853 USA. OI Fischer, William J/0000-0002-3747-2496; Macias, Enrique/0000-0003-1283-6262; Stutz, Amelia/0000-0003-2300-8200 FU NASA [8500-98-014]; MICINN (Spain) [AYA2008-06189-C03, AYA2011-30228-C03-01]; FEDER funds FX We thank R. Grashius, S. Adams, H. Jakob, A. Reinacher, and U. Lampeter for their SOFIA telescope engineering and operations support. We also thank the SOFIA flight crews and mission operations team (A. Meyer, N. McKown, C. Kaminski) for their SOFIA flight planning and flight support. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association (USRA), Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided to Cornell University by NASA through award 8500-98-014 issued by USRA. M.O. acknowledges support from MICINN (Spain) grants AYA2008-06189-C03 and AYA2011-30228-C03-01 (co-funded with FEDER funds). This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under NASA contract 1407. NR 34 TC 14 Z9 14 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L24 DI 10.1088/2041-8205/749/2/L24 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300008 ER PT J AU Darling, J Zeiger, B AF Darling, Jeremy Zeiger, Benjamin TI FORMALDEHYDE SILHOUETTES AGAINST THE COSMIC MICROWAVE BACKGROUND: A MASS-LIMITED, DISTANCE-INDEPENDENT, EXTINCTION-FREE TRACER OF STAR FORMATION ACROSS THE EPOCH OF GALAXY EVOLUTION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic background radiation; dark ages, reionization, first stars; galaxies: high-redshift; galaxies: ISM; galaxies: star formation; radiation mechanisms: non-thermal ID MOLECULAR CLOUDS; INTERSTELLAR H2CO; ABSORPTION; EXCITATION; REGIONS; RATIOS AB We examine the absorption of cosmic microwave background (CMB) photons by formaldehyde (H2CO) over cosmic time. The K-doublet rotational transitions of H2CO become "refrigerated"-their excitation temperatures are driven below the CMB temperature-via collisional pumping by molecular hydrogen (H-2). "Anti-inverted" H2CO line ratios thus provide an accurate measurement of the H-2 density in molecular clouds. Using a radiative transfer model, we demonstrate that H2CO centimeter wavelength line excitation and detectability are nearly independent of redshift or gas kinetic temperature. Since the H2CO K-doublet lines absorb CMB light, and since the CMB lies behind every galaxy and provides an exceptionally uniform extended illumination source, H2CO is a distance-independent, extinction-free molecular gas mass-limited tracer of dense gas in galaxies. A Formaldehyde Deep Field could map the history of cosmic star formation in a uniquely unbiased fashion and may be possible with large bandwidth wide-field radio interferometers whereby the silhouettes of star-forming galaxies would be detected across the epoch of galaxy evolution. We also examine the possibility that H2CO lines may provide a standardizable galaxy ruler for cosmology similar to the Sunyaev-Zel'dovich effect in galaxy clusters but applicable to much higher redshifts and larger samples. Finally, we explore how anti-inverted meter-wave H2CO lines in galaxies during the peak of cosmic star formation may contaminate H I 21 cm tomography of the Epoch of Reionization. C1 [Darling, Jeremy; Zeiger, Benjamin] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Darling, Jeremy] NASA, Lunar Sci Inst, Ames Res Ctr, Moffett Field, CA USA. RP Darling, J (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, 389 UCB, Boulder, CO 80309 USA. EM jdarling@colorado.edu; benjamin.zeiger@colorado.edu RI Darling, Jeremy/A-7968-2009 OI Darling, Jeremy/0000-0003-2511-2060 FU NSF [GSSP07-0015]; NRAO; NASA Lunar Science Institute [NNA09DB30A]; [AST-0707713] FX We are indebted to K. Eggert for writing support. We acknowledge the support of the NSF through award GSSP07-0015 from the NRAO and grant AST-0707713. The LUNAR consortium (http://lunar.colorado.edu) is funded by the NASA Lunar Science Institute (Cooperative Agreement NNA09DB30A). NR 19 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L33 DI 10.1088/2041-8205/749/2/L33 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300017 ER PT J AU De Buizer, JM Morris, MR Becklin, EE Zinnecker, H Herter, TL Adams, JD Shuping, RY Vacca, WD AF De Buizer, James M. Morris, Mark R. Becklin, E. E. Zinnecker, Hans Herter, Terry L. Adams, Joseph D. Shuping, Ralph Y. Vacca, William D. TI FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: 6-37 mu m IMAGING OF ORION BN/KL SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE infrared: ISM; ISM: individual objects (Orion-BN, Orion Kleinmann-Low); stars: massive ID KLEINMANN-LOW NEBULA; SOURCE-I; INFRARED CLUSTER; RESOLUTION MAPS; MOLECULAR CLOUD; REGION; STAR; DISTRIBUTIONS; POLARIZATION; EXTINCTION AB The Becklin-Neugebauer/Kleinmann-Low (BN/KL) region of the Orion Nebula is the nearest region of high-mass star formation in our galaxy. As such, it has been the subject of intense investigation at a variety of wavelengths, which have revealed it to be brightest in the infrared to submillimeter wavelength regime. Using the newly commissioned SOFIA airborne telescope and its 5-40 mu m camera FORCAST, images of the entire BN/KL complex have been acquired. The 31.5 and 37.1 mu m images represent the highest resolution observations (less than or similar to 4 '') ever obtained of this region at these wavelengths. These observations reveal that the BN object is not the dominant brightness source in the complex at wavelengths >= 31.5 mu m and that this distinction goes instead to the source IRc4. It was determined from these images and derived dust color temperature maps that IRc4 is also likely to be self-luminous. A new source of emission has also been identified at wavelengths >= 31.5 mu m that coincides with the northeastern outflow lobe from the protostellar disk associated with radio source I. C1 [De Buizer, James M.; Becklin, E. E.; Zinnecker, Hans; Shuping, Ralph Y.; Vacca, William D.] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Morris, Mark R.; Becklin, E. E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Herter, Terry L.; Adams, Joseph D.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Shuping, Ralph Y.] Space Sci Inst, Boulder, CO 80301 USA. RP De Buizer, JM (reprint author), NASA, SOFIA USRA, Ames Res Ctr, MS N211-3, Moffett Field, CA 94035 USA. EM jdebuizer@sofia.usra.edu FU USRA [209000771] FX We thank the FORCAST engineering team of George Gull, Justin Schoenwald, and Charles Henderson for their unwavering efforts to make FORCAST a reality. R.Y.S. is supported by USRA contract 209000771 to the Space Science Institute. Based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. NR 27 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L23 DI 10.1088/2041-8205/749/2/L23 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300007 ER PT J AU Harvey, PM Adams, JD Herter, TL Gull, G Schoenwald, J Keller, LD De Buizer, JM Vacca, W Reach, W Becklin, EE AF Harvey, Paul M. Adams, Joseph D. Herter, Terry L. Gull, George Schoenwald, Justin Keller, Luke D. De Buizer, James M. Vacca, William Reach, William Becklin, E. E. TI FIRST SCIENCE RESULTS FROM SOFIA/FORCAST: SUPER-RESOLUTION IMAGING OF THE S140 CLUSTER AT 37 mu m SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE infrared: general; ISM: individual objects (S140); stars: formation ID ASTRONOMY; EMISSION; DECONVOLUTION; CONTINUUM; REGIONS; RADIO; SOFIA AB We present 37 mu m imaging of the S140 complex of infrared sources centered on IRS1 made with the FORCAST camera on SOFIA. These observations are the longest wavelength imaging to resolve clearly the three main sources seen at shorter wavelengths, IRS 1, 2, and 3, and are nearly at the diffraction limit of the 2.5 m telescope. We also obtained a small number of images at 11 and 31 mu m that are useful for flux measurement. Our images cover the area of several strong submillimeter sources seen in the area-SMM 1, 2, and 3-that are not coincident with any mid-infrared sources and are not visible in our longer wavelength imaging either. Our new observations confirm previous estimates of the relative dust optical depth and source luminosity for the components in this likely cluster of early B stars. We also investigate the use of super-resolution to go beyond the basic diffraction limit in imaging on SOFIA and find that the van Cittert algorithm, together with the "multi-resolution" technique, provides excellent results. C1 [Harvey, Paul M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Adams, Joseph D.; Herter, Terry L.; Gull, George; Schoenwald, Justin] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Keller, Luke D.] Ithaca Coll, Dept Phys, Ctr Nat Sci 264, Ithaca, NY 14850 USA. [De Buizer, James M.; Vacca, William; Reach, William; Becklin, E. E.] NASA, SOFIA Univ Space Res Assoc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Becklin, E. E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Harvey, PM (reprint author), Univ Texas Austin, Dept Astron, 1 Univ Stn C1400, Austin, TX 78712 USA. EM pmh@astro.as.utexas.edu; jdadams@astro.cornell.edu; tlh10@cornell.edu; geg3@cornell.edu; jps10@cornell.edu; lkeller@ithaca.edu; jdebuizer@sofia.usra.edu; wvacca@sofia.usra.edu; wreach@sofia.usra.edu; ebecklin@sofia.usra.edu FU NASA [8500-98-014]; USRA [08521-12]; Canadian Space Agency FX This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association (USRA), Inc., under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided to Cornell University by NASA through award 8500-98-014 issued by USRA. Support at the University of Texas was provided by USRA award 08521-12. We also especially thank W. de Wit for providing the digital versions of the 24.5 mu m images for both mu Cep and S140 and acknowledge insightful comments from D. Lester and an anonymous referee. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. NR 21 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L20 DI 10.1088/2041-8205/749/2/L20 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300004 ER PT J AU Herter, TL Adams, JD De Buizer, JM Gull, GE Schoenwald, J Henderson, CP Keller, LD Nikola, T Stacey, G Vacca, WD AF Herter, T. L. Adams, J. D. De Buizer, J. M. Gull, G. E. Schoenwald, J. Henderson, C. P. Keller, L. D. Nikola, T. Stacey, G. Vacca, W. D. TI FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: THE FORCAST MID-INFRARED CAMERA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE infrared: general; instrumentation: detectors; telescopes AB The Stratospheric Observatory For Infrared Astronomy (SOFIA) completed its first light flight in May of 2010 using the facility mid-infrared instrument FORCAST. Since then, FORCAST has successfully completed 13 science flights on SOFIA. In this Letter, we describe the design, operation, and performance of FORCAST as it relates to the initial three Short Science flights. FORCAST was able to achieve near-diffraction-limited images for lambda > 30 mu m allowing unique science results from the start with SOFIA. We also describe ongoing and future modifications that will improve overall capabilities and performance of FORCAST. C1 [Herter, T. L.; Adams, J. D.; Gull, G. E.; Schoenwald, J.; Henderson, C. P.; Nikola, T.; Stacey, G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [De Buizer, J. M.; Vacca, W. D.] NASA, Univ Space Res Assoc, Ames Res Ctr, Moffett Field, CA 94035 USA. [Keller, L. D.] Ithaca Coll, Dept Phys, Ithaca, NY 14850 USA. RP Herter, TL (reprint author), Cornell Univ, Dept Astron, 202 Space Sci Bldg, Ithaca, NY 14853 USA. FU NASA [8500-98-014] FX We thank R. Grashuis, S. Adams, H. Jakob, A. Reinacher, and U. Lampater for their SOFIA telescope engineering and operations support. We also thank the SOFIA flight crews and mission operations team (A. Meyer, N. McKown, C. Kaminski) for their SOFIA flight planning and flight support. We also wish to recognize Lea Hirsch and Jason Wang, Cornell undergraduates, who joined the FORCAST team to participate in the basic flights and tirelessly sifted through the data set to help with calibration. This work is based on observations made with the NASA/DLR Stratospheric Observatory For Infrared Astronomy (SOFIA). SOFIA science mission operations are conducted jointly by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901. Financial support for FORCAST was provided by NASA through award 8500-98-014 issued by USRA. NR 9 TC 40 Z9 40 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2012 VL 749 IS 2 AR L18 DI 10.1088/2041-8205/749/2/L18 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 923SD UT WOS:000302638300002 ER EF