FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Wright, SK
Byrd, GV
Renner, HM
Sowls, AL
AF Wright, Sadie K.
Byrd, G. Vernon
Renner, Heather M.
Sowls, Arthur L.
TI Breeding ecology of Red-faced Cormorants in the Pribilof Islands, Alaska
SO JOURNAL OF FIELD ORNITHOLOGY
LA English
DT Article
DE Alaska Maritime National Wildlife Refuge; Bering Sea; endemic; long-term
monitoring; Phalacrocorax urile; reproductive parameters; seabird;
sensitive species
ID PISCIVOROUS SEABIRDS
AB Red-faced Cormorants (Phalacrocorax urile) are North Pacific endemics recognized as a vulnerable species, but little is known about their breeding ecology. We studied Red-faced Cormorants on St. Paul Island, Alaska, from 1975 to 2009, with more detailed data collected in 2004 and 2005. Mean clutch sizes in 2004 (3.2 +/- 0.8 [SD] eggs) and 2005 (3.1 +/- 0.8 eggs) were similar to the long-term average (2.9 +/- 0.3 eggs from 1976 to 2009). The mean laying interval in 2004 and 2005 was 2.15 +/- 0.80 d (N= 407), and the mean egg period (number of days between laying of an egg and hatching) was 31.1 +/- 1.4 d (N= 158). Approximately 64 +/- 17% of eggs hatched during the period from 1975 to 2009. The mean number of chicks per nest in 2004 and 2005 was 2.8 +/- 0.8 (N= 232), and the mean number of fledglings per initiated nest in all years was 1.22 +/- 0.52. Chicks fledged 46 to 66 d posthatching. In 2004 and 2005, the primary causes of egg loss were predation by Arctic foxes (Vulpes lagopus) and destruction of eggs and abandonment of nests due to storms. Starvation was the primary cause of nestling mortality in both years. Because chicks are dependent on parents to provide food for over 45 d, consistent near-shore foraging opportunities must be available. From 1975 to 2009, Red-faced Cormorants experienced only 1 yr of complete reproductive failure (1984). The consistent reproductive success of Red-faced Cormorants suggests that conditions may be relatively stable for this species on St. Paul Island, or that the variability in their breeding ecology (e.g., phenology, clutch sizes, and incubation strategies) provides the flexibility needed to successfully fledge some chicks nearly every year. RESUMEN Phalacrocorax urile es una especies endemica del Pacifico norte y reconocida como vulnerable, pero poco se conoce sobre su ecologia reproductiva. Estudiamos P. urile en la isla St. Paul, Alaska, desde 1975 hasta 2009, con datos colectados mas detalladamente en 2004 y 2005. El tamano promedio de la nidada en el 2004 (3.2 +/- 0.8 [SD] huevos) y en el 2005 (3.1 +/- 0.8 huevos) fueron similares a el promedio a lo largo del estudio (2.9 +/- 0.3 huevos desde 19762009). El intervalo promedio de la puesta en 2004 y 2005 fue 2.15 +/- 0.80 d (N= 407), y el promedio del periodo de huevos (numero de dias entre la puesta del primer huevo y la eclosion) fue 31.1 +/- 1.4 d (N= 158). Aproximadamente 64 +/- 17% de los huevo eclosionaron exitosamente en el periodo comprendido entre 1975 y 2009. El numero promedio de polluelos por nido en 2004 y 2005 fue de 2.8 +/- 0.8 (N= 232), y el numero promedio de volantones que salieron por nido activo en todos los anos fue de 1.22 +/- 0.52. Los polluelos salieron del nido entre 46 y 66 dias despues de haber eclosionado. En 2004 y 2005, la principal causa de perdida de huevos fue la depredacion por parte del zorro artico (Vulpes lagopus), y destruccion de huevos y abandono de nidos debido a tormentas. Desnutricion fue la primera causa de mortalidad de polluelos en ambos anos. Debido a que los polluelos dependen de los padres para alimentarse por mas de 45 dias, la disponibilidad de areas para buscar alimento cerca a la orilla es importante. Desde 1975 hasta 2009, P. urile experimento un solo ano de completo fracaso reproductivo (1984). El constante exito reproductivo de P. urile sugiere que las condiciones para esta especie son relativamente estables en la isla St. Paul o que la variabilidad en su ecologia reproductiva (e.g.
, fenologia, tamano de la nidada y estrategias de incubacion) provee la flexibilidad necesaria para que salgan exitosamente algunos polluelos del nido cada ano.
C1 [Wright, Sadie K.; Byrd, G. Vernon; Renner, Heather M.; Sowls, Arthur L.] Alaska Maritime Natl Wildlife Refuge, Homer, AK 99603 USA.
RP Wright, SK (reprint author), Natl Marine Fisheries Serv, Protected Resources Div, 709 West 9th St, Juneau, AK 99801 USA.
EM sadie.wright@noaa.gov
NR 33
TC 2
Z9 2
U1 3
U2 27
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0273-8570
J9 J FIELD ORNITHOL
JI J. Field Ornithol.
PD MAR
PY 2013
VL 84
IS 1
BP 49
EP 57
DI 10.1111/jofo.12005
PG 9
WC Ornithology
SC Zoology
GA 095IX
UT WOS:000315329000006
ER
PT J
AU Tennyson, J
Bernath, PF
Brown, LR
Campargue, A
Csaszar, AG
Daumont, L
Gamache, RR
Hodges, JT
Naumenko, OV
Polyansky, OL
Rothman, LS
Vandaele, AC
Zobov, NF
Al Derzi, AR
Fabri, C
Fazliev, AZ
Furtenbacher, T
Gordon, IE
Lodi, L
Mizus, II
AF Tennyson, Jonathan
Bernath, Peter F.
Brown, Linda R.
Campargue, Alain
Csaszar, Attila G.
Daumont, Ludovic
Gamache, Robert R.
Hodges, Joseph T.
Naumenko, Olga V.
Polyansky, Oleg L.
Rothman, Laurence S.
Vandaele, Ann Carine
Zobov, Nikolai F.
Al Derzi, Afaf R.
Fabri, Csaba
Fazliev, Alexander Z.
Furtenbacher, Tibor
Gordon, Iouli E.
Lodi, Lorenzo
Mizus, Irina I.
TI IUPAC critical evaluation of the rotational-vibrational spectra of water
vapor, Part III: Energy levels and transition wavenumbers for (H2O)-O-16
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Water vapor; Transition wavenumbers; Atmospheric physics; Energy levels;
MARVEL; Information system; Database; W@DIS; Infrared spectra; Microwave
spectra
ID MOLECULAR SPECTROSCOPIC DATABASE; HIGH-RESOLUTION SPECTRUM; THZ
FREQUENCY REGION; FOURIER-TRANSFORM SPECTROSCOPY; PADE HAMILTONIAN
OPERATOR; EMPIRICAL LINE PARAMETERS; RING-DOWN SPECTROSCOPY; HIGHLY
EXCITED-STATES; LAMB-DIP TECHNIQUE; MU-M
AB This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, (H2O)-O-16. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to g determine the rovibrational energy levels of the electronic ground state of (H2O)-O-16 from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of (H2O)-O-16 contains two components, an ortho (o) and a para (p) one. For o-(H2O)-O-16 and p-(H2O)-O-16, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-(H2O)-O-16 and p-(H2O)-O-16, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Tennyson, Jonathan; Polyansky, Oleg L.; Al Derzi, Afaf R.; Lodi, Lorenzo] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England.
[Bernath, Peter F.] Old Dominion Univ, Norfolk, VA USA.
[Brown, Linda R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Campargue, Alain] Univ Grenoble 1, Grenoble, France.
[Csaszar, Attila G.; Fabri, Csaba; Furtenbacher, Tibor] Eotvos Lorand Univ, Budapest, Hungary.
[Daumont, Ludovic] Univ Reims, Reims, France.
[Gamache, Robert R.] Univ Massachusetts, Lowell, MA USA.
[Hodges, Joseph T.] NIST, Gaithersburg, MD 20899 USA.
[Naumenko, Olga V.; Fazliev, Alexander Z.] Russian Acad Sci, Inst Atmospher Opt, Tomsk, Russia.
[Rothman, Laurence S.; Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vandaele, Ann Carine] Inst Aeron Spatiale Belg, Brussels, Belgium.
[Zobov, Nikolai F.; Mizus, Irina I.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia.
RP Tennyson, J (reprint author), Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
EM j.tennyson@ucl.ac.UK
RI Csaszar, Attila/A-5241-2009; Bernath, Peter/B-6567-2012; Tennyson,
Jonathan/I-2222-2012; Lodi, Lorenzo/C-6009-2013; Fabri,
Csaba/D-3858-2017;
OI Rothman, Laurence/0000-0002-3837-4847; Bernath,
Peter/0000-0002-1255-396X; Tennyson, Jonathan/0000-0002-4994-5238;
Gordon, Iouli/0000-0003-4763-2841
FU International Union of Pure and Applied Chemistry [2004-035-1-100];
European Research Council [267219]; Scientific Research Fund of Hungary
[OTKA K77825, NK83583]; National Science Foundation of the U.S.A.
[ATM-0803135]; Belgian Federal Science Policy Office [EV/35/3A,
SD/AT/01A, PRODEX 1514901NLSFe(IC)]; NASA Earth Observing System
[NAG5-13534]; Groupement de Recherche International SAMIA (Spectroscopie
d'Absorption des Molecules d'Interet Atmospherique)
FX We all thank the International Union of Pure and Applied Chemistry for
funding under Project 2004-035-1-100 (a database of water transitions
from experiment and theory). In addition, this work has received partial
support from the UK Natural Environment Research Council, the Royal
Society, the European Research Council under Advanced Investigator
Project 267219, the Scientific Research Fund of Hungary (Grant OTKA
K77825 and NK83583), NATO, the National Science Foundation of the U.S.A.
through Grant No. ATM-0803135, the Russian Foundation for Basic
Research, the Belgian Federal Science Policy Office (contracts EV/35/3A,
SD/AT/01A, PRODEX 1514901NLSFe(IC)), the Belgian National Fund for
Scientific Research (FRFC contracts), the Communaute de Belgique (Action
de Recherche Concertees), NASA Earth Observing System (EOS), under Grant
NAG5-13534, and the Programme National LEFE (CHAT) of CNRS (INSU). This
work is partly supported by the Groupement de Recherche International
SAMIA (Spectroscopie d'Absorption des Molecules d'Interet Atmospherique)
between CNRS (France) and RFBR (Russia). Part of the research described
in this paper was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contracts and grants with the National
Aeronautics and Space Administration. Dr. Semen N. Mikhailenko is
thanked for his help collecting experimental sources of measured
transitions.
NR 231
TC 73
Z9 78
U1 6
U2 88
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
EI 1879-1352
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD MAR
PY 2013
VL 117
BP 29
EP 58
DI 10.1016/j.jqsrt.2012.10.002
PG 30
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 095VF
UT WOS:000315362400005
ER
PT J
AU Xu, F
West, RA
Davis, AB
AF Xu, Feng
West, Robert A.
Davis, Anthony B.
TI A hybrid method for modeling polarized radiative transfer in a
spherical-shell planetary atmosphere
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Polarized radiative transfer; Spherical-shell atmosphere; Picard
iteration; Pseudo-spherical approximation; Titan haze
ID MARKOV-CHAIN FORMALISM; PICARD ITERATIVE APPROXIMATION; TRANSFER CODE;
PHASE FUNCTIONS; SCATTERING; PARTICLES; RETRIEVAL; GEOMETRY; EQUATION;
LIGHT
AB The Markov chain method is developed for polarized radiative transfer in a pseudo-spherical atmosphere with solar illumination. This solution is then used as an initial guess of the radiation field for a spherical atmosphere. By use of the short characteristic method, a convergent radiation field throughout the atmosphere is achieved after a few Picard iterations. We verified this hybrid method by comparing numerical results to those obtained by a backward Monte Carlo calculation. We carried out a demonstration calculation by simulating the Titan haze reflected intensity land Stokes parameter Q and degree of linear polarization at 934.8 nm wavelength. Comparison of the I and Q images to those measured by the Imaging Science Subsystem instrument on the Cassini spacecraft shows the hybrid method to be useful for radiative transfer analyses for (both optically and physically) thick spherical atmospheres. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Xu, Feng; West, Robert A.; Davis, Anthony B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Xu, Feng] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.
RP Xu, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Feng.Xu@jpl.nasa.gov
RI Xu, Feng/G-3673-2013
FU National Aeronautics and Space Administration
FX This work was done at the Jet Propulsion Laboratory, California
Institute of Technology under contract with the National Aeronautics and
Space Administration. One of the authors (F. Xu) is grateful to
Professor Larry Esposito at the University of Colorado for assistance
during his pursuit of developing the Markov chain formalism for
polarized reflectance computation for plane-parallel atmosphere, and Dr.
Philip Dumont at the Jet Propulsion Laboratory for some helpful
discussions regarding the iterative method for modeling radiative
transfer in Titan's atmosphere. We thank the anonymous reviewers for
their thorough evaluation and constructive comments for improving the
paper.
NR 36
TC 4
Z9 4
U1 0
U2 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD MAR
PY 2013
VL 117
BP 59
EP 70
DI 10.1016/j.jqsrt.2012.10.013
PG 12
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 095VF
UT WOS:000315362400006
ER
PT J
AU Norbury, JW
AF Norbury, John W.
TI Light ion and multiple nucleon removal due to electromagnetic
dissociation
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Electromagnetic dissociation; Light ions; Space radiation
ID PHOTONEUTRON CROSS-SECTIONS; RELATIVISTIC HEAVY-IONS; GIANT DIPOLE
RESONANCE; AU-197 TARGETS; PHOTO-NEUTRON; COULOMB DISSOCIATION;
FRAGMENTATION MODEL; COLLISIONS; PROJECTILES; EMISSION
AB Light ion (H and He isotopes) and neutron production in galactic cosmic ray interactions are important for space radiation analyses. They occur via strong or electromagnetic dissociation (EMD) interactions. A parameterization for single nucleon, multiple nucleon and light ion production in EMD is developed in this paper. It supersedes the previous work in the following ways. Firstly, the calculations are compared to a more extensive set of experimental data. Secondly, EMD calculations for alpha particle production are in better agreement with experiment. Thirdly, a parameterization of multiple nucleon removal is developed and compared to data. Overall, the present work includes more reactions and compares better to experimental data than previous work. Published by Elsevier B.V.
C1 NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Norbury, JW (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
EM john.w.norbury@nasa.gov
NR 57
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD MAR 1
PY 2013
VL 703
BP 220
EP 243
DI 10.1016/j.nima.2012.10.027
PG 24
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 086KY
UT WOS:000314683700032
ER
PT J
AU Little, MP
Azizova, TV
Bazyka, D
Bouffler, SD
Cardis, E
Chekin, S
Chumak, VV
Cucinotta, FA
de Vathaire, F
Hall, P
Harrison, JD
Hildebrandt, G
Ivanov, V
Kashcheev, VV
Klymenko, SV
Laurent, O
Ozasa, K
Tapio, S
Taylor, AM
Tzoulaki, I
Vandoolaeghe, WL
Wakeford, R
Zablotska, L
Zhang, W
Lipshultz, SE
AF Little, Mark P.
Azizova, Tamara V.
Bazyka, Dimitry
Bouffler, Simon D.
Cardis, Elisabeth
Chekin, Sergey
Chumak, Vadim V.
Cucinotta, Francis A.
de Vathaire, Florent
Hall, Per
Harrison, John D.
Hildebrandt, Guido
Ivanov, Victor
Kashcheev, Valeriy V.
Klymenko, Sergiy V.
Laurent, Olivier
Ozasa, Kotaro
Tapio, Soile
Taylor, Andrew M.
Tzoulaki, Ioanna
Vandoolaeghe, Wendy L.
Wakeford, Richard
Zablotska, Lydia
Zhang, Wei
Lipshultz, Steven E.
TI Comment on "Dose-responses from multi-model inference for the non-cancer
disease mortality of atomic bomb survivors" (Radiat. Environ. Biophys
(2012) 51:165-178) by Schollnberger et al.
SO RADIATION AND ENVIRONMENTAL BIOPHYSICS
LA English
DT Letter
ID CIRCULATORY DISEASE; IONIZING-RADIATION; EXPOSURE
C1 [Little, Mark P.] NCI, Radiat Epidemiol Branch, Rockville, MD 20852 USA.
[Azizova, Tamara V.] Southern Urals Biophys Inst, Ozyorsk, Russia.
[Bouffler, Simon D.; Chumak, Vadim V.; Klymenko, Sergiy V.] Res Ctr Radiat Med, Kiev, Ukraine.
[Bouffler, Simon D.; Harrison, John D.; Zhang, Wei] Hlth Protect Agcy, Ctr Radiat Chem & Environm Hazards, Chilton, England.
[Cardis, Elisabeth] Ctr Res Environm Epidemiol CREAL, Barcelona, Spain.
[Chekin, Sergey; Ivanov, Victor; Kashcheev, Valeriy V.] Russian Acad Med Sci, Med Radiol Res Ctr, Obninsk, Russia.
[Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Radiat Hlth Off, Houston, TX 77058 USA.
[de Vathaire, Florent] Inst Gustave Roussy, INSERM, Unite U1018, Radiat Epidemiol Grp, F-94805 Villejuif, France.
[Hall, Per] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden.
[Hildebrandt, Guido] Univ Rostock, Dept Radiotherapy & Radiat Oncol, D-18055 Rostock, Germany.
[Laurent, Olivier] Univ Calif Irvine, Coll Hlth Sci, Program Publ Hlth, Irvine, CA USA.
[Laurent, Olivier] LEPID, SRBE, PRP HOM, IRSN,Lab Epidemiol, Fontenay Aux Roses, France.
[Ozasa, Kotaro] Radiat Effects Res Fdn, Dept Epidemiol, Hiroshima, Japan.
[Tapio, Soile] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Radiat Biol ISB, Oberschleissheim, Germany.
[Taylor, Andrew M.] UCL Inst Cardiovasc Sci, London, England.
[Taylor, Andrew M.] Great Ormond St Hosp Sick Children, London WC1N 3JH, England.
[Tzoulaki, Ioanna; Vandoolaeghe, Wendy L.] Univ London Imperial Coll Sci Technol & Med, Fac Med, Dept Epidemiol & Biostat, London, England.
[Wakeford, Richard] Univ Manchester, Dalton Nucl Inst, Manchester, Lancs, England.
[Zablotska, Lydia] Univ Calif San Francisco, Sch Med, Dept Epidemiol & Biostat, San Francisco, CA USA.
[Lipshultz, Steven E.] Univ Miami, Dept Pediat, Leonard M Miller Sch Med, Miami, FL 33152 USA.
RP Little, MP (reprint author), NCI, Radiat Epidemiol Branch, Executive Plaza South,6120 Executive Blvd MSC 723, Rockville, MD 20852 USA.
EM mark.little@nih.gov
RI Tapio, Soile/M-7358-2014; Kashcheev, Valeriy/L-7794-2015; Chumak,
Vadim/N-6960-2015; Ivanov, Victor/R-9385-2016; Cardis,
Elisabeth/C-3904-2017;
OI Klymenko, Sergiy/0000-0002-9758-7316; Little, Mark/0000-0003-0980-7567;
Tapio, Soile/0000-0001-9860-3683; Kashcheev,
Valeriy/0000-0003-4108-9761; Chumak, Vadim/0000-0001-6045-9356; Ivanov,
Victor/0000-0003-1372-0018; Bazyka, Dimitry/0000-0001-9982-5990;
Wakeford, Richard/0000-0002-2934-0987
NR 10
TC 6
Z9 6
U1 1
U2 9
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0301-634X
J9 RADIAT ENVIRON BIOPH
JI Radiat. Environ. Biophys.
PD MAR
PY 2013
VL 52
IS 1
BP 157
EP 159
DI 10.1007/s00411-012-0453-6
PG 3
WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine
& Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental
Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging
GA 096DU
UT WOS:000315385100017
PM 23296519
ER
PT J
AU Aartsen, MG
Abbasi, R
Abdou, Y
Ackermann, M
Adams, J
Aguilar, JA
Ahlers, M
Altmann, D
Andeen, K
Auffenberg, J
Bai, X
Baker, M
Barwick, SW
Baum, V
Bay, R
Beattie, K
Beatty, JJ
Bechet, S
Tjus, JB
Becker, KH
Bell, M
Benabderrahmane, ML
BenZvi, S
Berdermann, J
Berghaus, P
Berley, D
Bernardini, E
Bertrand, D
Besson, DZ
Bindig, D
Bissok, M
Blaufuss, E
Blumenthal, J
Boersma, DJ
Bohaichuk, S
Bohm, C
Bose, D
Boser, S
Botner, O
Brayeur, L
Brown, AM
Bruijn, R
Brunner, J
Carson, M
Casey, J
Casier, M
Chirkin, D
Christy, B
Clark, K
Clevermann, F
Cohen, S
Cowen, DF
Silva, AHC
Danninger, M
Daughhetee, J
Davis, JC
De Clercq, C
De Ridder, S
Descamps, F
Desiati, P
de Vries-Uiterweerd, G
DeYoung, T
Diaz-Velez, JC
Dreyer, J
Dumm, JP
Dunkman, M
Eagan, R
Eisch, J
Ellsworth, RW
Engdegard, O
Euler, S
Evenson, PA
Fadiran, O
Fazely, AR
Fedynitch, A
Feintzeig, J
Feusels, T
Filimonov, K
Finley, C
Fischer-Wasels, T
Flis, S
Franckowiak, A
Franke, R
Frantzen, K
Fuchs, T
Gaisser, TK
Gallagher, J
Gerhardt, L
Gladstone, L
Glusenkamp, T
Goldschmidt, A
Golup, G
Goodman, JA
Gora, D
Grant, D
Gross, A
Grullon, S
Gurtner, M
Ha, C
Ismail, AH
Hallgren, A
Halzen, F
Hanson, K
Heereman, D
Heimann, P
Heinen, D
Helbing, K
Hellauer, R
Hickford, S
Hill, GC
Hoffman, KD
Hoffmann, R
Homeier, A
Hoshina, K
Huelsnitz, W
Hulth, PO
Hultqvist, K
Hussain, S
Ishihara, A
Jacobi, E
Jacobsen, J
Japaridze, GS
Jlelati, O
Kappes, A
Karg, T
Karle, A
Kiryluk, J
Kislat, F
Klas, J
Klein, SR
Kohne, JH
Kohnen, G
Kolanoski, H
Kopke, L
Kopper, C
Kopper, S
Koskinen, DJ
Kowalski, M
Krasberg, M
Kroll, G
Kunnen, J
Kurahashi, N
Kuwabara, T
Labare, M
Landsman, H
Larson, MJ
Lauer, R
Lesiak-Bzdak, M
Unemann, JL
Madsen, J
Maruyama, R
Mase, K
Matis, HS
McNally, F
Meagher, K
Merck, M
Meszaros, P
Meures, T
Miarecki, S
Middell, E
Milke, N
Miller, J
Mohrmann, L
Montaruli, T
Morse, R
Nahnhauer, R
Naumann, U
Nowicki, SC
Nygren, DR
Obertacke, A
Odrowski, S
Olivas, A
Olivo, M
O'Murchadha, A
Panknin, S
Paul, L
Pepper, JA
de los Heros, CP
Pieloth, D
Pirk, N
Posselt, J
Price, PB
Przybylski, GT
Radel, L
Rawlins, K
Redl, P
Resconi, E
Rhode, W
Ribordy, M
Richman, M
Riedel, B
Rodrigues, JP
Rothmaier, F
Rott, C
Ruhe, T
Ruzybayev, B
Ryckbosch, D
Saba, SM
Salameh, T
Sander, HG
Santander, M
Sarkar, S
Schatto, K
Scheel, M
Scheriau, F
Schmidt, T
Schmitz, M
Schoenen, S
Schoneberg, S
Schonherr, L
Schonwald, A
Schukraft, A
Schulte, L
Schulz, O
Seckel, D
Seo, SH
Sestayo, Y
Seunarine, S
Sheremata, C
Smith, MWE
Soiron, M
Soldin, D
Spiczak, GM
Spiering, C
Stamatikos, M
Stanev, T
Stasik, A
Stezelberger, T
Stokstad, RG
Stossl, A
Strahler, EA
Strom, R
Sullivan, GW
Taavola, H
Taboada, I
Tamburro, A
Ter-Antonyan, S
Tilav, S
Toale, PA
Toscano, S
Usner, M
van der Drift, D
van Eijndhoven, N
Van Overloop, A
van Santen, J
Vehring, M
Voge, M
Vraeghe, M
Walck, C
Waldenmaier, T
Wallraff, M
Walter, M
Wasserman, R
Weaver, C
Wendt, C
Westerhoff, S
Whitehorn, N
Wiebe, K
Wiebusch, CH
Williams, DR
Wissing, H
Wolf, M
Wood, TR
Woschnagg, K
Xu, C
Xu, DL
Xu, XW
Yanez, JP
Yodh, G
Yoshida, S
Zarzhitsky, P
Ziemann, J
Zierke, S
Zilles, A
Zoll, M
AF Aartsen, M. G.
Abbasi, R.
Abdou, Y.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Altmann, D.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S. W.
Baum, V.
Bay, R.
Beattie, K.
Beatty, J. J.
Bechet, S.
Tjus, J. Becker
Becker, K. -H.
Bell, M.
Benabderrahmane, M. L.
BenZvi, S.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D. Z.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D. J.
Bohaichuk, S.
Bohm, C.
Bose, D.
Boeser, S.
Botner, O.
Brayeur, L.
Brown, A. M.
Bruijn, R.
Brunner, J.
Carson, M.
Casey, J.
Casier, M.
Chirkin, D.
Christy, B.
Clark, K.
Clevermann, F.
Cohen, S.
Cowen, D. F.
Silva, A. H. Cruz
Danninger, M.
Daughhetee, J.
Davis, J. C.
De Clercq, C.
De Ridder, S.
Descamps, F.
Desiati, P.
de Vries-Uiterweerd, G.
DeYoung, T.
Diaz-Velez, J. C.
Dreyer, J.
Dumm, J. P.
Dunkman, M.
Eagan, R.
Eisch, J.
Ellsworth, R. W.
Engdegard, O.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Fedynitch, A.
Feintzeig, J.
Feusels, T.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Franckowiak, A.
Franke, R.
Frantzen, K.
Fuchs, T.
Gaisser, T. K.
Gallagher, J.
Gerhardt, L.
Gladstone, L.
Gluesenkamp, T.
Goldschmidt, A.
Golup, G.
Goodman, J. A.
Gora, D.
Grant, D.
Gross, A.
Grullon, S.
Gurtner, M.
Ha, C.
Ismail, A. Haj
Hallgren, A.
Halzen, F.
Hanson, K.
Heereman, D.
Heimann, P.
Heinen, D.
Helbing, K.
Hellauer, R.
Hickford, S.
Hill, G. C.
Hoffman, K. D.
Hoffmann, R.
Homeier, A.
Hoshina, K.
Huelsnitz, W.
Hulth, P. O.
Hultqvist, K.
Hussain, S.
Ishihara, A.
Jacobi, E.
Jacobsen, J.
Japaridze, G. S.
Jlelati, O.
Kappes, A.
Karg, T.
Karle, A.
Kiryluk, J.
Kislat, F.
Klaes, J.
Klein, S. R.
Koehne, J. -H.
Kohnen, G.
Kolanoski, H.
Koepke, L.
Kopper, C.
Kopper, S.
Koskinen, D. J.
Kowalski, M.
Krasberg, M.
Kroll, G.
Kunnen, J.
Kurahashi, N.
Kuwabara, T.
Labare, M.
Landsman, H.
Larson, M. J.
Lauer, R.
Lesiak-Bzdak, M.
Unemann, J. L.
Madsen, J.
Maruyama, R.
Mase, K.
Matis, H. S.
McNally, F.
Meagher, K.
Merck, M.
Meszaros, P.
Meures, T.
Miarecki, S.
Middell, E.
Milke, N.
Miller, J.
Mohrmann, L.
Montaruli, T.
Morse, R.
Nahnhauer, R.
Naumann, U.
Nowicki, S. C.
Nygren, D. R.
Obertacke, A.
Odrowski, S.
Olivas, A.
Olivo, M.
O'Murchadha, A.
Panknin, S.
Paul, L.
Pepper, J. A.
de los Heros, C. Perez
Pieloth, D.
Pirk, N.
Posselt, J.
Price, P. B.
Przybylski, G. T.
Raedel, L.
Rawlins, K.
Redl, P.
Resconi, E.
Rhode, W.
Ribordy, M.
Richman, M.
Riedel, B.
Rodrigues, J. P.
Rothmaier, F.
Rott, C.
Ruhe, T.
Ruzybayev, B.
Ryckbosch, D.
Saba, S. M.
Salameh, T.
Sander, H. -G.
Santander, M.
Sarkar, S.
Schatto, K.
Scheel, M.
Scheriau, F.
Schmidt, T.
Schmitz, M.
Schoenen, S.
Schoeneberg, S.
Schoenherr, L.
Schoenwald, A.
Schukraft, A.
Schulte, L.
Schulz, O.
Seckel, D.
Seo, S. H.
Sestayo, Y.
Seunarine, S.
Sheremata, C.
Smith, M. W. E.
Soiron, M.
Soldin, D.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stasik, A.
Stezelberger, T.
Stokstad, R. G.
Stoessl, A.
Strahler, E. A.
Stroem, R.
Sullivan, G. W.
Taavola, H.
Taboada, I.
Tamburro, A.
Ter-Antonyan, S.
Tilav, S.
Toale, P. A.
Toscano, S.
Usner, M.
van der Drift, D.
van Eijndhoven, N.
Van Overloop, A.
van Santen, J.
Vehring, M.
Voge, M.
Vraeghe, M.
Walck, C.
Waldenmaier, T.
Wallraff, M.
Walter, M.
Wasserman, R.
Weaver, Ch.
Wendt, C.
Westerhoff, S.
Whitehorn, N.
Wiebe, K.
Wiebusch, C. H.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, C.
Xu, D. L.
Xu, X. W.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Ziemann, J.
Zierke, S.
Zilles, A.
Zoll, M.
CA IceCube Collaboration
TI OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astroparticle physics; cosmic rays
ID ARRIVAL DIRECTIONS; ICECUBE; ASTRONOMY; SPECTRUM
AB We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10(-3) level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 degrees and an amplitude of (-1.58 +/- 0.46(stat) +/- 0.52(sys)) x 10(-3) at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (-3.11 +/- 0.38(stat) +/- 0.96(sys)) x 10(-3).
C1 [Aartsen, M. G.; Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
[Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Descamps, F.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.
[Abdou, Y.; Carson, M.; De Ridder, S.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
[Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kislat, F.; Lauer, R.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany.
[Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland.
[Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Bai, X.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Baum, V.; Koepke, L.; Kroll, G.; Unemann, J. L.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.
[Bay, R.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.] Univ Libre Brussels, Sci Fac CP230, B-1050 Brussels, Belgium.
[Tjus, J. Becker; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany.
[Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Bell, M.; Clark, K.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zierke, S.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Boersma, D. J.; Botner, O.; Engdegard, O.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Bohaichuk, S.; Grant, D.; Nowicki, S. C.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada.
[Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Bose, D.; Brayeur, L.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany.
[Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund, Dept Phys, D-44221 Dortmund, Germany.
[Cowen, D. F.; Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany.
[Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Kiryluk, J.; Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy.
[Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA.
[Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England.
[Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Aartsen, MG (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
RI Taavola, Henric/B-4497-2011; Aguilar Sanchez, Juan Antonio/H-4467-2015;
Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Hallgren,
Allan/A-8963-2013; Sarkar, Subir/G-5978-2011; Tjus, Julia/G-8145-2012;
Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014;
Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015
OI Taavola, Henric/0000-0002-2604-2810; Carson,
Michael/0000-0003-0400-7819; Perez de los Heros,
Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed
Lotfi/0000-0003-4410-5886; Aguilar Sanchez, Juan
Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X;
Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033;
Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft,
Anne/0000-0002-9112-5479; Sarkar, Subir/0000-0002-3542-858X; Wiebusch,
Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094;
Koskinen, David/0000-0002-0514-5917; Brunner,
Juergen/0000-0002-5052-7236
FU US National Science Foundation-Office of Polar Programs; US National
Science Foundation-Physics Division; University of Wisconsin Alumni
Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid
infrastructure at the University of Wisconsin-Madison; Open Science Grid
(OSG) grid infrastructure; US Department of Energy; National Energy
Research Scientific Computing Center; Louisiana Optical Network
Initiative (LONI) grid computing resources; National Science and
Engineering Research Council of Canada; Swedish Research Council;
Swedish Polar Research Secretariat; Swedish National Infrastructure for
Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German
Ministry for Education and Research (BMBF); Deutsche
Forschungsgemeinschaft (DFG); Research Department of Plasmas with
Complex Interactions (Bochum), Germany; Fund for Scientific Research
(FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage
scientific and technological research in industry (IWT); Belgian Federal
Science Policy Office (Belspo); University of Oxford, United Kingdom;
Marsden Fund, New Zealand; Australian Research Council; Japan Society
for Promotion of Science (JSPS); Swiss National Science Foundation
(SNSF), Switzerland
FX We acknowledge the support from the following agencies: US National
Science Foundation-Office of Polar Programs, US National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure
at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid
infrastructure; US Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; National Science and Engineering
Research Council of Canada; Swedish Research Council, Swedish Polar
Research Secretariat, Swedish National Infrastructure for Computing
(SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German
Ministry for Education and Research (BMBF), Deutsche
Forschungsgemeinschaft (DFG), Research Department of Plasmas with
Complex Interactions (Bochum), Germany; Fund for Scientific Research
(FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage
scientific and technological research in industry (IWT), Belgian Federal
Science Policy Office (Belspo); University of Oxford, United Kingdom;
Marsden Fund, New Zealand; Australian Research Council; Japan Society
for Promotion of Science (JSPS); the Swiss National Science Foundation
(SNSF), Switzerland.
NR 26
TC 39
Z9 40
U1 1
U2 21
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 55
DI 10.1088/0004-637X/765/1/55
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900055
ER
PT J
AU Ackerman, AS
Marley, MS
AF Ackerman, Andrew S.
Marley, Mark S.
TI PRECIPITATING CONDENSATION CLOUDS IN SUBSTELLAR ATMOSPHERES (vol 556, pg
872, 2001)
SO ASTROPHYSICAL JOURNAL
LA English
DT Correction
C1 [Ackerman, Andrew S.; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Marley, Mark S.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA.
RP Ackerman, AS (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
EM andrew.ackerman@nasa.gov; mark.s.marley@nasa.gov
RI Marley, Mark/I-4704-2013; Ackerman, Andrew/D-4433-2012
OI Ackerman, Andrew/0000-0003-0254-6253
NR 3
TC 1
Z9 1
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 75
DI 10.1088/0004-637X/765/1/75
PG 1
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900075
ER
PT J
AU Ackermann, M
Ajello, M
Allafort, A
Asano, K
Atwood, WB
Baldini, L
Ballet, J
Barbiellini, G
Bastieri, D
Bechtol, K
Bellazzini, R
Bloom, ED
Bonamente, E
Borgland, AW
Bottacini, E
Brandt, TJ
Bregeon, J
Brigida, M
Bruel, P
Buehler, R
Burnett, TH
Busetto, G
Buson, S
Caliandro, GA
Cameron, RA
Caraveo, PA
Casandjian, JM
Cecchi, C
Charles, E
Chaty, S
Chekhtman, A
Cheung, CC
Chiang, J
Cillis, AN
Ciprini, S
Claus, R
Cohen-Tanugi, J
Colafrancesco, S
Conrad, J
Cutini, S
D'Ammando, F
de Palma, F
Dermer, CD
Silva, EDE
Drell, S
Drlica-Wagner, A
Dubois, R
Favuzzi, C
Fegan, SJ
Ferrara, EC
Focke, WB
Fortin, P
Fukazawa, Y
Funk, S
Fusco, P
Gargano, F
Gasparrini, D
Gehrels, N
Germani, S
Giglietto, N
Giordano, F
Giroletti, M
Glanzman, T
Godfrey, G
Grandi, P
Grenier, IA
Grove, JE
Guiriec, S
Hadasch, D
Hayashida, M
Hays, E
Horan, D
Hou, X
Hughes, RE
Jackson, MS
Jogler, T
Johannesson, G
Johnson, RP
Johnson, AS
Kamae, T
Kataoka, J
Kerr, M
Knodlseder, J
Kuss, M
Lande, J
Larsson, S
Latronico, L
Lavalley, C
Lee, SH
Longo, F
Loparco, F
Lott, B
Lovellette, MN
Lubrano, P
Mazziotta, MN
McConville, W
McEnery, JE
Mehault, J
Michelson, PF
Mignani, RP
Mitthumsiri, W
Mizuno, T
Moiseev, AA
Monte, C
Monzani, ME
Morselli, A
Moskalenko, IV
Murgia, S
Naumann-Godo, M
Nemmen, R
Nishino, S
Norris, JP
Nuss, E
Ohsugi, T
Omodei, N
Orienti, M
Orlando, E
Ormes, JF
Paneque, D
Panetta, JH
Pelassa, V
Perkins, JS
Pesce-Rollins, M
Pierbattista, M
Piron, F
Pivato, G
Poon, H
Porter, TA
Raino, S
Rando, R
Razzano, M
Razzaque, S
Reimer, A
Reimer, O
Reyes, LC
Ritz, S
Rochester, LS
Romoli, C
Roth, M
Sanchez, DA
Parkinson, PMS
Scargle, JD
Sgro, C
Siskind, EJ
Snyder, A
Spandre, G
Spinelli, P
Stephens, TE
Suson, DJ
Tajima, H
Takahashi, H
Tanaka, T
Thayer, JG
Thayer, JB
Thompson, DJ
Tibaldo, L
Tibolla, O
Tinivella, M
Tosti, G
Troja, E
Usher, TL
Vandenbroucke, J
Vasileiou, V
Vianello, G
Vitale, V
von Kienlin, A
Waite, AP
Wallace, E
Weltevrede, P
Winer, BL
Wood, KS
Wood, M
Yang, Z
Zimmer, S
AF Ackermann, M.
Ajello, M.
Allafort, A.
Asano, K.
Atwood, W. B.
Baldini, L.
Ballet, J.
Barbiellini, G.
Bastieri, D.
Bechtol, K.
Bellazzini, R.
Bloom, E. D.
Bonamente, E.
Borgland, A. W.
Bottacini, E.
Brandt, T. J.
Bregeon, J.
Brigida, M.
Bruel, P.
Buehler, R.
Burnett, T. H.
Busetto, G.
Buson, S.
Caliandro, G. A.
Cameron, R. A.
Caraveo, P. A.
Casandjian, J. M.
Cecchi, C.
Charles, E.
Chaty, S.
Chekhtman, A.
Cheung, C. C.
Chiang, J.
Cillis, A. N.
Ciprini, S.
Claus, R.
Cohen-Tanugi, J.
Colafrancesco, S.
Conrad, J.
Cutini, S.
D'Ammando, F.
de Palma, F.
Dermer, C. D.
do Couto e Silva, E.
Drell, S.
Drlica-Wagner, A.
Dubois, R.
Favuzzi, C.
Fegan, S. J.
Ferrara, E. C.
Focke, W. B.
Fortin, P.
Fukazawa, Y.
Funk, S.
Fusco, P.
Gargano, F.
Gasparrini, D.
Gehrels, N.
Germani, S.
Giglietto, N.
Giordano, F.
Giroletti, M.
Glanzman, T.
Godfrey, G.
Grandi, P.
Grenier, I. A.
Grove, J. E.
Guiriec, S.
Hadasch, D.
Hayashida, M.
Hays, E.
Horan, D.
Hou, X.
Hughes, R. E.
Jackson, M. S.
Jogler, T.
Johannesson, G.
Johnson, R. P.
Johnson, A. S.
Kamae, T.
Kataoka, J.
Kerr, M.
Knoedlseder, J.
Kuss, M.
Lande, J.
Larsson, S.
Latronico, L.
Lavalley, C.
Lee, S. -H.
Longo, F.
Loparco, F.
Lott, B.
Lovellette, M. N.
Lubrano, P.
Mazziotta, M. N.
McConville, W.
McEnery, J. E.
Mehault, J.
Michelson, P. F.
Mignani, R. P.
Mitthumsiri, W.
Mizuno, T.
Moiseev, A. A.
Monte, C.
Monzani, M. E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Naumann-Godo, M.
Nemmen, R.
Nishino, S.
Norris, J. P.
Nuss, E.
Ohsugi, T.
Omodei, N.
Orienti, M.
Orlando, E.
Ormes, J. F.
Paneque, D.
Panetta, J. H.
Pelassa, V.
Perkins, J. S.
Pesce-Rollins, M.
Pierbattista, M.
Piron, F.
Pivato, G.
Poon, H.
Porter, T. A.
Raino, S.
Rando, R.
Razzano, M.
Razzaque, S.
Reimer, A.
Reimer, O.
Reyes, L. C.
Ritz, S.
Rochester, L. S.
Romoli, C.
Roth, M.
Sanchez, D. A.
Parkinson, P. M. Saz
Scargle, J. D.
Sgro, C.
Siskind, E. J.
Snyder, A.
Spandre, G.
Spinelli, P.
Stephens, T. E.
Suson, D. J.
Tajima, H.
Takahashi, H.
Tanaka, T.
Thayer, J. G.
Thayer, J. B.
Thompson, D. J.
Tibaldo, L.
Tibolla, O.
Tinivella, M.
Tosti, G.
Troja, E.
Usher, T. L.
Vandenbroucke, J.
Vasileiou, V.
Vianello, G.
Vitale, V.
von Kienlin, A.
Waite, A. P.
Wallace, E.
Weltevrede, P.
Winer, B. L.
Wood, K. S.
Wood, M.
Yang, Z.
Zimmer, S.
TI DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA
TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC
NUCLEI
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: halos; gamma rays: galaxies;
instrumentation: detectors; intergalactic medium
ID EXTRAGALACTIC MAGNETIC-FIELDS; VHE GAMMA-RAYS; TEV BLAZARS; BACKGROUND
LIGHT; SPACE-TELESCOPE; SOURCE CATALOG; 1ES 0229+200; PULSAR;
CONSTRAINTS; DISCOVERY
AB The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from approximate to 20 MeV to > 300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of gamma rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of gamma-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low-and high-redshift BL Lac AGNs and the TeV blazars 1ES0229 + 200 and 1ES0347-121.
C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
[Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Snyder, A.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Snyder, A.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan.
[Atwood, W. B.; Johnson, R. P.; Razzano, M.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Atwood, W. B.; Johnson, R. P.; Razzano, M.; Ritz, S.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Ballet, J.; Casandjian, J. M.; Chaty, S.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France.
[Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Bastieri, D.; Busetto, G.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Busetto, G.; Buson, S.; Pivato, G.; Poon, H.; Rando, R.; Romoli, C.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy.
[Bonamente, E.; Cecchi, C.; D'Ammando, F.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Brandt, T. J.; Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Brandt, T. J.; Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, F-31028 Toulouse, France.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Burnett, T. H.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Caliandro, G. A.; Hadasch, D.] Inst Ciencies Espai IEEE CSIC, E-08193 Barcelona, Spain.
[Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Chekhtman, A.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA.
[Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA.
[Cillis, A. N.] Inst Astron & Fis Espacio, Parbellon IAFE, RA-1428 Buenos Aires, DF, Argentina.
[Cillis, A. N.; Ferrara, E. C.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Nemmen, R.; Perkins, J. S.; Stephens, T. E.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy.
[Cohen-Tanugi, J.; Lavalley, C.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France.
[Colafrancesco, S.; Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Rome, Italy.
[Conrad, J.; Larsson, S.; Yang, Z.; Zimmer, S.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden.
[Conrad, J.; Jackson, M. S.; Larsson, S.; Yang, Z.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.
[D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy.
[D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy.
[Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Fukazawa, Y.; Nishino, S.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Grandi, P.] INAF IASF Bologna, I-40129 Bologna, Italy.
[Guiriec, S.; Pelassa, V.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA.
[Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan.
[Hou, X.; Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France.
[Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Jackson, M. S.] Royal Inst Technol KTH, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden.
[Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland.
[Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan.
[Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden.
[Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Lee, S. -H.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan.
[McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Mignani, R. P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Moiseev, A. A.; Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA.
[Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA.
[Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
[Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93401 USA.
[Sanchez, D. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany.
[Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Stephens, T. E.] Wyle Labs, El Segundo, CA 90245 USA.
[Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany.
[Vianello, G.] CIFS, I-10133 Turin, Italy.
[Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
EM mar0@uw.edu; mdwood@slac.stanford.edu
RI Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Orlando,
E/R-5594-2016; Tosti, Gino/E-9976-2013; Moskalenko, Igor/A-1301-2007;
Saz Parkinson, Pablo Miguel/I-7980-2013; Rando, Riccardo/M-7179-2013;
Hays, Elizabeth/D-3257-2012; Reimer, Olaf/A-3117-2013; Morselli,
Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Funk, Stefan/B-7629-2015;
Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015;
Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012
OI orienti, monica/0000-0003-4470-7094; Giroletti,
Marcello/0000-0002-8657-8852; Gasparrini, Dario/0000-0002-5064-9495;
Baldini, Luca/0000-0002-9785-7726; Mazziotta, Mario
/0000-0001-9325-4672; Stephens, Thomas/0000-0003-3065-6871; Grandi,
Paola/0000-0003-1848-6013; Caraveo, Patrizia/0000-0003-2478-8018; Sgro',
Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando,
Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862;
Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601;
Pesce-Rollins, Melissa/0000-0003-1790-8018; Moskalenko,
Igor/0000-0001-6141-458X; Reimer, Olaf/0000-0001-6953-1385; Morselli,
Aldo/0000-0002-7704-9553; Funk, Stefan/0000-0002-2012-0080; Johannesson,
Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673;
Gargano, Fabio/0000-0002-5055-6395; giglietto,
nicola/0000-0002-9021-2888
FU K. A. Wallenberg Foundation; Commonwealth Government; Istituto Nazionale
di Astrofisica in Italy; Centre National d'Etudes Spatiales in France
FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant
from the K. A. Wallenberg Foundation.; The Parkes radio telescope is
part of the Australia Telescope which is funded by the Commonwealth
Government for operation as a National Facility managed by CSIRO. We
thank our colleagues for their assistance with the radio timing
observations.; Additional support for science analysis during the
operations phase is gratefully acknowledged from the Istituto Nazionale
di Astrofisica in Italy and the Centre National d'Etudes Spatiales in
France.
NR 41
TC 25
Z9 25
U1 0
U2 22
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 54
DI 10.1088/0004-637X/765/1/54
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900054
ER
PT J
AU Burlaga, LF
Ness, NF
AF Burlaga, L. F.
Ness, N. F.
TI MAGNETIC FIELD STRENGTH FLUCTUATIONS AND THE q-TRIPLET IN THE
HELIOSHEATH: VOYAGER 2 OBSERVATIONS FROM 91.0 TO 94.2 AU AT LATITUDE 30
degrees S
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE solar wind; turbulence; waves
ID NONEXTENSIVE STATISTICAL-MECHANICS; SOLAR-WIND; TURBULENCE;
MULTIFRACTALS; ACCELERATION; HELIOSPHERE; FRACTALS; PLASMA; MODEL
AB Voyager 2 (V2) was in the heliosheath during 2010, at (91.0-94.2) AU from the Sun and at the latitudes (28 degrees.8-29 degrees.3 S) AU, observing solar wind that left the Sun during 2009, when solar activity was very low. There was no feature in B(t) associated with the changes in the plasma parameters observed near 2010.4. The CR-B relation was satisfied. The fluctuations of daily averages of B showed (1) a Gaussian distribution of B, (2) a q-Gaussian of the daily increments of B with q = 1.6, (3) a power-law correlation of B on scales from 1 to 16 days, (4) multifractal structure of B on scales from 1 to 8 days, and (5) a 1/f spectrum of B on scales from 1 to 100 days. The amplitude of the compressive microscale fluctuations of B during several hours on each day is described by the standard deviation (SD) of the 48 s averages of B during the day. Items 2, 3, and 4 determine a "q-triplet" in the heliosheath. Large-scale fluctuations of SD show (1) a lognormal distribution of SD; (2) an average value of SD = 0.19, 20% of the average B; (3) a q-Gaussian distribution of the increments of SD with q = 1.4; (4) a power-law correlation on scales from 1 to 16 days; and (5) a 1/f spectrum on scales from 1 to 100 days. The heliosheath was in a quasi-stationary, metastable equilibrium state with well-defined structure over a wide range of scales near V2 during 2010.
C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA.
[Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA.
RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Code 673, Greenbelt, MD 20771 USA.
EM lburlagahsp@verizon.net; nfnudel@yahoo.com
FU [NNX10AU53G]
FX The data in this paper are from the magnetic field experiment on Voyager
2. N.F.N. was partially supported by grant NNX10AU53G to the Catholic
University of America. McClanahan and S. Kramer carried out the
processing of the data. The mag-rolls and "0-offset tables" were
computed by D. Berdichevsky.
NR 48
TC 10
Z9 10
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 35
DI 10.1088/0004-637X/765/1/35
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900035
ER
PT J
AU Howard, TA
Tappin, SJ
Odstrcil, D
DeForest, CE
AF Howard, T. A.
Tappin, S. J.
Odstrcil, D.
DeForest, C. E.
TI THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE methods: data analysis; solar-terrestrial relations; Sun: corona; Sun:
coronal mass ejections (CMEs); Sun: heliosphere
ID CORONAL MASS EJECTIONS; SOLAR-WIND; STREAMER BLOBS; IMAGER SMEI;
BRIGHTNESS; TRANSIENTS
AB In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features.
C1 [Howard, T. A.; DeForest, C. E.] SW Res Inst, Boulder, CO 80302 USA.
[Tappin, S. J.] Natl Solar Observ, Sunspot, NM 88349 USA.
[Odstrcil, D.] George Mason Univ, Fairfax, VA 22030 USA.
[Odstrcil, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Howard, TA (reprint author), SW Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA.
EM howard@boulder.swri.edu
FU Southwest Research institute; NSF/SHINE Competition [0849916]; USAF;
AFOSR/MURI project
FX Support for this work was provided by an internal grant from the
Southwest Research institute and partly by the NSF/SHINE Competition,
Award 0849916. S.J.T. is supported at NSO by the USAF under a Memorandum
of Agreement. D.O. was partially supported by the AFOSR/MURI project.
NR 36
TC 10
Z9 10
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 45
DI 10.1088/0004-637X/765/1/45
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900045
ER
PT J
AU Menanteau, F
Sifon, C
Barrientos, LF
Battaglia, N
Bond, JR
Crichton, D
Das, S
Devlin, MJ
Dicker, S
Dunner, R
Gralla, M
Hajian, A
Hasselfield, M
Hilton, M
Hincks, AD
Hughes, JP
Infante, L
Kosowsky, A
Marriage, TA
Marsden, D
Moodley, K
Niemack, MD
Nolta, MR
Page, LA
Partridge, B
Reese, ED
Schmitt, BL
Sievers, J
Spergel, DN
Staggs, ST
Switzer, E
Wollack, EJ
AF Menanteau, Felipe
Sifon, Cristobal
Felipe Barrientos, L.
Battaglia, Nicholas
Bond, J. Richard
Crichton, Devin
Das, Sudeep
Devlin, Mark J.
Dicker, Simon
Duenner, Rolando
Gralla, Megan
Hajian, Amir
Hasselfield, Matthew
Hilton, Matt
Hincks, Adam D.
Hughes, John P.
Infante, Leopoldo
Kosowsky, Arthur
Marriage, Tobias A.
Marsden, Danica
Moodley, Kavilan
Niemack, Michael D.
Nolta, Michael R.
Page, Lyman A.
Partridge, Bruce
Reese, Erik D.
Schmitt, Benjamin L.
Sievers, Jon
Spergel, David N.
Staggs, Suzanne T.
Switzer, Eric
Wollack, Edward J.
TI THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES OF
SUNYAEV-ZEL'DOVICH EFFECT CLUSTERS ON THE CELESTIAL EQUATOR
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic background radiation; cosmology: observations; galaxies:
clusters: general; galaxies: distances and redshifts; large-scale
structure of Universe
ID DIGITAL SKY SURVEY; DARK-ENERGY CONSTRAINTS; MASSIVE GALAXY CLUSTERS;
GREATER-THAN 1; DATA RELEASE; SCALING RELATIONS; ABELL CLUSTERS; SQUARE
DEGREES; T RELATION; SAMPLE
AB We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 deg(2) centered on the celestial equator, is divided into two regions. The main region uses 270 deg(2) of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5 m telescope. We confirm a total of 49 clusters to z approximate to 1.3, of which 22 (all at z > 0.55) are new discoveries. For the second region, the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z approximate to 0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z = 1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kT(X) = 7.9 +/- 1.0 keV and combined mass of M-200a = 8.2(-2.5)(+3.3) x 10(14) h(70)(-1) M-circle dot, placing it among the most massive and X-ray-hot clusters known at redshifts beyond z = 1. We also highlight the optically rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z = 0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M-200a = 1.9(-0.4)(+0.6) x 10(15) h(70)(-1) M-circle dot, placing it in the ranks of the most massive known clusters like El Gordo and the Bullet Cluster.
C1 [Menanteau, Felipe; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Sifon, Cristobal; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile.
[Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Battaglia, Nicholas] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA.
[Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R.; Switzer, Eric] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Crichton, Devin; Gralla, Megan; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Das, Sudeep] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Devlin, Mark J.; Dicker, Simon; Reese, Erik D.; Schmitt, Benjamin L.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada.
[Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Durban, South Africa.
[Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Marsden, Danica] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Niemack, Michael D.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA.
[Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Page, Lyman A.; Sievers, Jon; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA.
[Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA.
[Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Menanteau, F (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA.
RI Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Wollack,
Edward/D-4467-2012;
OI Wollack, Edward/0000-0002-7567-4451; Menanteau,
Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074;
Sifon, Cristobal/0000-0002-8149-1352
FU U.S. National Science Foundation [AST-0408698, AST-0965625]; Princeton
University; University of Pennsylvania; Canada Foundation for Innovation
(CFI); CONICYT; Chandra grants [GO1-12008X, GO1-13156X]; NASA ADAP
[NNX11AJ48G]; CFI under Compute Canada; Government of Ontario; Ontario
Research Fund-Research Excellence; University of Toronto; Alfred P.
Sloan Foundation; National Science Foundation; U.S. Department of Energy
Office of Science; SDSS-III Collaboration; University of Arizona;
Brazilian Participation Group; Brookhaven National Laboratory;
University of Cambridge; Carnegie Mellon University; University of
Florida; French Participation Group; German Participation Group; Harvard
University; Instituto de Astrofisica de Canarias; Michigan State/Notre
Dame/JINA Participation Group; Johns Hopkins University; Lawrence
Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max
Planck Institute for Extraterrestrial Physics; New Mexico State
University; New York University; Ohio State University; Pennsylvania
State University; University of Portsmouth; Spanish Participation Group;
University of Tokyo; University of Utah; Vanderbilt University;
University of Virginia; University of Washington; Yale University;
Comision Nacional de Investigacion Cientifica y Tecnologica de Chile
(CONICYT); [PHY-0855887]; [PHY-1214379]; [AST-0707731]
FX This work was supported by the U.S. National Science Foundation through
awards AST-0408698 and AST-0965625 for the ACT project, and PHY-0855887,
PHY-1214379, and AST-0707731. Funding was also provided by Princeton
University, the University of Pennsylvania, a Canada Foundation for
Innovation (CFI) award to UBC, and CONICYT awards to PUC. ACT operates
in the Parque Astronomico Atacama in northern Chile under the auspices
of the Comision Nacional de Investigacion Cientifica y Tecnologica de
Chile (CONICYT). Chandra and XMM-Newton X-ray studies on ACT clusters at
Rutgers are supported by Chandra grants GO1-12008X, GO1-13156X and NASA
ADAP grant NNX11AJ48G, respectively. Computations were performed on the
GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the
CFI under the auspices of Compute Canada, the Government of Ontario, the
Ontario Research Fund-Research Excellence, and the University of
Toronto.; Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of Science. The
SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the
Astrophysical Research Consortium for the Participating Institutions of
the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory,
University of Cambridge, Carnegie Mellon University, University of
Florida, the French Participation Group, the German Participation Group,
Harvard University, the Instituto de Astrofisica de Canarias, the
Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins
University, Lawrence Berkeley National Laboratory, Max Planck Institute
for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New
Mexico State University, New York University, Ohio State University,
Pennsylvania State University, University of Portsmouth, Princeton
University, the Spanish Participation Group, University of Tokyo,
University of Utah, Vanderbilt University, University of Virginia,
University of Washington, and Yale University.
NR 91
TC 18
Z9 18
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 67
DI 10.1088/0004-637X/765/1/67
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900067
ER
PT J
AU Moyerman, S
Bierman, E
Ade, PAR
Aiken, R
Barkats, D
Bischoff, C
Bock, JJ
Chiang, HC
Dowell, CD
Duband, L
Hivon, EF
Holzapfel, WL
Hristov, VV
Jones, WC
Kaufman, J
Keating, BG
Kovac, JM
Kuo, CL
Leitch, EM
Mason, PV
Matsumura, T
Nguyen, HT
Ponthieu, N
Pryke, C
Richter, S
Rocha, G
Sheehy, C
Takahashi, YD
Tolan, JE
Wollack, E
Yoon, KW
AF Moyerman, S.
Bierman, E.
Ade, P. A. R.
Aiken, R.
Barkats, D.
Bischoff, C.
Bock, J. J.
Chiang, H. C.
Dowell, C. D.
Duband, L.
Hivon, E. F.
Holzapfel, W. L.
Hristov, V. V.
Jones, W. C.
Kaufman, J.
Keating, B. G.
Kovac, J. M.
Kuo, C. L.
Leitch, E. M.
Mason, P. V.
Matsumura, T.
Nguyen, H. T.
Ponthieu, N.
Pryke, C.
Richter, S.
Rocha, G.
Sheehy, C.
Takahashi, Y. D.
Tolan, J. E.
Wollack, E.
Yoon, K. W.
TI SCIENTIFIC VERIFICATION OF FARADAY ROTATION MODULATORS: DETECTION OF
DIFFUSE POLARIZED GALACTIC EMISSION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Galaxy: structure; instrumentation: polarimeters; techniques:
polarimetric
ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND TEMPERATURE; ANGULAR SCALE
INTERFEROMETER; SOUTH-POLE TELESCOPE; POWER SPECTRUM; 2003 FLIGHT;
ANISOTROPY; QUAD; POLARIMETRY; MAPS
AB The design and performance of a wide bandwidth linear polarization modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP's 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP's measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP's 43 pixels without FRMs.
C1 [Moyerman, S.; Bierman, E.; Kaufman, J.; Keating, B. G.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92037 USA.
[Ade, P. A. R.] Univ Wales Coll Cardiff, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales.
[Aiken, R.; Hristov, V. V.; Jones, W. C.; Mason, P. V.; Richter, S.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Barkats, D.] ESO, Joint ALMA Observ, Santiago, Chile.
[Bischoff, C.; Kovac, J. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bock, J. J.; Dowell, C. D.; Nguyen, H. T.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Chiang, H. C.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Duband, L.] Commissariat Energie Atom Apostrophe, SBT, F-38054 Grenoble, France.
[Hivon, E. F.] Inst Astrophys, F-75014 Paris, France.
[Holzapfel, W. L.; Takahashi, Y. D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Kuo, C. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Palo Alto, CA 94305 USA.
[Kuo, C. L.; Tolan, J. E.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA.
[Leitch, E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Matsumura, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan.
[Ponthieu, N.] Univ Paris 11, Inst Astrophys Spaciale, F-91405 Orsay, France.
[Pryke, C.; Sheehy, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA.
[Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Moyerman, S (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92037 USA.
EM smoyerma@ucsd.edu
RI Holzapfel, William/I-4836-2015; Wollack, Edward/D-4467-2012;
OI Wollack, Edward/0000-0002-7567-4451; Barkats, Denis/0000-0002-8971-1954;
Bischoff, Colin/0000-0001-9185-6514; Hivon, Eric/0000-0003-1880-2733
FU American Association of University Women; NSF PECASE Award
[AST-0548262]; NASA Science Mission Directorate via the US Planck
project; NSF [OPP-0230438]; Caltech Discovery Fund; Caltech Presidents
Fund [PF-471]; JPL Research and Technology Fund
FX S.M. gratefully acknowledges the American Association of University
Women for a fellowship supporting this research. B. G. K. also
acknowledges NSF PECASE Award No. AST-0548262. G. R. gratefully
acknowledges support by the NASA Science Mission Directorate via the US
Planck project.; BICEP is supported by NSF grant OPP-0230438, Caltech
Discovery Fund, Caltech Presidents Fund PF-471, JPL Research and
Technology Fund, and the late J. Robinson.
NR 57
TC 8
Z9 8
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 64
DI 10.1088/0004-637X/765/1/64
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900064
ER
PT J
AU Skillman, SW
Xu, H
Hallman, EJ
O'Shea, BW
Burns, JO
Li, H
Collins, DC
Norman, ML
AF Skillman, Samuel W.
Xu, Hao
Hallman, Eric J.
O'Shea, Brian W.
Burns, Jack O.
Li, Hui
Collins, David C.
Norman, Michael L.
TI COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF GALAXY CLUSTER RADIO
RELICS: INSIGHTS AND WARNINGS FOR OBSERVATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic rays; cosmology: theory; magnetohydrodynamics (MHD); methods:
numerical; radiation mechanisms: non-thermal
ID ADAPTIVE MESH REFINEMENT; LARGE-SCALE STRUCTURE; ACTIVE GALACTIC NUCLEI;
FIELD POWER SPECTRUM; MAGNETIC-FIELD; COSMIC-RAYS; SHOCK-WAVES; COMA
CLUSTER; PARTICLE-ACCELERATION; FARADAY-ROTATION
AB Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 x 10(7) K, rho similar to 10(-28)-10(-27) g cm(-3), with magnetic field strengths of 0.1-1.0 mu G, and shock Mach numbers of M similar to 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations.
C1 [Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Xu, Hao; Li, Hui; Collins, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA.
[Hallman, Eric J.; Burns, Jack O.] NASA, LUNAR, Lunar Sci Inst, Ames Res Ctr, Moffett Field, CA 94089 USA.
[Hallman, Eric J.] Tech X Corp, Boulder, CO 80303 USA.
[O'Shea, Brian W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[O'Shea, Brian W.] Michigan State Univ, Lyman Briggs Coll, E Lansing, MI 48824 USA.
[O'Shea, Brian W.] Michigan State Univ, Inst Cyber Enabled Res, E Lansing, MI 48824 USA.
[Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
RP Skillman, SW (reprint author), DOE Computat Sci, Washington, DC 20585 USA.
EM samuel.skillman@colorado.edu
RI Xu, Hao/B-8734-2014; Hui, Li/B-4166-2009
OI Xu, Hao/0000-0003-4084-9925; Hui, Li/0000-0002-7574-048X
FU US National Science Foundation [AST-0807215, AST-1106437]; DOE
Computational Science Graduate Fellowship [DE-FG02-97ER25308]; NASA ATFP
program [NNX09AD80G, NNX12AC98G]; LANL; DOE/Office of Fusion Energy
Science through CMSO; Advanced Simulation and Computing Program (ASC);
NSF [AST-0808184]; NASA Lunar Science Institute [NNA09DB30A]
FX The authors thank the referee for in-depth comments that led to a much
improved paper. S. W. S thanks Matthias Hoeft and Marcus Bruggen for
making their radio emission model available. E.J.H. and J.O.B. have been
supported in part by grants from the US National Science Foundation
(AST-0807215, AST-1106437). S. W. S. has been supported by a DOE
Computational Science Graduate Fellowship under grant number
DE-FG02-97ER25308. B.W.O. has been supported in part by a grants from
the NASA ATFP program (NNX09AD80G and NNX12AC98G). H. X. and H. L. are
supported by the LDRD and IGPP programs at LANL and by DOE/Office of
Fusion Energy Science through CMSO. D. C. gratefully acknowledges
support from the Advanced Simulation and Computing Program (ASC) and
LANL, which is operated by LANS, LLC for the NNSA. M.L.N. acknowledges
NSF AST-0808184, which supported the MHD algorithm development. The
computations utilized the institutional computing resources at LANL.
Computations described in this work were performed using the Enzo code
developed by the Laboratory for Computational Astrophysics at the
University of California in San Diego (http://lca.ucsd.edu) and by a
community of developers from numerous other institutions. We thank all
the developers of the yt analysis toolkit and, in particular, Matthew
Turk for developing the off-axis projection tool. We have used the
cubehelix color scheme from Green (2011). The LUNAR Consortium
(http://lunar.colorado.edu), headquartered at the University of
Colorado, is funded by the NASA Lunar Science Institute (via cooperative
agreement NNA09DB30A), and partially supported this research.
NR 101
TC 39
Z9 39
U1 0
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 21
DI 10.1088/0004-637X/765/1/21
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900021
ER
PT J
AU Weisskopf, MC
Tennant, AF
Arons, J
Blandford, R
Buehler, R
Caraveo, P
Cheung, CC
Costa, E
de Luca, A
Ferrigno, C
Fu, H
Funk, S
Habermehl, M
Horns, D
Linford, JD
Lobanov, A
Max, C
Mignani, R
O'Dell, SL
Romani, RW
Striani, E
Tavani, M
Taylor, GB
Uchiyama, Y
Yuan, YJ
AF Weisskopf, Martin C.
Tennant, Allyn F.
Arons, Jonathan
Blandford, Roger
Buehler, Rolf
Caraveo, Patrizia
Cheung, Chi C.
Costa, Enrico
de Luca, Andrea
Ferrigno, Carlo
Fu, Hai
Funk, Stefan
Habermehl, Moritz
Horns, Dieter
Linford, Justin D.
Lobanov, Andrei
Max, Claire
Mignani, Roberto
O'Dell, Stephen L.
Romani, Roger W.
Striani, Edoardo
Tavani, Marco
Taylor, Gregory B.
Uchiyama, Yasunobu
Yuan, Yajie
TI CHANDRA, KECK, AND VLA OBSERVATIONS OF THE CRAB NEBULA DURING THE
2011-APRIL GAMMA-RAY FLARE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma rays: ISM; infrared: ISM; ISM: individual objects (Crab Nebula,
M1); magnetic reconnection; radio continuum: ISM; X-rays: individual
(Crab Nebula, M1)
ID PULSAR WIND NEBULAE; MAGNETIC RECONNECTION; TERMINATION SHOCK;
PARTICLE-ACCELERATION; SUPERNOVA-REMNANTS; SYNCHROTRON NEBULA; STANDARD
CANDLE; PROPER MOTION; CURRENT SHEET; 2011 APRIL
AB We present results from our analysis of Chandra X-Ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the gamma-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the "inner knot," i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the gamma-ray flares and suggest that the most dramatic gamma-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.
C1 [Weisskopf, Martin C.; Tennant, Allyn F.; O'Dell, Stephen L.] NASA, George C Marshall Space Flight Ctr, Astrophys Off ZP12, Huntsville, AL 35812 USA.
[Arons, Jonathan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Arons, Jonathan] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
[Blandford, Roger; Funk, Stefan; Romani, Roger W.; Uchiyama, Yasunobu; Yuan, Yajie] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Blandford, Roger; Funk, Stefan; Romani, Roger W.; Uchiyama, Yasunobu; Yuan, Yajie] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Buehler, Rolf] DESY, D-15738 Zeuthen, Germany.
[Caraveo, Patrizia; de Luca, Andrea] INAF IASF Milano, I-20133 Milan, Italy.
[Caraveo, Patrizia; de Luca, Andrea] Ist Nazl Fis Nucl, I-27100 Pavia, Italy.
[Cheung, Chi C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA.
[Costa, Enrico; Striani, Edoardo; Tavani, Marco] INFN Roma Tor Vergata, I-00133 Rome, Italy.
[Ferrigno, Carlo] Univ Geneva, Data Ctr Astrophys, ISDC, CH-1290 Versoix, Switzerland.
[Fu, Hai] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Habermehl, Moritz; Horns, Dieter] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany.
[Linford, Justin D.; Taylor, Gregory B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Lobanov, Andrei] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Max, Claire] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Mignani, Roberto] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Mignani, Roberto] Univ Zielona Gora, Kepler Inst Astron, PL-65265 Zielona Gora, Poland.
RP Weisskopf, MC (reprint author), NASA, George C Marshall Space Flight Ctr, Astrophys Off ZP12, Huntsville, AL 35812 USA.
RI Funk, Stefan/B-7629-2015;
OI Funk, Stefan/0000-0002-2012-0080; Max, Claire/0000-0003-0682-5436;
O'Dell, Stephen/0000-0002-1868-8056; Caraveo,
Patrizia/0000-0003-2478-8018; Costa, Enrico/0000-0003-4925-8523; De
Luca, Andrea/0000-0001-6739-687X; Tavani, Marco/0000-0003-2893-1459
FU Chandra Program; Istituto Nazionale di Astrofisica in Italy; Centre
National d'Etudes Spatiales in France; NASA; NASA DPR [S-15633-Y]
FX The work of M. C. W., S. L. O., and A. F. T. is supported by the Chandra
Program. The Chandra data was obtained in response to a pre-approved
target of opportunity request granted under Chandra Director's
Discretionary Time. The Fermi LAT Collaboration acknowledges generous
ongoing support from a number of agencies and institutes that have
supported both the development and the operation of the LAT as well as
scientific data analysis. These include the National Aeronautics and
Space Administration and the Department of Energy in the United States,
the Commissariat a a l'Energie Atomique and the Centre National de la
Recherche Scientifique/Institut National de Physique Nucleaire et de
Physique des Particules in France, the Agenzia Spaziale Italiana and the
Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of
Education, Culture, Sports, Science and Technology (MEXT), High Energy
Accelerator Research Organization (KEK) and Japan Aerospace Exploration
Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish
Research Council and the Swedish National Space Board in Sweden.
Additional support for science analysis during the operations phase is
gratefully acknowledged from the Istituto Nazionale di Astrofisica in
Italy and the Centre National d'Etudes Spatiales in France. C. C. C., G.
B. T., and J.D.L. thank Tim Hankins for useful discussions, and the NRAO
scheduling committee for alerting us to the VLA TEST data and for their
prompt consideration of our Director's Discretionary Time observations.
C. C. C., G. B. T., and J.B.L. were supported in part by NASA through a
Fermi cycle-3 guest investigator grant. In addition, work by C. C. C. at
NRL is supported in part by NASA DPR S-15633-Y. Our analyses utilized
software tools provided by the Chandra X-ray Center (CXC) in the
application package CIAO and from the High-Energy Astrophysics Science
Archive Research Center (HEASARC, operated by the NASA Goddard Space
Flight Center, Greenbelt, MD, and by the Smithsonian Astrophysical
Observatory, Cambridge, MA).
NR 54
TC 22
Z9 23
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAR 1
PY 2013
VL 765
IS 1
AR 56
DI 10.1088/0004-637X/765/1/56
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 090CZ
UT WOS:000314957900056
ER
PT J
AU Zhang, C
Binienda, WK
Morscher, GN
Martin, RE
Kohlman, LW
AF Zhang, Chao
Binienda, Wieslaw K.
Morscher, Gregory N.
Martin, Richard E.
Kohlman, Lee W.
TI Experimental and FEM study of thermal cycling induced microcracking in
carbon/epoxy triaxial braided composites
SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING
LA English
DT Article
DE Polymer-matrix composites (PMCs); Environmental degradation; Impact
behaviour; Transverse cracking
ID EPOXY COMPOSITES; MATRIX CRACKING; DAMAGE; ENVIRONMENTS; STRESSES
AB The microcrack distribution and mass change in T700s/PR520 and T700s/3502 carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between 55 degrees C and 120 degrees C. Transverse microcrack morphology was investigated using X-ray computed tomography. The differing performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. By accounting for the obtained reduction of mechanical properties, a macro-mechanical finite element model was utilized to investigate the influence of microcracking on the high-speed impact behavior. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Zhang, Chao; Binienda, Wieslaw K.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA.
[Morscher, Gregory N.] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA.
[Martin, Richard E.] Cleveland State Univ, Dept Mech Engn, Cleveland, OH 44115 USA.
[Kohlman, Lee W.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Zhang, C (reprint author), Univ Akron, Dept Civil Engn, 302 Buchtel Common, Akron, OH 44325 USA.
EM cz14@zips.uakron.edu; wieslaw@uakron.edu; gm33@uakron.edu;
Richard.e.martin-1@nasa.gov; lee.w.kohlman@nasa.gov
RI Zhang, Chao/H-3397-2013
FU NASA Glenn Research Center
FX We would like to thank NASA Glenn Research Center for their support on
this work. The authors thank Dr. Robert Goldberg for his constructive
comments on this manuscript.
NR 27
TC 18
Z9 21
U1 7
U2 44
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1359-835X
J9 COMPOS PART A-APPL S
JI Compos. Pt. A-Appl. Sci. Manuf.
PD MAR
PY 2013
VL 46
BP 34
EP 44
DI 10.1016/j.compositesa.2012.10.006
PG 11
WC Engineering, Manufacturing; Materials Science, Composites
SC Engineering; Materials Science
GA 093EN
UT WOS:000315174600005
ER
PT J
AU Simacek, P
Advani, SG
Gruber, M
Jensen, B
AF Simacek, Pavel
Advani, Suresh G.
Gruber, Mark
Jensen, Brian
TI A non-local void filling model to describe its dynamics during
processing thermoplastic composites
SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING
LA English
DT Article
DE Polymer-matrix composites; Porosity; Tape
ID TOW-PLACEMENT; CONSOLIDATION
AB A model is developed to describe the void dynamics within thermoplastic composite tape during the tape placement process. The model relates the volatile pressure in voids, the applied compaction load, fiber bed response and the resin pressure due to squeeze-flow of resin from resin-rich regions to fill void regions. This model relies on some geometric simplifications, but incorporates the relevant physical phenomena.
This void consolidation model was implemented in a numerical code which predicts the void development during the process. The initial void geometry can be introduced either manually, using a random generation algorithm or from actual processed tape micrographs.
The model predicts that the final void content depends on the original void content but also on the initial void distribution. Presented results analyze the influence of void distribution on tape consolidation. Limitations of the consolidation process rate by the resin squeeze flow pressures are clearly demonstrated. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Simacek, Pavel; Advani, Suresh G.] Univ Delaware, Ctr Composite Mat, Newark, DE 19716 USA.
[Simacek, Pavel; Advani, Suresh G.] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA.
[Gruber, Mark] Accudyne Syst Inc, Newark, DE 19702 USA.
[Jensen, Brian] Natl Aeronaut & Space Adm Hampton, Langley Res Ctr, Hampton, VA 23681 USA.
RP Simacek, P (reprint author), Univ Delaware, Ctr Composite Mat, Newark, DE 19716 USA.
EM psimacek@udel.edu
FU Accudyne Systems, Inc.; National Aeronautics and Space Administration
[NNX090371C]
FX The material is based upon work supported by Accudyne Systems, Inc. and
the National Aeronautics and Space Administration under Contract No.
NNX090371C.
NR 13
TC 5
Z9 5
U1 2
U2 33
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1359-835X
J9 COMPOS PART A-APPL S
JI Compos. Pt. A-Appl. Sci. Manuf.
PD MAR
PY 2013
VL 46
BP 154
EP 165
DI 10.1016/j.compositesa.2012.10.015
PG 12
WC Engineering, Manufacturing; Materials Science, Composites
SC Engineering; Materials Science
GA 093EN
UT WOS:000315174600019
ER
PT J
AU Stueken, EE
Anderson, RE
Bowman, JS
Brazelton, WJ
Colangelo-Lillis, J
Goldman, AD
Som, SM
Baross, JA
AF Stueeken, E. E.
Anderson, R. E.
Bowman, J. S.
Brazelton, W. J.
Colangelo-Lillis, J.
Goldman, A. D.
Som, S. M.
Baross, J. A.
TI Did life originate from a global chemical reactor?
SO GEOBIOLOGY
LA English
DT Review
ID MID-ATLANTIC RIDGE; BANDED IRON FORMATIONS; TRANSITION-METAL SULFIDES;
CITY HYDROTHERMAL FIELD; EARLY EARTH ATMOSPHERE; PRIMORDIAL OIL-SLICK;
AMINO-ACIDS; PREBIOTIC SYNTHESIS; WESTERN-AUSTRALIA; PILBARA-CRATON
AB Many decades of experimental and theoretical research on the origin of life have yielded important discoveries regarding the chemical and physical conditions under which organic compounds can be synthesized and polymerized. However, such conditions often seem mutually exclusive, because they are rarely encountered in a single environmental setting. As such, no convincing models explain how living cells formed from abiotic constituents. Here, we propose a new approach that considers the origin of life within the global context of the Hadean Earth. We review previous ideas and synthesize them in four central hypotheses: (i) Multiple microenvironments contributed to the building blocks of life, and these niches were not necessarily inhabitable by the first organisms; (ii) Mineral catalysts were the backbone of prebiotic reaction networks that led to modern metabolism; (iii) Multiple local and global transport processes were essential for linking reactions occurring in separate locations; (iv) Global diversity and local selection of reactants and products provided mechanisms for the generation of most of the diverse building blocks necessary for life. We conclude that no single environmental setting can offer enough chemical and physical diversity for life to originate. Instead, any plausible model for the origin of life must acknowledge the geological complexity and diversity of the Hadean Earth. Future research may therefore benefit from identifying further linkages between organic precursors, minerals, and fluids in various environmental contexts.
C1 [Stueeken, E. E.; Som, S. M.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Stueeken, E. E.; Anderson, R. E.; Bowman, J. S.; Brazelton, W. J.; Colangelo-Lillis, J.; Goldman, A. D.; Som, S. M.; Baross, J. A.] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA.
[Anderson, R. E.; Bowman, J. S.; Brazelton, W. J.; Colangelo-Lillis, J.; Baross, J. A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA.
[Goldman, A. D.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA.
[Colangelo-Lillis, J.] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 2T5, Canada.
[Goldman, A. D.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA.
[Som, S. M.] Blue Marble Space Inst Sci, Seattle, WA USA.
[Som, S. M.] NASA, Exobiol Branch, Ames Res Ctr, Mountain View, CA USA.
RP Stueken, EE (reprint author), Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
EM evast@u.washington.edu
FU NSF; NASA Astrobiology Institute [NNA04CC09A]
FX Funding was provided by an NSF Interdisciplinary Graduate Education and
Research Training (IGERT) grant and a NASA Astrobiology Institute grant
through Cooperative Agreement NNA04CC09A to the Geophysical Laboratory
at the Carnegie Institution for Science. We thank Roger Buick for
helpful comments on an earlier version of this manuscript, as well as
Bob Hazen and two anonymous reviewers whose input greatly improved the
paper.
NR 274
TC 19
Z9 23
U1 7
U2 169
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1472-4677
EI 1472-4669
J9 GEOBIOLOGY
JI Geobiology
PD MAR
PY 2013
VL 11
IS 2
BP 101
EP 126
DI 10.1111/gbi.12025
PG 26
WC Biology; Environmental Sciences; Geosciences, Multidisciplinary
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Geology
GA 090HZ
UT WOS:000314971400001
PM 23331348
ER
PT J
AU Radhakrishnan, S
Bellan, J
AF Radhakrishnan, Senthilkumaran
Bellan, Josette
TI Explicit filtering to obtain grid-spacing-independent and
discretization-order-independent large-eddy simulation of two-phase
volumetrically dilute flow with evaporation
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
DE multiphase and particle-laden flows; turbulence modelling; turbulence
simulation
ID DIRECT NUMERICAL-SIMULATION; MIXING LAYER LADEN; SUBGRID-SCALE;
BOUNDARY-CONDITIONS; DROPS; PARTICLES; STRESS; MODELS
AB Predictions from conventional large-eddy simulation (LES) are known to be grid-spacing and spatial-discretization-order dependent. In a previous article (Radhakrishnan & Bellan, J. Fluid Mech., vol. 697, 2012 a, pp. 399-435), we reformulated LES for compressible single-phase flow by explicitly filtering the nonlinear terms in the governing equations so as to render the solution grid-spacing and discretization-order independent. Having shown in Radhakrishnan & Bellan (2012 a) that the reformulated LES, which we call EFLES, yields grid-spacing-independent and discretization-order-independent solutions for compressible single-phase flow, we explore here the potential of EFLES for evaporating two-phase flow where the small scales have an additional origin compared to single-phase flow. Thus, we created a database through direct numerical simulation (DNS) that when filtered serves as a template for comparisons with both conventional LES and EFLES. Both conventional LES and EFLES are conducted with two gas-phase SGS models; the drop-field SGS model is the same in all these simulations. For EFLES, we also compared simulations performed with the same SGS model for the gas phase but two different drop-field SGS models. Moreover, to elucidate the influence of explicit filtering versus gas-phase SGS modelling, EFLES with two drop-field SGS models but no gas-phase SGS models were conducted. The results from all these simulations were compared to those from DNS and from the filtered DNS (FDNS). Similar to the single-phase flow findings, the conventional LES method yields solutions which are both grid-spacing and spatial-discretization-order dependent. The EFLES solutions are found to be grid-spacing independent for sufficiently large filter-width to grid-spacing ratio, although for the highest discretization order this ratio is larger in the two-phase flow compared to the single-phase flow. For a sufficiently fine grid, the results are also discretization-order independent. The absence of a gas-phase SGS model leads to build-up of energy near the filter cut-off indicating that while explicit filtering removes energy above the filter width, it does not provide the correct dissipation at the scales smaller than this width. A wider viewpoint leads to the conclusion that although the minimum filter-width to grid-spacing ratio necessary to obtain the unique grid-independent solution might be different for various discretization-order schemes, the grid-independent solution thus obtained is also discretization-order independent.
C1 [Radhakrishnan, Senthilkumaran; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Bellan, Josette] CALTECH, Pasadena, CA 91125 USA.
RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM josette.bellan@jpl.nasa.gov
RI Radhakrishnan, Senthilkumaran/E-6101-2010
OI Radhakrishnan, Senthilkumaran/0000-0001-7595-4210
FU NASA Glenn Research Center; NASA Exploration Systems Mission
Directorate/Advanced Capabilities Division
FX This work was conducted at the Jet Propulsion Laboratory, California
Institute of Technology and sponsored by the National Aeronautics and
Space Administration (NASA) under the Fundamental Aeronautics Program,
Subsonic Wing Program from NASA Glenn Research Center with Drs D. Bulzan
and N.-S. Liu serving as program monitors and by the NASA Exploration
Systems Mission Directorate/Advanced Capabilities Division under the
LASER program. The computational resources were provided by the JPL
Supercomputing Center and by the NASA AMES Supercomputing Center.
NR 40
TC 3
Z9 4
U1 2
U2 18
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
EI 1469-7645
J9 J FLUID MECH
JI J. Fluid Mech.
PD MAR
PY 2013
VL 719
BP 230
EP 267
DI 10.1017/jfm.2013.3
PG 38
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA 091XB
UT WOS:000315082000011
ER
PT J
AU Jahanshahi, MR
Masri, SF
AF Jahanshahi, Mohammad R.
Masri, Sami F.
TI A new methodology for non-contact accurate crack width measurement
through photogrammetry for automated structural safety evaluation
SO SMART MATERIALS AND STRUCTURES
LA English
DT Article
ID CONCRETE STRUCTURES; IMAGES; CLASSIFICATION; INSPECTION; SYSTEM
AB In mechanical, aerospace and civil structures, cracks are important defects that can cause catastrophes if neglected. Visual inspection is currently the predominant method for crack assessment. This approach is tedious, labor-intensive, subjective and highly qualitative. An inexpensive alternative to current monitoring methods is to use a robotic system that could perform autonomous crack detection and quantification. To reach this goal, several image-based crack detection approaches have been developed; however, the crack thickness quantification, which is an essential element for a reliable structural condition assessment, has not been sufficiently investigated. In this paper, a new contact-less crack quantification methodology, based on computer vision and image processing concepts, is introduced and evaluated against a crack quantification approach which was previously developed by the authors. The proposed approach in this study utilizes depth perception to quantify crack thickness and, as opposed to most previous studies, needs no scale attachment to the region under inspection, which makes this approach ideal for incorporation with autonomous or semi-autonomous mobile inspection systems. Validation tests are performed to evaluate the performance of the proposed approach, and the results show that the new proposed approach outperforms the previously developed one.
C1 [Jahanshahi, Mohammad R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Masri, Sami F.] Univ So Calif, Sonny Astani Dept Civil & Environm Engn, Los Angeles, CA 90089 USA.
RP Jahanshahi, MR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM mohammad@caltech.edu; masri@usc.edu
FU US National Science Foundation
FX This study was supported in part by grants from the US National Science
Foundation.
NR 36
TC 7
Z9 7
U1 3
U2 39
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0964-1726
J9 SMART MATER STRUCT
JI Smart Mater. Struct.
PD MAR
PY 2013
VL 22
IS 3
AR 035019
DI 10.1088/0964-1726/22/3/035019
PG 12
WC Instruments & Instrumentation; Materials Science, Multidisciplinary
SC Instruments & Instrumentation; Materials Science
GA 091AA
UT WOS:000315019900020
ER
PT J
AU Mandelman, JW
Cicia, AM
Ingram, GW
Driggers, WB
Coutre, KM
Sulikowski, JA
AF Mandelman, J. W.
Cicia, A. M.
Ingram, G. W., Jr.
Driggers, W. B., III
Coutre, K. M.
Sulikowski, J. A.
TI Short-term post-release mortality of skates (family Rajidae) discarded
in a western North Atlantic commercial otter trawl fishery
SO FISHERIES RESEARCH
LA English
DT Article
DE Skate; Trawl; Tow; Post-release; Discard; Mortality
ID PACIFIC HALIBUT; SURVIVAL; EXPOSURE; BYCATCH; CAUGHT; AGE; GROWTH;
MAINE; GULF; AIR
AB Due to market and regulatory factors, Rajidae skates are routinely discarded by commercial otter trawlers in the western North Atlantic. Accounting for post-release mortality is therefore essential to total fishing mortality estimates, stock status and management of this group of fishes. However, despite a presumed species-specific range in tolerance, few studies have investigated the short-term post-release mortality among skates indigenous to the western North Atlantic following capture by mobile fishing gears, and never in the Gulf of Maine. This study addresses this shortfall for the prohibited thorny skate, Amblyraja radiate and smooth skate, Malacoraja senta, and the targeted winter skate, Leucoraja ocellata, and little skate, Leucoraja erinacea. Of 1288 skates evaluated, negligible immediate mortality was observed at the time of capture, even in relation to the largest catches and/or most prolonged tows. However, injury frequency was moderate, with highest levels in the smooth (60%) and thorny (52%) skates. Aside from the smooth skate (59%), 72 h mortality rates were low overall (19% across all species when accounting tow durations indicative of the fishery), with the winter skate (8%) exhibiting the lowest levels. Logistic regression modeling revealed tow duration as the most universal predictor of condition and 72 h mortality, while catch biomass, sex, temperature changes, and animal size also held influence in certain species. Although in general the studied species appear more resilient to trawl capture and handling than previously estimated, interspecific differences must be accounted for when managing this group. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Mandelman, J. W.] New England Aquarium, John H Prescott Marine Lab, Boston, MA 02110 USA.
[Cicia, A. M.; Coutre, K. M.; Sulikowski, J. A.] Univ New England, Ctr Marine Sci, Biddeford, ME 04005 USA.
[Ingram, G. W., Jr.; Driggers, W. B., III] Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39568 USA.
RP Mandelman, JW (reprint author), New England Aquarium, John H Prescott Marine Lab, Boston, MA 02110 USA.
EM jmandelman@neaq.org
FU NOAA National Marine Fisheries Service Northeast Region
(Saltonstall-Kennedy (S-K) award); National Science Foundation Graduate
Research Fellowship [DGE-1144249]
FX The authors wish to thank the numerous undergraduate, post-graduate, and
graduate students from the Sulikowski Lab at the University of New
England (UNE) and New England Aquarium (NEAq) for assistance in
fieldwork during the course of the study. Deckhands aboard the F/V
Mystique Lady and F/V Lady Victoria also provided invaluable support
during field operations. Funding for this work was provided by NOAA
National Marine Fisheries Service Northeast Region (Saltonstall-Kennedy
(S-K) award to J.W.M.). In addition, A.M.C. was partially supported by a
National Science Foundation Graduate Research Fellowship under Grant No.
DGE-1144249. Animal care and use for various portions of this work was
sanctioned by both UNE (IACUC approval # UNE03-2010) and the NEAq (IACUC
approval # 08-05).
NR 34
TC 8
Z9 8
U1 1
U2 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-7836
J9 FISH RES
JI Fish Res.
PD MAR
PY 2013
VL 139
BP 76
EP 84
DI 10.1016/j.fishres.2012.09.020
PG 9
WC Fisheries
SC Fisheries
GA 081OI
UT WOS:000314331100012
ER
PT J
AU Williford, KH
Ushikubo, T
Schopf, JW
Lepot, K
Kitajima, K
Valley, JW
AF Williford, Kenneth H.
Ushikubo, Takayuki
Schopf, J. William
Lepot, Kevin
Kitajima, Kouki
Valley, John W.
TI Preservation and detection of microstructural and taxonomic correlations
in the carbon isotopic compositions of individual Precambrian
microfossils
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID NEOPROTEROZOIC CHICHKAN MICROBIOTA; DIATOM PHAEODACTYLUM-TRICORNUTUM;
WESTERN-AUSTRALIA; CO2 CONCENTRATION; SOUTH KAZAKSTAN; RAMAN IMAGERY;
FRACTIONATION; MICROSCOPY; DIVERSITY; BIOMARKER
AB Here we present techniques for, and new data from, in situ carbon isotope (delta C-13) analysis of Precambrian permineralized microscopic fossils with a reproducibility of 1-2 parts per thousand using secondary ion mass spectrometry (SIMS). Individual microfossils, selected for their excellent preservation, were analyzed in petrographic thin sections of stromatolitic cherts from the Proterozoic Gunflint (similar to 1880 Ma), Bitter Springs (similar to 830 Ma), Min'yar (similar to 740 Ma), and Chichkan (similar to 775 Ma) Formations. The range of delta C-13 values (similar to 34.6 parts per thousand to similar to 22.1 parts per thousand VPDB) among the 46 individuals analyzed falls within that expected for photoautotrophic carbon fixation by ribulose bisphosphate carboxylase (RuBisCO), consistent with morphology-based taxonomic assignments for these specimens. Microfossils classified as cyanobacteria from the Gunflint, Bitter Springs, and Min'yar Formations (for which published carbonate carbon isotope data can be used to estimate the delta C-13 of the original dissolved inorganic carbon substrate) exhibit a consistent similar to 19 parts per thousand total fractionation (delta C-13 of dissolved inorganic carbon - delta C-13 of biomass) similar to that observed in living cyanobacteria, over a wide range of delta C-13(carb) values (similar to 2.9 parts per thousand to 3.4 parts per thousand). In stromatolitic chert of the Min'yar Formation, morphologically diverse microfossils preserved in a similar to 1 mm(2) part of a microbial mat exhibit systematic isotopic differences among and within taxa that correlate with their morphologically inferred biological affinities and suggest that isotopic signatures of their original biosynthetic processes (e. g., lipid and peptidoglycan synthesis) are preserved. Isotopic offsets consistent with the different RuBisCO-based fractionations typical of cyanobacteria and photosynthetic eukaryotes are documented by the differing delta C-13 values of a colonial cyanobacterium (-22.6 +/- 0.5 parts per thousand) and a phytoplanktonic protistan acritarch (-28.9 +/- 1.0 parts per thousand) situated < 1 cm apart in the stromatolitic Chichkan chert. These findings show for the first time the possibility of using in situ isotopic microanalysis of fossil microbial mats and ancient sediments in order to distinguish metabolic fingerprints within complex microbial ecosystems and consortia. Published by Elsevier Ltd.
C1 [Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Kitajima, Kouki; Valley, John W.] Univ Wisconsin, Dept Geosci, WiscSIMS, NASA Astrobiol Inst, Madison, WI 53706 USA.
[Schopf, J. William] Univ Calif Los Angeles, Dept Earth & Space Sci, Ctr Study Evolut & Origin Life, Los Angeles, CA 90095 USA.
[Schopf, J. William] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA.
[Schopf, J. William] Penn State Astrobiol Res Ctr, NASA Astrobiol Inst, University Pk, PA 16802 USA.
RP Williford, KH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Kenneth.H.Williford@jpl.nasa.gov
RI Lepot, Kevin/C-7072-2014; Valley, John/B-3466-2011
OI Lepot, Kevin/0000-0003-0556-0405; Valley, John/0000-0003-3530-2722
FU NASA Astrobiology Institute; NSF-EAR [0319230, 0744079, 1053466]
FX We thank Noriko Kita, Jim Kern, and Reinhard Kozdon for assistance with
the ion microprobe, John Fournelle for assistance with the SEM, Andy
Czaja and Clark Johnson for helpful discussions, and Brian Hess for
expert sample preparation. The loan of carbonaceous chert sample PPRG
215-1 by Christopher H. House (Penn State University) was critical to
the completion of this study. We thank Andrew Schauer and IsoLab in the
Department of Earth and Space Sciences at the University of Washington
for providing the carbon and oxygen isotope analyses of the Chichkan
Formation carbonates. Constructive comments from Profs. Trevor Ireland
(A. E.), Malcom Walter, David Fike, and one anonymous reviewer improved
the manuscript. Funding for this study was provided by the NASA
Astrobiology Institute. The WiscSIMS Lab is partially funded by NSF-EAR
(0319230, 0744079, 1053466).
NR 54
TC 23
Z9 23
U1 8
U2 77
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD MAR 1
PY 2013
VL 104
BP 165
EP 182
DI 10.1016/j.gca.2012.11.005
PG 18
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 086DV
UT WOS:000314664500012
ER
PT J
AU Sasaki, TT
Hornbuckle, BC
Noebe, RD
Bigelow, GS
Weaver, ML
Thompson, GB
AF Sasaki, Taisuke T.
Hornbuckle, B. Chad
Noebe, Ronald D.
Bigelow, Glen S.
Weaver, Mark L.
Thompson, Gregory B.
TI Effect of Aging on Microstructure and Shape Memory Properties of a
Ni-48Ti-25Pd (At. Pct) Alloy
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article; Proceedings Paper
CT International Symposium on the Environmental Damage under Static and
Cyclic Loads in Structural Materials at Ambient Temperatures-II
CY AUG 14-19, 2011
CL Krakow, POLAND
ID MARTENSITIC-TRANSFORMATION; TI-NI; PHASE-TRANSFORMATIONS; PRECIPITATION;
LOAD
AB The microstructure and properties of a precipitation-hardenable Ni-48Ti-25Pd (at. pct) shape memory alloy have been investigated as a function of various aging conditions. Both the hardness and martensitic transformation temperatures increased with increasing aging time up to 100 hours at 673 K (400 A degrees C), while no discernable differences were observed after heat treatment at 823 K (550 A degrees C), except for a slight decrease in hardness. For aging at 673 K (400 A degrees C), these effects were attributed to the formation of nano-scale precipitates, while precipitation was absent in the 823 K (550 A degrees C) heat-treated specimens. The precipitation-strengthened alloy exhibited stable pseudoelastic behavior and load-biased-shape memory response with little or no residual strains. The precipitates had a monoclinic base-centered structure, which is the same structure as the P-phase recently reported in Ni(Pt)-rich NiTiPt alloys. 3D atom probe analysis revealed that the precipitates were slightly enriched in Ni and deficient in Pd and Ti as compared with the bulk alloy. The increase in martensitic transformation temperatures and the superior dimensional stability during shape memory and pseudoelastic testing are attributed to the fine precipitate phase and its effect on matrix chemistry, local stress state because of the coherent interface, and the ability to effectively strengthen the alloy against slip.
C1 [Sasaki, Taisuke T.; Hornbuckle, B. Chad; Weaver, Mark L.; Thompson, Gregory B.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA.
[Noebe, Ronald D.; Bigelow, Glen S.] NASA, Struct & Mat Div, Glenn Res Ctr, Cleveland, OH USA.
RP Sasaki, TT (reprint author), Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan.
EM gthompson@eng.ua.edu
FU NASA [NNX09AO61A]; NASA FAP Aeronautical Sciences project, Dale Hopkins,
API; University of Alabama
FX The authors gratefully acknowledge funding for this research under NASA
grant NNX09AO61A and from the NASA FAP Aeronautical Sciences project,
Dale Hopkins, API. This study used the Central Analytical Facility,
which is supported by The University of Alabama.
NR 58
TC 9
Z9 9
U1 1
U2 30
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD MAR
PY 2013
VL 44A
IS 3
BP 1388
EP 1400
DI 10.1007/s11661-012-1481-1
PG 13
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 082BK
UT WOS:000314366500023
ER
PT J
AU Thomas, LD
Hanley, JM
Rhatigan, JL
Neubek, D
AF Thomas, L. Dale
Hanley, Jeffrey M.
Rhatigan, Jennifer L.
Neubek, Deborah
TI NASA's Constellation Program: The final word
SO SYSTEMS ENGINEERING
LA English
DT Article
DE program management; requirements development; system design
methodologies; risk informed design; decision making
AB NASA's Constellation Program, formulated in 2005 to achieve the objectives of maintaining American presence in low Earth orbit, returning to the Moon for purpose of establishing an outpost, and exploring Mars and beyond in the first half of the 21st century, was cancelled in 2010 [US Congress, NASA Authorization Act, Public Law 11-267, 2010]. This paper describes the lessons learned developed by the staff of the Constellation Program to advise future programs, as well as program and system engineering managers of similar national efforts. These lessons learned are offered by those who experienced the day-to-day challenges of managing an effort planned as a multidecade undertaking. This effort spanned all 10 NASA Centers, multiple large-scale acquisitions, and required modernizing an infrastructure designed and sized largely for the Apollo program in the 1960s. Moreover, it required leading a workforce generationally removed from the previous human spacecraft launch and entry development challenges. Key lessons learned from the Constellation Program are addressed and cover program elements in which systems engineers provide leadership and/or assistance to program management, including program planning, requirements development, system design methodology, management structure, decision-making, and communications in a national program. (C) 2012 Wiley Periodicals, Inc. Syst Eng 16:
C1 [Thomas, L. Dale] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Hanley, Jeffrey M.; Rhatigan, Jennifer L.; Neubek, Deborah] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Rhatigan, JL (reprint author), USN, Postgrad Sch, Space Syst Acad Grp, Monterey, CA 93943 USA.
EM dale.thomas@nasa.gov; jeffrey.m.hanley@nasa.gov;
jennifer.l.rhatigan@nasa.gov; debo-rah.j.neubek@nasa.gov
NR 40
TC 1
Z9 1
U1 1
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1098-1241
J9 SYSTEMS ENG
JI Syst. Eng.
PD SPR
PY 2013
VL 16
IS 1
BP 71
EP 86
DI 10.1002/sys.21219
PG 16
WC Engineering, Industrial; Operations Research & Management Science
SC Engineering; Operations Research & Management Science
GA 076VT
UT WOS:000313987700005
ER
PT J
AU Foster, PP
Pollock, NW
Conkin, J
Dervay, JP
Caillot, N
Chhikara, RS
Vann, RD
Butler, BD
Gemhardt, ML
AF Foster, Philip P.
Pollock, Neal W.
Conkin, Johnny
Dervay, Joseph P.
Caillot, Nicolas
Chhikara, Raj S.
Vann, Richard D.
Butler, Bruce D.
Gemhardt, Michael L.
TI Protective Mechanisms in Hypobaric Decompression
SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE
LA English
DT Article
DE decompression sickness; light exercise; near infrared spectroscopy
ID NEAR-INFRARED SPECTROSCOPY; SKELETAL-MUSCLE; ALTITUDE DECOMPRESSION;
BUBBLE FORMATION; BLOOD-FLOW; 100-PERCENT OXYGEN; INERT-GAS; EXERCISE;
SICKNESS; WASHOUT
AB Background: To reduce bubble formation and growth during hypobaric exposures, a denitrogenation or nitrogen "washout" procedure is performed. This procedure consists of prebreathing oxygen fractions as close to one as possible (oxygen prebreathe) prior to depressurization before ascending to the working altitude or low spacesuit pressures. During the NASA prebreathe reduction program (PRP), it was determined that the addition of a light arm exercise to short, individually designed, performance-based heavy exercise (dual cycle ergometry) during an abbreviated 2-h prebreathe (F1O2 similar to 1.0) reduced the occurrence of decompression sickness (DCS). Heavy-exercise-induced DCS reduction is likely to be related to the enhancement of the tissue nitrogen washout during the oxygen prebreathe. In addition to the heavy-exercise-induced microcirculatory adaptation, we hypothesized that the light exercise would not cause sufficient microcirculatory changes in the limbs to explain alone this further DCS protection. We evaluated microcirculatory changes as minimal by replicating the exercise characteristics of the PRP trials in 13 healthy subjects. Methods: Noninvasive near infrared spectroscopy (NIRS) allowed observation of instantaneous variations of total, oxygenated, and deoxygenated hemoglobin/myoglobin concentrations in the microcirculatory networks (probes facing the vastus lateralis and deltoid muscles) of active limbs during dynamic exercise. Results: The high-intensity leg exercise alone produced the changes in NIRS parameters; the light arm exercise induced minimal microcirculatory volume changes. However, this coupling appeared to be critical in previous altitude PRP chamber studies by reducing DCS. Discussion: With only minimal microcirculatory blood volume changes, it is unlikely that light exercise alone causes significant nitrogen tissue washout. Therefore, our results suggest that in addition to nitrogen tissue washout, another unknown exercise-induced effect may have further enhanced the DCS protection, possibly mediated via the anti-inflammatory effect of exercise, gas micronuclei reduction, NO pathways, or other molecular mechanisms.
C1 [Foster, Philip P.] Univ Texas Hlth Sci Ctr Houston, Dept Internal Med Pulm, Houston, TX 77030 USA.
[Foster, Philip P.] Univ Texas Hlth Sci Ctr Houston, Dept Nanomed & Biomed Engn, Houston, TX 77030 USA.
[Foster, Philip P.] Univ Texas Med Branch, Dept Internal Med Pulm, Galveston, TX 77555 USA.
[Pollock, Neal W.; Vann, Richard D.] Duke Univ, Med Ctr, Dept Anesthesiol, Durham, NC 27710 USA.
[Pollock, Neal W.; Vann, Richard D.] Duke Univ, Med Ctr, Ctr Hyperbar Med & Environm Physiol, Durham, NC USA.
[Conkin, Johnny] Univ Space Res Assoc, Houston, TX USA.
[Dervay, Joseph P.; Gemhardt, Michael L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Caillot, Nicolas] Ctr Hosp Univ, Clermont Ferrand, France.
[Chhikara, Raj S.] Univ Houston Clear Lake City, Div Comp & Math, Houston, TX 77058 USA.
[Butler, Bruce D.] Univ Texas Hlth Sci Ctr Houston, Dept Anesthesiol, Houston, TX 77030 USA.
RP Foster, PP (reprint author), Univ Texas Hlth Sci Ctr Houston, Brown Fdn, Inst Mol Med IMM Prevent Human Dis, Dept Internal Med,Dept Pulm & NanoMed, 1825 Pressler St,SRB 205, Houston, TX 77030 USA.
EM philip.p.foster@uth.tmc.edu
FU NASA
FX The NASA prebreathe reduction program (PRP) and the exercise sessions
(PRP trials) were originally designed and/or implemented by B.D.B, J.C.,
J.P.D., P.P.F., N.W.P., R.D.V., M.L.G. (Head of the PRP project) through
a multicenter experiment sponsored by NASA conducted at NASA-JSC and
various institutions in North America. We cannot list here all other
numerous contributors to the original project from basic science to
operational implementation. PPF (PI) designed and conducted the current
NIRS study presented here; it was performed later, after the completion
of PRP, during P.P.F.'s one-year temporary tenure at the School of
Medicine of Clermont-Ferrand (University-Hospital Gabriel Montpied,
France) with the help of N.C. and was also part of N.C.'s Ph.D.
curriculum at University of Auvergne. The statistical analysis was
conducted and described by R.S.C., Division of Computing, Statistics and
Mathematics, University of Houston - Clear Lake, Houston, TX. This paper
passed the NASA Export Control process (# DAA 22,107).
NR 41
TC 3
Z9 3
U1 0
U2 4
PU AEROSPACE MEDICAL ASSOC
PI ALEXANDRIA
PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA
SN 0095-6562
EI 1943-4448
J9 AVIAT SPACE ENVIR MD
JI Aviat. Space Environ. Med.
PD MAR
PY 2013
VL 84
IS 3
BP 212
EP 225
DI 10.3357/ASEM.3314.2013
PG 14
WC Public, Environmental & Occupational Health; Medicine, General &
Internal; Sport Sciences
SC Public, Environmental & Occupational Health; General & Internal
Medicine; Sport Sciences
GA AD1LP
UT WOS:000332995800006
PM 23513282
ER
PT J
AU Komorowski, M
Watkins, SD
Lebuffe, G
Clark, JB
AF Komorowski, Matthieu
Watkins, Sharmila D.
Lebuffe, Gilles
Clark, Jonathan B.
TI Potential Anesthesia Protocols for Space Exploration Missions
SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE
LA English
DT Review
DE anesthesiology; regional anesthesia; general anesthesia; total
intravenous anesthesia; ketamine; long-duration spaceflight
ID TOTAL INTRAVENOUS ANESTHESIA; REGIONAL ANESTHESIA; BISPECTRAL INDEX;
CARDIOVASCULAR REACTIONS; PROPOFOL ANESTHESIA; FENTANYL ANESTHESIA;
KETAMINE SEDATION; RACEMIC KETAMINE; PREHOSPITAL USE; HEAD-INJURY
AB In spaceflight beyond low Earth's orbit, medical conditions requiring surgery are of a high level of concern because of their potential impact on crew health and mission success. Whereas surgical techniques have been thoroughly studied in spaceflight analogues, the research focusing on anesthesia is limited. To provide safe anesthesia during an exploration mission will be a highly challenging task. The research objective is thus to describe specific anesthesia procedures enabling treatment of pre-identified surgical conditions. Among the medical conditions considered by the NASA Human Research Program Exploration Medical Capability element, those potentially necessitating anesthesia techniques have been identified. The most appropriate procedure for each condition is thoroughly discussed. The substantial cost of training time necessary to implement regional anesthesia is pointed out. Within general anesthetics, ketamine combines the unique advantages of preservation of cardiovascular stability, the protective airway reflexes, and spontaneous ventilation. Ketamine side effects have for decades tempered enthusiasm for its use, but recent developments in mitigation means broadened its indications. The extensive experience gathered in remote environments, with minimal equipment and occasionally by insufficiently trained care providers, confirms its high degree of safety. Two ketamine-based anesthesia protocols are described with their corresponding indications. They have been designed taking into account the physiological changes occurring in microgravity and the specific constraints of exploration missions. This investigation could not only improve surgical care during long-duration spaceflights, but may find a number of terrestrial applications in isolated or austere environments.
C1 [Komorowski, Matthieu] ESA, European Astronaut Ctr, Crew Med Support Off, Cologne, Germany.
[Lebuffe, Gilles] Claude Huriez Univ Hosp, Dept Anesthesiol & Intens Care, Sect Pain, Lille, France.
[Watkins, Sharmila D.] NASA, Explorat Med Capabil, Human Res Program, Houston, TX USA.
[Clark, Jonathan B.] Baylor Coll Med, Ctr Space Med, Houston, TX 77030 USA.
RP Komorowski, M (reprint author), Hop Claude Huriez, Dept Anesthesie Reanimat, Rue Michel Polonovski, F-59037 Lille, France.
EM matthieu.komorowski@gmail.com
OI Clark, Jonathan/0000-0002-1162-1238
NR 89
TC 5
Z9 5
U1 2
U2 7
PU AEROSPACE MEDICAL ASSOC
PI ALEXANDRIA
PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA
SN 0095-6562
EI 1943-4448
J9 AVIAT SPACE ENVIR MD
JI Aviat. Space Environ. Med.
PD MAR
PY 2013
VL 84
IS 3
BP 226
EP 233
DI 10.3357/ASEM.3427.2013
PG 8
WC Public, Environmental & Occupational Health; Medicine, General &
Internal; Sport Sciences
SC Public, Environmental & Occupational Health; General & Internal
Medicine; Sport Sciences
GA AD1LP
UT WOS:000332995800007
PM 23513283
ER
PT J
AU Doarn, CR
AF Doarn, Charles R.
TI An Historical Summary of Advisory Boards for Aerospace Medicine at NASA
SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE
LA English
DT Article
DE NASA; aerospace medicine; advisory committees
AB Over the past 50 years, the National Aeronautics and Space Administration (NASA) has interacted with numerous advisory committees. These committees include those established by NASA, the National Academy of Sciences, the Institute of Medicine, or through Congressional oversight. Such groups have had a relatively passive role while providing sage advice on a variety of important issues. While these groups cover a wide range of disciplines, the focus of this paper is on those that impacted aerospace medicine and human spaceflight from NASA's beginning to the present time. The intent is to provide an historical narrative of the committees, their purpose, their outcome, and how they influenced the development of aerospace medicine within NASA. Aerospace medicine and life sciences have been closely aligned and intertwined from NASA's beginning. While several committees overlap life sciences within NASA, life sciences will not be presented unless it is in direct reference to aerospace medicine. This paper provides an historical summary chronicling those individuals and the groups they led when aerospace medicine was emerging as a discipline for human spaceflight beginning in 1957.
C1 [Doarn, Charles R.] Univ Cincinnati, Dept Family & Community Med, Cincinnati, OH 45267 USA.
[Doarn, Charles R.] NASA Headquarters, Off Chief Hlth & Med Officer, Washington, DC USA.
RP Doarn, CR (reprint author), Univ Cincinnati, Coll Med, Dept Family & Community Med, POB 670566,ML 0566, Cincinnati, OH 45267 USA.
EM charles.doarn@uc.edu
NR 14
TC 0
Z9 0
U1 0
U2 1
PU AEROSPACE MEDICAL ASSOC
PI ALEXANDRIA
PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA
SN 0095-6562
EI 1943-4448
J9 AVIAT SPACE ENVIR MD
JI Aviat. Space Environ. Med.
PD MAR
PY 2013
VL 84
IS 3
BP 252
EP 259
DI 10.3357/ASEM.3515.2013
PG 8
WC Public, Environmental & Occupational Health; Medicine, General &
Internal; Sport Sciences
SC Public, Environmental & Occupational Health; General & Internal
Medicine; Sport Sciences
GA AD1LP
UT WOS:000332995800012
PM 23513288
ER
PT J
AU Le Moigne, J
Grubb, TG
Milner, BC
AF Le Moigne, Jacqueline
Grubb, Thomas G.
Milner, Barbara C.
TI IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and
Research
SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
LA English
DT Article
AB NASA Earth and space images have traditionally been difficult to mine by non-remote sensing researchers; often only available in specialized, non-generic formats, they also do not always provide sufficient context for users unfamiliar with the NASA domain to understand their content and their challenges. This paper describes a new database and its associated website, called IMAGESEER (IMAGEs for Science, Education, Experimentation and Research), that seeks to address these issues. Through a graphical web site for browsing and downloading data, IMAGESEER provides a widely accessible database of NASA-centric, easy to read image data for teaching or validating new Image Processing algorithms. Although other NASA image databases exist, none is focused on the goal of providing validation of new and old image processing algorithms. The first IMAGESEER prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are represented with techniques such as cloud detection, image registration, and classification. For each technique, corresponding data are selected from different geographic regions representing different image features (e.g., mountains, urban, water coastal, and agriculture areas). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.
C1 [Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.] NASA, Goddard Space Flight Ctr, Software Engn Div, Greenbelt, MD USA.
RP Le Moigne, J (reprint author), NASA, Goddard Space Flight Ctr, Software Engn Div, Greenbelt, MD USA.
FU National Aeronautics and Space Administration (NASA) Goddard Space
Flight Center (GSFC) under Internal Research and Development (IRAD)
FX This work was supported by the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (GSFC) under Internal
Research and Development (IRAD) funding.
NR 9
TC 0
Z9 0
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6831
J9 IEEE GEOSC REM SEN M
JI IEEE Geosci. Remote Sens. Mag.
PD MAR
PY 2013
VL 1
IS 1
BP 44
EP 58
DI 10.1109/MGRS.2013.2244694
PG 15
WC Geochemistry & Geophysics; Remote Sensing; Imaging Science &
Photographic Technology
SC Geochemistry & Geophysics; Remote Sensing; Imaging Science &
Photographic Technology
GA V45AR
UT WOS:000209790000004
ER
PT J
AU Jedlovec, G
AF Jedlovec, Gary
TI Transitioning Research Satellite Data to the Operational Weather
Community: The SPoRT Paradigm
SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
LA English
DT Article
C1 [Jedlovec, Gary] NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA.
RP Jedlovec, G (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA.
NR 12
TC 5
Z9 5
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6831
J9 IEEE GEOSC REM SEN M
JI IEEE Geosci. Remote Sens. Mag.
PD MAR
PY 2013
VL 1
IS 1
BP 62
EP 66
DI 10.1109/MGRS.2013.2244704
PG 5
WC Geochemistry & Geophysics; Remote Sensing; Imaging Science &
Photographic Technology
SC Geochemistry & Geophysics; Remote Sensing; Imaging Science &
Photographic Technology
GA V45AR
UT WOS:000209790000006
ER
PT J
AU Dichmann, DJ
Lebois, R
Carrico, JP
AF Dichmann, Donald J.
Lebois, Ryan
Carrico, John P., Jr.
TI Dynamics of Orbits Near 3:1 Resonance in the Earth-Moon System
SO JOURNAL OF THE ASTRONAUTICAL SCIENCES
LA English
DT Article
DE Resonant orbit; Periodic orbit; Stability; Bifurcation
AB The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next 20 years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.
C1 [Dichmann, Donald J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Lebois, Ryan; Carrico, John P., Jr.] Appl Def Solut, Columbia, MD 21004 USA.
RP Dichmann, DJ (reprint author), NASA, Goddard Space Flight Ctr, Code 595-0,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM donald.j.dichmann@nasa.gov; RLebois@applieddefense.com;
JCarrico@applieddefense.com
FU Southwest Research Institution (SwRI)
FX This research was performed at Applied Defense Solutions and was
supported in part by a contract with the Southwest Research Institution
(SwRI). The authors thank Mark Tapley of SwRI, Trevor Williams of NASA
Goddard and an anonymous reviewer for their valuable comments. We thank
Kathleen Howell and Mar Vaquero at Purdue University for sharing their
research into resonance orbits. We thank George Ricker at MIT and our
colleagues at the NASA Goddard Navigation and Mission Design Branch for
pointing us to the Lidov-Kozai mechanism. DID thanks Randy Paffenroth at
Numerica Corporation for valuable discussions on the structure of the
bifurcation diagram.
NR 49
TC 2
Z9 2
U1 1
U2 1
PU AMER ASTRONAUTICAL SOC
PI SPRINGFIELD
PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA
SN 0021-9142
EI 2195-0571
J9 J ASTRONAUT SCI
JI J. Astronaut. Sci.
PD MAR
PY 2013
VL 60
IS 1
BP 51
EP 86
DI 10.1007/s40295-014-0009-x
PG 36
WC Engineering, Aerospace
SC Engineering
GA V38QT
UT WOS:000209358600003
ER
PT J
AU Yeomans, DK
AF Yeomans, Donald K.
TI A Hit and a Miss
SO NATURAL HISTORY
LA English
DT Article
C1 [Yeomans, Donald K.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
[Yeomans, Donald K.] NASA, Near Earth Object Program Off, Pasadena, CA USA.
[Yeomans, Donald K.] NASA, Solar Syst Dynam Grp, Pasadena, CA USA.
RP Yeomans, DK (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
NR 0
TC 0
Z9 0
U1 2
U2 2
PU NATURAL HISTORY MAGAZINE
PI NEW YORK
PA 36 WEST 25TH STREET, FIFTH FLOOR, NEW YORK, NY 10010 USA
SN 0028-0712
J9 NAT HIST
JI Nat. Hist.
PD MAR
PY 2013
VL 121
IS 2
BP 18
EP 25
PG 8
WC Biodiversity Conservation; Ecology
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA V40FI
UT WOS:000209464100012
ER
PT J
AU Brinley, AA
Theriot, CA
Nelman-Gonzalez, M
Crucian, B
Stowe, RP
Barrett, ADT
Pierson, DL
AF Brinley, Alaina A.
Theriot, Corey A.
Nelman-Gonzalez, Mayra
Crucian, Brian
Stowe, Raymond P.
Barrett, Alan D. T.
Pierson, Duane L.
TI Characterization of Epstein-Barr virus reactivation in a modeled
spaceflight system
SO JOURNAL OF CELLULAR BIOCHEMISTRY
LA English
DT Article
DE EPSTEIN-BARR VIRUS; EBV; RADIATION; BIOREACTOR; MICROGRAVITY;
REACTIVATION
ID PROMOTES GENOMIC INSTABILITY; DNA-DAMAGE; SIMULATED-MICROGRAVITY;
IONIZING-RADIATION; BURKITTS-LYMPHOMA; HUMAN-LYMPHOCYTES; CELL-DEATH;
RAJI CELLS; REPAIR; ATM
AB EpsteinBarr virus (EBV) is the causative agent of mononucleosis and is also associated with several malignancies, including Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, among others. EBV reactivates during spaceflight, with EBV shedding in saliva increasing to levels ten times those observed pre-and post-flight. Although stress has been shown to increase reactivation of EBV, other factors such as radiation and microgravity have been hypothesized to contribute to reactivation in space. We used a modeled spaceflight environment to evaluate the influence of radiation and microgravity on EBV reactivation. BJAB (EBV-negative) and Raji (EBV-positive) cell lines were assessed for viability/apoptosis, viral antigen and reactive oxygen species expression, and DNA damage and repair. EBV-infected cells did not experience decreased viability and increased apoptosis due to modeled spaceflight, whereas an EBV-negative cell line did, suggesting that EBV infection provided protection against apoptosis and cell death. Radiation was the major contributor to EBV ZEBRA upregulation. Combining modeled microgravity and radiation increased DNA damage and reactive oxygen species while modeled microgravity alone decreased DNA repair in Raji cells. Additionally, EBV-infected cells had increased DNA damage compared to EBV-negative cells. Since EBV-infected cells do not undergo apoptosis as readily as uninfected cells, it is possible that virus-infected cells in EBV seropositive individuals may have an increased risk to accumulate DNA damage during spaceflight. More studies are warranted to investigate this possibility. J. Cell. Biochem. 114: 616624, 2013. (C) 2012 Wiley Periodicals, Inc.
C1 [Brinley, Alaina A.; Theriot, Corey A.] Univ Texas Med Branch, Dept Prevent Med, Galveston, TX 77555 USA.
[Brinley, Alaina A.; Theriot, Corey A.; Nelman-Gonzalez, Mayra; Crucian, Brian; Pierson, Duane L.] NASA, Johnson Space Ctr, Human Hlth & Performance Directorate, Houston, TX 77058 USA.
[Nelman-Gonzalez, Mayra] Wyle Sci Technol & Engn Grp, Houston, TX 77058 USA.
[Stowe, Raymond P.] Microgen Labs, La Marque, TX USA.
[Barrett, Alan D. T.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA.
RP Pierson, DL (reprint author), NASA, Johnson Space Ctr, Dept Human Hlth & Performance Directorate, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM duane.l.pierson@nasa.gov
FU NASA GSRP; NASA Human Research; NASA Habitability and Environmental
Factors; NASA GSRP Fellowship program; NASA Human Research Program; NASA
Habitability and Environmental Factors division
FX Grant sponsor: NASA GSRP; Grant sponsor: NASA Human Research; Grant
sponsor: NASA Habitability and Environmental Factors.; The authors wish
to thank the JSC Microbiology, Immunology, Radiation, and Bioanalytical
Core Facilities for reagents, equipment, and expertise. Thanks to Al
Feiveson, James Fiedler, and Laura Rudkin for assistance with
statistical analyses, and Janapriya Saha for help with DNA repair
assays. This research was funded by the NASA GSRP Fellowship program,
the NASA Human Research Program, and the NASA Habitability and
Environmental Factors division.
NR 40
TC 1
Z9 1
U1 0
U2 16
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0730-2312
J9 J CELL BIOCHEM
JI J. Cell. Biochem.
PD MAR
PY 2013
VL 114
IS 3
BP 616
EP 624
DI 10.1002/jcb.24403
PG 9
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 075QC
UT WOS:000313900600015
PM 22991253
ER
PT J
AU Fan, ZS
Shi, XG
Liu, AK
Liu, HL
Li, PL
AF Fan Zhisong
Shi Xingang
Liu, Antony K.
Liu Hailong
Li Peiliang
TI Effects of tidal currents on nonlinear internal solitary waves in the
South China Sea
SO JOURNAL OF OCEAN UNIVERSITY OF CHINA
LA English
DT Article
DE internal solitary waves; tidal current; fission process; the South China
Sea
ID SULU SEA; MODEL; TRANSFORMATION; GENERATION; NORTH; OCEAN; TIDES;
PROPAGATION; SIMULATION; EVOLUTION
AB The propagation and fission process of internal solitary waves (ISWs) with amplitudes of about 170 m are simulated in the northeast of the South China Sea (NSCS) by using the generalized Korteweg-de Vries (KdV) equation under continuous stratification. More attention is paid to the effects of the ebb and flood background currents on the fission process of ISWs. This kind of background current is provided by the composed results simulated in terms of monthly mean baroclinic circulation and barotropic tidal current. It is found that the obtained relation of the number of fission solitons to the water depth and stratification is roughly in accordance with the fission law derived by Djordjevic and Redekopp in 1978; however, there exists obvious difference between the effects of the ebb and flood background currents on the wave-lengths of fission solitons (defined as the distance between two neighboring peaks of ISWs). The difference in nonlinearity coefficient alpha between the ebb and flood background currents is a main cause for the different wave-lengths of fission solitons.
C1 [Fan Zhisong; Li Peiliang] Ocean Univ China, Coll Phys & Environm Oceanog, Qingdao 266100, Peoples R China.
[Shi Xingang] CNOOC Energy Technol & Serv Ltd, Beijing Branch, Beijing 100027, Peoples R China.
[Liu, Antony K.] NASA, Goddard Space Flight Ctr, Ocean Sci Branch, Greenbelt, MD 20771 USA.
[Liu Hailong] Chinese Acad Sci, State Key Lab Numer Modeling Atmospher Sci & Geop, Inst Atmospher Phys, Beijing 100029, Peoples R China.
RP Fan, ZS (reprint author), Ocean Univ China, Coll Phys & Environm Oceanog, Qingdao 266100, Peoples R China.
EM fanzhs@hotmail.com
RI Hailong, Liu/C-9566-2013
OI Hailong, Liu/0000-0002-8780-0398
FU National Natural Science Foundation of China [41030855]
FX This work is supported by the Key Program of National Natural Science
Foundation of China under contract No. 41030855.
NR 40
TC 3
Z9 4
U1 1
U2 20
PU OCEAN UNIV CHINA
PI QINGDAO
PA 5 YUSHAN RD, QINGDAO, 266003, PEOPLES R CHINA
SN 1672-5182
J9 J OCEAN U CHINA
JI J. OCEAN UNIV.
PD MAR
PY 2013
VL 12
IS 1
BP 13
EP 22
DI 10.1007/s11802-013-1870-0
PG 10
WC Oceanography
SC Oceanography
GA 076QZ
UT WOS:000313973800003
ER
PT J
AU Ahn, KY
Denney, E
AF Ahn, Ki Yung
Denney, Ewen
TI A framework for testing first-order logic axioms in program verification
SO SOFTWARE QUALITY JOURNAL
LA English
DT Article
DE Model-based testing; Program verification; Automated theorem proving;
Property-based testing; Constraint solving
AB Program verification systems based on automated theorem provers rely on user-provided axioms in order to verify domain-specific properties of code. However, formulating axioms correctly (that is, formalizing properties of an intended mathematical interpretation) is non-trivial in practice, and avoiding or even detecting unsoundness can sometimes be difficult to achieve. Moreover, speculating soundness of axioms based on the output of the provers themselves is not easy since they do not typically give counterexamples. We adopt the idea of model-based testing to aid axiom authors in discovering errors in axiomatizations. To test the validity of axioms, users define a computational model of the axiomatized logic by giving interpretations to the function symbols and constants in a simple declarative programming language. We have developed an axiom testing framework that helps automate model definition and test generation using off-the-shelf tools for meta-programming, property-based random testing, and constraint solving. We have experimented with our tool to test the axioms used in AUTO-CERT, a program verification system that has been applied to verify aerospace flight code using a first-order axiomatization of navigational concepts, and were able to find counterexamples for a number of axioms.
C1 [Ahn, Ki Yung] Portland State Univ, Dept Comp Sci, Portland, OR 97201 USA.
[Denney, Ewen] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Ahn, KY (reprint author), Portland State Univ, Dept Comp Sci, Portland, OR 97201 USA.
EM kya@pdx.edu; Ewen.Denney@nasa.gov
RI Ahn, Ki Yung/A-9713-2016
OI Ahn, Ki Yung/0000-0002-7171-7979
NR 25
TC 1
Z9 1
U1 0
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0963-9314
J9 SOFTWARE QUAL J
JI Softw. Qual. J.
PD MAR
PY 2013
VL 21
IS 1
BP 159
EP 200
DI 10.1007/s11219-011-9168-1
PG 42
WC Computer Science, Software Engineering
SC Computer Science
GA 074MB
UT WOS:000313815500008
ER
PT J
AU Laxon, SW
Giles, KA
Ridout, AL
Wingham, DJ
Willatt, R
Cullen, R
Kwok, R
Schweiger, A
Zhang, JL
Haas, C
Hendricks, S
Krishfield, R
Kurtz, N
Farrell, S
Davidson, M
AF Laxon, Seymour W.
Giles, Katharine A.
Ridout, Andy L.
Wingham, Duncan J.
Willatt, Rosemary
Cullen, Robert
Kwok, Ron
Schweiger, Axel
Zhang, Jinlun
Haas, Christian
Hendricks, Stefan
Krishfield, Richard
Kurtz, Nathan
Farrell, Sinead
Davidson, Malcolm
TI CryoSat-2 estimates of Arctic sea ice thickness and volume
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
AB Satellite records show a decline in ice extent over more than three decades, with a record minimum in September 2012. Results from the Pan-Arctic Ice-Ocean Modelling and Assimilation system (PIOMAS) suggest that the decline in extent has been accompanied by a decline in volume, but this has not been confirmed by data. Using new data from the European Space Agency CryoSat-2 (CS-2) mission, validated with in situ data, we generate estimates of ice volume for the winters of 2010/11 and 2011/12. We compare these data with current estimates from PIOMAS and earlier (2003-8) estimates from the National Aeronautics and Space Administration ICESat mission. Between the ICESat and CryoSat-2 periods, the autumn volume declined by 4291 km(3) and the winter volume by 1479 km(3). This exceeds the decline in ice volume in the central Arctic from the PIOMAS model of 2644 km(3) in the autumn, but is less than the 2091 km(3) in winter, between the two time periods. Citation: Laxon S. W., K. A. Giles, A. L. Ridout, D. J. Wingham, R. Willatt, R. Cullen, R. Kwok, A. Schweiger, J. Zhang, C. Haas, S. Hendricks, R. Krishfield, N. Kurtz, S. Farrell and M. Davidson (2013), CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732-737, doi:10.1002/grl.50193.
C1 [Laxon, Seymour W.; Giles, Katharine A.; Ridout, Andy L.; Wingham, Duncan J.; Willatt, Rosemary] UCL, Ctr Polar Observat & Modelling, Dept Earth Sci, London WC1E 6BT, England.
[Cullen, Robert; Davidson, Malcolm] European Space Agcy, EOP PY, Estec, Noordwijk, Netherlands.
[Kwok, Ron] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Schweiger, Axel; Zhang, Jinlun] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA.
[Haas, Christian] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 2R7, Canada.
[Hendricks, Stefan] Alfred Wegener Inst Polar & Marine Res, Bremerhaven, Germany.
[Krishfield, Richard] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
[Kurtz, Nathan] Morgan State Univ, Sch Comp Math & Nat Sci, Baltimore, MD 21239 USA.
[Farrell, Sinead] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Giles, KA (reprint author), UCL, Ctr Polar Observat & Modelling, Gower St, London WC1E 6BT, England.
EM katharine.giles@ucl.ac.uk
RI Kwok, Ron/A-9762-2008; Farrell, Sinead/F-5586-2010; Hendricks,
Stefan/D-5168-2011; Haas, Christian/L-5279-2016
OI Kwok, Ron/0000-0003-4051-5896; Farrell, Sinead/0000-0003-3222-2751;
Hendricks, Stefan/0000-0002-1412-3146; Haas,
Christian/0000-0002-7674-3500
FU UK's Natural Environment Research Council; European Space Agency; German
Aerospace Center (DLR); Alberta Ingenuity; National Science Foundation
(NSF)
FX This work was funded by the UK's Natural Environment Research Council,
the European Space Agency, the German Aerospace Center (DLR), Alberta
Ingenuity, National Science Foundation (NSF). Thanks to Kenn Borek and
the NASA IceBridge team.
NR 23
TC 163
Z9 172
U1 17
U2 122
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2013
VL 40
IS 4
BP 732
EP 737
DI 10.1002/grl.50193
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 129IE
UT WOS:000317831800014
ER
PT J
AU Volkov, DL
Belonenko, TV
Foux, VR
AF Volkov, Denis L.
Belonenko, Tatyana V.
Foux, Victor R.
TI Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot
of ocean variability
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID NORDIC SEAS; TOPEX/POSEIDON ALTIMETER; SURFACE CIRCULATION;
NORTH-ATLANTIC; PATHWAYS; DRIFTERS; WATER
AB A sub-Arctic "hot spot" of intense synoptic-scale variability is observed in the Lofoten Basin (LB) of the Norwegian Sea. Using ERS-1/2 and Envisat satellite altimetry measurements, we discover a cyclonic propagation of the synoptic-scale sea surface height anomalies around the center of the LB. Surface drifter trajectories do not reveal an associated coherent near-surface cyclonic flow suggesting that the propagating signals have a wavelike nature. We identify a dipole and a quadrupole wave modes rotating around the center of the LB, obtain analytic dispersion relations for these modes, and demonstrate that the observed propagation is a manifestation of topographic Rossby waves. Most of the observed waves have a wavelength of about 500 km and phase speeds ranging from 2 to 10 km/day. We show that these waves are largely responsible for the localization and amplification of sea surface height variability in the center of the LB. Citation: Volkov, D. L., T. V. Belonenko, and V. R. Foux (2013), Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot of ocean variability, Geophys. Res. Lett., 40, 738-743, doi:10.1002/grl.50126.
C1 [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.
[Volkov, Denis L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Belonenko, Tatyana V.; Foux, Victor R.] St Petersburg State Univ, Dept Oceanol, St Petersburg, Russia.
RP Volkov, DL (reprint author), CALTECH, Jet Prop Lab, MS 300-323,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM denis.volkov@jpl.nasa.gov
RI Volkov, Denis/A-6079-2011; Belonenko, Tatyana/K-2162-2013; Foux,
Victor/M-9135-2013
OI Volkov, Denis/0000-0002-9290-0502; Belonenko,
Tatyana/0000-0003-4608-7781; Foux, Victor/0000-0002-4805-293X
FU CNES; NASA Physical Oceanography program
FX The altimeter products were produced by SSALTO/DUACS and distributed by
AVISO with support from CNES (http://www.aviso.oceanobs.com/duacs/). The
surface drifter data, corrected for ageostrophic effects, were kindly
provided by Marie-Helene Rio of C.L. S. Space Oceanography Division. The
authors thank Prof. Peter Rhines and an anonymous reviewer for their
comments and suggestions that helped to improve the manuscript. D.
Volkov was supported by the NASA Physical Oceanography program.
NR 25
TC 13
Z9 16
U1 4
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2013
VL 40
IS 4
BP 738
EP 743
DI 10.1002/grl.50126
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 129IE
UT WOS:000317831800015
ER
PT J
AU Folland, CK
Colman, AW
Smith, DM
Boucher, O
Parker, DE
Vernier, JP
AF Folland, Chris K.
Colman, Andrew W.
Smith, Doug M.
Boucher, Olivier
Parker, David E.
Vernier, Jean-Paul
TI High predictive skill of global surface temperature a year ahead
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID CLIMATE-CHANGE; MODEL; CYCLES
AB We discuss 13 real-time forecasts of global annual-mean surface temperature issued by the United Kingdom Met Office for 1 year ahead for 2000-2012. These involve statistical, and since 2008, initialized dynamical forecasts using the Met Office DePreSys system. For the period when the statistical forecast system changed little, 2000-2010, issued forecasts had a high correlation of 0.74 with observations and a root mean square error of 0.07 degrees C. However, the HadCRUT data sets against which issued forecasts were verified were biased slightly cold, especially from 2004, because of data gaps in the strongly warming Arctic. This observational cold bias was mainly responsible for a statistically significant warm bias in the 2000-2010 forecasts of 0.06 degrees C. Climate forcing data sets used in the statistical method, and verification data, have recently been modified, increasing hindcast correlation skill to 0.80 with no significant bias. Dynamical hindcasts for 2000-2011 have a similar correlation skill of 0.78 and skillfully hindcast annual mean spatial global surface temperature patterns. Such skill indicates that we have a good understanding of the main factors influencing global mean surface temperature. Citation: Folland, C. K., A. W. Colman, D. M. Smith, O. Boucher, D. E. Parker, and J.-P. Vernier (2013), High predictive skill of global surface temperature a year ahead, Geophys. Res. Lett., 40, 761-767, doi:10.1002/grl.50169.
C1 [Folland, Chris K.; Colman, Andrew W.; Smith, Doug M.; Boucher, Olivier; Parker, David E.] Met Off, Met Off Hadley Ctr Climate Change, Exeter EX1 3PB, Devon, England.
[Folland, Chris K.] Univ Gothenburg, Dept Earth Sci, Gothenburg, Sweden.
[Boucher, Olivier] UPMC, Meteorol Dynam Lab, IPSL, CNRS, Paris, France.
[Vernier, Jean-Paul] Sci Syst & Applicat Inc, Hampton, VA USA.
[Vernier, Jean-Paul] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Folland, CK (reprint author), Met Off, Met Off Hadley Ctr Climate Change, FitzRoy Rd, Exeter EX1 3PB, Devon, England.
EM chris.folland@metoffice.gov.uk
RI sebastianovitsch, stepan/G-8507-2013; Folland, Chris/I-2524-2013
FU Joint DECC/Defra Met Office Hadley Centre Climate Programme, UK
[GA01101]
FX Met Office authors were supported by the Joint DECC/Defra Met Office
Hadley Centre Climate Programme (GA01101), UK. The new satellite
stratospheric aerosol record was constructed with the help of the
CALIPSO, GOMOS, and SAGE II science teams. Thanks also go to two
anonymous reviewers who much improved the paper and to Rosie Eade, who
helped with Figure 4.
NR 21
TC 12
Z9 12
U1 1
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2013
VL 40
IS 4
BP 761
EP 767
DI 10.1002/grl.50169
PG 7
WC Geosciences, Multidisciplinary
SC Geology
GA 129IE
UT WOS:000317831800019
ER
PT J
AU Bedka, ST
Minnis, P
Duda, DP
Chee, TL
Palikonda, R
AF Bedka, Sarah T.
Minnis, Patrick
Duda, David P.
Chee, Thad L.
Palikonda, Rabindra
TI Properties of linear contrails in the Northern Hemisphere derived from
2006 Aqua MODIS observations
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID CLOUD PROPERTIES; OPTICAL DEPTH; AVHRR-DATA; CIRRUS; CHANNELS
AB Understanding the role of contrails in the Earth's radiation budget requires an accurate characterization of their macrophysical and microphysical properties, such as cloud top temperature, optical depth, and effective particle size. These properties are derived from 2006 MODerate-resolution Imaging Spectroradiometer data over the Northern Hemisphere using a bi-spectral, infrared-only retrieval technique. Contrail temperature is estimated using a quadratic relationship of flight track pressure with latitude. The results reveal distinct seasonal trends in contrail microphysical properties, with slightly greater mean optical depths and slightly smaller particle sizes during summer. The average contrail optical depth and particle effective diameter are 0.216 and 35.7 mu m, respectively. Although fewer contrails occurred at night, there are no appreciable diurnal differences in their retrieved properties. These results should help to fill the gap in our knowledge of contrail properties and will be valuable for model validation. Citation: Bedka, S. T., P. Minnis, D. P. Duda, T. L. Chee, and R. Palikonda (2013), Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations, Geophys. Res. Lett., 40, 772-777, doi: 10.1029/2012GL054363.
C1 [Bedka, Sarah T.; Duda, David P.; Chee, Thad L.; Palikonda, Rabindra] Sci Syst & Applicat Inc, Hampton, VA USA.
[Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Bedka, ST (reprint author), 1 Enterprise Pkwy, Hampton, VA 23666 USA.
EM sarah.t.bedka@nasa.gov
RI Minnis, Patrick/G-1902-2010
OI Minnis, Patrick/0000-0002-4733-6148
NR 19
TC 9
Z9 9
U1 1
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 28
PY 2013
VL 40
IS 4
BP 772
EP 777
DI 10.1029/2012GL054363
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 129IE
UT WOS:000317831800021
ER
PT J
AU Risaliti, G
Harrison, FA
Madsen, KK
Walton, DJ
Boggs, SE
Christensen, FE
Craig, WW
Grefenstette, BW
Hailey, CJ
Nardini, E
Stern, D
Zhang, WW
AF Risaliti, G.
Harrison, F. A.
Madsen, K. K.
Walton, D. J.
Boggs, S. E.
Christensen, F. E.
Craig, W. W.
Grefenstette, B. W.
Hailey, C. J.
Nardini, E.
Stern, Daniel
Zhang, W. W.
TI A rapidly spinning supermassive black hole at the centre of NGC 1365
SO NATURE
LA English
DT Article
ID ACTIVE GALACTIC NUCLEI; EMISSION-LINES; 1H 0707-495; ABSORPTION; REGION;
MODEL; MCG-6-30-15; REFLECTION; NGC-1365; SIZE
AB Broad X-ray emission lines from neutral and partially ionized iron observed in active galaxies have been interpreted as fluorescence produced by the reflection of hard X-rays off the inner edge of an accretion disk(1-7). In this model, line broadening and distortion result from rapid rotation and relativistic effects near the black hole, the line shape being sensitive to its spin. Alternative models in which the distortions result from absorption by intervening structures provide an equally good description of the data(8,9), and there has been no general agreement on which is correct. Recent claims(10) that the black hole(11,12) (2 X 10(6) solar masses) at the centre of the galaxy NGC 1365 is rotating at close to its maximum possible speed rest on the assumption of relativistic reflection. Here we report X-ray observations of NGC 1365 that reveal the relativistic disk features through broadened Fe-line emission and an associated Compton scattering excess of 10-30 kiloelectronvolts. Using temporal and spectral analyses, we disentangle continuum changes due to time-variable absorption from reflection, which we find arises from a region within 2.5 gravitational radii of the rapidly spinning black hole. Absorption-dominated models that do not include relativistic disk reflection can be ruled out both statistically and on physical grounds.
C1 [Risaliti, G.] INAF Osservatoria Astrofis Arcetri, I-50125 Florence, Italy.
[Risaliti, G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Harrison, F. A.; Madsen, K. K.; Walton, D. J.; Grefenstette, B. W.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA.
[Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark.
[Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Nardini, E.] Keele Univ, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England.
[Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Risaliti, G (reprint author), INAF Osservatoria Astrofis Arcetri, Largo Enrico Fermi 5, I-50125 Florence, Italy.
EM risaliti@arcetri.astro.it; fiona@srl.caltech.edu
RI Boggs, Steven/E-4170-2015;
OI Boggs, Steven/0000-0001-9567-4224; Risaliti, Guido/0000-0002-3556-977X
FU NASA [NNG08FD60C]; National Aeronautics and Space Administration; ESA
Member States
FX This work was supported under NASA grant number NNG08FD60C, and made use
of data from the Nuclear Spectroscopic Telescope Array (NuSTAR) mission,
a project led by Caltech, managed by the Jet Propulsion Laboratory, and
funded by the National Aeronautics and Space Administration. We thank
the NuSTAR Operations, Software and Calibration teams for support with
execution and analysis of these observations. This work also made use of
observations obtained with XMM-Newton, an ESA science mission with
instruments and contributions directly funded by ESA Member States and
NASA.
NR 27
TC 118
Z9 118
U1 1
U2 17
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD FEB 28
PY 2013
VL 494
IS 7438
BP 449
EP 451
DI 10.1038/nature11938
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 099YI
UT WOS:000315661500031
PM 23446416
ER
PT J
AU Barclay, T
Rowe, JF
Lissauer, JJ
Huber, D
Fressin, F
Howell, SB
Bryson, ST
Chaplin, WJ
Deseret, JM
Lopez, ED
Marcy, GW
Mullally, F
Ragozzine, D
Torres, G
Adams, ER
Agol, E
Barrado, D
Basu, S
Bedding, TR
Buchhave, LA
Charbonneau, D
Christiansen, JL
Christensen-Dalsgaard, J
Ciardi, D
Cochran, WD
Dupree, AK
Elsworth, Y
Everett, M
Fischer, DA
Ford, EB
Fortney, JJ
Geary, JC
Haas, MR
Handberg, R
Hekker, S
Henze, CE
Horch, E
Howard, AW
Hunter, RC
Isaacson, H
Jenkins, JM
Karoff, C
Kawaler, SD
Kjeldsen, H
Klaus, TC
Latham, DW
Li, J
Lillo-Box, J
Lund, MN
Lundkvist, M
Metcalfe, TS
Miglio, A
Morris, RL
Quintana, EV
Stello, D
Smith, JC
Still, M
Thompson, SE
AF Barclay, Thomas
Rowe, Jason F.
Lissauer, Jack J.
Huber, Daniel
Fressin, Francois
Howell, Steve B.
Bryson, Stephen T.
Chaplin, William J.
Deseret, Jean-Michel
Lopez, Eric D.
Marcy, Geoffrey W.
Mullally, Fergal
Ragozzine, Darin
Torres, Guillermo
Adams, Elisabeth R.
Agol, Eric
Barrado, David
Basu, Sarbani
Bedding, Timothy R.
Buchhave, Lars A.
Charbonneau, David
Christiansen, Jessie L.
Christensen-Dalsgaard, Jorgen
Ciardi, David
Cochran, William D.
Dupree, Andrea K.
Elsworth, Yvonne
Everett, Mark
Fischer, Debra A.
Ford, Eric B.
Fortney, Jonathan J.
Geary, John C.
Haas, Michael R.
Handberg, Rasmus
Hekker, Saskia
Henze, Christopher E.
Horch, Elliott
Howard, Andrew W.
Hunter, Roger C.
Isaacson, Howard
Jenkins, Jon M.
Karoff, Christoffer
Kawaler, Steven D.
Kjeldsen, Hans
Klaus, Todd C.
Latham, David W.
Li, Jie
Lillo-Box, Jorge
Lund, Mikkel N.
Lundkvist, Mia
Metcalfe, Travis S.
Miglio, Andrea
Morris, Robert L.
Quintana, Elisa V.
Stello, Dennis
Smith, Jeffrey C.
Still, Martin
Thompson, Susan E.
TI A sub-Mercury-sized exoplanet
SO NATURE
LA English
DT Article
ID TRANSITING PLANET; EXTRASOLAR PLANETS; BLEND SCENARIOS; MULTIPLE SYSTEM;
KEPLER-MISSION; LIGHT CURVES; ASTEROSEISMOLOGY; METALLICITIES;
VALIDATION; CANDIDATES
AB Since the discovery of the first exoplanets(1,2), it has been known that other planetary systems can look quite unlike our own(3). Until fairly recently, we have been able to probe only the upper range of the planet size distribution(4,5), and, since last year, to detect planets that are the size of Earth(6) or somewhat smaller(7). Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury(8). This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.
C1 [Barclay, Thomas; Rowe, Jason F.; Lissauer, Jack J.; Huber, Daniel; Howell, Steve B.; Bryson, Stephen T.; Mullally, Fergal; Christiansen, Jessie L.; Haas, Michael R.; Henze, Christopher E.; Hunter, Roger C.; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Quintana, Elisa V.; Smith, Jeffrey C.; Still, Martin; Thompson, Susan E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Barclay, Thomas; Still, Martin] Bay Area Environm Res Inst, Sonoma, CA 95476 USA.
[Rowe, Jason F.; Mullally, Fergal; Christiansen, Jessie L.; Jenkins, Jon M.; Li, Jie; Morris, Robert L.; Quintana, Elisa V.; Smith, Jeffrey C.; Thompson, Susan E.] SETI Inst, Mountain View, CA 94043 USA.
[Fressin, Francois; Deseret, Jean-Michel; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R.; Charbonneau, David; Dupree, Andrea K.; Geary, John C.; Latham, David W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Chaplin, William J.; Elsworth, Yvonne; Hekker, Saskia; Miglio, Andrea] Univ Birmingham, Sch Phys & Astron, Edgbaston B15 2TT, England.
[Lopez, Eric D.; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Marcy, Geoffrey W.; Isaacson, Howard] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Ragozzine, Darin; Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32111 USA.
[Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Barrado, David] Ctr Astron Hispano Aleman, Calar Alto Observ, E-04004 Almeria, Spain.
[Barrado, David; Lillo-Box, Jorge] Ctr Astrobiol, Dept Astrofis, E-28691 Villanueva De La Canada, Spain.
[Basu, Sarbani; Fischer, Debra A.] Yale Univ, New Haven, CT 06520 USA.
[Bedding, Timothy R.; Stello, Dennis] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia.
[Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark.
[Christensen-Dalsgaard, Jorgen; Handberg, Rasmus; Karoff, Christoffer; Kjeldsen, Hans; Lund, Mikkel N.; Lundkvist, Mia] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark.
[Ciardi, David] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA.
[Everett, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Hekker, Saskia] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands.
[Horch, Elliott] So Connecticut State Univ, New Haven, CT 06515 USA.
[Howard, Andrew W.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Kawaler, Steven D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Klaus, Todd C.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Metcalfe, Travis S.] White Dwarf Res Corp, Boulder, CO 80301 USA.
RP Barclay, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM thomas.barclay@nasa.gov; jason.rowe@nasa.gov
RI Karoff, Christoffer/L-1007-2013; Basu, Sarbani/B-8015-2014; Lillo-Box,
Jorge/I-2841-2015; Barrado Navascues, David/C-1439-2017;
OI Lund, Mikkel Norup/0000-0001-9214-5642; Lundkvist, Mia
Sloth/0000-0002-8661-2571; Fischer, Debra/0000-0003-2221-0861; Handberg,
Rasmus/0000-0001-8725-4502; Kawaler, Steven/0000-0002-6536-6367; Karoff,
Christoffer/0000-0003-2009-7965; Basu, Sarbani/0000-0002-6163-3472;
Lillo-Box, Jorge/0000-0003-3742-1987; Barrado Navascues,
David/0000-0002-5971-9242; Bedding, Timothy/0000-0001-5943-1460;
Fortney, Jonathan/0000-0002-9843-4354; /0000-0002-0802-9145; Buchhave,
Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Bedding,
Tim/0000-0001-5222-4661; Metcalfe, Travis/0000-0003-4034-0416
FU NASA's Science Mission Directorate; NASA; JPL/Caltech; Danish National
Research Foundation; ASTERISK; European Research Council; NSF
FX Kepler was competitively selected as the tenth Discovery mission.
Funding for this mission is provided by NASA's Science Mission
Directorate. Some of this work is based on observations made with the
Spitzer Space Telescope, which is operated by the Jet Propulsion
Laboratory, California Institute of Technology under a contract with
NASA. Support for this work was provided by NASA through an award.
issued by JPL/Caltech. Kepler flux time series data presented in this
paper are available from the Mikulski Archive for Space Telescopes
(MAST) at the Space Telescope Science Institute (STScI). Funding for the
Stellar Astrophysics Centre is provided by The Danish National Research
Foundation. The research is supported by the ASTERISK project funded by
the European Research Council. E.A. acknowledges support through an NSF
Career grant. D.H. is supported by an appointment to the NASA
Postdoctoral Program at Ames Research Center.
NR 30
TC 92
Z9 92
U1 2
U2 40
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 28
PY 2013
VL 494
IS 7438
BP 452
EP 454
DI 10.1038/nature11914
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 099YI
UT WOS:000315661500032
PM 23426260
ER
PT J
AU Hein, JD
Al-Khazraji, H
Tiessen, CJ
Lukic, D
Trocchi, JA
McConkey, JW
AF Hein, J. D.
Al-Khazraji, H.
Tiessen, C. J.
Lukic, D.
Trocchi, J. A.
McConkey, J. W.
TI Excited atomic fragments following electron dissociation of pyrimidine
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID CROSS-SECTIONS; ULTRAVIOLET EMISSION; IMPACT DISSOCIATION;
MOLECULAR-HYDROGEN; H-2; DNA; SCATTERING; PURINE
AB A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of pyrimidine into excited atomic fragments in the impact energy range from threshold to 375 eV. Data have been made absolute using Lyman-alpha from H-2 as a secondary standard. The main features in the spectrum are the H Lyman series lines. The emission cross section of Lyman-alpha is measured to be (2.44 +/- 0.25) 10(-18) cm(2) at 100 eV impact energy. The probability of extracting C or N atoms from the ring is shown to be very small. Possible dissociation channels and excitation mechanisms in the parent molecule are discussed.
C1 [Hein, J. D.; Al-Khazraji, H.; Tiessen, C. J.; Lukic, D.; Trocchi, J. A.; McConkey, J. W.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada.
RP Hein, JD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM mcconk@uwindsor.ca
RI Hein, Jeffrey/A-7171-2013
FU Natural Sciences and Engineering Research Council of Canada; University
of Windsor 'Outstanding Scholars' program
FX Financial support for this work from the Natural Sciences and
Engineering Research Council of Canada is gratefully acknowledged. HA,
CJT, DL and JAT acknowledge support from the University of Windsor
'Outstanding Scholars' program. Expert technical help was obtained from
the University of Windsor, Physics Department mechanical and electronic
shops.
NR 31
TC 4
Z9 4
U1 1
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS B-AT MOL OPT
JI J. Phys. B-At. Mol. Opt. Phys.
PD FEB 28
PY 2013
VL 46
IS 4
AR 045202
DI 10.1088/0953-4075/46/4/045202
PG 4
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 088EG
UT WOS:000314816000006
ER
PT J
AU Gu, SY
Li, T
Dou, XK
Wu, Q
Mlynczak, MG
Russell, JM
AF Gu, Sheng-Yang
Li, Tao
Dou, Xiankang
Wu, Qian
Mlynczak, M. G.
Russell, J. M., III
TI Observations of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID QUASI 2-DAY WAVE; MIDDLE ATMOSPHERE; PLANETARY-WAVES; LOWER
THERMOSPHERE; WIND MEASUREMENTS; LONG-TERM; SUMMER; TEMPERATURE;
MESOSPHERE; STRATOSPHERE
AB Seasonal and interannual variations of the Quasi-Two-Day wave s = -3 (W3) and s = -4 (W4) modes were studied with global temperature and wind data sets during 2002-2012, observed respectively by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and TIMED Doppler Imager (TIDI) instruments onboard the Thermosphere Ionosphere and Mesosphere Electric Dynamics (TIMED) satellite. The amplitudes of W3 and W4 are significantly enhanced during austral and boreal summer respectively. Strong W3 amplitudes are observed during January 2006 in all three components of temperature, meridional wind, and zonal wind. This is most likely related to the intensive winter planetary wave activity that led to a strong sudden stratosphere warming (SSW) event. The maximum amplitudes of W4 during the 10 years are similar to 8-9 K, similar to 40 m/s, and similar to 20 m/s for temperature, meridional, and zonal components respectively, nearly half as large as those of W3, with similar to 15 K, similar to 65 m/s, and similar to 35 m/s. In January 2008 and 2009, unusually weak W3 but strong W4 oscillations were observed, corresponding to the much weaker summer easterly jets (westward wind) than those in other years. This suggests that relatively weak summer easterly may not be able to provide sufficiently strong barotropic/baroclinic instability to amplify W3 but is favorable for the amplification of W4. The weaker magnitude values, lower peak heights, and longer life intervals of W4 than those of W3 suggest that the W4 may suffer a greater damping rate than the W3. The observations of W4 show good agreement with Rossby-gravity (4, 0) mode, which is more easily trapped in both latitude and altitude because of its lower group velocity than that of Rossby-gravity (3, 0) mode. Citation: Gu, S.-Y, T. Li, X. Dou, Q. Wu, M. G. Mlynczak, and J. M. Russell (2013), Observations of Quasi-Two-Day wave by TIMED/SABER and TIMED/TIDI, J. Geophys. Res. Atmos., 118, 1624-1639, doi:10.1002/jgrd.50191.
C1 [Gu, Sheng-Yang; Li, Tao; Dou, Xiankang] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China.
[Wu, Qian] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA.
[Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Russell, J. M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA.
RP Li, T (reprint author), Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China.
EM litao@ustc.edu.cn
RI Dou, xiankang/M-9106-2013; Li, Tao/J-8950-2014
OI Li, Tao/0000-0002-5100-4429
FU National Natural Science Foundation of China [41225017, 41074108,
41127901, 41025016, 41121003]; Chinese Academy of Sciences Key Research
Program [KZZD-EW-01]; National Basic Research Program of China
[2012CB825605]; National Science Foundation
FX This work was carried out at the University of Science and Technology of
China, with support from the National Natural Science Foundation of
China (grants 41225017, 41074108, 41127901, 41025016, 41121003), the
Chinese Academy of Sciences Key Research Program KZZD-EW-01, and the
National Basic Research Program of China grant 2012CB825605. The
National Center for Atmospheric Research is supported by the National
Science Foundation. We thank Dr. C.-Y. She and Dr. H.-L. Liu for their
helpful comments on the manuscript. The SABER temperature data set, TIDI
wind data set, and UKMO zonal wind data set were downloaded from
http://www.timed.jhuapl.edu/, http://timed.hao.ucar.edu/tidi/, and
http://badc.nerc.ac.uk/browse/badc/ukmo-assim/, respectively. The
authors would also like to thank three anonymous reviewers for their
constructive comments and suggestions.
NR 51
TC 17
Z9 19
U1 0
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2013
VL 118
IS 4
BP 1624
EP 1639
DI 10.1002/jgrd.50191
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LM
UT WOS:000317841000004
ER
PT J
AU Cook, BI
Seager, R
AF Cook, B. I.
Seager, R.
TI The response of the North American Monsoon to increased greenhouse gas
forcing
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID CLIMATE-CHANGE; SOIL-MOISTURE; VARIABILITY; PRECIPITATION; GENERATION;
TRANSITION; DROUGHT; SYSTEM; SHIFTS
AB We analyze the response of the North American Monsoon (NAM) to increased greenhouse gas (GHG) forcing (emissions scenario RCP 8.5) using new simulations available through the Coupled Model Intercomparison Project version 5 (CMIP5). Changes in total monsoon season rainfall with GHG warming are small and insignificant. The models do, however, show significant declines in early monsoon season precipitation (June-July) and increases in late monsoon season (September-October) precipitation, indicating a shift in seasonality toward delayed onset and withdrawal of the monsoon. Early in the monsoon season, tropospheric warming increases vertical stability, reinforced by reductions in available surface moisture, inhibiting precipitation and delaying the onset of the monsoon. By the end of the monsoon season, moisture convergence is sufficient to overcome the warming induced stability increases, and precipitation is enhanced. Even with no change in total NAM rainfall, shifts in the seasonal distribution of precipitation within the NAM region are still likely to have significant societal and ecological consequences, reinforcing the need to not only understand the magnitude, but also the timing, of future precipitation changes. Citation: Cook, B. I., and R. Seager (2013), The response of the North American Monsoon to increased greenhouse gas forcing, J. Geophys. Res. Atmos, 118, 1690-1699, doi:10.1002/jgrd.50111.
C1 [Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Cook, B. I.; Seager, R.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
EM benjamin.i.cook@nasa.gov
RI Cook, Benjamin/H-2265-2012
FU NOAA [NAOAR4310137, NA08OAR4320912]; NSF [AGS0804107]
FX We acknowledge the World Climate Research Programme's Working Group on
Coupled Modelling, which is responsible for CMIP, and we thank the
climate modeling groups (listed in Table 1 of this paper) for producing
and making available their model output. For CMIP, the U.S. Department
of Energy's Program for Climate Model Diagnosis and Intercomparison
provides coordinating support and led development of software
infrastructure in partnership with the Global Organization for Earth
System Science Portals. We also gratefully acknowledge Naomi Henderson
and Haibo Liu for collecting, managing, and serving the CMIP5 data at
Lamont. RS was supported by NOAA awards NAOAR4310137 (Global Decadal
Hydroclimate Variability and Change) and NA08OAR4320912 and NSF award
AGS0804107. Three anonymous reviewers provided valuable comments that
improved the quality of this manuscript. We thank Richard Zou of Hunter
High School for assistance on an earlier version of this work. Lamont
contribution #7659.
NR 30
TC 46
Z9 47
U1 1
U2 58
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2013
VL 118
IS 4
BP 1690
EP 1699
DI 10.1002/jgrd.50111
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LM
UT WOS:000317841000009
ER
PT J
AU Dodson, JB
Randall, DA
Suzuki, K
AF Dodson, Jason B.
Randall, David A.
Suzuki, Kentaroh
TI Comparison of observed and simulated tropical cumuliform clouds by
CloudSat and NICAM
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SEA-SURFACE TEMPERATURE; MADDEN-JULIAN OSCILLATION; DEEP CONVECTION;
WATER-VAPOR; A-TRAIN; VERTICAL STRUCTURE; RESOLVING MODEL; VARIABILITY;
SCALE; OCEANS
AB We use CloudSat observations of boreal summer tropical ocean cumuliform clouds to evaluate the behavior of the non-parameterized cumuliform clouds in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), with a particular emphasis on deep convective clouds (DCCs). The CloudSat cloud mask and radar reflectivity profiles for cumuliform clouds are sorted by large-scale environmental variables taken from the Aqua satellite and NCEP/NCAR reanalysis. The variables are total precipitable water (TPW), sea surface temperature (SST), and 500 hPa vertical velocity (W500), representing the dynamical and thermodynamical environment in which the clouds form. The sorted CloudSat profiles are then compared with NICAM profiles simulated with the Quickbeam CloudSat simulator. We first use the cloud mask to examine the transition between shallow clouds and deep clouds rooted in the planetary boundary layer. We find that NICAM simulates this transition fairly realistically. However, the transition occurs at slightly higher TPW and W500 values than the observations show. This may be indication of NICAM's inability to represent the formation of isolated narrow DCCs in marginally favorable environments. We then use simple metrics of the DCC-only radar reflectivity profiles (cloud top height, cloud top reflectivity gradient, maximum reflectivity) to quantitatively compare the observations with NICAM. The results show that while the observed and simulated results agree generally, there are some disagreements in key respects. There is disagreement on the sensitivity of cloud top height to environmental conditions and on the transition between shallow and deep clouds in environments marginally suitable for deep convection. Citation: Dodson, J. B., D. A. Randall, and K. Suzuki (2013), Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM, J. Geophys. Res. Atmos., 118, 1852-1867, doi:10.1002/jgrd.50121.
C1 [Dodson, Jason B.; Randall, David A.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Suzuki, Kentaroh] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Dodson, JB (reprint author), Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
EM jbdodson@lamar.colostate.edu
RI Suzuki, Kentaroh/C-3624-2011; Randall, David/E-6113-2011
OI Randall, David/0000-0001-6935-4112
FU National Science Foundation Science and Technology Center for MultiScale
Modeling of Atmospheric Processes [ATM-0425247]; National Aeronautics
and Space Administration; CloudSat award [NAS5-99237]; Department of
Atmospheric Science, Colorado State University
FX This work has been supported by the National Science Foundation Science
and Technology Center for MultiScale Modeling of Atmospheric Processes,
managed by Colorado State University under cooperative agreement. No.
ATM-0425247. Part of the research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. In addition, this
work has been supported by the CloudSat award #NAS5-99237, and the
Department of Atmospheric Science, Colorado State University.
NR 49
TC 3
Z9 3
U1 1
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2013
VL 118
IS 4
BP 1852
EP 1867
DI 10.1002/jgrd.50121
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LM
UT WOS:000317841000020
ER
PT J
AU Park, M
Randel, WJ
Kinnison, DE
Emmons, LK
Bernath, PF
Walker, KA
Boone, CD
Livesey, NJ
AF Park, Mijeong
Randel, William J.
Kinnison, Douglas E.
Emmons, Louisa K.
Bernath, Peter F.
Walker, Kaley A.
Boone, Chris D.
Livesey, Nathaniel J.
TI Hydrocarbons in the upper troposphere and lower stratosphere observed
from ACE-FTS and comparisons with WACCM
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID CARBON-MONOXIDE DISTRIBUTIONS; BIOMASS BURNING EMISSIONS; CHEMISTRY
EXPERIMENT ACE; IN-SITU MEASUREMENTS; ATMOSPHERIC CHEMISTRY;
SPECTROSCOPIC MEASUREMENTS; SPACEBORNE OBSERVATIONS; GLOBAL
DISTRIBUTIONS; MONSOON ANTICYCLONE; HYDROGEN-CYANIDE
AB Satellite measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) are used to examine the global, seasonal variations of several hydrocarbons, including carbon monoxide (CO), ethane (C2H6), acetylene (C2H2), and hydrogen cyanide (HCN). We focus on quantifying large-scale seasonal behavior from the middle troposphere to the stratosphere, particularly in the tropics, and furthermore make detailed comparisons with the Whole Atmosphere Community Climate Model (WACCM) chemistry climate model (incorporating tropospheric photochemistry, time-varying hydrocarbon emissions, and meteorological fields nudged from reanalysis). Comparisons with Microwave Limb Sounder (MLS) measurements of CO are also included to understand sampling limitations of the ACE-FTS data and biases among observational data sets. Results show similar overall variability for CO, C2H6, and C2H2, with a semiannual cycle in the tropical upper troposphere related to seasonallyvarying sources and deep tropical convection, plus a maximum during Northern Hemisphere summer tied to the Asian monsoon anticyclone. These species also reveal a strong annual cycle above the tropical tropopause, tied to annual variations in the upward branch of Brewer-Dobson circulation. HCN reveals substantial differences from the other species, due to a longer photochemical lifetime and a chemical sink associated with ocean surface contact, which produces a minimum in the tropical upper troposphere not observed in the other species. For HCN, transport to the stratosphere occurs primarily through the Asian summer monsoon anticyclone. Overall, the WACCM simulation is able to reproduce most of the large-scale features observed in the ACE-FTS data, suggesting a reasonable simulation of sources and large-scale transport. The model is too low in the Southern Hemisphere subtropics during Austral spring, which indicates underestimate of biomass burning emissions and/or insufficient vertical transport in the model. Citation: Park, M., W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, and N. J. Livesey (2013), Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM, J. Geophys. Res. Atmos., 118, 1964-1980, doi: 10.1029/2012JD018327.
C1 [Park, Mijeong; Randel, William J.; Kinnison, Douglas E.; Emmons, Louisa K.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Bernath, Peter F.] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA USA.
[Walker, Kaley A.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Boone, Chris D.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada.
[Livesey, Nathaniel J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Park, M (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
EM mijeong@ucar.edu
RI Bernath, Peter/B-6567-2012; Randel, William/K-3267-2016; Emmons,
Louisa/R-8922-2016
OI Bernath, Peter/0000-0002-1255-396X; Randel, William/0000-0002-5999-7162;
Emmons, Louisa/0000-0003-2325-6212
FU NASA Aura Science Program [NNX11AE59G]; Canadian Space Agency; National
Science Foundation
FX We thank Steve Massie and Charles Bardeen for discussions and comments
on the manuscript and three anonymous reviewers for constructive
comments that improved the paper. This work was partially supported
under the NASA Aura Science Program under grant NNX11AE59G. The ACE
mission is funded primarily by the Canadian Space Agency. The National
Center for Atmospheric Research is operated by the University
Corporation for Atmospheric Research, under sponsorship of the National
Science Foundation.
NR 87
TC 16
Z9 16
U1 2
U2 32
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2013
VL 118
IS 4
BP 1964
EP 1980
DI 10.1029/2012JD018327
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LM
UT WOS:000317841000028
ER
PT J
AU Shiga, YP
Michalak, AM
Kawa, SR
Engelen, RJ
AF Shiga, Yoichi P.
Michalak, Anna M.
Kawa, S. Randolph
Engelen, Richard J.
TI In-situ CO2 monitoring network evaluation and design: A criterion based
on atmospheric CO2 variability
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID CARBON-DIOXIDE; ASSIMILATION SYSTEM; TRANSPORT MODELS; GAS EMISSIONS;
INVERSIONS; SINKS; OPTIMIZATION; CYCLE
AB Estimates of surface fluxes of carbon dioxide (CO2) can be derived from atmospheric CO2 concentration measurements through the solution of an inverse problem, but the sparseness of the existing CO2 monitoring network is often cited as a main limiting factor in constraining fluxes. Existing methods for assessing or designing monitoring networks either primarily rely on expert knowledge, or are sensitive to the large number of modeling choices and assumptions inherent to the solution of inverse problems. This study proposes a monitoring network evaluation and design approach based on the quantification of the spatial variability in modeled atmospheric CO2. The approach is used to evaluate the 2004-2008 North American network expansion and to create two hypothetical further expansions. The less stringent expansion guarantees a monitoring tower within one correlation length (CL) of each location (1 CL), requiring an additional eight towers relative to 2008. The more stringent network includes a tower within one half of a CL (1/2 CL) and requires 35 towers beyond the 1 CL network. The two proposed networks are evaluated against the network in 2008, which temporarily had the most continuous monitoring sites in North America thanks to the Mid-Continent Intensive project. Evaluation using a synthetic data inversion shows a marked improvement in the ability to constrain both continental-and biome-scale fluxes, especially in areas that are currently under-sampled. The proposed approach is flexible, computationally inexpensive, and provides a quantitative design tool that can be used in concert with existing tools to inform atmospheric monitoring needs. Citation: Shiga, Y. P., A. M. Michalak, S. Randolph Kawa, and R. J. Engelen (2013), In-situ CO2 monitoring network evaluation and design: A criterion based on atmospheric CO2 variability, J. Geophys. Res. Atmos., 118, 2007-2018, doi: 10.1002/jgrd.50168.
C1 [Shiga, Yoichi P.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA.
[Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA.
[Kawa, S. Randolph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Engelen, Richard J.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England.
RP Michalak, AM (reprint author), Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA.
EM michalak@stanford.edu
RI Kawa, Stephan/E-9040-2012
FU National Aeronautics and Space Administration [NNX12A890G]; University
of Michigan Rackham Merit Fellowship; European Commission under the
Seventh Research Framework Program [218793]
FX This manuscript is based upon work supported by the National Aeronautics
and Space Administration under grant NNX12A890G. Partial support for
Yoichi Shiga was also provided by the University of Michigan Rackham
Merit Fellowship. The ECMWF-ORCHIDEE model simulation was done as part
of the MACC project, which was funded by the European Commission under
the Seventh Research Framework Program, contract number 218793. We would
like to acknowledge Anna Agusti-Panareda for her support with the
ECMWF-ORCHIDEE model simulations; Abhishek Chatterjee, Dorit Hammerling,
Kim Mueller, Sharon Gourdji, Deborah Huntzinger, and Vineet Yadav for
their invaluable expertise, patience, and assistance; Arlyn Andrews for
her insights and expertise regarding the in-situ CO2
measurement network; Thomas Nehrkorn, John Henderson, and Janusz
Eluszkiewicz for completing the WRF simulations; and three anonymous
reviewers for valuable input on the manuscript.
NR 57
TC 2
Z9 2
U1 0
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2013
VL 118
IS 4
BP 2007
EP 2018
DI 10.1002/jgrd.50168
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LM
UT WOS:000317841000031
ER
PT J
AU Jiang, Z
Jones, DBA
Worden, HM
Deeter, MN
Henze, DK
Worden, J
Bowman, KW
Brenninkmeijer, CAM
Schuck, TJ
AF Jiang, Zhe
Jones, Dylan B. A.
Worden, Helen M.
Deeter, Merritt N.
Henze, Daven K.
Worden, John
Bowman, Kevin W.
Brenninkmeijer, C. A. M.
Schuck, T. J.
TI Impact of model errors in convective transport on CO source estimates
inferred from MOPITT CO retrievals
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID BIOMASS BURNING EMISSIONS; CARBON-MONOXIDE; NETWORK OBSERVATIONS; DATA
ASSIMILATION; UPPER TROPOSPHERE; GEOS-CHEM; SYSTEM; AIRCRAFT; ADJOINT;
ASIA
AB Estimates of surface fluxes of carbon monoxide (CO) inferred from remote sensing observations or free tropospheric trace gas measurements using global chemical transport models can have significant uncertainties because of discrepancies in the vertical transport in the models, which make it challenging to unequivocally relate the observations back to the surface fluxes in the models. The new Measurement of Pollution in the Troposphere (MOPITT) version 5 retrievals provide greater sensitivity to lower tropospheric CO over land relative to the previous versions and are, therefore, useful for evaluating vertical transport in models. We have assimilated the new MOPITT CO retrievals, using the Goddard Earth Observing System (GEOS)-Chem model, to study the influence of vertical transport errors on inferred CO sources. We compared the source estimates obtained by assimilating the CO profiles, the column amounts, and the surface level retrievals for June-August 2006. The three different inversions produced large differences in the source estimates in regions of convection and strong CO emissions. The inversion using the CO profiles suggested an 85% increase in emissions in India/Southeast Asia, which exacerbated the model bias in the lower and middle troposphere, whereas using the surface level retrievals produced a 37% decrease in Indian/Southeast Asian emissions, which exacerbated the underestimate of CO in the upper troposphere. Globally, the inversion with the surface retrievals suggested a 22% reduction in emissions from the a priori estimate of 161 Tg CO/month (from combustion and the oxidation of biogenic volatile organic compounds), averaged in June-August 2006. The analysis results were validated with independent surface CO measurements from NOAA Global Monitoring Division (GMD) network and upper troposphere CO measurements from the Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrumented Container (CARIBIC). We found that the inversion with the surface retrievals agreed best with surface CO data but produced the largest discrepancy with the CARIBIC aircraft data in the upper troposphere, suggesting the influence of vertical transport errors in the model. Our results show that the comparison of the a posteriori CO distributions obtained from the inversions using the surface and profile retrievals provides a means of characterizing the potential impact of the vertical transport biases on the source estimates and the CO distribution. Citation: Jiang, Z., D. B. A. Jones, H. M. Worden, M. N. Deeter, D. K. Henze, J. Worden, K. W. Bowman, C. A. M. Brenninkmeijer, and T. J. Schuck (2013), Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals, J. Geophys. Res. Atmos., 118, 2073-2083, doi: 10.1002/jgrd.50216.
C1 [Jiang, Zhe; Jones, Dylan B. A.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Jones, Dylan B. A.; Bowman, Kevin W.] Univ Calif Los Angeles, JIFRESSE, Los Angeles, CA USA.
[Worden, Helen M.; Deeter, Merritt N.] NCAR, Boulder, CO USA.
[Henze, Daven K.] Univ Colorado, Boulder, CO 80309 USA.
[Worden, John; Bowman, Kevin W.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Brenninkmeijer, C. A. M.; Schuck, T. J.] Max Planck Inst Chem, Air Chem Div, D-55128 Mainz, Germany.
RP Jiang, Z (reprint author), Univ Toronto, 100 Coll St, Toronto, ON M5S 1A7, Canada.
EM zjiang@atmosp.physics.utoronto.ca
RI Jones, Dylan/O-2475-2014; Deeter, Merritt/O-6078-2016; Chem,
GEOS/C-5595-2014
OI Jones, Dylan/0000-0002-1935-3725; Deeter, Merritt/0000-0002-3555-0518;
FU Natural Science and Engineering Research Council of Canada; Canadian
Space Agency; NASA [NNX10AT42G, NNX09AN77G]
FX This work was supported by funding from the Natural Science and
Engineering Research Council of Canada, the Canadian Space Agency, and
NASA grants NNX10AT42G and NNX09AN77G. We thank NOAA ESRL for providing
their CO flask data. We also acknowledge useful discussions with Susan
Kulawik.
NR 42
TC 22
Z9 22
U1 0
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 27
PY 2013
VL 118
IS 4
BP 2073
EP 2083
DI 10.1002/jgrd.50216
PG 11
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LM
UT WOS:000317841000036
ER
PT J
AU Palmieri, FL
Watson, KA
Morales, G
Williams, T
Hicks, R
Wohl, CJ
Hopkins, JW
Connell, JW
AF Palmieri, Frank L.
Watson, Kent A.
Morales, Guillermo
Williams, Thomas
Hicks, Robert
Wohl, Christopher J.
Hopkins, John W.
Connell, John W.
TI Laser Ablative Surface Treatment for Enhanced Bonding of Ti-6Al-4V Alloy
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE Adhesion; Failure mode; Roughness; X-ray photoelectron spectroscopy
(XPS); lap shear; PETI-5
ID COMPOSITES; TITANIUM; ADHESION; PHENYLETHYNYL; JOINTS
AB Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable adhesive bonds. Surface preparation by laser ablation provides an alternative to the expensive, hazardous, polluting, and less precise practices used currently such as chemical-dip, manual abrasion and grit blast. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Surface roughness and surface chemical composition were characterized using interference microscopy and X-ray photoelectron spectroscopy, respectively. A technique for fluorescence visualization was developed which allowed for quantitative failure mode analysis. Wedge crack extension testing in a hot, humid environment indicated the relative effectiveness of various surface treatments. Increasing ablation duty cycle reduced crack propagation and adhesive failure. Single lap shear testing showed an increase in strength and durability as laser ablation duty cycle and power were increased. Chemical analyses showed trends for surface chemical species, which correlated with improved bond strength and durability.
C1 [Palmieri, Frank L.; Watson, Kent A.] Natl Inst Aerosp, Hampton, VA 23666 USA.
[Morales, Guillermo] NASA Langley Res Summer Scholar, Hampton, VA 23681 USA.
[Williams, Thomas; Hicks, Robert] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Wohl, Christopher J.; Hopkins, John W.; Connell, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Palmieri, FL (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA.
EM frank.l.palmieri@nasa.gov
NR 22
TC 8
Z9 9
U1 1
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD FEB 27
PY 2013
VL 5
IS 4
BP 1254
EP 1261
DI 10.1021/am302293m
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 099KE
UT WOS:000315619100012
PM 23317556
ER
PT J
AU Itoh, R
Fukazawa, Y
Chiang, J
Hanabata, Y
Hayashida, M
Hayashi, K
Mizuno, T
Ohno, M
Ohsugi, T
Perkins, JS
Raino, S
Reyes, LC
Takahashi, H
Tanaka, Y
Tosti, G
Akitaya, H
Arai, A
Kino, M
Ikejiri, Y
Kawabata, KS
Komatsu, T
Sakimoto, K
Sasada, M
Sato, S
Uemura, M
Ui, T
Yamanaka, M
Yoshida, M
AF Itoh, Ryosuke
Fukazawa, Yasushi
Chiang, James
Hanabata, Yoshitaka
Hayashida, Masaaki
Hayashi, Katsuhiro
Mizuno, Tsunefumi
Ohno, Masanori
Ohsugi, Takashi
Perkins, Jeremy S.
Raino, Silvia
Reyes, Luis C.
Takahashi, Hiromitsu
Tanaka, Yasuyuki
Tosti, Gino
Akitaya, Hiroshi
Arai, Akira
Kino, Masaru
Ikejiri, Yuki
Kawabata, Koji S.
Komatsu, Tomoyuki
Sakimoto, Kiyoshi
Sasada, Mahito
Sato, Shuji
Uemura, Makoto
Ui, Takahiro
Yamanaka, Masayuki
Yoshida, Michitoshi
TI A Study of the Long-Term Spectral Variations of 3C 66A Observed with the
Fermi and Kanata Telescopes
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN
LA English
DT Article
DE galaxies: BL Lacertae objects: general; gamma rays: observations
ID LARGE-AREA TELESCOPE; GAMMA-RAY FLARE; MULTIWAVELENGTH OBSERVATIONS;
SOURCE CATALOG; BLAZAR; POLARIZATION; OUTBURST; EMISSION
AB 3C 66A is an intermediate-frequency-peaked BL Lac object detected by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. We present a study of the long-term variations of this blazar seen over similar to 2 yr at GeV energies with Fermi and in the optical (flux and polarization) and near infrared with the Kanata telescope. In 2008, the first year of the study, we find a correlation between the gamma-ray flux and the measurements taken with the Kanata telescope. This is in contrast to the later measurements performed during 2009-2010 which show only a weak correlation along with a gradual increase of the optical flux. We calculate an external seed photon energy density assuming that the gamma-ray emission is due to external Compton scattering. The energy density of the external photons is found to be higher by a factor of two in 2008 compared to 2009-2010. We conclude that the different behaviors observed between the first year and the later years might be explained by postulating two different emission components.
C1 [Itoh, Ryosuke; Fukazawa, Yasushi; Hanabata, Yoshitaka; Hayashi, Katsuhiro; Ohno, Masanori; Ohsugi, Takashi; Takahashi, Hiromitsu; Ikejiri, Yuki; Komatsu, Tomoyuki; Sakimoto, Kiyoshi; Ui, Takahiro] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Chiang, James; Hayashida, Masaaki] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[Chiang, James] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Chiang, James] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Hayashida, Masaaki] Kyoto Univ, Dept Astron, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan.
[Mizuno, Tsunefumi; Tanaka, Yasuyuki; Akitaya, Hiroshi; Kawabata, Koji S.; Uemura, Makoto; Yoshida, Michitoshi] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Perkins, Jeremy S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Perkins, Jeremy S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Perkins, Jeremy S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Perkins, Jeremy S.] CRESST, Greenbelt, MD 20771 USA.
[Perkins, Jeremy S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Raino, Silvia] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Raino, Silvia] Politecn Bari, I-70126 Bari, Italy.
[Raino, Silvia] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Reyes, Luis C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93401 USA.
[Tosti, Gino] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Tosti, Gino] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Arai, Akira] Kyoto Sangyo Univ, Dept Phys, Kita Ku, Kyoto 6038555, Japan.
[Kino, Masaru; Sato, Shuji] Nagoya Univ, Dept Phys & Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan.
[Sasada, Mahito] Kyoto Univ, Dept Phys, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan.
[Yamanaka, Masayuki] Kyoto Univ, Kwasan Observ, Yamashina Ku, Kyoto 6078471, Japan.
RP Itoh, R (reprint author), Hiroshima Univ, Dept Phys Sci, 1-3-1 Kagamiyama, Hiroshima 7398526, Japan.
EM itoh@hep01.hepl.hiroshima-u.ac.jp; fukazawa@hep01.hepl.hiroshima-u.ac.jp
RI Tosti, Gino/E-9976-2013
FU Japan Society for the Promotion of Science (JSPS)
FX This work was supported by the Japan Society for the Promotion of
Science (JSPS).
NR 28
TC 2
Z9 2
U1 0
U2 7
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0004-6264
EI 2053-051X
J9 PUBL ASTRON SOC JPN
JI Publ. Astron. Soc. Jpn.
PD FEB 25
PY 2013
VL 65
IS 1
AR UNSP 18
DI 10.1093/pasj/65.1.18
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 123FU
UT WOS:000317374600018
ER
PT J
AU Ngo-Duc, TT
Gacusan, J
Kobayashi, NP
Sanghadasa, M
Meyyappan, M
Oye, MM
AF Tam-Triet Ngo-Duc
Gacusan, Jovi
Kobayashi, Nobuhiko P.
Sanghadasa, Mohan
Meyyappan, M.
Oye, Michael M.
TI Controlled growth of vertical ZnO nanowires on copper substrate
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; NANOSTRUCTURES; NANORODS; ARRAYS; MOCVD
AB We present an approach for diameter control of vertically aligned ZnO nanowires (NWs) grown directly on copper substrates. Vapor-solid growth was done at 550 degrees C with solid Zn precursor under Ar/O-2 flow, and the resulting nanowires with in situ-controllable diameters ranged between 50 to 500 nm. The nanowires were observed to elongate in tip growth and diameters were directly controlled by varying the oxygen concentration. Direct growth of vertical wires on metal substrates is expected to be useful to construct piezoelectric devices and applications involving sensors and detectors. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793758]
C1 [Tam-Triet Ngo-Duc; Gacusan, Jovi; Meyyappan, M.; Oye, Michael M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA.
[Tam-Triet Ngo-Duc; Gacusan, Jovi; Oye, Michael M.] NASA, Ames Res Ctr, ELORET Corp, Moffett Field, CA 94035 USA.
[Tam-Triet Ngo-Duc; Gacusan, Jovi; Kobayashi, Nobuhiko P.; Oye, Michael M.] NASA, Ames Res Ctr, UCSC NASA ARC Adv Studies Labs, Moffett Field, CA 94035 USA.
[Kobayashi, Nobuhiko P.; Oye, Michael M.] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA.
[Sanghadasa, Mohan] USA, Weap Sci Directorate, Aviat & Missile RDEC, RDECOM, Redstone Arsenal, AL 35898 USA.
RP Oye, MM (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA.
EM Michael.M.Oye@nasa.gov
RI Kobayashi, Nobuhiko/E-3834-2012
FU DARPA [W31P4Q-11-c-0230]; NASA [NNX09AQ44A]
FX This work was partially supported by DARPA contract W31P4Q-11-c-0230 to
ELORET Corp. A NASA grant NNX09AQ44A to University of California Santa
Cruz is acknowledged for instruments in the UCSC MACS Facility within
the UCSC/NASA-ARC ASL.
NR 23
TC 9
Z9 9
U1 1
U2 64
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 25
PY 2013
VL 102
IS 8
AR 083105
DI 10.1063/1.4793758
PG 4
WC Physics, Applied
SC Physics
GA 099CN
UT WOS:000315597000066
ER
PT J
AU Yew, AG
Pinero, D
Hsieh, AH
Atencia, J
AF Yew, A. G.
Pinero, D.
Hsieh, A. H.
Atencia, J.
TI Low Peclet number mass and momentum transport in microcavities
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ON-A-CHIP; CELL-CULTURE; BIOLOGY; CAVITY; FLOW; DIFFERENTIATION;
PLATFORM; WALL
AB For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for applications that may include microfluidic cell culture devices. We present equations to estimate the transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs, to travel from the microchannel to a given length into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, low Peclet number environments with minimal fluid shear stress. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794058]
C1 [Yew, A. G.; Pinero, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Yew, A. G.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA.
[Hsieh, A. H.; Atencia, J.] Univ Maryland, Dept Bioengn, College Pk, MD 20742 USA.
[Hsieh, A. H.] Univ Maryland, Dept Orthopaed, Baltimore, MD 21201 USA.
[Atencia, J.] NIST, Div Biochem Sci, Gaithersburg, MD 20899 USA.
RP Yew, AG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Alvin.G.Yew@nasa.gov; Javier.Atencia@nist.gov
OI Hsieh, Adam/0000-0003-3162-1152
FU NASA GSFC; NIST [70NANB11H191]
FX Certain commercial equipment, instruments, and materials are identified
in order to specify experimental procedures as completely as possible.
In no case does such identification imply a recommendation or
endorsement by the National Institute of Standards and Technology (NIST)
nor does it imply that any of the materials, instruments, or equipment
identified are necessarily the best available for the purpose. Neither
does such identification imply a recommendation, endorsement, or best
practice by the National Aeronautics and Space Administration (NASA).
This work was funded by NASA GSFC and NIST Grant 70NANB11H191.
NR 24
TC 2
Z9 2
U1 0
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 25
PY 2013
VL 102
IS 8
AR 084108
DI 10.1063/1.4794058
PG 4
WC Physics, Applied
SC Physics
GA 099CN
UT WOS:000315597000095
ER
PT J
AU Venkatraman, V
Mohanty, S
AF Venkatraman, Vijaysree
Mohanty, Susmita
TI One minute with ... Susmita Mohanty
SO NEW SCIENTIST
LA English
DT Editorial Material
C1 [Mohanty, Susmita] Earth2Orbit, San Francisco, CA USA.
[Mohanty, Susmita] NASA, Washington, DC USA.
[Mohanty, Susmita] Boeing Co, Chicago, IL USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU REED BUSINESS INFORMATION LTD
PI SUTTON
PA QUADRANT HOUSE THE QUADRANT, SUTTON SM2 5AS, SURREY, ENGLAND
SN 0262-4079
J9 NEW SCI
JI New Sci.
PD FEB 23
PY 2013
VL 217
IS 2905
SI SI
BP 27
EP 27
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 095VU
UT WOS:000315363900018
ER
PT J
AU Brotton, SJ
Kaiser, RI
AF Brotton, Stephen J.
Kaiser, Ralf I.
TI In Situ Raman Spectroscopic Study of Gypsum (CaSO4 center dot 2H(2)O)
and Epsomite (MgSO4 center dot 7H(2)O) Dehydration Utilizing an
Ultrasonic Levitator
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID ACOUSTIC LEVITATION; AIRBORNE CHEMISTRY; SURFACE; DYNAMICS;
NANOPARTICLE; TEMPERATURES; PARTICLES; COLLISION; SCIENCE; GROWTH
AB We present an original apparatus combining an acoustic levitator and a pressure-compatible process chamber. To characterize in situ the chemical and physical modifications of a levitated, single particle while heated to well-defined temperatures using a carbon dioxide laser, the chamber is interfaced to a Raman spectroscopic probe. As a proof-of-concept study, by gradually increasing the heating temperature, we observed the variations in the Raman spectra as 150 mu g of crystals of gypsum and epsomite were dehydrated in anhydrous nitrogen gas. We display spectra showing the decreasing intensities of the nu(1) symmetric and nu(3) asymmetric stretching modes of water with time and the simultaneous shift of the nu(1)(SO42-) symmetric stretch mode to higher wavenumbers. Our results demonstrate that the new apparatus is well suited to study the dehydration of levitated species such as minerals and offers potential advantages compared with previous experiments, on bulk samples.
C1 [Brotton, Stephen J.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA.
Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA.
RP Brotton, SJ (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA.
FU UH NASA Astrobiology Institute
FX This work was supported by the UH NASA Astrobiology Institute (R.I.K.,
S.J.B.).
NR 35
TC 9
Z9 9
U1 2
U2 52
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD FEB 21
PY 2013
VL 4
IS 4
BP 669
EP 673
DI 10.1021/jz301861a
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 096VE
UT WOS:000315432000019
PM 26281883
ER
PT J
AU Brandt, TD
McElwain, MW
Turner, EL
Abe, L
Brandner, W
Carson, J
Egner, S
Feldt, M
Golota, T
Goto, M
Grady, CA
Guyon, O
Hashimoto, J
Hayano, Y
Hayashi, M
Hayashi, S
Henning, T
Hodapp, KW
Ishii, M
Iye, M
Janson, M
Kandori, R
Knapp, GR
Kudo, T
Kusakabe, N
Kuzuhara, M
Kwon, J
Matsuo, T
Miyama, S
Morino, JI
Moro-Martin, A
Nishimura, T
Pyo, TS
Serabyn, E
Suto, H
Suzuki, R
Takami, M
Takato, N
Terada, H
Thalmann, C
Tomono, D
Watanabe, M
Wisniewski, JP
Yamada, T
Takami, H
Usuda, T
Tamura, M
AF Brandt, Timothy D.
McElwain, Michael W.
Turner, Edwin L.
Abe, L.
Brandner, W.
Carson, J.
Egner, S.
Feldt, M.
Golota, T.
Goto, M.
Grady, C. A.
Guyon, O.
Hashimoto, J.
Hayano, Y.
Hayashi, M.
Hayashi, S.
Henning, T.
Hodapp, K. W.
Ishii, M.
Iye, M.
Janson, M.
Kandori, R.
Knapp, G. R.
Kudo, T.
Kusakabe, N.
Kuzuhara, M.
Kwon, J.
Matsuo, T.
Miyama, S.
Morino, J. -I.
Moro-Martin, A.
Nishimura, T.
Pyo, T. -S.
Serabyn, E.
Suto, H.
Suzuki, R.
Takami, M.
Takato, N.
Terada, H.
Thalmann, C.
Tomono, D.
Watanabe, M.
Wisniewski, J. P.
Yamada, T.
Takami, H.
Usuda, T.
Tamura, M.
TI NEW TECHNIQUES FOR HIGH-CONTRAST IMAGING WITH ADI: THE ACORNS-ADI SEEDS
DATA REDUCTION PIPELINE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE methods: data analysis; planetary systems; techniques: high angular
resolution; techniques: image processing
ID DEEP PLANET SURVEY; STAR; EXOPLANETS; TELESCOPE; CANDIDATE; PROJECT;
SEARCH; DISKS; TOOL
AB We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to similar to 20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field of view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a Berkeley Software Distribution (BSD) license.
C1 [Brandt, Timothy D.; Turner, Edwin L.; Janson, M.; Knapp, G. R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[McElwain, Michael W.; Grady, C. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Turner, Edwin L.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba, Japan.
[Abe, L.] Lab Hippolyte Fizeau, Nice, France.
[Brandner, W.; Feldt, M.; Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Carson, J.] Coll Charleston, Charleston, SC 29401 USA.
[Egner, S.; Golota, T.; Guyon, O.; Hayano, Y.; Hayashi, S.; Ishii, M.; Nishimura, T.; Pyo, T. -S.; Takato, N.; Terada, H.; Tomono, D.; Takami, H.; Usuda, T.] Subaru Telescope, Hilo, HI USA.
[Goto, M.] Univ Munich, Univ Sternwarte Munchen, Munich, Germany.
[Hashimoto, J.; Hayashi, M.; Iye, M.; Kandori, R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J. -I.; Suto, H.; Suzuki, R.; Tamura, M.] Natl Astron Observ Japan, Tokyo, Japan.
[Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA.
[Kuzuhara, M.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo, Japan.
[Kwon, J.] Grad Univ Adv Studies, Dept Astron Sci, Tokyo, Japan.
[Moro-Martin, A.] CAB CSIC INTA, Dept Astrophys, Madrid, Spain.
[Serabyn, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Thalmann, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands.
[Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Sapporo, Hokkaido, Japan.
[Wisniewski, J. P.] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Yamada, T.] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan.
RP Brandt, TD (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
RI MIYAMA, Shoken/A-3598-2015; Watanabe, Makoto/E-3667-2016
OI Watanabe, Makoto/0000-0002-3656-4081
FU National Science Foundation Graduate Research Fellowship [DGE-0646086]
FX The authors thank the anonymous referee for many helpful comments and
suggestions that clarified this manuscript. This research is based on
data collected at the Subaru Telescope, which is operated by the
National Astronomical Observatories of Japan. This material is based
upon work supported by the National Science Foundation Graduate Research
Fellowship under grant No. DGE-0646086. Part of this research was
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration. The authors wish to recognize and acknowledge the very
significant cultural role and reverence that the summit of Mauna Kea has
always had within the indigenous Hawaiian community. We are most
fortunate to have the opportunity to conduct observations from this
mountain.
NR 37
TC 29
Z9 29
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 183
DI 10.1088/0004-637X/764/2/183
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600071
ER
PT J
AU Drake, JJ
Cohen, O
Yashiro, S
Gopalswamy, N
AF Drake, Jeremy J.
Cohen, Ofer
Yashiro, Seiji
Gopalswamy, Nat
TI IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON
MAGNETICALLY ACTIVE STARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE stars: flare; stars: winds, outflows; Sun: coronal mass ejections
(CMEs); X-rays: stars
ID SOLAR PARTICLE EVENTS; EARTH-LIKE EXOPLANETS; IN HABITABLE ZONES;
X-RAY-EMISSION; ANGULAR-MOMENTUM; TERRESTRIAL EXOPLANETS; STELLAR
CORONAE; PROTON EVENTS; FLARE ENERGY; CME ACTIVITY
AB Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 angstrom flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE(-alpha). For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of alpha and are very large: (M) over dot similar to 5 x 10(-10) M-circle dot yr(-1) and (E) over dot similar to 0.1 L-circle dot. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence greater than or similar to 10(31) erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10(-3) L-bol X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L-bol, the CME mass loss rate is about 5 x 10(-11) M-circle dot yr(-1).
C1 [Drake, Jeremy J.; Cohen, Ofer] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Yashiro, Seiji] Interferometrics Inc, Herndon, VA 20171 USA.
[Yashiro, Seiji; Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Drake, JJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM jdrake@cfa.harvard.edu
OI Gopalswamy, Nat/0000-0001-5894-9954; Cohen, Ofer/0000-0003-3721-0215
FU NASA [NAS8-03060]; Chandra Grant [TM2-13001X]
FX J.J.D. was funded by NASA contract NAS8-03060 to the Chandra X-Ray
Center (CXC) and thanks the CXC director, H. Tananbaum, and the CXC
science team for continuing advice and support. O.C. was supported by
Chandra Grant TM2-13001X. J.J.D. also thanks David Soderblom for
organizing a workshop on the Faint Early Sun that provided the impetus
for this study, and Vinay Kashyap for fruitful discussion. Finally, we
thank the referee for a very helpful report that enabled us to improve
the manuscript significantly.
NR 75
TC 20
Z9 20
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 170
DI 10.1088/0004-637X/764/2/170
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600058
ER
PT J
AU Eggl, S
Haghighipour, N
Pilat-Lohinger, E
AF Eggl, Siegfried
Haghighipour, Nader
Pilat-Lohinger, Elke
TI DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF
BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrobiology; celestial mechanics; methods: analytical; planet-star
interactions
ID ALPHA-CENTAURI-B; HIERARCHICAL TRIPLE-SYSTEMS; CIRCUMBINARY PLANET;
EXTRASOLAR PLANETS; ORBITAL PARAMETERS; EVOLUTION; STELLAR; STABILITY;
MISSION
AB Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the alpha Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of alpha Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the alpha Centauri system.
C1 [Eggl, Siegfried; Pilat-Lohinger, Elke] Univ Vienna, Inst Astrophys, A-1180 Vienna, Austria.
[Eggl, Siegfried] Observ Paris, IMCCE, F-75014 Paris, France.
[Haghighipour, Nader] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Haghighipour, Nader] NASA Astrobiol Inst, Honolulu, HI 96822 USA.
RP Eggl, S (reprint author), Univ Vienna, Inst Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria.
EM siegfried.eggl@univie.ac.at
FU FWF [AS11608-N16, P20216-N16, P22603-N16]; University of Vienna's
Forschungsstipendium; NASA Astrobiology Institute at the Institute for
Astronomy, University of Hawaii [NNA09DA77A]; NASA EXOB [NNX09AN05G]
FX S.E. and E. P.-L. acknowledge support from FWF through projects
AS11608-N16 (EP-L and SE), P20216-N16 (SE and EP-L), and P22603-N16
(EP-L). S. E. acknowledges support from the University of Vienna's
Forschungsstipendium 2012. N.H. acknowledges support from the NASA
Astrobiology Institute under Cooperative Agreement NNA09DA77A at the
Institute for Astronomy, University of Hawaii, and NASA EXOB grant
NNX09AN05G. S. E. and E. P-L. also thank the Institute for Astronomy and
NASA Astrobiology Institute at the University of Hawaii-Manoa for their
kind hospitality during the course of this project. The authors are
thankful to Nikolaos Georgakarakos for his valuable suggestions and to
the anonymous referee for constructive comments.
NR 50
TC 6
Z9 6
U1 1
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 130
DI 10.1088/0004-637X/764/2/130
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600018
ER
PT J
AU Gladders, MD
Rigby, JR
Sharon, K
Wuyts, E
Abramson, LE
Dahle, H
Persson, SE
Monson, AJ
Kelson, DD
Benford, DJ
Murphy, D
Bayliss, MB
Finkelstein, KD
Koester, BP
Bans, A
Baxter, EJ
Helsby, JE
AF Gladders, Michael D.
Rigby, Jane R.
Sharon, Keren
Wuyts, Eva
Abramson, Louis E.
Dahle, Hakon
Persson, S. E.
Monson, Andrew J.
Kelson, Daniel D.
Benford, Dominic J.
Murphy, David
Bayliss, Matthew B.
Finkelstein, Keely D.
Koester, Benjamin P.
Bans, Alissa
Baxter, Eric J.
Helsby, Jennifer E.
TI SGAS 143845.1+145407: A BIG, COOL STARBURST AT REDSHIFT 0.816
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: evolution; galaxies: high-redshift; gravitational lensing:
strong
ID SPECTRAL ENERGY-DISTRIBUTIONS; LENSED SUBMILLIMETER GALAXIES;
STAR-FORMING GALAXIES; LYMAN BREAK GALAXIES; SOUTH-POLE TELESCOPE; GIANT
ARCS SURVEY; INFRARED GALAXIES; INTERNAL KINEMATICS; STELLAR POPULATION;
HERSCHEL-ATLAS
AB We present the discovery and detailed multi-wavelength study of a strongly lensed luminous infrared galaxy at z = 0.816. Unlike most known lensed galaxies discovered at optical or near-infrared wavelengths, this lensed source is red, (r - K-s)(AB) = 3.9, which the data presented here demonstrate is due to ongoing dusty star formation. The overall lensing magnification (a factor of 17) facilitates observations from the blue optical through to 500 mu m, fully capturing both the stellar photospheric emission and the re-processed thermal dust emission. We also present optical and near-IR spectroscopy. These extensive data show that this lensed galaxy is in many ways typical of IR-detected sources at z similar to 1, with both a total luminosity and size in accordance with other (albeit much less detailed) measurements for samples of galaxies observed in deep fields with the Spitzer telescope. Its far-infrared spectral energy distribution is well fit by local templates that are an order of magnitude less luminous than the lensed galaxy; local templates of comparable luminosity are too hot to fit. Its size (D similar to 7 kpc) is much larger than local luminous infrared galaxies, but in line with sizes observed for such galaxies at z similar to 1. The star formation appears uniform across this spatial scale. In this source, the luminosity of which is typical of sources that dominate the cosmic infrared background, we find that star formation is spatially extended and well organized, quite unlike the compact merger-driven starbursts that are typical for sources of this luminosity at z similar to 0.
C1 [Gladders, Michael D.; Wuyts, Eva; Abramson, Louis E.; Bans, Alissa; Baxter, Eric J.; Helsby, Jennifer E.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Gladders, Michael D.; Sharon, Keren; Wuyts, Eva; Abramson, Louis E.; Helsby, Jennifer E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Rigby, Jane R.; Benford, Dominic J.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Dahle, Hakon] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway.
[Persson, S. E.; Monson, Andrew J.; Kelson, Daniel D.; Murphy, David] Carnegie Observ, Pasadena, CA 91101 USA.
[Bayliss, Matthew B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bayliss, Matthew B.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Finkelstein, Keely D.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Koester, Benjamin P.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
RP Gladders, MD (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA.
EM gladders@oddjob.uchicago.edu
RI Rigby, Jane/D-4588-2012; Benford, Dominic/D-4760-2012
OI Rigby, Jane/0000-0002-7627-6551; Benford, Dominic/0000-0002-9884-4206
FU Research Corporation; National Aeronautics and Space Administration
(NASA); NASA through JPL/Caltech; NASA Keck PI Data Award; W. M. Keck
Foundation; NASA; NSF; UVES Paranal Observatory Project [266.D-5655]
FX M.D.G. thanks the Research Corporation for support of this work through
a Cottrell Scholars award.; This publication makes use of data products
from the Wide-field Infrared Survey Explorer, which is a joint project
of the University of California, Los Angeles, and the Jet Propulsion
Laboratory/California Institute of Technology, funded by the National
Aeronautics and Space Administration (NASA).; This work made use of
observations made with the Spitzer Space Telescope, which is operated by
the Jet Propulsion Laboratory, California Institute of Technology under
a contract with NASA. Partial support for this work was provided by NASA
through an award issued by JPL/Caltech.; This work includes observations
obtained at the Gemini Observatory, which is operated by the Association
of Universities for Research in Astronomy, Inc., under a cooperative
agreement with the National Science Foundation (NSF) on behalf of the
Gemini partnership: the NSF (United States), the Science and Technology
Facilities Council (United Kingdom), the National Research Council
(Canada), CONICYT (Chile), the Australian Research Council (Australia),
Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de
Ciencia, Tecnologa e Innovacin Productiva (Argentina).; This work was
partially supported by a NASA Keck PI Data Award, administered by the
NASA Exoplanet Science Institute. This work includes data obtained at
the W. M. Keck Observatory from telescope time allocated to NASA through
the agency's scientific partnership with the California Institute of
Technology and the University of California. The Observatory was made
possible by the generous financial support of the W. M. Keck
Foundation.; This publication makes use of data products from the Two
Micron All Sky Survey, which is a joint project of the University of
Massachusetts and the Infrared Processing and Analysis Center/California
Institute of Technology, funded by NASA and the NSF.; We acknowledge the
use of data from the UVES Paranal Observatory Project (ESO DDT Program
ID 266.D-5655). This paper makes use of the ROSAT Data Archive of the
Max-Planck-Institut fur extraterrestrische Physik (MPE) at Garching,
Germany.
NR 80
TC 7
Z9 7
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 177
DI 10.1088/0004-637X/764/2/177
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600065
ER
PT J
AU Reep, JW
Bradshaw, SJ
Klimchuk, JA
AF Reep, J. W.
Bradshaw, S. J.
Klimchuk, J. A.
TI DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE
EMISSION MEASURE. II. NANOFLARE TRAINS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Sun: corona
ID SOLAR PLASMAS. APPLICATION; CORONAL LOOPS; ATOMIC DATABASE;
MAGNETIC-FIELD; DYNAMICS; EXPLANATION; IONIZATION; ACCURACY; SPECTRUM;
CHIANTI
AB The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a "nanoflare train" and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration Delta(H) to the post-train cooling and draining timescale Delta(C), where Delta(H) depends on the number of heating events, the event duration and the time interval between successive events (tau(C)); (3) tau(C) may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for Delta(H) to be uniquely extracted from the ratio Delta(H)/Delta(C).
C1 [Reep, J. W.; Bradshaw, S. J.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Klimchuk, J. A.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA.
RP Reep, JW (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
EM jeffrey.reep@rice.edu; stephen.bradshaw@rice.edu;
james.a.klimchuk@nasa.gov
RI Klimchuk, James/D-1041-2012;
OI Klimchuk, James/0000-0003-2255-0305; Reep, Jeffrey/0000-0003-4739-1152
FU NASA SRT program
FX S.J.B. and J.A.K. acknowledge support for this work by the NASA SR&T
program. We thank the International Space Science Institute (ISSI) for
hosting the International Team led by S.J.B. and Helen Mason, and the
team members for the fruitful discussions that took place during the
meeting held there in 2012 February. Our thanks to the referee for their
comments and suggestions which improved the original manuscript.
NR 37
TC 18
Z9 18
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 193
DI 10.1088/0004-637X/764/2/193
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600081
ER
PT J
AU Sayers, J
Mroczkowski, T
Czakon, NG
Golwala, SR
Mantz, A
Ameglio, S
Downes, TP
Koch, PM
Lin, KY
Molnar, SM
Moustakas, L
Muchovej, SJC
Pierpaoli, E
Shitanishi, JA
Siegel, S
Umetsu, K
AF Sayers, J.
Mroczkowski, T.
Czakon, N. G.
Golwala, S. R.
Mantz, A.
Ameglio, S.
Downes, T. P.
Koch, P. M.
Lin, K. -Y.
Molnar, S. M.
Moustakas, L.
Muchovej, S. J. C.
Pierpaoli, E.
Shitanishi, J. A.
Siegel, S.
Umetsu, K.
TI THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE
SUNYAEV-ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH
BOLOCAM
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; galaxies: clusters: general; radio continuum:
galaxies
ID ATACAMA COSMOLOGY TELESCOPE; SOUTH-POLE TELESCOPE; STAR-FORMATION;
SOURCE CATALOG; SCALING RELATIONS; IMAGING SURVEY; SKY SURVEY; SAMPLE;
FIELD; EVOLUTION
AB We describe in detail our characterization of the compact radio source population in 140 GHz Bolocam observations of a set of 45 massive galaxy clusters. We use a combination of 1.4 and 30 GHz data to select a total of 28 probable cluster-member radio galaxies and also to predict their 140 GHz flux densities. All of these galaxies are steep-spectrum radio sources and they are found preferentially in the cool-core clusters within our sample. In particular, 11 of the 12 brightest cluster-member radio sources are associated with cool-core systems. Although none of the individual galaxies are robustly detected in the Bolocam data, the ensemble-average flux density at 140 GHz is consistent with, but slightly lower than, the extrapolation from lower frequencies assuming a constant spectral index. In addition, our data indicate an intrinsic scatter of similar or equal to 30% around the power-law extrapolated flux densities at 140 GHz, although our data do not tightly constrain this scatter. For our cluster sample, which is composed of high-mass and moderate-redshift systems, we find that the maximum fractional change in the Sunyaev-Zel'dovich signal integrated over any single cluster due to the presence of these radio sources is similar or equal to 20%, and only similar or equal to 1/4 of the clusters show a fractional change of more than 1%. The amount of contamination is strongly dependent on cluster morphology, and nearly all of the clusters with >= 1% contamination are cool-core systems. This result indicates that radio contamination is not significant compared with current noise levels in 140 GHz images of massive clusters and is in good agreement with the level of radio contamination found in previous results based on lower frequency data or simulations.
C1 [Sayers, J.; Mroczkowski, T.; Czakon, N. G.; Golwala, S. R.; Downes, T. P.; Muchovej, S. J. C.; Siegel, S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Mroczkowski, T.; Moustakas, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Mantz, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Ameglio, S.; Pierpaoli, E.; Shitanishi, J. A.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Koch, P. M.; Lin, K. -Y.; Umetsu, K.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan.
[Molnar, S. M.] Natl Taiwan Univ, LeCosPA Ctr, Taipei 10617, Taiwan.
RP Sayers, J (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
EM jack@caltech.edu
OI Umetsu, Keiichi/0000-0002-7196-4822; Moustakas,
Leonidas/0000-0003-3030-2360; Pierpaoli, Elena/0000-0002-7957-8993
FU NASA Graduate Student Research Fellowship; NASA Postdoctoral Program
Fellowship; NASA through the Einstein Fellowship Program [PF0-110077];
Academia Sinica Career Development Award; National Science Foundation
[NSF/AST-0838261]; [NASA/NNX11AB07G]; [NSF/AST-0838187];
[NASA/NNX07AH59G]
FX We acknowledge the assistance of the day crew and Hilo staff of the
Caltech Submillimeter Observatory, who provided invaluable assistance
during data taking for this data set; Mike Zemcov, Dan Marrone, and John
Carlstrom for useful discussions; Max Bonamente, John Carlstrom, Thomas
Culverhouse, Christopher Greer, Marshall Joy, James Lamb, Erik Leitch,
Dan Marrone, Amber Miller, Thomas Plagge, Matthew Sharp, and David Woody
for providing OVRO/BIMA and/or SZA data for our analysis; Kathy
Deniston, Barbara Wertz, and Diana Bisel, who provided effective
administrative support at Caltech and in Hilo; Matt Hollister and Matt
Ferry, who assisted in the collection of these data; and the referee for
useful suggestions that significantly improved our manuscript. The
Bolocam observations were supported by the Gordon and Betty Moore
Foundation. J.S. was supported by a NASA Graduate Student Research
Fellowship, a NASA Postdoctoral Program Fellowship, NSF/AST-0838261 and
NASA/NNX11AB07G; T.M. was supported by NASA through the Einstein
Fellowship Program grant PF0-110077; N.C. was partially supported by a
NASA Graduate Student Research Fellowship; A.M. was partially supported
by NSF/AST-0838187; S.A., E.P., and J.A.S. were partially supported by
NASA/NNX07AH59G; and K.U. acknowledges support from the Academia Sinica
Career Development Award. A portion of this research was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. This
research made use of the Caltech Submillimeter Observatory, which is
operated by the California Institute of Technology under cooperative
agreement with the National Science Foundation (NSF/AST-0838261). The
operation of the SZA was supported by NSF/AST-0838187, and CARMA
operations were supported by the CARMA partner universities under a
cooperative agreement with the National Science Foundation.
NR 62
TC 13
Z9 14
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 152
DI 10.1088/0004-637X/764/2/152
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600040
ER
PT J
AU Scargle, JD
Norris, JP
Jackson, B
Chiang, J
AF Scargle, Jeffrey D.
Norris, Jay P.
Jackson, Brad
Chiang, James
TI STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK
REPRESENTATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE methods: data analysis; methods: statistical
ID GAMMA-RAY BURSTS; BINARY REGRESSION
AB This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
C1 [Scargle, Jeffrey D.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
[Norris, Jay P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA.
[Jackson, Brad] San Jose State Univ, Dept Math, Ctr Appl Math & Comp Sci, San Jose, CA 95192 USA.
[Chiang, James] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Chiang, James] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
RP Scargle, JD (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA.
EM jeffrey.d.scargle@nasa.gov
FU NASA Applied Information Systems Research Program; Center for Applied
Mathematics, Computation and Statistics (CAMCOS) in the Department of
Mathematics, San Jose State University through the Henry Woodward Fund
FX This work was supported by Joe Bredekamp and the NASA Applied
Information Systems Research Program. We especially recognize the Center
for Applied Mathematics, Computation and Statistics (CAMCOS) in the
Department of Mathematics, San Jose State University for support through
the Henry Woodward Fund. J.D.S. is grateful for the hospitality of the
following institutions during various phases of this work: the Institute
for Pure and Applied Mathematics at the University of California at Los
Angeles, the Banff International Research Station, the Keck Institute
for Space Studies at Caltech, the Kavli Institute for Particle
Astrophysics at Stanford University and the Statistical and Mathematical
Sciences Institute at Duke University. We are grateful to Tom Loredo,
Glen MacLachlan, Erik Petigura, Jake Vanderplas, Zeljko Ivezic, Ery
Arias-Castro, Sam Kou, Lin Lin, Talvikki Hovatta, and Marc Coram for
helpful comments, and to Alice Allen for help with the posting at "The
Engineering Deck: Astrophysics Source Code Library" on the Starship
Asterisk Web site: http://asterisk.apod.com/. We are also grateful to
the anonymous referee for useful suggestions.
NR 43
TC 68
Z9 68
U1 0
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 167
DI 10.1088/0004-637X/764/2/167
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600055
ER
PT J
AU Stark, CC
Boss, AP
Weinberger, AJ
Jackson, BK
Endl, M
Cochran, WD
Johnson, M
Caldwell, C
Agol, E
Ford, EB
Hall, JR
Ibrahim, KA
Li, J
AF Stark, Christopher C.
Boss, Alan P.
Weinberger, Alycia J.
Jackson, Brian K.
Endl, Michael
Cochran, William D.
Johnson, Marshall
Caldwell, Caroline
Agol, Eric
Ford, Eric B.
Hall, Jennifer R.
Ibrahim, Khadeejah A.
Li, Jie
TI A SEARCH FOR EXOZODIACAL CLOUDS WITH KEPLER
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE circumstellar matter; interplanetary medium; methods: observational;
planet-disk interactions; techniques: photometric
ID DEBRIS DISKS; RESONANT SIGNATURES; TRANSITING PLANETS; DUST RING;
CANDIDATES; SYSTEMS; EARTH
AB Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here, we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3 sigma confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by similar to 90 degrees with optical depths greater than or similar to 5 x 10(-6), which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud.
C1 [Stark, Christopher C.; Boss, Alan P.; Weinberger, Alycia J.; Jackson, Brian K.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Endl, Michael; Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA.
[Johnson, Marshall; Caldwell, Caroline] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Agol, Eric] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Hall, Jennifer R.; Ibrahim, Khadeejah A.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Li, Jie] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Stark, CC (reprint author), Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd NW, Washington, DC 20015 USA.
EM cstark@dtm.ciw.edu
OI /0000-0002-0802-9145; /0000-0001-6545-639X; Weinberger,
Alycia/0000-0001-6654-7859
FU Carnegie Institution of Washington
FX The authors thank Guillem Anglada-Escude and Evgenya Shkolnik for
helpful discussions. This work was supported by the Carnegie Institution
of Washington.
NR 30
TC 1
Z9 1
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 195
DI 10.1088/0004-637X/764/2/195
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600083
ER
PT J
AU Winkler, PF
Williams, BJ
Blair, WP
Borkowski, KJ
Ghavamian, P
Long, KS
Raymond, JC
Reynolds, SP
AF Winkler, P. Frank
Williams, Brian J.
Blair, William P.
Borkowski, Kazimierz J.
Ghavamian, Parviz
Long, Knox S.
Raymond, John C.
Reynolds, Stephen P.
TI THE FIRST REPORTED INFRARED EMISSION FROM THE SN 1006 REMNANT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: individual objects (SNR SN1006); ISM: kinematics and dynamics; ISM:
supernova remnants; shock waves
ID LARGE-MAGELLANIC-CLOUD; GALACTIC SUPERNOVA-REMNANTS; BALMER-DOMINATED
SHOCKS; SPITZER-SPACE-TELESCOPE; DUST DESTRUCTION; IA SUPERNOVA;
NONRADIATIVE SHOCKS; OPTICAL REMNANT; PROPER MOTIONS; SN-1006
AB We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 mu m image from Multiband Imaging Photometer for Spitzer clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 mu m emission traces the Balmer filaments almost perfectly but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lower-a relic effect from an earlier epoch when the shock was encountering a lower density-but higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the Infrared Spectrometer instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium (ISM) is lower than that expected for the Galactic ISM-as has also been observed in the analysis of IR emission from other supernova remnants, but whose cause remains unclear. As with other Type Ia supernova (SN Ia) remnants, SN 1006 shows no evidence for dust grain formation in the SN ejecta.
C1 [Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA.
[Williams, Brian J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Blair, William P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Borkowski, Kazimierz J.; Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Ghavamian, Parviz] Towson Univ, Dept Phys Astron & Geosci, Towson, MD 21252 USA.
[Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Raymond, John C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Winkler, PF (reprint author), Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA.
EM winkler@middlebury.edu; brian.j.williams@nasa.gov; wpb@pha.jhu.edu;
kborkow@ncsu.edu; pghavamian@towson.edu; long@stsci.edu;
jraymond@cfa.harvard.edu; reynolds@ncsu.edu
FU NASA [RSA 1330031, NNX11AB14G]; NSF [AST-0908566]
FX This research is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. We are
grateful to the support staff at IPAC for their guidance with some of
the subtleties of Spitzer data analysis. We also acknowledge thoughtful
comments from the anonymous referee, which have prompted us to, we hope,
clarify much of this paper. Primary financial support for this project
has been provided by NASA through RSA 1330031. P.F.W. acknowledges
additional support from the NSF through grant AST-0908566, and K.J.B.
acknowledges additional support from NASA through grant NNX11AB14G.
NR 67
TC 10
Z9 10
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2013
VL 764
IS 2
AR 156
DI 10.1088/0004-637X/764/2/156
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088CY
UT WOS:000314812600044
ER
PT J
AU Caballero, I
Pottschmidt, K
Marcu, DM
Barragan, L
Ferrigno, C
Klochkov, D
Heras, JAZ
Suchy, S
Wilms, J
Kretschmar, P
Santangelo, A
Kreykenbohm, I
Furst, F
Rothschild, R
Staubert, R
Finger, MH
Camero-Arranz, A
Makishima, K
Enoto, T
Iwakiri, W
Terada, Y
AF Caballero, I.
Pottschmidt, K.
Marcu, D. M.
Barragan, L.
Ferrigno, C.
Klochkov, D.
Heras, J. A. Zurita
Suchy, S.
Wilms, J.
Kretschmar, P.
Santangelo, A.
Kreykenbohm, I.
Fuerst, F.
Rothschild, R.
Staubert, R.
Finger, M. H.
Camero-Arranz, A.
Makishima, K.
Enoto, T.
Iwakiri, W.
Terada, Y.
TI A DOUBLE-PEAKED OUTBURST OF A 0535+26 OBSERVED WITH INTEGRAL, RXTE, AND
SUZAKU
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE pulsars: individual (A 0535+26); stars: magnetic field; X-rays:
binaries; X-rays: stars
ID RAY-TIMING-EXPLORER; AUGUST/SEPTEMBER 2005 OUTBURST; CYCLOTRON-RESONANCE
ENERGIES; LINE ENERGY; LUMINOSITY; A0535+262; SPECTROSCOPY;
HERCULES-X-1; PERFORMANCE; PULSARS
AB The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in 2009 August. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual because it presented a double-peaked light curve. The two peaks reached a flux of similar to 450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy-dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.
C1 [Caballero, I.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,INSU,CEA DSM,SAp, F-91191 Gif Sur Yvette, France.
[Pottschmidt, K.; Marcu, D. M.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Pottschmidt, K.; Marcu, D. M.] NASA, CRESST, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Barragan, L.; Wilms, J.; Kreykenbohm, I.] FAU Erlangen Nuremberg, Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany.
[Barragan, L.; Wilms, J.; Kreykenbohm, I.] FAU Erlangen Nuremberg, ECAP, D-96049 Bamberg, Germany.
[Ferrigno, C.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland.
[Klochkov, D.; Suchy, S.; Santangelo, A.; Staubert, R.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany.
[Heras, J. A. Zurita] Univ Paris Diderot, Francois Arago Ctr, APC, CNRS,IN2P3,CEA,DSM,Observ Paris,UMR 7164, F-75205 Paris 13, France.
[Kretschmar, P.] ESAC, Sci Operat Dept, ESA, E-28080 Madrid, Spain.
[Fuerst, F.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA.
[Rothschild, R.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
[Finger, M. H.] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA.
[Camero-Arranz, A.] CSIC, Fac Ciencies, Inst Ciencies Espai IEEC, E-08193 Barcelona, Spain.
[Makishima, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan.
[Makishima, K.; Enoto, T.] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan.
[Iwakiri, W.; Terada, Y.] Saitama Univ, Grad Sch Sci & Engn, Sakura Ku, Saitama 3388570, Japan.
RP Caballero, I (reprint author), Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,INSU,CEA DSM,SAp, F-91191 Gif Sur Yvette, France.
EM isabel.caballero@cea.fr
RI Wilms, Joern/C-8116-2013; Terada, Yukikatsu/A-5879-2013; Kreykenbohm,
Ingo/H-9659-2013; XRAY, SUZAKU/A-1808-2009;
OI Wilms, Joern/0000-0003-2065-5410; Terada, Yukikatsu/0000-0002-2359-1857;
Kreykenbohm, Ingo/0000-0001-7335-1803; Kretschmar,
Peter/0000-0001-9840-2048
FU French Space Agency CNES through CNRS; NASA [NNXIOAJ47G, NNXIOAJ48G];
Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 1113]; Formosa program
[TW2010005]; iLINK program [2011-0303]; [AYA2009-07391]; [SGR2009-811]
FX We thank the anonymous referee for useful comments, the RXTE, INTEGRAL,
and Suzaku teams for the scheduling of the observations, and ISSI (Bern)
for their hospitality during our collaboration meetings. I. C. thanks
Philippe Laurent for the help with the INTEGRAL analysis, Yuuki Moritani
for useful discussions, and acknowledges financial support from the
French Space Agency CNES through CNRS. K.P. and D.M.M. acknowledge
support from NASA guest observer grants NNXIOAJ47G for INTEGRAL cycle 6
and NNXIOAJ48G for Suzaku cycle 4. J.W. and I.K. acknowledge partial
funding from the Deutsches Zentrum fur Luft- und Raumfahrt under
contract number 50 OR 1113. A.C.-A. is supported by the grants
AYA2009-07391 and SGR2009-811, as well as the Formosa program TW2010005
and iLINK program 2011-0303.
NR 42
TC 10
Z9 10
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2013
VL 764
IS 2
AR L23
DI 10.1088/2041-8205/764/2/L23
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088EX
UT WOS:000314817700005
ER
PT J
AU Morris, BM
Mandell, AM
Deming, D
AF Morris, Brett M.
Mandell, Avi M.
Deming, Drake
TI KEPLER'S OPTICAL SECONDARY ECLIPSE OF HAT-P-7b AND PROBABLE DETECTION OF
PLANET-INDUCED STELLAR GRAVITY DARKENING
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE eclipses; planets and satellites: fundamental parameters; planets and
satellites: individual (HAT-P-7b); stars: atmospheres; stars: individual
(HAT-P-7)
ID LIGHT CURVES; EXTRASOLAR PLANETS; EXOPLANET HAT-P-7B; PHOTOMETRY;
MASSES; STARS
AB We present observations spanning 355 orbital phases of HAT-P-7 observed by Kepler from 2009 May to 2011 March (Q1-9). We find a shallower secondary eclipse depth than initially announced, consistent with a low optical albedo and detection of nearly exclusively thermal emission, without a reflected light component. We find an approximately 10 ppm perturbation to the average transit light curve near phase -0.02 that we attribute to a temperature decrease on the surface of the star, phased to the orbit of the planet. This cooler spot is consistent with planet-induced gravity darkening, slightly lagging the sub-planet position due to the finite response time of the stellar atmosphere. The brightness temperature of HAT-P-7b in the Kepler bandpass is T-B = 2733 +/- 21 K and the amplitude of the deviation in stellar surface temperature due to gravity darkening is approximately -0.18 K. The detection of the spot is not statistically unequivocal due its small amplitude, though additional Kepler observations should be able to verify the astrophysical nature of the anomaly.
C1 [Morris, Brett M.; Deming, Drake] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Morris, Brett M.; Mandell, Avi M.; Deming, Drake] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Morris, BM (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
OI Morris, Brett/0000-0003-2528-3409
FU Goddard Center for Astrobiology; NASA Astrobiology Institute; NASA
Science Mission directorate; NASA [NAS5-26555]; NASA Office of Space
Science [NNX09AF08G]
FX B.M.M. and A.M.M. acknowledge support from the Goddard Center for
Astrobiology and the NASA Astrobiology Institute, with administrative
support from the University of Maryland. This Letter includes data
collected by the Kepler mission. Funding for the Kepler mission is
provided by the NASA Science Mission directorate. Some of the data
presented in this Letter were obtained from the Mikulski Archive for
Space Telescopes (MAST). STScI is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract
NAS5-26555. Support for MAST for non-HST data is provided by the NASA
Office of Space Science via grant NNX09AF08G and by other grants and
contracts. We thank the referee for insightful recommendations on the
manuscript.
NR 18
TC 19
Z9 19
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2013
VL 764
IS 2
AR L22
DI 10.1088/2041-8205/764/2/L22
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088EX
UT WOS:000314817700004
ER
PT J
AU Stern, D
Assef, RJ
AF Stern, Daniel
Assef, Roberto J.
TI REVISITING THE GAMMA-RAY SOURCE 2FGL J1823.8+4312
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE BL Lacertae objects: individual (2FGL J1823.8+4312)
ID ACTIVE GALACTIC NUCLEI; ALL-SKY SURVEY; MIDINFRARED SELECTION; SOURCE
CATALOG; BLAZARS; GALAXIES; DISCOVERY; CLUSTERS; QUASARS; COLORS
AB One of the great challenges of gamma-ray astronomy is identifying the lower energy counterparts to these high-energy sources. Recently, in this journal, Massaro et al. attempted to find the counterpart of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus (AGN) of uncertain type from the Second Fermi Large Area Telescope catalog. After considering mid-infrared data in the field from the Wide-field Infrared Survey Explorer (WISE), those authors conclude that the preferred identification of 2FGL J1823.8+4312 is WISE J182352.33+431452.5, despite the fact that the mid-infrared source is undetected at radio energies. They claim that WISE J182352.33+431452.5 constitutes the discovery of a new class of extragalactic X-ray source, either a radio-faint blazar or the prototype of a new class of active galaxy with an enigmatic spectral energy distribution. This conclusion is claimed to be independent of whether or not the WISE source is the actual counterpart to 2FGL J1823.8+4312. Based on a re-analysis of public data in this field and new spectroscopy from Palomar, we conclude that WISE J182352.33+431452.5 is a dust-reddened quasar at z = 0.560, a representative example of a very common extragalactic AGN class. Were WISE J182352.33+431452.5 to be associated with the gamma-ray emission, this would be an unusual and exciting discovery. However, we argue that 2FGL J1823.8+4312 is more likely associated with either WISE J182409.25+431404.7 or, more likely, WISE J182419.04+430949.6, two radio-loud sources in the field. The former is a radio-loud quasar and the latter is an optically variable source with a featureless blue spectrum.
C1 [Stern, Daniel; Assef, Roberto J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Stern, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-221, Pasadena, CA 91109 USA.
EM daniel.k.stern@jpl.nasa.gov
FU National Aeronautics and Space Administration
FX We thank both Francesco Massaro and the anonymous referee for useful
feedback on our manuscript. We thank Eric Bellm for introducing us to
publicly accessible synoptic resources, and gratefully acknowledge
Mislav Balokovic, Kristen Boydstun, Ting-Ni Lu, and Dominika Wylezalek
for assisting with the Palomar observations. This publication makes use
of data products from the Wide-field Infrared Survey Explorer, which is
a joint project of the University of California, Los Angeles, and the
Jet Propulsion Laboratory/California Institute of Technology, funded by
the National Aeronautics and Space Administration.
NR 31
TC 4
Z9 4
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2013
VL 764
IS 2
AR L30
DI 10.1088/2041-8205/764/2/L30
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 088EX
UT WOS:000314817700012
ER
PT J
AU Millet, DB
Apel, E
Henze, DK
Hill, J
Marshall, JD
Singh, HB
Tessum, CW
AF Millet, Dylan B.
Apel, Eric
Henze, Daven K.
Hill, Jason
Marshall, Julian D.
Singh, Hanwant B.
Tessum, Christopher W.
TI Response to Comment on "Natural and Anthropogenic Ethanol Sources in
North America and Potential Atmospheric Impacts of Ethanol Fuel Use"
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Letter
C1 [Millet, Dylan B.; Hill, Jason; Marshall, Julian D.; Tessum, Christopher W.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Apel, Eric] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Henze, Daven K.] Univ Colorado, Boulder, CO 80309 USA.
[Singh, Hanwant B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Millet, DB (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA.
EM dbm@umn.edu
RI Hill, Jason/A-8919-2008; Millet, Dylan/G-5832-2012
OI Hill, Jason/0000-0001-7609-6713;
NR 3
TC 0
Z9 0
U1 1
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 19
PY 2013
VL 47
IS 4
BP 2141
EP 2141
DI 10.1021/es305112s
PG 1
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 095IA
UT WOS:000315326700046
PM 23244221
ER
PT J
AU Berger, KJ
Anand, A
Metzger, PT
Hrenya, CM
AF Berger, Kyle J.
Anand, Anshu
Metzger, Philip T.
Hrenya, Christine M.
TI Role of collisions in erosion of regolith during a lunar landing
SO PHYSICAL REVIEW E
LA English
DT Article
ID SPHERICAL-PARTICLE; FLOWS; MODEL
AB The supersonic gas plume of a landing rocket entrains lunar regolith, which is the layer of loose solids covering the lunar surface. This ejection is problematic due to scouring and dust impregnation of surrounding hardware, reduction in visibility for the crew, and spoofing of the landing sensors. To date, model predictions of erosion and ejection dynamics have been based largely on single-trajectory models in which the role of interparticle collisions is ignored. In the present work, the parameters affecting the erosion rate of monodisperse solids are investigated using the discrete element method (DEM). The drag and lift forces exerted by the rocket exhaust are incorporated via one-way coupling. The results demonstrate that interparticle collisions are frequent in the region immediately above the regolith surface; as many as 20% of particles are engaged in a collision at a given time. These collisions play an important role both in the erosion dynamics and in the final trajectories of particles. In addition, a direct assessment of the influence of collisions on the erosion rate is accomplished via a comparison between a "collisionless" DEM model and the original DEM model. This comparison shows that the erosion dynamics change drastically when collisions are considered and that the erosion rate is dependent on the collision parameters (coefficient of restitution and coefficient of friction). Physical explanations for these trends are provided. DOI: 10.1103/PhysRevE.87.022205
C1 [Berger, Kyle J.; Anand, Anshu; Hrenya, Christine M.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA.
[Metzger, Philip T.] NASA, Kennedy Space Ctr, Granular Mech & Regolith Operat Lab, Kennedy Space Ctr, FL 32899 USA.
RP Hrenya, CM (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA.
EM hrenya@colorado.edu
RI Metzger, Philip/R-3136-2016
OI Metzger, Philip/0000-0002-6871-5358
FU MFiX; National Aeronautics and Space Administration [NNX09AD07A]; NASA
Office of the Chief Technologist's Space Technology Research Fellowship
[NNX11AM71H]
FX A.A. is grateful to Sofiane Benyahia at NETL for his support with MFiX.
The authors are grateful to Xiaoayi Li for the CFD work used to generate
the plume velocity profile. Funding for this work was provided by the
National Aeronautics and Space Administration (Grant No. NNX09AD07A).
This work was also supported by a NASA Office of the Chief
Technologist's Space Technology Research Fellowship (Grant No.
NNX11AM71H).
NR 28
TC 8
Z9 9
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD FEB 19
PY 2013
VL 87
IS 2
AR 022205
DI 10.1103/PhysRevE.87.022205
PG 14
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 092VG
UT WOS:000315150500006
PM 23496503
ER
PT J
AU Wang, L
Derksen, C
Brown, R
Markus, T
AF Wang, L.
Derksen, C.
Brown, R.
Markus, T.
TI Recent changes in pan-Arctic melt onset from satellite passive microwave
measurements
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID SNOWMELT; F11
AB A new satellite passive microwave (PMW) melt onset retrieval algorithm based on temporal variations in the differences of the brightness temperature between 19 and 37 GHz is shown to be as effective as radar (e. g., QuikScat) measurements. The PMW technique shows improved melt estimates that are more closely linked to observed snow-off dates than previous studies. An integrated pan-Arctic (north of 50 degrees N) melt onset date (MOD) dataset is produced by combining estimates on land and sea ice for the entire satellite PMW record. During the 1979-2011 period, significant trends of 2 similar to 3 days (decade)(-1) to earlier MOD are mainly concentrated over the Eurasian land sector of the Arctic, consistent with changes in spring snow cover extent observed with visible satellite data. The variability and change in melt onset are largely driven by spring surface air temperature, with insignificant influence from low-frequency modes of atmospheric circulation. Citation: Wang, L., C. Derksen, R. Brown and T. Markus (2013), Recent changes in pan-Arctic melt onset from satellite passive microwave measurements, Geophys. Res. Lett., 40, 522-528, doi:10.1002/grl.50098.
C1 [Wang, L.; Derksen, C.] Environm Canada, Div Climate Res, Atmospher Sci & Technol Directorate, Toronto, ON M3H 5T4, Canada.
[Brown, R.] Environm Canada, Climate Res Div, Ouranos, Montreal, PQ, Canada.
[Markus, T.] NASA Goddard Space Flight Ctr, Cryospher Sci Branch, Greenbelt, MD USA.
RP Wang, L (reprint author), Environm Canada, Div Climate Res, Atmospher Sci & Technol Directorate, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada.
EM Libo.Wang@ec.gc.ca
NR 27
TC 12
Z9 12
U1 5
U2 32
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 522
EP 528
DI 10.1002/grl.50098
PG 7
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000012
ER
PT J
AU Landerer, FW
Volkov, DL
AF Landerer, Felix W.
Volkov, Denis L.
TI The anatomy of recent large sea level fluctuations in the Mediterranean
Sea
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID DATA ASSIMILATION SYSTEM; OCEAN CIRCULATION; VARIABILITY; GRACE;
TOPEX/POSEIDON; GIBRALTAR; PRESSURE; ATLANTIC; STRAIT; WIND
AB During the boreal winter months of 2009/2010 and 2010/2011, Mediterranean mean sea level rose 10 cm above the average monthly climatological values. The non-seasonal anomalies were observed in sea surface height (from altimetry), as well as ocean mass (from gravimetry), indicating they were mostly of barotropic nature. These relatively rapid basin-wide fluctuations occurred over time scales of 1-5 months. Here we use observations and re-analysis data to attribute the non-seasonal sea level and ocean mass fluctuations in the Mediterranean Sea to concurrent wind stress anomalies over the adjacent subtropical Northeast Atlantic Ocean, just west of the Strait of Gibraltar, and extending into the strait itself. The observed Mediterranean sea level fluctuations are strongly anti-correlated with the monthly North-Atlantic-Oscillation (NAO) index. Citation: Landerer, F. W., and D. L. Volkov (2013), The anatomy of recent large sea level fluctuations in the Mediterranean Sea, Geophys. Res. Lett., 40, 553-557, doi:10.1002/grl.50140.
C1 [Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90024 USA.
RP Landerer, FW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 238-600, Pasadena, CA 91109 USA.
EM Felix.W.Landerer@jpl.nasa.gov
RI Volkov, Denis/A-6079-2011;
OI Volkov, Denis/0000-0002-9290-0502; Landerer, Felix/0000-0003-2678-095X
FU NASA's Physical Oceanography Program; CNES
FX This work represents one phase of research carried out at the Jet
Propulsion Laboratory/California Institute of Technology. FWL and DV
were supported by NASA's Physical Oceanography Program. SSH observations
are processed by SSALTO/DUACS and distributed by AVISO with support from
CNES; ERA-Interim Re-analysis data are provided by the European Center
for Medium Range Weather Forecast (ECMWF). We thank the German Space
Operations Center (GSOC) of the German Aerospace Center (DLR) for
providing continuously and nearly 100% of the raw telemetry data of the
twin GRACE satellites.
NR 35
TC 17
Z9 17
U1 0
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 553
EP 557
DI 10.1002/grl.50140
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000017
ER
PT J
AU Fukumori, I
Wang, O
AF Fukumori, Ichiro
Wang, Ou
TI Origins of heat and freshwater anomalies underlying regional decadal sea
level trends
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID PACIFIC-OCEAN; VARIABILITY; PATTERNS; TEMPERATURE; CIRCULATION; GYRE
AB Regional sea level changes often differ from global mean changes due to geographic variations in surface fluxes and to changes in ocean circulation. Here we study such regional sea level trends from 1993 to 2004 using a synthesis of observations and an ocean general circulation model. Unlike the global mean, steric changes dominate regional trends with negligible contributions from column-integrated mass variations. Regional heat and freshwater anomalies underlying steric changes are in turn distinguished between redistribution of pre-existing anomalies within the ocean and contributions from additional surface fluxes external to the ocean. Internal redistribution accounts for most regional trends but exceptions are found, most notably in the western tropical Pacific Ocean where a warming of external origin dominates the trend. On average, external thermosteric sea level trends are found to be positive in temperate regions while negative at higher latitudes with opposite trends found in halosteric anomalies of external origin. Citation: Fukumori, I., and O. Wang (2013), Origins of heat and freshwater anomalies underlying regional decadal sea level trends, Geophys. Res. Lett., 40, 563-567, doi:10.1002/grl.50164.
C1 [Fukumori, Ichiro; Wang, Ou] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Fukumori, I (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM fukumori@jpl.nasa.gov
NR 24
TC 12
Z9 12
U1 0
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 563
EP 567
DI 10.1002/grl.50164
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000019
ER
PT J
AU Fyfe, JC
von Salzen, K
Cole, JNS
Gillett, NP
Vernier, JP
AF Fyfe, J. C.
von Salzen, K.
Cole, J. N. S.
Gillett, N. P.
Vernier, J. -P.
TI Surface response to stratospheric aerosol changes in a coupled
atmosphere-ocean model
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID CLIMATE-CHANGE; CIRCULATION; ERUPTIONS; CO2
AB Previous work with a simple climate model has suggested a global cooling impact of increasing stratospheric aerosol. Here we use a comprehensive Earth System Model including coupled atmosphere and ocean components to show that increasing stratospheric aerosol since the late 1990s has reduced global warming by at least 0.07 C to present and that a further global cooling impact will occur if the observed stratospheric aerosol trend continues to the end of this decade. This result confirms the previous work and suggests that climate models that do not account for stratospheric aerosol increase will overestimate global warming to a small but notable degree. An additional new finding is that increasing stratospheric aerosol since the late 1990s has reduced the rise in global mean precipitation. [2] Finally, regional patterns of change in simulations with stratospheric aerosol increase to year 2020 show similar to 40% less equatorial precipitation increase and similar to 60% greater surface pressure decrease around Antarctica, relative to simulations without such stratospheric aerosol changes. Citation: Fyfe J. C., K. von Salzen, J. N. S. Cole, N. P. Gillett, and J.-P. Vernier (2013), Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model, Geophys. Res. Lett., 40, 584-588, doi:10.1002/grl.50156.
C1 [Fyfe, J. C.; von Salzen, K.; Cole, J. N. S.; Gillett, N. P.] Environm Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada.
[Vernier, J. -P.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Vernier, J. -P.] NASA Langley Res Ctr, Hampton, VA USA.
RP Fyfe, JC (reprint author), Univ Victoria, Canadian Ctr Climate Modelling & Anal, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada.
EM john.fyfe@ec.gc.ca
OI Cole, Jason/0000-0003-0450-2748
NR 23
TC 34
Z9 35
U1 1
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 584
EP 588
DI 10.1002/grl.50156
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000023
ER
PT J
AU Spangenberg, DA
Minnis, P
Bedka, ST
Palikonda, R
Duda, DP
Rose, FG
AF Spangenberg, Douglas A.
Minnis, Patrick
Bedka, Sarah T.
Palikonda, Rabindra
Duda, David P.
Rose, Fred G.
TI Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua
MODIS data
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID CLIMATE MODELS; CIRRUS CLOUDS; ACCURATE PARAMETERIZATION
AB Radiative forcing due to linear-shaped jet contrails is calculated over the Northern Hemisphere for four seasonal months using 2006 Aqua Moderate-resolution Imaging Spectroradiometer cloud and contrail property retrieval data in a radiative transfer model. The 4 month mean shortwave, longwave, and net radiative forcings normalized to 100% contrail cover are -5.7, 14.2, and 8.5 W m(-2). Mean total net forcing over the northern half of the globe varies from 9.1 mW m(-2) during October to 12.1 mW m(-2) in January and is only representative at 01:30 and 13:30 LT in nonpolar regions. In some dense flight traffic corridors, the mean net forcing approaches 80 mW m(-2). Scaling the 4 month average of 10.6 mW m(-2) to the Southern Hemisphere air traffic yields global mean net forcing of 5.7 mW m(-2), which is smaller than most model estimates. Nighttime net forcing is 3.6 times greater than during daytime, when net forcing is greatest over low clouds. Effects from contrail cirrus clouds that evolve from linear contrails are not considered in these results. Citation: Spangenberg, D. A., P. Minnis, S. T. Bedka, R. Palikonda, D. P. Duda and F. G. Rose (2013), Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data, Geophys. Res. Lett., 40, 595-600, doi:10.1002/grl.50168.
C1 [Spangenberg, Douglas A.; Bedka, Sarah T.; Palikonda, Rabindra; Duda, David P.; Rose, Fred G.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Minnis, Patrick] NASA Langley Res Ctr, Hampton, VA 23681 USA.
RP Minnis, P (reprint author), NASA Langley Res Ctr, MS 420, Hampton, VA 23681 USA.
EM p.minnis@nasa.gov
RI Minnis, Patrick/G-1902-2010;
OI Minnis, Patrick/0000-0002-4733-6148; Rose, Fred G/0000-0003-0769-0772
FU Aviation Climate Change Research Initiative (ACCRI) [DTRT57-10-X-70020];
DOT
FX This work was supported by the Aviation Climate Change Research
Initiative (ACCRI) under contract DTRT57-10-X-70020 with the DOT. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the US DOT Volpe Center, the US FAA, or EUROCONTROL.
NR 26
TC 8
Z9 8
U1 1
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 595
EP 600
DI 10.1002/grl.50168
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000025
ER
PT J
AU Duda, DP
Minnis, P
Khlopenkov, K
Chee, TL
Boeke, R
AF Duda, David P.
Minnis, Patrick
Khlopenkov, Konstantin
Chee, Thad L.
Boeke, Robyn
TI Estimation of 2006 Northern Hemisphere contrail coverage using MODIS
data
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID AVHRR-DATA; OPTICAL DEPTH; UNITED-STATES; CIRRUS
AB A modified automated contrail detection algorithm (CDA) using five infrared channels available from the Moderate Resolution Imaging Spectrometer onboard the Aqua satellite is used to determine linear contrail coverage over the Northern Hemisphere during 2006. Commercial aircraft flight data are employed to filter false contrail detections by the CDA. The Northern Hemisphere annual mean linear contrail coverage ranges from 0.07% to 0.40% for three different CDA sensitivities. Based on visual analyses, the medium sensitivity CDA provides the best estimate of linear contrail coverage, which averages 0.13%. If scaled to the Southern Hemisphere, the global mean coverage would be 0.07%. Coverage is greatest during winter and least during the summer with maximum coverage over the North Atlantic. Less coverage is observed over heavy European and American traffic areas, likely as a result of difficulties in detecting linear contrails that overlap with each other and with older contrail cirrus. These results are valuable for evaluating the representation of contrails and contrail cirrus within global climate models and for retrieving contrail optical properties and radiative forcing. Citation: Duda, D. P., P. Minnis, K. Khlopenkov, T. L. Chee and R. Boeke (2013), Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data, Geophys. Res. Lett., 40, 612-617, doi: 10.1002/grl.50097.
C1 [Duda, David P.; Khlopenkov, Konstantin; Chee, Thad L.; Boeke, Robyn] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Duda, DP (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA.
EM david.p.duda@nasa.gov
RI Minnis, Patrick/G-1902-2010
OI Minnis, Patrick/0000-0002-4733-6148
FU Aviation Climate Change Research Initiative [DOT DTRT57-10-X-70020]
FX The waypoint data used for this work were provided by U.S. DOT Volpe
Center and are based on data provided by the U.S. FAA and EUROCONTROL in
support of the objectives of the International Civil Aviation
Organization Committee on Aviation Environmental Protection CO2 Task
Group. Support for this research is provided by the Aviation Climate
Change Research Initiative under contract DOT DTRT57-10-X-70020. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the U.S. DOT Volpe Center, the U.S. FAA, EUROCONTROL, or ICAO.
NR 23
TC 11
Z9 11
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 612
EP 617
DI 10.1002/grl.50097
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000028
ER
PT J
AU Ottaviani, M
Knobelspiesse, K
Cairns, B
Mishchenko, M
AF Ottaviani, M.
Knobelspiesse, K.
Cairns, B.
Mishchenko, M.
TI Information content of aerosol retrievals in the sunglint region
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID SATELLITE RETRIEVAL; CLOUD PROPERTIES; ABSORPTION; POLARIZATION;
WAVELENGTHS; INTENSITY; EMISSIONS; CAMPAIGN; OCEANS; LIGHT
AB We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type. Citation: Ottaviani, M., K. Knobelspiesse, B. Cairns, and M. Mishchenko (2013), Information content of aerosol retrievals in the sunglint region, Geophys. Res. Lett., 40, 631-634, doi: 10.1002/grl.50148.
C1 [Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Ottaviani, M.] Stevens Inst Technol, Hoboken, NJ 07030 USA.
[Knobelspiesse, K.] NASA, Postdoctoral Program, Oak Ridge, TN USA.
RP Ottaviani, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
EM mottavia@stevens.edu
RI Mishchenko, Michael/D-4426-2012; Knobelspiesse, Kirk/S-5902-2016;
OI Knobelspiesse, Kirk/0000-0001-5986-1751; Cairns,
Brian/0000-0002-1980-1022
FU Glory Mission Project; Radiation Sciences Program
FX This work is dedicated to the memory of Yoram Kaufman. Partial support
from the Glory Mission Project and the Radiation Sciences Program
managed by Hal Maring is gratefully acknowledged.
NR 29
TC 4
Z9 4
U1 1
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 631
EP 634
DI 10.1002/grl.50148
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000031
ER
PT J
AU Mast, J
Mlynczak, MG
Hunt, LA
Marshall, BT
Mertens, CJ
Russell, JM
Thompson, RE
Gordley, LL
AF Mast, Jeffrey
Mlynczak, Martin G.
Hunt, Linda A.
Marshall, B. Thomas
Mertens, Christoper J.
Russell, James M., III
Thompson, R. Earl
Gordley, Larry L.
TI Absolute concentrations of highly vibrationally excited OH(upsilon=9+8)
in the mesopause region derived from the TIMED/SABER instrument
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
AB Absolute concentrations (cm(-3)) of highly vibrationally excited hydroxyl (OH) are derived from measurements of the volume emission rate of the upsilon = 9 + 8 states of the OH radical made by the SABER instrument on the TIMED satellite. SABER has exceptionally sensitive measurement precision that corresponds to an ability to detect changes in volume emission rate on the order of similar to 5 excited OH molecules per cm(3). Peak zonal annual mean concentrations observed by SABER exceed 1000 cm-3 at night and 225 cm-3 during the day. Measurements since 2002 show an apparent altitude-dependent variation of the night OH(. = 9 + 8) concentrations with the 11 year solar cycle, with concentrations decreasing below similar to 95 km from 2002 to 2008. These observations provide a global database for evaluating photochemical model computations of OH abundance, reaction kinetics, and rates and mechanisms responsible for maintaining vibrationally excited OH in the mesopause region. Citation: Mast, J., M. G. Mlynczak, L. A. Hunt, B. T. Marshall, C. J. Mertens, J. M. Russell III, R. E. Thompson, and L. L. Gordley (2013), Absolute concentrations of highly vibrationally excited OH(upsilon = 9 + 8) in the mesopause region derived from the TIMED/SABER instrument, Geophys. Res. Lett., 40, 646-650, doi: 10.1002/grl.50167.
C1 [Mast, Jeffrey; Hunt, Linda A.] SSAI Inc, Hampton, VA USA.
[Mlynczak, Martin G.; Mertens, Christoper J.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Marshall, B. Thomas; Thompson, R. Earl; Gordley, Larry L.] G&A Tech Software, Newport News, VA USA.
[Russell, James M., III] Hampton Univ, Hampton, VA 23668 USA.
RP Mlynczak, MG (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA.
EM m.g.mlynczak@nasa.gov
FU NASA Heliophysics Division
FX The authors wish to acknowledge continued support from the NASA
Heliophysics Division through the TIMED Project.
NR 8
TC 3
Z9 3
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 16
PY 2013
VL 40
IS 3
BP 646
EP 650
DI 10.1002/grl.50167
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 129HX
UT WOS:000317831000034
ER
PT J
AU Kort, EA
Angevine, WM
Duren, R
Miller, CE
AF Kort, Eric A.
Angevine, Wayne M.
Duren, Riley
Miller, Charles E.
TI Surface observations for monitoring urban fossil fuel CO2 emissions:
Minimum site location requirements for the Los Angeles megacity
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID CARBON-DIOXIDE; ATMOSPHERIC OBSERVATIONS; GAS EMISSIONS; STILT MODEL;
FLUXES
AB The contemporary global carbon cycle is dominated by perturbations from anthropogenic CO2 emissions. One approach to identify, quantify, and monitor anthropogenic emissions is to focus on intensely emitting urban areas. In this study, we compare the ability of different CO2 observing systems to constrain anthropogenic flux estimates in the Los Angeles megacity. We consider different observing system configurations based on existing observations and realistic near-term extensions of the current ad hoc network. We use a high-resolution regional model (Stochastic Time-Inverted Lagrangian Transport-Weather Research and Forecasting) to simulate different observations and observational network designs within and downwind of the Los Angeles (LA) basin. A Bayesian inverse method is employed to quantify the relative ability of each network to improve constraints on flux estimates. Ground-based column CO2 observations provide useful complementary information to surface observations due to lower sensitivity to localized dynamics, but column CO2 observations from a single site do not appear to provide sensitivity to emissions from the entire LA megacity. Surface observations from remote, downwind sites contain weak, sporadic urban signals and are complicated by other source/sink impacts, limiting their usefulness for quantifying urban fluxes in LA. We find a network of eight optimally located in-city surface observation sites provides the minimum sampling required for accurate monitoring of CO2 emissions in LA, and present a recommended baseline network design. We estimate that this network can distinguish fluxes on 8 week time scales and 10 km spatial scales to within similar to 12 g C m(-2) d(-1) (similar to 10% of average peak fossil CO2 flux in the LA domain). Citation: Kort, E. A., W. M. Angevine, R. Duren, and C. E. Miller (2013), Surface observations for monitoring urban fossil fuel CO2 emissions: Minimum site location requirements for the Los Angeles megacity, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50135.
C1 [Kort, Eric A.] CALTECH, WM Keck Inst Space Studies, Pasadena, CA 91125 USA.
[Kort, Eric A.; Duren, Riley; Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Angevine, Wayne M.] Univ Colorado, CIRES, Boulder, CO 80309 USA.
[Angevine, Wayne M.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
RP Kort, EA (reprint author), CALTECH, WM Keck Inst Space Studies, Pasadena, CA 91125 USA.
EM Eric.A.Kort@jpl.nasa.gov
RI Angevine, Wayne/H-9849-2013; Kort, Eric/F-9942-2012; Manager, CSD
Publications/B-2789-2015
OI Angevine, Wayne/0000-0002-8021-7116; Kort, Eric/0000-0003-4940-7541;
FU W. M. Keck Institute for Space Studies; NASA
FX E.A.K. thanks the W. M. Keck Institute for Space Studies for support.
Portions of this work were performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with NASA. The
author's would also like to thank the Megacity Carbon project team for
useful discussion and feedback.
NR 27
TC 15
Z9 15
U1 1
U2 41
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2013
VL 118
IS 3
BP 1
EP 8
DI 10.1002/jgrd.50135
PG 8
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LC
UT WOS:000317839700032
ER
PT J
AU McGrath-Spangler, EL
Denning, AS
AF McGrath-Spangler, Erica L.
Denning, A. Scott
TI Global seasonal variations of midday planetary boundary layer depth from
CALIPSO space-borne LIDAR
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID VARIABILITY; HEIGHT
AB We present a new global analysis of the depth of the planetary boundary layer (PBL) and consider regional variations throughout the year. PBL depth is estimated from the vertical variance of CALIPSO space-borne LIDAR backscatter associated with aerosol and shallow clouds during midday satellite overpasses and is only retrieved in the absence of optically thick clouds. The resulting analysis of over 100 million retrievals per year is therefore only a sample with higher frequency over deserts and other regions of strong subsidence, and lower frequency over regions of deep convection such as the ITCZ, tropical rainforests, and the Asian Monsoon. The mean of sampled PBL depths ranges from 500 m over cold oceans to more than 3000 m over hot deserts. The seasonal cycle of analyzed PBL depth is stronger over land than over water, and seasonality over land and midlatitude oceans is of opposite sign. Wintertime storm tracks and stratocumulus regions over subtropical oceans are prominent features of the analysis. Although evaluation of the new analysis is difficult due to previous sparse sampling by other methods, comparison of LIDAR-retrieved PBL depth with data collected by commercial aircraft generally shows good agreement.
C1 [McGrath-Spangler, Erica L.] Univ Space Res Assoc, Columbia, MD USA.
[McGrath-Spangler, Erica L.] NASA, Goddard Space Flight Ctr, GMAO, Greenbelt, MD 20771 USA.
[Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
RP McGrath-Spangler, EL (reprint author), NASA, Goddard Space Flight Ctr, GMAO, Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM erica.l.mcgrath-spangler@nasa.gov
OI McGrath-Spangler, Erica/0000-0002-8540-5423
FU National Aeronautics and Space Administration [NNX11AB87G, NNX08AV04H]
FX This study was made possible in part due to the data made available to
the National Oceanic and Atmospheric Administration by the following
commercial airlines: American, Delta, Federal Express, Northwest,
Southwest, United, and United Parcel Service. We would like to thank
Nikisa Jordan and Mark Vaughan for their assistance with the CALIPSO
data and the PBL depth algorithm. Additionally, we would like to thank
three anonymous reviewers for their helpful comments. This research was
supported by National Aeronautics and Space Administration grants
NNX11AB87G and NNX08AV04H.
NR 23
TC 16
Z9 16
U1 2
U2 26
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2013
VL 118
IS 3
BP 1226
EP 1233
DI 10.1002/jgrd.50198
PG 8
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LC
UT WOS:000317839700008
ER
PT J
AU Han, M
Braun, SA
Matsui, T
Williams, CR
AF Han, Mei
Braun, Scott A.
Matsui, Toshihisa
Williams, Christopher R.
TI Evaluation of cloud microphysics schemes in simulations of a winter
storm using radar and radiometer measurements
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SATELLITE-OBSERVATIONS; PART II; MICROWAVE-FREQUENCIES; CONVECTIVE
SYSTEMS; PRECIPITATION; MODEL; ICE; SNOW; TRMM; PARAMETERIZATION
AB Using observations from a space-borne radiometer and a ground-based precipitation profiling radar, the impact of cloud microphysics schemes in the WRF model on the simulation of microwave brightness temperature (T-b), radar reflectivity, and Doppler velocity (V-dop) is studied for a winter storm in California. The unique assumptions of particles size distributions, number concentrations, shapes, and fall speeds in different microphysics schemes are implemented into a satellite simulator and customized calculations for the radar are performed to ensure consistent representation of precipitation properties between the microphysics schemes and the radiative transfer models. [ 2] Simulations with four different schemes in the WRF model, including the Goddard scheme (GSFC), the WRF single-moment 6-class scheme (WSM6), the Thompson scheme (THOM), and the Morrison double-moment scheme (MORR), are compared directly with measurements from the sensors. Results show large variations in the simulated radiative properties. General biases of similar to 20 K or larger are found in (polarization-corrected) T-b, which is linked to an overestimate of the precipitating ice aloft. The simulated reflectivity with THOM appears to agree well with the observations, while high biases of similar to 5-10 dBZ are found in GSFC, WSM6 and MORR. Peak reflectivity in MORR exceeds other schemes. These biases are attributable to the snow intercept parameters or the snow number concentrations. Simulated V-dop values based on GSFC agree with the observations well, while other schemes appear to have a similar to 1 m s(-1) high bias in the ice layer. In the rain layer, the model representations of Doppler velocity vary at different sites.
C1 [Han, Mei] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA.
[Han, Mei; Braun, Scott A.; Matsui, Toshihisa] NASA GSFC, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA.
[Matsui, Toshihisa] Univ Maryland, ESSIC, College Pk, MD 20742 USA.
[Williams, Christopher R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Williams, Christopher R.] NOAA Earth Syst Res Lab, Boulder, CO USA.
RP Han, M (reprint author), NASA GSFC, Mesoscale Atmospher Proc Lab, Code 612, Greenbelt, MD 20771 USA.
EM Mei.Han@nasa.gov
RI Williams, Christopher/A-2723-2015
OI Williams, Christopher/0000-0001-9394-8850
FU NASA Precipitation Measurement Mission science program
FX The author wants to thank Drs. Lin Tian, Liang Liao, Xiaowen Li, and
Bill Olson at NASA/GSFC for many beneficial discussions related to radar
algorithms and cloud modeling. Model simulations were performed on the
NASS Discover Cluster. Comments from three anonymous reviewers were very
helpful on improving the manuscript. This work was supported by Dr.
Ramesh Kakar at NASA Headquarters with funds from the NASA Precipitation
Measurement Mission science program.
NR 55
TC 9
Z9 10
U1 4
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2013
VL 118
IS 3
BP 1401
EP 1419
DI 10.1002/jgrd.50115
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LC
UT WOS:000317839700021
ER
PT J
AU Oshchepkov, S
Bril, A
Yokota, T
Wennberg, PO
Deutscher, NM
Wunch, D
Toon, GC
Yoshida, Y
O'Dell, CW
Crisp, D
Miller, CE
Frankenberg, C
Butz, A
Aben, I
Guerlet, S
Hasekamp, O
Boesch, H
Cogan, A
Parker, R
Griffith, D
Macatangay, R
Notholt, J
Sussmann, R
Rettinger, M
Sherlock, V
Robinson, J
Kyro, E
Heikkinen, P
Feist, DG
Morino, I
Kadygrov, N
Belikov, D
Maksyutov, S
Matsunaga, T
Uchino, O
Watanabe, H
AF Oshchepkov, Sergey
Bril, Andrey
Yokota, Tatsuya
Wennberg, Paul O.
Deutscher, Nicholas M.
Wunch, Debra
Toon, Geoffrey C.
Yoshida, Yukio
O'Dell, Christopher W.
Crisp, David
Miller, Charles E.
Frankenberg, Christian
Butz, Andre
Aben, Ilse
Guerlet, Sandrine
Hasekamp, Otto
Boesch, Hartmut
Cogan, Austin
Parker, Robert
Griffith, David
Macatangay, Ronald
Notholt, Justus
Sussmann, Ralf
Rettinger, Markus
Sherlock, Vanessa
Robinson, John
Kyro, Esko
Heikkinen, Pauli
Feist, Dietrich G.
Morino, Isamu
Kadygrov, Nikolay
Belikov, Dmitry
Maksyutov, Shamil
Matsunaga, Tsuneo
Uchino, Osamu
Watanabe, Hiroshi
TI Effects of atmospheric light scattering on spectroscopic observations of
greenhouse gases from space. Part 2: Algorithm intercomparison in the
GOSAT data processing for CO2 retrievals over TCCON sites
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID FOURIER-TRANSFORM SPECTROMETER; VECTOR RADIATIVE-TRANSFER; COLUMN
OBSERVING NETWORK; REFLECTED SUNLIGHT; INFRARED-SPECTRA; DIFFERENTIAL
ABSORPTION; LINE PARAMETERS; CARBON-DIOXIDE; ICE CLOUDS; SATELLITE
AB This report is the second in a series of companion papers describing the effects of atmospheric light scattering in observations of atmospheric carbon dioxide (CO2) by the Greenhouse gases Observing SATellite (GOSAT), in orbit since 23 January 2009. Here we summarize the retrievals from six previously published algorithms; retrieving column-averaged dry air mole fractions of CO2 (X-CO2) during 22 months of operation of GOSAT from June 2009. First, we compare data products from each algorithm with ground-based remote sensing observations by Total Carbon Column Observing Network (TCCON). Our GOSAT-TCCON coincidence criteria select satellite observations within a 5 degrees radius of 11 TCCON sites. We have compared the GOSAT-TCCON X-CO2 regression slope, standard deviation, correlation and determination coefficients, and global and station-to-station biases. The best agreements with TCCON measurements were detected for NIES 02.xx and RemoTeC. Next, the impact of atmospheric light scattering on X-CO2 retrievals was estimated for each data product using scan by scan retrievals of light path modification with the photon path length probability density function (PPDF) method. After a cloud pre-filtering test, approximately 25% of GOSAT soundings processed by NIES 02.xx, ACOS B2.9, and UoL-FP: 3G and 35% processed by RemoTeC were found to be contaminated by atmospheric light scattering. This study suggests that NIES 02.xx and ACOS B2.9 algorithms tend to overestimate aerosol amounts over bright surfaces, resulting in an underestimation of X-CO2 for GOSAT observations. Cross-comparison between algorithms shows that ACOS B2.9 agrees best with NIES 02.xx and UoL-FP: 3G while RemoTeC X-CO2 retrievals are in a best agreement with NIES PPDF-D. Citation: Oshchepkov, S., et al. (2013), Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites, J. Geophys. Res. Atmos., 118, 1493-1512, doi:10.1002/jgrd.50146.
C1 [Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Morino, Isamu; Belikov, Dmitry; Maksyutov, Shamil; Matsunaga, Tsuneo; Uchino, Osamu; Watanabe, Hiroshi] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan.
[Wennberg, Paul O.; Wunch, Debra] CALTECH, Pasadena, CA 91125 USA.
[Deutscher, Nicholas M.; Griffith, David; Macatangay, Ronald] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia.
[Deutscher, Nicholas M.; Griffith, David; Macatangay, Ronald] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia.
[Deutscher, Nicholas M.; Notholt, Justus] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany.
[Toon, Geoffrey C.; Crisp, David; Miller, Charles E.; Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[O'Dell, Christopher W.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Butz, Andre] Karlsruhe Inst Technol, IMK ASF, D-76021 Karlsruhe, Germany.
[Aben, Ilse; Guerlet, Sandrine; Hasekamp, Otto] SRON, Netherlands Inst Space Res, Utrecht, Netherlands.
[Boesch, Hartmut; Cogan, Austin; Parker, Robert] Univ Leicester, Space Res Ctr, Leicester, Leics, England.
[Sussmann, Ralf; Rettinger, Markus] Karlsruhe Inst Technol, IMK IFU, Garmisch Partenkirchen, Germany.
[Sherlock, Vanessa; Robinson, John] Natl Inst Water & Atmospher Res, Wellington, New Zealand.
[Kyro, Esko; Heikkinen, Pauli] FMI Arctic Res Ctr, Sodankylii, Finland.
[Feist, Dietrich G.] Max Planck Inst Biogeochem, D-07745 Jena, Germany.
[Kadygrov, Nikolay] SNRS, UVSQ, CEA, Lab Sci Climat & Environm, Gif Sur Yvette, France.
RP Oshchepkov, S (reprint author), Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan.
EM sergey.oshchepkov@nies.go.jp
RI Maksyutov, Shamil/G-6494-2011; Sussmann, Ralf/K-3999-2012; Boesch,
Hartmut/G-6021-2012; Belikov, Dmitry/I-9877-2016; Frankenberg,
Christian/A-2944-2013; Butz, Andre/A-7024-2013; Wennberg,
Paul/A-5460-2012; Heikkinen, Pauli/G-3478-2014; Garmisch-Pa,
Ifu/H-9902-2014; Morino, Isamu/K-1033-2014; Feist, Dietrich/B-6489-2013;
Deutscher, Nicholas/E-3683-2015; Notholt, Justus/P-4520-2016
OI Maksyutov, Shamil/0000-0002-1200-9577; Frankenberg,
Christian/0000-0002-0546-5857; Butz, Andre/0000-0003-0593-1608; Morino,
Isamu/0000-0003-2720-1569; Feist, Dietrich/0000-0002-5890-6687;
Deutscher, Nicholas/0000-0002-2906-2577; Notholt,
Justus/0000-0002-3324-885X
FU NASA; NASA's Terrestrial Ecology Program [NNX11AG01G]; Orbiting Carbon
Observatory Program; Atmospheric CO2 Observations from Space
(ACOS) Program; Department of Energy/Atmospheric Radiation Measurement
(DOE/ARM) Program; OCO project; OCO-2 project; Australian Research
Council [LE0668470, DP0879468, DP110103118, LP0562346]; New Zealand
Foundation of Research Science and Technology [C01X0204, CO1X0406];
Senate of Bremen; EU; NIES GOSAT project; EC-INGOS project; ESA through
the GHG-CCI project; Deutsche Forschungsgemeinschaft (DFG) [BU2599/1-1]
FX GOSAT is a joint effort of the Japan Aerospace Exploration Agency
(JAXA), the National Institute for Environmental Studies (NIES), and the
Ministry of the Environment (MOE), Japan. Part of this work on ACOS B2.9
was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under contract with NASA. GOSAT spectra were kindly provided
to the California Institute of Technology through a memorandum of
understanding between JAXA and NASA. U.S. funding for TCCON is provided
by NASA's Terrestrial Ecology Program (grant number NNX11AG01G), the
Orbiting Carbon Observatory Program, the Atmospheric CO2
Observations from Space (ACOS) Program, and the Department of
Energy/Atmospheric Radiation Measurement (DOE/ARM) Program. The Darwin
TCCON site was built at Caltech with funding from the OCO project and is
operated by the University of Wollongong, with travel funds for
maintenance and equipment costs funded by the OCO-2 project. We
acknowledge funding to support Darwin and Wollongong from the Australian
Research Council, Projects LE0668470, DP0879468, DP110103118, and
LP0562346. Lauder TCCON measurements are funded by New Zealand
Foundation of Research Science and Technology contracts C01X0204 and
CO1X0406. We acknowledge financial support of the Bialystok and Orleans
TCCON sites from the Senate of Bremen and EU projects IMECC, GEOMON and
InGOS as well as maintenance and logistical work provided by AeroMeteo
Service (Bialystok) and the RAMCES team at LSCE (Gif-sur-Yvette, France)
and additional operational funding from the NIES GOSAT project. The
Garmisch TCCON team acknowledges funding by the EC-INGOS project.
Development of RemoTeC was partly funded by ESA through the GHG-CCI
project (S. Guerlet) and by Deutsche Forschungsgemeinschaft (DFG)
through grant BU2599/1-1 (A. Butz). The JRA-25/JCDAS data sets used for
atmospheric transport modeling were provided by the cooperative,
long-term reanalysis project by the Japan Meteorological Agency (JMA)
and Central Research Institute of Electric Power Industry (CRIEPI). The
authors thank Dr. Sasano, Director of the Center for Global
Environmental Research at the NIES, the members of the NIES GOSAT and
NASA ACOS projects.
NR 72
TC 20
Z9 23
U1 0
U2 36
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2013
VL 118
IS 3
BP 1493
EP 1512
DI 10.1002/jgrd.50146
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LC
UT WOS:000317839700026
ER
PT J
AU Strahan, SE
Douglass, AR
Newman, PA
AF Strahan, S. E.
Douglass, A. R.
Newman, P. A.
TI The contributions of chemistry and transport to low arctic ozone in
March 2011 derived from Aura MLS observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID HALOGEN OCCULTATION EXPERIMENT; POLAR VORTEX; STRATOSPHERE; MODEL;
DEPLETION; CHLORINE; HCL
AB Stratospheric and total columns of Arctic O-3 (63-90 degrees N) in late March 2011 averaged 320 and 349 DU, respectively, 50-100 DU lower than any of the previous 6 years. We use Aura Microwave Limb Sounder (MLS) O-3 observations to quantify the roles of chemistry and transport and find there are two major reasons for low O-3 in March 2011: heterogeneous chemical loss and a late final warming that delayed the resupply of O-3 until April. Daily vortex-averaged partial columns in the lowermost stratosphere (p > 133 hPa) and middle stratosphere (p < 29 hPa) are largely unaffected by local heterogeneous chemistry, according to model calculations. Very weak transport into the vortex between late January and late March contributes to the observed low ozone. The lower stratospheric (LS) column (133-29 hPa, similar to 370-550 K) is affected by both heterogeneous chemistry and transport. Because MLS N2O data show strong isolation of the vortex, we estimate the contribution of vertical transport to LS O-3 using the descent of vortex N2O profiles. Simulations with the Global Modeling Initiative (GMI) chemistry and transport model (CTM) with and without heterogeneous chemical reactions show 73 DU vortex averaged O-3 loss; the loss derived from MLS O-3 is 84 +/- 12 DU. The GMI simulation reproduces the observed O-3 and N2O with little error and demonstrates credible transport and chemistry. Without heterogeneous chemical loss, March 2011 vortex O-3 would have been at least 40 DU lower than climatology due to the late final warming that did not resupply O-3 until mid-April. Citation: Strahan, S. E., A. R. Douglass, and P. A. Newman (2013), The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations, J. Geophys. Res. Atmos., 118, 1563-1576, doi:10.1002/jgrd.50181.
C1 [Strahan, S. E.] Univ Space Res Assoc, Columbia, MD USA.
[Douglass, A. R.; Newman, P. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Strahan, SE (reprint author), NASA, Goddard Space Flight Ctr, Code 614, Greenbelt, MD 20771 USA.
EM Susan.e.strahan@nasa.gov
RI Douglass, Anne/D-4655-2012; Newman, Paul/D-6208-2012
OI Newman, Paul/0000-0003-1139-2508
FU NASA Modeling, Analysis, and Prediction Program; NASA Atmospheric
Composition Modeling and Analysis Program
FX We thank the diligent efforts of the reviewers whose comments and
suggestions substantially strengthened this paper. We thank Stephen
Steenrod for running the GMI CTM simulations. This work was supported by
the NASA Modeling, Analysis, and Prediction Program and the NASA
Atmospheric Composition Modeling and Analysis Program.
NR 35
TC 21
Z9 22
U1 3
U2 28
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 16
PY 2013
VL 118
IS 3
BP 1563
EP 1576
DI 10.1002/jgrd.50181
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 129LC
UT WOS:000317839700031
ER
PT J
AU Craft, SP
Stern, A
AF Craft, Stephen P.
Stern, Alan
TI One minute with ... Alan Stern
SO NEW SCIENTIST
LA English
DT Editorial Material
C1 [Stern, Alan] NASA, Washington, DC USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU REED BUSINESS INFORMATION LTD
PI SUTTON
PA QUADRANT HOUSE THE QUADRANT, SUTTON SM2 5AS, SURREY, ENGLAND
SN 0262-4079
J9 NEW SCI
JI New Sci.
PD FEB 16
PY 2013
VL 217
IS 2904
BP 29
EP 29
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 091RQ
UT WOS:000315067900018
ER
PT J
AU Murphy, T
Chatterjee, S
Kaplan, DL
Banyer, J
Bell, ME
Bignall, HE
Bower, GC
Cameron, RA
Coward, DM
Cordes, JM
Croft, S
Curran, JR
Djorgovski, SG
Farrell, SA
Frail, DA
Gaensler, BM
Galloway, DK
Gendre, B
Green, AJ
Hancock, PJ
Johnston, S
Kamble, A
Law, CJ
Lazio, TJW
Lo, KK
Macquart, JP
Rea, N
Rebbapragada, U
Reynolds, C
Ryder, SD
Schmidt, B
Soria, R
Stairs, IH
Tingay, SJ
Torkelsson, U
Wagstaff, K
Walker, M
Wayth, RB
Williams, PKG
AF Murphy, Tara
Chatterjee, Shami
Kaplan, David L.
Banyer, Jay
Bell, Martin E.
Bignall, Hayley E.
Bower, Geoffrey C.
Cameron, Robert A.
Coward, David M.
Cordes, James M.
Croft, Steve
Curran, James R.
Djorgovski, S. G.
Farrell, Sean A.
Frail, Dale A.
Gaensler, B. M.
Galloway, Duncan K.
Gendre, Bruce
Green, Anne J.
Hancock, Paul J.
Johnston, Simon
Kamble, Atish
Law, Casey J.
Lazio, T. Joseph W.
Lo, Kitty K.
Macquart, Jean-Pierre
Rea, Nanda
Rebbapragada, Umaa
Reynolds, Cormac
Ryder, Stuart D.
Schmidt, Brian
Soria, Roberto
Stairs, Ingrid H.
Tingay, Steven J.
Torkelsson, Ulf
Wagstaff, Kiri
Walker, Mark
Wayth, Randall B.
Williams, Peter K. G.
TI VAST: An ASKAP Survey for Variables and Slow Transients
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA
LA English
DT Article
DE galaxies: general; ISM: general; radio continuum: general; stars:
general; surveys; telescopes
ID GAMMA-RAY BURST; RADIO-FREQUENCY INTERFERENCE; EXTREME SCATTERING
EVENTS; FOLLOW-UP OBSERVATIONS; ACCRETING BLACK-HOLES;
SCINTILLATION-INDUCED VARIABILITY; REAL-TIME CLASSIFICATION; TIDAL
DISRUPTION EVENTS; HIGH GALACTIC LATITUDE; WIDE-FIELD SURVEY
AB The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae, and orphan afterglows of gamma-ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of 5 s and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.
C1 [Murphy, Tara; Banyer, Jay; Bell, Martin E.; Farrell, Sean A.; Gaensler, B. M.; Green, Anne J.; Hancock, Paul J.; Lo, Kitty K.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia.
[Murphy, Tara; Curran, James R.] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia.
[Murphy, Tara; Banyer, Jay; Bell, Martin E.; Farrell, Sean A.; Gaensler, B. M.; Green, Anne J.; Hancock, Paul J.; Lo, Kitty K.; Macquart, Jean-Pierre; Schmidt, Brian; Tingay, Steven J.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW 2016, Australia.
[Chatterjee, Shami; Cordes, James M.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Kaplan, David L.; Kamble, Atish] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA.
[Bignall, Hayley E.; Macquart, Jean-Pierre; Reynolds, Cormac; Soria, Roberto; Tingay, Steven J.; Wayth, Randall B.] ICRAR Curtin Univ, Perth, WA 6845, Australia.
[Bower, Geoffrey C.; Croft, Steve; Law, Casey J.; Williams, Peter K. G.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Cameron, Robert A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Coward, David M.] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia.
[Djorgovski, S. G.] CALTECH, Pasadena, CA 91125 USA.
[Frail, Dale A.] Natl Radio Astron Observ, Socorro, NM 87801 USA.
[Galloway, Duncan K.] Monash Univ, Sch Phys, Monash Ctr Astrophys, Clayton, Vic 3800, Australia.
[Galloway, Duncan K.] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia.
[Gendre, Bruce] ASI Sci Data Ctr, I-00044 Frascati, RM, Italy.
[Johnston, Simon] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia.
[Lazio, T. Joseph W.; Rebbapragada, Umaa; Wagstaff, Kiri] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Rea, Nanda] Inst Ciencies Espai CSIC IEEC, Barcelona 08193, Spain.
[Ryder, Stuart D.] Australian Astron Observ, Epping, NSW 1710, Australia.
[Schmidt, Brian] Australian Natl Univ, Mt Stromlo Observ, RSAA, Weston, ACT 2611, Australia.
[Stairs, Ingrid H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Torkelsson, Ulf] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden.
[Walker, Mark] Manly Astrophys, Manly 2095, Australia.
RP Murphy, T (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia.
EM tara@physics.usyd.edu.au
RI Wayth, Randall/B-2444-2013; Bignall, Hayley/B-2867-2013; gendre,
bruce/O-2923-2013; Rea, Nanda/I-2853-2015;
OI Wayth, Randall/0000-0002-6995-4131; Williams, Peter/0000-0003-3734-3587;
Bignall, Hayley/0000-0001-6247-3071; gendre, bruce/0000-0002-9077-2025;
Rea, Nanda/0000-0003-2177-6388; Murphy, Tara/0000-0002-2686-438X;
Galloway, Duncan/0000-0002-6558-5121; Schmidt,
Brian/0000-0001-6589-1287; Gaensler, Bryan/0000-0002-3382-9558; Croft,
Steve/0000-0003-4823-129X
FU Australian Research Council (ARC); Science Leveraging Fund of the New
South Wales Office for Science and Medical Research; ARC Postdoctoral
Fellowship [DP110102889]; University of Sydney International Program
Development Fund; US National Science Foundation (NSF) [AST-1008213];
NSF [AST-1008353, AST-0908884, AST-0407448, AST-0909182, IIS-1118041];
National Aeronautics and Space Administration (NASA) [08-AISR08-0085];
NSERC Discovery Grant; NASA; US Government; [FS100100033];
[DP110102034]; [CE110001020]
FX This research has been supported in part by the Australian Research
Council (ARC). TM, BMG, PJH, JB, and MEB acknowledge support through
grants FS100100033 and DP110102034, and through the Science Leveraging
Fund of the New South Wales Office for Science and Medical Research. SAF
is the recipient of an ARC Postdoctoral Fellowship, DP110102889. TM,
BMG, and S. Croft acknowledge funding from the University of Sydney
International Program Development Fund. The Centre for All-sky
Astrophysics is an Australian Research Council Centre of Excellence,
funded by grant CE110001020.; S. Chatterjee acknowledges support from
the US National Science Foundation (NSF) through the award AST-1008213.
DLK was partially supported by NSF awards AST-1008353 and AST-0908884.
SGD acknowledges partial support from the NSF grants AST-0407448,
AST-0909182, and IIS-1118041, and the National Aeronautics and Space
Administration (NASA) grant 08-AISR08-0085. IHS is supported by an NSERC
Discovery Grant. A portion of this research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA. US Government sponsorship is acknowledged.
NR 245
TC 21
Z9 21
U1 2
U2 11
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1323-3580
EI 1448-6083
J9 PUBL ASTRON SOC AUST
JI Publ. Astron. Soc. Aust.
PD FEB 15
PY 2013
VL 30
AR UNSP e006
DI 10.1017/pasa.2012.006
PG 27
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 161ZL
UT WOS:000320233500001
ER
PT J
AU Richardson, JA
Bleacher, JE
Glaze, LS
AF Richardson, Jacob A.
Bleacher, Jacob E.
Glaze, Lori S.
TI The volcanic history of Syria Planum, Mars
SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
LA English
DT Article
DE Mars; Tharsis; Syria Planum; Volcanoes; Shields; Spatial statistics;
Alignment statistics
ID POINT-LIKE FEATURES; THARSIS PROVINCE; TECTONIC HISTORY; ALBA PATERA;
FIELD; MEXICO; DISTRIBUTIONS; ALIGNMENTS; EVOLUTION; REGION
AB A field of small (10s of km in diameter) volcanoes in the Syria Planum region of Mars is mapped to determine abundance, distribution, and alignments of vents. These data are used to assess possible variations in eruption style across space and time. Each eruption site is assigned a point location. Nearest neighbor and two-point azimuth analyses are conducted to assess the spacing and orientations between vents across the study area. Two vent fields are identified as unique volcanic units along with the previously identified Syria Mons volcano. Superposition relationships and crater retention rates indicate that these three volcanic episodes span similar to 900 Ma, beginning in the early Hesperian and ending in the Early Amazonian. No clear hiatus in eruptive activity is identified between these events, although a progression from eruptions at Syria Mons, to regionally distributed eruptions that form the bulk of the Syria Planum plains, to a final migration of dispersed eruptions to Syria's northwest is identified. Nearest neighbor analyses suggest a non-random distribution among the entire population of Syria Planum, which is interpreted as resulting from the interaction of independent magma bodies ascending through the crust during different stress regimes throughout the region's eruptive history. Two-point azimuth results identify three orientations of enhanced alignments, which match well with radial extensions of three major tectonic centers to the south, east, and northwest of the study area. As such, Syria Planum volcanism evolved from a central vent volcano to dispersed shield field development over several hundred million years, during which the independent magma bodies related to each small volcano interacted to some extent with one or more of at least three buried tectonic patterns in the older crust. These results show a strong relationship between independent mapping efforts of tectonic and volcanic features. Continued integration of volcano-tectonic mapping should provide direct constraints for future geodynamic models of magma production and thermal evolution of the Tharsis province. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Richardson, Jacob A.] Univ S Florida, Dept Geol, Tampa, FL 33620 USA.
[Bleacher, Jacob E.; Glaze, Lori S.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA.
RP Richardson, JA (reprint author), Univ S Florida, Dept Geol, 4202 E Fowler Ave SCA528, Tampa, FL 33620 USA.
EM jarichardson@mail.usf.edu
RI Bleacher, Jacob/D-1051-2012; Glaze, Lori/D-1314-2012
OI Bleacher, Jacob/0000-0002-8499-4828;
FU NASA
FX Funding for this project was provided to all three authors by NASA's
Mars Data Analysis Program. Additional support for J. Richardson was
provided by NASA's Undergraduate Student Research Program funding
through Goddard Space Flight Center. We thank Nick Schmerr for
insightful comments that improved the content of this report.
NR 65
TC 10
Z9 10
U1 0
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0377-0273
J9 J VOLCANOL GEOTH RES
JI J. Volcanol. Geotherm. Res.
PD FEB 15
PY 2013
VL 252
BP 1
EP 13
DI 10.1016/j.jvolgeores.2012.11.007
PG 13
WC Geosciences, Multidisciplinary
SC Geology
GA 111IJ
UT WOS:000316514700001
ER
PT J
AU Gan, YX
Dynys, FW
AF Gan, Yong X.
Dynys, Frederick W.
TI Joining highly conductive and oxidation resistant silver-based electrode
materials to silicon for high temperature thermoelectric energy
conversions
SO MATERIALS CHEMISTRY AND PHYSICS
LA English
DT Article
DE Surfaces; Annealing; Electrical properties; Thermoelectric effects
ID ADHESIVES; PARTICLES; SYSTEM
AB joining silicon thermoelectric elements using silver-based alloys and adhesive was investigated. Selective etching silicon with HF and KOH was performed to increase the interface area. Physical vapor deposition was used to coat Ti, Cr, Pt and Ag on silicon surface to form transition layers for the enhancement of interface bonding. Sound joints using the silver adhesive were obtained and they can withstand the highest temperature of 925 degrees C. Contact resistance of the joints under both thermal cycling and isothermal heat treatment was measured from 500 degrees C to 920 degrees C. It is found that the contact resistance of the silver/silicon joints is about 1 Omega at room temperature. At the elevated temperature of 920 degrees C, the contact resistance is less than 2.5 Omega. We conclude that the silver adhesive has excellent adhesion to silicon surface and the contact resistance is considerably low. Therefore, it is suitable for joining silicon thermoelectric elements for energy conversion at high temperatures. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Gan, Yong X.] Univ Toledo, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA.
[Gan, Yong X.] Calif State Polytech Univ Pomona, Dept Mech Engn, Pomona, CA 91768 USA.
[Dynys, Frederick W.] NASA, Mat & Struct Div, Ceram Branch RXC0, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Gan, YX (reprint author), Calif State Polytech Univ Pomona, Dept Mech Engn, 3801 W Temple Ave, Pomona, CA 91768 USA.
EM yxgan@csupomona.edu
FU NASA Glenn Faculty Fellowship Program (NGFFP); Ohio Space Grant
Consortium (OSGC) through Ohio Aerospace Institute (OAI); United States
Environmental Protection Agency (EPA) [83529701]
FX This work was sponsored by NASA Glenn Faculty Fellowship Program (NGFFP)
and Ohio Space Grant Consortium (OSGC) through Ohio Aerospace Institute
(OAI). The support from United States Environmental Protection Agency
(EPA) under grant number 83529701 is also gratefully acknowledged.
NR 24
TC 5
Z9 5
U1 1
U2 26
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0254-0584
J9 MATER CHEM PHYS
JI Mater. Chem. Phys.
PD FEB 15
PY 2013
VL 138
IS 1
BP 342
EP 349
DI 10.1016/j.matchemphys.2012.11.066
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA 107SQ
UT WOS:000316241500046
ER
PT J
AU Svensson, T
Savo, R
Alerstam, E
Vynck, K
Burresi, M
Wiersma, DS
AF Svensson, T.
Savo, R.
Alerstam, E.
Vynck, K.
Burresi, M.
Wiersma, D. S.
TI Exploiting breakdown of the similarity relation for diffuse light
transport: simultaneous retrieval of scattering anisotropy and diffusion
constant
SO OPTICS LETTERS
LA English
DT Article
ID TIME-RESOLVED REFLECTANCE; OPTICAL-PROPERTIES; PHOTON MIGRATION;
ABSORBING MEDIA; TURBID MEDIA; SPECTROSCOPY; TRANSMITTANCE; ABSORPTION;
APPROXIMATION; TRANSITION
AB As manifested in the similarity relation of diffuse light transport, it is difficult to assess single scattering characteristics from multiply scattered light. We take advantage of the limited validity of the diffusion approximation of light transport and demonstrate, experimentally and numerically, that even deep into the multiple scattering regime, time-resolved detection of transmitted light allows simultaneous assessment of both single scattering anisotropy and scattering mean free path, and therefore also macroscopic parameters like the diffusion constant and the transport mean free path. This is achieved via careful assessment of early light and matching against Monte Carlo simulations of radiative transfer. (c) 2013 Optical Society of America
C1 [Svensson, T.; Savo, R.; Vynck, K.; Burresi, M.; Wiersma, D. S.] Univ Florence, European Lab Nonlinear Spect, I-50019 Sesto Fiorentino, Italy.
[Alerstam, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Vynck, K.] ESPCI ParisTech, Inst Langevin, F-75005 Paris, France.
[Burresi, M.] Ist Nazl Ott CNR INO, I-50125 Florence, FI, Italy.
RP Svensson, T (reprint author), Univ Florence, European Lab Nonlinear Spect, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy.
EM svensson@lens.unifi.it
RI Burresi, Matteo/B-4174-2009
FU Swedish Research Council; European Network of Excellence on
Nanophotonics for Energy Efficieny; ERC-Photbot grant
FX The authors acknowledge support from the Swedish Research Council, the
European Network of Excellence on Nanophotonics for Energy Efficieny,
and the ERC-Photbot grant.
NR 30
TC 12
Z9 13
U1 0
U2 12
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD FEB 15
PY 2013
VL 38
IS 4
BP 437
EP 439
PG 3
WC Optics
SC Optics
GA 099EB
UT WOS:000315601700017
PM 23455094
ER
PT J
AU Kurum, M
AF Kurum, Mehmet
TI Quantifying scattering albedo in microwave emission of vegetated terrain
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Albedo; Microwave; Emission; Vegetation; Soil moisture
ID SURFACE SOIL-MOISTURE; L-MEB MODEL; DIELECTRIC DISKS; DECIDUOUS FOREST;
CROP FIELDS; RETRIEVAL; RADIOMETRY; SENSITIVITY; CALIBRATION; ROUGHNESS
AB This study provides a theoretical/physical framework to quantify the vegetation scattering effects on radiometric microwave measurements of soil moisture. The model development and analysis is presented to assess the limitations of the existing tau - omega (tau-omega) model with respect to vegetated landscapes and thus to extend the usefulness of the tau - omega model to a wider range of vegetation conditions. An explicit expression is driven for an effective albedo of vegetated terrain from the zero- and multiple-order radiative transfer solutions. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. Evaluation of the derived albedo for corn canopies (stem-dominated vegetation) with data taken during the Huntsville 1998 field experiment (Hsv98) are shown and discussed. The simulation results are in good agreement with the data and show that the effective albedo values are significantly smaller than the single-scattering albedo values and increase monotonically as soil moisture increases. The model is also used to simulate effective albedo from a soybean canopy (leaf dominated vegetation) at L-band. Both results illustrate that the fitted albedo values, which are found in the literature, represent effective albedo values rather than the single-scattering albedo values. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Kurum, Mehmet] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA.
[Kurum, Mehmet] Univ Maryland Coll Pk, ESSIC, College Pk, MD USA.
RP Kurum, M (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA.
EM mehmet.kurum@nasa.gov
FU NASA [NNH09ZDA001N]
FX The work was supported by a NASA grant NNH09ZDA001N under the Research
Opportunities in Space and Earth Science (ROSES) Remote Sensing Theory
program.
NR 58
TC 17
Z9 17
U1 1
U2 22
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD FEB 15
PY 2013
VL 129
BP 66
EP 74
DI 10.1016/j.rse.2012.10.021
PG 9
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA 095BA
UT WOS:000315308300006
ER
PT J
AU Gamon, JA
Huemmrich, KF
Stone, RS
Tweedie, CE
AF Gamon, John A.
Huemmrich, K. Fred
Stone, Robert S.
Tweedie, Craig E.
TI Spatial and temporal variation in primary productivity (NDVI) of coastal
Alaskan tundra: Decreased vegetation growth following earlier snowmelt
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Growing season length; Snowmelt; Arctic tundra productivity; Drought;
NDVI; Spectral reflectance; Remote sensing; Temperature
ID ARCTIC TUNDRA; CLIMATE-CHANGE; NORTHERN ALASKA; SOIL-MOISTURE; CO2
EXCHANGE; CARBON-CYCLE; TEMPERATURE; ECOSYSTEMS; COMMUNITIES; RESPONSES
AB In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Gamon, John A.; Huemmrich, K. Fred] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA.
[Gamon, John A.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Huemmrich, K. Fred] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Joint Ctr Earth Syst Technol JCET, Greenbelt, MD 20771 USA.
[Stone, Robert S.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA.
[Stone, Robert S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Tweedie, Craig E.] Univ Texas El Paso, Dept Biol, Syst Ecol Lab, El Paso, TX 79968 USA.
RP Gamon, JA (reprint author), Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada.
EM gamon@ualberta.ca
RI Gamon, John/A-2641-2014
OI Gamon, John/0000-0002-8269-7723
FU IARC through the Desert Research Institute, Reno, Nevada; NASA; NSF;
NSERC; iCORE/AITF
FX We wish to thank Stan Houston, Erika Anderson, and Jean Van Dalen for
assistance in field data collection. Dan Endres and other BRW staff
provided helpful discussions and temperature data, David Longenecker and
Ellsworth Dutton provided radiation data, Gina Sturm at the National
Weather Service's Barrow office provided precipitation data, Cathy
Seybold at the United States Department of Agriculture provided
technical details of the soil moisture measurements, Suresh-Kumar
Santhana-Vannan at ORNL DAAC provided advice on MODIS NDVI products, and
the staff of the Barrow Arctic Science Consortium provided field
logistical support. We are grateful to the Ukpeagvik Inupiat Corporation
(UIC) for permitting access. Funding for the field component of this
study was provided by IARC to J.A. Gamon and K.F. Huemmrich through the
Desert Research Institute, Reno, Nevada. Additional support was provided
by NASA and NSF, and final data analysis was supported by NSERC and
iCORE/AITF grants to J.A. Gamon.
NR 52
TC 25
Z9 27
U1 12
U2 171
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD FEB 15
PY 2013
VL 129
BP 144
EP 153
DI 10.1016/j.rse.2012.10.030
PG 10
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA 095BA
UT WOS:000315308300013
ER
PT J
AU Peterson, D
Wang, J
Ichoku, C
Hyer, E
Ambrosia, V
AF Peterson, David
Wang, Jun
Ichoku, Charles
Hyer, Edward
Ambrosia, Vincent
TI A sub-pixel-based calculation of fire radiative power from MODIS
observations: 1 Algorithm development and initial assessment
SO REMOTE SENSING OF ENVIRONMENT
LA English
DT Article
DE Fire; Wildfire; Biomass burning; Fire radiative power (FRP); MODIS; Fire
area; Fire temperature; Sub-pixel; Fire detection; Airborne
ID SPECTRAL MIXTURE ANALYSIS; BOREAL FOREST-FIRES; INFRARED DATA; SENSOR
DATA; EOS-MODIS; SATELLITE; TEMPERATURE; AVHRR; PRODUCTS; WILDFIRE
AB Developed as a quantitative measurement of fire intensity, fire radiative power (FRP) and the potential applications to smoke plume injection heights, are currently limited by the pixel resolution of a satellite sensor. As a result, this study, the first in a two-part series, develops a new sub-pixel-based calculation of fire radiative power (FRPf) for fire pixels detected at 1 km(2) nominal spatial resolution by the MODerate Resolution Imaging Spectroradiometer (MODIS) fire detection algorithm (collection 5), which is subsequently applied to several large wildfire events in California. The methodology stems from the heritage of earlier bi-spectral retrievals of sub-pixel fire area and temperature. However, in the current investigation, a radiative transfer model is incorporated to remove solar effects and account for atmospheric effects as a function of Earth-satellite geometry at 3.96 and 11 mu m (MODIS fire detection channels). The retrieved sub-pixel fire (flaming) area is assessed via the multispectral, high-resolution data (3-50 m) obtained from the Autonomous Modular Sensor (AMS), flown aboard the NASA Ikhana unmanned aircraft. With fire sizes ranging from 0.001 to 0.02 km(2), pixel-level fire area comparisons between MODIS and AMS are highly variable, regardless of the viewing zenith angle, and show a low bias with a modest correlation (R=0.59). However, when lower confidence fire pixels and point-spread-function effects (fire hot spots on the pixel edge) are removed, the correlation becomes much stronger (R=0.84) and the variability between MODIS and AMS is reduced. To account for these random errors via averaging, two clustering techniques are employed and the resulting AMS and MODIS comparisons of fire area, after correcting for overlapping MODIS pixels, are even more encouraging (R=0.91). Drawing from the retrieved fire area and temperature, the FRPf is calculated and compared to the current MODIS pixel area-based FRP. While the two methods are strongly correlated (R=0.93), the FRPf, in combination with retrieved fire cluster area, allows a large fire burning at a low intensity to be separated from a small fire burning at a high intensity. Similarly, the flux of FRPf over the retrieved fire area can be calculated, allowing for improved estimates of smoke plume injection heights in modeling studies and creating potential applications for the future VIIRS and GOES-R fire detection algorithms. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Peterson, David; Wang, Jun] Univ Nebraska, Lincoln, NE 68588 USA.
[Ichoku, Charles] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Hyer, Edward] USN, Res Lab, Monterey, CA 93940 USA.
[Ambrosia, Vincent] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Peterson, D (reprint author), Univ Nebraska, Dept Earth & Atmospher Sci, 130 Bessey Hall, Lincoln, NE 68588 USA.
EM david.peterson@huskers.unl.edu; jwang7@unl.edu;
charles.m.ichoku@nasa.gov; edward.hyer@nrlmry.navy.mil;
vincent.g.ambrosia@nasa.gov
RI Ichoku, Charles/E-1857-2012; Wang, Jun/A-2977-2008; Hyer,
Edward/E-7734-2011; peterson, david/L-2350-2016
OI Ichoku, Charles/0000-0003-3244-4549; Wang, Jun/0000-0002-7334-0490;
Hyer, Edward/0000-0001-8636-2026;
FU NASA Applied Science award [NNX09AT09G]; NASA RA award [NNH07AF47I]
FX We are grateful to the AMS wildfire measurement team at the NASA Ames
Research Center for providing the airborne (AMS) fire data used in this
study. We thank Luke Ellison at the NASA Goddard Space Flight Center for
his work with overlapping MODIS pixels. We also thank Dr. Mark Anderson,
Dr. John Lenters, and Dr. Bob Oglesby at the University of Nebraska -
Lincoln and Dr. Wilfrid Schroeder at the University of Maryland -
College Park for their constructive comments. The project was funded by
the NASA Earth and Space Science Fellowship (to D. Peterson) and the
NASA New Investigator Program (to Dr. Jun Wang). Dr. Hyer's
participation was funded by NASA Applied Science award #NNX09AT09G and
NASA R&A award #NNH07AF47I.
NR 78
TC 22
Z9 22
U1 2
U2 45
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0034-4257
J9 REMOTE SENS ENVIRON
JI Remote Sens. Environ.
PD FEB 15
PY 2013
VL 129
BP 262
EP 279
DI 10.1016/j.rse.2012.10.036
PG 18
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA 095BA
UT WOS:000315308300021
ER
PT J
AU Bilitza, D
Reinisch, B
AF Bilitza, Dieter
Reinisch, Bodo
TI Representation of the auroral and polar ionosphere in the International
Reference Ionosphere (IRI) Preface
SO ADVANCES IN SPACE RESEARCH
LA English
DT Editorial Material
C1 [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA.
[Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliospher Sci Lab, Greenbelt, MD 20771 USA.
[Reinisch, Bodo] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA 01854 USA.
[Reinisch, Bodo] Lowell Digisonde Int LLC, Lowell, MA 01854 USA.
RP Bilitza, D (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA.
EM dieter.bilitza-1@nasa.gov; bodo.reinisch@digisonde.com
NR 0
TC 0
Z9 0
U1 0
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD FEB 15
PY 2013
VL 51
IS 4
BP 535
EP 535
DI 10.1016/j.asr.2012.12.006
PG 1
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 090YI
UT WOS:000315015500001
ER
PT J
AU Mertens, CJ
Xu, XJ
Bilitza, D
Mlynczak, MG
Russell, JM
AF Mertens, Christopher J.
Xu, Xiaojing
Bilitza, Dieter
Mlynczak, Martin G.
Russell, James M., III
TI Empirical STORM-E model: I. Theoretical and observational basis
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Auroral particle precipitation; Ionosphere; E-region; Magnetic storm;
Infrared remote sensing; SABER
ID 4.3 MU-M; RADIATIVE-TRANSFER MODEL; EARTH LIMB EMISSION; KINETIC
TEMPERATURE; CARBON-DIOXIDE; CO2; ATMOSPHERE; TIMED/SABER; ALGORITHMS;
EXCITATION
AB Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 mu m channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 mu m VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 mu m VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 pm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO(v) VER is presented. Published by Elsevier Ltd. on behalf of COSPAR.
C1 [Mertens, Christopher J.; Mlynczak, Martin G.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA.
[Xu, Xiaojing] Sci Syst & Applicat Inc, Hampton, VA USA.
[Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA.
[Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23688 USA.
RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 401B, Hampton, VA 23681 USA.
EM Christopher.J.Mertens@nasa.gov; xiaojing.xu@ssaihq.com;
dbilitza@gmu.edu; Martin.G.Mlynczak@nasa.gov; James.Russell@hamptonu.edu
NR 40
TC 3
Z9 3
U1 0
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD FEB 15
PY 2013
VL 51
IS 4
BP 554
EP 574
DI 10.1016/j.asr.2012.09.009
PG 21
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 090YI
UT WOS:000315015500004
ER
PT J
AU Mertens, CJ
Xu, XJ
Bilitza, D
Mlynczak, MG
Russell, JM
AF Mertens, Christopher J.
Xu, Xiaojing
Bilitza, Dieter
Mlynczak, Martin G.
Russell, James M., III
TI Empirical STORM-E model: II. Geomagnetic corrections to nighttime
ionospheric E-region electron densities
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Aurora; Auroral particle precipitation; Ionosphere; E-region; Magnetic
storm; Infrared remote sensing
ID AURORAL-ZONE; ART.
AB Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) Volume Emission Rates (VER) derived from the TIMED/SABER 4.3 mu m channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 mu m VER is most sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 mu m VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known nighttime quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part I of this series gives a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 mu m limb emission measurements. In this paper, Part II of the series, the development of the E-region electron density storm-time correction factor is described. The STORM-E storm-time correction factor is fit to a single geomagnetic index. There are four versions of the STORM-E model, which are currently independent of magnetic local time. Each version is fit to one of the following indices: HP, AE, Ap, or Dst. High-latitude Incoherent Scatter Radar (ISR) E-region electron density measurements are compared to STORM-E predictions for various geomagnetic storm periods during solar cycle 23. These comparisons show that STORM-E significantly improves the prediction of E-region electron density enhancements due to auroral particle precipitation, in comparison to the nominal IRI model or to the quiet-time baseline electron density concentrations measured by ISR. The STORM-E/ISR comparisons indicate that the STORM-E fits to the Ap-, AE-, and HP-indices are comparable in both absolute accuracy and relative dynamical response. Contrarily, the Dst-index does not appear to be a suitable input driver to parameterize the E-region electron density response to geomagnetic activity. Published by Elsevier Ltd. on behalf of COSPAR.
C1 [Mertens, Christopher J.; Mlynczak, Martin G.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA.
[Xu, Xiaojing] Sci Syst & Applicat Inc, Hampton, VA USA.
[Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA.
[Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23688 USA.
RP Mertens, CJ (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 401B, Hampton, VA 23681 USA.
EM Christopher.J.Mertens@nasa.gov; xiaojing.xu@ssaihq.com;
dbilitza@gmu.edu; Martin.G.Mlynczak@nasa.gov; James.Russell@hamptonu.edu
NR 27
TC 3
Z9 3
U1 0
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD FEB 15
PY 2013
VL 51
IS 4
BP 575
EP 598
DI 10.1016/j.asr.2012.09.014
PG 24
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 090YI
UT WOS:000315015500005
ER
PT J
AU Zakharenkova, IE
Krankowski, A
Bilitza, D
Cherniak, IV
Shagimuratov, II
Sieradzki, R
AF Zakharenkova, I. E.
Krankowski, A.
Bilitza, D.
Cherniak, Iu V.
Shagimuratov, I. I.
Sieradzki, R.
TI Comparative study of foF2 measurements with IRI-2007 model predictions
during extended solar minimum
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Ionosphere; F2 region critical frequency; International Reference
Ionosphere; Solar cycle dependence
AB The unusually deep and extended solar minimum of cycle 23/24 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements. Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRI provides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activity are used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum. One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly. Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Zakharenkova, I. E.; Cherniak, Iu V.; Shagimuratov, I. I.] IZMIRAN, West Dept, Kaliningrad 236010, Russia.
[Zakharenkova, I. E.; Krankowski, A.; Sieradzki, R.] Univ Warmia & Mazury, Geodynam Res Lab, Olsztyn, Poland.
[Bilitza, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bilitza, D.] George Mason Univ, Space Weather Lab, Fairfax, VA 22030 USA.
RP Zakharenkova, IE (reprint author), IZMIRAN, West Dept, 41 Av Pobeda, Kaliningrad 236010, Russia.
EM zakharenkova@mail.ru; kand@uwin.edu.pl; dieter.bilitza-1@nasa.gov
OI Zakharenkova, Irina/0000-0002-7878-7275
FU NASA [NNX09AJ74G]
FX We acknowledge the IRI Working group for providing and evaluating the
IRI model FORTRAN code. The authors are grateful to the European Digital
Upper Atmosphere Server (DIAS) for providing the ionosondes' data. DB
acknowledges support through NASA Grant NNX09AJ74G.
NR 10
TC 8
Z9 8
U1 1
U2 11
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD FEB 15
PY 2013
VL 51
IS 4
BP 620
EP 629
DI 10.1016/j.asr.2011.11.015
PG 10
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 090YI
UT WOS:000315015500008
ER
PT J
AU Talaat, ER
Yee, JH
Hsieh, SY
Paxton, LJ
DeMajistre, R
Christensen, AB
Bilitza, D
AF Talaat, E. R.
Yee, J. -H.
Hsieh, S. -Y.
Paxton, L. J.
DeMajistre, R.
Christensen, A. B.
Bilitza, D.
TI The quiet nighttime low-latitude ionosphere as observed by TIMED/GUVI
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Ionosphere; TIMED; Electron density; GUVI; IRI
ID INTERNATIONAL REFERENCE IONOSPHERE; ULTRAVIOLET IMAGER GUVI; MISSION
AB In this paper, we examine the nighttime ionosphere climatology structure in the low latitude region and discrepancies between Global Ultraviolet Imager (GUVI) observations and the IRI model predictions using (1) the magnetic zonal mean of electron number density as a function of altitude and magnetic latitude, (2) vertical electron density profiles at various levels of F10.7 index, (3) nighttime descent and magnitude decrease of the ionosphere, (4) point-to-point comparisons of F-peak height (hmF2) and density (NmF2), and (5) the magnetic longitudinal variations of hmF2 and NmF2. The data collected from the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) mission since its launch in December 2001 have provided great opportunities for many scientific investigations of the ionosphere. In this analysis, we investigate the climatology of the nighttime low-latitude ionosphere under low geomagnetic activity (kp <= 4) using the electron density profiles inferred from the airglow measurements obtained by the GUVI aboard the TIMED spacecraft and compared with the results obtained from IRI (International Reference Ionosphere) model-2001. The observed climatology is an essential tool for further understanding the electrodynamics in the low-latitude region and improving the model's prediction capability. The time range of the GUVI data used in this study is from 2002 (day 053) to 2006 (day 304), and the IRI model predictions were produced at every GUVI location. The ionosphere observed is generally of greater density than what IRI predicts throughout the night for all four seasons for low and moderate solar activity while the model over-predicts the electron density near the F-region peak at high solar activity before midnight. Observations show that the height of the F-region peak has a steep descent from dusk to midnight and near midnight the height of layer is insensitive to solar conditions, significantly different than what is predicted by IRI. Longitudinal features shown in GUVI data are present in the low-latitude ionosphere after sunset and continue through to midnight after which the low-latitude ionosphere is largely zonally symmetric. (C) 2012 Published by Elsevier Ltd. on behalf of COSPAR.
C1 [Talaat, E. R.; Yee, J. -H.; Hsieh, S. -Y.; Paxton, L. J.; DeMajistre, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Christensen, A. B.] Dixie State Coll Utah, St George, UT 84770 USA.
[Bilitza, D.] NASA, GFSC, Heliospher Lab, Greenbelt, MD 20771 USA.
[Bilitza, D.] George Mason Univ, CDS, COS, Fairfax, VA 22030 USA.
RP Talaat, ER (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
EM elsayed.talaat@jhuapl.edu
RI Paxton, Larry/D-1934-2015
OI Paxton, Larry/0000-0002-2597-347X
FU NASA [NNG05GE43G, NAS5-97179, NAG5-6000]; TIMED
FX This work has been supported by NASA Grant NNG05GE43G and by the TIMED
project sponsored by NASA under contract NAS5-97179 and NASA grant
NAG5-6000 to The Johns Hopkins University Applied Physics Laboratory.
The authors would like to thank the editor and three anonymous reviewers
for their valuable and helpful comments to improve the quality of this
paper.
NR 21
TC 1
Z9 1
U1 2
U2 12
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD FEB 15
PY 2013
VL 51
IS 4
BP 661
EP 676
DI 10.1016/j.asr.2012.11.012
PG 16
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 090YI
UT WOS:000315015500013
ER
PT J
AU Ackermann, M
Ajello, M
Allafort, A
Baldini, L
Ballet, J
Barbiellini, G
Baring, MG
Bastieri, D
Bechtol, K
Bellazzini, R
Blandford, RD
Bloom, ED
Bonamente, E
Borgland, AW
Bottacini, E
Brandt, TJ
Bregeon, J
Brigida, M
Bruel, P
Buehler, R
Busetto, G
Buson, S
Caliandro, GA
Cameron, RA
Caraveo, PA
Casandjian, JM
Cecchi, C
Celik, O
Charles, E
Chaty, S
Chaves, RCG
Chekhtman, A
Cheung, CC
Chiang, J
Chiaro, G
Cillis, AN
Ciprini, S
Claus, R
Cohen-Tanugi, J
Cominsky, LR
Conrad, J
Corbel, S
Cutini, S
D'Ammando, F
de Angelis, A
de Palma, F
Dermer, CD
Silva, EDE
Drell, PS
Drlica-Wagner, A
Falletti, L
Favuzzi, C
Ferrara, EC
Franckowiak, A
Fukazawa, Y
Funk, S
Fusco, P
Gargano, F
Germani, S
Giglietto, N
Giommi, P
Giordano, F
Giroletti, M
Glanzman, T
Godfrey, G
Grenier, IA
Grondin, MH
Grove, JE
Guiriec, S
Hadasch, D
Hanabata, Y
Harding, AK
Hayashida, M
Hayashi, K
Hays, E
Hewitt, JW
Hill, AB
Hughes, RE
Jackson, MS
Jogler, T
Johannesson, G
Johnson, AS
Kamae, T
Kataoka, J
Katsuta, J
Knodlseder, J
Kuss, M
Lande, J
Larsson, S
Latronico, L
Lemoine-Goumard, M
Longo, F
Loparco, F
Lovellette, MN
Lubrano, P
Madejski, GM
Massaro, F
Mayer, M
Mazziotta, MN
McEnery, JE
Mehault, J
Michelson, PF
Mignani, RP
Mitthumsiri, W
Mizuno, T
Moiseev, AA
Monzani, ME
Morselli, A
Moskalenko, IV
Murgia, S
Nakamori, T
Nemmen, R
Nuss, E
Ohno, M
Ohsugi, T
Omodei, N
Orienti, M
Orlando, E
Ormes, JF
Paneque, D
Perkins, JS
Pesce-Rollins, M
Piron, F
Pivato, G
Raino, S
Rando, R
Razzano, M
Razzaque, S
Reimer, A
Reimer, O
Ritz, S
Romoli, C
Sanchez-Conde, M
Schulz, A
Sgro, C
Simeon, PE
Siskind, EJ
Smith, DA
Spandre, G
Spinelli, P
Stecker, FW
Strong, AW
Suson, DJ
Tajima, H
Takahashi, H
Takahashi, T
Tanaka, T
Thayer, JG
Thayer, JB
Thompson, DJ
Thorsett, SE
Tibaldo, L
Tibolla, O
Tinivella, M
Troja, E
Uchiyama, Y
Usher, TL
Vandenbroucke, J
Vasileiou, V
Vianello, G
Vitale, V
Waite, AP
Werner, M
Winer, BL
Wood, KS
Wood, M
Yamazaki, R
Yang, Z
Zimmer, S
AF Ackermann, M.
Ajello, M.
Allafort, A.
Baldini, L.
Ballet, J.
Barbiellini, G.
Baring, M. G.
Bastieri, D.
Bechtol, K.
Bellazzini, R.
Blandford, R. D.
Bloom, E. D.
Bonamente, E.
Borgland, A. W.
Bottacini, E.
Brandt, T. J.
Bregeon, J.
Brigida, M.
Bruel, P.
Buehler, R.
Busetto, G.
Buson, S.
Caliandro, G. A.
Cameron, R. A.
Caraveo, P. A.
Casandjian, J. M.
Cecchi, C.
Celik, O.
Charles, E.
Chaty, S.
Chaves, R. C. G.
Chekhtman, A.
Cheung, C. C.
Chiang, J.
Chiaro, G.
Cillis, A. N.
Ciprini, S.
Claus, R.
Cohen-Tanugi, J.
Cominsky, L. R.
Conrad, J.
Corbel, S.
Cutini, S.
D'Ammando, F.
de Angelis, A.
de Palma, F.
Dermer, C. D.
do Couto e Silva, E.
Drell, P. S.
Drlica-Wagner, A.
Falletti, L.
Favuzzi, C.
Ferrara, E. C.
Franckowiak, A.
Fukazawa, Y.
Funk, S.
Fusco, P.
Gargano, F.
Germani, S.
Giglietto, N.
Giommi, P.
Giordano, F.
Giroletti, M.
Glanzman, T.
Godfrey, G.
Grenier, I. A.
Grondin, M. -H.
Grove, J. E.
Guiriec, S.
Hadasch, D.
Hanabata, Y.
Harding, A. K.
Hayashida, M.
Hayashi, K.
Hays, E.
Hewitt, J. W.
Hill, A. B.
Hughes, R. E.
Jackson, M. S.
Jogler, T.
Johannesson, G.
Johnson, A. S.
Kamae, T.
Kataoka, J.
Katsuta, J.
Knoedlseder, J.
Kuss, M.
Lande, J.
Larsson, S.
Latronico, L.
Lemoine-Goumard, M.
Longo, F.
Loparco, F.
Lovellette, M. N.
Lubrano, P.
Madejski, G. M.
Massaro, F.
Mayer, M.
Mazziotta, M. N.
McEnery, J. E.
Mehault, J.
Michelson, P. F.
Mignani, R. P.
Mitthumsiri, W.
Mizuno, T.
Moiseev, A. A.
Monzani, M. E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Nakamori, T.
Nemmen, R.
Nuss, E.
Ohno, M.
Ohsugi, T.
Omodei, N.
Orienti, M.
Orlando, E.
Ormes, J. F.
Paneque, D.
Perkins, J. S.
Pesce-Rollins, M.
Piron, F.
Pivato, G.
Raino, S.
Rando, R.
Razzano, M.
Razzaque, S.
Reimer, A.
Reimer, O.
Ritz, S.
Romoli, C.
Sanchez-Conde, M.
Schulz, A.
Sgro, C.
Simeon, P. E.
Siskind, E. J.
Smith, D. A.
Spandre, G.
Spinelli, P.
Stecker, F. W.
Strong, A. W.
Suson, D. J.
Tajima, H.
Takahashi, H.
Takahashi, T.
Tanaka, T.
Thayer, J. G.
Thayer, J. B.
Thompson, D. J.
Thorsett, S. E.
Tibaldo, L.
Tibolla, O.
Tinivella, M.
Troja, E.
Uchiyama, Y.
Usher, T. L.
Vandenbroucke, J.
Vasileiou, V.
Vianello, G.
Vitale, V.
Waite, A. P.
Werner, M.
Winer, B. L.
Wood, K. S.
Wood, M.
Yamazaki, R.
Yang, Z.
Zimmer, S.
TI Detection of the Characteristic Pion-Decay Signature in Supernova
Remnants
SO SCIENCE
LA English
DT Article
ID GAMMA-RAY EMISSION; LARGE-AREA TELESCOPE; IC 443; COSMIC-RAYS; FERMI
LAT; SNR W44; ACCELERATION; CLOUDS; DISCOVERY; RADIATION
AB Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
C1 [Ackermann, M.; Mayer, M.; Schulz, A.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany.
[Ajello, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Franckowiak, A.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Kamae, T.; Katsuta, J.; Lande, J.; Madejski, G. M.; Massaro, F.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Sanchez-Conde, M.; Simeon, P. E.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Franckowiak, A.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Hill, A. B.; Jogler, T.; Johnson, A. S.; Kamae, T.; Katsuta, J.; Lande, J.; Madejski, G. M.; Massaro, F.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Sanchez-Conde, M.; Simeon, P. E.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Baldini, L.] Univ Pisa, I-56127 Pisa, Italy.
[Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Ballet, J.; Casandjian, J. M.; Chaty, S.; Chaves, R. C. G.; Corbel, S.; Grenier, I. A.] Univ Paris Diderot, Serv Astrophys, Lab AIM, CEA Saclay,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France.
[Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sezione Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA.
[Bastieri, D.; Busetto, G.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Busetto, G.; Buson, S.; Chiaro, G.; Pivato, G.; Rando, R.; Romoli, C.; Tibaldo, L.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Bonamente, E.; Cecchi, C.; D'Ammando, F.; Germani, S.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Brandt, T. J.; Celik, O.; Cillis, A. N.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Stecker, F. W.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bruel, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Caliandro, G. A.; Hadasch, D.] Inst Ciencies Espai IEEE CSIC, Barcelona 08193, Spain.
[Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Celik, O.; Moiseev, A. A.; Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA.
[Celik, O.; Moiseev, A. A.; Perkins, J. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Celik, O.; Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Celik, O.; Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Chekhtman, A.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA.
[Chekhtman, A.; Cheung, C. C.; Razzaque, S.] USN, Res Lab, Washington, DC 20375 USA.
[Cheung, C. C.] USN, Acad Sci, Natl Res Council, Washington, DC 20001 USA.
[Chiaro, G.] Ist Nazl Fis Nucl, I-35131 Padua, Italy.
[Cillis, A. N.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina.
[Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy.
[Cohen-Tanugi, J.; Falletti, L.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Universe & Particules Montpellier, Montpellier, France.
[Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA.
[Conrad, J.; Larsson, S.; Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Conrad, J.; Jackson, M. S.; Larsson, S.; Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Conrad, J.] Royal Swedish Acad Sci, Stockholm, Sweden.
[Corbel, S.] Inst Univ France, F-75005 Paris, France.
[Cutini, S.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy.
[D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy.
[D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy.
[de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy.
[Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Fukazawa, Y.; Hanabata, Y.; Hayashi, K.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Grondin, M. -H.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany.
[Grondin, M. -H.] Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany.
[Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan.
[Hill, A. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Jackson, M. S.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden.
[Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland.
[Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan.
[Knoedlseder, J.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, F-31028 Toulouse, France.
[Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden.
[Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Lemoine-Goumard, M.; Smith, D. A.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France.
[McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Mignani, R. P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Ohno, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan.
[Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Razzano, M.; Ritz, S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Reimer, A.; Reimer, O.; Werner, M.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Stecker, F. W.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Tanaka, T.] Kyoto Univ, Grad Sch Sci, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan.
[Thorsett, S. E.] Willamette Univ, Dept Phys, Salem, OR 97031 USA.
[Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany.
[Troja, E.] NASA, Postdoctoral Program, Washington, DC USA.
[Vianello, G.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy.
[Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Yamazaki, R.] Aoyama Gakuin Univ, Dept Phys & Math, Sagamihara, Kanagawa 2525258, Japan.
RP Funk, S (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
EM funk@slac.stanford.edu; ttanaka@cr.scphys.kyoto-u.ac.jp;
uchiyama@slac.stanford.edu
RI Sgro, Carmelo/K-3395-2016; Rando, Riccardo/M-7179-2013; Hays,
Elizabeth/D-3257-2012; Reimer, Olaf/A-3117-2013; Morselli,
Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Funk, Stefan/B-7629-2015;
Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015;
Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Moskalenko,
Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Massaro,
Francesco/L-9102-2016; Orlando, E/R-5594-2016;
OI Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553;
Funk, Stefan/0000-0002-2012-0080; Johannesson,
Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673;
Gargano, Fabio/0000-0002-5055-6395; giglietto,
nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X;
Mazziotta, Mario /0000-0001-9325-4672; Massaro,
Francesco/0000-0002-1704-9850; Thorsett, Stephen/0000-0002-2025-9613;
giommi, paolo/0000-0002-2265-5003; De Angelis,
Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018;
Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864;
Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862;
Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601;
Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti,
monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852;
Baldini, Luca/0000-0002-9785-7726
FU NASA; U.S. Department of Energy (United States); CEA/Irfu; IN2P3/CNRS
(France); ASI; INFN (Italy); MEXT; KEK; JAXA (Japan); K. A. Wallenberg
Foundation; Swedish Research Council; National Space Board (Sweden)
FX The Fermi LAT Collaboration acknowledges support from a number of
agencies and institutes for both development and the operation of the
LAT as well as scientific data analysis. These include NASA and the U.S.
Department of Energy (United States); CEA/Irfu and IN2P3/CNRS (France);
ASI and INFN (Italy); MEXT, KEK, and JAXA (Japan); and the K. A.
Wallenberg Foundation, the Swedish Research Council, and the National
Space Board (Sweden). Additional support from INAF in Italy and CNES in
France for science analysis during the operations phase is also
gratefully acknowledged. Fermi LAT data are available from the Fermi
Science Support Center (http://fermi.gsfc.nasa.gov/ssc).
NR 29
TC 185
Z9 190
U1 2
U2 76
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD FEB 15
PY 2013
VL 339
IS 6121
BP 807
EP 811
DI 10.1126/science.1231160
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 088YS
UT WOS:000314874400045
PM 23413352
ER
PT J
AU Polhamus, A
Fisher, JB
Tu, KP
AF Polhamus, Aaron
Fisher, Joshua B.
Tu, Kevin P.
TI What controls the error structure in evapotranspiration models?
SO AGRICULTURAL AND FOREST METEOROLOGY
LA English
DT Article
DE Evapotranspiration; Decoupling; Stomatal resistance; Machine learning;
Error; Uncertainty
ID PRIESTLEY-TAYLOR PARAMETER; ATMOSPHERE WATER FLUX; REGRESSION TREES;
PENMAN-MONTEITH; MODIS; EVAPORATION; SITES; HEAT; TRANSPIRATION;
ALGORITHM
AB Evapotranspiration models allow climate modelers to describe surface-atmosphere interactions, ecologists to understand the impact that global temperature change and increased radiation budgets will have on ecosystems, and farmers to decide how much irrigation to give their crops. Physically based algorithms for estimating evapotranspiration must manage a trade-off between physical realism and the difficulty of parameterizing key inputs, namely resistance factors associated with water vapor transport through the canopy and turbulent transport of water vapor from the canopy to ambient air. In this study we calculate predicted evapotranspiration at 42 AmeriFlux sites using two types of dedicated evapotranspiration models-one using physical resistances from the Penman-Monteith equation (Monteith, 1965) (Mu et al., 2007, 2011) and another based on the Priestley-Taylor (1972) equation, substituting functional constraints for resistances (Fisher et al., 2008). We analyze the structure of the residual series with respect to various meteorological and biophysical inputs, specifically Jarvis and McNaughton's (1986) decoupling coefficient, Omega, which is designed to represent the degree of control that plant stomata versus atmospheric demand and net radiation exercise over transpiration. We find that vegetation indices, magnitude of daytime fluxes, and bulk canopy resistance (r(c))-which largely drives Omega-are strong predictors of patterns in model bias for all flux products. Though our analysis suggests a consistently negative relationship between Omega and mean predicted error for all evapotranspiration models, we found that vegetation indices and flux magnitudes were the most significant drivers of model error. Before addressing error associated with canopy resistance and Omega, refinements to existing models should focus on correcting biases with respect to flux magnitudes and canopy indices. We suggest a dual-model approach for backsolving r(c) (rather than estimating it from lookup tables and canopy indices), and increased attention to water availability, which largely drives stomatal opening and closure. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Polhamus, Aaron; Fisher, Joshua B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Tu, Kevin P.] Pioneer Hibred Intl, Woodland, CA 95695 USA.
RP Fisher, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM jbfisher@jpl.nasa.gov
OI Fisher, Joshua/0000-0003-4734-9085
FU National Aeronautics and Space Administration
FX We thank Qiaozhen Mu for the time and energy she invested in helping us
code her model and develop this paper's analysis; Robert McCulloch,
maintainer of the R package BayesTree (Chipman and McCulloch, 2010) for
contributing the code used to generate the variable importance plots in
the BART analysis section; and Ameri-Flux Principal Investigators and
for their diligent efforts to provide high-quality flux data to the
environment science community. Two anonymous reviewers provided helpful
suggestions for improving the manuscript. The Jet Propulsion Laboratory,
California Institute of Technology carried out the research described in
this paper, under a contract with the National Aeronautics and Space
Administration.
NR 59
TC 5
Z9 6
U1 1
U2 79
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-1923
EI 1873-2240
J9 AGR FOREST METEOROL
JI Agric. For. Meteorol.
PD FEB 15
PY 2013
VL 169
BP 12
EP 24
DI 10.1016/j.agrformet.2012.10.002
PG 13
WC Agronomy; Forestry; Meteorology & Atmospheric Sciences
SC Agriculture; Forestry; Meteorology & Atmospheric Sciences
GA 078GT
UT WOS:000314087400002
ER
PT J
AU Aasi, J
Abadie, J
Abbott, BP
Abbott, R
Abbott, TD
Abernathy, M
Accadia, T
Acernese, F
Adams, C
Adams, T
Addesso, P
Adhikari, R
Affeldt, C
Agathos, M
Agatsuma, K
Ajith, P
Allen, B
Allocca, A
Ceron, EA
Amariutei, D
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Ast, S
Aston, SM
Astone, P
Atkinson, D
Aufmuth, P
Aulbert, C
Aylott, BE
Babak, S
Baker, P
Ballardin, G
Ballmer, S
Bao, Y
Barayoga, JCB
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Barton, MA
Bartos, I
Bassiri, R
Bastarrika, M
Basti, A
Batch, J
Bauchrowitz, J
Bauer, TS
Bebronne, M
Beck, D
Behnke, B
Bejger, M
Beker, MG
Bell, AS
Bell, C
Belopolski, I
Benacquista, M
Berliner, JM
Bertolini, A
Betzwieser, J
Beveridge, N
Beyersdorf, PT
Bhadbade, T
Bilenko, IA
Billingsley, G
Birch, J
Biswas, R
Bitossi, M
Bizouard, MA
Black, E
Blackburn, JK
Blackburn, L
Blair, D
Bland, B
Blom, M
Bock, O
Bodiya, TP
Bogan, C
Bond, C
Bondarescu, R
Bondu, F
Bonelli, L
Bonnand, R
Bork, R
Born, M
Boschi, V
Bose, S
Bosi, L
Bouhou, B
Braccini, S
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Brau, JE
Breyer, J
Briant, T
Bridges, DO
Brillet, A
Brinkmann, M
Brisson, V
Britzger, M
Brooks, AF
Brown, DA
Bulik, T
Bulten, HJ
Buonanno, A
Burguet-Castell, J
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Cagnoli, G
Calloni, E
Camp, JB
Campsie, P
Cannon, K
Canuel, B
Cao, J
Capano, CD
Carbognani, F
Carbone, L
Caride, S
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Cella, G
Cepeda, C
Cesarini, E
Chalermsongsak, T
Charlton, P
Chassande-Mottin, E
Chen, W
Chen, X
Chen, Y
Chincarini, A
Chiummo, A
Cho, HS
Chow, J
Christensen, N
Chua, SSY
Chung, CTY
Chung, S
Ciani, G
Clara, F
Clark, DE
Clark, JA
Clayton, JH
Cleva, F
Coccia, E
Cohadon, PF
Colacino, CN
Colla, A
Colombini, M
Conte, A
Conte, R
Cook, D
Corbitt, TR
Cordier, M
Cornish, N
Corsi, A
Costa, CA
Coughlin, M
Coulon, JP
Couvares, P
Coward, DM
Cowart, M
Coyne, DC
Creighton, JDE
Creighton, TD
Cruise, AM
Cumming, A
Cunningham, L
Cuoco, E
Cutler, RM
Dahl, K
Damjanic, M
Danilishin, SL
D'Antonio, S
Danzmann, K
Dattilo, V
Daudert, B
Daveloza, H
Davier, M
Daw, EJ
Day, R
Dayanga, T
De Rosa, R
DeBra, D
Debreczeni, G
Degallaix, J
Del Pozzo, W
Dent, T
Dergachev, V
DeRosa, R
Dhurandhar, S
Di Fiore, L
Di Lieto, A
Di Palma, I
Emilio, MDP
Di Virgilio, A
Diaz, M
Dietz, A
Dietz, A
Donovan, F
Dooley, KL
Doravari, S
Dorsher, S
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Dumas, JC
Dwyer, S
Eberle, T
Edgar, M
Edwards, M
Effler, A
Ehrens, P
Endroczi, G
Engel, R
Etzel, T
Evans, K
Evans, M
Evans, T
Factourovich, M
Fafone, V
Fairhurst, S
Farr, BF
Favata, M
Fazi, D
Fehrmann, H
Feldbaum, D
Ferrante, I
Ferrini, F
Fidecaro, F
Finn, LS
Fiori, I
Fisher, RP
Flaminio, R
Foley, S
Forsi, E
Fotopoulos, N
Fournier, JD
Franc, J
Franco, S
Frasca, S
Frasconi, F
Frede, M
Frei, MA
Frei, Z
Freise, A
Frey, R
Fricke, TT
Friedrich, D
Fritschel, P
Frolov, VV
Fujimoto, MK
Fulda, PJ
Fyffe, M
Gair, J
Galimberti, M
Gammaitoni, L
Garcia, J
Garufi, F
Gaspar, ME
Gelencser, G
Gemme, G
Genin, E
Gennai, A
Gergely, LA
Ghosh, S
Giaime, JA
Giampanis, S
Giardina, KD
Giazotto, A
Gil-Casanova, S
Gill, C
Gleason, J
Goetz, E
Gonzalez, G
Gorodetsky, ML
Gossler, S
Gouaty, R
Graef, C
Graff, PB
Granata, M
Grant, A
Gray, C
Greenhalgh, RJS
Gretarsson, AM
Griffo, C
Grote, H
Grover, K
Grunewald, S
Guidi, GM
Guido, C
Gupta, R
Gustafson, EK
Gustafson, R
Hallam, JM
Hammer, D
Hammond, G
Hanks, J
Hanna, C
Hanson, J
Harms, J
Harry, GM
Harry, IW
Harstad, ED
Hartman, MT
Haughian, K
Hayama, K
Hayau, JF
Heefner, J
Heidmann, A
Heitmann, H
Hello, P
Hendry, MA
Heng, IS
Heptonstall, AW
Herrera, V
Evans, T
Hewitson, M
Hild, S
Hoak, D
Hodge, KA
Holt, K
Holtrop, M
Hong, T
Hooper, S
Hough, J
Howell, EJ
Hughey, B
Husa, S
Huttner, SH
Huynh-Dinh, T
Ingram, DR
Inta, R
Isogai, T
Ivanov, A
Izumi, K
Jacobson, M
James, E
Jang, YJ
Jaranowski, P
Jesse, E
Johnson, WW
Jones, DI
Jones, R
Jonker, RJG
Ju, L
Kalmus, P
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, B
Kasprzack, M
Kasturi, R
Katsavounidis, E
Katzman, W
Kaufer, H
Kaufman, K
Kawabe, K
Kawamura, S
Kawazoe, F
Keitel, D
Kelley, D
Kells, W
Keppel, DG
Keresztes, Z
Khalaidovski, A
Khalili, FY
Khazanov, EA
Kim, BK
Kim, C
Kim, H
Kim, K
Kim, N
Kim, YM
King, PJ
Kinzel, DL
Kissel, JS
Klimenko, S
Kline, J
Kokeyama, K
Kondrashov, V
Koranda, S
Korth, WZ
Kowalska, I
Kozak, D
Kringel, V
Krishnan, B
Krolak, A
Kuehn, G
Kumar, P
Kumar, R
Kurdyumov, R
Kwee, P
Lam, PK
Landry, M
Langley, A
Lantz, B
Lastzka, N
Lawrie, C
Lazzarini, A
Leaci, P
Lee, CH
Lee, HK
Lee, HM
Leong, JR
Leonor, I
Leroy, N
Letendre, N
Lhuillier, V
Li, J
Li, TGF
Lindquist, PE
Litvine, V
Liu, Y
Liu, Z
Lockerbie, NA
Lodhia, D
Logue, J
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, J
Lubinski, M
Lueck, H
Lundgren, AP
Macarthur, J
Macdonald, E
Machenschalk, B
MacInnis, M
Macleod, DM
Mageswaran, M
Mailand, K
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Markosyan, A
Maros, E
Marque, J
Martelli, F
Martin, IW
Martin, RM
Marx, JN
Mason, K
Masserot, A
Matichard, F
Matone, L
Matzner, RA
Mavalvala, N
Mazzolo, G
McCarthy, R
McClelland, DE
McGuire, C
McIntyre, G
McIver, J
Meadors, GD
Mehmet, M
Meier, T
Melatos, A
Melissinos, AC
Mendell, G
Menendez, DF
Mercer, RA
Meshkov, S
Messenger, C
Meyer, MS
Miao, H
Michel, C
Milano, L
Miller, J
Minenkov, Y
Mingarelli, CMF
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moe, B
Mohan, M
Mohapatra, SRP
Moraru, D
Moreno, G
Morgado, N
Morgia, A
Mori, T
Morriss, SR
Mosca, S
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Mukherjee, S
Mullavey, A
Muller-Ebhardt, H
Munch, J
Murphy, D
Murray, PG
Mytidis, A
Nash, T
Naticchioni, L
Necula, V
Nelson, J
Neri, I
Newton, G
Nguyen, T
Nishizawa, A
Nitz, A
Nocera, F
Nolting, D
Normandin, ME
Nuttall, L
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Oldenberg, RG
O'Reilly, B
O'Shaughnessy, R
Osthelder, C
Ott, CD
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Page, A
Palladino, L
Palomba, C
Pan, Y
Paoletti, F
Paoletti, R
Papa, MA
Parisi, M
Pasqualetti, A
Passaquieti, R
Passuello, D
Pedraza, M
Penn, S
Perreca, A
Persichetti, G
Phelps, M
Pichot, M
Pickenpack, M
Piergiovanni, F
Pierro, V
Pihlaja, M
Pinard, L
Pinto, IM
Pitkin, M
Pletsch, HJ
Plissi, MV
Poggiani, R
Pold, J
Postiglione, F
Poux, C
Prato, M
Predoi, V
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prix, R
Prodi, GA
Prokhorov, LG
Puncken, O
Punturo, M
Puppo, P
Quetschke, V
Quitzow-James, R
Raab, FJ
Rabeling, DS
Racz, I
Radkins, H
Raffai, P
Rakhmanov, M
Ramet, C
Rankins, B
Rapagnani, P
Raymond, V
Re, V
Reed, CM
Reed, T
Regimbau, T
Reid, S
Reitze, DH
Ricci, F
Riesen, R
Riles, K
Roberts, M
Robertson, NA
Robinet, F
Robinson, C
Robinson, EL
Rocchi, A
Roddy, S
Rodriguez, C
Rodruck, M
Rolland, L
Rollins, JG
Romano, JD
Romano, R
Romie, JH
Rosinska, D
Rover, C
Rowan, S
Rudiger, A
Ruggi, P
Ryan, K
Salemi, F
Sammut, L
Sandberg, V
Sankar, S
Sannibale, V
Santamaria, L
Santiago-Prieto, I
Santostasi, G
Saracco, E
Sathyaprakash, BS
Saulson, PR
Savage, RL
Schilling, R
Schnabel, R
Schofield, RMS
Schulz, B
Schutz, BF
Schwinberg, P
Scott, J
Scott, SM
Seifert, F
Sellers, D
Sentenac, D
Sergeev, A
Shaddock, DA
Shaltev, M
Shapiro, B
Shawhan, P
Shoemaker, DH
Sidery, TL
Siemens, X
Sigg, D
Simakov, D
Singer, A
Singer, L
Sintes, AM
Skelton, GR
Slagmolen, BJJ
Slutsky, J
Smith, JR
Smith, MR
Smith, RJE
Smith-Lefebvre, ND
Somiya, K
Sorazu, B
Speirits, FC
Sperandio, L
Stefszky, M
Steinert, E
Steinlechner, J
Steinlechner, S
Steplewski, S
Stochino, A
Stone, R
Strain, KA
Strigin, SE
Stroeer, AS
Sturani, R
Stuver, AL
Summerscales, TZ
Sung, M
Susmithan, S
Sutton, PJ
Swinkels, B
Szeifert, G
Tacca, M
Taffarello, L
Talukder, D
Tanner, DB
Tarabrin, SP
Taylor, R
Ter Braack, APM
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Thuring, A
Titsler, C
Tokmakov, KV
Tomlinson, C
Toncelli, A
Tonelli, M
Torre, O
Torres, CV
Torrie, CI
Tournefier, E
Travasso, F
Traylor, G
Tse, M
Ugolini, D
Vahlbruch, H
Vajente, G
van den Brand, JFJ
Van den Broeck, C
van der Putten, S
van Veggel, AA
Vass, S
Vasuth, M
Vaulin, R
Vavoulidis, M
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Venkateswara, K
Verkindt, D
Vetrano, F
Vicere, A
Villar, AE
Vinet, JY
Vitale, S
Vocca, H
Vorvick, C
Vyatchanin, SP
Wade, A
Wade, L
Wade, M
Waldman, SJ
Wallace, L
Wan, Y
Wang, M
Wang, X
Wanner, A
Ward, RL
Was, M
Weinert, M
Weinstein, AJ
Weiss, R
Welborn, T
Wen, L
Wessels, P
West, M
Westphal, T
Wette, K
Whelan, T
Whitcomb, SE
White, DJ
Whiting, BF
Wiesner, K
Wilkinson, C
Willems, PA
Williams, LWR
Williams, R
Willke, B
Wimmer, M
Winkelmann, L
Winkler, W
Wipf, CC
Wiseman, AG
Wittel, H
Woan, G
Wooley, R
Worden, J
Yablon, J
Yakushin, I
Yamamoto, H
Yamamoto, K
Yancey, CC
Yang, H
Yeaton-Massey, D
Yoshida, S
Yvert, M
Zadrozny, A
Zanolin, M
Zendri, JP
Zhang, F
Zhang, L
Zhao, C
Zotov, N
Zucker, ME
Zweizig, J
Anderson, DP
Anderson, DP
AF Aasi, J.
Abadie, J.
Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M.
Accadia, T.
Acernese, F.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Ajith, P.
Allen, B.
Allocca, A.
Ceron, E. Amador
Amariutei, D.
Anderson, S. B.
Anderson, W. G.
Arai, K.
Araya, M. C.
Ast, S.
Aston, S. M.
Astone, P.
Atkinson, D.
Aufmuth, P.
Aulbert, C.
Aylott, B. E.
Babak, S.
Baker, P.
Ballardin, G.
Ballmer, S.
Bao, Y.
Barayoga, J. C. B.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Barton, M. A.
Bartos, I.
Bassiri, R.
Bastarrika, M.
Basti, A.
Batch, J.
Bauchrowitz, J.
Bauer, Th. S.
Bebronne, M.
Beck, D.
Behnke, B.
Bejger, M.
Beker, M. G.
Bell, A. S.
Bell, C.
Belopolski, I.
Benacquista, M.
Berliner, J. M.
Bertolini, A.
Betzwieser, J.
Beveridge, N.
Beyersdorf, P. T.
Bhadbade, T.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Biswas, R.
Bitossi, M.
Bizouard, M. A.
Black, E.
Blackburn, J. K.
Blackburn, L.
Blair, D.
Bland, B.
Blom, M.
Bock, O.
Bodiya, T. P.
Bogan, C.
Bond, C.
Bondarescu, R.
Bondu, F.
Bonelli, L.
Bonnand, R.
Bork, R.
Born, M.
Boschi, V.
Bose, S.
Bosi, L.
Bouhou, B.
Braccini, S.
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Branchesi, M.
Brau, J. E.
Breyer, J.
Briant, T.
Bridges, D. O.
Brillet, A.
Brinkmann, M.
Brisson, V.
Britzger, M.
Brooks, A. F.
Brown, D. A.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Burguet-Castell, J.
Buskulic, D.
Buy, C.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Cagnoli, G.
Calloni, E.
Camp, J. B.
Campsie, P.
Cannon, K.
Canuel, B.
Cao, J.
Capano, C. D.
Carbognani, F.
Carbone, L.
Caride, S.
Caudill, S.
Cavaglia, M.
Cavalier, F.
Cavalieri, R.
Cella, G.
Cepeda, C.
Cesarini, E.
Chalermsongsak, T.
Charlton, P.
Chassande-Mottin, E.
Chen, W.
Chen, X.
Chen, Y.
Chincarini, A.
Chiummo, A.
Cho, H. S.
Chow, J.
Christensen, N.
Chua, S. S. Y.
Chung, C. T. Y.
Chung, S.
Ciani, G.
Clara, F.
Clark, D. E.
Clark, J. A.
Clayton, J. H.
Cleva, F.
Coccia, E.
Cohadon, P. -F.
Colacino, C. N.
Colla, A.
Colombini, M.
Conte, A.
Conte, R.
Cook, D.
Corbitt, T. R.
Cordier, M.
Cornish, N.
Corsi, A.
Costa, C. A.
Coughlin, M.
Coulon, J. -P.
Couvares, P.
Coward, D. M.
Cowart, M.
Coyne, D. C.
Creighton, J. D. E.
Creighton, T. D.
Cruise, A. M.
Cumming, A.
Cunningham, L.
Cuoco, E.
Cutler, R. M.
Dahl, K.
Damjanic, M.
Danilishin, S. L.
D'Antonio, S.
Danzmann, K.
Dattilo, V.
Daudert, B.
Daveloza, H.
Davier, M.
Daw, E. J.
Day, R.
Dayanga, T.
De Rosa, R.
DeBra, D.
Debreczeni, G.
Degallaix, J.
Del Pozzo, W.
Dent, T.
Dergachev, V.
DeRosa, R.
Dhurandhar, S.
Di Fiore, L.
Di Lieto, A.
Di Palma, I.
Emilio, M. Di Paolo
Di Virgilio, A.
Diaz, M.
Dietz, A.
Dietz, A.
Donovan, F.
Dooley, K. L.
Doravari, S.
Dorsher, S.
Drago, M.
Drever, R. W. P.
Driggers, J. C.
Du, Z.
Dumas, J. -C.
Dwyer, S.
Eberle, T.
Edgar, M.
Edwards, M.
Effler, A.
Ehrens, P.
Endroczi, G.
Engel, R.
Etzel, T.
Evans, K.
Evans, M.
Evans, T.
Factourovich, M.
Fafone, V.
Fairhurst, S.
Farr, B. F.
Favata, M.
Fazi, D.
Fehrmann, H.
Feldbaum, D.
Ferrante, I.
Ferrini, F.
Fidecaro, F.
Finn, L. S.
Fiori, I.
Fisher, R. P.
Flaminio, R.
Foley, S.
Forsi, E.
Fotopoulos, N.
Fournier, J. -D.
Franc, J.
Franco, S.
Frasca, S.
Frasconi, F.
Frede, M.
Frei, M. A.
Frei, Z.
Freise, A.
Frey, R.
Fricke, T. T.
Friedrich, D.
Fritschel, P.
Frolov, V. V.
Fujimoto, M. -K.
Fulda, P. J.
Fyffe, M.
Gair, J.
Galimberti, M.
Gammaitoni, L.
Garcia, J.
Garufi, F.
Gaspar, M. E.
Gelencser, G.
Gemme, G.
Genin, E.
Gennai, A.
Gergely, L. A.
Ghosh, S.
Giaime, J. A.
Giampanis, S.
Giardina, K. D.
Giazotto, A.
Gil-Casanova, S.
Gill, C.
Gleason, J.
Goetz, E.
Gonzalez, G.
Gorodetsky, M. L.
Gossler, S.
Gouaty, R.
Graef, C.
Graff, P. B.
Granata, M.
Grant, A.
Gray, C.
Greenhalgh, R. J. S.
Gretarsson, A. M.
Griffo, C.
Grote, H.
Grover, K.
Grunewald, S.
Guidi, G. M.
Guido, C.
Gupta, R.
Gustafson, E. K.
Gustafson, R.
Hallam, J. M.
Hammer, D.
Hammond, G.
Hanks, J.
Hanna, C.
Hanson, J.
Harms, J.
Harry, G. M.
Harry, I. W.
Harstad, E. D.
Hartman, M. T.
Haughian, K.
Hayama, K.
Hayau, J. -F.
Heefner, J.
Heidmann, A.
Heitmann, H.
Hello, P.
Hendry, M. A.
Heng, I. S.
Heptonstall, A. W.
Herrera, V.
Heurs, M.
Hewitson, M.
Hild, S.
Hoak, D.
Hodge, K. A.
Holt, K.
Holtrop, M.
Hong, T.
Hooper, S.
Hough, J.
Howell, E. J.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh-Dinh, T.
Ingram, D. R.
Inta, R.
Isogai, T.
Ivanov, A.
Izumi, K.
Jacobson, M.
James, E.
Jang, Y. J.
Jaranowski, P.
Jesse, E.
Johnson, W. W.
Jones, D. I.
Jones, R.
Jonker, R. J. G.
Ju, L.
Kalmus, P.
Kalogera, V.
Kandhasamy, S.
Kang, G.
Kanner, B.
Kasprzack, M.
Kasturi, R.
Katsavounidis, E.
Katzman, W.
Kaufer, H.
Kaufman, K.
Kawabe, K.
Kawamura, S.
Kawazoe, F.
Keitel, D.
Kelley, D.
Kells, W.
Keppel, D. G.
Keresztes, Z.
Khalaidovski, A.
Khalili, F. Y.
Khazanov, E. A.
Kim, B. K.
Kim, C.
Kim, H.
Kim, K.
Kim, N.
Kim, Y. M.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Klimenko, S.
Kline, J.
Kokeyama, K.
Kondrashov, V.
Koranda, S.
Korth, W. Z.
Kowalska, I.
Kozak, D.
Kringel, V.
Krishnan, B.
Krolak, A.
Kuehn, G.
Kumar, P.
Kumar, R.
Kurdyumov, R.
Kwee, P.
Lam, P. K.
Landry, M.
Langley, A.
Lantz, B.
Lastzka, N.
Lawrie, C.
Lazzarini, A.
Leaci, P.
Lee, C. H.
Lee, H. K.
Lee, H. M.
Leong, J. R.
Leonor, I.
Leroy, N.
Letendre, N.
Lhuillier, V.
Li, J.
Li, T. G. F.
Lindquist, P. E.
Litvine, V.
Liu, Y.
Liu, Z.
Lockerbie, N. A.
Lodhia, D.
Logue, J.
Lorenzini, M.
Loriette, V.
Lormand, M.
Losurdo, G.
Lough, J.
Lubinski, M.
Lueck, H.
Lundgren, A. P.
Macarthur, J.
Macdonald, E.
Machenschalk, B.
MacInnis, M.
Macleod, D. M.
Mageswaran, M.
Mailand, K.
Majorana, E.
Maksimovic, I.
Malvezzi, V.
Man, N.
Mandel, I.
Mandic, V.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Marka, Z.
Markosyan, A.
Maros, E.
Marque, J.
Martelli, F.
Martin, I. W.
Martin, R. M.
Marx, J. N.
Mason, K.
Masserot, A.
Matichard, F.
Matone, L.
Matzner, R. A.
Mavalvala, N.
Mazzolo, G.
McCarthy, R.
McClelland, D. E.
McGuire, C.
McIntyre, G.
McIver, J.
Meadors, G. D.
Mehmet, M.
Meier, T.
Melatos, A.
Melissinos, A. C.
Mendell, G.
Menendez, D. F.
Mercer, R. A.
Meshkov, S.
Messenger, C.
Meyer, M. S.
Miao, H.
Michel, C.
Milano, L.
Miller, J.
Minenkov, Y.
Mingarelli, C. M. F.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moe, B.
Mohan, M.
Mohapatra, S. R. P.
Moraru, D.
Moreno, G.
Morgado, N.
Morgia, A.
Mori, T.
Morriss, S. R.
Mosca, S.
Mossavi, K.
Mours, B.
Mow-Lowry, C. M.
Mueller, C. L.
Mueller, G.
Mukherjee, S.
Mullavey, A.
Mueller-Ebhardt, H.
Munch, J.
Murphy, D.
Murray, P. G.
Mytidis, A.
Nash, T.
Naticchioni, L.
Necula, V.
Nelson, J.
Neri, I.
Newton, G.
Nguyen, T.
Nishizawa, A.
Nitz, A.
Nocera, F.
Nolting, D.
Normandin, M. E.
Nuttall, L.
Ochsner, E.
O'Dell, J.
Oelker, E.
Ogin, G. H.
Oh, J. J.
Oh, S. H.
Oldenberg, R. G.
O'Reilly, B.
O'Shaughnessy, R.
Osthelder, C.
Ott, C. D.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Page, A.
Palladino, L.
Palomba, C.
Pan, Y.
Paoletti, F.
Paoletti, R.
Papa, M. A.
Parisi, M.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Pedraza, M.
Penn, S.
Perreca, A.
Persichetti, G.
Phelps, M.
Pichot, M.
Pickenpack, M.
Piergiovanni, F.
Pierro, V.
Pihlaja, M.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Pletsch, H. J.
Plissi, M. V.
Poggiani, R.
Poeld, J.
Postiglione, F.
Poux, C.
Prato, M.
Predoi, V.
Prestegard, T.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prix, R.
Prodi, G. A.
Prokhorov, L. G.
Puncken, O.
Punturo, M.
Puppo, P.
Quetschke, V.
Quitzow-James, R.
Raab, F. J.
Rabeling, D. S.
Racz, I.
Radkins, H.
Raffai, P.
Rakhmanov, M.
Ramet, C.
Rankins, B.
Rapagnani, P.
Raymond, V.
Re, V.
Reed, C. M.
Reed, T.
Regimbau, T.
Reid, S.
Reitze, D. H.
Ricci, F.
Riesen, R.
Riles, K.
Roberts, M.
Robertson, N. A.
Robinet, F.
Robinson, C.
Robinson, E. L.
Rocchi, A.
Roddy, S.
Rodriguez, C.
Rodruck, M.
Rolland, L.
Rollins, J. G.
Romano, J. D.
Romano, R.
Romie, J. H.
Rosinska, D.
Roever, C.
Rowan, S.
Ruediger, A.
Ruggi, P.
Ryan, K.
Salemi, F.
Sammut, L.
Sandberg, V.
Sankar, S.
Sannibale, V.
Santamaria, L.
Santiago-Prieto, I.
Santostasi, G.
Saracco, E.
Sathyaprakash, B. S.
Saulson, P. R.
Savage, R. L.
Schilling, R.
Schnabel, R.
Schofield, R. M. S.
Schulz, B.
Schutz, B. F.
Schwinberg, P.
Scott, J.
Scott, S. M.
Seifert, F.
Sellers, D.
Sentenac, D.
Sergeev, A.
Shaddock, D. A.
Shaltev, M.
Shapiro, B.
Shawhan, P.
Shoemaker, D. H.
Sidery, T. L.
Siemens, X.
Sigg, D.
Simakov, D.
Singer, A.
Singer, L.
Sintes, A. M.
Skelton, G. R.
Slagmolen, B. J. J.
Slutsky, J.
Smith, J. R.
Smith, M. R.
Smith, R. J. E.
Smith-Lefebvre, N. D.
Somiya, K.
Sorazu, B.
Speirits, F. C.
Sperandio, L.
Stefszky, M.
Steinert, E.
Steinlechner, J.
Steinlechner, S.
Steplewski, S.
Stochino, A.
Stone, R.
Strain, K. A.
Strigin, S. E.
Stroeer, A. S.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sung, M.
Susmithan, S.
Sutton, P. J.
Swinkels, B.
Szeifert, G.
Tacca, M.
Taffarello, L.
Talukder, D.
Tanner, D. B.
Tarabrin, S. P.
Taylor, R.
Ter Braack, A. P. M.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Thuering, A.
Titsler, C.
Tokmakov, K. V.
Tomlinson, C.
Toncelli, A.
Tonelli, M.
Torre, O.
Torres, C. V.
Torrie, C. I.
Tournefier, E.
Travasso, F.
Traylor, G.
Tse, M.
Ugolini, D.
Vahlbruch, H.
Vajente, G.
van den Brand, J. F. J.
Van den Broeck, C.
van der Putten, S.
van Veggel, A. A.
Vass, S.
Vasuth, M.
Vaulin, R.
Vavoulidis, M.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Venkateswara, K.
Verkindt, D.
Vetrano, F.
Vicere, A.
Villar, A. E.
Vinet, J. -Y.
Vitale, S.
Vocca, H.
Vorvick, C.
Vyatchanin, S. P.
Wade, A.
Wade, L.
Wade, M.
Waldman, S. J.
Wallace, L.
Wan, Y.
Wang, M.
Wang, X.
Wanner, A.
Ward, R. L.
Was, M.
Weinert, M.
Weinstein, A. J.
Weiss, R.
Welborn, T.
Wen, L.
Wessels, P.
West, M.
Westphal, T.
Wette, K.
Whelan, T.
Whitcomb, S. E.
White, D. J.
Whiting, B. F.
Wiesner, K.
Wilkinson, C.
Willems, P. A.
Williams, L.
Williams, R.
Willke, B.
Wimmer, M.
Winkelmann, L.
Winkler, W.
Wipf, C. C.
Wiseman, A. G.
Wittel, H.
Woan, G.
Wooley, R.
Worden, J.
Yablon, J.
Yakushin, I.
Yamamoto, H.
Yamamoto, K.
Yancey, C. C.
Yang, H.
Yeaton-Massey, D.
Yoshida, S.
Yvert, M.
Zadrozny, A.
Zanolin, M.
Zendri, J. -P.
Zhang, F.
Zhang, L.
Zhao, C.
Zotov, N.
Zucker, M. E.
Zweizig, J.
Anderson, D. P.
Anderson, D. P.
CA LIGO Sci Collaboration
Virgo Collaboration
TI Einstein@Home all-sky search for periodic gravitational waves in LIGO S5
data
SO PHYSICAL REVIEW D
LA English
DT Article
ID NEUTRON-STAR; HOUGH TRANSFORM; PULSAR; RADIATION; EMISSION
AB This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.
C1 [Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Daudert, B.; Dergachev, V.; Doravari, S.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Litvine, V.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Pedraza, M.; Phelps, M.; Poux, C.; Price, L. R.; Privitera, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA.
[Abbott, T. D.; Griffo, C.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Bell, C.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Logue, J.; Macarthur, J.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Scott, S. M.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Accadia, T.; Acernese, F.; Barone, F.; Bebronne, M.; Buskulic, D.; Calloni, E.; De Rosa, R.; Dietz, A.; Fiori, I.; Garufi, F.; Gouaty, R.; Letendre, N.; Marion, F.; Messenger, C.; Milano, L.; Mosca, S.; Mours, B.; Parisi, M.; Persichetti, G.; Rolland, L.; Romano, R.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France.
[Addesso, P.; Conte, R.; Pierro, V.; Pinto, I. M.; Postiglione, F.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Complesso Univ Monte S Angelo, Univ Naples Federico II, I-80126 Naples, Italy.
[Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy.
[Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA.
[Adams, T.; Dent, T.; Edwards, M.; Fairhurst, S.; Macleod, D. M.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, Wales.
[Addesso, P.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[Affeldt, C.; Allen, B.; Ast, S.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Affeldt, C.; Allen, B.; Ast, S.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Damjanic, M.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Li, T. G. F.; Rabeling, D. S.; Ter Braack, A. P. M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] Nikhef, Amsterdam, Netherlands.
[Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Mori, T.; Nishizawa, A.] Natl Astron Observ Japan, Tokyo 1818588, Japan.
[Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Favata, M.; Giampanis, S.; Hammer, D.; Hughey, B.; Kline, J.; Koranda, S.; Mercer, R. A.; Moe, B.; Ochsner, E.; Oldenberg, R. G.; O'Shaughnessy, R.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA.
[Allocca, A.; Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Paoletti, R.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy.
[Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy.
[Amariutei, D.; Bao, Y.; Ciani, G.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Smith-Lefebvre, N. D.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA.
[Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Atkinson, D.; Barker, D.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lhuillier, V.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA.
[Aylott, B. E.; Bond, C.; Carbone, L.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Grover, K.; Hallam, J. M.; Lodhia, D.; Mandel, I.; Mingarelli, C. M. F.; Page, A.; Sidery, T. L.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany.
[Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA.
[Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Genin, E.; Kasprzack, M.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] European Gravitat Observ, I-56021 Cascina, PI, Italy.
[Ballmer, S.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Harry, I. W.; Kelley, D.; Kumar, P.; Lough, J.; Nitz, A.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA.
[Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Katsavounidis, E.; Kissel, J. S.; Kwee, P.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Sankar, S.; Shapiro, B.; Shoemaker, D. H.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA.
[Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Ward, R. L.] Univ Paris Diderot, Observ Paris, CEA Irfu, APC,CNRS,IN2P3, F-75205 Paris 13, France.
[Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Raffai, P.; Tse, M.] Columbia Univ, New York, NY 10027 USA.
[Bassiri, R.; Beck, D.; Bhadbade, T.; Byer, R. L.; Clark, D. E.; DeBra, D.; Herrera, V.; Kim, N.; Kurdyumov, R.; Lantz, B.; Markosyan, A.; Roberts, M.] Stanford Univ, Stanford, CA 94305 USA.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
[Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland.
[Jaranowski, P.] Bialystok Univ, PL-15424 Bialystok, Poland.
[Krolak, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland.
[Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland.
[Benacquista, M.; Biswas, R.; Cagnoli, G.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.; Torres, C. V.] Univ Texas Brownsville, Brownsville, TX 78520 USA.
[Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA.
[Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia.
[Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Kasprzack, M.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, IN2P3, CNRS, LAL, F-91898 Orsay, France.
[Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France.
[Blackburn, L.; Camp, J. B.; Kanner, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Dumas, J. -C.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia.
[Bondarescu, R.; Finn, L. S.; Menendez, D. F.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA.
[Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France.
[Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France.
[Bonnand, R.; Cagnoli, G.; Degallaix, J.; Flaminio, R.; Franc, J.; Galimberti, M.; Granata, M.; Michel, C.; Morgado, N.; Pinard, L.; Saracco, E.] CNRS, IN2P3, LMA, Lyon, France.
[Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA.
[Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy.
[Branchesi, M.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy.
[Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy.
[Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA.
[Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, UPMC, ENS, Lab Kastler Brossel, F-75005 Paris, France.
[Buonanno, A.; Capano, C. D.; Kanner, B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA.
[Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Jang, Y. J.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain.
[Cadonati, L.; Clark, J. A.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cao, J.; Chen, W.; Du, Z.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Zhang, F.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kokeyama, K.; Mullavey, A.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Cavaglia, M.; Dietz, A.; Rankins, B.] Univ Mississippi, University, MS 38677 USA.
[Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia.
[Chen, Y.; Hong, T.; Kaufman, K.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA.
[Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea.
[Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia.
[Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA.
[Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia.
[Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Morgia, A.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Emilio, M. Di Paolo; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy.
[Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy.
[Costa, C. A.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil.
[Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, WIGNER RCP, H-1121 Budapest, Hungary.
[Dhurandhar, S.; Gupta, R.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Dorsher, S.; Kandhasamy, S.; Mandic, V.; Pihlaja, M.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Drago, M.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38123 Povo, Trento, Italy.
[Drago, M.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy.
[Taffarello, L.; Vedovato, G.; Zendri, J. -P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Yamamoto, K.] Univ Padua, I-35131 Padua, Italy.
[Drever, R. W. P.; Harms, J.; Langley, A.] CALTECH, Pasadena, CA 91125 USA.
[Farr, B. F.; Fazi, D.; Kalogera, V.; Raymond, V.; Rodriguez, C.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA.
[Frei, M. A.; Whelan, T.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Frei, Z.; Gelencser, G.; Raffai, P.; Szeifert, G.] Eotvos Lorand Univ, H-1117 Budapest, Hungary.
[Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England.
[Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary.
[Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Gretarsson, A. M.; Jesse, E.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Hanna, C.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada.
[Harry, G. M.] American Univ, Washington, DC 20016 USA.
[Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA.
[Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, C.] Lund Observ, SE-22100 Lund, Sweden.
[Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea.
[Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea.
[Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland.
[Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA.
[McGuire, C.] So Univ & A&M Coll, Baton Rouge, LA 70813 USA.
[Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA.
[Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea.
[Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA.
[Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
[Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA.
[Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA.
[Anderson, D. P.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
RP Aasi, J (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA.
RI Howell, Eric/H-5072-2014; Sergeev, Alexander/F-3027-2017; Harms,
Jan/J-4359-2012; Ward, Robert/I-8032-2014; mosca, simona/I-7116-2012;
Frasconi, Franco/K-1068-2016; Pinto, Innocenzo/L-3520-2016; Ferrante,
Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso,
Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Punturo,
Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Cesarini,
Elisabetta/C-4507-2017; Chow, Jong/A-3183-2008; Frey,
Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015;
Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Neri,
Igor/F-1482-2010; Chen, Yanbei/A-2604-2013; Shaddock,
Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Vicere,
Andrea/J-1742-2012; Rocchi, Alessio/O-9499-2015; Martelli,
Filippo/P-4041-2015; Branchesi, Marica/P-2296-2015; Gehring,
Tobias/A-8596-2016; Heidmann, Antoine/G-4295-2016; Bao,
Yiliang/G-9848-2016; Ott, Christian/G-2651-2011; Kumar,
Prem/B-6691-2009; Losurdo, Giovanni/K-1241-2014; Danilishin,
Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Lee,
Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland,
David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry,
Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Sigg,
Daniel/I-4308-2015; Tacca, Matteo/J-1599-2015; Graef,
Christian/J-3167-2015; Hild, Stefan/A-3864-2010; Martin,
Iain/A-2445-2010; Pitkin, Matthew/I-3802-2013; Costa, Cesar/G-7588-2012;
Puppo, Paola/J-4250-2012; Prokhorov, Leonid/I-2953-2012; Gammaitoni,
Luca/B-5375-2009; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014;
prodi, giovanni/B-4398-2010; Salemi, Francesco/F-6988-2014; Mitrofanov,
Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Bell, Angus/E-7312-2011;
Gemme, Gianluca/C-7233-2008; Marchesoni, Fabio/A-1920-2008; Lam, Ping
Koy/A-5276-2008; Ciani, Giacomo/G-1036-2011; Parisi, Maria/D-2817-2013;
Steinlechner, Sebastian/D-5781-2013; Strigin, Sergey/I-8337-2012; Colla,
Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Vyatchanin,
Sergey/J-2238-2012; Gorodetsky, Michael/C-5938-2008; CONTE,
ANDREA/J-6667-2012; Strain, Kenneth/D-5236-2011;
OI Whelan, John/0000-0001-5710-6576; Vedovato,
Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Boschi,
Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418;
Milano, Leopoldo/0000-0001-9487-5876; Papa,
M.Alessandra/0000-0002-1007-5298; Aulbert, Carsten/0000-0002-1481-8319;
Jaranowski, Piotr/0000-0001-8085-3414; calloni,
enrico/0000-0003-4819-3297; Ricci, Fulvio/0000-0001-5475-4447; Vetrano,
Flavio/0000-0002-7523-4296; Prix, Reinhard/0000-0002-3789-6424; Guidi,
Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431;
Naticchioni, Luca/0000-0003-2918-0730; Ward, Robert/0000-0001-5503-5241;
mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587;
Ferrante, Isidoro/0000-0002-0083-7228; Prato, Mirko/0000-0002-2188-8059;
Travasso, Flavio/0000-0002-4653-6156; Punturo,
Michele/0000-0001-8722-4485; Cella, Giancarlo/0000-0002-0752-0338;
Cesarini, Elisabetta/0000-0001-9127-3167; Chow,
Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Di
Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Garufi,
Fabio/0000-0003-1391-6168; Neri, Igor/0000-0002-9047-9822; Shaddock,
Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796;
Vicere, Andrea/0000-0003-0624-6231; Rocchi, Alessio/0000-0002-1382-9016;
Martelli, Filippo/0000-0003-3761-8616; Gehring,
Tobias/0000-0002-4311-2593; Heidmann, Antoine/0000-0002-0784-5175; Ott,
Christian/0000-0003-4993-2055; Losurdo, Giovanni/0000-0003-0452-746X;
Danilishin, Stefan/0000-0001-7758-7493; Lee,
Chang-Hwan/0000-0003-3221-1171; McClelland, David/0000-0001-6210-5842;
Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee
Samuel/0000-0002-3937-0688; Sigg, Daniel/0000-0003-4606-6526; Tacca,
Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603;
Pitkin, Matthew/0000-0003-4548-526X; Puppo, Paola/0000-0003-4677-5015;
Gammaitoni, Luca/0000-0002-4972-7062; Miao, Haixing/0000-0003-4101-9958;
prodi, giovanni/0000-0001-5256-915X; Bell, Angus/0000-0003-1523-0821;
Gemme, Gianluca/0000-0002-1127-7406; Marchesoni,
Fabio/0000-0001-9240-6793; Lam, Ping Koy/0000-0002-4421-601X; Ciani,
Giacomo/0000-0003-4258-9338; Steinlechner,
Sebastian/0000-0003-4710-8548; Gorodetsky, Michael/0000-0002-5159-2742;
Strain, Kenneth/0000-0002-2066-5355; Kanner, Jonah/0000-0001-8115-0577;
PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise,
Andreas/0000-0001-6586-9901; Nitz, Alexander/0000-0002-1850-4587;
Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard
F/0000-0002-8501-8669; Murphy, David/0000-0002-8538-815X; Vocca,
Helios/0000-0002-1200-3917; Fairhurst, Stephen/0000-0001-8480-1961;
Addesso, Paolo/0000-0003-0895-184X; Allen, Bruce/0000-0003-4285-6256;
Granata, Massimo/0000-0003-3275-1186; Wette, Karl/0000-0002-4394-7179;
Husa, Sascha/0000-0002-0445-1971; Di Paolo Emilio,
Maurizio/0000-0002-9558-3610; Vitale, Salvatore/0000-0003-2700-0767;
Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198;
Stuver, Amber/0000-0003-0324-5735; Bondu, Francois/0000-0001-6487-5197;
Zweizig, John/0000-0002-1521-3397; Del Pozzo,
Walter/0000-0003-3978-2030; O'Shaughnessy, Richard/0000-0001-5832-8517;
Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200;
Swinkels, Bas/0000-0002-3066-3601; Pierro, Vincenzo/0000-0002-6020-5521;
Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan
Mark/0000-0002-7087-0461; Nishizawa, Atsushi/0000-0003-3562-0990;
Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628;
Page, Amanda/0000-0002-7086-5865
FU Einstein@Home volunteers; Australian Research Council; International
Science Linkages program of the Commonwealth of Australia; Council of
Scientific and Industrial Research of India; Istituto Nazionale di
Fisica Nucleare of Italy; Spanish Ministerio de Economia y
Competitividad; Conselleria d'Economia Hisenda i Innovacio of the Govern
de les Illes Balears; Foundation for Fundamental Research on Matter;
Netherlands Organisation for Scientific Research; Polish Ministry of
Science and Higher Education; FOCUS Programme of Foundation for Polish
Science; Royal Society; Scottish Funding Council; Scottish Universities
Physics Alliance; National Aeronautics and Space Administration;
Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation;
Research Corporation; Alfred P. Sloan Foundation
FX The authors gratefully acknowledge the support of the United States
National Science Foundation for the construction and operation of the
LIGO Laboratory, the Science and Technology Facilities Council of the
United Kingdom, the Max Planck Society, and the State of
Niedersachsen/Germany for support of the construction and operation of
the GEO600 detector, and the Italian Istituto Nazionale di Fisica
Nucleare and the French Centre National de la Recherche Scientifique for
the construction and operation of the Virgo detector. The authors also
gratefully acknowledge the support of the research by these agencies and
by the Einstein@Home volunteers, by the Australian Research Council, the
International Science Linkages program of the Commonwealth of Australia,
the Council of Scientific and Industrial Research of India, the Istituto
Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de
Economia y Competitividad, the Conselleria d'Economia Hisenda i
Innovacio of the Govern de les Illes Balears, the Foundation for
Fundamental Research on Matter supported by the Netherlands Organisation
for Scientific Research, the Polish Ministry of Science and Higher
Education, the FOCUS Programme of Foundation for Polish Science, the
Royal Society, the Scottish Funding Council, the Scottish Universities
Physics Alliance, The National Aeronautics and Space Administration, the
Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard
Foundation, the Research Corporation, and the Alfred P. Sloan
Foundation. This document has been assigned LIGO Laboratory Document No.
LIGO-P1200026.
NR 53
TC 61
Z9 61
U1 9
U2 105
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 13
PY 2013
VL 87
IS 4
AR 042001
DI 10.1103/PhysRevD.87.042001
PG 29
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 089AE
UT WOS:000314879200001
ER
PT J
AU Sola, F
Niu, J
Xia, ZH
AF Sola, F.
Niu, J.
Xia, Z. H.
TI Heating induced microstructural changes in graphene/Cu nanocomposites
SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
LA English
DT Article
ID TRANSMISSION ELECTRON-MICROSCOPY; COPPER NANOPARTICLES; METAL
NANOPARTICLES; SHAPE EVOLUTION; GRAPHITE OXIDE; NANOCRYSTALS; SHEETS;
COALESCENCE; GROWTH; NANOSTRUCTURES
AB Dynamic heating experiments on graphene/Cu nanocomposites by in situ scanning electron microscopy were conducted to observe the evolution of the morphology and size of the Cu nanoparticles. Microstructural characterization showed that the graphene/Cu nanocomposites system consists of graphene sheets decorated with Cu-based nanoparticles with different chemistries (Cu, Cu2O), shapes (cube, rod, triangle, etc) and sizes. Evidence of neck evolution, coalescence, sublimation and Ostwald ripening were observed. Interestingly, some of the events occurred at the edges of the graphene sheets. The quantitative data of necking evolution deviates from the classical continuum theory indicating that intrinsic faceting and the shape of the nanoparticles played an important role in the necking process. This was supported by molecular dynamics simulations. Experimental data of liquid-spherical nanoparticles on graphene suggested that Cu did not wet graphene. Based on sublimation experiments and surface stability, we propose that graphene decorated with Cu nanoparticles enclosed by {1 1 1} facets are the most stable nanocomposite at high temperatures. The growth mechanism of nanoparticles on graphene is discussed.
C1 [Sola, F.] NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA.
[Niu, J.; Xia, Z. H.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA.
[Niu, J.; Xia, Z. H.] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
RP Sola, F (reprint author), NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA.
EM francisco.sola-lopez@nasa.gov; Zhenhai.Xia@unt.edu
NR 50
TC 6
Z9 6
U1 1
U2 107
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0022-3727
J9 J PHYS D APPL PHYS
JI J. Phys. D-Appl. Phys.
PD FEB 13
PY 2013
VL 46
IS 6
AR 065309
DI 10.1088/0022-3727/46/6/065309
PG 7
WC Physics, Applied
SC Physics
GA 078JB
UT WOS:000314093500021
ER
PT J
AU DeLeon-Rodriguez, N
Lathem, TL
Rodriguez-R, LM
Barazesh, JM
Anderson, BE
Beyersdorf, AJ
Ziemba, LD
Bergin, M
Nenes, A
Konstantinidis, KT
AF DeLeon-Rodriguez, Natasha
Lathem, Terry L.
Rodriguez-R, Luis M.
Barazesh, James M.
Anderson, Bruce E.
Beyersdorf, Andreas J.
Ziemba, Luke D.
Bergin, Michael
Nenes, Athanasios
Konstantinidis, Konstantinos T.
TI Microbiome of the upper troposphere: Species composition and prevalence,
effects of tropical storms, and atmospheric implications
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE ice nucleation; cloud condensation nuclei; microbial community;
pyrosequencing; biogeography
ID ICE NUCLEI; BIOLOGICAL PARTICLES; AEROSOL-PARTICLES; AFIPIA-FELIS;
MICROORGANISMS; BIOGEOGRAPHY; COMMUNITIES; BACTERIA; CLIMATE; WATER
AB The composition and prevalence of microorganisms in the middle-to-upper troposphere (8-15 km altitude) and their role in aerosol-cloud-precipitation interactions represent important, unresolved questions for biological and atmospheric science. In particular, airborne microorganisms above the oceans remain essentially uncharacterized, as most work to date is restricted to samples taken near the Earth's surface. Here we report on the microbiome of low-and high-altitude air masses sampled onboard the National Aeronautics and Space Administration DC-8 platform during the 2010 Genesis and Rapid Intensification Processes campaign in the Caribbean Sea. The samples were collected in cloudy and cloud-free air masses before, during, and after two major tropical hurricanes, Earl and Karl. Quantitative PCR and microscopy revealed that viable bacterial cells represented on average around 20% of the total particles in the 0.25- to 1-mu m diameter range and were at least an order of magnitude more abundant than fungal cells, suggesting that bacteria represent an important and underestimated fraction of micrometer-sized atmospheric aerosols. The samples from the two hurricanes were characterized by significantly different bacterial communities, revealing that hurricanes aerosolize a large amount of new cells. Nonetheless, 17 bacterial taxa, including taxa that are known to use C1-C4 carbon compounds present in the atmosphere, were found in all samples, indicating that these organisms possess traits that allow survival in the troposphere. The findings presented here suggest that the microbiome is a dynamic and underappreciated aspect of the upper troposphere with potentially important impacts on the hydrological cycle, clouds, and climate.
C1 [DeLeon-Rodriguez, Natasha; Rodriguez-R, Luis M.; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA.
[Lathem, Terry L.; Bergin, Michael; Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Barazesh, James M.; Bergin, Michael; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA.
[Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Anderson, Bruce E.; Beyersdorf, Andreas J.; Ziemba, Luke D.] NASA, Chem & Dynam Branch, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA.
RP Nenes, A (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
EM athanasios.nenes@gatech.edu; kostas@ce.gatech.edu
RI Beyersdorf, Andreas/N-1247-2013; Barazesh, James/L-5680-2013;
OI Rodriguez-R, Luis M/0000-0001-7603-3093
FU National Aeronautics and Space Administration (NASA) [NNX10AM63G]; US
Department of Education; NASA Earth and Space Science Fellowship;
National Science Foundation; Georgia Tech Presidential Fellowship
FX We thank the personnel of the Emory University Genomics Facility for
their assistance with sequencing of the Genesis and Rapid
Intensification Processes samples. This research was supported, in part,
by the National Aeronautics and Space Administration (NASA) (Grant
NNX10AM63G). N.D.-R. acknowledges the support of a Graduate Assistance
in Areas of National Need Fellowship from the US Department of Education
and a NASA Earth and Space Science Fellowship. T.L.L. acknowledges
support from a National Science Foundation Graduate Research Fellowship
and a Georgia Tech Presidential Fellowship. No additional external
funding was received for this study.
NR 35
TC 96
Z9 97
U1 9
U2 164
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 12
PY 2013
VL 110
IS 7
BP 2575
EP 2580
DI 10.1073/pnas.1212089110
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 101ZL
UT WOS:000315812800044
PM 23359712
ER
PT J
AU Hansen, J
Sato, M
Ruedy, R
AF Hansen, James
Sato, Makiko
Ruedy, Reto
TI Reply to Rhines and Huybers: Changes in the frequency of extreme summer
heat
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
C1 [Hansen, James; Sato, Makiko] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Hansen, James; Sato, Makiko] Columbia Univ, Earth Inst, New York, NY 10025 USA.
[Ruedy, Reto] Trinnovim Ltd, Liability Co, New York, NY 10025 USA.
RP Hansen, J (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
EM james.e.hansen@nasa.gov
NR 4
TC 2
Z9 2
U1 0
U2 18
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 12
PY 2013
VL 110
IS 7
BP E547
EP E548
DI 10.1073/pnas.1220916110
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 101ZL
UT WOS:000315812800002
PM 23530273
ER
PT J
AU Kim, JW
Kim, HR
von Frese, R
Taylor, P
Rangelova, E
AF Kim, Jeong Woo
Kim, Hyung Rae
von Frese, Ralph
Taylor, Patrick
Rangelova, Elena
TI Geopotential field anomaly continuation with multi-altitude observations
SO TECTONOPHYSICS
LA English
DT Article
DE Anomaly continuation; Equivalent point source inversion; Fourier
transform; Spherical cap harmonic analysis
ID CAP HARMONIC-ANALYSIS; LEGENDRE QUADRATURE INTEGRATION; STABLE DOWNWARD
CONTINUATION; GEOMAGNETIC REFERENCE FIELD; MAGNETIC-ANOMALIES; EARTH
GRAVITY; UNITED-STATES; SATELLITE; MODEL; REPRESENTATION
AB Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available which are constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (equivalent point source) inversion and the FT (Fourier transform), as well as by SCHA (spherical cap harmonic analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as those covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Kim, Jeong Woo; Rangelova, Elena] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada.
[Kim, Hyung Rae] Kongju Natl Univ, Dept Geoenvironm Sci, Kong Ju 314701, South Korea.
[von Frese, Ralph] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Taylor, Patrick] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Kim, JW (reprint author), Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada.
EM jw.kim@ucalgary.ca
FU National Science and Engineering Research Council (NSERC) of Canada
[355477-2008]; Science Research Program through National Research
Foundation of Korea; MEST [20120003941]
FX The National Science and Engineering Research Council (NSERC) of Canada
supported this study under Discovery Grant #355477-2008. Elements of
this research were performed at NASA's Goddard Space Flight Center in
Greenbelt, MD while JWK held a US National Research Council Senior
Research Associateship Award. HRK's study was supported by the Science
Research Program through National Research Foundation of Korea, funded
by MEST (#20120003941). The authors thank Drs. M.F. Asgharzadeh and J.S.
Hwang for help with obtaining the simulation results.
NR 44
TC 2
Z9 3
U1 1
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0040-1951
J9 TECTONOPHYSICS
JI Tectonophysics
PD FEB 11
PY 2013
VL 585
SI SI
BP 34
EP 47
DI 10.1016/j.tecto.2012.07.016
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 094BU
UT WOS:000315238800005
ER
PT J
AU Aliu, E
Archambault, S
Arlen, T
Aune, T
Beilicke, M
Benbow, W
Bouvier, A
Buckley, JH
Bugaev, V
Cesarini, A
Ciupik, L
Collins-Hughes, E
Connolly, MP
Cui, W
Dickherber, R
Duke, C
Dumm, J
Dwarkadas, VV
Errando, M
Falcone, A
Federici, S
Feng, Q
Finley, JP
Finnegan, G
Fortson, L
Furniss, A
Galante, N
Gall, D
Gillanders, GH
Godambe, S
Gotthelf, EV
Griffin, S
Grube, J
Gyuk, G
Hanna, D
Holder, J
Hughes, G
Humensky, TB
Kaaret, P
Kargaltsev, O
Karlsson, N
Khassen, Y
Kieda, D
Krawczynski, H
Krennrich, F
Lang, MJ
Lee, K
Madhavan, AS
Maier, G
Majumdar, P
McArthur, S
McCann, A
Moriarty, P
Mukherjee, R
Nelson, T
de Bhroithe, AO
Ong, RA
Orr, M
Otte, AN
Park, N
Perkins, JS
Pohl, M
Prokoph, H
Quinn, J
Ragan, K
Reyes, LC
Reynolds, PT
Roache, E
Roberts, M
Saxon, DB
Schroedter, M
Sembroski, GH
Slane, P
Smith, AW
Staszak, D
Telezhinsky, I
Tesic, G
Theiling, M
Thibadeau, S
Tsurusaki, K
Tyler, J
Varlotta, A
Vassiliev, VV
Vincent, S
Vivier, M
Wakely, SP
Weekes, TC
Weinstein, A
Welsing, R
Williams, DA
Zitzer, B
AF Aliu, E.
Archambault, S.
Arlen, T.
Aune, T.
Beilicke, M.
Benbow, W.
Bouvier, A.
Buckley, J. H.
Bugaev, V.
Cesarini, A.
Ciupik, L.
Collins-Hughes, E.
Connolly, M. P.
Cui, W.
Dickherber, R.
Duke, C.
Dumm, J.
Dwarkadas, V. V.
Errando, M.
Falcone, A.
Federici, S.
Feng, Q.
Finley, J. P.
Finnegan, G.
Fortson, L.
Furniss, A.
Galante, N.
Gall, D.
Gillanders, G. H.
Godambe, S.
Gotthelf, E. V.
Griffin, S.
Grube, J.
Gyuk, G.
Hanna, D.
Holder, J.
Hughes, G.
Humensky, T. B.
Kaaret, P.
Kargaltsev, O.
Karlsson, N.
Khassen, Y.
Kieda, D.
Krawczynski, H.
Krennrich, F.
Lang, M. J.
Lee, K.
Madhavan, A. S.
Maier, G.
Majumdar, P.
McArthur, S.
McCann, A.
Moriarty, P.
Mukherjee, R.
Nelson, T.
de Bhroithe, A. O'Faolain
Ong, R. A.
Orr, M.
Otte, A. N.
Park, N.
Perkins, J. S.
Pohl, M.
Prokoph, H.
Quinn, J.
Ragan, K.
Reyes, L. C.
Reynolds, P. T.
Roache, E.
Roberts, M.
Saxon, D. B.
Schroedter, M.
Sembroski, G. H.
Slane, P.
Smith, A. W.
Staszak, D.
Telezhinsky, I.
Tesic, G.
Theiling, M.
Thibadeau, S.
Tsurusaki, K.
Tyler, J.
Varlotta, A.
Vassiliev, V. V.
Vincent, S.
Vivier, M.
Wakely, S. P.
Weekes, T. C.
Weinstein, A.
Welsing, R.
Williams, D. A.
Zitzer, B.
TI DISCOVERY OF TeV GAMMA-RAY EMISSION FROM CTA 1 BY VERITAS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma-rays: stars; pulsars: individual (PSR J0007+7303); supernovae:
individual (G119.5+10.2); X-rays: individual (RX J0007.0+7303)
ID PULSAR-WIND NEBULAE; ATMOSPHERIC CHERENKOV TELESCOPES; SUPERNOVA REMNANT
CTA-1; X-RAY; HESS J1825-137; CRAB-NEBULA; CATALOG; PULSATIONS;
EVOLUTION; ASTRONOMY
AB We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semimajor (semiminor) axis 0.degrees 30 (0.degrees 24) and a centroid 5' from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N-0(E/3 TeV)(-Gamma), with a differential spectral index of Gamma = 2.2 +/- 0.2(stat) +/- 0.3(sys), and normalization N-0 = (9.1 +/- 1.3(stat) +/- 1.7(sys)) x 10(-14) cm(-2) s(-1) TeV-1. The integral flux, F-gamma = 4.0 x 10(-12) erg cm(-2) s(-1) above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, colocation with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.
C1 [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Staszak, D.; Tesic, G.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Arlen, T.; Majumdar, P.; Ong, R. A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Aune, T.; Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Aune, T.; Bouvier, A.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; Lee, K.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.; Galante, N.; Roache, E.; Schroedter, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Cesarini, A.; Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland.
[Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Collins-Hughes, E.; Khassen, Y.; de Bhroithe, A. O'Faolain; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA.
[Dumm, J.; Fortson, L.; Karlsson, N.; Nelson, T.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Federici, S.; Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.; Telezhinsky, I.; Vincent, S.; Welsing, R.] DESY, D-15738 Zeuthen, Germany.
[Federici, S.; Pohl, M.; Telezhinsky, I.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Finnegan, G.; Godambe, S.; Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Gall, D.; Kaaret, P.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Humensky, T. B.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Kargaltsev, O.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Kargaltsev, O.] George Washington Univ, Dept Phys, Washington, DC 20052 USA.
[Krennrich, F.; Madhavan, A. S.; Orr, M.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland.
[Otte, A. N.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Otte, A. N.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Perkins, J. S.] NASA, CRESST, GSFC, Greenbelt, MD 20771 USA.
[Perkins, J. S.] NASA, Astroparticle Phys Lab, GSFC, Greenbelt, MD 20771 USA.
[Perkins, J. S.] Univ Maryland, Dept Astron, Baltimore, MD 21250 USA.
[Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland.
[Roberts, M.] Eureka Sci Inc, Oakland, CA 94602 USA.
[Slane, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Aliu, E (reprint author), Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
EM smcarthur@ulysses.uchicago.edu; muk@astro.columbia.edu
RI Khassen, Yerbol/I-3806-2015;
OI Khassen, Yerbol/0000-0002-7296-3100; Cui, Wei/0000-0002-6324-5772;
Cesarini, Andrea/0000-0002-8611-8610; Roberts,
Mallory/0000-0002-9396-9720; Lang, Mark/0000-0003-4641-4201
FU U.S. Department of Energy Office of Science; U.S. National Science
Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation
Ireland [SFI 10/RFP/AST2748]; STFC in the U.K.; National Science
Foundation [AST0908733]; NASA [NAS8-03060]
FX This research is supported by grants from the U.S. Department of Energy
Office of Science, the U.S. National Science Foundation and the
Smithsonian Institution, by NSERC in Canada, by Science Foundation
Ireland (SFI 10/RFP/AST2748) and by STFC in the U.K. We acknowledge the
excellent work of the technical support staff at the Fred Lawrence
Whipple Observatory and at the collaborating institutions in the
construction and operation of the instrument.; O.K. was supported
through the National Science Foundation grant No. AST0908733. P. S.
acknowledges support from NASA contract NAS8-03060.
NR 54
TC 10
Z9 10
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 38
DI 10.1088/0004-637X/764/1/38
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200038
ER
PT J
AU Beichman, C
Gelino, CR
Kirkpatrick, JD
Barman, TS
Marsh, KA
Cushing, MC
Wright, EL
AF Beichman, C.
Gelino, Christopher R.
Kirkpatrick, J. Davy
Barman, Travis S.
Marsh, Kenneth A.
Cushing, Michael C.
Wright, E. L.
TI THE COLDEST BROWN DWARF (OR FREE-FLOATING PLANET)?: THE Y DWARF WISE
1828+2650
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrometry; brown dwarfs; infrared: stars; parallaxes; proper motions;
stars: distances; stars: low-mass; solar neighborhood
ID EXTRASOLAR GIANT PLANETS; ADAPTIVE OPTICS SYSTEM; SURVEY-EXPLORER WISE;
SKY SURVEY 2MASS; SPECTRAL TYPE-L; PROPER MOTIONS; T-DWARFS; STAR; MASS;
YOUNG
AB We have monitored the position of the cool Y dwarf WISEPA J182831.08+265037.8 using a combination of ground- and space-based telescopes and have determined its distance to be 11.2(-1.0)(+1.3) pc. Its absolute H magnitude, M-H = 22.21(-0.22)(+0.25) mag, suggests a mass in the range 0.5-20 M-Jup for ages of 0.1-10 Gyr with an effective temperature in the range 250-400 K. The broad range in mass is due primarily to the unknown age of the object. Since the high tangential velocity of the object, 51 +/- 5 km s(-1), is characteristic of an old disk population, a plausible age range of 2-4 Gyr leads to a mass range of 3-6 M-Jup based on fits to the (highly uncertain) COND evolutionary models. The range in temperature is due to the fact that no single model adequately represents the 1-5 mu m spectral energy distribution (SED) of the source, failing by factors of up to five at either the short or long wavelength portions of the SED. The appearance of this very cold object may be affected by non-equilibrium chemistry or low temperature condensates forming clouds, two atmospheric processes that are known to be important in brown dwarf atmospheres but have proven difficult to model. Finally, we argue that there would have to be a very steep upturn in the number density of late-type Y-dwarfs to account for the putative population of objects suggested by recent microlensing observations. Whether WISE 1828+2650 sits at the low-mass end of the brown dwarf population or is the first example of a large number of "free-floating" planets is not yet known.
C1 [Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Marsh, Kenneth A.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA.
[Beichman, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91107 USA.
[Beichman, C.; Gelino, Christopher R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Barman, Travis S.] Lowell Observ, Flagstaff, AZ 86001 USA.
[Marsh, Kenneth A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Cushing, Michael C.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA.
[Wright, E. L.] UCLA Phys & Astron, Los Angeles, CA 90095 USA.
RP Beichman, C (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA.
EM chas@ipac.caltech.edu
FU National Aeronautics and Space Administration [NAS 5-26555]; NASA
through JPL/Caltech [70062, 80109]; NASA through Space Telescope Science
Institute [12330]; W. M. Keck Foundation
FX The research described in this publication was carried out in part at
the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. This
publication makes use of data products from the Wide-field Infrared
Survey Explorer, which is a joint project of the University of
California, Los Angeles, and the Jet Propulsion Laboratory/California
Institute of Technology, funded by the National Aeronautics and Space
Administration. This research has made use of the NASA/IPAC Infrared
Science Archive (IRSA), which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration. This work is based in
part on observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA. Support for this work was
provided by NASA through an award issued to program 70062 and 80109 by
JPL/Caltech. This work is also based in part on observations made with
the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope
Science Institute, which is operated by the Association of Universities
for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These
observations are associated with program 12330. Support for program
12330 was provided by NASA through a grant from the Space Telescope
Science Institute. Some data presented herein were obtained at the W. M.
Keck Observatory from telescope time allocated to the National
Aeronautics and Space Administration through the agency's scientific
partnership with the California Institute of Technology and the
University of California. The Observatory was made possible by the
generous financial support of the W. M. Keck Foundation. The authors
recognize and acknowledge the very significant cultural role and
reverence that the summit of Mauna Kea has always had within the
indigenous Hawaiian community. We are most fortunate to have the
opportunity to conduct observations from this mountain. In addition, we
acknowledge the generosity of Jay Anderson in sending HST data for the
clusters M15 and M92 and useful discussions with Andy Gould. The RECONS
database of nearby stars remains an invaluable resource. We used the
IRSA archive at IPAC to access the 2MASS catalogs.
NR 68
TC 21
Z9 21
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 101
DI 10.1088/0004-637X/764/1/101
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200101
ER
PT J
AU Bourdin, H
Mazzotta, P
Markevitch, M
Giacintucci, S
Brunetti, G
AF Bourdin, H.
Mazzotta, P.
Markevitch, M.
Giacintucci, S.
Brunetti, G.
TI SHOCK HEATING OF THE MERGING GALAXY CLUSTER A521
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: clusters: general; galaxies: clusters: individual (A521);
galaxies: clusters: intracluster medium; shock waves
ID LARGE-SCALE STRUCTURE; XMM-NEWTON; X-RAY; RADIO HALO; CHANDRA
OBSERVATION; BOW SHOCK; WAVES; ACCELERATION; SIMULATIONS; EMISSION
AB A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.
C1 [Bourdin, H.; Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Mazzotta, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Markevitch, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Markevitch, M.; Giacintucci, S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Giacintucci, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Brunetti, G.] INAF Ist Radioastron, I-40129 Bologna, Italy.
RP Bourdin, H (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy.
EM herve.bourdin@roma2.infn.it
RI Mazzotta, Pasquale/B-1225-2016;
OI Mazzotta, Pasquale/0000-0002-5411-1748; Brunetti,
Gianfranco/0000-0003-4195-8613
FU ESA Member States; USA (NASA); NASA [NNX09AP45G, NNX09AP36G]; ASI-INAF
[I/088/06/0, I/009/10/0]; NASA through Einstein Postdoctoral Fellowship
[PF0-110071]; Chandra X-ray Center; PRIN-INAF
FX We thank the reviewer for constructive comments and suggestions aimed at
improving the manuscript. H. B. thanks the Harvard-Smithsonian Centre
for Astrophysics, where this work was initiated, for its hospitality. We
thank Chiara Ferrari for providing us with a map of the projected galaxy
density distribution in A521, derived from photometric observations
performed at the CFH telescope. This work is based on observations
obtained with XMM-Newton, an ESA science mission funded by ESA Member
States and the USA (NASA). H. B and P. M. acknowledge support by grants
NASA grant NNX09AP45G and NNX09AP36G grant ASI-INAF I/088/06/0 and
ASI-INAF I/009/10/0. S. G. acknowledges the support of NASA through
Einstein Postdoctoral Fellowship PF0-110071 awarded by the Chandra X-ray
Center, which is operated by the Smithsonian Astrophysical Observatory.
G. B. acknowledges partial support from PRIN-INAF2009.
NR 44
TC 29
Z9 29
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 82
DI 10.1088/0004-637X/764/1/82
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200082
ER
PT J
AU Fragos, T
Lehmer, B
Tremmel, M
Tzanavaris, P
Basu-Zych, A
Belczynski, K
Hornschemeier, A
Jenkins, L
Kalogera, V
Ptak, A
Zezas, A
AF Fragos, T.
Lehmer, B.
Tremmel, M.
Tzanavaris, P.
Basu-Zych, A.
Belczynski, K.
Hornschemeier, A.
Jenkins, L.
Kalogera, V.
Ptak, A.
Zezas, A.
TI X-RAY BINARY EVOLUTION ACROSS COSMIC TIME
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: close; galaxies: stellar content; stars: evolution; X-rays:
binaries; X-rays: diffuse background; X-rays: galaxies
ID STAR-FORMING GALAXIES; DEEP FIELD-SOUTH; BLACK-HOLE BINARIES; STELLAR
MASS; LUMINOSITY FUNCTION; GLOBULAR-CLUSTERS; EXPLOSION MECHANISM;
ELLIPTIC GALAXIES; FORMATION HISTORY; COMPACT BINARIES
AB High-redshift galaxies permit the study of the formation and evolution of X-ray binary (XRB) populations on cosmological timescales, probing a wide range of metallicities and star formation rates (SFRs). In this paper, we present results from a large-scale population synthesis study that models the XRB populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II cosmological simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history and metallicity evolution of the universe. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predictions about the global scaling of emission from XRB populations with properties such as SFR and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from XRBs in our universe today is dominated by low-mass XRBs, and it is only at z greater than or similar to 2.5 that high-mass XRBs become dominant. We also find that there is a delay of similar to 1.1Gyr between the peak of X-ray emissivity from low-mass XRBs (at z similar to 2.1) and the peak of SFR density (at z similar to 3.1). The peak of the X-ray luminosity from high-mass XRBs (at z similar to 3.9) happens similar to 0.8Gyr before the peak of the SFR density, which is due to the metallicity evolution of the universe.
C1 [Fragos, T.; Zezas, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Lehmer, B.; Tzanavaris, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Lehmer, B.; Tzanavaris, P.; Basu-Zych, A.; Hornschemeier, A.; Jenkins, L.; Ptak, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Tremmel, M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland.
[Belczynski, K.] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA.
[Kalogera, V.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Zezas, A.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece.
[Zezas, A.] Fdn Res & Technol, IESL, Iraklion 71110, Crete, Greece.
RP Fragos, T (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM tfragos@cfa.harvard.edu
RI Zezas, Andreas/C-7543-2011; Fragos, Tassos/A-3581-2016
OI Zezas, Andreas/0000-0001-8952-676X; Fragos, Tassos/0000-0003-1474-1523
FU CfA; ITC; NASA ADAP [09-ADP09-0071]; Einstein Fellowship Program; NASA
Postdoctoral Program Fellowship at Goddard Space Flight Center; MSHE
[N203 404939]
FX The authors thank the anonymous referee whose careful report has helped
to improve this paper. T. F. acknowledges support from the CfA and the
ITC prize fellowship programs. This work was partially supported from
NASA ADAP grant 09-ADP09-0071 (PI: A. H.). B. L. thanks the Einstein
Fellowship Program. P. T. acknowledges support through a NASA
Postdoctoral Program Fellowship at Goddard Space Flight Center,
administered by Oak Ridge Associated Universities through a contract
with NASA. K. B. acknowledges support from MSHE grant N203 404939.
Computational resources supporting this work were provided by
Northwestern University Quest HPC cluster and the NASA High-End
Computing (HEC) Program through the NASA Center for Climate Simulation
(NCCS) at Goddard Space Flight Center.
NR 80
TC 54
Z9 54
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 41
DI 10.1088/0004-637X/764/1/41
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200041
ER
PT J
AU Helder, EA
Broos, PS
Dewey, D
Dwek, E
McCray, R
Park, S
Racusin, JL
Zhekov, SA
Burrows, DN
AF Helder, E. A.
Broos, P. S.
Dewey, D.
Dwek, E.
McCray, R.
Park, S.
Racusin, J. L.
Zhekov, S. A.
Burrows, D. N.
TI CHANDRA OBSERVATIONS OF SN 1987A: THE SOFT X-RAY LIGHT CURVE REVISITED
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE ISM: supernova remnants; radiation mechanisms: thermal; supernovae:
individual (SN 1987A); X-rays: individual (SN 1987A)
ID CCD IMAGING SPECTROMETER; SUPERNOVA REMNANT 1987A; XMM-NEWTON
OBSERVATIONS; CIRCUMSTELLAR RING; EVOLUTION; NEBULA; RESOLUTION; LETG
AB We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by similar to 6 x 10(-13) erg s(-1) cm(-2) per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.
C1 [Helder, E. A.; Broos, P. S.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Dewey, D.] MIT Kavli Inst, Cambridge, MA 02139 USA.
[Dwek, E.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[McCray, R.] Univ Colorado, JILA, Boulder, CO 80309 USA.
[McCray, R.] NIST, Boulder, CO 80309 USA.
[Park, S.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Racusin, J. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Zhekov, S. A.] Space Res & Technol Inst, Sofia 1113, Bulgaria.
RP Helder, EA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
FU ACIS Instrument Team [SV4-74018]; Chandra X-Ray Center; NASA
[NAS8-03060]; SAO [GO1-12070X, GO2-13064X]
FX We thank Frank Haberl and Pierre Maggi for providing us with the
XMM-Newton EPIC pn fluxes in advance of publication. We also thank
Herman Marshall, Paul Plucinsky, Konstatin Getman, Bettina Posselt,
Zachary Prieskorn, Jonathan Gelbord, and Binbin Zhang for discussions
about statistics, calibration, and pileup corrections. This work is
supported by the ACIS Instrument Team contract SV4-74018 (PI: G.
Garmire), issued by the Chandra X-Ray Center, which is operated by the
Smithsonian Astrophysical Observatory for and on behalf of NASA under
contract NAS8-03060. E. A. H. and D.N.B. are supported by SAO grants
GO1-12070X and GO2-13064X.
NR 39
TC 18
Z9 18
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 11
DI 10.1088/0004-637X/764/1/11
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200011
ER
PT J
AU Lal, DV
Kraft, RP
Randall, SW
Forman, WR
Nulsen, PEJ
Roediger, E
ZuHone, JA
Hardcastle, MJ
Jones, C
Croston, JH
AF Lal, Dharam V.
Kraft, Ralph P.
Randall, Scott W.
Forman, William R.
Nulsen, Paul E. J.
Roediger, Elke
ZuHone, John A.
Hardcastle, Martin J.
Jones, Christine
Croston, Judith H.
TI GAS SLOSHING AND RADIO GALAXY DYNAMICS IN THE CORE OF THE 3C 449 GROUP
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: individual (3C 449); hydrodynamics; intergalactic medium;
X-rays: galaxies: clusters
ID XMM-NEWTON OBSERVATIONS; X-RAY; CHANDRA OBSERVATION; CENTAURUS-A;
COLD-FRONT; INTERSTELLAR-MEDIUM; GASEOUS ATMOSPHERE; PERSEUS CLUSTER;
VIRGO CLUSTER; SHOCKS
AB We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last less than or similar to 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge. We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation.
C1 [Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E. J.; Jones, Christine] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Roediger, Elke] Jacobs Univ Bremen, D-28725 Bremen, Germany.
[ZuHone, John A.] NASA GSFC, Greenbelt, MD 20771 USA.
[Hardcastle, Martin J.] Univ Hertfordshire, Sch Phys Astron & Math, Hatfield AL10 9AB, Herts, England.
[Croston, Judith H.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1SJ, Hants, England.
RP Lal, DV (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
OI Randall, Scott/0000-0002-3984-4337; Nulsen, Paul/0000-0003-0297-4493;
Hardcastle, Martin/0000-0003-4223-1117
FU National Aeronautics and Space Administration through Chandra by the
Chandra X-Ray Observatory Center [GO9-9111X]; National Aeronautics Space
Administration [NAS8-03060]; South-East Physics Network (SEP-Net)
FX D.V.L. thanks R. Johnson for many fruitful conversations and is grateful
to N. P. Lee for repeated helpwith the "crude" temperature map. Support
for this work was provided by the National Aeronautics and Space
Administration through Chandra Award Number GO9-9111X issued by the
Chandra X-Ray Observatory Center, which is operated by the Smithsonian
Astrophysical Observatory for and on behalf of the National Aeronautics
Space Administration under contract NAS8-03060. J.H.C. acknowledges
support from the South-East Physics Network (SEP-Net). This research has
made use of software provided by the Chandra X-Ray Center in the
application packages CIAO and Sherpa. This research has made use of the
NASA/IPAC Extra-galactic Database (NED) which is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with NASA. This research has made use of NASA's Astrophysics
Data System.
NR 48
TC 6
Z9 6
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 83
DI 10.1088/0004-637X/764/1/83
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200083
ER
PT J
AU Melbourne, J
Boyer, ML
AF Melbourne, J.
Boyer, Martha L.
TI THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED
SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1-24 mu
m
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: fundamental parameters; galaxies: stellar content; stars: AGB
and post-AGB
ID HIGH-REDSHIFT GALAXIES; MASS-LOSS RATES; RICH AGB-STARS; STELLAR MASS;
TP-AGB; NEARBY GALAXIES; LOW METALLICITY; CENTIMETER EXCESS; FORMATION
HISTORY; SPACE-TELESCOPE
AB We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at similar to 3-4 mu m, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at similar to 3-4 mu m and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 mu m, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1-4 mu m. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e. g., at 0.8-1 mu m). At longer wavelengths (>= 8 mu m), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 mu m, TP-AGB and RSG contribute less than 4% of the 8 mu m flux. However, 19% of the SMC 8 mu m flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 mu m flux (e. g., observed-frame 24 mu m at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.
C1 [Melbourne, J.] CALTECH, Caltech Opt Observ, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Boyer, Martha L.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Boyer, Martha L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
RP Melbourne, J (reprint author), CALTECH, Caltech Opt Observ, Div Phys Math & Astron, Mail Stop 301-17, Pasadena, CA 91125 USA.
EM jmel@caltech.edu; martha.l.boyer@nasa.gov
NR 57
TC 13
Z9 13
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 30
DI 10.1088/0004-637X/764/1/30
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200030
ER
PT J
AU Mohanty, S
Ercolano, B
Turner, NJ
AF Mohanty, Subhanjoy
Ercolano, Barbara
Turner, Neal J.
TI DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF
STELLAR MASS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; brown dwarfs; stars: formation; stars:
low-mass
ID CIRCUMSTELLAR DUST DISKS; SURFACE-LAYER ACCRETION; T-TAURI DISKS;
MAGNETOROTATIONAL-INSTABILITY; PROTOPLANETARY DISKS; X-RAY; NONLINEAR
EVOLUTION; AMBIPOLAR DIFFUSION; IONIZATION STATE; SATURATION LEVEL
AB We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M-* = 0.7M(circle dot) and 0.1M(circle dot). In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with M-disk/M-* = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L-X/L-* approximate to 10(-3.5), as observed. Ionization rates are calculated with the moccasin Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 mu m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only similar to 5%-10% of the total disk mass; (3) the accretion rate (M.) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10(-2); and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.
C1 [Mohanty, Subhanjoy] Univ London Imperial Coll Sci Technol & Med, Blackett Lab 1010, London SW7 2AZ, England.
[Ercolano, Barbara] Univ Sternwarte Munchen, Univ Munich, D-81679 Munich, Germany.
[Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Mohanty, S (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab 1010, Prince Consort Rd, London SW7 2AZ, England.
EM s.mohanty@imperial.ac.uk; ercolano@usm.lmu.de; neal.turner@jpl.nasa.gov
OI Turner, Neal/0000-0001-8292-1943
FU STFC [ST/H00307X/1]; Alexander von Humboldt Foundation; NASA
FX We thank Xue-Ning Bai, Daniel Perez-Becker, Eugene Chiang, and Raquel
Salmeron for invigorating discussions and very useful insights. We also
thank the anonymous referee for a very thoughtful report, which helped
improve the paper considerably. S. M. is very grateful to the
International Summer Institute for Modeling in Astrophysics (ISIMA) for
affording him the time, research environment and interactions necessary
to take this work forward, and acknowledges the funding support of the
STFC grant ST/H00307X/1. N.J.T. was a guest at MPIA Heidelberg when this
work began, and especially thanks Thomas Henning for pointing out the
importance of the topic. N.J.T. was supported by the Alexander von
Humboldt Foundation under a Fellowship for Experienced Researchers and
by the NASA Origins of Solar Systems program. He is employed at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA.
NR 61
TC 26
Z9 26
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 65
DI 10.1088/0004-637X/764/1/65
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200065
ER
PT J
AU Palamara, DP
Brown, MJI
Jannuzi, BT
Dey, A
Stern, D
Pimbblet, KA
Weiner, BJ
Ashby, MLN
Kochanek, CS
Gonzalez, A
Brodwin, M
Le Floc'h, E
Rieke, M
AF Palamara, David P.
Brown, Michael J. I.
Jannuzi, Buell T.
Dey, Arjun
Stern, Daniel
Pimbblet, Kevin A.
Weiner, Benjamin J.
Ashby, Matthew L. N.
Kochanek, C. S.
Gonzalez, Anthony
Brodwin, Mark
Le Floc'h, Emeric
Rieke, Marcia
TI THE CLUSTERING OF EXTREMELY RED OBJECTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; galaxies: elliptical and lenticular, cD;
galaxies: evolution; galaxies: formation; galaxies: high-redshift;
galaxies: starburst; galaxies: statistics; large-scale structure of
universe
ID GALAXY REDSHIFT SURVEY; HALO OCCUPATION DISTRIBUTION; WIDE-FIELD SURVEY;
PHOTOMETRIC REDSHIFTS; STAR-FORMATION; HIERARCHICAL UNIVERSE;
STATISTICAL-ANALYSIS; NUMBER COUNTS; LBDS 53W091; EVOLUTION
AB We measure the clustering of extremely red objects (EROs) in approximate to 8 deg(2) of the NOAO Deep Wide Field Survey Bootes field in order to establish robust links between ERO(z approximate to 1.2) and local galaxy (z < 0.1) populations. Three different color selection criteria from the literature are analyzed to assess the consequences of using different criteria for selecting EROs. Specifically, our samples are (R - K-s) > 5.0 (28,724 galaxies), (I - K-s) > 4.0 (22,451 galaxies), and (I - [3.6]) > 5.0 (64,370 galaxies). Magnitude-limited samples show the correlation length (r(0)) to increase for more luminous EROs, implying a correlation with stellar mass. We can separate star-forming and passive ERO populations using the (K-s - [24]) and ([3.6]-[24]) colors to K-s = 18.4 and [3.6] = 17.5, respectively. Star-forming and passive EROs in magnitude-limited samples have different clustering properties and host dark halo masses and cannot be simply understood as a single population. Based on the clustering, we find that bright passive EROs are the likely progenitors of greater than or similar to 4L* elliptical galaxies. Bright EROs with ongoing star formation were found to occupy denser environments than star-forming galaxies in the local universe, making these the likely progenitors of greater than or similar to L* local ellipticals. This suggests that the progenitors of massive greater than or similar to 4L* local ellipticals had stopped forming stars by z greater than or similar to 1.2, but that the progenitors of less massive ellipticals (down to L*) can still show significant star formation at this epoch.
C1 [Palamara, David P.; Brown, Michael J. I.; Pimbblet, Kevin A.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia.
[Palamara, David P.; Brown, Michael J. I.; Pimbblet, Kevin A.] Monash Univ, Monash Ctr Astrophys MoCA, Clayton, Vic 3800, Australia.
[Jannuzi, Buell T.; Dey, Arjun] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Jannuzi, Buell T.; Weiner, Benjamin J.; Rieke, Marcia] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Ashby, Matthew L. N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Kochanek, C. S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Kochanek, C. S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Gonzalez, Anthony] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA.
[Le Floc'h, Emeric] Univ Paris Diderot, Lab AIM, CEA Saclay, CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France.
RP Palamara, DP (reprint author), Monash Univ, Sch Phys, Clayton, Vic 3800, Australia.
RI Brown, Michael/B-1181-2015;
OI Brown, Michael/0000-0002-1207-9137; Weiner, Benjamin/0000-0001-6065-7483
FU National Optical Astronomy Observatory; Australian postgraduate award
(APA); J.L. William postgraduate award; Australian Research Council
(ARC)
FX This work is based in part on observations made with the Spitzer Space
Telescope, Spitzer/IRAC, and Spitzer/MIPS, which is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA. This work is based in part on observations made with
the Kitt Peak National Observatory (KPNO). This research was supported
by the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA), Inc.,
under a cooperative agreement with the National Science Foundation. We
thank our colleagues on the NDWFS, SDWFS, and MAGES teams. We thank
Renbin Yan for providing the DEEP2 EGS spectroscopic data used in this
work, Mark Dickinson for providing the FIDEL EGS catalog used in this
work, Xu Kong for providing the COSMOS ERO surface density data from
Kong et al. (2009), and Chris Conselice for providing the DEEP2 ERO
surface density data from Conselice et al. (2008). D. P. P. acknowledges
support from an Australian postgraduate award (APA) and a J.L. William
postgraduate award. M. J. I. B. acknowledges support from an Australian
Research Council (ARC) Future Fellowship.
NR 68
TC 4
Z9 5
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 31
DI 10.1088/0004-637X/764/1/31
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200031
ER
PT J
AU Pasham, DR
Strohmayer, TE
AF Pasham, Dheeraj R.
Strohmayer, Tod E.
TI EVIDENCE FOR QUASI-PERIODIC X-RAY DIPS FROM AN ULTRALUMINOUS X-RAY
SOURCE: IMPLICATIONS FOR THE BINARY MOTION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; methods: data analysis; X-rays: binaries
ID NGC 5408 X-1; STREAM-DISK IMPACT; ACCRETION DISK; GRO J1655-40; LIGHT
CURVES; BLACK-HOLES; INTERACTING BINARIES; TIME-SERIES; CYGNUS X-1;
XMM-NEWTON
AB We report results from long-term (approximate to 1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination greater than or similar to 70 degrees. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.
C1 [Pasham, Dheeraj R.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Strohmayer, Tod E.] NASAs Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
RP Pasham, DR (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM dheeraj@astro.umd.edu; tod.strohmayer@nasa.gov
FU NASA's Swift Guest Investigator program
FX We acknowledge support through NASA's Swift Guest Investigator program,
and we thank the referee for detailed comments which helped us improve
this paper.
NR 56
TC 14
Z9 15
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 93
DI 10.1088/0004-637X/764/1/93
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200093
ER
PT J
AU Pereira, TMD
De Pontieu, B
Carlsson, M
AF Pereira, Tiago M. D.
De Pontieu, Bart
Carlsson, Mats
TI THE EFFECTS OF SPATIO-TEMPORAL RESOLUTION ON DEDUCED SPICULE PROPERTIES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Sun: atmosphere; Sun: chromosphere; Sun: transition region
ID SOLAR OPTICAL TELESCOPE; TRANSITION REGION; MAGNETIC CHROMOSPHERE;
H-ALPHA; HINODE; ATMOSPHERE; MISSION; MOTTLES; MODELS
AB Spicules have been observed on the Sun for more than a century, typically in chromospheric lines such as Ha and Ca II H. Recent work has shown that so-called "type II" spicules may have a role in providing mass to the corona and the solar wind. In chromospheric filtergrams these spicules are not seen to fall back down, and they are shorter lived and more dynamic than the spicules that have been classically reported in ground-based observations. Observations of type II spicules with Hinode show fundamentally different properties from what was previously measured. In earlier work we showed that these dynamic type II spicules are the most common type, a view that was not properly identified by early observations. The aim of this work is to investigate the effects of spatio-temporal resolution in the classical spicule measurements. Making use of Hinode data degraded to match the observing conditions of older ground-based studies, we measure the properties of spicules with a semi-automated algorithm. These results are then compared to measurements using the original Hinode data. We find that degrading the data has a significant effect on the measured properties of spicules. Most importantly, the results from the degraded data agree well with older studies (e. g., mean spicule duration more than 5 minutes, and upward apparent velocities of about 25 km s(-1)). These results illustrate how the combination of spicule superposition, low spatial resolution and cadence affect the measured properties of spicules, and that previous measurements can be misleading.
C1 [Pereira, Tiago M. D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Pereira, Tiago M. D.; De Pontieu, Bart] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA.
[Carlsson, Mats] Inst Theoret Astrophys, NO-0315 Oslo, Norway.
[Carlsson, Mats] Univ Oslo, Ctr Math Applicat, NO-0316 Oslo, Norway.
RP Pereira, TMD (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RI Pereira, Tiago/G-4079-2014
OI Pereira, Tiago/0000-0003-4747-4329
FU NASA Postdoctoral Program at Ames Research Center [NNH06CC03B]; NASA
[NNX08AH45G, NNX08BA99G, NNX11AN98G]; Research Council of Norway;
European Research Council under the European Union [291058]
FX T.M.D.P. was supported by the NASA Postdoctoral Program at Ames Research
Center (NNH06CC03B). B. D. P. was supported by NASA (NNX08AH45G,
NNX08BA99G, and NNX11AN98G). This research was supported by the Research
Council of Norway. The research leading to these results has received
funding from the European Research Council under the European Union's
Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 291058.
Hinode is a Japanese mission developed by ISAS/JAXA, with the NAOJ as
domestic partner and NASA and STFC (UK) as international partners. It is
operated in cooperation with ESA and NSC (Norway). We thank Silje
Bjolseth and Anne Fox for help with data reduction.
NR 33
TC 16
Z9 17
U1 1
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 69
DI 10.1088/0004-637X/764/1/69
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200069
ER
PT J
AU Sokolov, IV
van der Holst, B
Oran, R
Downs, C
Roussev, II
Jin, M
Manchester, WB
Evans, RM
Gombosi, TI
AF Sokolov, Igor V.
van der Holst, Bart
Oran, Rona
Downs, Cooper
Roussev, Ilia I.
Jin, Meng
Manchester, Ward B.
Evans, Rebekah M.
Gombosi, Tamas I.
TI MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND
MHD TURBULENCE MODELS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE solar wind; Sun: corona; Sun: transition region; Sun: UV radiation
ID FAST SOLAR-WIND; HELIOSPHERIC MAGNETIC-FIELD; FREQUENCY ALFVEN WAVES;
SPACE WEATHER EVENT; INTERPLANETARY PROPAGATION; TRANSITION REGION; SUN;
ACCELERATION; FLUX; SIMULATION
AB We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.
C1 [Sokolov, Igor V.; van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B.; Gombosi, Tamas I.] Univ Michigan, Dept AOSS, Ann Arbor, MI 48109 USA.
[Downs, Cooper] Predict Sci Inc, San Diego, CA 92121 USA.
[Roussev, Ilia I.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Evans, Rebekah M.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA.
RP Sokolov, IV (reprint author), Univ Michigan, Dept AOSS, 2455 Hayward St, Ann Arbor, MI 48109 USA.
EM igorsok@umich.edu
RI Jin, Meng/D-7269-2013; Sokolov, Igor/H-9860-2013; Manchester,
Ward/I-9422-2012; Gombosi, Tamas/G-4238-2011; van der Holst,
Bart/A-3557-2013;
OI Jin, Meng/0000-0002-9672-3873; Sokolov, Igor/0000-0002-6118-0469;
Gombosi, Tamas/0000-0001-9360-4951; van der Holst,
Bart/0000-0001-5260-3944; Oran, Rona/0000-0001-6419-552X
FU NSF CDI grant [AGS-1027192]; NASA LWS grant [NNX09AJ78G]; NSF grant
[ATM-0639335]; NASA Postdoctoral Program at GSFC
FX We are grateful to Zoran Mikic and Steve Cranmer for invaluable
discussions and their instructive advice, as well as to Prof. W. H.
Mattheus and Prof. A. Ruzmaikin for their comments. The work was
supported by the NSF CDI grant AGS-1027192 and the NASA LWS grant
NNX09AJ78G. I. I. R. would like to acknowledge support from NSF grant
ATM-0639335 (CAREER). R. M. E. is supported through an appointment to
the NASA Postdoctoral Program at GSFC, administered by Oak Ridge
Associated Universities through a contract with NASA.
NR 50
TC 32
Z9 33
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 23
DI 10.1088/0004-637X/764/1/23
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200023
ER
PT J
AU Veilleux, S
Trippe, M
Hamann, F
Rupke, DSN
Tripp, TM
Netzer, H
Lutz, D
Sembach, KR
Krug, H
Teng, SH
Genzel, R
Maiolino, R
Sturm, E
Tacconi, L
AF Veilleux, S.
Trippe, M.
Hamann, F.
Rupke, D. S. N.
Tripp, T. M.
Netzer, H.
Lutz, D.
Sembach, K. R.
Krug, H.
Teng, S. H.
Genzel, R.
Maiolino, R.
Sturm, E.
Tacconi, L.
TI THE SURPRISING ABSENCE OF ABSORPTION IN THE FAR-ULTRAVIOLET SPECTRUM OF
Mrk 231
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; ISM: jets and outflows; line: formation; quasars:
absorption lines; quasars: individual (Mrk 231)
ID ULTRALUMINOUS INFRARED GALAXIES; ACTIVE GALACTIC NUCLEI; DIGITAL SKY
SURVEY; QUASAR OUTFLOW CONTRIBUTION; STAR-FORMING GALAXIES; ACCRETION
DISK WINDS; X-RAY; LINE QUASARS; ECHELLE SPECTROSCOPY;
ENERGY-DISTRIBUTION
AB Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering similar to 1150-1470 angstrom with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (less than or similar to 2% of predictions based on H alpha), broad (greater than or similar to 10,000 km s(-1) at the base), and highly blueshifted (centroid at similar to -3500 km s(-1)) Ly alpha emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F-lambda proportional to lambda(1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly alpha emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (A(V) similar to 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.
C1 [Veilleux, S.; Trippe, M.; Krug, H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Veilleux, S.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA.
[Veilleux, S.] NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Veilleux, S.; Lutz, D.; Genzel, R.; Sturm, E.; Tacconi, L.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany.
[Hamann, F.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Rupke, D. S. N.] Rhodes Coll, Dept Phys, Memphis, TN 38112 USA.
[Tripp, T. M.] Univ Massachussetts, Dept Astron, Amherst, MA 01003 USA.
[Netzer, H.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Netzer, H.] Tel Aviv Univ, Wise Observ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel.
[Sembach, K. R.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Teng, S. H.] NASA, Observat Cosmol Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Maiolino, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Maiolino, R.] Kavli Inst Cosmol, Cambridge CB3 0HA, England.
RP Veilleux, S (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM veilleux@astro.umd.edu; trippe@astro.umd.edu; hkrug@astro.umd.edu
FU NASA [HST GO-1256901A, GO-1256901B]; Senior NPP Award at NASA Goddard
Space Flight Center; Humboldt Foundation; National Science Foundation
[AST-0908910]
FX Support for this work was provided to S. V., M. T., and T. M. T. by NASA
through contracts HST GO-1256901A and GO-1256901B. S. V. also
acknowledges support from a Senior NPP Award held at the NASA Goddard
Space Flight Center, where most of this paper was written, and from the
Humboldt Foundation to provide funds for a long-term visit at MPE in
2012. F. H. acknowledges support from the National Science Foundation
through grant AST-0908910. We thank the referee, Patrick Hall, for a
thorough report and thoughtful suggestions which improved the paper. S.
V., F. H., and D. L. also thank A. Laor and H. Netzer for organizing an
excellent AGN meeting in Haifa, where many of the ideas presented here
germinated. This work has made use of NASA's Astrophysics Data System
Abstract Service and the NASA/IPAC Extragalactic Database (NED), which
is operated by the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics and Space
Administration.
NR 96
TC 20
Z9 20
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2013
VL 764
IS 1
AR 15
DI 10.1088/0004-637X/764/1/15
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081PV
UT WOS:000314335200015
ER
PT J
AU Cordiner, MA
Fossey, SJ
Smith, AM
Sarre, PJ
AF Cordiner, M. A.
Fossey, S. J.
Smith, A. M.
Sarre, P. J.
TI SMALL-SCALE STRUCTURE OF THE INTERSTELLAR MEDIUM TOWARD rho Oph STARS:
DIFFUSE BAND OBSERVATIONS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE ISM: clouds; ISM: lines and bands; ISM: structure; stars: individual
(rho Oph)
ID FORMING REGIONS; OPTICAL OBSERVATIONS; PHYSICAL CONDITIONS; CLOUD
STRUCTURE; OPHIUCHI CLOUD; GAS; SPECTROSCOPY; ABSORPTION; MOLECULES;
FAMILIES
AB We present an investigation of small-scale structure in the distribution of large molecules/dust in the interstellar medium through observations of diffuse interstellar bands (DIBs). High signal-to-noise optical spectra were recorded toward the stars rho Oph A, B, C, and DE using the University College London Echelle Spectrograph on the Anglo-Australian Telescope. The strengths of some of the DIBs are found to differ by about 5%-9% between the close binary stars rho Oph A and B, which are separated by a projected distance on the sky of only c. 344 AU. This is the first star system in which such small-scale DIB strength variations have been reported. The observed variations are attributed to differences between a combination of carrier abundance and the physical conditions present along each sightline. The sightline toward rho Oph C contains relatively dense, molecule-rich material and has the strongest. lambda lambda 5850 and 4726 DIBs. The gas toward DE is more diffuse and is found to exhibit weak "C-2" (blue) DIBs and strong yellow/red DIBs. The differences in diffuse band strengths between lines of sight are, in some cases, significantly greater in magnitude than the corresponding variations among atomic and diatomic species, indicating that the DIBs can be sensitive tracers of interstellar cloud conditions.
C1 [Cordiner, M. A.; Smith, A. M.; Sarre, P. J.] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England.
[Fossey, S. J.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
RP Cordiner, MA (reprint author), NASA, Astrochem Lab, Goddard Space Flight Ctr, Mailstop 691,8800 Greenbelt Rd, Greenbelt, MD 20770 USA.
EM martin.cordiner@nasa.gov
FU T S, EPSRC; STFC
FX We thank PATT for the allocation of AAT time and T & S, EPSRC for
studentships, and STFC for a visitor grant. M.A.C. thanks the NASA
Astrobiology Institute through The Goddard Center for Astrobiology.
S.J.F. thanks M. M. Dworetsky and I. D. Howarth for discussions on
photospheric line-profile variations in rho Oph C.
NR 30
TC 8
Z9 9
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 10
PY 2013
VL 764
IS 1
AR L10
DI 10.1088/2041-8205/764/1/L10
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 081UA
UT WOS:000314346700010
ER
PT J
AU Zuber, MT
Smith, DE
Watkins, MM
Asmar, SW
Konopliv, AS
Lemoine, FG
Melosh, HJ
Neumann, GA
Phillips, RJ
Solomon, SC
Wieczorek, MA
Williams, JG
Goossens, SJ
Kruizinga, G
Mazarico, E
Park, RS
Yuan, DN
AF Zuber, Maria T.
Smith, David E.
Watkins, Michael M.
Asmar, Sami W.
Konopliv, Alexander S.
Lemoine, Frank G.
Melosh, H. Jay
Neumann, Gregory A.
Phillips, Roger J.
Solomon, Sean C.
Wieczorek, Mark A.
Williams, James G.
Goossens, Sander J.
Kruizinga, Gerhard
Mazarico, Erwan
Park, Ryan S.
Yuan, Dah-Ning
TI Gravity Field of the Moon from the Gravity Recovery and Interior
Laboratory (GRAIL) Mission
SO SCIENCE
LA English
DT Article
ID LUNAR PROSPECTOR; INTERNAL STRUCTURE; MARE VOLCANISM; EVOLUTION;
TOPOGRAPHY
AB Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.
C1 [Zuber, Maria T.; Smith, David E.; Mazarico, Erwan] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
[Watkins, Michael M.; Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.; Kruizinga, Gerhard; Park, Ryan S.; Yuan, Dah-Ning] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Lemoine, Frank G.; Neumann, Gregory A.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Melosh, H. Jay] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA.
[Phillips, Roger J.] SW Res Inst, Boulder, CO 80302 USA.
[Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
[Wieczorek, Mark A.] Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, F-75205 Paris 13, France.
[Goossens, Sander J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA.
RP Zuber, MT (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
EM zuber@mit.edu
RI Wieczorek, Mark/G-6427-2010; Lemoine, Frank/D-1215-2013; Neumann,
Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014; Goossens,
Sander/K-2526-2015
OI Wieczorek, Mark/0000-0001-7007-4222; Neumann,
Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X;
Goossens, Sander/0000-0002-7707-1128
FU NASA
FX The GRAIL mission is supported by NASA's Discovery Program and is
performed under contract to the Massachusetts Institute of Technology
and the Jet Propulsion Laboratory, California Institute of Technology.
We are grateful to the GRAIL spacecraft, instrument, and operations
teams for outstanding support. We thank J. Andrews-Hanna, J. Head, W.
Kiefer, P. McGovern, F. Nimmo, J. Soderblom, and M. Sori for helpful
comments on the manuscript. The data used in this study have been
submitted to the Geosciences Node of the NASA Planetary Data System.
NR 26
TC 117
Z9 130
U1 1
U2 54
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 8
PY 2013
VL 339
IS 6120
BP 668
EP 671
DI 10.1126/science.1231507
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 085BM
UT WOS:000314585600034
PM 23223395
ER
PT J
AU Wieczorek, MA
Neumann, GA
Nimmo, F
Kiefer, WS
Taylor, GJ
Melosh, HJ
Phillips, RJ
Solomon, SC
Andrews-Hanna, JC
Asmar, SW
Konopliv, AS
Lemoine, FG
Smith, DE
Watkins, MM
Williams, JG
Zuber, MT
AF Wieczorek, Mark A.
Neumann, Gregory A.
Nimmo, Francis
Kiefer, Walter S.
Taylor, G. Jeffrey
Melosh, H. Jay
Phillips, Roger J.
Solomon, Sean C.
Andrews-Hanna, Jeffrey C.
Asmar, Sami W.
Konopliv, Alexander S.
Lemoine, Frank G.
Smith, David E.
Watkins, Michael M.
Williams, James G.
Zuber, Maria T.
TI The Crust of the Moon as Seen by GRAIL
SO SCIENCE
LA English
DT Article
ID LUNAR COMPOSITION; GIANT IMPACT; MODEL; CONSTITUTION; INVERSION;
INTERIOR; DENSITY; SURFACE; EARTH
AB High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.
C1 [Wieczorek, Mark A.] Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, F-75205 Paris 13, France.
[Neumann, Gregory A.; Lemoine, Frank G.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Nimmo, Francis] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Kiefer, Walter S.] Lunar & Planetary Inst, Houston, TX 77058 USA.
[Taylor, G. Jeffrey] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Melosh, H. Jay] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA.
[Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA.
[Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
[Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA.
[Asmar, Sami W.; Konopliv, Alexander S.; Watkins, Michael M.; Williams, James G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
RP Wieczorek, MA (reprint author), Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, 5 Rue Thomas Mann, F-75205 Paris 13, France.
EM wieczor@ipgp.fr
RI Wieczorek, Mark/G-6427-2010; Lemoine, Frank/D-1215-2013; Neumann,
Gregory/I-5591-2013;
OI Wieczorek, Mark/0000-0001-7007-4222; Neumann,
Gregory/0000-0003-0644-9944; Kiefer, Walter/0000-0001-6741-5460
FU NASA; French Space Agency (CNES); Centre National de la Recherche
Scientifique; UnivEarthS LabEx project of Sorbonne Paris Cite
FX The GRAIL mission is supported by the Discovery Program of NASA and is
performed under contract to the Massachusetts Institute of Technology
and the Jet Propulsion Laboratory, California Institute of Technology.
Additional support for this work was provided by the French Space Agency
(CNES), the Centre National de la Recherche Scientifique, and the
UnivEarthS LabEx project of Sorbonne Paris Cite. Data products will be
made available from the authors upon request.
NR 34
TC 193
Z9 200
U1 2
U2 74
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 8
PY 2013
VL 339
IS 6120
BP 671
EP 675
DI 10.1126/science.1231530
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 085BM
UT WOS:000314585600035
PM 23223394
ER
PT J
AU Andrews-Hanna, JC
Asmar, SW
Head, JW
Kiefer, WS
Konopliv, AS
Lemoine, FG
Matsuyama, I
Mazarico, E
McGovern, PJ
Melosh, HJ
Neumann, GA
Nimmo, F
Phillips, RJ
Smith, DE
Solomon, SC
Taylor, GJ
Wieczorek, MA
Williams, JG
Zuber, MT
AF Andrews-Hanna, Jeffrey C.
Asmar, Sami W.
Head, James W., III
Kiefer, Walter S.
Konopliv, Alexander S.
Lemoine, Frank G.
Matsuyama, Isamu
Mazarico, Erwan
McGovern, Patrick J.
Melosh, H. Jay
Neumann, Gregory A.
Nimmo, Francis
Phillips, Roger J.
Smith, David E.
Solomon, Sean C.
Taylor, G. Jeffrey
Wieczorek, Mark A.
Williams, James G.
Zuber, Maria T.
TI Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by
GRAIL Gravity Gradiometry
SO SCIENCE
LA English
DT Article
ID EVOLUTION; ROCKS; EARTH
AB The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.
C1 [Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA.
[Andrews-Hanna, Jeffrey C.] Colorado Sch Mines, Ctr Space Resources, Golden, CO 80401 USA.
[Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Head, James W., III] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Kiefer, Walter S.; McGovern, Patrick J.] Lunar & Planetary Inst, Houston, TX 77058 USA.
[Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Matsuyama, Isamu] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Mazarico, Erwan; Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
[Melosh, H. Jay] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA.
[Nimmo, Francis] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO 80302 USA.
[Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
[Taylor, G. Jeffrey] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Wieczorek, Mark A.] Univ Paris Diderot, Inst Phys Globe Paris, Sorbonne Paris Cite, Case 7071, F-75205 Paris 13, France.
RP Andrews-Hanna, JC (reprint author), Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA.
EM jcahanna@mines.edu
RI Wieczorek, Mark/G-6427-2010; Lemoine, Frank/D-1215-2013; Neumann,
Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014;
OI Kiefer, Walter/0000-0001-6741-5460; Wieczorek, Mark/0000-0001-7007-4222;
Neumann, Gregory/0000-0003-0644-9944; Mazarico,
Erwan/0000-0003-3456-427X; Matsuyama, Isamu/0000-0002-2917-8633;
McGovern, Patrick/0000-0001-9647-3096
FU NASA GRAIL Guest Scientist Program
FX The GRAIL mission is a component of the NASA Discovery Program and is
performed under contract to the Massachusetts Institute of Technology
and the Jet Propulsion Laboratory. J.C.A.-H., J.W.H., W. S. K., I. M.,
P.J.M., F.N., and G.J.T. were supported by grants from the NASA GRAIL
Guest Scientist Program. The data used in this study will have been
archived in the Geosciences Node of the NASA Planetary Data System by
the time of publication.
NR 29
TC 51
Z9 54
U1 0
U2 27
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD FEB 8
PY 2013
VL 339
IS 6120
BP 675
EP 678
DI 10.1126/science.1231753
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 085BM
UT WOS:000314585600036
PM 23223393
ER
PT J
AU Vernier, JP
Thomason, LW
Fairlie, TD
Minnis, P
Palikonda, R
Bedka, KM
AF Vernier, J. -P.
Thomason, L. W.
Fairlie, T. D.
Minnis, P.
Palikonda, R.
Bedka, K. M.
TI Comment on "Large Volcanic Aerosol Load in the Stratosphere Linked to
Asian Monsoon Transport"
SO SCIENCE
LA English
DT Editorial Material
AB Bourassa et al. (Reports, 6 July 2012, p. 78) have suggested that deep convection associated with the Asian monsoon played a critical role in transporting sulfur dioxide associated with the Nabro volcanic eruption (13 June 2011) from the upper troposphere (9 to 14 kilometers) into the lower stratosphere. An analysis of the CALIPSO lidar data indicates, however, that the main part of the Nabro volcanic plume was injected directly into the lower stratosphere during the initial eruption well before reaching the Asian monsoon deep convective region.
C1 [Vernier, J. -P.; Palikonda, R.; Bedka, K. M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Thomason, L. W.; Fairlie, T. D.; Minnis, P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Vernier, JP (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
EM jeanpaul.vernier@nasa.gov
RI Minnis, Patrick/G-1902-2010;
OI Minnis, Patrick/0000-0002-4733-6148; Thomason, Larry/0000-0002-1902-0840
NR 7
TC 22
Z9 22
U1 2
U2 29
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 8
PY 2013
VL 339
IS 6120
DI 10.1126/science.1227817
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 085BM
UT WOS:000314585600020
PM 23393247
ER
PT J
AU Giusarma, E
de Putter, R
Mena, O
AF Giusarma, Elena
de Putter, Roland
Mena, Olga
TI Testing standard and nonstandard neutrino physics with cosmological data
SO PHYSICAL REVIEW D
LA English
DT Article
ID DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; BIG-BANG
NUCLEOSYNTHESIS; DATA RELEASE; HUBBLE CONSTANT; POWER SPECTRUM;
TELESCOPE; PARAMETERS
AB Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude. DOI: 10.1103/PhysRevD.87.043515
C1 [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain.
[de Putter, Roland] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[de Putter, Roland] CALTECH, Pasadena, CA 91125 USA.
RP Giusarma, E (reprint author), Univ Valencia, CSIC, IFIC, Valencia 46071, Spain.
FU Consolider Ingenio [CSD2007-00060, PROMETEO/2009/116]; Spanish Ministry
Science Project [FPA2011-29678]; ITN Invisibles [PITN-GA-2011-289442]
FX We gratefully acknowledge Antonio Cuesta for providing the modified
version of COSMOMC with the recent BAO measurements included. We also
thank Signe Riemer-Sorensen and Chris Blake for their help with the
cross comparison of results. O. M. is supported by the Consolider
Ingenio Project No. CSD2007-00060, by PROMETEO/2009/116, by the Spanish
Ministry Science Project No. FPA2011-29678 and by the ITN Invisibles
PITN-GA-2011-289442. Part of the research described in this paper was
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.
NR 54
TC 17
Z9 17
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 7
PY 2013
VL 87
IS 4
AR 043515
DI 10.1103/PhysRevD.87.043515
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 087MN
UT WOS:000314765800001
ER
PT J
AU Guida, VG
Valentine, PC
Gallea, LB
AF Guida, Vincent G.
Valentine, Page C.
Gallea, Leslie B.
TI Semidiurnal Temperature Changes Caused by Tidal Front Movements in the
Warm Season in Seabed Habitats on the Georges Bank Northern Margin and
Their Ecological Implications
SO PLOS ONE
LA English
DT Article
ID PROGNOSTIC NUMERICAL-MODEL; WESTERN IRISH SEA; CONTINENTAL-SHELF;
HORIZONTAL TRANSPORT; CYCLIC TEMPERATURE; PHYSICAL MODEL; BRITISH-ISLES;
US COAST; SEDIMENT; ECOSYSTEM
AB Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along similar to 100 km of the bank margin. The seabed "frontal zone", where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This "frontal boundary zone" was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0 degrees C in the frontal zone to 0.0 degrees C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1 degrees C. The greatest rate of change (-2.48 degrees C hr(-1)) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.
C1 [Guida, Vincent G.] NOAA, NE Fisheries Sci Ctr, JJ Howard Lab, Natl Marine Fisheries Serv, Highlands, NJ 07732 USA.
[Valentine, Page C.; Gallea, Leslie B.] US Geol Survey, Woods Hole Coastal & Marine Sci Ctr, Woods Hole, MA 02543 USA.
RP Guida, VG (reprint author), NOAA, NE Fisheries Sci Ctr, JJ Howard Lab, Natl Marine Fisheries Serv, Highlands, NJ 07732 USA.
EM Vincent.Guida@noaa.gov
FU Northeast Fisheries Science Center (NEFSC); United States Geological
Survey Woods Hole Coastal and Marine Science Center (USGS WH CMSC);
NEFSC
FX This study was supported by salary funds from the regular annual salary
budget from Northeast Fisheries Science Center (NEFSC) and United States
Geological Survey Woods Hole Coastal and Marine Science Center (USGS WH
C&MSC), respectively; ship time funds from the NEFSC annual budget for
days-at-sea ship operations; equipment from the NEFSC and USGS WH C&MSC
annual equipment budgets. The funding offices (NEFSC and USGS WH C& MSC)
played the following roles in this study: approval of research plans and
allocation of assets, e.g. ship time and personnel travel and overtime
payments, and review and approval of manuscript release for publication.
This is standard agency practice in both cases.
NR 57
TC 0
Z9 0
U1 1
U2 11
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 6
PY 2013
VL 8
IS 2
AR e55273
DI 10.1371/journal.pone.0055273
PG 21
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 092WJ
UT WOS:000315153400074
PM 23405129
ER
PT J
AU Walker, SI
Davies, PCW
AF Walker, Sara Imari
Davies, Paul C. W.
TI The algorithmic origins of life
SO JOURNAL OF THE ROYAL SOCIETY INTERFACE
LA English
DT Review
DE origins of life; emergence; astrobiology; top-down causation
ID RNA WORLD; GENETIC INFORMATION; DEFINING LIFE; EVOLUTION; EMERGENCE;
EVOLVABILITY; CAUSATION; EFFICIENCY; CHEMISTRY; PROGRAM
AB Although it has been notoriously difficult to pin down precisely what is it that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and, in particular, that top-down (or downward) causation-where higher levels influence and constrain the dynamics of lower levels in organizational hierarchies-may be a major contributor to the hierarchal structure of living systems. Here, we propose that the emergence of life may correspond to a physical transition associated with a shift in the causal structure, where information gains direct and context-dependent causal efficacy over the matter in which it is instantiated. Such a transition may be akin to more traditional physical transitions (e. g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
C1 [Walker, Sara Imari] NASA, Astrobiol Inst, Mountain View, CA 94035 USA.
[Walker, Sara Imari; Davies, Paul C. W.] Arizona State Univ, BEYOND Ctr Fundamental Concepts Sci, Tempe, AZ USA.
[Walker, Sara Imari] Blue Marble Space Inst Sci, Seattle, WA USA.
RP Walker, SI (reprint author), NASA, Astrobiol Inst, Mountain View, CA 94035 USA.
EM sara.i.walker@asu.edu
RI Walker, Sara/J-5829-2015
OI Walker, Sara/0000-0001-5779-2772
FU NASA Astrobiology Institute through the NASA Postdoctoral Fellowship
Programme; National Science Foundation [PHY-1066293]; NIH [U54 CA143682]
FX S.I.W. gratefully acknowledges support from the NASA Astrobiology
Institute through the NASA Postdoctoral Fellowship Programme. S. I. W.
also thanks the hospitality of the Aspen Center for Physics, supported
in part by the National Science Foundation under grant no. PHY-1066293.
P. C. W. D. was supported by NIH grant no. U54 CA143682. We thank Andrew
Briggs, Luis Cisneros, John Doyle and George Ellis for stimulating
conversations as well as the manuscript's anonymous reviewers for
constructive comments.
NR 81
TC 14
Z9 14
U1 11
U2 45
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 1742-5689
EI 1742-5662
J9 J R SOC INTERFACE
JI J. R. Soc. Interface
PD FEB 6
PY 2013
VL 10
IS 79
AR 20120869
DI 10.1098/rsif.2012.0869
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA AA5EI
UT WOS:000331118500006
PM 23235265
ER
PT J
AU Wang, SH
Li, KF
Pongetti, TJ
Sander, SP
Yung, YL
Liang, MC
Livesey, NJ
Santee, ML
Harder, JW
Snow, M
Mills, FP
AF Wang, Shuhui
Li, King-Fai
Pongetti, Thomas J.
Sander, Stanley P.
Yung, Yuk L.
Liang, Mao-Chang
Livesey, Nathaniel J.
Santee, Michelle L.
Harder, Jerald W.
Snow, Martin
Mills, Franklin P.
TI Midlatitude atmospheric OH response to the most recent 11-y solar cycle
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE decadal variability; odd hydrogen
ID TABLE MOUNTAIN FACILITY; COLUMN ABUNDANCE; MIDDLE ATMOSPHERE;
MESOSPHERIC HOX; IRRADIANCE; CALIFORNIA; OZONE; MODEL; STRATOSPHERE;
VARIABILITY
AB The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O-3) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O-3 chemistry. Here, we present an effort to investigate such OH variability using long-term observations (from space and the surface) and model simulations. Ground-based measurements and data from the Microwave Limb Sounder on the National Aeronautics and Space Administration's Aura satellite suggest an similar to 7-10% decrease in OH column abundance from solar maximum to solar minimum that is highly correlated with changes in total solar irradiance, solar Mg-II index, and Lyman-alpha index during SC 23. However, model simulations using a commonly accepted solar UV variability parameterization give much smaller OH variability (similar to 3%). Although this discrepancy could result partially from the limitations in our current understanding of middle atmospheric chemistry, recently published solar spectral irradiance data from the Solar Radiation and Climate Experiment suggest a solar UV variability that is much larger than previously believed. With a solar forcing derived from the Solar Radiation and Climate Experiment data, modeled OH variability (similar to 6-7%) agrees much better with observations. Model simulations reveal the detailed chemical mechanisms, suggesting that such OH variability and the corresponding catalytic chemistry may dominate the O-3 SC signal in the upper stratosphere. Continuing measurements through SC 24 are required to understand this OH variability and its impacts on O-3 further.
C1 [Wang, Shuhui; Pongetti, Thomas J.; Sander, Stanley P.; Livesey, Nathaniel J.; Santee, Michelle L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Li, King-Fai; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Li, King-Fai; Mills, Franklin P.] Australian Natl Univ, Res Sch Phys & Engn, Atom & Mol Phys Labs, Canberra, ACT 0200, Australia.
[Mills, Franklin P.] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia.
[Liang, Mao-Chang] Acad Sinica, Res Ctr Environm Changes, Taipei 115, Taiwan.
[Harder, Jerald W.; Snow, Martin] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA.
RP Wang, SH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM shuhui.wang@jpl.nasa.gov
OI SNOW, MARTIN/0000-0001-9106-1332
FU NASA Aura Science Team; Upper Atmosphere Research and Tropospheric
Chemistry programs; NASA; Australian Research Council
FX We thank the NASA Aura Science Team and the Upper Atmosphere Research
and Tropospheric Chemistry programs for their support. We thank R. C.
Willson for providing the ACRIM TSI composite (www.acrim.com) and the
Laboratory for Atmospheric and Space Physics Interactive Solar
Irradiance Datacenter for composites of Lyman-alpha and Mg-II indices
(http://lasp.colorado.edu/lisird/). We also acknowledge receipt of a TSI
dataset from the PMOD (www.pmodwrc.ch/) and receipt of unpublished data
from the Variability of Solar Irradiance and Gravity Oscillations on
board the Solar and Heliospheric Observatory. Some FTUVS OH data from
early years were collected by R. P. Cageao. We thank H. M. Pickett, the
principal investigator (retired) for the MLS OH measurements and a NASA
Aura Science Team project. We also thank R.-L. Shia and S. Newman for
help with the models and error analysis and insightful discussions. Work
at the Jet Propulsion Laboratory, California Institute of Technology,
was done under contract to NASA. Support from an Australian Research
Council Linkage International grant is gratefully acknowledged.
NR 49
TC 11
Z9 11
U1 1
U2 28
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 5
PY 2013
VL 110
IS 6
BP 2023
EP 2028
DI 10.1073/pnas.1117790110
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 093RQ
UT WOS:000315209800023
PM 23341617
ER
PT J
AU Jensen, EJ
Diskin, G
Lawson, RP
Lance, S
Bui, TP
Hlavka, D
McGill, M
Pfister, L
Toon, OB
Gao, RS
AF Jensen, Eric J.
Diskin, Glenn
Lawson, R. Paul
Lance, Sara
Bui, T. Paul
Hlavka, Dennis
McGill, Matthew
Pfister, Leonhard
Toon, Owen B.
Gao, Rushan
TI Ice nucleation and dehydration in the Tropical Tropopause Layer
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE ATTREX; ice nuclei
ID STRATOSPHERIC WATER-VAPOR; SUBVISIBLE CIRRUS; WAVE-CLOUDS; AEROSOLS;
OZONE; TEMPERATURES; TRANSPORT; AIRCRAFT; HUMIDITY; CLIMATE
AB Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent high-altitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to similar to 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L-1 (often less than 20 L-1), whereas the high ice concentration layers (with concentrations up to 10,000 L-1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as similar to 1.7 times the ice saturation mixing ratio.
C1 [Jensen, Eric J.; Bui, T. Paul; Pfister, Leonhard] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Lawson, R. Paul; Lance, Sara] SPEC Inc, Boulder, CO 80301 USA.
[Hlavka, Dennis] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
[McGill, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Toon, Owen B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80302 USA.
[Toon, Owen B.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80302 USA.
[Gao, Rushan] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA.
RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM eric.j.jensen@nasa.gov
RI Gao, Ru-Shan/H-7455-2013; Manager, CSD Publications/B-2789-2015
FU NASA Airborne Tropical Tropopause Experiment; NASA Radiation Sciences
Program
FX We thank the Dryden Flight Research Center Global Hawk crew and pilots
for making these measurements possible. This research was funded by the
NASA Airborne Tropical Tropopause Experiment and the NASA Radiation
Sciences Program.
NR 39
TC 39
Z9 40
U1 5
U2 46
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 5
PY 2013
VL 110
IS 6
BP 2041
EP 2046
DI 10.1073/pnas.1217104110
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 093RQ
UT WOS:000315209800026
PM 23341619
ER
PT J
AU Harko, T
Lobo, FSN
Minazzoli, O
AF Harko, Tiberiu
Lobo, Francisco S. N.
Minazzoli, Olivier
TI Extended f(R, L-m) gravity with generalized scalar field and kinetic
term dependences
SO PHYSICAL REVIEW D
LA English
DT Article
ID COSMOLOGICAL CONSTANT; MACHS PRINCIPLE; GRAVITATIONAL LAGRANGIANS;
RELATIVISTIC THEORY; DARK ENERGY; MATTER; UNIVERSE; SUPERNOVAE
AB We generalize previous work by considering a novel gravitational model with an action given by an arbitrary function of the Ricci scalar, the matter Lagrangian density, a scalar field and a kinetic term constructed from the gradients of the scalar field, respectively. The gravitational field equations in the metric formalism are obtained, as well as the equations of motion for test particles, which followfrom the covariant divergence of the stress-energy tensor. Specific models with a nonminimal coupling between the scalar field and the matter Lagrangian are further explored. We emphasize that these models are extremely useful for describing an interaction between dark energy and dark matter, and for explaining the late-time cosmic acceleration. DOI: 10.1103/PhysRevD.87.047501
C1 [Harko, Tiberiu] UCL, Dept Math, London WC1E 6BT, England.
[Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal.
[Minazzoli, Olivier] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Harko, T (reprint author), UCL, Dept Math, Gower St, London WC1E 6BT, England.
EM harko@hkucc.hku.hk; flobo@cii.fc.ul.pt; ominazzo@caltech.edu
RI Lobo, Francisco/C-9732-2012;
OI Lobo, Francisco/0000-0002-9388-8373; Minazzoli,
Olivier/0000-0002-3151-7593
FU Fundacao para a Ciencia e Tecnologia [CERN/FP/123615/2011,
CERN/FP/123618/2011]; NASA Postdoctoral Program at the Jet Propulsion
Laboratory, California Institute of Technology; NASA
FX F. S. N. L. acknowledges financial support of the Fundacao para a
Ciencia e Tecnologia through the Grants No. CERN/FP/123615/2011 and No.
CERN/FP/123618/2011. O. M. was supported by an appointment to the NASA
Postdoctoral Program at the Jet Propulsion Laboratory, California
Institute of Technology, administered by Oak Ridge Associated
Universities through a contract with NASA.
NR 73
TC 32
Z9 32
U1 1
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 5
PY 2013
VL 87
IS 4
AR 047501
DI 10.1103/PhysRevD.87.047501
PG 6
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 086LS
UT WOS:000314685900023
ER
PT J
AU Han, JW
Kim, B
Li, J
Meyyappan, M
AF Han, Jin-Woo
Kim, Beomseok
Li, Jing
Meyyappan, M.
TI Flexible, compressible, hydrophobic, floatable, and conductive carbon
nanotube-polymer sponge
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID POLYDIMETHYLSILOXANE PDMS SPONGE; SURFACES; WATER
AB A flexible, compressible, hydrophobic, ice-repelling, floatable, and conductive carbon nanotube (CNT)-polydimethylsiloxane (PDMS) sponge is presented. The microporous sponge-like PDMS scaffold fabricated with a sugar cube template is capable of CNT uptake. The CNT-PDMS sponge (CPS) is deformable and compressible up to 90%. The Young's modulus varies from 22KPa to 200KPa depending on the applied strain. The conductive pathways via the CNT network increase with compressive strain similar to a variable resistor or pressure sensor. The softness of the CPS can be utilized for artificial skin to grip sensitive objects. In addition, the contact angle of water droplets on CPS shows 141 degrees, and thus the hydrophobic nature of the CPS can be exploited as a floating electrode. Furthermore, the hydrophobicity is maintained below freezing temperature, allowing an ice-repelling electrode. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790437]
C1 [Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA.
RP Han, JW (reprint author), NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA.
EM jin-woo.han@nasa.gov
NR 18
TC 26
Z9 26
U1 18
U2 192
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 4
PY 2013
VL 102
IS 5
AR 051903
DI 10.1063/1.4790437
PG 4
WC Physics, Applied
SC Physics
GA 087OC
UT WOS:000314770300026
ER
PT J
AU Kusenko, A
Loewenstein, M
Yanagida, TT
AF Kusenko, Alexander
Loewenstein, Michael
Yanagida, Tsutomu T.
TI Moduli dark matter and the search for its decay line using Suzaku x-ray
telescope
SO PHYSICAL REVIEW D
LA English
DT Article
ID MEDIATED SUPERSYMMETRY-BREAKING; XMM-NEWTON OBSERVATIONS; STERILE
NEUTRINOS; STANDARD MODEL; WILLMAN 1; MASS; COSMOLOGY; INFLATION;
VACUUM; BOSON
AB Light scalar fields called moduli arise from a variety of different models involving supersymmetry and/or string theory; thus their existence is a generic prediction of leading theories for physics beyond the standard model. They also present a formidable, long-standing problem for cosmology. We argue that an anthropic solution to the moduli problem exists in the case of small moduli masses and that it automatically leads to dark matter in the form of moduli. The recent discovery of the 125 GeV Higgs boson implies a lower bound on the moduli mass of about a keV. This form of dark matter is consistent with the observed properties of structure formation, and it is amenable to detection with the help of x-ray telescopes. We present the results of a search for such dark matter particles using spectra extracted from the first deep x-ray observations of the Draco and Ursa Minor dwarf spheroidal galaxies, which are dark-matter-dominated systems with extreme mass-to-light ratios and low intrinsic backgrounds. No emission line is positively detected, and we set new constraints on the relevant new physics. DOI: 10.1103/PhysRevD.87.043508
C1 [Kusenko, Alexander] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Kusenko, Alexander; Yanagida, Tsutomu T.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan.
[Loewenstein, Michael] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Loewenstein, Michael] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20770 USA.
[Loewenstein, Michael] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20770 USA.
RP Kusenko, A (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
RI Yanagida, Tsutomu/A-4394-2011; XRAY, SUZAKU/A-1808-2009
FU DOE [DE-FG03-91ER40662]; NSF [PHY-1066293]; NASA ADAP [NNX11AD36G,
NNX11AD11G]; Astro-H mission
FX The work of A. K. was supported by the DOE Grant No. DE-FG03-91ER40662.
A. K. appreciates the hospitality of the Aspen Center for Physics, which
is supported by the NSF Grant No. PHY-1066293. M. L. was supported by
NASA ADAP Grants No. NNX11AD36G and No. NNX11AD11G and the Astro-H
mission.
NR 59
TC 16
Z9 16
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD FEB 4
PY 2013
VL 87
IS 4
AR 043508
DI 10.1103/PhysRevD.87.043508
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 086LO
UT WOS:000314685400006
ER
PT J
AU Aguirre, VS
Casagrande, L
Basu, S
Campante, TL
Chaplin, WJ
Huber, D
Miglio, A
Serenelli, AM
AF Aguirre, V. Silva
Casagrande, L.
Basu, S.
Campante, T. L.
Chaplin, W. J.
Huber, D.
Miglio, A.
Serenelli, A. M.
CA KASC WG 1
TI Determining distances using asteroseismic methods
SO ASTRONOMISCHE NACHRICHTEN
LA English
DT Article
DE stars: distances; stars: fundamental parameters; stars: oscillations;
techniques: photometric
ID RED GIANTS; CHEMICAL EVOLUTION; KEPLER; STARS; OSCILLATIONS;
POPULATIONS; PARAMETERS; SEQUENCE; CATALOG; COROT
AB Asteroseismology has been extremely successful in determining the properties of stars in different evolutionary stages with a remarkable level of precision. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is needed. In this talk, I present a new technique developed to obtain stellar properties by coupling asteroseismic analysis with the infrared flux method. Using two global seismic observables and multi-band photometry, the technique determines masses, radii, effective temperatures, bolometric fluxes, and thus distances for field stars in a self-consistent manner. Applying our method to a sample of solar-like oscillators in the Kepler field that have accurate Hipparcos parallaxes, we find agreement in our distance determinations to better than 5%. Comparison with measurements of spectroscopic effective temperatures and interferometric radii also validate our results, and show that our technique can be applied to stars evolved beyond the main-sequence phase. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Aguirre, V. Silva; Chaplin, W. J.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark.
[Aguirre, V. Silva] Max Planck Inst Astrophys, D-85748 Garching, Germany.
[Casagrande, L.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Weston, ACT 2611, Australia.
[Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Campante, T. L.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Campante, T. L.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal.
[Campante, T. L.; Chaplin, W. J.; Miglio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
[Huber, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Serenelli, A. M.] Inst Ciencias Espacio CSIC IEEC, Fac Ciencies, Bellaterra 08193, Spain.
RP Aguirre, VS (reprint author), Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.
EM victor@phys.au.dk
RI Basu, Sarbani/B-8015-2014;
OI Basu, Sarbani/0000-0002-6163-3472; Serenelli, Aldo/0000-0001-6359-2769
FU NASA's Science Mission Directorate; Excellence Cluster "Origin and
Structure of the Universe" (Garching); International Space Science
Institute (ISSI)
FX Funding for the Kepler Discovery mission is provided by NASA's Science
Mission Directorate. The authors wish to thank the entire Kepler team,
without whom these results would not be possible. We also thank all
funding councils and agencies that have supported the activities of KASC
Working Group 1. We are also grateful for support from the International
Space Science Institute (ISSI). V. S. A. received financial support from
the Excellence Cluster "Origin and Structure of the Universe" (Garching)
NR 29
TC 2
Z9 2
U1 1
U2 4
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0004-6337
EI 1521-3994
J9 ASTRON NACHR
JI Astro. Nachr.
PD FEB
PY 2013
VL 334
IS 1-2
SI SI
BP 22
EP 25
DI 10.1002/asna.201211774
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 237HO
UT WOS:000325859900006
ER
PT J
AU Boyer, ML
AF Boyer, M. L.
TI Dust production and mass loss in cool evolved stars
SO ASTRONOMISCHE NACHRICHTEN
LA English
DT Article
DE galaxies: individual (SMC, LMC); stars: AGB and post-AGB; stars: mass
loss
ID LARGE-MAGELLANIC-CLOUD; ASYMPTOTIC GIANT BRANCH; AGB STARS; LOW
METALLICITY; GALAXY EVOLUTION; INTERMEDIATE-MASS; LOSS RETURN; MU-M;
SPITZER; GAS
AB Following the red giant branch phase and the subsequent core He-burning phase, the low-to intermediate-mass stars (0.8 < M/M-circle dot < 8) begin to ascend the asymptotic giant branch (AGB). Pulsations levitate material from the stellar surface and provide density enhancements and shocks, which can encourage dust formation and re-processing. The dust composition depends on the atmospheric chemistry (abundance of carbon relative to oxygen), which is altered by dredging up newly formed carbon to the surface of the star. I will briefly review the current status of models that include AGB mass loss and relate them to recent observations of AGB stars from the Surveying the Agents of Galaxy Evolution (SAGE) Spitzer surveys of the Small and Large Magellanic Clouds, including measures of the total dust input to the interstellar medium from AGB stars. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Boyer, M. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Boyer, M. L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
[Boyer, M. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
RP Boyer, ML (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
EM martha.boyer@nasa.gov
FU NASA via JPL [130827, 1340964]
FX This work is supported by NASA via JPL contracts 130827 and 1340964.
Many thanks to the CoolStars17 conference organizers and attendees for
an excellent conference.
NR 45
TC 2
Z9 2
U1 1
U2 2
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0004-6337
EI 1521-3994
J9 ASTRON NACHR
JI Astro. Nachr.
PD FEB
PY 2013
VL 334
IS 1-2
SI SI
BP 124
EP 128
DI 10.1002/asna.201211779
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 237HO
UT WOS:000325859900029
ER
PT J
AU Carson, J
Thalmann, C
Janson, M
Kozakis, T
Bonnefoy, M
Biller, B
Schlieder, J
Currie, T
McElwain, M
Goto, M
Henning, T
Brandner, W
Feldt, M
Kandori, R
Kuzuhara, M
Stevens, L
Wong, P
Gainey, K
Fukagawa, M
Kuwada, Y
Brandt, T
Kwon, J
Abe, L
Egner, S
Grady, C
Guyon, O
Hashimoto, J
Hayano, Y
Hayashi, M
Hayashi, S
Hodapp, K
Ishii, M
Iye, M
Knapp, G
Kudo, T
Kusakabe, N
Matsuo, T
Miyama, S
Morino, J
Moro-Martin, A
Nishimura, T
Pyo, T
Serabyn, E
Suto, H
Suzuki, R
Takami, M
Takato, N
Terada, H
Tomono, D
Turner, E
Watanabe, M
Wisniewski, J
Yamada, T
Takami, H
Usuda, T
Tamura, M
AF Carson, J.
Thalmann, C.
Janson, M.
Kozakis, T.
Bonnefoy, M.
Biller, B.
Schlieder, J.
Currie, T.
McElwain, M.
Goto, M.
Henning, T.
Brandner, W.
Feldt, M.
Kandori, R.
Kuzuhara, M.
Stevens, L.
Wong, P.
Gainey, K.
Fukagawa, M.
Kuwada, Y.
Brandt, T.
Kwon, J.
Abe, L.
Egner, S.
Grady, C.
Guyon, O.
Hashimoto, J.
Hayano, Y.
Hayashi, M.
Hayashi, S.
Hodapp, K.
Ishii, M.
Iye, M.
Knapp, G.
Kudo, T.
Kusakabe, N.
Matsuo, T.
Miyama, S.
Morino, J.
Moro-Martin, A.
Nishimura, T.
Pyo, T.
Serabyn, E.
Suto, H.
Suzuki, R.
Takami, M.
Takato, N.
Terada, H.
Tomono, D.
Turner, E.
Watanabe, M.
Wisniewski, J.
Yamada, T.
Takami, H.
Usuda, T.
Tamura, M.
TI DIRECT IMAGING DISCOVERY OF A "SUPER-JUPITER" AROUND THE LATE B-TYPE
STAR kappa And
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE brown dwarfs; planets and satellites: detection; stars: massive
ID ORBITING HR 8799; BROWN DWARFS; EVOLUTIONARY MODELS; HIPPARCOS CATALOG;
UPPER SCORPIUS; OPEN CLUSTERS; MU-M; PLANETS; COMPANION; PHOTOMETRY
AB We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 +/- 2 AU (1 ''.058 +/- 0 ''.007) from the B9-type star kappa And. The planet was detected with Subaru/HiCIAO during the SEEDS survey and confirmed as a bound companion via common proper motion measurements. Observed near-infrared magnitudes of J = 16.3 +/- 0.3, H = 15.2 +/- 0.2, K-s = 14.6 +/- 0.4, and L' = 13.12 +/- 0.09 indicate a temperature of similar to 1700 K. The galactic kinematics of the host star are consistent with membership in the Columba Association, implying a corresponding age of 30(-10)(+20) Myr. The system's age, combined with the companion photometry, points to a model-dependent companion mass similar to 12.8 M-Jup. The host star's estimated mass of 2.4-2.5 M-circle dot places it among the most massive stars ever known to harbor an extrasolar planet or low-mass brown dwarf. While the mass of the companion is close to the deuterium burning limit, its mass ratio, orbital separation, and likely planet-like formation scenario imply that it may be best defined as a "super-Jupiter" with properties similar to other recently discovered companions to massive stars.
C1 [Carson, J.; Kozakis, T.; Stevens, L.; Wong, P.; Gainey, K.; Kudo, T.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA.
[Carson, J.; Thalmann, C.; Bonnefoy, M.; Biller, B.; Schlieder, J.; Currie, T.; Henning, T.; Brandner, W.; Feldt, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Thalmann, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands.
[Janson, M.; Brandt, T.; Knapp, G.; Turner, E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[McElwain, M.; Grady, C.] NASA, Goddard Space Flight Ctr, ExoPlanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA.
[Goto, M.] Univ Munich, Young Stars & Star Format Univ Sternwarte Munchen, D-81679 Munich, Germany.
[Kandori, R.; Kuzuhara, M.; Kwon, J.; Hashimoto, J.; Hayashi, M.; Iye, M.; Kusakabe, N.; Morino, J.; Suto, H.; Suzuki, R.; Takami, H.; Tamura, M.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan.
[Kuzuhara, M.] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan.
[Fukagawa, M.; Kuwada, Y.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan.
[Abe, L.] Univ Nice Sophia Antipolis, CNRS, UMR 7293, Lab Lagrange,Observ Cote Azur, F-06108 Nice 2, France.
[Egner, S.; Guyon, O.; Hayano, Y.; Hayashi, S.; Ishii, M.; Nishimura, T.; Pyo, T.; Takato, N.; Terada, H.; Tomono, D.; Usuda, T.] Subaru Telescope, Hilo, HI 96720 USA.
[Hodapp, K.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA.
[Matsuo, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan.
[Miyama, S.] Hiroshima Univ, Higashihiroshima, Hiroshima 7398511, Japan.
[Moro-Martin, A.] Inst Nacl Tecn Aeroespacial, CAB INTA CSIC, Dept Astrofis, E-28850 Madrid, Spain.
[Serabyn, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan.
[Turner, E.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan.
[Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan.
[Wisniewski, J.] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Yamada, T.] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan.
RP Carson, J (reprint author), Coll Charleston, Dept Phys & Astron, 58 Coming St, Charleston, SC 29424 USA.
RI MIYAMA, Shoken/A-3598-2015
FU MEXT, Japan; U.S. National Science Foundation [1009203, 1008440,
1009314]
FX The authors thank David Lafreniere for providing the source code for his
LOCI algorithm, the anonymous referee for useful comments, and Subaru
Telescope staff for their assistance. The authors thank David Barrado
and the Calar Alto Observatory staff for their efforts at carrying out
supplementary observations of the host star. This work is partly
supported by a Grant-in-Aid for Science Research in a Priority Area from
MEXT, Japan, and the U.S. National Science Foundation under Award No.
1009203 (J.C., T.K., P.W., K.G.), 1008440 (C.G.), and 1009314 (J.W.).
The authors recognize and acknowledge the significant cultural role and
reverence that the summit of Mauna Kea has always had within the
indigenous Hawaiian community. We are most fortunate to have the
opportunity to conduct observations from this mountain.
NR 47
TC 82
Z9 83
U1 1
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 1
PY 2013
VL 763
IS 2
AR L32
DI 10.1088/2041-8205/763/2/L32
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 237NX
UT WOS:000325878500008
ER
PT J
AU Thalmann, C
Janson, M
Buenzli, E
Brandt, TD
Wisniewski, JP
Dominik, C
Carson, J
McElwain, MW
Currie, T
Knapp, GR
Moro-Martin, A
Usuda, T
Abe, L
Brandner, W
Egner, S
Feldt, M
Golota, T
Goto, M
Guyon, O
Hashimoto, J
Hayano, Y
Hayashi, M
Hayashi, S
Henning, T
Hodapp, KW
Ishii, M
Iye, M
Kandori, R
Kudo, T
Kusakabe, N
Kuzuhara, M
Kwon, J
Matsuo, T
Mayama, S
Miyama, S
Morino, JI
Nishimura, T
Pyo, TS
Serabyn, E
Suto, H
Suzuki, R
Takami, M
Takato, N
Terada, H
Tomono, D
Turner, EL
Watanabe, M
Yamada, T
Takami, H
Tamura, M
AF Thalmann, C.
Janson, M.
Buenzli, E.
Brandt, T. D.
Wisniewski, J. P.
Dominik, C.
Carson, J.
McElwain, M. W.
Currie, T.
Knapp, G. R.
Moro-Martin, A.
Usuda, T.
Abe, L.
Brandner, W.
Egner, S.
Feldt, M.
Golota, T.
Goto, M.
Guyon, O.
Hashimoto, J.
Hayano, Y.
Hayashi, M.
Hayashi, S.
Henning, T.
Hodapp, K. W.
Ishii, M.
Iye, M.
Kandori, R.
Kudo, T.
Kusakabe, N.
Kuzuhara, M.
Kwon, J.
Matsuo, T.
Mayama, S.
Miyama, S.
Morino, J. -I.
Nishimura, T.
Pyo, T. -S.
Serabyn, E.
Suto, H.
Suzuki, R.
Takami, M.
Takato, N.
Terada, H.
Tomono, D.
Turner, E. L.
Watanabe, M.
Yamada, T.
Takami, H.
Tamura, M.
TI IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE circumstellar matter; planetary systems; stars: individual (HIP 79977);
techniques: high angular resolution
ID BETA-PICTORIS; SCORPIUS-CENTAURUS; CIRCUMSTELLAR DISK; HD 32297; IMAGES;
EXOPLANETS; MORPHOLOGY; FOMALHAUT; MEMBERS; BELT
AB We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose presence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, and dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of similar to 2 '', as well as polarized differential imaging to measure the degree of scattering polarization out to similar to 1 ''.5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S-out = -3.2[-3.6,-2.9], an inclination of i = 84 degrees[81 degrees, 86 degrees], a high Henyey-Greenstein forward-scattering parameter of g = 0.45[0.35, 0.60], and a nonsignificant disk-star offset of u = 3.0[-1.5, 7.5] AU = 24[-13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from similar to 10% at 0 ''.5 to similar to 45% at 1 ''.5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure.
C1 [Thalmann, C.; Dominik, C.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands.
[Janson, M.; Brandt, T. D.; Carson, J.; Knapp, G. R.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Buenzli, E.] Univ Arizona, Dept Astron, Tucson, AZ USA.
[Buenzli, E.] Univ Arizona, Steward Observ, Tucson, AZ USA.
[Wisniewski, J. P.] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Carson, J.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29401 USA.
[McElwain, M. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Currie, T.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada.
[Moro-Martin, A.] CAB CSIC INTA, Dept Astrophys, Madrid, Spain.
[Usuda, T.; Egner, S.; Golota, T.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Ishii, M.; Nishimura, T.; Pyo, T. -S.; Takato, N.; Terada, H.; Tomono, D.; Takami, H.] Subaru Telescope, Hilo, HI USA.
[Abe, L.] Lab Hippolyte Fizeau, Nice, France.
[Brandner, W.; Feldt, M.; Henning, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Goto, M.] Univ Munich, Univ Sternwerte Munchen, Munich, Germany.
[Hashimoto, J.; Iye, M.; Kandori, R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J. -I.; Suto, H.; Suzuki, R.; Tamura, M.] Natl Astron Observ Japan, Tokyo, Japan.
[Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA.
[Kuzuhara, M.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo, Japan.
[Kwon, J.; Mayama, S.] Grad Univ Adv Studies Sokendai, Dept Astron Sci, Shonan Village, Japan.
[Serabyn, E.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA.
[Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Turner, E. L.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba, Japan.
[Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Sapporo, Hokkaido, Japan.
[Yamada, T.] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan.
RP Thalmann, C (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands.
EM thalmann@uva.nl
RI MIYAMA, Shoken/A-3598-2015;
OI Buenzli, Esther/0000-0003-3306-1486
FU US National Science Foundation [1009203]
FX We thank Jean-Charles Augereau for his GRaTer code, and the anonymous
referee for helpful comments. J.C. is supported by the US National
Science Foundation under Award No. 1009203. The authors recognize and
acknowledge the significant cultural role and reverence that the summit
of Mauna Kea has always had within the indigenous Hawaiian community. We
are most fortunate to have the opportunity to conduct observations from
this mountain.
NR 46
TC 22
Z9 22
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 1
PY 2013
VL 763
IS 2
AR L29
DI 10.1088/2041-8205/763/2/L29
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 237NX
UT WOS:000325878500005
ER
PT J
AU Wu, P
Perri, S
Osman, K
Wan, M
Matthaeus, WH
Shay, MA
Goldstein, ML
Karimabadi, H
Chapman, S
AF Wu, P.
Perri, S.
Osman, K.
Wan, M.
Matthaeus, W. H.
Shay, M. A.
Goldstein, M. L.
Karimabadi, H.
Chapman, S.
TI INTERMITTENT HEATING IN SOLAR WIND AND KINETIC SIMULATIONS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE magnetohydrodynamics (MHD); solar wind; Sun: corona; turbulence
ID MAGNETIC-FIELD; TURBULENCE; DISCONTINUITIES
AB Low-density astrophysical plasmas may be described by magnetohydrodynamics at large scales, but require kinetic description at ion scales in order to include dissipative processes that terminate the cascade. Here kinetic plasma simulations and high-resolution spacecraft observations are compared to facilitate the interpretation of signatures of various dissipation mechanisms. Kurtosis of increments indicates that kinetic scale coherent structures are present, with some suggestion of incoherent activity near ion scales. Conditioned proton temperature distributions suggest heating associated with coherent structures. The results reinforce the association of intermittent turbulence, coherent structures, and plasma dissipation.
C1 [Wu, P.; Wan, M.; Matthaeus, W. H.; Shay, M. A.] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA.
[Perri, S.] Univ Calabria, Dipartimento Fis, I-87036 Cosenza, Italy.
[Osman, K.; Chapman, S.] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England.
[Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA.
RP Wu, P (reprint author), Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA.
EM penny@udel.edu; whm@udel.edu
RI Chapman, Sandra/C-2216-2008; Wan, Minping/A-1344-2011
OI Chapman, Sandra/0000-0003-0053-1584;
FU NASA [NNX11AJ44G]; NSF [AGS-1063439, AGS-1156094]; Solar Probe Plus
Projects; DOE [DE-SC0004662]; Thailand Research Fund; POR Calabria FSE;
EU
FX This research supported in part by NASA Heliophysics Theory program
NNX11AJ44G, NSF Solar Terrestrial and SHINE programs AGS-1063439 and
AGS-1156094, NASA MMS Theory and MMS Interdisciplinary Science programs,
Solar Probe Plus Projects, DOE program DE-SC0004662, the Thailand
Research Fund, POR Calabria FSE 2007/2013, and by EU project
"Turboplasmas." Simulations were performed on University of Delaware
clusters and on Jaguar at the Oak Ridge National Laboratory.
NR 34
TC 48
Z9 48
U1 3
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 1
PY 2013
VL 763
IS 2
AR L30
DI 10.1088/2041-8205/763/2/L30
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 237NX
UT WOS:000325878500006
ER
PT J
AU Arumugam, DD
Griffin, JD
Stancil, DD
Ricketts, DS
AF Arumugam, Darmindra D.
Griffin, Joshua D.
Stancil, Daniel D.
Ricketts, David S.
TI Magneto-Quasistatic Tracking of an American Football: A Goal-Line
Measurement
SO IEEE ANTENNAS AND PROPAGATION MAGAZINE
LA English
DT Article
DE Electromagnetic fields; magnetoquasistatics; radio position measurement;
radio tracking; football
ID IMAGE THEORY
AB An American football was tracked using a long-range magneto-quasistatic position and orientation measurement system. A low-weight emitter that emitted a low-frequency quasistatic magnetic field was embedded within an American football. The emitter weighed a total of 26.5 g, which was within the manufacturing tolerance of an American football, and did not alter the dynamics of the ball. Measurements of a person carrying the football along the goal line of an American football field are described, along with a description of the construction of the magneto-quasistatic tracking system. The technique demonstrated measurements with a distance accuracy of 15 cm and an azimuthal orientation accuracy of 2.45 for measurements conducted along the goal line of an American football field.
C1 [Arumugam, Darmindra D.] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA.
[Griffin, Joshua D.] Disney Res Pittsburgh, Pittsburgh, PA 15213 USA.
[Stancil, Daniel D.; Ricketts, David S.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA.
RP Arumugam, DD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM darmindra.d.arumugam@jpl.nasa.gov; joshdgriffin@disneyresearch.com;
ddstancil@ncsu.edu; david.ricketts@ncsu.edu
NR 8
TC 0
Z9 0
U1 1
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1045-9243
EI 1558-4143
J9 IEEE ANTENN PROPAG M
JI IEEE Antennas Propag. Mag.
PD FEB
PY 2013
VL 55
IS 1
BP 137
EP 146
DI 10.1109/MAP.2013.6474504
PG 10
WC Engineering, Electrical & Electronic; Telecommunications
SC Engineering; Telecommunications
GA 216CB
UT WOS:000324257500014
ER
PT J
AU Crucian, B
Stowe, R
Mehta, S
Uchakin, P
Quiriarte, H
Pierson, D
Sams, C
AF Crucian, Brian
Stowe, Raymond
Mehta, Satish
Uchakin, Peter
Quiriarte, Heather
Pierson, Duane
Sams, Clarence
TI Immune System Dysregulation Occurs During Short Duration Spaceflight On
Board the Space Shuttle
SO JOURNAL OF CLINICAL IMMUNOLOGY
LA English
DT Article
DE Space; gravity; stress; immunity; viral reactivation
ID EPSTEIN-BARR-VIRUS; T-CELL-ACTIVATION; CYTOKINE PRODUCTION; BED REST;
ASTRONAUTS; FLIGHT; RESPONSES; REACTIVATION; COSMONAUTS; STRESS
AB Background Post-flight data suggests immunity is dysregulated immediately following spaceflight, however this data may be influenced by the stress effects of high-G entry and readaptation to terrestrial gravity. It is unknown if immunity is altered during spaceflight.
Methods Blood samples were collected from 19 US Astronauts onboard the Space Shuttle similar to 24 h prior to landing and returned for terrestrial analysis. Assays consisted of leukocyte distribution, T cell blastogenesis and cytokine production profiles.
Results Most bulk leukocyte subsets (WBC, differential, lymphocyte subsets) were unaltered during spaceflight, but were altered following landing. CD8+ T cell subsets, including cytotoxic, central memory and senescent were altered during spaceflight. T cell early blastogenesis varied by culture mitogen. Functional responses to staphylococcal enterotoxin were reduced during and following spaceflight, whereas response to anti-CD3/28 antibodies was elevated post-flight. The level of virus specific T cells were generally unaltered, however virus specific T cell function was depressed both during and following flight. Plasma levels of IFN alpha, IFN gamma, IL-1 beta, IL-4, IL-10, IL-12, and TNF alpha were significantly elevated in-flight, while IL-6 was significantly elevated at R+0. Cytokine production profiles following mitogenic stimulation were significantly altered both during, and following spaceflight. Specifically, production of IFN gamma, IL-17 and IL-10 were reduced, but production of TNF alpha and IL-8 were elevated during spaceflight.
Conclusions This study indicates that specific parameters among leukocyte distribution, T cell function and cytokine production profiles are altered during flight. These findings distinguish in-flight dysregulation from stress-related alterations observed immediately following landing.
C1 [Crucian, Brian; Pierson, Duane; Sams, Clarence] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Stowe, Raymond] Microgen Labs, La Marque, TX USA.
[Mehta, Satish] Enterprise Advisory Serv Inc, Houston, TX USA.
[Uchakin, Peter] Mercer Univ, Mercer, GA USA.
[Quiriarte, Heather] JES Tech, Houston, TX USA.
RP Crucian, B (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM brian.crucian-1@nasa.gov
FU JSC Clinical Laboratory; JSC Mission Integration Team; KSC Baseline Data
Collection Facility
FX The authors wish to thank the Space Shuttle crewmembers for
participating in this study. The authors also wish to acknowledge the
support provided by the JSC Clinical Laboratory, JSC Mission Integration
Team, and KSC Baseline Data Collection Facility during this study. The
authors are particularly grateful for operational support provided by
Mimi Shao at the Kennedy Space Center and Matt Roper at the Johnson
Space Center.
NR 34
TC 29
Z9 33
U1 1
U2 10
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0271-9142
J9 J CLIN IMMUNOL
JI J. Clin. Immunol.
PD FEB
PY 2013
VL 33
IS 2
BP 456
EP 465
DI 10.1007/s10875-012-9824-7
PG 10
WC Immunology
SC Immunology
GA 201DX
UT WOS:000323122000022
PM 23100144
ER
PT J
AU Harlan, SL
Declet-Barreto, JH
Stefanov, WL
Petitti, DB
AF Harlan, Sharon L.
Declet-Barreto, Juan H.
Stefanov, William L.
Petitti, Diana B.
TI Neighborhood Effects on Heat Deaths: Social and Environmental Predictors
of Vulnerability in Maricopa County, Arizona
SO ENVIRONMENTAL HEALTH PERSPECTIVES
LA English
DT Article
DE climate; GIS; heat mortality; neighborhoods; remote sensing;
vulnerability
ID UNITED-STATES; CLIMATE-CHANGE; HEALTH-RISK; MORTALITY; TEMPERATURE;
INEQUALITY; INDICATORS; VEGETATION; ECOSYSTEM; PHOENIX
AB BACKGROUND: Most heat-related deaths occur in cities, and future trends in global climate change and urbanization may amplify this trend. Understanding how neighborhoods affect heat mortality fills an important gap between studies of individual susceptibility to heat and broadly comparative studies of temperature-mortality relationships in cities.
OBJECTIVES: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000-2008).
METHODS: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods.
RESULTS: Neighborhood scores on three factors-socioeconomic vulnerability, elderly/isolation, and unvegetated area-varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor.
CONCLUSIONS: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed.
C1 [Harlan, Sharon L.; Declet-Barreto, Juan H.] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85284 USA.
[Stefanov, William L.] NASA, Lyndon B Johnson Space Ctr, Jacobs Engn Sci & Contract Grp, Houston, TX 77058 USA.
[Petitti, Diana B.] Arizona State Univ, Dept Biomed Informat, Scottsdale, AZ USA.
RP Harlan, SL (reprint author), Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85284 USA.
EM sharon.harlan@asu.edu
FU National Science Foundation [GEO-0816168]
FX This research was supported by the National Science Foundation (grant
GEO-0816168).
NR 52
TC 56
Z9 58
U1 8
U2 48
PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
PI RES TRIANGLE PK
PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233,
RES TRIANGLE PK, NC 27709-2233 USA
SN 0091-6765
J9 ENVIRON HEALTH PERSP
JI Environ. Health Perspect.
PD FEB
PY 2013
VL 121
IS 2
BP 197
EP 204
DI 10.1289/ehp.1104625
PG 8
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA 208SX
UT WOS:000323700900021
PM 23164621
ER
PT J
AU Cansizoglu, H
Cansizoglu, MF
Finckenor, M
Karabacak, T
AF Cansizoglu, Hilal
Cansizoglu, Mehmet F.
Finckenor, Miria
Karabacak, Tansel
TI Optical Absorption Properties of Semiconducting Nanostructures with
Different Shapes
SO ADVANCED OPTICAL MATERIALS
LA English
DT Article
ID GLANCING ANGLE DEPOSITION; SILICON NANOWIRE ARRAYS; TIME-DOMAIN METHOD;
IN2S3 THIN-FILMS; SOLAR-CELLS; PHOTOVOLTAIC APPLICATIONS; NANOROD
ARRAYS; LOW-COST; TRANSMITTANCE; NANOPARTICLES
AB In this study, a detailed experimental and theoretical investigation of optical absorption properties of indium sulfide (In2S3) nanostructure arrays in different shapes are presented. Zigzags, springs, screws, tilted rods, and vertical rods of In2S3 are grown using a glancing angle deposition (GLAD) technique. Nanostructured coatings are of similar material volume and porosity, yet with different shapes. Total optical reflection, transmission, and absorption profiles of In2S3 nanostructures are obtained by UV-vis-NIR spectroscopy using an integrating sphere. Measurements reveal that optical absorption of semiconducting nanostructures can strongly depend on their shapes. Under normal incidence of light, 3D geometries such as springs, screws, and vertical rods can provide enhanced absorption compared to zigzags, and tilted rods. Results of finite difference time domain (FDTD) simulations predict that spring, screw, and tapered-rod shapes can introduce a uniform distribution of diffracted light intensity and stronger absorption within the nanostructured layer, indicating an enhanced diffuse light scattering and light trapping. Zigzags and tilted rods show a relatively weaker absorption, similar to the experimental results. Experimental and simulation results are also compared to the predictions of effective medium theory. Current effective medium approximations are not sufficient to explain the high optical absorption of the nanostructures.
C1 [Cansizoglu, Hilal; Cansizoglu, Mehmet F.; Karabacak, Tansel] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA.
[Finckenor, Miria] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Cansizoglu, H (reprint author), Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA.
EM hxis@ualr.edu
FU NASA [NNX09AW22A]
FX This work was supported by NASA under the grant number NNX09AW22A. The
authors thank Dr. Yang Xu and UALR Center for Integrative Nanotechnology
Sciences for helping with SEM and UV-vis-NIR spectroscopy measurements.
NR 56
TC 13
Z9 13
U1 1
U2 56
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 2195-1071
J9 ADV OPT MATER
JI Adv. Opt. Mater.
PD FEB
PY 2013
VL 1
IS 2
BP 158
EP 166
DI 10.1002/adom.201200018
PG 9
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA 172JB
UT WOS:000320997900008
ER
PT J
AU Bishop, JL
Rampe, EB
Bish, DL
Abidin, Z
Baker, LL
Matsue, N
Henmi, T
AF Bishop, Janice L.
Rampe, Elizabeth B.
Bish, David L.
Abidin, Zaenal
Baker, Leslie L.
Matsue, Naoto
Henmi, Teruo
TI SPECTRAL AND HYDRATION PROPERTIES OF ALLOPHANE AND IMOGOLITE
SO CLAYS AND CLAY MINERALS
LA English
DT Article
DE Allophane; Emission Spectroscopy; Imogolite; Reflectance Spectroscopy;
XRD
ID TUBULAR ALUMINUM SILICATE; RAY-POWDER DIFFRACTION;
EMISSION-SPECTROSCOPY; INFRARED-SPECTROSCOPY; SYNTHETIC ALLOPHANE;
MOLECULAR-DYNAMICS; THERMAL-REACTIONS; SIO2-AL2O3 RATIO; VOLCANIC ASH;
NEW-ZEALAND
AB Allophane and imogolite are common alteration products of volcanic materials. Natural and synthetic allophanes and imogolites were characterized in the present study in order to clarify the short-range order of these materials and to gain an understanding of their spectral properties. Spectral analyses included visible/near-infrared (VNIR), and infrared (IR) reflectance of particulate samples and thermal-infrared (TIR) emissivity spectra of particulate and pressed pellets. Spectral features were similar but not identical for allophane and imogolite. In the near-infrared (NIR) region, allophane spectra exhibited a doublet near 7265 and 7120 cm(-1) (1.38 and 1.40 mu m) due to OH2 nu, a broad band near 5220 cm(-1) (1.92 mu m) due to H2O nu+delta, and a band near 4560 cm(-1) (2.19 mu m) due to OH nu+delta. Reflectance spectra of imogolite in this region included a doublet near 7295 and 7190 cm(-1) (1.37 and 1.39 mu m) due to OH2 nu, a broad band near 5200 cm(-1) (1.92 mu m) due to H2O nu+delta, and a band near 4565 cm(-1) (2.19 mu m) due to OH nu+delta. A strong broad band was also observed near 3200-3700 cm(-1) (similar to 2.8-3.1 mu m) which is a composite of OH nu, H2O nu, and H2O2 delta vibrations. Visible/near-infrared spectra were also collected under two relative humidity (RH) conditions. High-RH conditions resulted in increasing band strength for the H2O combination modes near 6900-6930 cm(-1) (1.45 mu m) and 5170-5180 cm(-1) (1.93 mu m) in the allophane and imogolite spectra due to increased abundances of adsorbed H2O molecules. Variation in adsorbed H2O content caused an apparent shift in the bands near 1.4 and 1.9 mu m. A doublet H2O delta vibration was observed at 1600-1670 cm(-1) (similar to 6.0-6.2 mu m) and a band due to OH bending for O3SiOH was observed at similar to 1350-1485 cm(-1) (similar to 6.7-7.4 mu m). The Si-O-Al stretching vibrations occurred near 1030 and 940 cm(-1) (similar to 9.7 and 10.6 mu m) for allophane and near 1010 and 930 cm(-1) (similar to 9.9 and 10.7 mu m) for imogolite. OH out-of-plane bending modes occurred near 610 cm(-1) (16.4 mu m) for allophane and at 595 cm(-1) (16.8 mu m) for imogolite. Features due to Si-O-Al bending vibrations were observed at 545, 420, and 335 cm(-1) (similar to 18, 24, and 30 mu m) for allophane and at 495, 415, and 335 cm(-1) (similar to 20, 24, and 30 mu m) for imogolite. The emissivity spectra were obtained from pressed pellets of the samples, which greatly enhanced the spectral contrast of the TIR absorptions. Predicted NIR bands were calculated from the mid-IR fundamental stretching and bending vibrations and compared with the measured NIR values. Controlled-RH X-ray diffraction (XRD) experiments were also performed in order to investigate changes in the mineral structure with changing RH conditions. Both allophane and imogolite exhibited decreasing low-angle XRD intensity with increasing RH, which was probably a result of interactions between H2O molecules and the curved allophane and imogolite structures.
C1 [Bishop, Janice L.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.
[Bishop, Janice L.] NASA ARC, Mountain View, CA 94043 USA.
[Rampe, Elizabeth B.] NASA JSC, Houston, TX 77058 USA.
[Bish, David L.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA.
[Abidin, Zaenal; Matsue, Naoto; Henmi, Teruo] Ehime Univ, Fac Agr, Matsuyama, Ehime 7908566, Japan.
[Abidin, Zaenal] Bogor Agr Univ, Fac Math & Nat Sci, Inorgan Chem Lab, Dept Chem, Bogor 16680, West Of Java, Indonesia.
[Baker, Leslie L.] Univ Idaho, Dept Plant Soil & Entomol Sci, Moscow, ID 83843 USA.
RP Bishop, JL (reprint author), SETI Inst, Carl Sagan Ctr, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM jbishop@seti.org
FU NASA's Mars Fundamental Research program; NASA Postdoctoral Program
FX Thanks are extended to C. Pieters, T. Hiroi, and NASA's PGG program and
the NISLI for the reflectance spectra collected at Brown University's
RELAB facility and to P. Christensen and the Mars Space Flight Facility
at Arizona State University for the use of the thermal emission
spectrometer facility. The authors are grateful to S. Petit, J. Stucki,
and two anonymous reviewers for helpful comments that improved the
manuscript. This work was supported by NASA's Mars Fundamental Research
program and the NASA Postdoctoral Program.
NR 73
TC 15
Z9 15
U1 7
U2 41
PU CLAY MINERALS SOC
PI CHANTILLY
PA 3635 CONCORDE PKWY, STE 500, CHANTILLY, VA 20151-1125 USA
SN 0009-8604
EI 1552-8367
J9 CLAY CLAY MINER
JI Clay Clay Min.
PD FEB-APR
PY 2013
VL 61
IS 1-2
BP 57
EP 74
DI 10.1346/CCMN.2013.0610105
PG 18
WC Chemistry, Physical; Geosciences, Multidisciplinary; Mineralogy; Soil
Science
SC Chemistry; Geology; Mineralogy; Agriculture
GA 157LC
UT WOS:000319896600005
ER
PT J
AU Marlier, ME
DeFries, RS
Voulgarakis, A
Kinney, PL
Randerson, JT
Shindell, DT
Chen, Y
Faluvegi, G
AF Marlier, Miriam E.
DeFries, Ruth S.
Voulgarakis, Apostolos
Kinney, Patrick L.
Randerson, James T.
Shindell, Drew T.
Chen, Yang
Faluvegi, Greg
TI El Nino and health risks from landscape fire emissions in southeast Asia
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID AIR-POLLUTION; EQUATORIAL ASIA; DEFORESTATION; MORTALITY; SMOKE;
DROUGHT; FORESTS; CLIMATE; IMPACT
AB Emissions from landscape fires affect both climate and air quality(1). Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change(2,3). We show that during strong El Nino years, fires contribute up to 200 mu g m(-3) and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 mu g m(-3) 24-hr PM2.5 interim target(4) and an estimated 10,800 (6,800-14,300)-person (similar to 2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.
C1 [Marlier, Miriam E.] Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
[DeFries, Ruth S.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA.
[Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Greg] Columbia Univ, New York, NY 10025 USA.
[Kinney, Patrick L.] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10032 USA.
[Randerson, James T.; Chen, Yang] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
RP Marlier, ME (reprint author), Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
EM marlier@ldeo.columbia.edu
RI Shindell, Drew/D-4636-2012
FU National Sciences Foundation; NASA [NNX11AF96G]
FX We are grateful to P. Kasibhatla for his help with the GEOS-Chem model
runs. We also thank the local staff at B. K. Tabang and T. Rata for the
WDCGG O3 data, M. Brauer for the annual PM2.5 data
and K. Wolter at NOAA for the El Nino index. This work was supported by
a National Sciences Foundation graduate research fellowship and NASA
award NNX11AF96G. GFED3 is publicly available at
http://www.globalfiredata.org.
NR 29
TC 61
Z9 61
U1 4
U2 73
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD FEB
PY 2013
VL 3
IS 2
BP 131
EP 136
DI 10.1038/NCLIMATE1658
PG 6
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 150NK
UT WOS:000319397500014
PM 25379058
ER
PT J
AU Kuchner, M
AF Kuchner, Marc
TI Forget about networking
SO PHYSICS WORLD
LA English
DT Article
C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Kuchner, M (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
EM marc@marketingforscientists.com
NR 0
TC 0
Z9 0
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8585
J9 PHYS WORLD
JI Phys. World
PD FEB
PY 2013
VL 26
IS 2
BP 44
EP 45
PG 2
WC Physics, Multidisciplinary
SC Physics
GA 148RK
UT WOS:000319264400032
ER
PT J
AU Jones, DL
AF Jones, Dayton L.
TI Technology Challenges for the Square Kilometer Array
SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE
LA English
DT Article
RP Jones, DL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM dayton.jones@jpl.nasa.gov
NR 13
TC 1
Z9 1
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8985
J9 IEEE AERO EL SYS MAG
JI IEEE Aerosp. Electron. Syst. Mag.
PD FEB
PY 2013
VL 28
IS 2
BP 18
EP 23
PG 6
WC Engineering, Aerospace; Engineering, Electrical & Electronic
SC Engineering
GA 138XS
UT WOS:000318545800003
ER
PT J
AU Timokhin, AN
Arons, J
AF Timokhin, A. N.
Arons, J.
TI Current flow and pair creation at low altitude in rotation-powered
pulsars' force-free magnetospheres: space charge limited flow
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE acceleration of particles; plasmas; stars: magnetic field; stars:
neutron; pulsars: general
ID POLAR CAPS; POTENTIAL DROPS; NEUTRON-STAR; MAGNETIC-FIELDS; EMISSION;
ACCELERATION; CASCADES; SURFACE; GAPS; SIMULATIONS
AB We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars.
We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(GJ) < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current.
The 1D results described here characterize the dependence of acceleration and pair creation on the magnitude and sign of current. The dependence on the spatial distribution of the current is amulti-dimensional problem, possibly exhibiting more chaotic behaviour. We briefly outline possible relations of the electric field fluctuations observed in the polar flows (both with and without pair creation discharges) to direct emission of radio waves, as well as revive the possible relation of the observed limit cycle behaviour to microstructure in the radio emission. Actually modelling these effects requires the multi-dimensional treatment, to be reported in a later paper.
C1 [Timokhin, A. N.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Timokhin, A. N.; Arons, J.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.
[Timokhin, A. N.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119991, Russia.
[Arons, J.] Univ Calif Berkeley, Dept Astron, Dept Phys, Berkeley, CA 94720 USA.
[Arons, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
RP Timokhin, AN (reprint author), NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM andrey.timokhin@nasa.gov
FU NSF [AST-0507813]; NASA [NNG06GJI08G, NNX09AU05G]; DOE
[DE-FC02-06ER41453]; NASA Goddard Space Flight centre
FX We wish to thank Xuening Bai for making the plot shown in our Fig. 1.
This work was supported by NSF grant AST-0507813; NASA grants
NNG06GJI08G, NNX09AU05G; and DOE grant DE-FC02-06ER41453. AT was also
supported by an appointment to the NASA Postdoctoral program at NASA
Goddard Space Flight centre, administered by ORAU.
NR 44
TC 44
Z9 44
U1 0
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 1
BP 20
EP 54
DI 10.1093/mnras/sts298
PG 35
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134TT
UT WOS:000318238300025
ER
PT J
AU Duddy, SR
Lowry, SC
Christou, A
Wolters, SD
Rozitis, B
Green, SF
Weissman, PR
AF Duddy, S. R.
Lowry, S. C.
Christou, A.
Wolters, S. D.
Rozitis, B.
Green, S. F.
Weissman, P. R.
TI Spectroscopic observations of unbound asteroid pairs using the WHT
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE minor planets; asteroids: general
ID CLOSE ENCOUNTERS; MASSIVE ASTEROIDS; IRRADIATION EXPERIMENTS; ROTATIONAL
FISSION; BINARY ASTEROIDS; VESTA FAMILY; ORIGIN; SURFACES; BELT
AB Recently over 62 pairs of asteroids have been shown to have very similar orbital elements. Backward integration of their orbits indicates that the asteroids in each pair likely had very close encounters at low relative velocities, consistent with models of the spin-up and rotational fission of asteroids. Although linked dynamically, the observation of highly similar spectra would suggest that the asteroids share a common composition, which we would expect if they formed from a common parent body.
We have begun an observational campaign whose aim is to obtain optical and/or NIR spectra of a large sample of these unbound asteroid pairs to determine whether the asteroids in each pair exhibit similar spectra. We present optical spectroscopic observations of four complete pairs obtained using the William Herschel Telescope. We find that the components of pairs 1979-13732 and 19289-278067 share very similar spectra and likely have a common origin. Our current spectra of 17198-229056 are sufficiently different to suggest that they do not have a common origin, although this is contrary to the strong dynamical linkup of these asteroids demonstrated in the current paper and previous studies. Further observations of this pair are encouraged to examine why the spectra are so different. It is unclear whether the spectra of the final pair, 11842-228747, are a match due to the low S/N of the secondary's spectrum. We discuss the process of space weathering and present new dynamical analyses which confirm the previously estimated ages of the observed pairs. The time-scale for space weathering appears to be longer than 1 Myr for at least some pairs. We also present an efficient method which can be used to determine the positional convergence of unbound asteroid pairs.
C1 [Duddy, S. R.; Lowry, S. C.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England.
[Christou, A.] Armagh Observ, Armagh BT61 9DG, North Ireland.
[Wolters, S. D.; Weissman, P. R.] CALTECH, Jet Prop Lab, Planetary Sci Sect, Pasadena, CA 91109 USA.
[Rozitis, B.; Green, S. F.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.
RP Duddy, SR (reprint author), Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England.
EM s.duddy@kent.ac.uk
RI Green, Simon/C-7408-2009
FU UK Science and Technology Facilities Council; SEPNet; Northern Ireland
Department of Culture, Arts and Leisure (DCAL); NASA; SFI/HEA Irish
Centre for High-End Computing (ICHEC)
FX SRD, SCL, BR and SFG acknowledge the financial support of the UK Science
and Technology Facilities Council. SCL acknowledges support from SEPNet.
Astronomical Research at the Armagh Observatory is funded by the
Northern Ireland Department of Culture, Arts and Leisure (DCAL). We wish
to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC)
for the provision of computational facilities and support. A part of
this work was supported by the NASA Planetary Astronomy Program and was
performed at the Jet Propulsion Laboratory under contract with NASA. We
thank Petr Pravec for his helpful review of this paper. IRAF is
distributed by the National Optical Astronomy Observatories, which is
operated by the Association of Universities for Research in Astronomy,
Inc. (AURA) under cooperative agreement with the National Science
Foundation. We acknowledge JPL's HORIZONS online ephemeris generator for
providing the asteroids' positions and rates of motion during the
observations.
NR 44
TC 9
Z9 9
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 1
BP 63
EP 74
DI 10.1093/mnras/sts309
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134TT
UT WOS:000318238300027
ER
PT J
AU Chapman, E
Abdalla, FB
Bobin, J
Starck, JL
Harker, G
Jelic, V
Labropoulos, P
Zaroubi, S
Brentjens, MA
de Bruyn, AG
Koopmans, VE
AF Chapman, Emma
Abdalla, Filipe B.
Bobin, J.
Starck, J-L
Harker, Geraint
Jelic, Vibor
Labropoulos, Panagiotis
Zaroubi, Saleem
Brentjens, Michiel A.
de Bruyn, A. G.
Koopmans, V. E.
TI The scale of the problem: recovering images of reionization with
Generalized Morphological Component Analysis
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: statistical; cosmology: theory; dark ages, reionization, first
stars; diffuse radiation
ID BLIND SOURCE SEPARATION; 21 CENTIMETER FLUCTUATIONS; FOREGROUND REMOVAL;
HIGH-REDSHIFT; INTERGALACTIC MEDIUM; NEUTRAL HYDROGEN; 21-CM EPOCH;
TOMOGRAPHY; LOFAR; SIMULATIONS
AB The accurate and precise removal of 21-cm foregrounds from Epoch of Reionization (EoR) redshifted 21-cm emission data is essential if we are to gain insight into an unexplored cosmological era. We apply a non-parametric technique, Generalized Morphological Component Analysis (GMCA), to simulated Low Frequency Array (LOFAR)-EoR data and show that it has the ability to clean the foregrounds with high accuracy. We recover the 21-cm 1D, 2D and 3D power spectra with high accuracy across an impressive range of frequencies and scales. We show that GMCA preserves the 21-cm phase information, especially when the smallest spatial scale data is discarded. While it has been shown that LOFAR-EoR image recovery is theoretically possible using image smoothing, we add that wavelet decomposition is an efficient way of recovering 21-cm signal maps to the same or greater order of accuracy with more flexibility. By comparing the GMCA output residual maps (equal to the noise, 21-cm signal and any foreground fitting errors) with the 21-cm maps at one frequency and discarding the smaller wavelet scale information, we find a correlation coefficient of 0.689, compared to 0.588 for the equivalently smoothed image. Considering only the pixels in a central patch covering 50 per cent of the total map area, these coefficients improve to 0.905 and 0.605, respectively, and we conclude that wavelet decomposition is a significantly more powerful method to denoise reconstructed 21-cm maps than smoothing.
C1 [Chapman, Emma; Abdalla, Filipe B.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Bobin, J.; Starck, J-L] Ctr Europeen Astron Saclay, Serv Astrophys DAPNIA SEDI SAP, F-91191 Gif Sur Yvette, France.
[Harker, Geraint] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
[Harker, Geraint] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA.
[Jelic, Vibor; Labropoulos, Panagiotis; Brentjens, Michiel A.; de Bruyn, A. G.] ASTRON, NL-7990 AA Dwingeloo, Netherlands.
[Labropoulos, Panagiotis; Zaroubi, Saleem; de Bruyn, A. G.; Koopmans, V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands.
RP Chapman, E (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
EM eow@star.ucl.ac.uk
RI Jelic, Vibor/B-2938-2014; Bobin, Jerome/P-3729-2014; Harker,
Geraint/C-4885-2012;
OI Jelic, Vibor/0000-0002-6034-8610; Bobin, Jerome/0000-0003-1457-7890;
Harker, Geraint/0000-0002-7894-4082; Abdalla,
Filipe/0000-0003-2063-4345; Starck, Jean-Luc/0000-0003-2177-7794
FU Royal Society; NASA Lunar Science Institute [NNA09DB30A]; European
Research Council [FIRSTLIGHT-258942]
FX FBA acknowledges the support of the Royal Society via a University
Research Fellowship. GH is a member of the LUNAR consortium, which is
funded by the NASA Lunar Science Institute (via Cooperative Agreement
NNA09DB30A) to investigate concepts for astrophysical observatories on
the Moon. LVEK acknowledges the financial support from the European
Research Council under ERC-Starting Grant FIRSTLIGHT-258942. The authors
would like to acknowledge Mario Santos for useful discussion.
NR 42
TC 33
Z9 33
U1 1
U2 6
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 1
BP 165
EP 176
DI 10.1093/mnras/sts333
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134TT
UT WOS:000318238300037
ER
PT J
AU Massey, R
Hoekstra, H
Kitching, T
Rhodes, J
Cropper, M
Amiaux, J
Harvey, D
Mellier, Y
Meneghetti, M
Miller, L
Paulin-Henriksson, S
Pires, S
Scaramella, R
Schrabback, T
AF Massey, Richard
Hoekstra, Henk
Kitching, Thomas
Rhodes, Jason
Cropper, Mark
Amiaux, Jerome
Harvey, David
Mellier, Yannick
Meneghetti, Massimo
Miller, Lance
Paulin-Henriksson, Stephane
Pires, Sandrine
Scaramella, Roberto
Schrabback, Tim
TI Origins of weak lensing systematics, and requirements on future
instrumentation (or knowledge of instrumentation)
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE gravitational lensing: weak; instrumentation: detectors; methods: data
analysis; space vehicles: instruments; telescopes; cosmological
parameters
ID HUBBLE-SPACE-TELESCOPE; POINT-SPREAD FUNCTION; CHARGE-TRANSFER
INEFFICIENCY; IMAGE-ANALYSIS COMPETITION; GALAXY SHAPE MEASUREMENT; DARK
ENERGY CONSTRAINTS; PIXEL-BASED CORRECTION; COSMIC SHEAR; ADVANCED
CAMERA; GREAT08 CHALLENGE
AB The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. Together, these now explain the additive A(l) and multiplicative M(l) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance.
The second half of this paper propagates any residual shear measurement biases through to their effect on cosmological parameter constraints. Fully exploiting the statistical power of Stage IV weak lensing surveys will require additive biases (A) over bar less than or similar to 1.8 x 10(-12) and multiplicative biases (M) over bar less than or similar to 4.0 x 10(-3). These can be allocated between individual budgets in hardware, calibration data and software, using results from the first half of the paper.
If instrumentation is stable and well calibrated, we find extant shear measurement software from Gravitational Lensing Accuracy Testing 2010 (GREAT10) already meet requirements on galaxies detected at signal-to-noise ratio = 40. Averaging over a population of galaxies with a realistic distribution of sizes, it also meets requirements for a 2D cosmic shear analysis from space. If used on fainter galaxies or for 3D cosmic shear tomography, existing algorithms would need calibration on simulations to avoid introducing bias at a level similar to the statistical error. Requirements on hardware and calibration data are discussed in more detail in a companion paper. Our analysis is intentionally general, but is specifically being used to drive the hardware and ground segment performance budget for the design of the European Space Agency's recently selected Euclid mission.
C1 [Massey, Richard] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England.
[Hoekstra, Henk] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Kitching, Thomas; Harvey, David] Univ Edinburgh, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Rhodes, Jason] CALTECH, Pasadena, CA 91109 USA.
[Cropper, Mark] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Amiaux, Jerome; Mellier, Yannick; Paulin-Henriksson, Stephane; Pires, Sandrine] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France.
[Mellier, Yannick] Univ Paris 06, CNRS UMR7095, Inst Astrophys Paris, F-75014 Paris, France.
[Meneghetti, Massimo] INAF, Osservatorio Astron Bologna, I-40127 Bologna, Italy.
[Miller, Lance] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Scaramella, Roberto] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy.
[Schrabback, Tim] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[Schrabback, Tim] Argelander Inst Astron, D-53121 Bonn, Germany.
RP Massey, R (reprint author), Univ Durham, Inst Computat Cosmol, South Rd, Durham DH1 3LE, England.
EM r.j.massey@durham.ac.uk
RI Meneghetti, Massimo/O-8139-2015;
OI Meneghetti, Massimo/0000-0003-1225-7084; Scaramella,
Roberto/0000-0003-2229-193X; Hoekstra, Henk/0000-0002-0641-3231
FU Royal Society University Research Fellowships; Netherlands Organization
for Scientific Research through VIDI grants; Netherlands Research School
for Astronomy (NOVA); ERC; Caltech; NSF [AST-0444059-001]; Smithsonian
Astrophysics Observatory [GO0-11147A]; CNES; CNRS/INSU
FX RM and TK are supported by Royal Society University Research
Fellowships. HH is supported by the Netherlands Organization for
Scientific Research through VIDI grants and acknowledges support from
the Netherlands Research School for Astronomy (NOVA). RM and HH also
acknowledge support from ERC International Reintegration Grants. This
work was done in part at JPL, run under a contract for NASA by Caltech.
TS is supported by the NSF through grant AST-0444059-001, and by the
Smithsonian Astrophysics Observatory through grant GO0-11147A. YM
acknowledges support from CNES and CNRS/INSU.
NR 101
TC 49
Z9 49
U1 0
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 1
BP 661
EP 678
DI 10.1093/mnras/sts371
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134TT
UT WOS:000318238300072
ER
PT J
AU Rawlings, JI
Seymour, N
Page, MJ
De Breuck, C
Stern, D
Symeonidis, M
Appleton, PN
Dey, A
Dickinson, M
Huynh, M
Le Floc'h, E
Lehnert, M
Mullaney, JR
Nesvadba, N
Ogle, P
Sajina, A
Vernet, J
Zirm, A
AF Rawlings, J. I.
Seymour, N.
Page, M. J.
De Breuck, C.
Stern, D.
Symeonidis, M.
Appleton, P. N.
Dey, A.
Dickinson, M.
Huynh, M.
Le Floc'h, E.
Lehnert, M.
Mullaney, J. R.
Nesvadba, N.
Ogle, P.
Sajina, A.
Vernet, J.
Zirm, A.
TI Polycyclic aromatic hydrocarbon emission in powerful high-redshift radio
galaxies
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: active; galaxies: high-redshift; galaxies: nuclei; quasars:
general; galaxies: star formation
ID ACTIVE GALACTIC NUCLEI; ULTRALUMINOUS INFRARED GALAXIES;
SPITZER-SPACE-TELESCOPE; STAR-FORMING GALAXIES; MOLECULAR-HYDROGEN
EMISSION; SUPERMASSIVE BLACK-HOLES; M SILICATE ABSORPTION; EXTENDED
IONIZED-GAS; DEEP FIELD-SOUTH; AGN DUSTY TORI
AB We present the mid-infrared (IR) spectra of seven of the most powerful radio-galaxies known to exist at 1.5 < z < 2.6. The radio emission of these sources is dominated by the AGN with 500 MHz luminosities in the range 10(27.8)-10(29.1) W Hz(-1). The AGN signature is clearly evident in the mid-IR spectra; however, we also detect polycyclic aromatic hydrocarbon emission, indicative of prodigious star formation at a rate of up to similar to 1000 M-circle dot yr(-1). Interestingly, we observe no significant correlation between AGN power and star formation in the host galaxy. We also find most of these radio galaxies to have weak 9.7 mu m silicate absorption features (tau(9.7 mu m) < 0.8) which implies that their mid-IR obscuration is predominantly due to the dusty torus that surrounds the central engine, rather than the host galaxy. The tori are likely to have an inhomogeneous distribution with the obscuring structure consisting of individual clouds. We estimate that these radio galaxies have already formed the bulk of their stellar mass and appear to lie at a stage in their evolution where the obscured AGN dominates the energy output of the system but star formation is also prevalent.
C1 [Rawlings, J. I.; Seymour, N.; Page, M. J.; Symeonidis, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Seymour, N.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia.
[De Breuck, C.; Vernet, J.] European So Observ, D-85748 Garching, Germany.
[Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Appleton, P. N.] CALTECH, HSC, Pasadena, CA 91125 USA.
[Dey, A.; Dickinson, M.] NOAO Tucson, Tucson, AZ 85719 USA.
[Huynh, M.; Ogle, P.] CALTECH, IPAC, Pasadena, CA 91125 USA.
[Le Floc'h, E.; Mullaney, J. R.] Univ Paris Diderot, CNRS, CEA DSM IRFU, Lab AIM, F-91191 Gif Sur Yvette, France.
[Lehnert, M.; Nesvadba, N.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Mullaney, J. R.] Univ Durham, Dept Phys, Durham DH13 LE2, England.
[Sajina, A.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Sajina, A.] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA.
[Zirm, A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark.
RP Rawlings, JI (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England.
EM jir2@mssl.ucl.ac.uk
OI Vernet, Joel/0000-0002-8639-8560; Seymour, Nicholas/0000-0003-3506-5536;
Appleton, Philip/0000-0002-7607-8766; De Breuck,
Carlos/0000-0002-6637-3315
FU Science and Technologies Facilities Council studentship; Australian
Research Council; NASA through JPL/Caltech; NASA through JPL; Ames
Research Center
FX We thank the anonymous referee and R. C. Hickox for their useful
comments which improved the manuscript. JIR acknowledges the support of
a Science and Technologies Facilities Council studentship. NS is the
recipient of an Australian Research Council Future Fellowship. This work
is based on observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory (JPL), California Institute of
Technology (Caltech) under contract with NASA. Support for this work was
provided by NASA through an award issued by JPL/Caltech. The IRS was a
collaborative venture between Cornell University and Ball Aerospace
Corporation funded by NASA through JPL and Ames Research Center. This
work benefitted from the NASA/IPAC Extragalactic Database (NED), which
is operated by the JPL, Caltech, under contract with NASA.
NR 122
TC 10
Z9 10
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 1
BP 744
EP 756
DI 10.1093/mnras/sts368
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134TT
UT WOS:000318238300076
ER
PT J
AU Dawson, P
Scholz, A
Ray, TP
Marsh, KA
Wood, K
Natta, A
Padgett, D
Ressler, ME
AF Dawson, P.
Scholz, A.
Ray, T. P.
Marsh, K. A.
Wood, K.
Natta, A.
Padgett, D.
Ressler, M. E.
TI New brown dwarf discs in Upper Scorpius observed with WISE
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: photometric; open clusters and associations: individual:
Upper Scorpius; infrared: stars
ID STAR-FORMING REGION; LARGE-AREA SEARCH; LOW-MASS OBJECTS; OB
ASSOCIATION; CHAMELEON-I; PROTOPLANETARY DISKS; STELLAR POPULATION;
ORIONIS CLUSTER; SIGMA-ORIONIS; INNER HOLES
AB We present a census of the disc population for UKIDSS selected brown dwarfs in the 510 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photometry from the Wide-Field Infrared Survey Explorer data base. The resulting colour-magnitude and colour-colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with discs (class II) and without discs (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disc fraction (27 out of 116, or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of discs are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 discs (19 per cent) lack excess at 3.4 and 4.6 mu m and are potential transition discs (i.e. are in transition from class II to class III). The transition disc fraction is comparable to low-mass stars. We estimate that the time-scale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf discs mirrors the behaviour of discs around low-mass stars, with disc lifetimes of the order of 5-10 Myr and a disc clearing time-scale significantly shorter than 1 Myr.
C1 [Dawson, P.; Scholz, A.; Ray, T. P.; Natta, A.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland.
[Marsh, K. A.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Wood, K.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.
[Natta, A.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy.
[Padgett, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ressler, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Dawson, P (reprint author), Dublin Inst Adv Studies, Sch Cosm Phys, 31 Fitzwilliam Pl, Dublin 2, Ireland.
EM dawsonp@tcd.ie
OI Scholz, Aleks/0000-0001-8993-5053
FU Science Foundation Ireland within the Research Frontiers Programme
[10/RFP/AST2780]; National Aeronautics and Space Administration;
National Science Foundation
FX The authors would like to thank Isabelle Baraffe of Exeter University
and France Allard of the Centre de Recherche Astrophysique de Lyon for
supplying model data. This work was supported by Science Foundation
Ireland within the Research Frontiers Programme under grant no.
10/RFP/AST2780. This publication makes use of data products from the
WISE, which is a joint project of the University of California, Los
Angeles, and the Jet Propulsion Laboratory/California Institute of
Technology, funded by the National Aeronautics and Space Administration.
This publication also makes use of data products from the Two Micron All
Sky Survey, which is a joint project of the University of Massachusetts
and the Infrared Processing and Analysis Center/California Institute of
Technology, funded by the National Aeronautics and Space Administration
and the National Science Foundation. We would also like to thank the
UKIDSS Team for the excellent data base they have made available to the
community.
NR 47
TC 13
Z9 13
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 1
BP 903
EP 914
DI 10.1093/mnras/sts386
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134TT
UT WOS:000318238300089
ER
PT J
AU Kaviraj, S
Cohen, S
Windhorst, RA
Silk, J
O'Connell, RW
Dopita, MA
Dekel, A
Hathi, NP
Straughn, A
Rutkowski, M
AF Kaviraj, S.
Cohen, S.
Windhorst, R. A.
Silk, J.
O'Connell, R. W.
Dopita, M. A.
Dekel, A.
Hathi, N. P.
Straughn, A.
Rutkowski, M.
TI The insignificance of major mergers in driving star formation at z
similar or equal to 2
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: bulges; galaxies: evolution; galaxies: formation; galaxies:
high-redshift; galaxies: interactions; galaxies: star formation
ID PASSIVELY EVOLVING GALAXIES; HIGH-REDSHIFT GALAXIES; FORMING GALAXIES;
MASSIVE GALAXIES; SINS SURVEY; FORMATION HISTORIES; DEEP SURVEY; FIELD;
EVOLUTION; MORPHOLOGY
AB We study the significance of major-merger-driven star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M-* > 10(10) M-circle dot) galaxies at z similar or equal to 2. Employing visually classified morphologies from rest-frame V-band Hubble Space Telescope (HST) imaging, we find that 55(+/- 14) per cent of the star formation budget is hosted by non-interacting late types, with 27(+/- 8) per cent in major mergers and 18(+/- 6) per cent in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e. g. cold accretion and minor mergers), similar to 27 per cent is an upper limit to the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late types is similar to 2.2: 1, suggesting that the enhancement of star formation due to major merging is typically modest, and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as similar to 15 per cent. While our study does not preclude a major-merger-dominated era in the very early Universe, if the major-merger contribution to star formation does not evolve strongly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.
C1 [Kaviraj, S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Kaviraj, S.; Silk, J.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Cohen, S.; Windhorst, R. A.; Rutkowski, M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Silk, J.] Inst Astrophys, F-75014 Paris, France.
[O'Connell, R. W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Dopita, M. A.] Australian Natl Univ, Res Sch Phys & Astron, Weston, ACT 2611, Australia.
[Dopita, M. A.] King Abdulaziz Univ, Dept Astron, Jeddah 21413, Saudi Arabia.
[Dekel, A.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
[Hathi, N. P.] Carnegie Observ, Pasadena, CA 91101 USA.
[Straughn, A.] Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
RP Kaviraj, S (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
EM skaviraj@astro.ox.ac.uk
RI Dopita, Michael/P-5413-2014; Hathi, Nimish/J-7092-2014
OI Dopita, Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090
FU 1851 Royal Commission; Imperial College; Worcester College Oxford; NASA
[GO-11359]; NASA JWST Interdisciplinary Scientist grant [NAG5-12460];
ISF [6/08]; GIF [G-1052-104.7/2009]; DIP [STE1869/1-1.GE625/15-1]; NSF
[AST-1010033]
FX We are grateful to the anonymous referee for many constructive comments.
We thank Richard Ellis, Emanuele Daddi and Naveen Reddy for many
interesting discussions and constructive comments. SK acknowledges
fellowships from the 1851 Royal Commission, Imperial College and
Worcester College Oxford. We are grateful to the Director of STScI for
awarding Director's Discretionary time for the WFC3 ERS programme. RWO
acknowledges partial support from NASA grant GO-11359. RAW acknowledges
NASA JWST Interdisciplinary Scientist grant NAG5-12460. AD acknowledges
ISF grant 6/08, GIF grant G-1052-104.7/2009, DIP grant
STE1869/1-1.GE625/15-1 and NSF grant AST-1010033.
NR 62
TC 35
Z9 35
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 1
BP L40
EP L44
DI 10.1093/mnrasl/sls019
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134TT
UT WOS:000318238300009
ER
PT J
AU Smith, KT
Fossey, SJ
Cordiner, MA
Sarre, PJ
Smith, AM
Bell, TA
Viti, S
AF Smith, Keith T.
Fossey, Stephen J.
Cordiner, Martin A.
Sarre, Peter J.
Smith, Arfon M.
Bell, Tom A.
Viti, Serena
TI Small-scale structure in the interstellar medium: time-varying
interstellar absorption towards kappa Velorum
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE ISM: atoms; ISM: individual objects: kappa Vel cloud; ISM: lines and
bands; ISM: molecules; ISM: structure; local interstellar matter
ID HIGH-RESOLUTION OBSERVATIONS; COLD NEUTRAL MEDIUM; ATOMIC-STRUCTURE;
PHYSICAL CONDITIONS; THERMAL PRESSURES; MOLECULAR CLOUDS; I ABSORPTION;
AU-SCALES; CA-II; NA-I
AB Ultra-high spectral resolution observations of time-varying interstellar absorption towards kappa Vel are reported, using the Ultra-High Resolution Facility on the Anglo-Australian Telescope. Detections of interstellar Ca I, Ca II, K I, Na I and CH are obtained, whilst an upper limit on the column density is reported for C-2. The results show continued increases in column densities of K I and Ca I since observations similar to 4 yr earlier, as the transverse motion of the star carried it similar to 10 au perpendicular to the line of sight. Line profile models are fitted to the spectra and two main narrow components (A and B) are identified for all species except CH. The column density N(K I) is found to have increased by 82(-9)(+10) per cent between 1994 and 2006, whilst N(Ca I) is found to have increased by 32 +/- 5 per cent over the shorter period of 2002-2006. The line widths are used to constrain the kinetic temperature to T-k,T- A < 671(-17)(+18) K and T-k,T- B < 114(-14)(+15) K. Electron densities are determined from the Ca I/Ca II ratio, which in turn place lower limits on the total number density of n(A) greater than or similar to 7 x 10(3) cm(-3) and n(B) greater than or similar to 2 x 10(4) cm(-3). Calcium depletions are estimated from the Ca I/K I ratio. Comparison with the chemical models of Bell et al. confirms the high number density, with n = 5 x 10(4) cm(-3) for the best-fitting model. The first measurements of diffuse interstellar bands (DIBs) towards this star are made at two epochs, but only an upper limit of less than or similar to 40 per cent is placed on their variation over similar to 9 yr. The DIBs are unusually weak for the measured E(B - V) and appear to exhibit similar behaviour to that seen in Orion. The ratio of equivalent widths of the lambda 5780 to lambda 5797 DIBs is amongst the highest known, which may indicate that the carrier of lambda 5797 is more sensitive to ultraviolet radiation than to local density.
C1 [Smith, Keith T.; Cordiner, Martin A.; Sarre, Peter J.; Smith, Arfon M.] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England.
[Fossey, Stephen J.; Viti, Serena] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Cordiner, Martin A.] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
[Cordiner, Martin A.] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
[Smith, Arfon M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Bell, Tom A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
[Bell, Tom A.] Ctr Astrobiol CSIC INTA, Madrid 28850, Spain.
RP Smith, KT (reprint author), Royal Astron Soc, Burlington House, London W1J 0BQ, England.
EM kts@ras.org.uk
FU EPSRC; STFC
FX The authors thank PATT for the award of UHRF time on the AAT and for
T&S. SJF and AMS thank Stuart Ryder and the AAO technical staff for
their characteristically excellent support, and Julian Russell for his
assistance with the AAT observations. Ian Crawford and Dan Welty
provided helpful comments on early drafts of this paper, whilst Ian
Howarth provided assistance with the VAPID software. KTS acknowledges
financial support from EPSRC, and MAC visitor funding from STFC.
NR 77
TC 10
Z9 10
U1 0
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 2
BP 939
EP 953
DI 10.1093/mnras/sts310
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134UC
UT WOS:000318239300002
ER
PT J
AU Heinis, S
Buat, V
Bethermin, M
Aussel, H
Bock, J
Boselli, A
Burgarella, D
Conley, A
Cooray, A
Farrah, D
Ibar, E
Ilbert, O
Ivison, RJ
Magdis, G
Marsden, G
Oliver, SJ
Page, MJ
Rodighiero, G
Roehlly, Y
Schulz, B
Scott, D
Smith, AJ
Viero, M
Wang, L
Zemcov, M
AF Heinis, S.
Buat, V.
Bethermin, M.
Aussel, H.
Bock, J.
Boselli, A.
Burgarella, D.
Conley, A.
Cooray, A.
Farrah, D.
Ibar, E.
Ilbert, O.
Ivison, R. J.
Magdis, G.
Marsden, G.
Oliver, S. J.
Page, M. J.
Rodighiero, G.
Roehlly, Y.
Schulz, B.
Scott, Douglas
Smith, A. J.
Viero, M.
Wang, L.
Zemcov, M.
TI HERMES: unveiling obscured star formation - the far-infrared luminosity
function of ultraviolet-selected galaxies at z similar to 1.5
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: statistical; galaxies: luminosity function; infrared: galaxies;
ultraviolet: galaxies
ID FORMATION RATE DENSITY; UV-SELECTED GALAXIES; HERSCHEL-SPIRE INSTRUMENT;
HIGH-REDSHIFT GALAXIES; LYMAN BREAK GALAXIES; GOODS NICMOS SURVEY; VLT
DEEP SURVEY; LESS-THAN 2; FORMING GALAXIES; DUST ATTENUATION
AB We study the far-infrared and sub-millimetre properties of a sample of ultraviolet (UV) selected galaxies at z similar to 1.5. Using stacking at 250, 350 and 500 mu m from Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE) imaging of the Cosmological Evolution Survey (COSMOS) field obtained within the Herschel Multi-tiered Extragalactic Survey (HERMES) key programme, we derive the mean infrared (IR) luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR-selected samples at the faintest luminosities (L-IR similar to 10(11) L-circle dot), but might underestimate them at the bright-end (L-IR greater than or similar to 5 x 10(11) L-circle dot). For galaxies with 10(11) < L-IR/L-circle dot < 10(13), the IR luminosity function of an UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star formation rate density derived from an IR selection. The cosmic star formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far-IR luminosity function from our UV selection at z similar to 1.5. This suggests that a sample around 4 mag deeper (i.e. reaching u* similar to 30 mag) and a large dispersion of the IR to UV luminosity ratio are required.
C1 [Heinis, S.; Buat, V.; Boselli, A.; Burgarella, D.; Ilbert, O.; Roehlly, Y.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Bethermin, M.; Aussel, H.] Univ Paris Diderot, CE Saclay, CNRS, Lab AIM Paris Saclay,CEA,DSM,Irfu, F-91191 Gif Sur Yvette, France.
[Bethermin, M.] Univ Paris 11, IAS, F-91405 Orsay, France.
[Bethermin, M.] CNRS, UMR 8617, F-91405 Orsay, France.
[Bock, J.; Cooray, A.; Schulz, B.; Viero, M.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA.
[Bock, J.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
[Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA.
[Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Magdis, G.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England.
[Marsden, G.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Oliver, S. J.; Smith, A. J.; Wang, L.] Univ Sussex, Ctr Astron, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Rodighiero, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy.
[Schulz, B.] CALTECH, Infrared Proc & Anal Ctr, JPL, Pasadena, CA 91125 USA.
RP Heinis, S (reprint author), Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
EM sebastien.heinis@oamp.fr
RI Magdis, Georgios/C-7295-2014; Ivison, R./G-4450-2011;
OI Magdis, Georgios/0000-0002-4872-2294; Ivison, R./0000-0001-5118-1313;
Scott, Douglas/0000-0002-6878-9840; Rodighiero,
Giulia/0000-0002-9415-2296
FU French Space Agency (CNES); CSA (Canada); NAOC (China); CEA; CNES; CNRS
(France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC; UKSA (UK);
NASA (USA)
FX We thank the referee for a careful reading and detailed, constructive
comments which helped improving the paper. SH and VB thank the French
Space Agency (CNES) for financial support. SPIRE has been developed by a
consortium of institutes led by Cardiff Univ. (UK) and including: Univ.
Lethbridge (Canada); NAOC (China); CEA, LAM(France); IFSI, Univ. Padua
(Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College
London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC,
Univ. Colorado (USA). This development has been supported by national
funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France);
ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA
(USA).
NR 94
TC 43
Z9 43
U1 0
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 2
BP 1113
EP 1132
DI 10.1093/mnras/sts397
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134UC
UT WOS:000318239300016
ER
PT J
AU Barr, ED
Guillemot, L
Champion, DJ
Kramer, M
Eatough, RP
Lee, KJ
Verbiest, JPW
Bassa, CG
Camilo, F
Celik, O
Cognard, I
Ferrara, EC
Freire, PCC
Janssen, GH
Johnston, S
Keith, M
Lyne, AG
Michelson, PF
Parkinson, PMS
Ransom, SM
Ray, PS
Stappers, BW
Wood, KS
AF Barr, E. D.
Guillemot, L.
Champion, D. J.
Kramer, M.
Eatough, R. P.
Lee, K. J.
Verbiest, J. P. W.
Bassa, C. G.
Camilo, F.
Celik, O.
Cognard, I.
Ferrara, E. C.
Freire, P. C. C.
Janssen, G. H.
Johnston, S.
Keith, M.
Lyne, A. G.
Michelson, P. F.
Parkinson, P. M. Saz
Ransom, S. M.
Ray, P. S.
Stappers, B. W.
Wood, K. S.
TI Pulsar searches of Fermi unassociated sources with the Effelsberg
telescope
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE pulsars: general; pulsars: individual: PSR J1745+1017; gamma-rays:
general
ID LARGE-AREA TELESCOPE; GAMMA-RAY PULSARS; EGRET ERROR BOXES; MILLISECOND
PULSAR; RADIO PULSARS; MAGNETIC-FIELDS; SOURCE CATALOG; LIGHT CURVES;
DISCOVERY; EMISSION
AB Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated gamma-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). This survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M-c,M-min similar to 0.0137 M-circle dot, indicative of 'black widow' type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked gamma-ray light curve, proving that PSR J1745+1017 is the source responsible for the gamma-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the gamma-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. The reasons behind the seemingly low yield of discoveries are also discussed.
C1 [Barr, E. D.; Guillemot, L.; Champion, D. J.; Kramer, M.; Eatough, R. P.; Lee, K. J.; Verbiest, J. P. W.; Freire, P. C. C.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Kramer, M.; Bassa, C. G.; Janssen, G. H.; Lyne, A. G.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Camilo, F.] Arecibo Observ, Arecibo, PR 00612 USA.
[Celik, O.; Ferrara, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Celik, O.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA.
[Celik, O.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Celik, O.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Cognard, I.] CNRS, Lab Phys & Chim Environm, LPCE, UMR 6115, F-45071 Orleans 02, France.
[Cognard, I.] Observ Paris, Stn Radioastron Nancay, CNRS INSU, F-18330 Nancay, France.
[Johnston, S.; Keith, M.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Epping, NSW 1710, Australia.
[Michelson, P. F.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA.
[Michelson, P. F.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Parkinson, P. M. Saz] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA.
[Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Ransom, S. M.] Natl Radio Astron Observ NRAO, Charlottesville, VA 22903 USA.
[Ray, P. S.; Wood, K. S.] USN, Space Sci Div, Res Lab, Washington, DC 20375 USA.
RP Barr, ED (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
EM ebarr@mpifr-bonn.mpg.de; guillemo@mpifr-bonn.mpg.de
RI Saz Parkinson, Pablo Miguel/I-7980-2013;
OI Champion, David/0000-0003-1361-7723; Ransom, Scott/0000-0001-5799-9714;
Ray, Paul/0000-0002-5297-5278
FU European Union under Marie-Curie Intra-European Fellowship [236394];
European Research Council under ERC Starting Grant Beacon [279702]; UK
Science and Technology Facilities Council (STFC)
FX JPWV acknowledges support by the European Union under Marie-Curie
Intra-European Fellowship 236394.; PCCF and JPWV acknowledge support by
the European Research Council under ERC Starting Grant Beacon (contract
no. 279702).; We would like to thank Matthew Kerr for his input
regarding initial source selection. Pulsar research and observations at
Jodrell Bank Observatory have been supported through Rolling Grants from
the UK Science and Technology Facilities Council (STFC).
NR 49
TC 21
Z9 21
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 429
IS 2
BP 1633
EP 1642
DI 10.1093/mnras/sts449
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134UC
UT WOS:000318239300056
ER
PT J
AU Eggl, S
Pilat-Lohinger, E
Funk, B
Georgakarakos, N
Haghighipour, N
AF Eggl, S.
Pilat-Lohinger, E.
Funk, B.
Georgakarakos, N.
Haghighipour, N.
TI Circumstellar habitable zones of binary-star systems in the solar
neighbourhood
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE astrobiology; binaries: general
ID ALPHA-CENTAURI-B; HIERARCHICAL TRIPLE-SYSTEMS; PLANET FORMATION; ORBITS;
EVOLUTION; STELLAR; ECCENTRICITY; EXOPLANETS; STABILITY; CANDIDATES
AB Binary and multiple systems constitute more than half of the total stellar population in the solar neighbourhood. Their frequent occurrence as well as the fact that more than 70 planets have already been discovered in such configurations - most notably the telluric companion of a Cen B - make them interesting targets in the search for habitable worlds. Recent studies have shown that despite the variations in gravitational and radiative environment, there are indeed circumstellar regions where planets can stay within habitable insolation limits on secular dynamical time-scales. In this paper, we provide habitable zones for 19 near S-type binary systems from the Hipparcos and Washington Double Star catalogue (WDS) catalogues with semimajor axes between 1 and 100 au. Hereby, we accounted for the combined dynamical and radiative influence of the second star on the Earth-like planet. Out of the 19 systems presented, 17 offer dynamically stable habitable zones around at least one component. The 17 potentially habitable systems contain 5 F, 3 G, 7 K and 16 M class stars. As their proximity to the Solar system (d < 31 pc) makes the selected binary stars exquisite targets for observational campaigns, we offer estimates on radial velocity, astrometric and transit signatures produced by habitable Earth-like planets in eccentric circumstellar orbits.
C1 [Eggl, S.; Pilat-Lohinger, E.; Funk, B.] Univ Vienna, Inst Astrophys IfA, A-1180 Vienna, Austria.
[Georgakarakos, N.] Higher Technol Educ Inst Serres, Terma Magnesias 62124, Serres, Greece.
[Haghighipour, N.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Haghighipour, N.] NASA Astrobiol Inst, Honolulu, HI 96822 USA.
RP Eggl, S (reprint author), Univ Vienna, Inst Astrophys IfA, Turkenschanzstr 17, A-1180 Vienna, Austria.
EM siegfried.eggl@univie.ac.at
OI Funk, Barbara/0000-0001-7233-9730; Georgakarakos,
Nikolaos/0000-0002-7071-5437
FU FWF projects [S11608-N16, P20216-N16, P22603-N16]; NASA Astrobiology
Institute [NNA09DA77A]; NASA EXOB grant [NNX09AN05G]; University of
Vienna's Forschungsstipendium
FX The authors would like to acknowledge the support of FWF projects
S11608-N16 (EP-L and SE), P20216-N16 (SE, EP-L and BF) and P22603-N16
(EP-L and BF). SE and EP-L would like to thank the Institute for
Astronomy and NASA Astrobiology Institute at the University of Hawaii
for their hospitality during their visit when some of the ideas for this
work were developed. NH acknowledges support from the NASA Astrobiology
Institute under Cooperative Agreement NNA09DA77A at the Institute for
Astronomy, University of Hawaii, and NASA EXOB grant NNX09AN05G. SE
acknowledges the support of University of Vienna's Forschungsstipendium
2012. This research has made use of the Washington Double Star Catalog
maintained at the U.S. Naval Observatory.
NR 66
TC 13
Z9 14
U1 0
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 428
IS 4
BP 3104
EP 3113
DI 10.1093/mnras/sts257
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134RM
UT WOS:000318232000024
ER
PT J
AU Wylezalek, D
Vernet, J
De Breuck, C
Stern, D
Galametz, A
Seymour, N
Jarvis, M
Barthel, P
Drouart, G
Greve, TR
Haas, M
Hatch, N
Ivison, R
Lehnert, M
Meisenheimer, K
Miley, G
Nesvadba, N
Rottgering, HJA
Stevens, JA
AF Wylezalek, D.
Vernet, J.
De Breuck, C.
Stern, D.
Galametz, A.
Seymour, N.
Jarvis, M.
Barthel, P.
Drouart, G.
Greve, T. R.
Haas, M.
Hatch, N.
Ivison, R.
Lehnert, M.
Meisenheimer, K.
Miley, G.
Nesvadba, N.
Rottgering, H. J. A.
Stevens, J. A.
TI The Herschel view of the environment of the radio galaxy 4C+41.17 at
z=3.8
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE techniques: photometric; galaxies: clusters: general; galaxies:
high-redshift; galaxies: individual: 4C+41.17
ID SPITZER-SPACE-TELESCOPE; SPECTRAL ENERGY-DISTRIBUTIONS; ACTIVE GALACTIC
NUCLEI; STAR-FORMING GALAXIES; LUMINOSITY FUNCTION; NUMBER COUNTS; ARRAY
CAMERA; 4C 41.17; MU-M; REDSHIFT
AB We present Herschel observations at 70, 160, 250, 350 and 500 mu m of the environment of the radio galaxy 4C+41.17 at z = 3.792. About 65 per cent of the extracted sources are securely identified with mid-infrared sources observed with the Spitzer Space Telescope at 3.6, 4.5, 5.8, 8 and 24 mu m. We derive simple photometric redshifts, also including existing 850 and 1200 mu m data, using templates of active galactic nuclei, starburst-dominated systems and evolved stellar populations. We find that most of the Herschel sources are foreground to the radio galaxy and therefore do not belong to a structure associated with 4C+41.17. We do, however, find that the spectral energy distribution (SED) of the closest (similar to 25 arcsec offset) source to the radio galaxy is fully consistent with being at the same redshift as 4C+41.17. We show that finding such a bright source that close to the radio galaxy at the same redshift is a very unlikely event, making the environment of 4C+41.17 a special case. We demonstrate that multiwavelength data, in particular on the Rayleigh-Jeans side of the SED, allow us to confirm or rule out the presence of protocluster candidates that were previously selected by single wavelength data sets.
C1 [Wylezalek, D.; Vernet, J.; De Breuck, C.; Drouart, G.] European So Observ, D-85748 Garching, Germany.
[Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Galametz, A.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy.
[Seymour, N.] CASS, Epping, NSW 1710, Australia.
[Jarvis, M.; Stevens, J. A.] Univ Hertfordshire, STRI, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Jarvis, M.] Univ Western Cape, Dept Phys, ZA-7535 Bellville, South Africa.
[Barthel, P.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands.
[Drouart, G.] Inst Astrophys, F-75014 Paris, France.
[Greve, T. R.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Haas, M.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany.
[Hatch, N.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Ivison, R.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Ivison, R.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Lehnert, M.] Univ Paris Diderot, CNRS, Observ Paris, GEPI,UMR 8111, F-92190 Meudon, France.
[Meisenheimer, K.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Miley, G.; Rottgering, H. J. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Nesvadba, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France.
RP Wylezalek, D (reprint author), European So Observ, Karl Schwarzschildstr 2, D-85748 Garching, Germany.
EM dwylezal@eso.org
RI Drouart, Guillaume/C-6049-2016; Ivison, R./G-4450-2011;
OI Drouart, Guillaume/0000-0003-2275-5466; Ivison, R./0000-0001-5118-1313;
Hatch, Nina/0000-0001-5600-0534; Vernet, Joel/0000-0002-8639-8560;
Seymour, Nicholas/0000-0003-3506-5536; De Breuck,
Carlos/0000-0002-6637-3315
FU UK Science and Technologies Facilities Council; Australian Research
Council Future Fellowship; NASA
FX TRG acknowledges support from the UK Science and Technologies Facilities
Council. NS is the recipient of an Australian Research Council Future
Fellowship. The work of DS was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. The
Herschel spacecraft was designed, built, tested and launched under a
contract to ESA managed by the Herschel/Planck Project team by an
industrial consortium under the overall responsibility of the prime
contractor Thales Alenia Space (Cannes), and including Astrium
(Friedrichshafen) responsible for the payload module and for system
testing at spacecraft level, Thales Alenia Space (Turin) responsible for
the service module and Astrium (Toulouse) responsible for the telescope,
with in excess of a hundred subcontractors.
NR 59
TC 9
Z9 9
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 428
IS 4
BP 3206
EP 3219
DI 10.1093/mnras/sts264
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134RM
UT WOS:000318232000033
ER
PT J
AU Farinelli, R
Amati, L
Shaposhnikov, N
Frontera, F
Masetti, N
Palazzi, E
Landi, R
Lombardi, C
Orlandini, M
Brocksopp, C
AF Farinelli, R.
Amati, L.
Shaposhnikov, N.
Frontera, F.
Masetti, N.
Palazzi, E.
Landi, R.
Lombardi, C.
Orlandini, M.
Brocksopp, C.
TI Spectral evolution of the X-ray nova XTE J1859+226 during its outburst
observed by BeppoSAX and RXTE
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE accretion, accretion discs; radiative transfer; X-rays: individual: XTE
J1859+226; X-rays: binaries
ID QUASI-PERIODIC OSCILLATIONS; ENERGY CONCENTRATOR SPECTROMETER; ACCRETING
BLACK-HOLES; ASTRONOMY SATELLITE; ON-BOARD; BINARY-SYSTEMS;
NEUTRON-STARS; POWER SPECTRA; CYGNUS X-1; SOFT STATE
AB We report results of an extensive analysis of the X-ray nova XTE J1859+226 observed with BeppoSAX and the Rossi X-ray Timing Explorer during the 1999 source outburst. We modelled the source spectrum with a multicolour blackbody-like feature plus the generic Comptonization model BMC which has the advantage of providing spectral description of the emitted-radiation properties without assumptions on the underlying physical process. The multicolour component is attributed to the geometrically thin accretion disc, while the Comptonization spectrum is claimed to originate in the innermost sub-Keplerian region of the system (transition layer). We find that XTE J1859+226 covers all the spectral states typical of black hole sources during its evolution across the outburst; however, during the very high state, when the disc contribution to the total luminosity is more than 70 per cent and the root mean square variability less than or similar to 5 per cent, the high-energy photon index is closer to a hard state value (Gamma similar to 1.8). The BMC normalization and photon index Gamma well correlate with the radio emission, and we also observed a possible saturation effect of Gamma at the brightest radio emission levels. A strong positive correlation was found between the fractions of Comptonized seed photons and the integrated root mean square variability, which strengthens the idea that most of the fast variability in these systems is attributable to the innermost Compton cloud, which may be also identified as a jet.
C1 [Farinelli, R.; Frontera, F.; Lombardi, C.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy.
[Farinelli, R.] INAF IASF, Sez Palermo, I-90146 Palermo, Italy.
[Amati, L.; Masetti, N.; Palazzi, E.; Landi, R.; Orlandini, M.] INAF IASF, Sez Bologna, I-40129 Bologna, Italy.
[Shaposhnikov, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Brocksopp, C.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
RP Farinelli, R (reprint author), Univ Ferrara, Dipartimento Fis, Via Saragat 1, I-44122 Ferrara, Italy.
EM farinelli@fe.infn.it
RI Orlandini, Mauro/H-3114-2014; Palazzi, Eliana/N-4746-2015; Amati,
Lorenzo/N-5586-2015;
OI Orlandini, Mauro/0000-0003-0946-3151; Amati,
Lorenzo/0000-0001-5355-7388; Palazzi, Eliana/0000-0002-8691-7666;
Masetti, Nicola/0000-0001-9487-7740
FU [ASI-INAF I/009/10/0]
FX RF is grateful to Lev Titarchuk for useful discussions related to the
spectral evolution of X-ray novae, and acknowledges financial support
from agreement ASI-INAF I/009/10/0. The authors also acknowledge the
anonymous referee whose detailed report was helpful in better outlining
the most important results of the paper.
NR 73
TC 5
Z9 5
U1 0
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 428
IS 4
BP 3295
EP 3305
DI 10.1093/mnras/sts273
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134RM
UT WOS:000318232000040
ER
PT J
AU Klus, H
Bartlett, ES
Bird, AJ
Coe, M
Corbet, RHD
Udalski, A
AF Klus, H.
Bartlett, E. S.
Bird, A. J.
Coe, M.
Corbet, R. H. D.
Udalski, A.
TI Swift J045106.8-694803: a highly magnetized neutron star in the Large
Magellanic Cloud
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: magnetars; stars: neutron; X-rays: binaries
ID X-RAY BINARIES; GX 1+4; MAGNETARS; POPULATION; EXTINCTION; SUPERNOVA;
GALAXY; OB
AB We report the analysis of a highly magnetized neutron star in the Large Magellanic Cloud (LMC). The high-mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, the Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission-Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of -5.01 +/- 0.06 s yr(-1), amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh & Lamb accretion theory assuming it has a magnetic field of (1.2 +/-(0.2)(0.7)) x 10(14) G. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631 +/- 0.005 d has been found from Massive Compact Halo Object (MACHO) optical photometry.
C1 [Klus, H.; Bartlett, E. S.; Bird, A. J.; Coe, M.] Univ Southampton, Fac Phys & Appl Sci, Southampton SO17 1BJ, Hants, England.
[Corbet, R. H. D.] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.
[Udalski, A.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Klus, H (reprint author), Univ Southampton, Fac Phys & Appl Sci, Southampton SO17 1BJ, Hants, England.
EM hvk1g11@soton.ac.uk
FU US Department of Energy through the University of California, Lawrence
Livermore National Laboratory [W-7405-Eng-48]; National Science
Foundation through the Center for Particle Astrophysics of the
University of California [AST-8809616]; Mount Stromlo and Siding Spring
Observatory, part of the Australian National University; European
Research Council under the European Community [246678]; STFC;
[088.D-0352(A)]
FX We acknowledge the use of public data from the Swift and RXTE data
archive and are grateful for the advice from Gerry Skinner on the
Swift/BAT data. This paper utilizes public domain data obtained by the
MACHO Project, jointly funded by the US Department of Energy through the
University of California, Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48, by the National Science Foundation through
the Center for Particle Astrophysics of the University of California
under cooperative agreement AST-8809616, and by the Mount Stromlo and
Siding Spring Observatory, part of the Australian National University.
The OGLE project has received funding from the European Research Council
under the European Community's Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 246678 to AU. Optical
observations were also made with ESO Telescopes at the La Silla Paranal
Observatory under programme ID [088.D-0352(A)] and the SAAO 1.9 m
telescope in South Africa. We also thank STFC whose studentships funded
HK and ESB.
NR 43
TC 7
Z9 7
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB
PY 2013
VL 428
IS 4
BP 3607
EP 3617
DI 10.1093/mnras/sts304
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 134RM
UT WOS:000318232000061
ER
PT J
AU Bennett, SA
Coleman, M
Huber, JA
Reddington, E
Kinsey, JC
McIntyre, C
Seewald, JS
German, CR
AF Bennett, Sarah A.
Coleman, Max
Huber, Julie A.
Reddington, Emily
Kinsey, James C.
McIntyre, Cameron
Seewald, Jeffrey S.
German, Christopher R.
TI Trophic regions of a hydrothermal plume dispersing away from an
ultramafic-hosted vent-system: Von Damm vent-site, Mid-Cayman Rise
SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
LA English
DT Article
DE hydrothermal; food web; microorganisms; plume; carbon; ultramafic
ID DE-FUCA RIDGE; DISSOLVED ORGANIC-CARBON; EAST PACIFIC RISE; ENDEAVOR
SEGMENT; ATLANTIC RIDGE; GEOCHEMICAL CONSTRAINTS; COMMUNITY STRUCTURE;
PARTICLE-FLUX; WATER COLUMN; SEA
AB Deep-sea ultramafic-hosted vent systems have the potential to provide large amounts of metabolic energy to both autotrophic and heterotrophic microorganisms in their dispersing hydrothermal plumes. Such vent-systems release large quantities of hydrogen and methane to the water column, both of which can be exploited by autotrophic microorganisms. Carbon cycling in these hydrothermal plumes may, therefore, have an important influence on open-ocean biogeochemistry. In this study, we investigated an ultramafic-hosted system on the Mid-Cayman Rise, emitting metal-poor and hydrogen sulfide-, methane-, and hydrogen-rich hydrothermal fluids. Total organic carbon concentrations in the plume ranged between 42.1 and 51.1 mu M (background = 43.2 +/- 0.7 mu M (n = 5)) and near-field plume samples with elevated methane concentrations imply the presence of chemoautotrophic primary production and in particular methanotrophy. In parts of the plume characterized by persistent potential temperature anomalies but lacking elevated methane concentrations, we found elevated organic carbon concentrations of up to 51.1 mu M, most likely resulting from the presence of heterotrophic communities, their extracellular products and vent larvae. Elevated carbon concentrations up to 47.4 mu M were detected even in far-field plume samples. Within the Von Damm hydrothermal plume, we have used our data to hypothesize a microbial food web in which chemoautotrophy supports a heterotrophic community of microorganisms. Such an active microbial food web would provide a source of labile organic carbon to the deep ocean that should be considered in any future studies evaluating sources and sinks of carbon from hydrothermal venting to the deep ocean.
C1 [Bennett, Sarah A.; Coleman, Max] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
[Coleman, Max] NASA, Astrobiol Inst, Pasadena, CA USA.
[Huber, Julie A.; Reddington, Emily] Marine Biol Lab, Josephine Bay Paul Ctr, Woods Hole, MA 02543 USA.
[Kinsey, James C.; McIntyre, Cameron; Seewald, Jeffrey S.; German, Christopher R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
RP Bennett, SA (reprint author), CALTECH, NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM sarah.a.bennett@jpl.nasa.gov
RI Bennett, Sarah/F-9831-2011; McIntyre, Cameron/D-1222-2016;
OI Bennett, Sarah/0000-0002-9811-4764; McIntyre,
Cameron/0000-0001-8517-9836; Huber, Julie/0000-0002-4790-7633
FU NOAA's Office of Ocean Exploration and Research; Office of Marine and
Aviation Operations; NSF's Division of Ocean Sciences [OCE-1061863];
National Science Foundation [NSF OCE-1061863]; NASA's ASTEP Program
[NNX09AB75G]; NASA ASTEP Program
FX We thank the Commanding Officer and Crew of the NOAA Ship Okeanos
Explorer cruise EX11-04 Mid-Cayman Rise Expedition and R/V Atlantis
AT18-16 together with the Okeanos Explorer Mission team and ROV Jason
team without which this research would not have been possible. The
research reported in this paper was supported by ship time and support
provided by NOAA's Office of Ocean Exploration and Research and the
Office of Marine and Aviation Operations and NSF's Division of Ocean
Sciences (Grant OCE-1061863) and by further shore-based research from
both the National Science Foundation (NSF OCE-1061863) and NASA's ASTEP
Program (Grant # NNX09AB75G). The contributions of SB and MC were
carried out at the Jet Propulsion Laboratory (JPL), California Institute
of Technology, under contract with the National Aeronautics and Space
Administration (NASA), with support from the NASA ASTEP Program.
NR 52
TC 11
Z9 11
U1 2
U2 53
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1525-2027
J9 GEOCHEM GEOPHY GEOSY
JI Geochem. Geophys. Geosyst.
PD FEB
PY 2013
VL 14
IS 2
BP 317
EP 327
DI 10.1002/ggge.20063
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 129FH
UT WOS:000317823900004
ER
PT J
AU Himberg, H
Motai, Y
Bradley, A
AF Himberg, Henry
Motai, Yuichi
Bradley, Arthur
TI A Multiple Model Approach to Track Head Orientation With Delta
Quaternions
SO IEEE TRANSACTIONS ON CYBERNETICS
LA English
DT Article
DE Delta quaternion (DQ); extended Kalman filter (EKF); head orientation;
head tracking; interacting multiple model estimator (IMME); quaternion
prediction
ID ATTITUDE DETERMINATION; VIRTUAL ENVIRONMENTS; TARGET TRACKING; KALMAN
FILTER; TELEOPERATION; REPRESENTATIONS; ALGORITHMS; SYSTEMS
AB Virtual reality and augmented reality environments using helmet-mounted displays create a sense of immersion by closely coupling user head motion to display content. Delays in the presentation of visual information can destroy the sense of presence in the simulation environment when it causes a lag in the display response to user head motion. The effect of display lag can be minimized by predicting head orientation, allowing the system to have sufficient time to counteract the delay. In this paper, a new head orientation prediction technique is proposed that uses a multiple delta quaternion (DQ) extended Kalman filter to track angular head velocity and angular head acceleration. This method is independent of the device used for orientation measurement, relying on quaternion orientation as the only measurement data. A new orientation prediction algorithm is proposed that estimates future head orientation as a function of the current orientation measurement and a predicted change in orientation, using the velocity and acceleration estimates. Extensive experimentation shows that the new method improves head orientation prediction when compared to single filter DQ prediction.
C1 [Himberg, Henry] Polhemus Inc, Colchester, VT 05446 USA.
[Motai, Yuichi] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA.
[Bradley, Arthur] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Himberg, H (reprint author), Polhemus Inc, Colchester, VT 05446 USA.
EM hhimberg@polhemus.com; ymotai@vcu.edu; arthur.t.bradley@nasa.gov
FU School of Engineering at Virginia Commonwealth University; Polhemus
Inc.; Colchester; VT; National Science Foundation Division of
Electrical, Communications and Cyber Systems [1054333]
FX This work was supported in part by the School of Engineering at Virginia
Commonwealth University, by Polhemus Inc., Colchester, VT, and by
National Science Foundation Division of Electrical, Communications and
Cyber Systems #1054333.
NR 41
TC 6
Z9 6
U1 1
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-2267
J9 IEEE T CYBERNETICS
JI IEEE T. Cybern.
PD FEB
PY 2013
VL 43
IS 1
BP 90
EP 101
DI 10.1109/TSMCB.2012.2199311
PG 12
WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics
SC Computer Science
GA 126TG
UT WOS:000317643500008
PM 22692926
ER
PT J
AU McAdoo, DC
Farrell, SL
Laxon, S
Ridout, A
Zwally, HJ
Yi, DH
AF McAdoo, David C.
Farrell, Sinead Louise
Laxon, Seymour
Ridout, Andy
Zwally, H. J.
Yi, Donghui
TI Gravity of the Arctic Ocean from satellite data with validations using
airborne gravimetry: Oceanographic implications
SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
LA English
DT Article
ID SEA-ICE FREEBOARD; LOMONOSOV RIDGE; ALTIMETRY; CIRCULATION; THICKNESS;
ANOMALIES; MISSION; GRACE; BASIN; LASER
AB Precise mappings of sea surface topography, slope, and gravity of the Arctic Ocean are derived from altimeter data collected by Envisat and ICESat. Both altimeters measured instantaneous sea surface height at leads in the sea ice. To reduce contamination by ice-freeboard signal and tracker noise in Envisat height data, a retracking of the waveform data was performed. Analogous reprocessing of ICESat data was also done. Arctic mean sea surfaces (MSSs) were computed from Envisat data spanning 2002-2008 and ICESat data spanning 2003-2009. Farrell et al. (2012) used these "ICEn" MSSs to estimate mean dynamic topography (MDT). These same Envisat and ICESat data are used, in sea-surface-slope form, to compute the ARCtic Satellite-only (ARCS-2) altimetric marine gravity field. ARCS-2 extends north to 86 degrees N and uses GRACE/GOCE gravity data (GOCO02S) for its long-wavelength (>260 km) components. Use of Envisat data improves the spatial resolution over that of existing Arctic marine gravity fields in many areas. ARCS-2's spatial resolution aids in tracing tectonic fabric-e. g., extinct plate boundaries-over broad areas of the Arctic basin whose tectonic origin remains a mystery. ARCS-2's precision is validated using NASA 2010/2011 Operation IceBridge (OIB) airborne gravimetry. ARCS-2 and OIB gravity along with ICEn-MSS results are employed to locate short-wavelength errors approaching 1 m in current Arctic marine geoids (EGM2008). Precise OIB airborne gravity corroborates that such errors in current geoid/gravity models are widespread in Arctic areas lacking accurate surface gravity data. These geoid errors limit the spatial resolution at which MDT can be mapped. Citation: McAdoo, D. C., S. L. Farrell, S. Laxon, A. Ridout, H. J. Zwally, and D. Yi (2013), Gravity of the Arctic Ocean from satellite data with validations using airborne gravimetry: Oceanographic implications, J. Geophys. Res. Oceans, 118, 917-930, doi:10.1002/jgrc.20080.
C1 [McAdoo, David C.; Farrell, Sinead Louise] NOAA, Lab Satellite Altimetry, College Pk, MD USA.
[McAdoo, David C.; Farrell, Sinead Louise] Uni Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA.
[Laxon, Seymour; Ridout, Andy] UCL, Natl Ctr Earth Observat, Ctr Polar Observat & Modelling, London, England.
[Farrell, Sinead Louise; Zwally, H. J.; Yi, Donghui] NASA, Cryospher Sci Branch, Goddard SFC, Greenbelt, MD USA.
RP McAdoo, DC (reprint author), NOAA, Lab Satellite Altimetry, College Pk, MD USA.
EM Dave.McAdoo@noaa.gov
RI Farrell, Sinead/F-5586-2010; McAdoo, Dave/F-5612-2010
OI Farrell, Sinead/0000-0003-3222-2751; McAdoo, Dave/0000-0002-7533-5564
NR 47
TC 7
Z9 7
U1 0
U2 15
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9275
EI 2169-9291
J9 J GEOPHYS RES-OCEANS
JI J. Geophys. Res.-Oceans
PD FEB
PY 2013
VL 118
IS 2
BP 917
EP 930
DI 10.1002/jgrc.20080
PG 14
WC Oceanography
SC Oceanography
GA 129LK
UT WOS:000317840700025
ER
PT J
AU McDunn, T
Bougher, S
Murphy, J
Kleinbohl, A
Forget, F
Smith, M
AF McDunn, T.
Bougher, S.
Murphy, J.
Kleinboehl, A.
Forget, F.
Smith, M.
TI Characterization of middle-atmosphere polar warming at Mars
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; DUST STORMS; THERMAL
STRUCTURE; MESOSPHERE; MARINER-9; SURFACE
AB [1] We characterize middle-atmosphere polar warming (PW) using nearly three Martian years of temperature observations by the Mars Climate Sounder. We report the observed structure of PW and share hypotheses as to possible explanations, which have yet to be tested with global dynamical models. In the data, PW manifested between p = 15 Pa and p(-)4.8 x 10(-3) Pa. The latitude where PW maximized shifted poleward with decreasing pressure. The nightside magnitude was larger than the dayside magnitude. The maximum nightside magnitudes ranged from 22 to 67 K. As expected, the annual maximum magnitude in the north occurred during late-local fall to middle-local winter. In the south it occurred during late-local winter. Also as expected, the maximum magnitude near MY 28' s southern winter solstice was smaller than that at that same year's northern winter solstice, when a global dust storm was occurring. Unexpectedly, the maximum magnitude at southern winter solstice was comparable to that at northern winter solstice for both MY 29 and MY 30, years that did not experience global dust storms but certainly experienced greater dust loading during L-s = 270 degrees than L-s= 90 degrees Another unexpected result was a hemispheric asymmetry in PW magnitude during most of the observed equinoxes. This paper also provides tables of (1) averaged temperatures as a function of latitude, pressure, and season, and (2) the maximum polar warming features as a function of pressure and season. These tables can be used to validate GCM calculations of middle-atmosphere temperatures and constrain calculations of unobserved winds. Citation: McDunn T., S. Bougher, J. Murphy, A. Kleinbohl, F. Forget, and M. Smith (2013), Characterization of middle-atmosphere polar warming at Mars, J. Geophys. Res. Planets, 118, 161-178, doi: 10.1002/jgre.20016.
C1 [McDunn, T.; Bougher, S.] Univ Michigan, Dept AOSS, Ann Arbor, MI 48109 USA.
[Murphy, J.] NMSU, Dept Astron, Las Cruces, NM USA.
[Kleinboehl, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Forget, F.] LMD, Paris, France.
[Smith, M.] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA.
RP McDunn, T (reprint author), Univ Michigan, Dept AOSS, Ann Arbor, MI 48109 USA.
EM tmcdunn@umich.edu
RI sebastianovitsch, stepan/G-8507-2013; Bougher, Stephen/C-1913-2013
OI Bougher, Stephen/0000-0002-4178-2729
FU NASA Earth; Space Science Fellowship
FX We are grateful to Dan McCleese, Tim Schofield, and David Kass for
access to the MCS dataset. We also would like to thank Alexander
Medvedev and an anonymous reviewer for constructive comments that
greatly improved the story and presentation of this paper. Finally,
T.L.M. would like to acknowledge 3 years of funding from the NASA Earth
and Space Science Fellowship.
NR 41
TC 6
Z9 6
U1 1
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD FEB
PY 2013
VL 118
IS 2
BP 161
EP 178
DI 10.1002/jgre.20016
PG 18
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 129MQ
UT WOS:000317845100001
ER
PT J
AU Nahm, AL
Ohman, T
Kring, DA
AF Nahm, Amanda L.
Oehman, Teemu
Kring, David A.
TI Normal faulting origin for the Cordillera and Outer Rook Rings of
Orientale Basin, the Moon
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID CHICXULUB IMPACT CRATER; SLIP DISTRIBUTIONS; THRUST FAULTS; ROCK MASSES;
LUNAR MARIA; DEFORMATION; EVOLUTION; STRESS; LITHOSPHERE; MODELS
AB [1] Orientale Basin is the youngest and best-preserved large impact basin on the Moon with at least four topographic rings contained within the topographic rim marked by the Cordillera Ring (diameter = 930 km). Its well-exposed interior makes this basin a prime location to study basin formation processes. Forward mechanical modeling of basin ring topography shows that the outermost rings, the Cordillera Ring (CR) and Outer Rook Ring (ORR) are large-scale normal faults with displacements (D) of 0.8 to 5.2 km, fault dip angles (partial derivative) of 54 degrees to 80 degrees, and vertical depth of faulting (T) between 19 and 37 km with most faults having T= 30 +/- 5 km. These faults and the distribution of maria inside the basin suggest that the transient crater, important for determining many impact-related characteristics such as projectile size, was contained entirely within the ORR and likely had a diameter between 500 and 550 km. The difference in crustal thickness between the western and eastern sides of the basin is not a result of the basin-forming event, which indicates the formation of the hemispheric crustal thickness asymmetry was likely before the formation of Orientale Basin 3.68 to 3.85 Ga.
C1 [Nahm, Amanda L.; Oehman, Teemu; Kring, David A.] USRA Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX 77058 USA.
[Nahm, Amanda L.; Oehman, Teemu; Kring, David A.] NASA, Lunar Sci Inst, Moffett Field, CA USA.
[Nahm, Amanda L.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA.
RP Nahm, AL (reprint author), Univ Texas El Paso, Dept Geol Sci, 500 W Univ Ave, El Paso, TX 79968 USA.
EM alnahm@utep.edu
RI Nahm, Amanda/F-4602-2011;
OI Nahm, Amanda/0000-0002-3771-6825; Ohman, Teemu/0000-0001-8214-841X
FU NASA [NNX08AC28A]; NASA Lunar Science Institute [NNA09DB33A, NNX09AP33G]
FX The authors thank M. Weller (Rice University) for discussions about
fault modeling using Coulomb, R. Schultz (ConocoPhillips) for detailed
discussions regarding faulting behavior, C. Mercer (LPI and USGS Denver)
and P. McGovern (LPI) for discussions about magma ascent around impact
basins, R. Potter (LPI) for discussions regarding hydrocode models, Y.
Ishihara (National Astronomical Observatory of Japan) for sharing
GIS-compatible crustal thickness data, L. Gaddis (USGS), the USGS ISIS
team, and B. Fessler (LPI) for valuable computer support for ArcMap and
ISIS. We are also grateful for the data collected and provided by the
LRO LOLA team. The authors thank Jeff Andrews-Hanna and Christian
Klimczak for thorough and detailed comments that greatly improved the
manuscript. This research was partially funded by NASA under the LPI
Cooperative Agreement NNX08AC28A, NASA Lunar Science Institute contract
NNA09DB33A (PI David A. Kring), and NASA Outer Planets Research grant
NNX09AP33G (PI B. R. Smith-Konter). This is LPI contribution 1712.
NR 108
TC 12
Z9 12
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD FEB
PY 2013
VL 118
IS 2
BP 190
EP 205
DI 10.1002/jgre.20045
PG 16
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 129MQ
UT WOS:000317845100003
ER
PT J
AU Smith, MD
Wolff, MJ
Clancy, RT
Kleinbohl, A
Murchie, SL
AF Smith, Michael D.
Wolff, Michael J.
Clancy, R. Todd
Kleinboehl, Armin
Murchie, Scott L.
TI Vertical distribution of dust and water ice aerosols from CRISM
limb-geometry observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; RADIATIVE-TRANSFER;
PARTICLE SIZES; MARS AEROSOL; CYCLE; VARIABILITY; SIMULATIONS;
TRANSPORT; STORM
AB Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (similar to 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons. Citation: Smith, M. D., M. J. Wolff, R. T. Clancy, A. Kleinbohl, and S. L. Murchie (2013), Vertical distribution of dust and water ice aerosols from CRISMlimb- geometry observations, J. Geophys. Res. Planets, 118, 321-334, doi:10.1002/jgre.20047.
C1 [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Wolff, Michael J.; Clancy, R. Todd] Space Sci Inst, Boulder, CO USA.
[Kleinboehl, Armin] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
RP Smith, MD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Michael.D.Smith@nasa.gov
RI sebastianovitsch, stepan/G-8507-2013; Murchie, Scott/E-8030-2015
OI Murchie, Scott/0000-0002-1616-8751
FU NASA Mars Reconnaissance Orbiter project
FX The authors acknowledge financial support from the NASA Mars
Reconnaissance Orbiter project as members of the CRISM and MCS Science
Teams and are grateful for all the hard work done by the CRISM
operations team at the Applied Physics Laboratory who performed all the
sequencing and calibration needed to obtain this data set. All data
products used as input to the retrieval process as well as all output
results are available from the author upon request. We thank Scott
Guzewich for a helpful discussion of this work, and we appreciate the
review comments from Mark Richardson and an anonymous referee.
NR 42
TC 16
Z9 16
U1 2
U2 20
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD FEB
PY 2013
VL 118
IS 2
BP 321
EP 334
DI 10.1002/jgre.20047
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 129MQ
UT WOS:000317845100011
ER
PT J
AU McSween, HY
Ammannito, E
Reddy, V
Prettyman, TH
Beck, AW
De Sanctis, MC
Nathues, A
Le Corre, L
O'Brien, DP
Yamashita, N
McCoy, TJ
Mittlefehldt, DW
Toplis, MJ
Schenk, P
Palomba, E
Turrini, D
Tosi, F
Zambon, F
Longobardo, A
Capaccioni, F
Raymond, CA
Russell, CT
AF McSween, Harry Y.
Ammannito, Eleonora
Reddy, Vishnu
Prettyman, Thomas H.
Beck, Andrew W.
De Sanctis, M. Cristina
Nathues, Andreas
Le Corre, Lucille
O'Brien, David P.
Yamashita, Naoyuki
McCoy, Timothy J.
Mittlefehldt, David W.
Toplis, Michael J.
Schenk, Paul
Palomba, Ernesto
Turrini, Diego
Tosi, Federico
Zambon, Francesca
Longobardo, Andrea
Capaccioni, Fabrizio
Raymond, Carol A.
Russell, Christopher T.
TI Composition of the Rheasilvia basin, a window into Vesta's interior
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID ASTEROID 4 VESTA; EUCRITE PARENT BODY; EARLY SOLAR-SYSTEM;
ORTHO-PYROXENE; DIOGENITE METEORITES; REFLECTANCE SPECTRA; HED
METEORITES; DAWN MISSION; ORIGIN; HOWARDITE
AB The estimated excavation depth of the huge Rheasilvia impact basin is nearly twice the likely thickness of the Vestan basaltic crust, so the mantle should be exposed. Spectral mapping by the Dawn spacecraft reveals orthopyroxene-rich materials, similar to diogenite meteorites, in the deepest parts of the basin and within its walls. Significant amounts of olivine are predicted for the mantles of bulk-chondritic bodies like Vesta, and its occurrence is demonstrated by some diogenites that are harzburgite and dunite. However, olivine has so far escaped detection by Dawn's instruments. Spectral detection of olivine in the presence of orthopyroxene is difficult in samples with < 25% olivine, and olivine in Rheasilvia might have been diluted during impact mixing or covered by the collapse of basin walls. The distribution of diogenite inferred from its exposures in and around Rheasilvia provides a geologic context for the formation of these meteorites, but does not clearly distinguish between a magmatic cumulate versus partial melting restite origin for diogenites. The former is favored by geochemical arguments, and crystallization in either a magma ocean or multiple plutons emplaced near the crust-mantle boundary is permitted by Dawn observations. Citation: McSween, H. Y., et al. (2013), Composition of the Rheasilvia basin, a window into Vesta's interior, J. Geophys. Res. Planets, 118, 335-346, doi:10.1002/jgre.20057.
C1 [McSween, Harry Y.] Univ Tennessee, Planetary Geosci Inst, Knoxville, TN 37996 USA.
[McSween, Harry Y.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
[Ammannito, Eleonora; De Sanctis, M. Cristina; Palomba, Ernesto; Turrini, Diego; Tosi, Federico; Zambon, Francesca; Longobardo, Andrea; Capaccioni, Fabrizio] Ist Nazl Astrofis, Ist Astrofis & Planetol Spaziali, Rome, Italy.
[Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
[Reddy, Vishnu] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58201 USA.
[Prettyman, Thomas H.; O'Brien, David P.; Yamashita, Naoyuki] Planetary Sci Inst, Tucson, AZ USA.
[Beck, Andrew W.; McCoy, Timothy J.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA.
[Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA.
[Toplis, Michael J.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.
[Schenk, Paul] Lunar & Planetary Inst, Houston, TX 77058 USA.
[Raymond, Carol A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Russell, Christopher T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
RP McSween, HY (reprint author), Univ Tennessee, Planetary Geosci Inst, Knoxville, TN 37996 USA.
EM mcsween@utk.edu
RI De Sanctis, Maria Cristina/G-5232-2013; Beck, Andrew/J-7215-2015;
OI Turrini, Diego/0000-0002-1923-7740; Capaccioni,
Fabrizio/0000-0003-1631-4314; De Sanctis, Maria
Cristina/0000-0002-3463-4437; Beck, Andrew/0000-0003-4455-2299; Reddy,
Vishnu/0000-0002-7743-3491; Prettyman, Thomas/0000-0003-0072-2831; Le
Corre, Lucille/0000-0003-0349-7932; Palomba,
Ernesto/0000-0002-9101-6774; Tosi, Federico/0000-0003-4002-2434; Zambon,
Francesca/0000-0002-4190-6592
FU NASA's Discovery Program; University of California, Los Angeles; NASA's
Dawn at Vesta Participating Scientists Program; Italian Space Agency;
Max Planck Society; German Space Agency (DLR); Planetary Science
Institute under Jet Propulsion Laboratory
FX This work was funded by NASA's Discovery Program through a contract to
the University of California, Los Angeles, by NASA's Dawn at Vesta
Participating Scientists Program, by the Italian Space Agency, by the
Max Planck Society and German Space Agency (DLR), and by the Planetary
Science Institute under contract with the Jet Propulsion Laboratory,
California Institute of Technology. We appreciate reviews by K. Keil, K.
Righter, and an unnamed reviewer.
NR 79
TC 52
Z9 53
U1 2
U2 14
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD FEB
PY 2013
VL 118
IS 2
BP 335
EP 346
DI 10.1002/jgre.20057
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 129MQ
UT WOS:000317845100012
ER
PT J
AU Malaspina, DM
Newman, DL
Willson, LB
Goetz, K
Kellogg, PJ
Kerstin, K
AF Malaspina, David M.
Newman, David L.
Willson, Lynn B., III
Goetz, Keith
Kellogg, Paul J.
Kerstin, Kris
TI Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability
at Solar Wind Current Sheets
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID MAGNETIC RECONNECTION; LANGMUIR-WAVES; PLASMA; FIELD; SPACECRAFT; HOLES;
DISCONTINUITIES; BOUNDARY; RADIO
AB A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e. g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection. Citation: Malaspina, D. M., D. L. Newman, L. B. Willson III, K. Goetz, P. J. Kellogg, and K. Kerstin (2013), Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets, J. Geophys. Res. Space Physics, 118, 591-599, doi:10.1002/jgra.50102.
C1 [Malaspina, David M.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
[Newman, David L.] Univ Colorado, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA.
[Willson, Lynn B., III] NASA, Goddard Space Flight Ctr Code 672, Greenbelt, MD 20771 USA.
[Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
RP Malaspina, DM (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
EM David.Malaspina@colorado.edu
RI NASA MMS, Science Team/J-5393-2013; Wilson III, Lynn/D-4425-2012
OI NASA MMS, Science Team/0000-0002-9504-5214; Wilson III,
Lynn/0000-0002-4313-1970
FU STEREO/IMPACT phase E grant; STEREO/WAVES phase E grant
FX This work was supported by a STEREO/IMPACT phase E grant and a
STEREO/WAVES phase E grant. The authors would like to acknowledge
helpful conversations with Jack Gosling, Bob Ergun, and Stuart Bale.
NR 44
TC 20
Z9 20
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB
PY 2013
VL 118
IS 2
BP 591
EP 599
DI 10.1002/jgra.50102
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 129RQ
UT WOS:000317860000001
ER
PT J
AU Buzulukova, N
Fok, MC
Roelof, E
Redfern, J
Goldstein, J
Valek, P
McComas, D
AF Buzulukova, N.
Fok, M. -C.
Roelof, E.
Redfern, J.
Goldstein, J.
Valek, P.
McComas, D.
TI Comparative analysis of low-altitude ENA emissions in two substorms
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID MAGNETOSPHERIC SUBSTORM; GROWTH-PHASE; BEHAVIOR; TAIL
AB We report on the dynamics of low-altitude energetic neutral atom (ENA) emissions during two substorms that occurred during the main phases of two storms: (1) a CIR-driven storm on 11 October 2008 and (2) a coronal mass ejection (CME)-driven storm on 5 April 2010. For both of these storms, we have complementary spacecraft and ground-based observations. The dual-spacecraft Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission obtained ENA images containing low-altitude emissions (LAEs). Substorm dynamics is inferred from THEMIS all-sky imagers. TWINS-observed LAEs are compared with trapped/loss cone proton fluxes from the low-altitude NOAA/MetOp spacecraft constellation. We find that the timing and intensity profiles of LAEs are different for the two selected events. For the 11 October 2008 event, the LAEs rise during substorm recovery phase and storm main phase. On 5 April 2010, the LAEs tend to peak near substorm onset. We argue that the different LAE behavior results from different pitch-angle distributions (PADs) of the ion source population. Ion PADs are isotropic during substorm recovery phase for the 11 October 2008 event and have empty loss cone for the 5 April 2010 event. For both cases, LAE intensification marks the onset of activity in the magnetotail and precedes the large substorm onset. We conclude that the LAE production starts in the transition region between the magnetotail and ring current and may expand/move into the inner magnetosphere together with ring current formation. Citation: Buzulukova, N., M.-C. Fok, E. Roelof, J. Redfern, J. Goldstein, P. Valek, and D. McComas (2013), Comparative analysis of low-altitude ENA emissions in two substorms, J. Geophys. Res. Space Physics, 118, 724-731, doi:10.1002/jgra.50103.
C1 [Buzulukova, N.; Fok, M. -C.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA.
[Buzulukova, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Redfern, J.; Goldstein, J.; Valek, P.; McComas, D.] SW Res Inst, San Antonio, TX USA.
[Goldstein, J.; Valek, P.; McComas, D.] Univ Texas San Antonio, San Antonio, TX USA.
RP Buzulukova, N (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 673,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM nbuzulukova@gmail.com
RI Fok, Mei-Ching/D-1626-2012;
OI Valek, Philip/0000-0002-2318-8750
FU SWRI [799106L]; NASA [955518.02.01.02.57]
FX We acknowledge THEMIS data provider, S. Mende and E. Donavan at UCB and
University of Calgary, respectively, NASA NASS-0289 and CDAWeb. SYMH,
AU, and AL data were obtained from Kyoto WDC for Geomagnetism.
NOAA/MetOp data were obtained from the NOAA website
http://www.ngdc.noaa.gov/stp/satellite/poes/dataaccess.html. Coordinates
of the THEMIS stations were taken from the THEMIS website
http://themis.igpp.ucla.edu/instrument_gmags.shtml. This work was
carried out as a part of the TWINS mission, which is part of NASA's
Explorer Program. The effort at JHU/APL was carried out under
subcontract 799106L from SWRI. For N.B. and M.-C. F., this work was also
supported by NASA Heliophysics Guest Investigators Program, under Work
Breakdown Structure 955518.02.01.02.57.
NR 26
TC 6
Z9 6
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB
PY 2013
VL 118
IS 2
BP 724
EP 731
DI 10.1002/jgra.50103
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 129RQ
UT WOS:000317860000015
ER
PT J
AU Omidi, N
Sibeck, D
Blanco-Cano, X
Rojas-Castillo, D
Turner, D
Zhang, H
Kajdic, P
AF Omidi, N.
Sibeck, D.
Blanco-Cano, X.
Rojas-Castillo, D.
Turner, D.
Zhang, H.
Kajdic, P.
TI Dynamics of the foreshock compressional boundary and its connection to
foreshock cavities
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID EARTHS BOW SHOCK; UPSTREAM SOLAR-WIND; MAGNETIC-FIELD; IONS; WAVES;
POPULATIONS; ASSOCIATION; SIMULATIONS; ISEE-2
AB We use several global hybrid (kinetic ions, fluid electrons) simulation runs for steady and time-varying interplanetary magnetic field (IMF) conditions to examine the dynamics of the foreshock compressional boundary (FCB) and its connection to foreshock cavities. The results demonstrate that for steady IMF conditions, the FCB forms and evolves over a long period of time due to the dynamics of the bow shock and ion foreshock. Formation of the FCB is tied to the generation and nonlinear evolution of ULF waves associated with large-amplitude fluctuations in magnetic field and density within the foreshock. As a result, even during steady IMF conditions, the transitions in the magnetic field strength and direction across an FCB evolve. Although the FCB itself is associated with increases in the magnetic field strength and density, these quantities are reduced on the turbulent side of the FCB as compared to the pristine solar wind. Hybrid simulations with time-varying IMF have been performed to examine the relationship between the FCB and foreshock cavities generated under two possible scenarios. In the first scenario, a bundle of field lines connects to an otherwise quasi-perpendicular bow shock and results in the formation of a finite-sized foreshock region that travels with this bundle of field lines as it connects to different parts of the bow shock surface. Two FCBs bound the traveling foreshock region. In the second scenario, solar wind discontinuities cause the IMF cone angle (angle between the IMF and the solar wind flow direction) to vary and thereby modify the foreshock geometry and the position of the FCB. We demonstrate that structures similar to foreshock cavities bounded by FCBs form in both scenarios. We show that the two scenarios cannot be distinguished based on convecting or nonconvecting FCBs. We also demonstrate that depending on spacecraft location and the nature of the solar wind discontinuities, foreshock cavities may be bounded by an FCB on one side and a foreshock bubble on the other. Citation: Omidi, N., D. Sibeck, X. Blanco-Cano, D. Rojas-Castillo, D. Turner, H. Zhang, and P. Kajdic (2013), Dynamics of the foreshock compressional boundary and its connection to foreshock cavities, J. Geophys. Res. Space Physics, 118, 823-831, doi:10.1002/jgra.50146.
C1 [Omidi, N.] Solana Sci Inc, Solana Beach, CA 92075 USA.
[Sibeck, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Blanco-Cano, X.; Rojas-Castillo, D.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico.
[Turner, D.] Univ Calif Los Angeles, Dept Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
[Zhang, H.] Univ Alaska Fairbanks, Fairbanks, AK USA.
[Kajdic, P.] Inst Rech Astrophys & Planetol, Toulouse, France.
RP Omidi, N (reprint author), Solana Sci Inc, 777 S Pacific Coast HWY,208, Solana Beach, CA 92075 USA.
EM omidi@solanasci.com
RI Turner, Drew/G-3224-2012
FU NSF [AGS-1007449]; NASA's THEMIS mission; CONACYT
FX Work for this project was supported by NSF Grant AGS-1007449 and NASA's
THEMIS mission. DRC's work was supported by CONACYT through a PhD
scholarship.
NR 30
TC 9
Z9 9
U1 1
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB
PY 2013
VL 118
IS 2
BP 823
EP 831
DI 10.1002/jgra.50146
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 129RQ
UT WOS:000317860000023
ER
PT J
AU Kil, H
Lee, WK
Shim, J
Paxton, LJ
Zhang, Y
AF Kil, H.
Lee, W. K.
Shim, J.
Paxton, L. J.
Zhang, Y.
TI The effect of the 135.6nm emission originated from the ionosphere on the
TIMED/GUVI O/N-2 ratio
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID ULTRAVIOLET IMAGER GUVI; STORM; DAYGLOW; THERMOSPHERE; DISTURBANCES;
MISSION
AB The column number density ratio of atomic oxygen to molecular nitrogen (O/N-2 ratio) provided by the Global Ultraviolet Imager (GUVI) onboard the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite has been used as a diagnostic of the thermospheric neutral composition. However, a recent study claimed that the GUVI O/N-2 ratio is not a pure thermospheric parameter in low latitudes during periods of low geomagnetic activity. This study quantifies the O/N-2 ratio contamination by the ionosphere using the GUVI observations and model ionosphere acquired from 31 August to 2 September 2002. During this period, the local time of the GUVI observation was near 1500 and the average Kp index was 2 degrees. The 135.6nm emission originated from the ionosphere is estimated using the electron density profiles provided by the Utah State University-Global Assimilation of Ionospheric Measurements model. Our results show that the 135.6nm emission originated from the equatorial ionization anomaly (EIA) contributes 5 similar to 10% to the total 135.6nm intensity and O/N-2 ratio. The EIA feature and longitudinal wave patterns in the GUVI 135.6nm intensity maps are identified above an altitude of 300km and show a good agreement with those in the F region plasma density. However, the EIA feature and longitudinal wave patterns do not appear in the GUVI 135.6nm intensity maps below an altitude of 300km and in the GUVI N-2 Lyman-Birge-Hopfield band intensity maps in any altitude. These observations indicate that the longitudinal wave patterns in the GUVI O/N-2 ratio represent the ionospheric phenomenon. Citation: Kil, H., W. K. Lee, J. Shim, L. J. Paxton, and Y. Zhang (2013), The effect of the 135.6nm emission originated from the ionosphere on the TIMED/GUVI O/N-2 ratio, J. Geophys. Res. Space Physics, 118, 859-865, doi: 10.1029/2012JA018112.
C1 [Kil, H.; Lee, W. K.; Paxton, L. J.; Zhang, Y.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD USA.
[Lee, W. K.] Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA.
[Shim, J.] Univ Maryland Baltimore Cty, NASA, Goddard Space Flight Ctr, Goddard Planetary Heliophys Inst, Greenbelt, MD USA.
RP Kil, H (reprint author), Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD USA.
EM hyosub.kil@jhuapl.edu
RI Paxton, Larry/D-1934-2015; Kil, Hyosub/C-2577-2016; Zhang,
Yongliang/C-2180-2016
OI Paxton, Larry/0000-0002-2597-347X; Kil, Hyosub/0000-0001-8288-6236;
Zhang, Yongliang/0000-0003-4851-1662
FU NASA [NNX12AD17G]; NSF National Space Weather Program [AGS-1024886];
University of Science and Technology Post-Doc Research Program in Korea
FX H. Kil acknowledges support from NASA NNX12AD17G and NSF National Space
Weather Program (AGS-1024886) grants. W. K. Lee acknowledges support
from University of Science and Technology Post-Doc Research Program in
Korea. Simulation results have been provided by the Community
Coordinated Modeling Center (CCMC) at Goddard Space Flight Center
through their public Runs on Request system (http://ccmc.gsfc.nasa.gov).
The CCMC is a multi-agency partnership between NASA, AFMC, AFOSR, AFRL,
AFWA, NOAA, NSF and ONR. The USU-GAIM Model was developed by the GAIM
team (R. W. Schunk, L. Scherliess, J. J. Sojka, D. C. Thompson, and L.
Zhu) at Utah State University.
NR 34
TC 4
Z9 4
U1 2
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB
PY 2013
VL 118
IS 2
BP 859
EP 865
DI 10.1029/2012JA018112
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 129RQ
UT WOS:000317860000028
ER
PT J
AU Khazanov, GV
Glocer, A
Liemohn, MW
Himwich, EW
AF Khazanov, G. V.
Glocer, A.
Liemohn, M. W.
Himwich, E. W.
TI Superthermal electron energy interchange in the ionosphere-plasmasphere
system
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID PHOTOELECTRON FLUXES; CROSS-SECTIONS; TRANSPORT; MODEL; PHOTOIONIZATION;
MAGNETOSPHERE; TEMPERATURE; ATMOSPHERE
AB A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks. Citation: Khazanov, G. V., A. Glocer, M. W. Liemohn, and E. W. Himwich (2013), Superthermal electron energy interchange in the ionosphere-plasmasphere system, J. Geophys. Res. Space Physics, 118, 925-934, doi: 10.1002/jgra.50127.
C1 [Khazanov, G. V.; Glocer, A.; Himwich, E. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Liemohn, M. W.] Univ Michigan, Ann Arbor, MI USA.
RP Glocer, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM alex.glocer-1@nasa.gov
RI Liemohn, Michael/H-8703-2012; Glocer, Alex/C-9512-2012; feggans,
john/F-5370-2012
OI Liemohn, Michael/0000-0002-7039-2631; Glocer, Alex/0000-0001-9843-9094;
FU National Aeronautics and Space Administration SMD/Heliophysics
Supporting Research program for Geospace SRT
FX This material is based on work supported by the National Aeronautics and
Space Administration SMD/Heliophysics Supporting Research program for
Geospace SR&T. The authors would like to thank the reviewers for their
useful comments.
NR 42
TC 5
Z9 5
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB
PY 2013
VL 118
IS 2
BP 925
EP 934
DI 10.1002/jgra.50127
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 129RQ
UT WOS:000317860000036
ER
PT J
AU Lee, HB
Jee, G
Kim, YH
Shim, JS
AF Lee, H. -B.
Jee, G.
Kim, Y. H.
Shim, J. S.
TI Characteristics of global plasmaspheric TEC in comparison with the
ionosphere simultaneously observed by Jason-1 satellite
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID TOTAL ELECTRON-CONTENT; TOPEX/POSEIDON MISSION; SOLAR-CYCLE; GPS TEC;
DENSITY; MODEL; DISTURBANCE; DEPLETION; FLUX
AB We compared the global plasmaspheric total electron content (pTEC) with the ionospheric TEC (iTEC) simultaneously measured by Jason-1 satellite during the declining phase of solar cycle 23 (2002-2009) to investigate the global morphology of the plasmaspheric density in relation to the ionosphere. Our study showed that the plasmaspheric density structures fundamentally follow the ionosphere, but there are also significant differences between them. Although the diurnal variations are very similar to each region, the plasmasphere shows much weaker variations, only approximately 1 TECU day-night difference. By analyzing the day-night differences in the plasmasphere, we found that the plasmaspheric contribution to the nighttime ionosphere does not increase with solar activity and the largest contribution occurs during June solstice. The plasmasphere shows similar seasonal variations to the ionosphere, except for the semiannual variation, which is essentially absent in the plasmasphere. There is also an important difference in the annual variation: although the annual variation in the ionosphere exists regardless of longitude, it occurs only at American sector in the plasmasphere. As solar activity increases to moderate level, the pTEC substantially enhances from approximately 2 to 4 TECU at the initial increase of solar activity below F10.7p = 100 and then quickly slows down while the iTEC almost linearly enhances. Although it is well known that magnetic storms are the major source of plasmaspheric density depletion, pTEC does not show this aspect of the plasmasphere probably due to the relatively small K-p values for high magnetic activity (K-p > 2.5) in the current study. Citation: Lee, H.-B., G. Jee, Y. H. Kim, and J. S. Shim (2013), Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite, J. Geophys. Res. Space Physics, 118, 935-946, doi: 10.1002/jgra.50130.
C1 [Lee, H. -B.; Jee, G.] Korea Polar Res Inst, Div Polar Climate Sci, Inchon, South Korea.
[Lee, H. -B.; Kim, Y. H.] Chungnam Natl Univ, Dept Space & Astron, Taejon, South Korea.
[Shim, J. S.] Univ Maryland Baltimore Cty, Goddard Planetary Heliophys Inst, NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Jee, G (reprint author), Korea Polar Res Inst, Div Polar Climate Sci, Inchon, South Korea.
EM ghjee@kopri.re.kr
FU Korea Polar Research Institute [PE12320]
FX This work was supported by the project PE12320 at the Korea Polar
Research Institute. The Jason-1 TEC data were obtained from the Physical
Oceanography Distributed Active Archive Center (PO.DAAC) at the NASA Jet
Propulsion Laboratory.
NR 37
TC 31
Z9 31
U1 4
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB
PY 2013
VL 118
IS 2
BP 935
EP 946
DI 10.1002/jgra.50130
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 129RQ
UT WOS:000317860000037
ER
PT J
AU Voss, KA
Famiglietti, JS
Lo, MH
de Linage, C
Rodell, M
Swenson, SC
AF Voss, Katalyn A.
Famiglietti, James S.
Lo, MinHui
de Linage, Caroline
Rodell, Matthew
Swenson, Sean C.
TI Groundwater depletion in the Middle East from GRACE with implications
for transboundary water management in the Tigris-Euphrates-Western Iran
region
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID CLIMATE EXPERIMENT GRACE; TIME-VARIABLE GRAVITY; SATELLITE-OBSERVATIONS;
CANADIAN PRAIRIE; MODEL; STORAGE; SYSTEM; PRECIPITATION; ASSIMILATION;
VARIABILITY
AB In this study, we use observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to evaluate freshwater storage trends in the north-central Middle East, including portions of the Tigris and Euphrates River Basins and western Iran, from January 2003 to December 2009. GRACE data show an alarming rate of decrease in total water storage of approximately -27.2 +/- 0.6 mm yr(-1) equivalent water height, equal to a volume of 143.6 km(3) during the course of the study period. Additional remote-sensing information and output from land surface models were used to identify that groundwater losses are the major source of this trend. The approach used in this study provides an example of "best current capabilities" in regions like the Middle East, where data access can be severely limited. Results indicate that the region lost 17.3 +/- 2.1 mm yr(-1) equivalent water height of groundwater during the study period, or 91.3 +/- 10.9 km(3) in volume. Furthermore, results raise important issues regarding water use in transboundary river basins and aquifers, including the necessity of international water use treaties and resolving discrepancies in international water law, while amplifying the need for increased monitoring for core components of the water budget. Citation: Voss, K. A., J. S. Famiglietti, M. Lo, C. de Linage, M. Rodell, and S. C. Swenson (2013), Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region, Water Resour. Res., 49, doi: 10.1002/wrcr.20078.
C1 [Voss, Katalyn A.] Georgetown Univ, Sch Foreign Serv, Sci Technol & Int Affairs Program, Washington, DC 20057 USA.
[Voss, Katalyn A.; Famiglietti, James S.; Lo, MinHui] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA 92697 USA.
[Famiglietti, James S.; de Linage, Caroline] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Lo, MinHui] Natl Taiwan Univ, Dept Atmospher Sci, Taipei 10764, Taiwan.
[Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA.
[Swenson, Sean C.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA.
RP Famiglietti, JS (reprint author), Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA 92697 USA.
EM jfamigli@uci.edu
RI Rodell, Matthew/E-4946-2012;
OI Rodell, Matthew/0000-0003-0106-7437; LO, MIN-HUI/0000-0002-8653-143X
FU NASA GRACE Science Team; MRPI program of the University of California
Office of the President
FX The authors thank J. T. Reager, UC Center for Hydrologic Modeling, and
T. Beach, C. Weiss, and E. Stephen, Georgetown University, for their
valuable comments. This work was funded by grants from the NASA GRACE
Science Team and the MRPI program of the University of California Office
of the President.
NR 82
TC 112
Z9 113
U1 5
U2 98
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD FEB
PY 2013
VL 49
IS 2
BP 904
EP 914
DI 10.1002/wrcr.20078
PG 11
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 129HA
UT WOS:000317828600017
ER
PT J
AU Brown, ME
Escobar, VM
Aschbacher, J
Milagro-Perez, MP
Doorn, B
Macauley, MK
Friedl, L
AF Brown, Molly E.
Escobar, Vanessa M.
Aschbacher, Josef
Milagro-Perez, Maria Pilar
Doorn, Bradley
Macauley, Molly K.
Friedl, Lawrence
TI Policy for robust space-based earth science, technology and applications
SO SPACE POLICY
LA English
DT Article
ID GMES; MODIS; PRODUCTS; MISSION; NASA
AB Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions. Published by Elsevier Ltd.
C1 [Brown, Molly E.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA.
[Escobar, Vanessa M.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Sigma Space Corp, Greenbelt, MD 20771 USA.
[Aschbacher, Josef] European Space Agcy, ESRIN, I-00044 Rome, Italy.
[Milagro-Perez, Maria Pilar] European Space Agcy, ESRIN, GMES Space Off, I-00044 Rome, Italy.
[Doorn, Bradley; Friedl, Lawrence] NASA Headquarters, Div Earth Sci, Washington, DC 20546 USA.
[Macauley, Molly K.] Resources Future Inc, Washington, DC 20036 USA.
RP Brown, ME (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Code 618, Greenbelt, MD 20771 USA.
EM molly.brown@nasa.gov; vanessa.escobar@nasa.gov;
Josef.aschbacher@esa.int; Maria.milagro@esa.int; Bradley.Doorn@nasa.gov;
macauley@rff.org; LFriedl@nasa.gov
RI Brown, Molly/E-2724-2010
OI Brown, Molly/0000-0001-7384-3314
NR 34
TC 1
Z9 1
U1 0
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0265-9646
J9 SPACE POLICY
JI Space Policy
PD FEB
PY 2013
VL 29
IS 1
BP 76
EP 82
DI 10.1016/j.spacepol.2012.11.007
PG 7
WC International Relations; Social Sciences, Interdisciplinary
SC International Relations; Social Sciences - Other Topics
GA 120JM
UT WOS:000317166600011
ER
PT J
AU Brown, D
Cole, S
Webster, G
Agle, DC
Chicoine, RA
Rickman, J
Hoover, R
Mitrofanov, I
Ravine, M
Hassler, D
Cueste, L
Jones, NN
Barnstorff, K
Faccio, R
Apuzzo, MLJ
Pagan, VM
AF Brown, Dwayne
Cole, Steve
Webster, Guy
Agle, D. C.
Chicoine, Ruth Ann
Rickman, James
Hoover, Rachel
Mitrofanov, Igor
Ravine, Michael
Hassler, Donald
Cueste, Luis
Jones, Nancy Neal
Barnstorff, Kathy
Faccio, Rodrick
Apuzzo, Michael L. J.
Pagan, Veronica M.
TI The Mars Science Laboratory Landing
SO WORLD NEUROSURGERY
LA English
DT Article
DE Frontiers; Instrumentation; Imaging; Mars; Miniaturization; Robotics;
Space exploration
C1 [Brown, Dwayne; Cole, Steve] NASAs Mars Program Headquarters, Washington, DC USA.
[Webster, Guy; Agle, D. C.] Mars Sci Lab Mission Jet Prop Lab, Pasadena, CA USA.
[Chicoine, Ruth Ann] Canadian Space Agcy, St Hubert, PQ, Canada.
[Rickman, James] Los Alamos Natl Lab, Los Alamos, NM USA.
[Hoover, Rachel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Mitrofanov, Igor] Space Res Inst, Moscow, Russia.
[Ravine, Michael] Malin Space Sci Syst, San Diego, CA USA.
[Hassler, Donald] SW Res Inst, Boulder, CO USA.
[Cueste, Luis] Ctr Astrobiol, Madrid, Spain.
[Jones, Nancy Neal] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Barnstorff, Kathy] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Faccio, Rodrick; Apuzzo, Michael L. J.; Pagan, Veronica M.] Univ So Calif, Keck Sch Med, Dept Neurol Surg, Los Angeles, CA 90033 USA.
RP Faccio, R (reprint author), Univ So Calif, Keck Sch Med, Dept Neurol Surg, Los Angeles, CA 90033 USA.
NR 0
TC 2
Z9 2
U1 0
U2 12
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1878-8750
J9 WORLD NEUROSURG
JI World Neurosurg.
PD FEB
PY 2013
VL 79
IS 2
BP 223
EP 242
DI 10.1016/j.wneu.2013.01.099
PG 20
WC Clinical Neurology; Surgery
SC Neurosciences & Neurology; Surgery
GA 125JV
UT WOS:000317537000006
PM 23385447
ER
PT J
AU Anderson, MS
AF Anderson, M. S.
TI Atomic force microscope mediated chromatography
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
AB An atomic force microscope (AFM) is presented as an instrument for rapid, miniaturized chromatography. The AFM is used to inject a sample, provide shear driven liquid flow over a functionalized substrate, and detect separated components. The components are then analyzed with surface enhanced Raman spectroscopy using AFM deposition of gold nanoparticles on the separated bands. This AFM mediated chromatography (AFM-MC) is demonstrated using lipophilic dyes and normal phase chemistry. A significant reduction in both size and separation time scales is achieved with 25 mu m length scale and 1 s separation times. AFM-MC has general applications to trace chemical analysis and microfluidics. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792380]
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Anderson, MS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Mark.S.Anderson@jpl.nasa.gov
NR 17
TC 2
Z9 2
U1 2
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD FEB
PY 2013
VL 84
IS 2
AR 025114
DI 10.1063/1.4792380
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 117LJ
UT WOS:000316954600078
PM 23464258
ER
PT J
AU Xu, J
Sahai, N
Eggleston, CM
Schoonen, MAA
AF Xu, Jie
Sahai, Nita
Eggleston, Carrick M.
Schoonen, Martin A. A.
TI Reactive oxygen species at the oxide/water interface: Formation
mechanisms and implications for prebiotic chemistry and the origin of
life
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE radical; titania; Fe2O3; mineral surface; prebiotic chemistry; origin of
life
ID DIFFUSE-REFLECTANCE SPECTROSCOPY; HYDROXYL RADICAL GENERATION;
TITANIUM-DIOXIDE; DNA-DAMAGE; SEMICONDUCTOR PARTICLES;
LIPID-PEROXIDATION; ORGANIC-MOLECULES; HYDROGEN-PEROXIDE;
BACILLUS-SUBTILIS; SURFACE-CHEMISTRY
AB The goal of our study is to identify free radical formation pathways on mineral surfaces. Organic molecules on early Earth might have been modified or decomposed by such pathways, thus affecting the total organic inventory for prebiotic synthesis reactions. Specifically, we evaluated several common oxide minerals under a range of environmental conditions and combinations of conditions (pH, O-2 level, UV-wavelength, and particle loading), for formation of highly reactive oxygen species (ROS) at the oxide surfaces by quantifying the generated [OH center dot] and [H2O2]. We identified anatase/rutile (beta-TiO2/alpha-TiO2) and hematite (alpha-Fe2O3) as active in ROS production and, importantly, found different dominant pathways for ROS formation on anatase/rutile versus hematite. Hydroxyl radicals (OH center dot) in anatase and rutile suspensions were generated mainly through the oxidation of OH- by photo-generated holes and H2O2 was generated through the combination of an OH center dot radical with an OH- and a hole. This pathway for the TiO2 phases did not require the presence of O-2, and was not shut down under anaerobic conditions. In contrast, formation of H2O2 and OH center dot in hematite suspensions involved reduction of O-2 by electrons, which was inhibited under anaerobic conditions. The surface ROS as well as free radicals formed by reactions with other gases on early Earth atmosphere were capable of destroying molecules such as lipids and pre-RNA or RNA essential to assembly of protocells and survival of the earliest cells. At the same time, surface associated ROS and other free radicals may also have promoted aminoamide formation. Thus, the surface ROS would have affected prebiotic organic compound inventory and protocell/early life evolution. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Xu, Jie] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.
[Xu, Jie; Sahai, Nita] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA.
[Xu, Jie] George Washington Univ, Dept Chem, Washington, DC 20052 USA.
[Sahai, Nita] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA.
[Sahai, Nita] Univ Akron, NASA Astrobiol Inst, Akron, OH 44325 USA.
[Eggleston, Carrick M.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA.
[Schoonen, Martin A. A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.
[Schoonen, Martin A. A.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA.
RP Xu, J (reprint author), George Washington Univ, Dept Chem, 725 21st St NW, Washington, DC 20052 USA.
EM jxu@email.gwu.edu; sahai@uakron.edu
RI Schoonen, martin/E-7703-2011; XU, JIE/K-5516-2015
OI Schoonen, martin/0000-0002-7133-1160;
FU NSF [EAR 0346689]; NASA Astrobiology Institute Director's Discretionary
Fund (NAI DDF); University of Akron; Weeks Graduate Fellowship;
Department of Geoscience, the University of Wisconsin-Madison (UW)
FX This research was supported by an NSF CAREER Award (EAR 0346689), NASA
Astrobiology Institute Director's Discretionary Fund (NAI DDF 2008 and
2009) grants and start-up funds from University of Akron to N.S. J.X.
was partially supported by a Weeks Graduate Fellowship, Department of
Geoscience, the University of Wisconsin-Madison (UW). We are grateful to
Ms. Shavonne Hylton, Stony Brook University, for sharing the ROS
measurement protocol; Prof. Judyth Burstyn, Department of Chemistry, UW
and Prof. Huifang Xu, Departments of Geoscience, UW, respectively, for
use of the fluorospectrometer and the B.E.T. specific surface analyzer;
and Dr. Nianli Zhang for HRTEM particle characterization.
NR 114
TC 14
Z9 15
U1 5
U2 82
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD FEB 1
PY 2013
VL 363
BP 156
EP 167
DI 10.1016/j.epsl.2012.12.008
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 113CH
UT WOS:000316643300016
ER
PT J
AU Czaja, AD
Johnson, CM
Beard, BL
Roden, EE
Li, WQ
Moorbath, S
AF Czaja, Andrew D.
Johnson, Clark M.
Beard, Brian L.
Roden, Eric E.
Li, Weiqiang
Moorbath, Stephen
TI Biological Fe oxidation controlled deposition of banded iron formation
in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland)
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE Isua Supracrustal Belt; Fe isotopes; femtosecond laser-ablation;
anoxygenic phototrophs; Fe oxidation; Early Archean
ID BILLION YEARS AGO; ARCHEAN MOLECULAR FOSSILS; GREENSTONE-BELT; ISOTOPE
FRACTIONATION; SOUTHWEST GREENLAND; HEMATITE FORMATION;
SEDIMENTARY-ROCKS; AQUEOUS FE(II); SW GREENLAND; FERROUS IRON
AB The redox balance of the Archean atmosphere-ocean system is among the most significant uncertainties in our understanding of the earliest history of Earth's surface zone. Most workers agree that oxygen did not constitute a significant proportion of the atmosphere until after ca. 2.45 Ga, after the Great Oxidation Event, but there is less agreement on when O-2 production began, and how this may have been consumed by reduced species such as Fe(II) in the oceans. The Fe redox cycle through time has been traced using banded iron formations (BIFs), and Fe isotopes are increasingly used to constrain the conditions of Earth's paleoenvironments, including the pathways of formation of BIFs. Iron isotope analyses of BIFs from the 3.7 to 3.8 Ga Isua Supracrustal Belt (ISB), obtained by micro-sampling of magnetite-rich layers and conventional analysis, as well as by in situ femtosecond laser ablation (fs-LA-ICP-MS), indicate a consistently narrow range of non-zero delta Fe-56 values. Analysis of magnetite by fs-LA-ICP-MS allows for precise and accurate micron-scale analyses without the problems of orientation effects that are associated with secondary ion mass spectrometry (SIMS) analyses. Magnetite delta Fe-56 values range from +0.4 parts per thousand to +1.1 parts per thousand among different bands, but within individual layers magnetite grains are mostly homogeneous. Although these BIFs have been metamorphosed to amphibolite-facies, the metamorphism can neither explain the range in Fe isotope compositions across bands, nor that between hand samples. The isotopic compositions therefore reflect "primary", low-temperature sedimentary values. The positive delta Fe-56 values measured from the ISB magnetites are best explained by deposition of Fe(III)-oxides produced by partial oxidation of Fe(II)-rich ocean water. A dispersion/reaction model, which accounts for rates of hydrothermal Fe(II)(aq) input, rates of oxidation, and rates of Fe(OH)(3) settling suggests exceptionally low O-2 contents, <0.001% of modern O-2 contents in the photic zone. Such low levels suggest an anoxygenic pathway is more likely, and the data can be well modeled by anoxygenic photosynthetic Fe(II) oxidation. Comparison of the Fe isotope data from the Isua BIFs with those from the 2.5 Ga BIFs from the Hamersley and Transvaal basins (Australia and South Africa, respectively) suggests a striking difference in Fe sources and pathways. The 2.5 Ga magnetite facies BIFs of Australia and South Africa have delta Fe-56 values that range from -1.2 parts per thousand to +1.2 parts per thousand over small scales, and are on average close to 0 parts per thousand, which is significantly lower than those reported here from the Isua BIFs. The wide range in Fe isotope compositions for the Hamersley and Transvaal BIFs, in concert with C and O isotope data, have been interpreted to reflect bacterial dissimilatory Fe(III) reduction (DIR). The absence of low delta Fe-56 values in the Isua BIFs, as well as the lack of fine-scale isotopic heterogeneity, may indicate formation prior to widespread DIR. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.
[Czaja, Andrew D.; Johnson, Clark M.; Beard, Brian L.; Roden, Eric E.; Li, Weiqiang] Univ Wisconsin, NASA Astrobiol Inst, Madison, WI 53706 USA.
[Moorbath, Stephen] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England.
RP Czaja, AD (reprint author), Univ Cincinnati, Dept Geol, POB 210013, Cincinnati, OH 45221 USA.
EM andrew.czaja@uc.edu
RI Li, Weiqiang/D-2975-2011
OI Li, Weiqiang/0000-0003-2648-7630
FU NSF; NASA
FX Conventional Fe isotope measurements and whole-rock geochemical analyses
were performed by M. Herrick. We also thank J. Fournelle for his
assistance with electron microprobe analyses and C. Kelly for use of
Merchanteck micro-mill. Finally, we thank Associate Editor T. Harrison
and two anonymous reviewers whose comments improved the manuscript. The
samples studied here that were originally reported by R. Dymek are part
of the extensive BIF collections of C. Klein that were donated to the
Department of Geoscience at the University of Wisconsin, Madison by C.
Klein. This work was funded by NSF and NASA grants to C.M.J. and B.L.B.
NR 92
TC 43
Z9 44
U1 4
U2 68
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD FEB 1
PY 2013
VL 363
BP 192
EP 203
DI 10.1016/j.epsl.2012.12.025
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 113CH
UT WOS:000316643300019
ER
PT J
AU Babcock, C
Matney, J
Finley, AO
Weiskittel, A
Cook, BD
AF Babcock, Chad
Matney, Jason
Finley, Andrew O.
Weiskittel, Aaron
Cook, Bruce D.
TI Multivariate Spatial Regression Models for Predicting Individual Tree
Structure Variables Using LiDAR Data
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article
DE Bayesian; forestry; Gaussian process; LiDAR; MCMC; spatial random
effects
ID MULTISPECTRAL DATA; AIRBORNE LIDAR; FOREST; COREGIONALIZATION; SURFACE;
VOLUME
AB This study assesses univariate and multivariate spatial regression models for predicting individual tree structure variables using Light Detection And Ranging (LiDAR) covariates. Many studies have used covariates derived from LiDAR to help explain the variability in tree, stand, or forest variables at a fine spatial resolution across a specified domain. Few studies use regression models capable of accommodating residual spatial dependence between field measurements. Failure to acknowledge this spatial dependence can result in biased and perhaps misleading inference about the importance of LiDAR covariates and erroneous prediction. Accommodating residual spatial dependence, via spatial random effects, helps to meet basic model assumptions and, as illustrated in this study, can improve model fit and prediction. When multiple correlated tree structure variables are considered, it is attractive to specify joint models that are able to estimate the within tree covariance structure and use it for subsequent prediction for unmeasured trees. We capture within tree residual covariances by specifying a model with multivariate spatial random effects. The univariate and multivariate spatial random effects models are compared to those without random effects using a data set collected on the U.S. Forest Service Penobscot Experimental Forest, Maine. These data comprise individual tree measurements including geographic position, height, average crown length, average crown radius, and diameter at breast height.
C1 [Finley, Andrew O.] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA.
[Babcock, Chad; Matney, Jason; Finley, Andrew O.] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA.
[Weiskittel, Aaron] Univ Maine, Sch Forest Resources, Orono, ME 04469 USA.
[Cook, Bruce D.] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Finley, AO (reprint author), Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA.
EM babcoc76@msu.edu; matneyja@msu.edu; finleya@msu.edu;
aaron.weiskittel@maine.edu; bruce.cook@nasa.gov
RI Cook, Bruce/M-4828-2013
OI Cook, Bruce/0000-0002-8528-000X
FU NASA Carbon Monitoring System [11-CMS11-0021]; NSF [EF-1137309,
DMS-1106609, EF-1029808, EF-1138160, EF-1150319, DBI-0752017]; NASA
[11-CMS11-0028]; National Ecological Observatory Network (NEON)
FX The work of all authors was supported by NASA Carbon Monitoring System
Grant 11-CMS11-0021. The work of A. O. Finley was supported by NSF
EF-1137309, DMS-1106609, and NASA Grant 11-CMS11-0028. This work was
also supported by The National Ecological Observatory Network (NEON)
which is a project sponsored by the NSF Grants EF-1029808, EF-1138160,
EF-1150319 and DBI-0752017 and managed under cooperative agreement by
NEON, Inc.
NR 28
TC 7
Z9 7
U1 1
U2 30
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD FEB
PY 2013
VL 6
IS 1
SI SI
BP 6
EP 14
DI 10.1109/JSTARS.2012.2215582
PG 9
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 110UG
UT WOS:000316471600002
ER
PT J
AU Rosette, J
North, PRJ
Rubio-Gil, J
Cook, B
Los, S
Suarez, J
Sun, GQ
Ranson, J
Blair, JB
AF Rosette, Jacqueline
North, Peter R. J.
Rubio-Gil, Jeremy
Cook, Bruce
Los, Sietse
Suarez, Juan
Sun, Guoqing
Ranson, Jon
Blair, J. Bryan
TI Evaluating Prospects for Improved Forest Parameter Retrieval From
Satellite LiDAR Using a Physically-Based Radiative Transfer Model
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article
DE Forest biophysical parameter estimation; landcover type; radiative
transfer modeling; satellite lidar; slope
ID WAVE-FORM LIDAR; VEGETATION HEIGHT; LASER ALTIMETER; AVHRR DATA;
VALIDATION; TOPOGRAPHY; AIRBORNE; BIOMASS; CANOPIES; CARBON
AB A space-based full-waveform LiDAR system, optimised for vegetation analysis, offers the opportunity for global biophysical parameter retrieval of the world's forests. However the conditions under which signals from the ground and vegetation can be detected will vary as a result of sensor specifications, vegetation characteristics and underlying surface properties. This paper demonstrates the utility of a ray tracing radiative transfer model for assessing sensitivity to site-specific conditions (e. g., topography, canopy and ground reflectance) that will improve our ability to estimate structural parameters in forest ecosystems.
Specifications for the LiDAR instrument planned for NASA's Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission, a vegetation-focused mission that was cancelled in 2011, were used to explore the effect of slope on the estimation of vegetation height. Slope was a limitation for NASA's previous satellite LiDAR mission, ICESat, which used a large, 70 m footprint, designed primarily for cryospheric applications.
Simulations with the FLIGHT model suggested that the smaller footprint (similar to 25 m diameter) would enable ground to be reliably identified with automated peak-finding algorithms for canopy cover of 77% and slopes up to 30 degrees. The challenging objective of detecting a ground signal for almost complete canopy closure of 98% was achieved in the simulations for slopes up to 10 degrees.
These results suggest that a satellite LiDAR instrument optimised for vegetation analysis will provide good estimates of vegetation height for all but the most extreme forest environments. The reduced footprint diameter in comparison with the ICESat instrument, GLAS, and continuous along-track sampling will provide a unique dataset to allow improved confidence of the distribution of forest parameters.
C1 [Rosette, Jacqueline] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA.
[North, Peter R. J.; Los, Sietse] Swansea Univ, Swansea SA2 8PP, W Glam, Wales.
[Rosette, Jacqueline; Suarez, Juan] Forest Res Northern Res Stn, Roslin EH25 9SY, Midlothian, Scotland.
[Rubio-Gil, Jeremy] Univ Toulouse, Ctr Etud Spatiales BIOsphere CESBIO, Toulouse, France.
[Rubio-Gil, Jeremy] Univ Maryland, Greenbelt, MD 20771 USA.
[Rubio-Gil, Jeremy; Cook, Bruce; Sun, Guoqing; Ranson, Jon; Blair, J. Bryan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Rosette, J (reprint author), Swansea Univ, Swansea SA2 8PP, W Glam, Wales.
EM j.a.rosette@swansea.ac.uk; p.r.j.north@swansea.ac.uk;
jeremy.rubio-1@nasa.gov; bruce.cook@nasa.gov; s.o.los@swansea.ac.uk;
juan.suarez@forestry.gsi.gov.uk; guoqing.sun-1@nasa.gov;
kenneth.j.ranson@nasa.gov; james.b.blair@nasa.gov
RI Los, Sietse/G-8985-2012; Blair, James/D-3881-2013; Cook,
Bruce/M-4828-2013; North, Peter/A-1616-2009; Beckley,
Matthew/D-4547-2013;
OI Cook, Bruce/0000-0002-8528-000X; North, Peter/0000-0001-9933-6935; Los,
Sietse/0000-0002-1325-3555
FU NASA DESDynI LiDAR Project; NASA's Carbon Monitoring System initiative;
U.K. Natural Environment Research Council [NE/F021437/1]
FX This work was supported by the former NASA DESDynI LiDAR Project, NASA's
Carbon Monitoring System initiative and the U.K. Natural Environment
Research Council [NE/F021437/1].
NR 39
TC 9
Z9 10
U1 3
U2 58
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD FEB
PY 2013
VL 6
IS 1
SI SI
BP 45
EP 53
DI 10.1109/JSTARS.2013.2244199
PG 9
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 110UG
UT WOS:000316471600006
ER
PT J
AU Vadrevu, KP
Csiszar, I
Ellicott, E
Giglio, L
Badarinath, KVS
Vermote, E
Justice, C
AF Vadrevu, Krishna Prasad
Csiszar, Ivan
Ellicott, Evan
Giglio, Louis
Badarinath, K. V. S.
Vermote, Eric
Justice, Chris
TI Hotspot Analysis of Vegetation Fires and Intensity in the Indian Region
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article
DE Fires; FRP; India; vegetation
ID BOREAL FOREST; MODIS; BIOMASS; LANDSCAPE; EMISSIONS; DYNAMICS; TROPICS;
ECOSYSTEM; SAVANNA; FLORIDA
AB In this study, we quantify vegetation fire activity in India using the MODerate resolution Imaging Spectroradiometer (MODIS) active fire datasets. We assessed different fire regime attributes, i.e., fire frequency, seasonality, intensity and the type of vegetation burnt in diverse geographical regions. MODIS data from 2002-2010 revealed an average of 63696 fire counts per year with the highest during 2009. Fire season in India extends from October to June with the peak during March. The K-means algorithm identified hotspot regions of fire clusters in diverse regions of India. We examined fire radiative power (FRP) data in the hotspot regions to address which fires burn intensively than others based on the vegetation type. We first assessed the best statistical fit distributions for the FRP data using the probability density functions (PDFs) and ranked them based on Kolmogorov-Smirnov statistic. We then described the fire intensities using empirical cumulative distribution functions (CDFs). Results suggest diverse pdfs for the FRP data that included Burr, Dagum, Johnson as well as Pearson distribution and they varied based on the vegetation type burnt. Analysis from empirical CDFs suggested relatively high fire intensity for closed broadleaved evergreen/ semi-deciduous forests than the other vegetation types. Although, annual sum of FRP for agricultural fires was less than the closed broadleaved evergreen forests, the values were higher than the mosaic vegetation category and broadleaved deciduous forests. These results on fire hotspots and FRP will be useful to address the impact of vegetation fires on air pollution and climate in India.
C1 [Vadrevu, Krishna Prasad; Ellicott, Evan; Giglio, Louis; Vermote, Eric; Justice, Chris] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
[Csiszar, Ivan] NOAA, Satellite Meteorol & Climatol Div, NESDIS Ctr Satellite Applicat & Res, Camp Springs, MD 20746 USA.
[Giglio, Louis] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Badarinath, K. V. S.] Govt India, Natl Remote Sensing Ctr, Dept Space, Hyderabad, Andhra Pradesh, India.
RP Vadrevu, KP (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
RI Csiszar, Ivan/D-2396-2010;
OI Vadrevu, Krishna/0000-0003-4407-5605
FU NASA [NNX10AU77G]
FX This work was supported by NASA grant NNX10AU77G.
NR 63
TC 9
Z9 9
U1 1
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD FEB
PY 2013
VL 6
IS 1
SI SI
BP 224
EP 238
DI 10.1109/JSTARS.2012.2210699
PG 15
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 110UG
UT WOS:000316471600023
ER
PT J
AU Vaishampayan, P
Probst, AJ
La Duc, MT
Bargoma, E
Benardini, JN
Andersen, GL
Venkateswaran, K
AF Vaishampayan, Parag
Probst, Alexander J.
La Duc, Myron T.
Bargoma, Emilee
Benardini, James N.
Andersen, Gary L.
Venkateswaran, Kasthuri
TI New perspectives on viable microbial communities in low-biomass
cleanroom environments
SO ISME JOURNAL
LA English
DT Article
DE viability; microarray; 454 pyrosequencing; PMA; PhyloChip; 16S rRNA gene
ID RIBOSOMAL-RNA GENES; PROPIDIUM MONOAZIDE; QUANTITATIVE PCR; WATER
SAMPLES; ETHIDIUM MONOAZIDE; CLONE LIBRARY; DEEP-SEA; BACTERIA;
DIVERSITY; SPACECRAFT
AB The advent of phylogenetic DNA microarrays and high-throughput pyrosequencing technologies has dramatically increased the resolution and accuracy of detection of distinct microbial lineages in mixed microbial assemblages. Despite an expanding array of approaches for detecting microbes in a given sample, rapid and robust means of assessing the differential viability of these cells, as a function of phylogenetic lineage, remain elusive. In this study, pre-PCR propidium monoazide (PMA) treatment was coupled with downstream pyrosequencing and PhyloChip DNA microarray analyses to better understand the frequency, diversity and distribution of viable bacteria in spacecraft assembly cleanrooms. Sample fractions not treated with PMA, which were indicative of the presence of both live and dead cells, yielded a great abundance of highly diverse bacterial pyrosequences. In contrast, only 1% to 10% of all of the pyrosequencing reads, arising from a few robust bacterial lineages, originated from sample fractions that had been pre-treated with PMA. The results of PhyloChip analyses of PMA-treated and -untreated sample fractions were in agreement with those of pyrosequencing. The viable bacterial population detected in cleanrooms devoid of spacecraft hardware was far more diverse than that observed in cleanrooms that housed mission-critical spacecraft hardware. The latter was dominated by hardy, robust organisms previously reported to survive in oligotrophic cleanroom environments. Presented here are the findings of the first ever comprehensive effort to assess the viability of cells in low-biomass environmental samples, and correlate differential viability with phylogenetic affiliation. The ISME Journal (2013) 7, 312-324; doi: 10.1038/ismej.2012.114; published online 11 October 2012
C1 [Vaishampayan, Parag; La Duc, Myron T.; Bargoma, Emilee; Benardini, James N.; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA.
[Probst, Alexander J.] Univ Regensburg, Dept Microbiol, D-93053 Regensburg, Germany.
[Probst, Alexander J.] Univ Regensburg, Archaea Ctr, D-93053 Regensburg, Germany.
[Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA.
RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, M-S 89-108,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM kjvenkat@jpl.nasa.gov
RI Andersen, Gary/G-2792-2015; Probst, Alexander/K-2813-2016
OI Andersen, Gary/0000-0002-1618-9827;
FU German National Academic Foundation (Studienstiftung des deutschen
Volkes)
FX Part of the research described in this study was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration. AJP's
contribution was supported by the German National Academic Foundation
(Studienstiftung des deutschen Volkes). We are grateful to T DeSantis, L
Tom, for PhyloChip analyses, S Westcott and P Schloss, for pyrosequence
analysis, J Andy Spry and K Buxbaum for valuable advice and guidance. We
thank M Cooper and C Stam for assistance with sample collection and
processing, and acknowledge Y Sun at Research and Technology Laboratory
for all next-generation sequencing and assistance with TEFAP analyses.
NR 59
TC 25
Z9 25
U1 1
U2 26
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
J9 ISME J
JI ISME J.
PD FEB
PY 2013
VL 7
IS 2
BP 312
EP 324
DI 10.1038/ismej.2012.114
PG 13
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA 114EI
UT WOS:000316723300009
PM 23051695
ER
PT J
AU Ham, YG
Kug, JS
Park, JY
Jin, FF
AF Ham, Yoo-Geun
Kug, Jong-Seong
Park, Jong-Yeon
Jin, Fei-Fei
TI Sea surface temperature in the north tropical Atlantic as a trigger for
El Nino/Southern Oscillation events
SO NATURE GEOSCIENCE
LA English
DT Article
ID NINO-SOUTHERN-OSCILLATION; INDIAN-OCEAN; WARM POOL; VARIABILITY; ENSO;
PACIFIC; SST; CIRCULATION; RAINFALL; CLIMATE
AB El Nino events, the warm phase of the El Nino/Southern Oscillation (ENSO), are known to affect other tropical ocean basins through teleconnections. Conversely, mounting evidence suggests that temperature variability in the Atlantic Ocean may also influence ENSO variability(1-5). Here we use reanalysis data and general circulation models to show that sea surface temperature anomalies in the north tropical Atlantic during the boreal spring can serve as a trigger for ENSO events. We identify a subtropical teleconnection in which spring warming in the north tropical Atlantic can induce a low-level cyclonic atmospheric flow over the eastern Pacific Ocean that in turn produces a low-level anticyclonic flow over the western Pacific during the following months. This flow generates easterly winds over the western equatorial Pacific that cool the equatorial Pacific and may trigger a La Nina event the following winter. In addition, El Nino events led by cold anomalies in the north tropical Atlantic tend to be warm-pool El Nino events, with a centre of action located in the central Pacific(6,7), rather than canonical El Nino events. We suggest that the identification of temperature anomalies in the north tropical Atlantic could help to forecast the development of different types of El Nino event.
C1 [Ham, Yoo-Geun] NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD 20771 USA.
[Ham, Yoo-Geun] Univ Space Res Assoc, Columbia, MD 21044 USA.
[Kug, Jong-Seong; Park, Jong-Yeon] Korea Inst Ocean Sci & Technol, Ansan 426744, South Korea.
[Jin, Fei-Fei] Univ Hawaii, Dept Meteorol, Honolulu, HI 96822 USA.
RP Ham, YG (reprint author), NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD 20771 USA.
EM jskug@kiost.ac
RI KUG, JONG-SEONG/A-8053-2013
FU National Research Foundation of Korea [NRF-2009-C1AAA001-2009-0093042];
Korean government (MEST); KIOST [PE98801]; US NSF [ATM1034798]; US
Department of Energy [DESC005110]; US NOAA [NA10OAR4310200]
FX This work was supported by the National Research Foundation of Korea
(Grant NRF-2009-C1AAA001-2009-0093042) funded by the Korean government
(MEST), and KIOST (PE98801). F.F.J. was supported by US NSF grant
ATM1034798, US Department of Energy grant DESC005110 and US NOAA grant
NA10OAR4310200.
NR 30
TC 51
Z9 53
U1 6
U2 39
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
J9 NAT GEOSCI
JI Nat. Geosci.
PD FEB
PY 2013
VL 6
IS 2
BP 112
EP 116
DI 10.1038/NGEO1686
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 117HO
UT WOS:000316944400015
ER
PT J
AU Michalski, JR
Cuadros, J
Niles, PB
Parnell, J
Rogers, AD
Wright, SP
AF Michalski, Joseph R.
Cuadros, Javier
Niles, Paul B.
Parnell, John
Rogers, A. Deanne
Wright, Shawn P.
TI Groundwater activity on Mars and implications for a deep biosphere
SO NATURE GEOSCIENCE
LA English
DT Article
ID MERIDIANI PLANUM; IMPACT CRATERS; HIGH OBLIQUITY; ARABIA TERRA;
SUBSURFACE; ICE; LIFE; HISTORY; WATER; PHYLLOSILICATES
AB By the time eukaryotic life or photosynthesis evolved on Earth, the martian surface had become extremely inhospitable, but the subsurface of Mars could potentially have contained a vast microbial biosphere. Crustal fluids may have welled up from the subsurface to alter and cement surface sediments, potentially preserving clues to subsurface habitability. Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins. Many ancient, deep basins lack evidence for groundwater activity. However, McLaughlin Crater, one of the deepest craters on Mars, contains evidence for Mg-Fe-bearing clays and carbonates that probably formed in an alkaline, groundwater-fed lacustrine setting. This environment strongly contrasts with the acidic, water-limited environments implied by the presence of sulphate deposits that have previously been suggested to form owing to groundwater upwelling. Deposits formed as a result of groundwater upwelling on Mars, such as those in McLaughlin Crater, could preserve critical evidence of a deep biosphere on Mars. We suggest that groundwater upwelling on Mars may have occurred sporadically on local scales, rather than at regional or global scales.
C1 [Michalski, Joseph R.; Cuadros, Javier] Nat Hist Museum, Dept Earth Sci, London SW7 5BD, England.
[Michalski, Joseph R.] Planetary Sci Inst, Tucson, AZ 85719 USA.
[Niles, Paul B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Parnell, John] Univ Aberdeen, Aberdeen AB24 3UE, Scotland.
[Rogers, A. Deanne] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Wright, Shawn P.] Auburn Univ, Auburn, AL 36849 USA.
RP Michalski, JR (reprint author), Nat Hist Museum, Dept Earth Sci, Cromwell Rd, London SW7 5BD, England.
EM michalski@psi.edu
RI Rogers, Deanne/I-9737-2016
OI Rogers, Deanne/0000-0002-4671-2551
FU NASA; European Commission
FX We thank S. Clifford and K. Lewis for comments that greatly improved the
manuscript. We acknowledge NASA's Mars Data Analysis Program and the
European Commission Marie Curie Actions for funding of various portions
of this research.
NR 50
TC 55
Z9 56
U1 9
U2 77
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
EI 1752-0908
J9 NAT GEOSCI
JI Nat. Geosci.
PD FEB
PY 2013
VL 6
IS 2
BP 133
EP 138
DI 10.1038/NGEO1706
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 117HO
UT WOS:000316944400020
ER
PT J
AU Aunai, N
Hesse, M
Zenitani, S
Kuznetsova, M
Black, C
Evans, R
Smets, R
AF Aunai, Nicolas
Hesse, Michael
Zenitani, Seiji
Kuznetsova, Maria
Black, Carrie
Evans, Rebekah
Smets, Roch
TI Comparison between hybrid and fully kinetic models of asymmetric
magnetic reconnection: Coplanar and guide field configurations
SO PHYSICS OF PLASMAS
LA English
DT Article
ID ELECTRON PHYSICS; MAGNETOPAUSE; TRANSPORT; DENSITY; PLASMAS; LAYER
AB Magnetic reconnection occurring in collisionless environments is a multi-scale process involving both ion and electron kinetic processes. Because of their small mass, the electron scales are difficult to resolve in numerical and satellite data, it is therefore critical to know whether the overall evolution of the reconnection process is influenced by the kinetic nature of the electrons, or is unchanged when assuming a simpler, fluid, electron model. This paper investigates this issue in the general context of an asymmetric current sheet, where both the magnetic field amplitude and the density vary through the discontinuity. A comparison is made between fully kinetic and hybrid kinetic simulations of magnetic reconnection in coplanar and guide field systems. The models share the initial condition but differ in their electron modeling. It is found that the overall evolution of the system, including the reconnection rate, is very similar between both models. The best agreement is found in the guide field system, which confines particle better than the coplanar one, where the locality of the moments is violated by the electron bounce motion. It is also shown that, contrary to the common understanding, reconnection is much faster in the guide field system than in the coplanar one. Both models show this tendency, indicating that the phenomenon is driven by ion kinetic effects and not electron ones. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792250]
C1 [Aunai, Nicolas; Hesse, Michael; Kuznetsova, Maria; Black, Carrie; Evans, Rebekah] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA.
[Zenitani, Seiji] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan.
[Smets, Roch] Univ Paris 06, Ecole Polytech, Lab Phys Plasmas, F-91128 Palaiseau, France.
RP Aunai, N (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Code 674, Greenbelt, MD 20771 USA.
EM nicolas.aunai@nasa.gov
RI Zenitani, Seiji/D-7988-2013; feggans, john/F-5370-2012; NASA MMS,
Science Team/J-5393-2013
OI Zenitani, Seiji/0000-0002-0945-1815; NASA MMS, Science
Team/0000-0002-9504-5214
FU NASA
FX Three of us (N.A., C.B., and R.E.) acknowledge support from the NASA
postdoctoral program. M.H. acknowledges support from the theory and
modeling group of NASA's MMS.
NR 30
TC 12
Z9 12
U1 1
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD FEB
PY 2013
VL 20
IS 2
AR 022902
DI 10.1063/1.4792250
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 122BK
UT WOS:000317289800049
ER
PT J
AU Khazanov, GV
Krivorutsky, EN
AF Khazanov, G. V.
Krivorutsky, E. N.
TI Ponderomotive force in the presence of electric fields
SO PHYSICS OF PLASMAS
LA English
DT Article
ID MAGNETIC-FIELD; ACCELERATION; PLASMA; WAVE
AB This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an (E) over right arrow x (B) over right arrow B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces. [http://dx.doi.org/10.1063/1.4789874]
C1 [Khazanov, G. V.; Krivorutsky, E. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Khazanov, GV (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RI feggans, john/F-5370-2012
FU National Aeronautics and Space Administration SMD/Heliophysics
Supporting Research program for Geospace SRT
FX This material is based upon work supported by the National Aeronautics
and Space Administration SMD/Heliophysics Supporting Research program
for Geospace SR&T. We are grateful to Robert F. Benson and both referees
for helpful comments.
NR 15
TC 1
Z9 1
U1 1
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD FEB
PY 2013
VL 20
IS 2
AR 022903
DI 10.1063/1.4789874
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 122BK
UT WOS:000317289800050
ER
PT J
AU DiRienzi, J
Drachman, RJ
AF DiRienzi, Joseph
Drachman, Richard J.
TI Inclusion of a Coulomb interaction potential in a variational model for
positronium-helium scattering
SO CANADIAN JOURNAL OF PHYSICS
LA English
DT Article
ID ORTHOPOSITRONIUM; HE
AB While carrying out investigations on Ps-He scattering it was discovered that it would be possible to improve the results of a previous work on zero-energy scattering of ortho-positronium by helium atoms. The previous work used a model to account for exchange and also attempted to include the effect of short-range Coulomb interactions in the close-coupling approximation. The three terms that were then included did not produce a well-converged result but served to give some justification to the model. Now we improve the calculation by using a simple variational wave function, and derive a much better value of the scattering length. The new result is compared with other computed values, and when an approximate correction due to the van der Waals potential is included the total is consistent with an earlier conjecture.
C1 [DiRienzi, Joseph] Notre Dame Maryland Univ, Baltimore, MD 21210 USA.
[Drachman, Richard J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Drachman, RJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM richard.j.drachman@nasa.gov
NR 16
TC 0
Z9 0
U1 1
U2 9
PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
PI OTTAWA
PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA
SN 0008-4204
J9 CAN J PHYS
JI Can. J. Phys.
PD FEB
PY 2013
VL 91
IS 2
BP 188
EP 190
DI 10.1139/cjp-2012-0430
PG 3
WC Physics, Multidisciplinary
SC Physics
GA 105GO
UT WOS:000316054700014
ER
PT J
AU Lani, A
Sjogreen, B
Yee, HC
Henshaw, WD
AF Lani, Andrea
Sjoegreen, Bjoern
Yee, H. C.
Henshaw, William D.
TI Variable High-Order Multiblock Overlapping Grid Methods for Mixed Steady
and Unsteady Multiscale Viscous Flows, Part II: Hypersonic
Nonequilibrium Flows
SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS
LA English
DT Article
DE Unstructured mesh; hypersonic flows; thermo-chemical nonequilibrium;
residual distribution schemes; double cone
ID NUMERICAL DISSIPATION; SCHEMES; MESHES
AB The variable high-order multiblock overlapping (overset) grids method of Sjogreen & Yee [CiCP, Vol. 5, 2009] for a perfect gas has been extended to nonequilibrium flows. This work makes use of the recently developed high-order well-balanced shock-capturing schemes and their filter counterparts [Wang et al., J. Comput. Phys., 2009, 2010] that exactly preserve certain non-trivial steady state solutions of the chemical nonequilibrium governing equations. Multiscale turbulence with strong shocks and flows containing both steady and unsteady components is best treated by mixing of numerical methods and switching on the appropriate scheme in the appropriate subdomains of the flow fields, even under the multiblock grid or adaptive grid refinement framework. While low dissipative sixth- or higher-order shock-capturing filter methods are appropriate for unsteady turbulence with shocklets, second- and third-order shock-capturing methods are more effective for strong steady or nearly steady shocks in terms of convergence. It is anticipated that our variable high-order overset grid framework capability with its highly modular design will allow for an optimum synthesis of these new algorithms in such a way that the most appropriate spatial discretizations can be tailored for each particular region of the flow. In this paper some of the latest developments in single block high-order filter schemes for chemical nonequilibrium flows are applied to overset grid geometries. The numerical approach is validated on a number of test cases characterized by hypersonic conditions with strong shocks, including the reentry flow surrounding a 3D Apollo-like NASA Crew Exploration Vehicle that might contain mixed steady and unsteady components, depending on the flow conditions.
C1 [Lani, Andrea] NASA Ames Stanford Ctr Turbulence Res, Palo Alto, CA USA.
[Sjoegreen, Bjoern; Henshaw, William D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Yee, H. C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Lani, A (reprint author), NASA Ames Stanford Ctr Turbulence Res, Palo Alto, CA USA.
EM alani0@stanford.edu; sjogreen2@llnl.gov; helen.m.yee@nasa.gov;
henshaw@llnl.gov
OI Lani, Andrea/0000-0003-4017-215X
FU DOE/SciDAC SAP grant [DE-AI02-06ER25796]; U.S. Department of Energy by
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX The authors wish to express their gratitude to A. Lazanoff and J. Chang
of the Scientific Consultant Group, Code TN, NASA Ames and their help.
The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is
acknowledged. Work by the second and fourth authors was performed under
the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. Part of the work
by the third author was performed under NASA Fundamental Aeronautics
Hypersonic Program. Special thanks to Wei Wang, former CTR postdoc, who
implemented all WENO schemes for nonequilibrium flows.
NR 37
TC 2
Z9 2
U1 1
U2 12
PU GLOBAL SCIENCE PRESS
PI WANCHAI
PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000,
PEOPLES R CHINA
SN 1815-2406
J9 COMMUN COMPUT PHYS
JI Commun. Comput. Phys.
PD FEB
PY 2013
VL 13
IS 2
BP 583
EP 602
DI 10.4208/cicp.240811.090312a
PG 20
WC Physics, Mathematical
SC Physics
GA 104ID
UT WOS:000315984700013
ER
PT J
AU Llovel, W
Fukumori, I
Meyssignac, B
AF Llovel, W.
Fukumori, I.
Meyssignac, B.
TI Depth-dependent temperature change contributions to global mean
thermosteric sea level rise from 1960 to 2010
SO GLOBAL AND PLANETARY CHANGE
LA English
DT Article
DE Thermosteric mean sea level; Reconstructed mean sea level; Sea level
budget; Depth-dependent temperature changes
ID OCEAN; REEVALUATION; BUDGET; HEAT
AB The dependency of global mean thermosteric sea level changes to temperature at different depths down to 700 m is investigated from 1960 to 2010 using two separate gridded temperature datasets, and compared with reconstructed estimates of sea level change. The rates of thermosteric sea level changes are closely correlated with those of reconstructed sea level changes with correlation coefficients larger than 0.8, but the former has smaller amplitudes than the latter, indicating contributions to total sea level change from processes other than upper ocean temperature changes examined here. Most of the net thermosteric sea level rise (similar to 92%) can be attributed to temperature changes of the upper ocean (0-300 m), but an intriguing temporal lag is found between thermal anomalies of the upper (0-300 m) and lower (300-700 m) layers in the historical temperature datasets, suggestive of a time-lag associated with heat penetrating from the surface into deeper layers of the ocean. Results of global mean thermosteric sea level estimates from the two different temperature datasets are found to be consistent with each other in time and in depth. Published by Elsevier B.V.
C1 [Llovel, W.; Fukumori, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Meyssignac, B.] Univ Toulouse, UPS OMP PCA, LEGOS, F-31400 Toulouse, France.
[Meyssignac, B.] LEGOS, CNES, F-31400 Toulouse, France.
RP Llovel, W (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM william.llovel@jpl.nasa.gov
RI Meyssignac, Benoit/O-1910-2015; LLOVEL, William/G-6930-2016
FU Oak Ridge Associated Universities through the NASA Postdoctoral Program
(NPP)
FX William Llovel is supported by Oak Ridge Associated Universities through
the NASA Postdoctoral Program (NPP) and carried out by the Jet
Propulsion Laboratory, California Institute of Technology. The authors
thank Tim Boyer for providing temperature anomaly errors from World
Ocean Database (2009). We would like to thank CK Shum and an anonymous
reviewer for their fruitful comments.
NR 25
TC 6
Z9 6
U1 0
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-8181
EI 1872-6364
J9 GLOBAL PLANET CHANGE
JI Glob. Planet. Change
PD FEB
PY 2013
VL 101
BP 113
EP 118
DI 10.1016/j.gloplacha.2012.12.011
PG 6
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA 110DU
UT WOS:000316423600009
ER
PT J
AU Bunderson, L
Luvall, J
Van De Water, P
Levetin, E
AF Bunderson, Landon
Luvall, Jeffrey
Van De Water, Peter
Levetin, Estelle
TI Juniper Pollen Hotspots in the Southwest
SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY
LA English
DT Meeting Abstract
CT Annual Meeting of the American Academy of Allergy, Asthma and Immunology
(AAAAI)
CY FEB 22-26, 2013
CL San Antonio, TX
SP Amer Acad Allergy, Asthma & Immunol (AAAAI)
C1 [Bunderson, Landon; Levetin, Estelle] Univ Tulsa, Tulsa, OK 74104 USA.
[Luvall, Jeffrey] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Van De Water, Peter] Calif State Univ Fresno, Fresno, CA 93740 USA.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU MOSBY-ELSEVIER
PI NEW YORK
PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0091-6749
J9 J ALLERGY CLIN IMMUN
JI J. Allergy Clin. Immunol.
PD FEB
PY 2013
VL 131
IS 2
SU S
BP AB81
EP AB81
PG 1
WC Allergy; Immunology
SC Allergy; Immunology
GA 111WC
UT WOS:000316550800293
ER
PT J
AU Crucian, B
Zwart, S
Mehta, S
Stowe, R
Uchakin, P
Quiriarte, H
Pierson, D
Smith, SM
Sams, C
AF Crucian, Brian
Zwart, Sara
Mehta, Satish
Stowe, Raymond
Uchakin, Peter
Quiriarte, Heather
Pierson, Duane
Smith, Scott M.
Sams, Clarence
TI Immune System Dysregulation Persists During Long-Duration Spaceflight
SO JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY
LA English
DT Meeting Abstract
CT Annual Meeting of the American Academy of Allergy, Asthma and Immunology
(AAAAI)
CY FEB 22-26, 2013
CL San Antonio, TX
SP Amer Acad Allergy, Asthma & Immunol (AAAAI)
C1 [Crucian, Brian; Pierson, Duane; Smith, Scott M.; Sams, Clarence] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Zwart, Sara] Univ Space Res Assoc, Houston, TX USA.
[Mehta, Satish] Enterprise Advisory Serv Inc, Houston, TX USA.
[Stowe, Raymond] Microgen Labs, La Marque, TX USA.
[Uchakin, Peter] Mercer Univ, Macon, GA 31207 USA.
[Quiriarte, Heather] JES Tech, Houston, TX USA.
NR 0
TC 0
Z9 0
U1 1
U2 4
PU MOSBY-ELSEVIER
PI NEW YORK
PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0091-6749
J9 J ALLERGY CLIN IMMUN
JI J. Allergy Clin. Immunol.
PD FEB
PY 2013
VL 131
IS 2
SU S
BP AB210
EP AB210
PG 1
WC Allergy; Immunology
SC Allergy; Immunology
GA 111WC
UT WOS:000316550800747
ER
PT J
AU Yim, KB
Yim, JT
AF Yim, K. B.
Yim, J. T.
TI Dynamic stability of a rotor with shear-flexible shaft under axial loads
SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Dynamic stability; Shear deformation; Axial force; Transfer matrix
method
ID OVERHUNG ROTORS; TORQUE; FORCE
AB The dynamic stability of shear-flexible rotating shaft with a disk under axial forces has been studied by employing the transfer matrix method. The conventional transfer matrix was modified to include both the applied axial force and the shear deformation. The shear effect is considered based on Engesser's and Haringx's buckling theories for shear-flexible beam. A computer program was developed to investigate the influence of both the axial force and the shear deformation on the stability and the natural frequencies of general rotor systems. Two rotor system models are considered: the overhung rotor with or without an intermediate support and the simply supported Jeffcott rotor. The effect of shear deformation and the difference between the Engesser and Haringx approaches increase with an intermediate support for an overhung rotor.
C1 [Yim, K. B.] Dongyang Mirae Univ, Sch Mech Engn, Seoul 152714, South Korea.
[Yim, J. T.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Yim, KB (reprint author), Dongyang Mirae Univ, Sch Mech Engn, Seoul 152714, South Korea.
EM kbyim@dongyang.ac.kr
FU Dongyang Mirae University
FX This work was supported by Dongyang Mirae University.
NR 15
TC 3
Z9 3
U1 3
U2 15
PU KOREAN SOC MECHANICAL ENGINEERS
PI SEOUL
PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703,
SOUTH KOREA
SN 1738-494X
J9 J MECH SCI TECHNOL
JI J. Mech. Sci. Technol.
PD FEB
PY 2013
VL 27
IS 2
BP 359
EP 366
DI 10.1007/s12206-013-0102-2
PG 8
WC Engineering, Mechanical
SC Engineering
GA 106BX
UT WOS:000316117500009
ER
PT J
AU Scott, JM
Lakoski, S
Mackey, JR
Douglas, PS
Haykowsky, MJ
Jones, LW
AF Scott, Jessica M.
Lakoski, Susan
Mackey, John R.
Douglas, Pamela S.
Haykowsky, Mark J.
Jones, Lee W.
TI The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of
Molecularly Targeted Cancer Therapeutics
SO ONCOLOGIST
LA English
DT Article
DE Exercise; Cardiotoxicity; Molecular therapeutics; Solid malignancies
ID ENDOTHELIAL GROWTH-FACTOR; METASTATIC BREAST-CANCER; TYROSINE KINASE
INHIBITOR; RENAL-CELL CARCINOMA; TRANSCRIPTIONAL COACTIVATOR
PGC-1-ALPHA; LEFT-VENTRICULAR HYPERTROPHY; HEART-FAILURE PATIENTS;
NITRIC-OXIDE SYNTHASE; EMBRYONIC STEM-CELLS; PHASE-III TRIAL
AB Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathway simplicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. The Oncologist 2013;18:221-231
C1 [Scott, Jessica M.] NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Houston, TX 77058 USA.
[Lakoski, Susan] Univ Texas SW Med Ctr Dallas, Dallas, TX 75390 USA.
[Mackey, John R.; Haykowsky, Mark J.] Univ Alberta, Edmonton, AB, Canada.
[Douglas, Pamela S.; Jones, Lee W.] Duke Univ, Med Ctr, Durham, NC USA.
RP Scott, JM (reprint author), NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM jessica.m.scott@nasa.gov
FU National Cancer Institute [CA143254, CA142566, CA138634, CA133895,
CA164751]; funds from George and Susan Beischer; Natural Sciences and
Engineering Research Council
FX This work is supported in part by grants from the National Cancer
Institute (CA143254, CA142566, CA138634, CA133895, CA164751 to L.W.J.),
funds from George and Susan Beischer (L.W.J.), and a Natural Sciences
and Engineering Research Council postdoctoral fellowship (J.M.S.).
NR 141
TC 11
Z9 12
U1 0
U2 7
PU ALPHAMED PRESS
PI DURHAM
PA 318 BLACKWELL ST, STE 260, DURHAM, NC 27701-2884 USA
SN 1083-7159
EI 1549-490X
J9 ONCOLOGIST
JI Oncologist
PD FEB
PY 2013
VL 18
IS 2
BP 221
EP 231
DI 10.1634/theoncologist.2012-0226
PG 11
WC Oncology
SC Oncology
GA 102YJ
UT WOS:000315880300014
PM 23335619
ER
PT J
AU Baek, CK
Kang, D
Kim, J
Jin, B
Rim, T
Park, S
Meyyappan, M
Jeong, YH
Lee, JS
AF Baek, Chang-Ki
Kang, Daegun
Kim, JeongSik
Jin, Bo
Rim, Taiuk
Park, Sooyoung
Meyyappan, M.
Jeong, Yoon-Ha
Lee, Jeong-Soo
TI Improved performance of In2Se3 nanowire phase-change memory with SiO2
passivation
SO SOLID-STATE ELECTRONICS
LA English
DT Article
DE In2Se3 nanowire; Phase change memory; SiO2 passivation; Chalcogenide;
Low frequency noise
ID DEVICES
AB The resistive switching and low frequency noise characteristics in In2Se3 nanowire PRAM devices with SiO2 passivation have been studied. The SiO2 passivation of the nanowires was adopted to lessen the thermal energy dissipation to the surroundings and as a result, the set/reset voltages and the corresponding power requirements have been reduced. The measured low frequency noise characteristics exhibit a typical 1/f noise behavior and show the same noise level after the SiO2 passivation. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Baek, Chang-Ki; Park, Sooyoung; Jeong, Yoon-Ha] Pohang Univ Sci & Technol POSTECH, Dept Creat IT Excellence Engn, Pohang 790784, South Korea.
[Baek, Chang-Ki; Park, Sooyoung; Jeong, Yoon-Ha] Pohang Univ Sci & Technol POSTECH, Future IT Innovat Lab I Lab, Pohang 790784, South Korea.
[Kang, Daegun; Rim, Taiuk] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang 790784, South Korea.
[Kim, JeongSik; Jin, Bo; Meyyappan, M.; Lee, Jeong-Soo] Pohang Univ Sci & Technol POSTECH, Div IT Convergence Engn, Pohang 790784, South Korea.
[Meyyappan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Lee, JS (reprint author), Pohang Univ Sci & Technol POSTECH, Div IT Convergence Engn, Pohang 790784, South Korea.
EM baekck@postech.ac.kr; ljs6951@postech.ac.kr
FU Brain Korea 21 program, a World Class University program; Ministry of
Education, Science and Technology through the National Research
Foundation of Korea [R31-2008-000-10100-0]; MKE (The Ministry of
Knowledge Economy), Korea [C1515-11221-0003]; Korea Institute for
Advanced Study (KIAS); National Research Foundation of Korea; Korean
Government [2010-0028110]
FX This research was supported by Brain Korea 21 program, a World Class
University program funded by the Ministry of Education, Science and
Technology through the National Research Foundation of Korea
(R31-2008-000-10100-0), the MKE (The Ministry of Knowledge Economy),
Korea, under the "IT Consilience Creative Program" support program
supervised by the NIPA (National IT Industry Promotion Agency)
(C1515-11221-0003), the Korea Institute for Advanced Study (KIAS) and
the National Research Foundation of Korea Grant funded by the Korean
Government (2010-0028110).
NR 21
TC 12
Z9 12
U1 1
U2 36
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1101
J9 SOLID STATE ELECTRON
JI Solid-State Electron.
PD FEB
PY 2013
VL 80
BP 10
EP 13
DI 10.1016/j.sse.2012.10.007
PG 4
WC Engineering, Electrical & Electronic; Physics, Applied; Physics,
Condensed Matter
SC Engineering; Physics
GA 102IJ
UT WOS:000315838000003
ER
PT J
AU Hu, XF
Waller, LA
Al-Hamdan, MZ
Crosson, WL
Estes, MG
Estes, SM
Quattrochi, DA
Sarnat, JA
Liu, Y
AF Hu, Xuefei
Waller, Lance A.
Al-Hamdan, Mohammad Z.
Crosson, William L.
Estes, Maurice G., Jr.
Estes, Sue M.
Quattrochi, Dale A.
Sarnat, Jeremy A.
Liu, Yang
TI Estimating ground-level PM2.5 concentrations in the southeastern US
using geographically weighted regression
SO ENVIRONMENTAL RESEARCH
LA English
DT Article
DE PM2.5; MODIS; Remote sensing; Aerosol optical depth; Geographically
weighted regression
ID AEROSOL OPTICAL DEPTH; PARTICULATE AIR-POLLUTION; MATTER COMPONENT
CONCENTRATIONS; UNITED-STATES; MODIS; HEALTH; REANALYSIS; COORDINATE;
EXPOSURE; MODEL
AB Most of currently reported models for predicting PM2.5 concentrations from satellite retrievals of aerosol optical depth are global methods without considering local variations, which might introduce significant biases into prediction results. In this paper, a geographically weighted regression model was developed to examine the relationship among PM2.5, aerosol optical depth, meteorological parameters, and land use information. Additionally, two meteorological datasets, North American Regional Reanalysis and North American Land Data Assimilation System, were fitted into the model separately to compare their performances. The study area is centered at the Atlanta Metro area, and data were collected from various sources for the year 2003. The results showed that the mean local R-2 of the models using North American Regional Reanalysis was 0.60 and those using North American Land Data Assimilation System reached 0.61. The root mean squared prediction error showed that the prediction accuracy was 82.7% and 83.0% for North American Regional Reanalysis and North American Land Data Assimilation System in model fitting, respectively, and 69.7% and 72.1% in cross validation. The results indicated that geographically weighted regression combined with aerosol optical depth, meteorological parameters, and land use information as the predictor variables could generate a better fit and achieve high accuracy in PM2.5 exposure estimation, and North American Land Data Assimilation System could be used as an alternative of North American Regional Reanalysis to provide some of the meteorological fields. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Hu, Xuefei; Sarnat, Jeremy A.; Liu, Yang] Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, Atlanta, GA 30322 USA.
[Waller, Lance A.] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA.
[Al-Hamdan, Mohammad Z.; Crosson, William L.; Estes, Maurice G., Jr.; Estes, Sue M.] NASA, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Univ Space Res Assoc, Huntsville, AL 35805 USA.
[Quattrochi, Dale A.] NASA, Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Earth Sci Off, Huntsville, AL 35805 USA.
RP Liu, Y (reprint author), Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, 1518 Clifton Rd NE, Atlanta, GA 30322 USA.
EM yang.liu@emory.edu
FU NASA Applied Sciences Public Health Program [NNX09AT52G]
FX This project is supported and funded by NASA Applied Sciences Public
Health Program managed by John Haynes (grant number NNX09AT52G).
NR 39
TC 57
Z9 61
U1 9
U2 98
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0013-9351
J9 ENVIRON RES
JI Environ. Res.
PD FEB
PY 2013
VL 121
BP 1
EP 10
DI 10.1016/j.envres.2012.11.003
PG 10
WC Environmental Sciences; Public, Environmental & Occupational Health
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA 101CV
UT WOS:000315753700001
PM 23219612
ER
PT J
AU Kharuk, VI
Ranson, KJ
Oskorbin, PA
Im, ST
Dvinskaya, ML
AF Kharuk, V. I.
Ranson, K. J.
Oskorbin, P. A.
Im, S. T.
Dvinskaya, M. L.
TI Climate induced birch mortality in Trans-Baikal lake region, Siberia
SO FOREST ECOLOGY AND MANAGEMENT
LA English
DT Article
DE Climate-induced tree mortality; Drought impact; Forest die-off;
Forest-steppe; Betula pendula
ID CANADIAN ASPEN FORESTS; SEVERE DROUGHT; DYNAMICS; STANDS; SWITZERLAND;
SOUTHWEST; INDEXES; BIOMASS; IMPACT; GROWTH
AB The Trans-Baikal (or Zabailkal'e) region includes the forest-steppe ecotones south and east of Lake Baikal in Russia and has experienced drought for several years. The decline and mortality of birch (Betula pendula) stands within the forest-steppe ecotone Trans-Baikal region was studied based on a temporal series of satellite data, ground measurements, and tree ring analysis. During the first decade of the 21st century birch stands decline and mortality were observed on about 5% of the total area of stands within our 1250 km(2) study area. Birch forest decline and mortality occurs mainly at the margins of stands, within the forest-steppe ecotone on slopes with direct insolation. During the first decade of the 21st century summer (June-August) precipitation was about 25% below normal. Soil water content measurements were lowest within dead stands and highest within healthy stands and intermediate within damaged stands. Drought impact on stands was amplified by an increase in summer air temperatures (+0.9 degrees C) in comparison with the previous decade. Tree ring data of "surviving" and "dead" tree groups showed a positive correlation with summer/annual precipitation and negative correlation with summer air temperatures. Temperature and precipitation extreme anomalies tend to occur in the region with a period of about 27 years. The observed anomaly was the most severe since the beginning of meteorological observations in the year 1900. Data for the other sites showed a positive climate impact on the growth and expansion of Siberian forests. That is, the same species (B. pendula) showed considerable increase (1.4 times both in height and stem volume) during 20th-21st centuries as temperature increased but precipitation remained at adequate levels. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Kharuk, V. I.; Oskorbin, P. A.; Im, S. T.; Dvinskaya, M. L.] VN Sukachev Inst Forest, Krasnoyarsk, Russia.
[Kharuk, V. I.; Oskorbin, P. A.; Im, S. T.; Dvinskaya, M. L.] Siberian Fed Univ, Krasnoyarsk, Russia.
[Ranson, K. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Kharuk, VI (reprint author), VN Sukachev Inst Forest, Krasnoyarsk, Russia.
EM kharuk@ksc.krasn.ru
RI Ranson, Kenneth/G-2446-2012; Im, Sergei/J-2736-2016
OI Ranson, Kenneth/0000-0003-3806-7270; Im, Sergei/0000-0002-5794-7938
FU SB RAS Program [30.3.33]; NASA Science Mission Directorate, Terrestrial
Ecology Program
FX This research was supported by the SB RAS Program No. 30.3.33, and NASA
Science Mission Directorate, Terrestrial Ecology Program. The authors
thank Dr. Joanne Howl for editing the manuscript.
NR 40
TC 18
Z9 20
U1 0
U2 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-1127
J9 FOREST ECOL MANAG
JI For. Ecol. Manage.
PD FEB 1
PY 2013
VL 289
BP 385
EP 392
DI 10.1016/j.foreco.2012.10.024
PG 8
WC Forestry
SC Forestry
GA 099XP
UT WOS:000315659500042
ER
PT J
AU Ruane, AC
Major, DC
Yu, WH
Alam, M
Hussain, SG
Khan, AS
Hassan, A
Al Hossain, BMT
Goldberg, R
Horton, RM
Rosenzweig, C
AF Ruane, Alex C.
Major, David C.
Yu, Winston H.
Alam, Mozaharul
Hussain, Sk. Ghulam
Khan, Abu Saleh
Hassan, Ahmadul
Al Hossain, Bhuiya Md. Tamim
Goldberg, Richard
Horton, Radley M.
Rosenzweig, Cynthia
TI Multi-factor impact analysis of agricultural production in Bangladesh
with climate change
SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS
LA English
DT Article
DE Climate change; Climate impacts; Agriculture; Bangladesh; Rice; Wheat;
Crop modeling; DSSAT; Floods; Sea level rise; Adaptation
ID SYSTEM MODEL; FOOD; ADAPTATION; CROP; EMISSIONS; CO2
AB Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, bora, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21 Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario. Published by Elsevier Ltd.
C1 [Ruane, Alex C.; Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Major, David C.; Goldberg, Richard; Horton, Radley M.] Columbia Univ, Earth Inst Ctr Climate Syst Res, New York, NY USA.
[Yu, Winston H.] World Bank, Washington, DC 20433 USA.
[Alam, Mozaharul] Bangladesh Ctr Adv Studies, Dhaka, Bangladesh.
[Hussain, Sk. Ghulam] Bangladesh Agr Res Council, Dhaka, Bangladesh.
[Khan, Abu Saleh] Inst Water Modelling, Dhaka, Bangladesh.
[Hussain, Sk. Ghulam; Hassan, Ahmadul; Al Hossain, Bhuiya Md. Tamim] CEGIS, Dhaka, Bangladesh.
[Alam, Mozaharul] United Nations, Environm Programme, Reg Off Asia & Pacific, Bangkok, Thailand.
RP Ruane, AC (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
EM alexander.c.ruane@nasa.gov
FU NASA
FX The views expressed herein are those of the authors and do not
necessarily reflect the views of their institutions or funders. The
authors would like to thank the editors and three anonymous reviewers
for their helpful comments and suggestions. This research was supported
in part by an appointment to the NASA Postdoctoral Program at the
Goddard Institute for Space Studies, administered by Oak Ridge
Associated Universities through a contract with NASA, and is a
continuation of work initiated by the World Bank. The authors would like
to thank Md. Shohel Pervez for his assistance in translating BRRI
management guidance, reviewers of the initial World Bank project report
that became Yu et al. (2010), World Bank staff in Dhaka, Laura Paulson
for map creation, and Gerrit Hoogenboom for his assistance with DSSAT.
We acknowledge the modeling groups, the Program for Climate Model
Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on
Coupled Modelling (WGCM) for their roles in making available the WCRP
CMIP3 multi-model dataset. Support of this dataset is provided by the
Office of Science, U.S. Department of Energy.
NR 77
TC 13
Z9 13
U1 6
U2 109
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0959-3780
J9 GLOBAL ENVIRON CHANG
JI Glob. Environ. Change-Human Policy Dimens.
PD FEB
PY 2013
VL 23
IS 1
BP 338
EP 350
DI 10.1016/j.gloenvcha.2012.09.001
PG 13
WC Environmental Sciences; Environmental Studies; Geography
SC Environmental Sciences & Ecology; Geography
GA 099JL
UT WOS:000315617200030
ER
PT J
AU Veverka, J
Klaasen, K
A'Hearn, M
Belton, M
Brownlee, D
Chesley, S
Clark, B
Economou, T
Farquhar, R
Green, SF
Groussin, O
Harris, A
Kissel, J
Li, JY
Meech, K
Melosh, J
Richardson, J
Schultz, P
Silen, J
Sunshine, J
Thomas, P
Bhaskaran, S
Bodewits, D
Carcich, B
Cheuvront, A
Farnham, T
Sackett, S
Wellnitz, D
Wolf, A
AF Veverka, J.
Klaasen, K.
A'Hearn, M.
Belton, M.
Brownlee, D.
Chesley, S.
Clark, B.
Economou, T.
Farquhar, R.
Green, S. F.
Groussin, O.
Harris, A.
Kissel, J.
Li, J. -Y.
Meech, K.
Melosh, J.
Richardson, J.
Schultz, P.
Silen, J.
Sunshine, J.
Thomas, P.
Bhaskaran, S.
Bodewits, D.
Carcich, B.
Cheuvront, A.
Farnham, T.
Sackett, S.
Wellnitz, D.
Wolf, A.
TI Return to Comet Tempel 1: Overview of Stardust-NExT results
SO ICARUS
LA English
DT Article
DE Comets, dust; Comets, nucleus; Comet Tempel-1; Comet Wild-2
ID INTERSTELLAR DUST ANALYZER; DEEP IMPACT OBSERVATIONS; FLUX MONITOR
INSTRUMENT; 81P/WILD 2; SURFACE; SPACECRAFT; MORPHOLOGY; HALLEY;
COMET-9P/TEMPEL-1; 9P/TEMPEL-1
AB On February 14, 2011 Stardust-NExT (SN) flew by Comet Tempel 1, the target of the Deep Impact (DI) mission in 2005, obtaining dust measurements and high-resolution images of areas surrounding the 2005 impact site, and extending image coverage to almost two thirds of the nucleus surface. The nucleus has an average radius of 2.83 +/- 0.1 km and a uniform geometric albedo of about 6% at visible wavelengths. Local elevation differences on the nucleus reach up to 830 m. At the time of encounter the spin rate was 213 degrees per day (period = 40.6 h) and the comet was producing some 130 kg of dust per second. Some 30% of the nucleus is covered by smooth flow-like deposits and related materials, restricted to gravitational lows. This distribution is consistent with the view that the smooth areas represent material erupted from the subsurface and date from a time after the nucleus achieved its current shape. It is possible that some of these eruptions occurred after 1609 when the comet's perihelion distance decreased from 3.5 AU to the current 1.5 AU. Much of the surface displays evidence of layering: some related to the smooth flows and some possibly dating back to the accretion of the nucleus. Pitted terrain covers approximately half the nucleus surface. The pits range up to 850 m in diameter. Due to their large number, they are unlikely to be impact scars: rather they probably result from volatile outbursts and sublimational erosion. The DI impact site shows a subdued depression some 50 m in diameter implying surface properties similar to those of dry, loose snow. It is possible that the 50-m depression is all that remains of an initially larger crater. In the region of overlapping DI and SN coverage most of the surface remained unchanged between 2005 and 2011 in albedo, photometric properties and morphology. Significant changes took place only along the edges of a prominent smooth flow estimated to be 10-15 m thick, the margins of which receded in places by up to 50 m. Coma and jet activity were lower in 2011 than in 2005. Most of the jets observed during the SN flyby can be traced back to an apparently eroding terraced scarp. The dust instruments detected bursts of impacts consistent with a process by which larger aggregates of material emitted from the nucleus subsequently fragment into smaller particles within the coma. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Veverka, J.; Thomas, P.; Carcich, B.; Sackett, S.] Cornell Univ, Ithaca, NY 14853 USA.
[Klaasen, K.; Chesley, S.; Bhaskaran, S.; Wolf, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[A'Hearn, M.; Li, J. -Y.; Sunshine, J.; Bodewits, D.; Farnham, T.; Wellnitz, D.] Univ Maryland, College Pk, MD 20742 USA.
[Belton, M.] Belton Space Explorat Initiat, Tucson, AZ 85716 USA.
[Brownlee, D.] Univ Washington, Seattle, WA 98195 USA.
[Clark, B.] Space Sci Inst, Boulder, CO 80301 USA.
[Economou, T.] Univ Chicago, Chicago, IL 60637 USA.
[Farquhar, R.] Kinetx, Tempe, AZ 85084 USA.
[Green, S. F.] Open Univ, Milton Keynes MK7 6AA, Bucks, England.
[Groussin, O.] Lab Astrophys Marseille, F-13388 Marseille 13, France.
[Harris, A.] Space Sci Inst, La Canada Flintridge, CA 91011 USA.
[Kissel, J.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany.
[Meech, K.] Univ Hawaii, Honolulu, HI 96822 USA.
[Melosh, J.; Richardson, J.] Purdue Univ, Lafayette, IN 47907 USA.
[Schultz, P.] Brown Univ, Providence, RI 02912 USA.
[Silen, J.] Finnish Meteorol Inst, Helsinki 00560, Finland.
[Cheuvront, A.] Lockheed Martin, Littleton, CO 80127 USA.
RP Veverka, J (reprint author), Cornell Univ, Ithaca, NY 14853 USA.
EM veverka@astro.cornell.edu
RI Green, Simon/C-7408-2009;
OI Bodewits, Dennis/0000-0002-2668-7248
FU NASA; Centre Nationale d'Etudes Spatiales (CNES)
FX Stardust-NExT was supported by NASA through its Discovery Program. The
Science Team expresses its thanks and acknowledges its debt to the
Project Management and Navigation Teams at the Jet Propulsion
Laboratory, to the Deep Space Network (DSN), and to the Spacecraft Team
at Lockheed Martin Aerospace (LMA) in Denver. We record our special
thanks to the world-wide network of observers for providing crucial
observations of Tempel 1 to support the determination of the appropriate
time-of-arrival at the comet. Part of the research described was carried
out at JPL under contract with NASA. O. Groussin's participation in the
project was supported by the Centre Nationale d'Etudes Spatiales (CNES).
NR 48
TC 24
Z9 24
U1 1
U2 11
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 424
EP 435
DI 10.1016/j.icarus.2012.03.034
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800002
ER
PT J
AU Klaasen, KP
Brown, D
Carcich, B
Farnham, T
Owen, W
Thomas, P
AF Klaasen, Kenneth P.
Brown, David
Carcich, Brian
Farnham, Tony
Owen, William
Thomas, Peter
TI Stardust-NExT NAVCAM calibration and performance
SO ICARUS
LA English
DT Article
DE Comet Tempel 1; Instrumentation; Data reduction techniques
ID JUPITER
AB NASA's Stardust-NExT mission used the Stardust spacecraft to deliver a scientific payload, including a panchromatic visible camera designated NAVCAM, to a close flyby of Comet 9P/Tempel 1 in February 2011. Proper interpretation of the NAVCAM images depends on accurate calibration of the camera performance. While the NAVCAM had been calibrated during the primary Stardust mission to Comet 81P/Wild 2 in 2004, that calibration was incomplete and somewhat lacking in fidelity. Substantial improvements in the NAVCAM calibration were achieved during Stardust-NExT in the areas of geometric correction, spatial resolution, and radiometric calibration (in particular, zero-exposure signal levels, shutter time offsets, absolute radiometric response, noise, and scattered light characterization). These improvements will allow upgrades to the calibration of images returned from the Stardust primary mission as well as high-quality calibration of the Stardust-NExT images. The upgraded calibration results have been incorporated into the Stardust-NExT image processing pipeline via new routines and updated constants and files in preparation for archiving calibrated images in the NASA Planetary Data System. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Klaasen, Kenneth P.; Brown, David; Owen, William] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Carcich, Brian; Thomas, Peter] Cornell Univ, Ithaca, NY 14853 USA.
[Farnham, Tony] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
RP Klaasen, KP (reprint author), CALTECH, Jet Prop Lab, Mail Stop 306-392,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM kenneth.p.klaasen@jpl.nasa.gov
FU National Aeronautics and Space Administration from the Discovery Program
[NNM08AA26C, NMO711001]
FX Our appreciation goes to Allan Cheuvront of Lockheed Martin Astronautics
and the LMA operations team for expertly collecting the NAVCAM data
discussed here. Sound project management was provided by the Jet
Propulsion Laboratory led by Timothy Larson and by the Stardust-NExT
Principal Investigator, Dr. Joseph Veverka of Cornell University. The
work described herein was supported by the National Aeronautics and
Space Administration through Contract No. NNM08AA26C from the Discovery
Program to Cornell University and through Task Order No. NMO711001 from
the Discovery Program to the Jet Propulsion Laboratory, California
Institute of Technology.
NR 16
TC 3
Z9 3
U1 0
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 436
EP 452
DI 10.1016/j.icarus.2012.01.025
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800003
ER
PT J
AU Thomas, P
A'Hearn, M
Belton, MJS
Brownlee, D
Carcich, B
Hermalyn, B
Klaasen, K
Sackett, S
Schultz, PH
Veverka, J
Bhaskaran, S
Bodewits, D
Chesley, S
Clark, B
Farnham, T
Groussin, O
Harris, A
Kissel, J
Li, JY
Meech, K
Melosh, J
Quick, A
Richardson, J
Sunshine, J
Wellnitz, D
AF Thomas, P.
A'Hearn, M.
Belton, M. J. S.
Brownlee, D.
Carcich, B.
Hermalyn, B.
Klaasen, K.
Sackett, S.
Schultz, P. H.
Veverka, J.
Bhaskaran, S.
Bodewits, D.
Chesley, S.
Clark, B.
Farnham, T.
Groussin, O.
Harris, A.
Kissel, J.
Li, J. -Y.
Meech, K.
Melosh, J.
Quick, A.
Richardson, J.
Sunshine, J.
Wellnitz, D.
TI The nucleus of Comet 9P/Tempel 1: Shape and geology from two flybys
SO ICARUS
LA English
DT Article
DE Comet Tempel 1; Comets, Nucleus; Geological processes
ID DEEP IMPACT OBSERVATIONS; SURFACE-FEATURES; COMET-9P/TEMPEL-1;
TOPOGRAPHY; EVOLUTION; SPACECRAFT; TEMPEL-1; GRAVITY; DENSITY; MASS
AB The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 51/2 years. The combined imaging covers similar to 70% of the surface of this object which has a mean radius of 2.83 +/- 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (similar to 10 m/pixel) up to similar to 1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically-controlled processes, or a continuing interaction of erosion and deposition. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Thomas, P.; Carcich, B.; Sackett, S.; Veverka, J.] Cornell Univ, Ithaca, NY 14853 USA.
[A'Hearn, M.; Li, J. -Y.; Sunshine, J.; Wellnitz, D.] Univ Maryland, College Pk, MD 20742 USA.
[Belton, M. J. S.; Farnham, T.] Belton Space Explorat Initiat, Tucson, AZ 85716 USA.
[Brownlee, D.] Univ Washington, Seattle, WA 98195 USA.
[Hermalyn, B.; Schultz, P. H.] Brown Univ, Providence, RI 02912 USA.
[Klaasen, K.; Bhaskaran, S.; Chesley, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Bodewits, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Clark, B.] Space Sci Inst, Boulder, CO 80301 USA.
[Groussin, O.] Lab Astrophys Marseille, F-13388 Marseille 13, France.
[Harris, A.] Space Sci Inst, La Canada Flintridge, CA 91011 USA.
[Kissel, J.] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany.
[Meech, K.] Univ Hawaii, Honolulu, HI 96822 USA.
[Melosh, J.; Richardson, J.] Purdue Univ, Lafayette, IN 47907 USA.
[Quick, A.] Univ Rochester, Rochester, NY 14627 USA.
RP Thomas, P (reprint author), Cornell Univ, Ithaca, NY 14853 USA.
EM pct2@cornell.edu
OI Bodewits, Dennis/0000-0002-2668-7248
FU NASA through its Discovery Program; NASA; National Aeronautics and Space
Administration; Centre Nationale d'Etudes Spatiales (CNES)
FX Stardust-NExT was supported by NASA through its Discovery Program. The
Science Team expresses its thanks and acknowledges its debt to the
Project Management and Navigation Teams at the Jet Propulsion
Laboratory, to the Deep Space Network (DSN), and to the Spacecraft Team
at Lockheed Martin Aerospace (LMA) in Denver. We record our special
thanks to the world-wide network of observers for providing crucial
observations of Tempel 1 to support the determination of the appropriate
time-of-arrival at the comet. Part of the research described was carried
out at JPL under contract with NASA. Part of this research was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration. O. Groussin's participation in the project was supported
by the Centre Nationale d'Etudes Spatiales (CNES). Technical assistance
was provided by K. Consroe and T. Shannon. Reviews by L. Soderblom and
an anonymous reviewer notably improved the presentation.
NR 44
TC 29
Z9 29
U1 0
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 453
EP 466
DI 10.1016/j.icarus.2012.02.037
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800004
ER
PT J
AU Li, JY
A'Hearn, MF
Belton, MJS
Farnham, TL
Klaasen, KP
Sunshine, JM
Thomas, PC
Veverka, J
AF Li, Jian-Yang
A'Hearn, Michael F.
Belton, Michael J. S.
Farnham, Tony L.
Klaasen, Kenneth P.
Sunshine, Jessica M.
Thomas, Peter C.
Veverka, Joe
TI Photometry of the nucleus of Comet 9P/Tempel 1 from Stardust-NExT flyby
and the implications
SO ICARUS
LA English
DT Article
DE Comet Tempel-1; Photometry; Comets, Nucleus
ID SPACE-TELESCOPE OBSERVATIONS; DEEP-IMPACT; SURFACE; MORPHOLOGY;
TEMPEL-1; IMAGES
AB The photometric properties of the nucleus of Comet 9P/Tempel 1 as modeled from the Stardust-NExT images agree with those reported by Li et al. (Li, J.-Y. et al. [2007a]. Icarus 187, 41-55; Li, J.-Y., A'Hearn, M.F., McFadden, L.A., Belton, M.J.S. [2007b]. Icarus 188, 195-211) from Deep Impact images. No significant changes are detectable by comparing the two image-sets taken one comet year apart. The overall photometric variations on the similar to 70% of the surface of Tempel 1 observed by Deep Impact and Stardust-NExT are small, with albedo variations of +/- 10% full-width-at-half-maximum and non-detectable variations in phase function and surface roughness. Some bright surface albedo features visible in the outbound images have an albedo about 25% higher than that of surrounding area. No bright albedo features similar to those ice patches reported by Sunshine et al. (Sunshine, J.M., et al. [2006]. Science 311, 1453-1455) are seen on the outbound side, which was not imaged by DI. The similar global photometric properties among cometary nuclei may indicate that these properties are dominated by cometary activity that results in constant resurfacing on comets. Tiny amounts of ice concentration on their surface can significantly change the local photometric properties. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Li, Jian-Yang; A'Hearn, Michael F.; Farnham, Tony L.; Sunshine, Jessica M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA.
[Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Thomas, Peter C.; Veverka, Joe] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
RP Li, JY (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM jyli@astro.umd.edu
FU NASA Discovery Program's Stardust-NExT mission [NNM07AA97C]; National
Aeronautics and Space Administration
FX This research was funded by NASA Discovery Program's Stardust-NExT
mission under Contract NNM07AA97C to University of Maryland. Part of
this research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. We would like to thank all the
science team members, engineers, and supporting personal for making the
mission successful. The authors are grateful to Dr. Tom McCord and Dr.
Imre Toth for their critical reviews that have helped improve this
manuscript.
NR 35
TC 9
Z9 9
U1 0
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 467
EP 476
DI 10.1016/j.icarus.2012.02.011
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800005
ER
PT J
AU Belton, MJS
Thomas, P
Carcich, B
Quick, A
Veyerka, J
Melosh, HJ
A'Hearn, MF
Li, JY
Brownlee, D
Schultz, P
Klaasen, K
Sarid, G
AF Belton, Michael J. S.
Thomas, Peter
Carcich, Brian
Quick, Andrew
Veyerka, Joseph
Melosh, H. Jay
A'Hearn, Michael F.
Li, Jian-Yang
Brownlee, Donald
Schultz, Peter
Klaasen, Kenneth
Sarid, Gal
TI The origin of pits on 9P/Tempel 1 and the geologic signature of
outbursts in Stardust-NExT images
SO ICARUS
LA English
DT Article
DE Comets, Nucleus; Comets, Coma; Comet Tempel-1
ID DEEP IMPACT OBSERVATIONS; COMET 9P/TEMPEL-1; SMOOTH TERRAINS; NUCLEI;
EVOLUTION; SURFACE; TOPOGRAPHY; 17P/HOLMES; PHOTOMETRY; MORPHOLOGY
AB We consider the origin of similar to 380 quasi-circular depressions (pits) seen to be distributed in a broad band across the surface of 9P/Tempel 1 and show that possibly similar to 96% may be due to outburst activity. Of the rest, <4%, are probably due to a mix of cryo-volcanic collapse events and collisional impacts with asteroidal material. We estimate the mass ejected during the June 14, 2005, mini-outburst on 9P to be in the range (6-30) x 10(4) kg and find that the resulting pit should have a diameter in the range 10-30 m. Published locations of mini-outbursts are revised to account for changes in the nucleus shape, rotation rate, and rotation pole that have resulted from observations made during the Stardust-NExT mission. Both of these locations are found to fall in, or on the edge of, the band of pits that encircles the nucleus. We have identified features in high-resolution images near one of these locations as the possible places of origin of the mini-outbursts. These features show close packing of multiple pits in the appropriate diameter range.
We consider the distribution of pit diameters and show that the largest pits follow a power-law with exponent -2.24 +/- 0.09. Using the June 14, 2005, mini-outburst and the Deep Impact crater to provide a calibration, we establish empirical relationships between pit diameter, D, the total outburst energy, E, and the visual magnitude change, Delta m(abs), which is the visual amplitude of the outburst referenced to a standard initial brightness. We find Log(10)D similar to 0.107(+/- 0.004)Delta m(abs) + 1.3(+/- 0.4) and Log(10)E similar to 0.32(+/- 0.01)Delta m(abs) + 10.1(+/- 1.2) where the uncertainties represent the range of values for the coefficient rather than formal error. We apply these approximate relationships to the mega-outburst on 17P/Holmes and predict that it left a pit-like scar on the surface with a diameter in the range 160-1300 m, that the total energy released was in the range 7 x 10(12)-3 x 10(15) J, and that between 6 x 10(7) and 1.3 x 10(11) kg of material was ejected from the surface. While these predictions are crude they encompass, particularly near the upper end of the range, the results on kinetic energy release and mass loss found by Reach et al. (Reach, W.T., Vaubaillon, J., Lisse, C.M., Holloway, M., Rho, J. [2010]. Icarus 208, 276-292) based on IR observations of 17P. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA.
[Thomas, Peter; Carcich, Brian; Quick, Andrew; Veyerka, Joseph] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[Melosh, H. Jay] Purdue Univ, Dept Earth & Atmospher Sci, Lafayette, IN 47907 USA.
[A'Hearn, Michael F.; Li, Jian-Yang] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Brownlee, Donald] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Schultz, Peter] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Klaasen, Kenneth] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Sarid, Gal] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
RP Belton, MJS (reprint author), Belton Space Explorat Initiat LLC, 430 S Randolph Way, Tucson, AZ 85716 USA.
EM mbelton@dakotacom.net
FU University of Maryland [NNM07AA99C]; Cornell University [51326-8361];
National Aeronautics and Space Administration
FX This research was performed with the University of Maryland under
Contract NNM07AA99C and Cornell University under agreement 51326-8361,
and we thank the NExT and EPOXI Principal Investigators, Joseph Veverka
and Michael A'Hearn, for their continuing support. A portion of this
research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration.
NR 39
TC 12
Z9 12
U1 0
U2 3
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 477
EP 486
DI 10.1016/j.icarus.2012.03.007
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800006
ER
PT J
AU Wellnitz, DD
Collins, SM
A'Hearn, MF
AF Wellnitz, Dennis D.
Collins, Steven M.
A'Hearn, Michael F.
CA Deep Impact Mission Team
Stardust-NExT Mission Team
TI The location of the impact point of the Deep Impact Impactor on Comet
9P/Tempel 1
SO ICARUS
LA English
DT Article
DE Comet Tempel-1; Comets, Nucleus; Cratering; Orbit determination
AB We describe three methods for determination of the impact point of the Deep Impact Impactor on Comet 9P/Tempel 1, and the probable errors associated with each method. From this analysis it appears that the three methods give results that are consistent within their probable errors. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Wellnitz, Dennis D.; A'Hearn, Michael F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Collins, Steven M.] Jet Prop Lab, Pasadena, CA 91011 USA.
RP Wellnitz, DD (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM wellnitz@astro.umd.edu
FU NASA through the Discovery Program
FX This work was supported by NASA through the Discovery Program contracts
for Deep Impact, EPOXI, and Stardust-NExT.
NR 2
TC 1
Z9 1
U1 2
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 487
EP 491
DI 10.1016/j.icarus.2012.08.003
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800007
ER
PT J
AU Chesley, SR
Belton, MJS
Carcich, B
Thomas, PC
Pittichova, J
Klaasen, KP
Li, JY
Farnham, TL
Gillam, SD
Harris, AW
Veverka, J
AF Chesley, S. R.
Belton, M. J. S.
Carcich, B.
Thomas, P. C.
Pittichova, J.
Klaasen, K. P.
Li, J. -Y.
Farnham, T. L.
Gillam, S. D.
Harris, A. W.
Veverka, J.
TI An updated rotation model for Comet 9P/Tempel 1
SO ICARUS
LA English
DT Article
DE Comets; Comets, Nucleus; Rotational dynamics; Comet Tempel-1
ID SPACE-TELESCOPE OBSERVATIONS; DEEP IMPACT; NUCLEUS
AB Observations from the second encounter of Comet 9P/Tempel 1 by the Stardust-NExT spacecraft provide an improved shape model and rotational pole for the nucleus (Thomas, P.C. et al. [2012]. Icarus 222, 453-466) that allows us to greatly improve our knowledge of its rotational evolution beyond that outlined earlier in Belton et al. (Belton, M.J.S. et al. [2011]. Icarus 213, 345-368). Model light curves are shown to fit observations at both perihelia with a single pole direction indicating that polar precession during a single perihelion passage is small. We show that the rotational phasing associated with observations taken far from perihelion in the previous work was incorrectly assessed by approximately half a cycle leading us to a significant reassessment of the evolution of the non-gravitational torques acting on the nucleus. We present an updated spin rate profile (torque model) for the 2005 perihelion passage and show that retardation of the spin rate well before perihelion is no longer a required feature. With the exception of the spin rate before the 2000 perihelion passage, the evolution of rotational rates through the three most recent perihelion passages is largely unaffected as is the prediction of the rotational phase of the comet's nucleus at the Stardust-NExT near-perihelion encounter. We find a spin rate of 209.4 +/- 0.01 degrees/d likely applies in the quiescent period before the 2000 perihelion, a 0.2% change, and that the rotational period shortened by 12.3 +/- 0.2 min during the 2000 perihelion passage.
We present an analysis of Stardust-NExT time-series photometry that yields a spin rate near 213.3 +/- 0.8 degrees/d at the time of encounter. An application of the 2005 torque model suggests that, while roughly similar, the torques were probably weaker during the 2011 perihelion passage. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Chesley, S. R.; Klaasen, K. P.; Gillam, S. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Belton, M. J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA.
[Carcich, B.; Thomas, P. C.; Veverka, J.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[Pittichova, J.] Slovak Acad Sci, Astron Inst, SK-84504 Bratislava, Slovakia.
[Li, J. -Y.; Farnham, T. L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Harris, A. W.] Space Sci Inst, Boulder, CO 80301 USA.
RP Chesley, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM steven.chesley@jpl.nasa.gov
FU National Aeronautics and Space Administration; University of Maryland
under NASA [NNM07AA99C]; Cornell University under NASA [51326-8361];
Space Telescope Science Institute [HST-GO-11998.03-A]
FX This research was conducted in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration, and at the University of Maryland
under NASA Contract NNM07AA99C and Cornell University under NASA
Agreement 51326-8361. Partial support of this work was provided by the
Space Telescope Science Institute through Grant HST-GO-11998.03-A.
NR 16
TC 4
Z9 4
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 516
EP 525
DI 10.1016/j.icarus.2012.03.022
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800010
ER
PT J
AU Thomas, PC
A'Hearn, MF
Veverka, J
Belton, MJS
Kissel, J
Klaasen, KP
McFadden, LA
Melosh, HJ
Schultz, PH
Besse, S
Carcich, BT
Farnham, TL
Groussin, O
Hermalyn, B
Li, JY
Lindler, DJ
Lisse, CM
Meech, K
Richardson, JE
AF Thomas, P. C.
A'Hearn, Michael F.
Veverka, Joseph
Belton, Michael J. S.
Kissel, Jochen
Klaasen, Kenneth P.
McFadden, Lucy A.
Melosh, H. Jay
Schultz, Peter H.
Besse, Sebastien
Carcich, Brian T.
Farnham, Tony L.
Groussin, Olivier
Hermalyn, Brendan
Li, Jian-Yang
Lindler, Don J.
Lisse, Carey M.
Meech, Karen
Richardson, James E.
TI Shape, density, and geology of the nucleus of Comet 103P/Hartley 2
SO ICARUS
LA English
DT Article
DE Comets; Comets, Nucleus; Geological processes; Geophysics
ID DEEP IMPACT; SMALL SATELLITES; SPACECRAFT; EPOXI; INSTRUMENT;
TOPOGRAPHY; GRAVITY; MISSION; SURFACE; TARGET
AB Data from the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) mission show Comet 103P/Hartley 2 is a bi-lobed, elongated, nearly axially symmetric comet 2.33 km in length. Surface features are primarily small mounds <40 m across, irregularly-shaped smooth areas on the two lobes, and a smooth but variegated region forming a "waist" between the two lobes. Assuming parts of the comet body approach the shape of an equipotential surface, the mean density of Hartley 2 is modeled to be 200-400 kg m(-3). Such a mean density suggests mass loss per orbit of >1%. The shape may be the evolutionary product of insolation, sublimation, and temporary deposition of materials controlled by the object's complex rotation. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Thomas, P. C.; Veverka, Joseph; Carcich, Brian T.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[A'Hearn, Michael F.; McFadden, Lucy A.; Besse, Sebastien; Farnham, Tony L.; Li, Jian-Yang] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA.
[Kissel, Jochen] Max Planck Inst Solar Syst Res, Katlenburg Lindau, Germany.
[Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[McFadden, Lucy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Melosh, H. Jay; Richardson, James E.] Purdue Univ, Lafayette, IN 47907 USA.
[Schultz, Peter H.; Hermalyn, Brendan] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Groussin, Olivier] Univ Aix Marseille 1, Lab Astrophys Marseille, Marseille, France.
[Groussin, Olivier] CNRS, Marseille, France.
[Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA.
[Lisse, Carey M.] JHU Appl Phys Lab, Laurel, MD 20723 USA.
[Meech, Karen] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
RP Thomas, PC (reprint author), Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
EM pct2@cornell.edu
RI McFadden, Lucy-Ann/I-4902-2013; Lisse, Carey/B-7772-2016;
OI McFadden, Lucy-Ann/0000-0002-0537-9975; Lisse,
Carey/0000-0002-9548-1526; Besse, Sebastien/0000-0002-1052-5439
FU NASA [NNM07AA99C]; New Frontiers Program Office
FX Most of the work for this paper was funded by NASA, through Contract
NNM07AA99C to the University of Maryland from NASA's Discovery and New
Frontiers Program Office. Part of this research was carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.
Technical assistance provided by A. Quick, K. Consroe, R. Rich
Goldweber, and C. Jackman. Two reviewers helped find mistakes and
improve the presentation.
NR 41
TC 42
Z9 42
U1 0
U2 12
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 550
EP 558
DI 10.1016/j.icarus.2012.05.034
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800013
ER
PT J
AU Li, JY
Besse, S
A'Hearn, MF
Belton, MJS
Bodewits, D
Farnham, TL
Klaasen, KP
Lisse, CM
Meech, KJ
Sunshine, JM
Thomas, PC
AF Li, Jian-Yang
Besse, Sebastien
A'Hearn, Michael F.
Belton, Michael J. S.
Bodewits, Dennis
Farnham, Tony L.
Klaasen, Kenneth P.
Lisse, Carey M.
Meech, Karen J.
Sunshine, Jessica M.
Thomas, Peter C.
TI Photometric properties of the nucleus of Comet 103P/Hartley 2
SO ICARUS
LA English
DT Article
DE Comets, Nucleus; Photometry; Spectrophotometry
ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; MULTIPLE APPARITIONS; 9P/TEMPEL
1; SURFACE; MORPHOLOGY; COMET-9P/TEMPEL-1; OUTBURSTS; ROUGHNESS; COLORS
AB We have studied the photometric properties of the nucleus of a hyperactive comet, 103P/Hartley 2, at visible wavelengths using the DIXI flyby images with both disk-integrated and disk-resolved analyses. The disk-integrated phase function of the nucleus has a linear slope of 0.046 +/- 0.002 mag/deg and an absolute magnitude of 18.4 +/- 0.1 at V-band. The nucleus displays an overall linear, featureless spectrum between 400 nm and 850 nm. The linear spectral slope is 7.6 +/- 3.6% per 100 nm, corresponding to broadband solar-illuminated color indices B-V of 0.75 +/- 0.05 and V-R of 0.43 +/- 0.04. Disk-resolved photometric analysis with a Hapke model returns a best-fit single-scattering albedo of 0.036 +/- 0.006, an asymmetry factor of the Henyey-Greenstein single-particle phase function of -0.46 +/- 0.06, and a photometric roughness of 15 +/- 10 degrees. The model yields a geometric albedo of 0.045 +/- 0.009 and a Bond albedo of 0.012 +/- 0.002. The overall photometric variations of the nucleus are small, with an equivalent albedo variation of 15% FWHM, and a color variation of 12% FWHM. Some areas near the terminator visible in the inbound images show an albedo of more than twice the global average value, and a much bluer color than the average nucleus. The overall photometric properties and variations of the nucleus of Hartley 2 are similar to those of the nuclei of Comets Wild 2 and Tempel 1 as studied from previous spacecraft flyby missions at similar resolutions. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Li, Jian-Yang; Besse, Sebastien; A'Hearn, Michael F.; Bodewits, Dennis; Farnham, Tony L.; Sunshine, Jessica M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA.
[Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Meech, Karen J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Meech, Karen J.] Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA.
[Thomas, Peter C.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
RP Li, JY (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA.
EM jyli@psi.edu
RI Lisse, Carey/B-7772-2016;
OI Lisse, Carey/0000-0002-9548-1526; Bodewits, Dennis/0000-0002-2668-7248;
Besse, Sebastien/0000-0002-1052-5439
FU NASA from the Discovery and New Frontiers Program Office [NNM07AA99C];
DDAP program [NNX07AG24G]
FX This research was supported by NASA through both the EPOXI Mission
through Contract NNM07AA99C from the Discovery and New Frontiers Program
Office and Grant NNX07AG24G under the DDAP program, both to the
University of Maryland. Part of this research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA. The authors thank the operations teams and all
science team members of the DIXI part of the EPOXI mission for making
the flyby a success. We are extremely grateful to Dr. Bonnie Burrati, an
anonymous reviewer, and Dr. Paul Helfenstein for their insightful and
constructive reviews that have helped us substantially improve this
manuscript.
NR 51
TC 25
Z9 25
U1 0
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 559
EP 570
DI 10.1016/j.icarus.2012.11.001
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800014
ER
PT J
AU Lindler, DJ
A'Hearn, MF
Besse, S
Carcich, B
Hermalyn, B
Klaasen, KP
AF Lindler, Don J.
A'Hearn, Michael F.
Besse, Sebastien
Carcich, Brian
Hermalyn, Brendan
Klaasen, Kenneth P.
TI Interpretation of results of deconvolved images from the Deep Impact
spacecraft High Resolution Instrument
SO ICARUS
LA English
DT Article
DE Comets, Nucleus; Image processing; Instrumentation
ID COMET 9P/TEMPEL-1; RESTORATION
AB A flaw in the pre-launch calibration system resulted in an inability to accurately focus the Deep Impact's High Resolution Instrument (HRI). This defocus resulted in a significant loss of resolution. The nature of the blurring function allows us to use image restoration techniques to retrieve much of the lost resolution. These techniques can produce artifacts in the image such as noise amplification and unwanted oscillations (at the level of 10% of the peak value in the restored point source) in the restored signal. Much useful information, including photometry of point sources, can be extracted from the restored HRI images of Comet Hartley 2, and other images from the Deep Impact spacecraft. In this paper, we present techniques for evaluating the restored images both qualitatively and quantitatively. Monte Carlo techniques are suggested to assess the accuracy of point source photometry. (C) 2012 Elsevier Inc. All rights reserved.
C1 [Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA.
[A'Hearn, Michael F.; Besse, Sebastien] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Carcich, Brian] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Hermalyn, Brendan] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Klaasen, Kenneth P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Lindler, DJ (reprint author), Sigma Space Corp, 4600 Forbes Blvd, Lanham, MD 20706 USA.
EM don.lindler@nasa.gov
OI Besse, Sebastien/0000-0002-1052-5439
FU NASA [NNM07AA99C]
FX This research was supported by NASA through Contract NNM07AA99C to the
University of Maryland for the EPOXI mission from the Discovery and New
Frontiers Program Office. Part of this research was carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. The R L
restorations were performed using software developed by Richard White of
the Space Telescope Science Institute.
NR 15
TC 4
Z9 4
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 571
EP 579
DI 10.1016/j.icarus.2012.09.003
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800015
ER
PT J
AU Groussin, O
Sunshine, JM
Feaga, LM
Jorda, L
Thomas, PC
Li, JY
A'Hearn, MF
Belton, MJS
Besse, S
Carcich, B
Farnham, TL
Hampton, D
Klaasen, K
Lisse, C
Merlin, F
Protopapa, S
AF Groussin, O.
Sunshine, J. M.
Feaga, L. M.
Jorda, L.
Thomas, P. C.
Li, J. -Y.
A'Hearn, M. F.
Belton, M. J. S.
Besse, S.
Carcich, B.
Farnham, T. L.
Hampton, D.
Klaasen, K.
Lisse, C.
Merlin, F.
Protopapa, S.
TI The temperature, thermal inertia, roughness and color of the nuclei of
Comets 103P/Hartley 2 and 9P/Tempel 1
SO ICARUS
LA English
DT Article
DE Comets; Comets; Nucleus; Comet Tempel 1; Infrared observations
ID ASTEROID SPECTROSCOPIC SURVEY; SPACE-TELESCOPE OBSERVATIONS;
NEAR-INFRARED SPECTROSCOPY; DEEP IMPACT; THERMOPHYSICAL MODEL; EMISSION
SPECTROMETER; PHYSICAL-PROPERTIES; SURFACE-COMPOSITION; TROJAN
ASTEROIDS; SOLAR-SYSTEM
AB The Deep Impact spacecraft flew by Comet 103P/Hartley 2 on November 4th, 2010 (EPOXI mission) and Comet 9P/Tempel 1 on July 4th, 2005 (Deep Impact mission). During the two flybys, spatially resolved infrared (1.05-4.8 mu m) spectra of the surface of the nucleus were acquired by the HRI-IR instrument. The analysis of these two data sets, obtained by the same instrument, offers a unique opportunity to understand, compare and contrast the surface thermal properties of these two comets. For this paper, we use spectral cubes with a spatial resolution of 30 m/pixel to 40 m/pixel for Hartley 2 and 160 m/pixel for Tempel 1. We focus our analysis on the color, temperature, thermal inertia and roughness of the nucleus.
The two comets have the same color, moderately red, with an average slope of 3.0 +/- 0.9% per k angstrom to 3.5 +/- 1.1% per k angstrom. There are very small variations of the color across the surface, except for regions with water ice that are neutral to blue, and two dark spots with redder (4.5 +/- 1.4% per k angstrom) materials on Hartley 2. The nucleus thermal emission at all resolved spatial scales differs from that of a gray body with an infrared emissivity of 0.9-1.0, the discrepancy being more important for larger incidence angles. Moreover, the color temperature of Comets Hartley 2 and Tempel 1 is relatively homogeneous across the surface and does not vary strongly with incidence angle. These two effects mainly result from surface roughness and associated projected shadows. From the temperature rise on the morning terminator, we derive a thermal inertia lower than 250 W/K/m(2)/s(1/2) for Hartley 2 and lower than 45 W/K/m(2)/s(1/2) for Tempel 1 (3 sigma upper limits). For Hartley 2 and Tempel 1, the temperature of the regions with exposed water ice is more than 100 K above the sublimation temperature of water ice (similar to 200 K). This observation indicates that the thermal emission is dominated by dust, and that water ice is not intimately mixed with dust at the scale of observation, with water ice patches at the meter or sub-meter scale. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Groussin, O.; Jorda, L.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Sunshine, J. M.; Feaga, L. M.; Li, J. -Y.; A'Hearn, M. F.; Besse, S.; Farnham, T. L.; Protopapa, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Thomas, P. C.; Carcich, B.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[Belton, M. J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA.
[Hampton, D.] Univ Alaska Fairbanks, Fairbanks, AK 99775 USA.
[Klaasen, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Lisse, C.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA.
[Merlin, F.] Univ Paris 07, LESIA, Meudon, France.
RP Groussin, O (reprint author), Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France.
EM olivier.groussin@oamp.fr
RI Lisse, Carey/B-7772-2016;
OI Lisse, Carey/0000-0002-9548-1526; Besse, Sebastien/0000-0002-1052-5439
FU NASA's Discovery Program [NNM07AA99C, NMO711002]; Centre National
d'Etudes Spatiales (CNES)
FX This work was supported by NASA's Discovery Program contract NNM07AA99C
to the University of Maryland and task order NMO711002 to the Jet
Propulsion Laboratory, California Institute of Technology. The work of
O. Groussin was funded by the Centre National d'Etudes Spatiales (CNES).
The authors are extremely grateful for personal efforts and professional
excellence of numerous engineers and supporting scientists who were
critical to the successful development and execution of the Deep Impact
and EPOXI missions. We thank B. Davidsson for very helpful discussions
and E. Kuhrt and an anonymous referee for their constructive reviews.
NR 74
TC 29
Z9 29
U1 2
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 580
EP 594
DI 10.1016/j.icarus.2012.10.003
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800016
ER
PT J
AU Belton, MJS
Thomas, P
Li, JY
Williams, J
Carcich, B
A'Hearn, MF
McLaughlin, S
Farnham, T
McFadden, L
Lisse, CM
Collins, S
Besse, S
Klaasen, K
Sunshine, J
Meech, KJ
Lindler, D
AF Belton, Michael J. S.
Thomas, Peter
Li, Jian-Yang
Williams, Jade
Carcich, Brian
A'Hearn, Michael F.
McLaughlin, Stephanie
Farnham, Tony
McFadden, Lucy
Lisse, Carey M.
Collins, Steven
Besse, Sebastien
Klaasen, Kenneth
Sunshine, Jessica
Meech, Karen J.
Lindler, Don
TI The complex spin state of 103P/Hartley 2: Kinematics and orientation in
space
SO ICARUS
LA English
DT Article
DE Comets; Comets, Nucleus; Rotational dynamics
ID ROTATION; NUCLEUS; CN
AB We derive the spin state of the nucleus of Comet 103P/Hartley 2, its orientation in space, and its short-term temporal evolution from a mixture of observations taken from the DIXI (Deep Impact Extended Investigation) spacecraft and radar observations. The nucleus is found to spin in an excited long-axis mode (LAM) with its rotational angular momentum per unit mass, M, and rotational energy per unit mass, E, slowly decreasing while the degree of excitation in the spin increases through perihelion passage. M is directed toward (RA, Dec; J2000) = 8 +/- 4 degrees, 54 +/- 1 degrees (obliquity = 48 +/- 1 degrees). This direction is likely changing, but the change is probably <6 degrees on the sky over the similar to 81.6 days of the DIXI encounter. The magnitudes of M and E at closest approach (JD 2455505.0831866 2011-11-04 13:59:47.310) are 30.0 +/- 0.2 m(2)/s and (1.56 +/- 0.02) x 10(-3) m(2)/s(2) respectively. The period of rotation about the instantaneous spin vector, which points in the direction (RA, Dec; J2000) = 300 +/- 3.2 degrees, 67 +/- 1.3 degrees at the time of closest approach, was 14.1 +/- 0.3 h. The instantaneous spin vector circulates around M, inclined at an average angle of 33.2 +/- 1.3 degrees, with an average period of 18.40 +/- 0.13 h at the time of closest approach. The period of roll around the principal axis of minimum inertia ("long" axis) at that time is 26.72 +/- 0.06 h. The long axis is inclined to M by similar to 81.2 +/- 0.6 degrees on average, slowly decreasing through encounter. We infer that there is a periodic nodding motion of the long axis with half the roll period, i.e., 13.36 +/- 0.03 h, with amplitude of similar to 1 degrees again decreasing through encounter. The periodic variability in the circulation and roll rates during a cycle was at the 2% and 10-14% level respectively.
During the encounter there was a secular lengthening of the circulation period of the long axis by 1.3 +/- 0.2 min/d, in agreement with ground-based estimates, while the period of roll around the long axis changed by similar to-4.4 min/d at perihelion. M decreased at a rate of -0.038 (m(2)/s) per day in a roughly linear fashion. Assuming a bulk density between 230-300 kg/m(3) and a total volume for the nucleus of 8.09 x 10(8) m(3), the net torque acting on the nucleus was in the range 0.8-1.1 x 10(5) kg m(2)/s(2). In order to bring the spacecraft photometric and imaging data into alignment on the direction of M, the directions of the intermediate and short principal axes of inertia had to be adjusted by 33 degrees (on the sky) from the values indicated by the shape model with an assumed homogeneous interior. The adjusted direction of the intermediate axis is RA, Dec = 302 degrees, -16.5 degrees. The morning and evening terminators in the images are identified, and the variation of the insolation at three regions on the nucleus associated with active areas calculated. The plume of water vapor observed in the inner coma is found to be directed close to the direction of local gravity over the sub-solar region for a range of reasonable bulk densities. The plume does not follow the projected normal to the surface at the sub-solar point. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA.
[Thomas, Peter; Carcich, Brian] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[Li, Jian-Yang; Williams, Jade; A'Hearn, Michael F.; McLaughlin, Stephanie; Farnham, Tony; Besse, Sebastien; Sunshine, Jessica] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[McFadden, Lucy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA.
[Collins, Steven; Klaasen, Kenneth] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Meech, Karen J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Lindler, Don] Sigma Space Corp, Lanham, MD 20706 USA.
RP Belton, MJS (reprint author), Belton Space Explorat Initiat LLC, 430 S Randolph Way, Tucson, AZ 85716 USA.
EM mbelton@dakotacom.net
RI McFadden, Lucy-Ann/I-4902-2013; Lisse, Carey/B-7772-2016;
OI McFadden, Lucy-Ann/0000-0002-0537-9975; Lisse,
Carey/0000-0002-9548-1526; Besse, Sebastien/0000-0002-1052-5439
FU NASA under the PMDAP program [NNX07AG24G]; Discovery and New Frontiers
Program Office [NNM07AA99C]; National Aeronautics and Space
Administration
FX This work was supported by NASA Grant NNX07AG24G under the PMDAP program
and Contract NNM07AA99C from the Discovery and New Frontiers Program
Office, both to the University of Maryland and sub-contracted to Belton
Space Exploration Initiatives, LLC, through a Memorandum of Agreement
with the National Optical Astronomy Observatories. A portion of this
research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration. The principal author thanks the Principal
Investigators Michael F. A'Hearn and Jian-Yang Li for their continuing
support. We also would like to acknowledge the valuable assistance of
Dr. D. Bockelee-Morvan in locating an error in our longitude
definitions.
NR 28
TC 10
Z9 10
U1 0
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 595
EP 609
DI 10.1016/j.icarus.2012.06.037
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800017
ER
PT J
AU Hermalyn, B
Farnham, TL
Collins, SM
Kelley, MS
A'Hearn, MF
Bodewits, D
Carcich, B
Lindler, DJ
Lisse, C
Meech, K
Schultz, PH
Thomas, PC
AF Hermalyn, Brendan
Farnham, Tony L.
Collins, Steven M.
Kelley, Michael S.
A'Hearn, Michael F.
Bodewits, Dennis
Carcich, Brian
Lindler, Don J.
Lisse, Casey
Meech, Karen
Schultz, Peter H.
Thomas, Peter C.
TI The detection, localization, and dynamics of large icy particles
surrounding Comet 103P/Hartley 2
SO ICARUS
LA English
DT Article
DE Comets; Comets, Coma; Comets, Dust; Ices; Image processing
ID NUCLEI
AB The Deep Impact Spacecraft flew past Comet 103P/Hartley 2 on November 4th, 2010. Images revealed the comet to be enveloped in a field of debris composed of fine grained dust, ice, and hundreds of discrete millimeter to decimeter sized particles. In this work, a selection of the brightest particles are identified and photogrammetrically located in 3D space to examine their positions and dynamics. 90% of the particles detected were within 10 km of the nucleus and traveling a few meters per second or slower. The particles exhibit a high degree of temporal variability in brightness, suggesting rotating, heterogeneous and faceted geometries. This style of near-nucleus environment has not been observed in any other comet to date and it may help explain the hyperactive nature of water production on Hartley 2 and similar comets. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Hermalyn, Brendan; Schultz, Peter H.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Hermalyn, Brendan; Meech, Karen] Univ Hawaii, NASA Astrobiol Inst, Inst Astron, Honolulu, HI 96822 USA.
[Farnham, Tony L.; Kelley, Michael S.; A'Hearn, Michael F.; Bodewits, Dennis] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Collins, Steven M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Carcich, Brian; Thomas, Peter C.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA.
[Lisse, Casey] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
RP Hermalyn, B (reprint author), Univ Hawaii, NASA Astrobiol Inst, Inst Astron, 2860 Woodlawn Dr, Honolulu, HI 96822 USA.
EM hermalyn@hawaii.edu
RI Lisse, Carey/B-7772-2016;
OI Lisse, Carey/0000-0002-9548-1526; Kelley, Michael/0000-0002-6702-7676;
Bodewits, Dennis/0000-0002-2668-7248
FU NASA's Discovery Program [NM071102, NAS7-03001]; National Aeronautics
and Space Administration through the NASA Astrobiology Institute
[NNA09DA77A]; NASA-RI Space Grant [NNX10AI95H]
FX This material is based upon work supported by NASA's Discovery Program,
which supported the EPOXI mission via Contract NM071102 to the
University of Maryland and task order NAS7-03001 between NASA and
CalTech, and the National Aeronautics and Space Administration through
the NASA Astrobiology Institute under Cooperative Agreement No.
NNA09DA77A issued through the Office of Space Science. B.H. also
received partial support from the NASA-RI Space Grant (NNX10AI95H) for a
portion of this study.
NR 21
TC 17
Z9 17
U1 0
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 625
EP 633
DI 10.1016/j.icarus.2012.09.030
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800019
ER
PT J
AU Kelley, MS
Lindler, DJ
Bodewits, D
A'Hearn, MF
Lisse, CM
Kolokolova, L
Kissel, J
Hermalyn, B
AF Kelley, Michael S.
Lindler, Don J.
Bodewits, Dennis
A'Hearn, Michael F.
Lisse, Carey M.
Kolokolova, Ludmilla
Kissel, Jochen
Hermalyn, Brendan
TI A distribution of large particles in the coma of Comet 103P/Hartley 2
SO ICARUS
LA English
DT Article
DE Comets; Comets, Coma; Comets, Dust; Ices
ID SPACE-TELESCOPE OBSERVATIONS; 73P/SCHWASSMANN-WACHMANN 3; DUST TRAIL;
NUCLEI; INSTRUMENT; EPOXI; PHOTOMETRY; EUROPA; IMAGES; RADAR
AB The coma of Comet 103P/Hartley 2 has a significant population of large particles observed as point sources in images taken by the Deep Impact spacecraft. We measure their spatial and flux distributions, and attempt to constrain their composition. The flux distribution of these particles implies a very steep size distribution with power-law slopes ranging from -6.6 to -4.7. The radii of the particles extend up to 20 cm, and perhaps up to 2 m, but their exact sizes depend on their unknown light scattering properties. We consider two cases: bright icy material, and dark dusty material. The icy case better describes the particles if water sublimation from the particles causes a significant rocket force, which we propose as the best method to account for the observed spatial distribution. Solar radiation is a plausible alternative, but only if the particles are very low density aggregates. If we treat the particles as mini-nuclei, we estimate they account for <16-80% of the comet's total water production rate (within 20.6 km). Dark dusty particles, however, are not favored based on mass arguments. The water production rate from bright icy particles is constrained with an upper limit of 0.1-0.5% of the total water production rate of the comet. If indeed icy with a high albedo, these particles do not appear to account for the comet's large water production rate. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Kelley, Michael S.; Bodewits, Dennis; A'Hearn, Michael F.; Kolokolova, Ludmilla] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA.
[Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Kissel, Jochen] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
[Hermalyn, Brendan] Univ Hawaii, NASA Astrobiol Inst, Inst Astron, Honolulu, HI 96822 USA.
RP Kelley, MS (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM msk@astro.umd.edu; don.j.lindler@nasa.gov; dennis@astro.umd.edu;
ma@astro.umd.edu; Carey.Lisse@jhuapl.edu; ludmilla@astro.umd.edu;
hermalyn@ifa.hawaii.edu
RI Lisse, Carey/B-7772-2016;
OI Lisse, Carey/0000-0002-9548-1526; Kelley, Michael/0000-0002-6702-7676;
Bodewits, Dennis/0000-0002-2668-7248
FU NASA's Discovery Program [NNM07AA99C, NMO711002]
FX This work was supported by NASA's Discovery Program contract NNM07AA99C
to the University of Maryland and task order NMO711002 to the Jet
Propulsion Laboratory.
NR 54
TC 43
Z9 43
U1 0
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 634
EP 652
DI 10.1016/j.icarus.2012.09.037
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800020
ER
PT J
AU Meech, KJ
Kleyna, J
Hainaut, OR
Lowry, SC
Fuse, T
A'Hearn, MF
Chesley, S
Yeomans, DK
Fernandez, Y
Lisse, C
Reach, W
Bauer, JM
Mainzer, AK
Pittichova, J
Christensen, E
Osip, D
Brink, T
Mateo, M
Motta, V
Challis, P
Holman, M
Ferrin, I
AF Meech, K. J.
Kleyna, J.
Hainaut, O. R.
Lowry, S. C.
Fuse, T.
A'Hearn, M. F.
Chesley, S.
Yeomans, D. K.
Fernandez, Y.
Lisse, C.
Reach, W.
Bauer, J. M.
Mainzer, A. K.
Pittichova, J.
Christensen, E.
Osip, D.
Brink, T.
Mateo, M.
Motta, V.
Challis, P.
Holman, M.
Ferrin, I.
TI The demise of Comet 85P/Boethin, the first EPOXI mission target
SO ICARUS
LA English
DT Article
DE Comets; Data reduction techniques; Image processing
ID MULTIBAND IMAGING PHOTOMETER; DEEP-IMPACT; SOLAR-SYSTEM; 9P/TEMPEL-1;
SPITZER; JUPITER; NUCLEUS; 1P/HALLEY; CAMPAIGN; SCIENCE
AB Comet 85P/Boethin was selected as the original comet target for the Deep Impact extended mission, EPOXI. Because this comet had been only observed at two apparitions in 1975 and 1986 and consequently had a large ephemeris error, an early intense recovery effort similar to that of 1P/Halley was undertaken beginning in 2005 using the ESO Very Large Telescopes (VLTs) in a distant comet program. These were challenging observations because of the low galactic latitude, and an error ellipse (the line of variations) that was larger than the CCD FOV, and the comet was not seen. Dedicated recovery observing time was awarded on the Subaru telescope in April and May 2006, and June 2007, in addition to time on the VLT and Canada France Hawaii telescopes during July August 2007 with wide field mosaics and mosaicing techniques. The limiting V magnitudes from these observing runs ranged between 25.7 and 27.3 and again the comet was not seen in the individual nights. A new image processing technique was developed to stack images over extended runs and runs after distorting them to account for dilations and rotations in the line of variations using modifications of the world coordinate system. A candidate at V 27.3 was found in the CFHT data along the LOV, 2.5' west of the nominal ephemeris position. The EPOXI mission was unwilling to re-target the spacecraft without a confirmation. Additional time was secured using the Spitzer Space Telescope, the Gemini South 8-m telescope, the Clay and Baade (Magellan 6.5 m), CTIO 4 m, and SOAR 4 m telescopes during 2007 September and October A composite image made by stacking the new data showed no plausible candidate nucleus to a limiting magnitude of V = 28.5, corresponding to a nucleus radius between 0.1 and 0.2 km (assuming an albedo of 0.04). The comet was declared lost, presumably having disintegrated. Searches in the WISE data set revealed no debris trail, but no constraints on the possible time of disruption can be made. NASA approved the trajectory correction maneuver to go to Comet 103P/Hartley 2 on 2007 November 1. Many observers searched for the comet as it came to its December 2008 perihelion, but no trace of the nucleus was found.
Based on observations collected at the Very Large Telescope, Chile, in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, in part using data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii, in part using data collected at the Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which are operated by the Association for Research in Astronomy, under contract with the National Science Foundation, and in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministerio da Ciencia, Tecnologia, e Inovacao (MCTI) da Republica Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). This work is also based in part on observations taken with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Meech, K. J.; Kleyna, J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Meech, K. J.; Kleyna, J.] UH NASA Astrobiol Inst, Moffett Field, CA 94035 USA.
[Hainaut, O. R.] European So Observ, D-85748 Garching, Germany.
[Lowry, S. C.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England.
[Fuse, T.] Kashima Space Technol Ctr, Natl Inst Informat & Commun Technol, Kashima, Ibaraki 3148501, Japan.
[A'Hearn, M. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Chesley, S.; Yeomans, D. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Fernandez, Y.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
[Lisse, C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Reach, W.] USRA SOFIA, Moffett Field, CA 94035 USA.
[Bauer, J. M.; Mainzer, A. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Pittichova, J.] Slovak Acad Sci, Astron Inst, Bratislava 84504, Slovakia.
[Christensen, E.] Univ Arizona, Catalina Sky Survey Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Osip, D.] Carnegie Inst Sci, Las Campanas Observ, La Serena, Chile.
[Brink, T.; Mateo, M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Motta, V.] Univ Valparaiso, Dept Fis & Astron, Valparaiso, Chile.
[Challis, P.; Holman, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Ferrin, I.] Univ Antioquia, Fac Exact & Nat Sci, Inst Phys, Medellin, Colombia.
RP Meech, KJ (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA.
EM meech@ifa.hawaii.edu
RI Lisse, Carey/B-7772-2016;
OI Lisse, Carey/0000-0002-9548-1526; Fernandez, Yanga/0000-0003-1156-9721;
Reach, William/0000-0001-8362-4094
FU VLT, European Southern Observatory, Chile (ESO Programmes) [279.C-5016,
279.C-5062]; Gemini Observatory [GS-2007B-DD-2]; University of Maryland;
University of Hawaii [Z667702]; NASA [NASW-00004]; National Aeronautics
and Space Administration; Planetary Science Division of the National
Aeronautics and Space Administration; Council for Scientific Development
of the University of the Andes [C-1281-04-05-B]; UK Particle Physics and
Astronomy Research Council
FX This is based in part on observations collected at the VLT, European
Southern Observatory, Chile (ESO Programmes 279.C-5016 and 279.C-5062),
and in part on observations obtained at the Gemini Observatory (program
GS-2007B-DD-2), which is operated by the Association of Universities for
Research in Astronomy, Inc., under a cooperative agreement with the NSF
on behalf of the Gemini partnership: the National Science Foundation
(United States), the Science and Technology Facilities Council (United
Kingdom), the National Research Council (Canada), CONICYT (Chile), the
Australian Research Council (Australia), Ministrio da Cincia e
Tecnologia (Brazil) and SECYT (Argentina). Image processing in this
paper has been performed using the MIDAS software, developed by the
European Southern Observatory, and is distributed with a general public
license, and in part using the IRAF program. IRAF is distributed by the
National Optical Astronomy Observatories, which is operated by the
Association of Universities for Research in Astronomy, Inc. (AURA) under
cooperative agreement with the National Science Foundation. Support for
this work was provided in part through University of Maryland and
University of Hawaii subcontract Z667702, which was awarded under prime
contract NASW-00004 from NASA (K.J.M., J.P., and C.M.L.), conducted in
part at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration (S.C. and D.K.Y.). Support for the work (C.M.L. and
W.T.R.) was provided by NASA through an award issued by JPL/Caltech.
This research made use of Tiny Tim/ Spitzer, developed by J.E. Krist for
the Spitzer Space Center. This publication makes use of data products
from the Wide-field Infrared Survey Explorer, which is a joint project
of the University of California, Los Angeles, and the Jet Propulsion
Laboratory/California Institute of Technology, funded by the National
Aeronautics and Space Administration. This publication also makes use of
data products from NEOWISE, which is a project of the Jet Propulsion
Laboratory/California Institute of Technology, funded by the Planetary
Science Division of the National Aeronautics and Space Administration.
IF would like to thank the Council for Scientific Development of the
University of the Andes, for their support through Grant C-1281-04-05-B,
and S.C.L. acknowledges support from the UK Particle Physics and
Astronomy Research Council. We would like to especially thank (1) the
observatory directors who allocated director's time: M. Hayashi
(Subaru), C. Cesarsky and T. de Zeeuw (ESO-V.L.T.), D. Simons and J.-R.
Roy (Gemini), A. Walker (CTIO), S. Heathcote (SOAR); (2) the Observatory
Science Operations Heads who were instrumental in helping execute our
programs: P. Martin (Canada-France Telescope) and B. Rodgers (Gemini
S.). Additionally we want to thank the observatory staff who helped with
the observing: M. Takami and M. Ishii (Subaru), D. Maturana, L. Fraga
and S. Points (SOAR). We would also like to thank J. Johnson and N.
Cabrera who obtained UH2.2m images for us that enabled us to discount
the spurious recovery report during July 2008.
NR 43
TC 1
Z9 1
U1 0
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 662
EP 678
DI 10.1016/j.icarus.2012.09.002
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800022
ER
PT J
AU Bonev, BP
Villanueva, GL
Paganini, L
DiSanti, MA
Gibb, EL
Keane, JV
Meech, KJ
Mumma, MJ
AF Bonev, Boncho P.
Villanueva, Geronimo L.
Paganini, Lucas
DiSanti, Michael A.
Gibb, Erika L.
Keane, Jacqueline V.
Meech, Karen J.
Mumma, Michael J.
TI Evidence for two modes of water release in Comet 103P/Hartley 2:
Distributions of column density, rotational temperature, and ortho-para
ratio
SO ICARUS
LA English
DT Article
DE Comet Hartley-2; Comets, coma; Comets, composition; Infrared
observations; Ices
ID INNER COMA; INFRARED-SPECTROSCOPY; SPIN CONVERSION; FLUORESCENCE; BAND;
WAVELENGTHS; MECHANISMS; EMISSION; HERITAGE; METHANE
AB This paper presents long-slit spectra of H2O emission from the inner coma of Comet 103P/Hartley 2, acquired with NIRSPEC/Keck 2 during the comet's close approach to Earth in 2010. On UT 19.6 October 2010 the slit was oriented nearly orthogonal to the projected (in the plane of the sky) Sun-comet line, and the H2O rotational temperature and column density showed similar spatial distributions as a function of projected distance from the nucleus. On UT 22.5 October, the slit was oriented along the Sun-comet line, and the rotational temperatures revealed pronounced asymmetry while the column densities were nearly symmetric about the nucleus. We suggest this dichotomy reflects two qualitatively different mechanisms of volatile release, which introduce distinct rotational distributions in the sublimated material. Future modeling can test this hypothesis.
We also report new retrievals of water nuclear spin species (ortho, para) in this comet, and we present the ortho-to-para ratio (OPR) for various projected nucleocentric distances. Our most precise individual measurement is OPR = 2.59 +/- 0.13, corresponding to a nuclear spin temperature (T-spin) of 31 +/- 3 K. A weighted mean of five independent measurements provides OPR = 2.79 +/- 0.13 (T-spin = 37(-4)(+8) K). Hartley 2 is the first comet for which the OPR has been measured in multiple apparitions. Our values (in 2010) are in good agreement with those obtained two apparitions earlier by the Infrared Space Observatory. Since the comet lost a substantial amount of material between 1998 and 2010, we see no evidence for variation of the OPR with depth in the nucleus. Further discussion of the advantages, assumptions, and biases introduced by various approaches when quantifying nuclear spin species (observing techniques, models and model parameters, sources of uncertainty) would likely aid in interpreting the OPRs measured in cometary volatiles. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Bonev, Boncho P.; Villanueva, Geronimo L.] Catholic Univ Amer, Dept Phys, Washington, DC 20061 USA.
[Bonev, Boncho P.; Villanueva, Geronimo L.; Paganini, Lucas; DiSanti, Michael A.; Gibb, Erika L.; Mumma, Michael J.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA.
[Paganini, Lucas] NASA, Greenbelt, MD 20771 USA.
[Gibb, Erika L.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA.
[Keane, Jacqueline V.; Meech, Karen J.] Univ Hawaii, Natl Astrobiol Inst, Honolulu, HI 96822 USA.
RP Bonev, BP (reprint author), NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Mail Stop 690, Greenbelt, MD 20771 USA.
EM bonev@cua.edu
RI mumma, michael/I-2764-2013
FU NSF Astronomy and Astrophysics Research Grants Program [AST 0807939];
NASA Astrobiology Institute; NASA Postdoctoral Program; NASA's Planetary
Astronomy Program; NASA's Planetary Atmospheres Program; NASA's
Discovery Program; NOAO (through the Telescope System Instrumentation
Program); NSF; University of Hawaii
FX We gratefully acknowledge support by the NSF Astronomy and Astrophysics
Research Grants Program (AST 0807939; PI/co-PI Bonev/Gibb), by the NASA
Astrobiology Institute (PI: Meech, PI: Mumma), by the NASA Postdoctoral
Program (fellow Paganini), and by NASA's Planetary Astronomy (PI:
DiSanti; PI: Mumma), Planetary Atmospheres (PI: DiSanti; PI:
Villanueva), and Discovery (PI: Meech) Programs. NOAO (through the
Telescope System Instrumentation Program funded by NSF) and the
University of Hawaii granted Keck-2 telescope time for this
investigation.
NR 49
TC 19
Z9 19
U1 1
U2 11
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD FEB
PY 2013
VL 222
IS 2
SI SI
BP 740
EP 751
DI 10.1016/j.icarus.2012.07.034
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 099ZZ
UT WOS:000315665800029
ER
PT J
AU Maartens, R
Zhao, GB
Bacon, D
Koyama, K
Raccanelli, A
AF Maartens, Roy
Zhao, Gong-Bo
Bacon, David
Koyama, Kazuya
Raccanelli, Alvise
TI Relativistic corrections and non-Gaussianity in radio continuum surveys
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE galaxy clustering; cluster counts; non-gaussianity
ID SKY
AB Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modi fied gravity and non-Gaussianity. We consider the continuum surveys with LO-FAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near and beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift - we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f(NL) greater than or similar to 5 for SKA continuum surveys.
C1 [Maartens, Roy] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa.
[Maartens, Roy; Zhao, Gong-Bo; Bacon, David; Koyama, Kazuya] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Zhao, Gong-Bo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
[Raccanelli, Alvise] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Raccanelli, Alvise] CALTECH, Pasadena, CA 91125 USA.
RP Maartens, R (reprint author), Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa.
EM Roy.Maartens@port.ac.uk; Gong-bo.Zhao@port.ac.uk;
David.Bacon@port.ac.uk; Kazuya.Koyama@port.ac.uk; alvise@caltech.edu
OI Raccanelli, Alvise/0000-0001-6726-0438; Maartens,
Roy/0000-0001-9050-5894
FU South African Square Kilometre Array Project; National Research
Foundation; U.K. Science & Technology Facilities Council [ST/H002774/1];
Royal Society (U.K.)/ National Research Foundation (SA); European
Research Council; Leverhulme Trust
FX We thank Matt Jarvis for helpful discussions. RM was supported by the
South African Square Kilometre Array Project and National Research
Foundation. RM, GZ, DB, KK were supported by the U.K. Science &
Technology Facilities Council (grant no. ST/H002774/1) and by a Royal
Society (U.K.)/ National Research Foundation (SA) exchange grant. KK was
also supported by the European Research Council and the Leverhulme
Trust. Part of the research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration.
NR 36
TC 20
Z9 20
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD FEB
PY 2013
IS 2
AR 044
DI 10.1088/1475-7516/2013/02/044
PG 12
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 098VE
UT WOS:000315576400044
ER
PT J
AU Diniega, S
Sayanagi, KM
Balcerski, J
Carande, B
Diaz-Silva, RA
Fraeman, AA
Guzewich, SD
Hudson, J
Nahm, AL
Potter-McIntyre, S
Route, M
Urban, KD
Vasisht, S
Benneke, B
Gil, S
Livi, R
Williams, B
Budney, CJ
Lowes, LL
AF Diniega, Serina
Sayanagi, Kunio M.
Balcerski, Jeffrey
Carande, Bryce
Diaz-Silva, Ricardo A.
Fraeman, Abigail A.
Guzewich, Scott D.
Hudson, Jennifer
Nahm, Amanda L.
Potter-McIntyre, Sally
Route, Matthew
Urban, Kevin D.
Vasisht, Soumya
Benneke, Bjoern
Gil, Stephanie
Livi, Roberto
Williams, Brian
Budney, Charles J.
Lowes, Leslie L.
TI Mission to the Trojan asteroids: Lessons learned during a JPL Planetary
Science Summer School mission design exercise
SO PLANETARY AND SPACE SCIENCE
LA English
DT Article
DE Trojan asteroid; Mission design; Asteroid tour; NASA-JPL Planetary
Science Summer School
ID DAWN MISSION; SOLAR-SYSTEM; SURFACE-COMPOSITION; GAMMA-RAY; MAIN BELT;
SPECTROSCOPY; JUPITER; VESTA; CERES; CONSTRAINTS
AB The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids occupying Jupiter's L4 and L5 Lagrange points as a priority for future NASA missions. Observing these asteroids and measuring their physical characteristics and composition would aid in identification of their source and provide answers about their likely impact history and evolution, thus yielding information about the makeup and dynamics of the early Solar System. We present a conceptual design for a mission to the Jovian Trojan asteroids: the Trojan ASteroid Tour, Exploration, and Rendezvous (TASTER) mission, that is consistent with the NASA New Frontiers candidate mission recommended by the Decadal Survey and the final result of the 2011 NASA-JPL Planetary Science Summer School. Our proposed mission includes visits to two Trojans in the L4 population: a 500 km altitude fly-by of 1999 XS143, followed by a rendezvous with and detailed observations of 911 Agamemnon at orbital altitudes of 1000-100 km over a 12 month nominal science data capture period. Our proposed instrument payload - wide- and narrow-angle cameras, a visual and infrared mapping spectrometer, and a neutron/gamma ray spectrometer - would provide unprecedented high-resolution, regional-to-global datasets for the target bodies, yielding fundamental information about the early history and evolution of the Solar System. Although our mission design was completed as part of an academic exercise, this study serves as a useful starting point for future Trojan mission design studies. In particular, we identify and discuss key issues that can make large differences in the complex trade-offs required when designing a mission to the Trojan asteroids. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Diniega, Serina; Williams, Brian; Budney, Charles J.; Lowes, Leslie L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Sayanagi, Kunio M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Sayanagi, Kunio M.] CALTECH, Pasadena, CA 91106 USA.
[Balcerski, Jeffrey] Case Western Reserve Univ, Cleveland, OH 44106 USA.
[Carande, Bryce] Arizona State Univ, Tempe, AZ 85281 USA.
[Diaz-Silva, Ricardo A.] Univ Calif Davis, Davis, CA 95616 USA.
[Fraeman, Abigail A.] Washington Univ, St Louis, MO USA.
[Guzewich, Scott D.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Hudson, Jennifer] Univ Michigan, Ann Arbor, MI 48105 USA.
[Nahm, Amanda L.] Univ Texas El Paso, El Paso, TX USA.
[Potter-McIntyre, Sally] Univ Utah, Salt Lake City, UT 84112 USA.
[Route, Matthew] Penn State Univ, University Pk, PA 16802 USA.
[Urban, Kevin D.] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07103 USA.
[Vasisht, Soumya] Univ Washington, Seattle, WA 98195 USA.
[Benneke, Bjoern; Gil, Stephanie] MIT, Cambridge, MA 02139 USA.
[Livi, Roberto] Univ Texas San Antonio, San Antonio, TX 78249 USA.
RP Diniega, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM serina.diniega@jpl.nasa.gov
RI Nahm, Amanda/F-4602-2011;
OI Nahm, Amanda/0000-0002-3771-6825; Guzewich, Scott/0000-0003-1149-7385
FU NASA
FX This document was created by students as an educational activity at the
Jet Propulsion Laboratory, California Institute of Technology, and does
not represent an actual mission. (c) 2012. All rights reserved.
Government sponsorship acknowledged. We thank everyone involved with the
NASA-JPL Planetary Science Summer School and Team X for enriching our
experience, with special thanks to Charles Budney for serving as our
mentor and Leslie Lowes and Trisha Wheeler for their logistics
assistance. We also thank our review board for their insight and advice:
Mark Adler, Bruce Banerdt, Rosaly Lopes, Edward Miller, and Adam
Steltzner. Finally, we thank our reviewers, Andrew Rivkin and Josh
Emery, for their insightful and constructive comments. Diniega was
supported by an appointment to the NASA Post-doctoral Program,
administered by Oak Ridge Associated Universities, at the California
Institute of Technology Jet Propulsion Laboratory under a contract with
NASA.
NR 48
TC 1
Z9 1
U1 0
U2 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0032-0633
J9 PLANET SPACE SCI
JI Planet Space Sci.
PD FEB
PY 2013
VL 76
BP 68
EP 82
DI 10.1016/j.pss.2012.11.011
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 102FW
UT WOS:000315831300006
ER
PT J
AU Stockton, AM
Mora, MF
Cable, ML
Willis, PA
AF Stockton, Amanda M.
Mora, Maria F.
Cable, Morgan L.
Willis, Peter A.
TI Design rules and operational optimization for rapid, contamination-free
microfluidic transfer using monolithic membrane valves
SO SENSORS AND ACTUATORS B-CHEMICAL
LA English
DT Article
DE Normally-closed monolithic membrane microvalves; Peristaltic micropump;
Rapid microfluidic transfer; Spaceflight applications
ID CAPILLARY-ELECTROPHORESIS SYSTEM; CARBONACEOUS BIOMARKERS;
GENETIC-ANALYSIS; MICROCHIP; MARS; MICRODEVICE; PUMPS
AB Networks of monolithic membrane microvalves integrated into microdevices enable complete automation of liquid-based chemical analyses necessary for fully automated applications, such as spaceflight. Although individual pumping devices and operational routines have been characterized, to date there has been no rigorous evaluation of microvalve layout and its effect on fluidic transfer. Here, we evaluate two microdevices at opposite extremes of fluidic resistance and evaluate three pumping routines on each device. Delay times between operational steps are optimized for fastest fluidic transfer. A 3-valve double-chamber routine enables fastest pumping rates on both devices. On low fluidic resistance devices, a 2-valve (bivalve) pumping routine enables faster fluidic transfer than a 3-valve single-chamber pumping routine. Additionally, low fluidic resistance devices enable significantly faster fluidic transfer (4-6 fold) than their higher resistance counterparts. Back-contamination is qualitatively characterized for the optimized routines; higher fluidic resistance between the pumping architecture and the fluidic output reservoir is the most essential feature for preventing back-contamination. We use these results to suggest design rules to guide future pumping architectures to enable the rapid, contamination-free fluidic transfer that will be necessary in spaceflight applications. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Stockton, Amanda M.; Mora, Maria F.; Cable, Morgan L.; Willis, Peter A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Willis, PA (reprint author), Mail Stop 302-231,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM peter.a.willis@jpl.nasa.gov
RI Mora, Maria/C-9753-2009; Willis, Peter/I-6621-2012
FU Jet Propulsion Laboratory, California Institute of Technology; National
Aeronautics and Space Administration; NASA's ASTID Program [104320];
NASA Postdoctoral Program (NPP) at the Jet Propulsion Laboratory; NASA
FX This work was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration. Financial support was provided by NASA's ASTID
Program (Project #104320) and the NASA Postdoctoral Program (NPP) at the
Jet Propulsion Laboratory, administered by Oak Ridge Associated
Universities through a contract with NASA.
NR 17
TC 5
Z9 5
U1 1
U2 22
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-4005
J9 SENSOR ACTUAT B-CHEM
JI Sens. Actuator B-Chem.
PD FEB
PY 2013
VL 177
BP 668
EP 675
DI 10.1016/j.snb.2012.11.039
PG 8
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA 101BU
UT WOS:000315751000089
ER
PT J
AU Kim, B
Lu, YJ
Hannon, A
Meyyappan, M
Li, J
AF Kim, Beomseok
Lu, Yijiang
Hannon, Ami
Meyyappan, M.
Li, Jing
TI Low temperature Pd/SnO2 sensor for carbon monoxide detection
SO SENSORS AND ACTUATORS B-CHEMICAL
LA English
DT Article
DE Carbon monoxide sensor; Low temperature sensing; Palladium doped tin
dioxide; Hydroxypropyl cellulose
ID ROOM-TEMPERATURE; SNO2 SENSORS; GAS SENSORS; CHEMICAL SENSOR;
WATER-VAPOR; CO; PD; NANOTUBES; FILMS; NO2
AB The development of a tin oxide nanoparticle based sensor for detecting carbon monoxide at low temperature, 60 degrees C is presented. A combination of three approaches namely, (1) addition of a catalytic metal - 1.5% palladium, (2) optimization of organic binder content, and (3) a proper design of electrodes, leads to high sensitivity, excellent repeatability, and long-term stability in sensor response. The sensors have been tested in dry (<1% RH) and humid (>70% RH) conditions, and no humidity effect on the sensor performance was noticed. The sensors using 15% hydroxypropyl cellulose (HPC) mixed with Pd/SnO2 show sensitivity to CO gas in the parts per million (ppm) level of concentration, 5-10% repeatability in 6-18 ppm CO exposures, and active response for more than 40 days. In addition, the fatigued sensors were recoverable with a brief heating process. Published by Elsevier B.V.
C1 [Kim, Beomseok; Lu, Yijiang] NASA, ELORET Corp, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Hannon, Ami] NASA, ERC Inc, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Meyyappan, M.; Li, Jing] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Li, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM jing.li-1@nasa.gov
FU U.S. Department of Homeland Security, HSARPA Cell-All Program via a
NASA-DHS interagency agreement [IAA: HSHQDC-08-X-00870]; University
Affiliated Research Center prime NASA contract [NAS2-03144]
FX This work was funded by the U.S. Department of Homeland Security, HSARPA
Cell-All Program via a NASA-DHS interagency agreement (IAA:
HSHQDC-08-X-00870). The work conducted by the employees of ELORET
Corporation was supported through a subcontract to the University
Affiliated Research Center prime NASA contract number NAS2-03144
operated by the University of California at Santa Cruz.
NR 27
TC 17
Z9 17
U1 7
U2 99
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-4005
J9 SENSOR ACTUAT B-CHEM
JI Sens. Actuator B-Chem.
PD FEB
PY 2013
VL 177
BP 770
EP 775
DI 10.1016/j.snb.2012.11.020
PG 6
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA 101BU
UT WOS:000315751000102
ER
PT J
AU Hong, S
Kang, IS
Choi, I
Ham, YG
AF Hong, Soojin
Kang, In-Sik
Choi, Ildae
Ham, Yoo-Geun
TI Climate responses in the tropical pacific associated with atlantic
warming in recent decades
SO ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES
LA English
DT Article
DE Warm pool; moisture convergence feedback; AMO; aqua planet; ENSO
ID THERMOHALINE CIRCULATION; SURFACE-TEMPERATURE; COUPLED GCM; EL-NINO;
ENSO; VARIABILITY; OCEAN; TRANSPORT; MOMENTUM; RAINFALL
AB In this study, we investigated the impact of the Atlantic decadal-scale sea surface temperature (SST) variation on the tropical Pacific climate using a Atmospheric General Circulation Model (AGCM). During the recent decade from 2000 to 2010 when the Atlantic SST has sharply increased, observations have shown that the strong easterly and increased precipitation anomalies appeared over the western-central Pacific. It is different from the conventional Gilltype response in which the easterly due to heating in the Atlantic is expected to be extended to the Indian Ocean. We have found that the warm pool over the western Pacific plays an important role in enhancing the atmospheric response to the Atlantic SST forcing in the Pacific basin. Simplified Aqua planet GCM experiments showed that the central location of the anomalous easterly over the Pacific produced by the Atlantic SST forcing highly depends on the location of the idealized warm pool. The reason for this is because the moisture feedback is strongest over the warm pool region, which leads to additional local anomalous convergence, and therefore the easterly produced by the Atlantic SST forcing is enhanced only over the east of the warm pool region.
C1 [Hong, Soojin; Kang, In-Sik; Choi, Ildae] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151747, South Korea.
[Ham, Yoo-Geun] NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD 20771 USA.
[Ham, Yoo-Geun] Univ Space Res Assoc, Columbia, MD 21044 USA.
RP Kang, IS (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, 1 Gwanak Ro, Seoul 151747, South Korea.
EM kang@climate.snu.ac.kr
RI 안, 민섭/D-9972-2015
FU National Research Foundation of Korea; Korean Government (MEST)
[NRF-2009- C1AAA001- 2009-0093042]; Brain Korea 21 Project
FX This work was supported by the National Research Foundation of Korea
Grant funded by the Korean Government (MEST) (NRF-2009- C1AAA001-
2009-0093042) and by the second stage of the Brain Korea 21 Project.
NR 33
TC 9
Z9 11
U1 0
U2 11
PU KOREAN METEOROLOGICAL SOC
PI SEOUL
PA SHINKIL-DONG 508, SIWON BLDG 704, YONGDUNGPO-GU, SEOUL, 150-050, SOUTH
KOREA
SN 1976-7633
EI 1976-7951
J9 ASIA-PAC J ATMOS SCI
JI Asia-Pac. J. Atmos. Sci.
PD FEB
PY 2013
VL 49
IS 2
BP 209
EP 217
DI 10.1007/s13143-013-0022-1
PG 9
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 098PU
UT WOS:000315562000009
ER
PT J
AU Kelley, OA
AF Kelley, Owen A.
TI Adapting an existing visualization application for browser-based
deployment: A case study from the Tropical Rainfall Measuring Mission
SO COMPUTERS & GEOSCIENCES
LA English
DT Article
DE Online visualization; TRMM; GPM; 3D; NASA
ID PRECIPITATION RADAR; ANALYSIS SYSTEM; SATELLITE; EARTH
AB THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over MU. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses. (c) 2012 Elsevier Ltd. All rights reserved.
C1 [Kelley, Owen A.] NASA Goddard, Precipitat Proc Syst, Greenbelt, MD 20771 USA.
[Kelley, Owen A.] George Mason Univ, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA.
RP Kelley, OA (reprint author), NASA Goddard, Precipitat Proc Syst, Code 610-2, Greenbelt, MD 20771 USA.
EM Owen.Kelley@nasa.gov
FU NASA METS-II [NNG10CR16C]
FX This work was supported by the NASA METS-II contract NNG10CR16C.
Conversations with the following people have helped to develop the ideas
presented in this study: Chris Cohoon, Victoria Elinson, Darryl
Fountain, Rob Gutro, Thomas Harris, John Kwiatkowski, Kenneth Lee, Mark
Piper, Holli Riebeek, Erich Stocker, John Stout, and Bill Teng. The
staff at the NASA Goddard library tracked down some hard-to-find
resources cited in this study.
NR 58
TC 1
Z9 1
U1 2
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0098-3004
J9 COMPUT GEOSCI-UK
JI Comput. Geosci.
PD FEB
PY 2013
VL 51
BP 228
EP 237
DI 10.1016/j.cageo.2012.10.004
PG 10
WC Computer Science, Interdisciplinary Applications; Geosciences,
Multidisciplinary
SC Computer Science; Geology
GA 095XO
UT WOS:000315368500025
ER
PT J
AU Santanello, JA
Peters-Lidard, CD
Kennedy, A
Kumar, SV
AF Santanello, Joseph A., Jr.
Peters-Lidard, Christa D.
Kennedy, Aaron
Kumar, Sujay V.
TI Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of
Dry/Wet Extremes in the US Southern Great Plains
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID DIURNAL TIME SCALES; BOUNDARY-LAYER; SOIL-MOISTURE; SURFACE EVAPORATION;
VERTICAL DIFFUSION; MODEL; FRAMEWORK; VERIFICATION; ENTRAINMENT;
SENSITIVITY
AB Land atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the -U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land-PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L-A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.
C1 [Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.] NASA, GSFC, Hydrol Sci Branch, Greenbelt, MD 20771 USA.
[Kennedy, Aaron] Univ N Dakota, Grand Forks, ND 58201 USA.
[Kumar, Sujay V.] Sci Applicat Int Corp, Mclean, VA 22102 USA.
RP Santanello, JA (reprint author), NASA, GSFC, Code 614-3,Bldg 33,Room G220, Greenbelt, MD 20771 USA.
EM joseph.a.santanello@nasa.gov
RI Peters-Lidard, Christa/E-1429-2012; Santanello, Joseph/D-4438-2012;
Kumar, Sujay/B-8142-2015
OI Peters-Lidard, Christa/0000-0003-1255-2876; Santanello,
Joseph/0000-0002-0807-6590;
FU NASA Energy and Water Cycle Study (NEWS); Modeling and Extremes Working
Groups
FX This work was supported and motivated by the NASA Energy and Water Cycle
Study (NEWS; PM: Jared Entin) and the Modeling and Extremes Working
Groups. The NU-WRF team was also instrumental in providing support
related to LIS-WRF coupling and a stable and updated version of the
system. We also appreciate the past and ongoing collaboration with the
LoCo community and working group that has stimulated this work, in
particular Michael Ek, Cor Jacobs, Obbe Tuinenburg, Chiel van
Heerwaarden, Bart van den Hurk, and Martin Best.
NR 39
TC 32
Z9 32
U1 0
U2 29
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD FEB
PY 2013
VL 14
IS 1
BP 3
EP 24
DI 10.1175/JHM-D-12-023.1
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 095VT
UT WOS:000315363800001
ER
PT J
AU Kumar, SV
Peters-Lidard, CD
Mocko, D
Tian, YD
AF Kumar, Sujay V.
Peters-Lidard, Christa D.
Mocko, David
Tian, Yudong
TI Multiscale Evaluation of the Improvements in Surface Snow Simulation
through Terrain Adjustments to Radiation
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID DATA ASSIMILATION SYSTEM; SPATIAL-DISTRIBUTION; MODELING SYSTEM; SCALE;
MODIS; CLIMATE; PRECIPITATION; VARIABILITY; PRODUCTS; COVER
AB The downwelling shortwave radiation on the earth's land surface is affected by the terrain characteristics of slope and aspect. These adjustments, in turn, impact the evolution of snow over such terrain. This article presents a multiscale evaluation of the impact of terrain-based adjustments to incident shortwave radiation on snow simulations over two midlatitude regions using two versions of the Noah land surface model (LSM). The evaluation is performed by comparing the snow cover simulations against the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product. The model simulations are evaluated using categorical measures, such as the probability of detection of "yes" events (PODy), which measure the fraction of snow cover presence that was correctly simulated, and false alarm ratio (FAR), which measures the fraction of no-snow events that was incorrectly simulated. The results indicate that the terrain-based correction of radiation leads to systematic improvements in the snow cover estimates in both domains and in both LSM versions (with roughly 12% overall improvement in PODy and 5% improvement in FAR), with larger improvements observed during snow accumulation and melt periods. Increased contribution to PODy and FAR improvements is observed over the north- and south-facing slopes, when the overall improvements are stratified to the four cardinal aspect categories. A two-dimensional discrete Haar wavelet analysis for the two study areas indicates that the PODy improvements in snow cover estimation drop to below 10% at scales coarser than 16 km, whereas the FAR improvements are below 10% at scales coarser than 4 km.
C1 [Kumar, Sujay V.; Mocko, David] Sci Applicat Int Corp, Beltsville, MD USA.
[Kumar, Sujay V.; Peters-Lidard, Christa D.; Mocko, David; Tian, Yudong] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA.
[Mocko, David] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
[Tian, Yudong] Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA.
RP Kumar, SV (reprint author), NASA, GSFC, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA.
EM sujay.v.kumar@nasa.gov
RI Kumar, Sujay/B-8142-2015; Peters-Lidard, Christa/E-1429-2012
OI Peters-Lidard, Christa/0000-0003-1255-2876
FU Air Force Weather Agency; NASA Center for Climate Simulation
FX We gratefully acknowledge the financial support from the Air Force
Weather Agency. Computing was supported by the resources at the NASA
Center for Climate Simulation. The NLDAS-2 data used in this effort were
acquired as part of the activities of NASA's Science Mission Directorate
and are archived and distributed by the Goddard Earth Sciences (GES)
Data and Information Services Center (DISC).
NR 52
TC 3
Z9 3
U1 0
U2 10
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD FEB
PY 2013
VL 14
IS 1
BP 220
EP 232
DI 10.1175/JHM-D-12-046.1
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 095VT
UT WOS:000315363800013
ER
PT J
AU Wei, JF
Dirmeyer, PA
Wisser, D
Bosilovich, MG
Mocko, DM
AF Wei, Jiangfeng
Dirmeyer, Paul A.
Wisser, Dominik
Bosilovich, Michael G.
Mocko, David M.
TI Where Does the Irrigation Water Go? An Estimate of the Contribution of
Irrigation to Precipitation Using MERRA
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID LAND-USE CHANGES; UNITED-STATES; HYDROLOGIC-CYCLE; SURFACE FLUXES;
GREAT-PLAINS; TEMPERATURE; CLIMATE; IMPACT; MODEL; VAPOR
AB Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.
C1 [Wei, Jiangfeng; Dirmeyer, Paul A.] Ctr Ocean Land Atmosphere Studies, Calverton, MD USA.
[Dirmeyer, Paul A.] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA.
[Wisser, Dominik] Univ Utrecht, Dept Phys Geog, Utrecht, Netherlands.
[Bosilovich, Michael G.; Mocko, David M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
[Mocko, David M.] NASA, Goddard Space Flight Ctr, SAIC, Greenbelt, MD 20771 USA.
RP Wei, JF (reprint author), Univ Texas Austin, Jackson Sch Geosci, 2275 Speedway C9000, Austin, TX 78712 USA.
EM jwei@utexas.edu
RI Bosilovich, Michael/F-8175-2012; Wei, Jiangfeng/C-6342-2009; Dirmeyer,
Paul/B-6553-2016
OI Wei, Jiangfeng/0000-0001-8981-8674; Dirmeyer, Paul/0000-0003-3158-1752
FU National Aeronautics and Space Administration [NNX09AI84G]
FX This research was supported by National Aeronautics and Space
Administration Grant NNX09AI84G. We thank Qing Liu and Rolf Reichle for
providing an early version of the MERRA-Land data set and Min-Hui Lo for
earlier discussion.
NR 60
TC 29
Z9 29
U1 2
U2 35
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD FEB
PY 2013
VL 14
IS 1
BP 275
EP 289
DI 10.1175/JHM-D-12-079.1
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 095VT
UT WOS:000315363800017
ER
PT J
AU Zaitchik, BF
Santanello, JA
Kumar, SV
Peters-Lidard, CD
AF Zaitchik, Benjamin F.
Santanello, Joseph A.
Kumar, Sujay V.
Peters-Lidard, Christa D.
TI Representation of Soil Moisture Feedbacks during Drought in NASA Unified
WRF (NU-WRF)
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID PRECIPITATION FEEDBACK; WEATHER RESEARCH; SURFACE ALBEDO; UNITED-STATES;
LAND; ATMOSPHERE; CLIMATE; VARIABILITY; MODEL; SIMULATIONS
AB Positive soil moisture precipitation feedbacks can intensify heat and prolong drought under conditions of precipitation deficit. Adequate representation of these processes in regional climate models is, therefore, important for extended weather forecasts, seasonal drought analysis, and downscaled climate change projections. This paper presents the first application of the NASA Unified Weather Research and Forecasting Model (NU-WRF) to simulation of seasonal drought. Simulations of the 2006 southern Great Plains drought performed with and without soil moisture memory indicate that local soil moisture feedbacks had the potential to concentrate precipitation in wet areas relative to dry areas in summer drought months. Introduction of a simple dynamic surface albedo scheme that models albedo as a function of soil moisture intensified the simulated feedback pattern at local scale dry, brighter areas received even less precipitation while wet, whereas darker areas received more but did not significantly change the total amount of precipitation simulated across the drought-affected region. This soil-moisture-mediated albedo land atmosphere coupling pathway is structurally excluded from standard versions of WRF.
C1 [Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.
[Santanello, Joseph A.; Kumar, Sujay V.; Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA.
[Kumar, Sujay V.] Sci Applicat Int Corp, Greenbelt, MD USA.
RP Zaitchik, BF (reprint author), 3400 N Charles St,301 Olin Hall, Baltimore, MD 21218 USA.
EM zaitchik@jhu.edu
RI Santanello, Joseph/D-4438-2012; Kumar, Sujay/B-8142-2015; Peters-Lidard,
Christa/E-1429-2012
OI Santanello, Joseph/0000-0002-0807-6590; Peters-Lidard,
Christa/0000-0003-1255-2876
FU NASA [NNX09AU61G]
FX This work was supported by NASA Modeling, Analysis, and Prediction
Program Grant NNX09AU61G. We also thank three anonymous reviewers for
their helpful comments on the original manuscript.
NR 36
TC 20
Z9 20
U1 0
U2 22
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD FEB
PY 2013
VL 14
IS 1
BP 360
EP 367
DI 10.1175/JHM-D-12-069.1
PG 8
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 095VT
UT WOS:000315363800023
ER
PT J
AU Maggioni, V
Reichle, RH
Anagnostou, EN
AF Maggioni, Viviana
Reichle, Rolf H.
Anagnostou, Emmanouil N.
TI The Efficiency of Assimilating Satellite Soil Moisture Retrievals in a
Land Data Assimilation System Using Different Rainfall Error Models
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID PRECIPITATION; IMPACT
AB The efficiency of assimilating near-surface soil moisture retrievals from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) observations in a Land Data Assimilation System (LDAS) is assessed using satellite rainfall forcing and two different satellite rainfall error models: a complex, multidimensional satellite rainfall error model (SREM2D) and the simpler (control) model (CTRL) used in the NASA Goddard Earth Observing System Model, version 5 LDAS. For the study domain of Oklahoma, LDAS soil moisture estimates improve over the satellite retrievals and the open-loop (no assimilation) land surface model estimates, exhibiting higher daily anomaly correlation coefficients (e.g., 0.36 in the open loop, 0.38 in the AMSR-E, and 0.50 in LDAS for surface soil moisture). The LDAS soil moisture estimates also match the performance of a benchmark model simulation forced with high-quality radar precipitation. Compared to using the CTRL rainfall error model in LDAS, using the more complex SREM2D exhibits only slight improvements in soil moisture estimates.
C1 [Maggioni, Viviana; Anagnostou, Emmanouil N.] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT USA.
[Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
RP Maggioni, V (reprint author), Univ Maryland, ESSIC, 5825 Univ Res Court,Suite 4001, College Pk, MD 20740 USA.
EM viviana@umd.edu
RI Reichle, Rolf/E-1419-2012
FU NASA Earth System Science Graduate Fellowship; NASA research program
"The Science of Terra and Aqua"; SMAP Science Definition Team; NASA
Precipitation Science Team Grant [NNX07AE31G]
FX V. Maggioni was supported by a NASA Earth System Science Graduate
Fellowship. R. Reichle was supported by the NASA research program "The
Science of Terra and Aqua" and the SMAP Science Definition Team. E.
Anagnostou was supported by NASA Precipitation Science Team Grant
NNX07AE31G. Computing was supported by the NASA High End Computing
Program.
NR 22
TC 3
Z9 3
U1 2
U2 17
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD FEB
PY 2013
VL 14
IS 1
BP 368
EP 374
DI 10.1175/JHM-D-12-0105.1
PG 7
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 095VT
UT WOS:000315363800024
ER
PT J
AU Hallis, LJ
AF Hallis, L. J.
TI Alteration assemblages in the Miller Range and Elephant Moraine regions
of Antarctica: Comparisons between terrestrial igneous rocks and Martian
meteorites
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID WEATHERING PRODUCTS; MERIDIANI-PLANUM; MINERAL ASSEMBLAGES; SNC
METEORITES; RAMAN SPECTRUM; MARS; SULFATE; NAKHLITES; SULFUR; CHEMISTRY
AB The weathering products present in igneous terrestrial Antarctic samples were analyzed, and compared with those found in the four Miller Range nakhlite Martian meteorites. The aim of these comparisons was to determine which of the alteration phases in the Miller Range nakhlites are produced by terrestrial weathering, and what effect rock composition has on these phases. Antarctic terrestrial samples MIL 05031 and EET 96400, along with the Miller Range nakhlites MIL 03346 and 090032, were found to contain secondary alteration assemblages at their externally exposed surfaces. Despite the difference in primary mineralogy, the assemblages of these rocks consist mostly of sulfates (jarosite in MIL 05031, jarosite and gypsum in EET 96400) and iddingsite-like Fe-clay. As neither of the terrestrial samples contains sulfur-bearing primary minerals, and these minerals are rare in the Miller Range nakhlites, it appears that SO42, possibly along with some of the Na+, K+, and Ca+ in these phases, was sourced from wind-blown sea spray and biogenic emissions from the southern ocean. Cl enrichment in the terrestrially derived iddingsite of MIL 05031 and MIL 03346, and the presence of halite at the exterior edge of MIL 090032, can also be explained by this process. However, jarosite within and around the olivine-bound melt inclusions of MIL 090136 is present in the interior of the meteorite and, therefore, is probably the product of preterrestrial weathering on Mars.
C1 Univ Hawaii, HIGP SOEST, NASA Astrobiol Inst, Honolulu, HI 96822 USA.
RP Hallis, LJ (reprint author), Univ Hawaii, HIGP SOEST, NASA Astrobiol Inst, Honolulu, HI 96822 USA.
EM lydh@higp.hawaii.edu
FU National Aeronautics and Space Administration, through the NASA
Astrobiology Institute [NNA09DA77A]
FX This material is based upon work supported by the National Aeronautics
and Space Administration, through the NASA Astrobiology Institute under
Cooperative Agreement No. NNA09DA77A, issued through the Office of Space
Science. Thanks to the NASA Johnson Space Center for allocation of the
Miller Range nakhlite thin sections, and rock chips of MIL 05031 and EET
96400. I would also like to thank JoAnn Sinton for thin-section
production and Eric Hellebrand for his assistance with EMP analyses.
Prof. Jeff Taylor is thanked for his helpful comments and corrections,
as are Francis McCubbin, Michael Velbel, and Gretchen Benedix.
NR 62
TC 6
Z9 6
U1 0
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD FEB
PY 2013
VL 48
IS 2
BP 165
EP 179
DI 10.1111/maps.12049
PG 15
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 097SD
UT WOS:000315492900002
ER
PT J
AU Brown, P
Marchenko, V
Moser, DE
Weryk, R
Cooke, W
AF Brown, Peter
Marchenko, Valerie
Moser, Danielle E.
Weryk, Robert
Cooke, William
TI Meteorites from meteor showers: A case study of the Taurids
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Review
ID CANADIAN CAMERA NETWORK; TAGISH LAKE METEORITE; ASTEROID 2008 TC3;
PHOTOGRAPHIC DATA; EUROPEAN NETWORK; PEEKSKILL METEORITE; INNISFREE
METEORITE; INFRASOUND RECORDS; COMET 81P/WILD-2; VIDEO RECORDS
AB We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite-producing fireballs, and suggest that end heights below 35km and terminal speeds below 10kms1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite-producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite-producing characteristics, despite a very high entry velocity (33kms1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28kms1), further suggesting that survival of meteorites at Taurid-like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid-like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.
C1 [Brown, Peter; Weryk, Robert] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada.
[Brown, Peter] Univ Western Ontario, Ctr Planetary Sci & Explorat, London, ON N6A 5B7, Canada.
[Marchenko, Valerie] NASA, George C Marshall Space Flight Ctr, Spring Intern Program, Huntsville, AL 35812 USA.
[Marchenko, Valerie] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA.
[Moser, Danielle E.] NASA, George C Marshall Space Flight Ctr, MITS Dynet Tech Serv, Huntsville, AL 35812 USA.
[Cooke, William] NASA, George C Marshall Space Flight Ctr, Meteoroid Environm Off, Space Environm Team, Huntsville, AL 35812 USA.
RP Brown, P (reprint author), Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada.
EM pbrown@uwo.ca
FU NASA Meteoroid Environment Office [NNX11AB76A]; Canadian Natural
Sciences and Engineering Research Council; Canada Research Chairs
program
FX We thank J. Borovicka and Z. Ceplecha for use of their entry modeling
and meteor trajectory-solving software. All authors thank the NASA
Meteoroid Environment Office for funding support under co-operative
agreement NNX11AB76A. PGB thanks the Canadian Natural Sciences and
Engineering Research Council and Canada Research Chairs program for
additional funding support. Helpful reviews by J. Borovicka and J. Toth
of an earlier version of this work greatly improved the manuscript.
NR 113
TC 5
Z9 5
U1 1
U2 14
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD FEB
PY 2013
VL 48
IS 2
BP 270
EP 288
DI 10.1111/maps.12055
PG 19
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 097SD
UT WOS:000315492900008
ER
PT J
AU Bala, G
Joshi, J
Chaturvedi, RK
Gangamani, HV
Hashimoto, H
Nemani, R
AF Bala, Govindasamy
Joshi, Jaideep
Chaturvedi, Rajiv K.
Gangamani, Hosahalli V.
Hashimoto, Hirofumi
Nemani, Rama
TI Trends and Variability of AVHRR-Derived NPP in India
SO REMOTE SENSING
LA English
DT Article
DE AVHRR-derived NPP; vegetation productivity; CO2 fertilization;
afforestation; soil water; atmospheric CO2
ID NET PRIMARY PRODUCTIVITY; GROSS PRIMARY PRODUCTIVITY; CARBON-CYCLE
FEEDBACK; TERRESTRIAL BIOSPHERE; GLOBAL CLIMATE; NDVI DATA; MODEL;
VEGETATION; MODIS; CO2
AB In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity.
C1 [Bala, Govindasamy; Gangamani, Hosahalli V.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India.
[Bala, Govindasamy; Gangamani, Hosahalli V.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India.
[Joshi, Jaideep] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India.
[Chaturvedi, Rajiv K.] Indian Inst Sci, Ctr Sustainable Technol, Bangalore 560012, Karnataka, India.
[Hashimoto, Hirofumi; Nemani, Rama] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Bala, G (reprint author), Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India.
EM gbala@caos.iisc.ernet.in; jaideep777@gmail.com;
chaturvedi.rajiv@gmail.com; gangahv@gmail.com;
hirofumi.hashimoto@gmail.com; rama.nemani@nasa.gov
FU Department of Science and Technology [DST0948]; Ministry of Environment
and Forests through National Environmental Sciences Fellowship; Divecha
Center for Climate Change
FX We thank the funding from Department of Science and Technology under the
grant DST0948. Rajiv K. Chaturvedi is supported by the Ministry of
Environment and Forests through National Environmental Sciences
Fellowship. Hosahalli V. Gangamani is supported by the Divecha Center
for Climate Change.
NR 45
TC 14
Z9 16
U1 2
U2 30
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD FEB
PY 2013
VL 5
IS 2
BP 810
EP 829
DI 10.3390/rs5020810
PG 20
WC Remote Sensing
SC Remote Sensing
GA 096KM
UT WOS:000315402700014
ER
PT J
AU Zhu, ZC
Bi, J
Pan, YZ
Ganguly, S
Anav, A
Xu, L
Samanta, A
Piao, SL
Nemani, RR
Myneni, RB
AF Zhu, Zaichun
Bi, Jian
Pan, Yaozhong
Ganguly, Sangram
Anav, Alessandro
Xu, Liang
Samanta, Arindam
Piao, Shilong
Nemani, Ramakrishna R.
Myneni, Ranga B.
TI Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of
Photosynthetically Active Radiation (FPAR)3g Derived from Global
Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference
Vegetation Index (NDVI3g) for the Period 1981 to 2011
SO REMOTE SENSING
LA English
DT Article
DE LAI; FPAR; NDVI3g; MODIS; NASA NEX; artificial neural networks; remote
sensing of vegetation
ID NET PRIMARY PRODUCTION; MODIS-LAI PRODUCT; REMOTE-SENSING DATA;
SATELLITE DATA; LAND-COVER; BIOPHYSICAL PARAMETERS; MULTISCALE ANALYSIS;
BIOSPHERE MODEL; SPOT-VEGETATION; NORTH-AMERICA
AB Long-term global data sets of vegetation Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) are critical to monitoring global vegetation dynamics and for modeling exchanges of energy, mass and momentum between the land surface and planetary boundary layer. LAI and FPAR are also state variables in hydrological, ecological, biogeochemical and crop-yield models. The generation, evaluation and an example case study documenting the utility of 30-year long data sets of LAI and FPAR are described in this article. A neural network algorithm was first developed between the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products for the overlapping period 2000-2009. The trained neural network algorithm was then used to generate corresponding LAI3g and FPAR3g data sets with the following attributes: 15-day temporal frequency, 1/12 degree spatial resolution and temporal span of July 1981 to December 2011. The quality of these data sets for scientific research in other disciplines was assessed through (a) comparisons with field measurements scaled to the spatial resolution of the data products, (b) comparisons with broadly-used existing alternate satellite data-based products, (c) comparisons to plant growth limiting climatic variables in the northern latitudes and tropical regions, and (d) correlations of dominant modes of interannual variability with large-scale circulation anomalies such as the El Nino-Southern Oscillation and Arctic Oscillation. These assessment efforts yielded results that attested to the suitability of these data sets for research use in other disciplines. The utility of these data sets is documented by comparing the seasonal profiles of LAI3g with profiles from 18 state-of-the-art Earth System Models: the models consistently overestimated the satellite-based estimates of leaf area and simulated delayed peak seasonal values in the northern latitudes, a result that is consistent with previous evaluations of similar models with ground-based data. The LAI3g and FPAR3g data sets can be obtained freely from the NASA Earth Exchange (NEX) website.
C1 [Zhu, Zaichun; Bi, Jian; Xu, Liang; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA.
[Zhu, Zaichun; Pan, Yaozhong] Beijing Normal Univ, Coll Resources Sci & Technol, State Key Lab Earth Proc & Resource Ecol, Beijing 100875, Peoples R China.
[Ganguly, Sangram] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA.
[Anav, Alessandro] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England.
[Samanta, Arindam] Atmospher & Environm Res Inc, Lexington, MA 02421 USA.
[Piao, Shilong] Peking Univ, Dept Ecol, Beijing 100871, Peoples R China.
[Piao, Shilong] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China.
[Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA.
RP Zhu, ZC (reprint author), Boston Univ, Dept Earth & Environm, 685 Commonwealth Ave, Boston, MA 02215 USA.
EM zzc@bu.edu; bijian.bj@gmail.com; pyz@bnu.edu.cn;
sangramganguly@gmail.com; A.Anav@exeter.ac.uk; bireme@gmail.com;
arindam.sam@gmail.com; slpiao@pku.edu.cn; rama.nemani@nasa.gov;
ranga.myneni@gmail.com
RI Xu, Liang/D-1247-2013; ganguly, sangram/B-5108-2010; Myneni,
Ranga/F-5129-2012
FU China Scholarship Council; NASA Earth Science Division
FX We thank C. J. Tucker and J. Pinzon of NASA GSFC for making available
the GIMMS NDVI3g data set. We also thank BELMANIP Project for providing
the BELMANIP site for validation of our products. This study was
partially funded by the China Scholarship Council and NASA Earth Science
Division.
NR 81
TC 161
Z9 168
U1 15
U2 178
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD FEB
PY 2013
VL 5
IS 2
BP 927
EP 948
DI 10.3390/rs5020927
PG 22
WC Remote Sensing
SC Remote Sensing
GA 096KM
UT WOS:000315402700021
ER
PT J
AU Wei, CY
Pohorille, A
AF Wei, Chenyu
Pohorille, Andrew
TI Permeation of Aldopentoses and Nucleosides Through Fatty Acid and
Phospholipid Membranes: Implications to the Origins of Life
SO ASTROBIOLOGY
LA English
DT Article
DE Ribose; Aldopentoses; Nucleosides; Membrane permeability; Protocells
ID MOLECULAR-DYNAMICS SIMULATIONS; LIPID-BILAYERS; FREE-ENERGY; MODEL
PROTOCELL; WATER-MEMBRANE; KINETICS; RNA; TRANSPORT; SURFACE;
MONOSACCHARIDES
AB Permeation of aldopentoses and nucleosides through fatty acid and phospholipid membranes was investigated by way of molecular dynamics simulations. Calculated permeability coefficients of membranes to aldopentoses, which exist predominantly in the pyranose form, are in a very good agreement with experimental results. The unexpected preferential permeation of ribose, compared to its diastereomers, found by Sacerdote and Szostak, is explained in terms of inter- and intramolecular interactions involving hydroxyl groups. In aqueous solution, these groups favor the formation of intermolecular hydrogen bonds with neighboring water molecules. Inside the membrane, however, they form intramolecular hydrogen bonds, which in ribose are arranged in a chain. In its diastereomers this chain is broken, which yields higher free energy barrier to transfer through membranes. Faster permeation of ribose would lead to its preferential accumulation inside cells if sugars were converted sufficiently quickly to nonpermeable derivatives. An estimate for the rate of such reaction was derived. Preferential accumulation of ribose would increase the probability of correct monomers' incorporation during synthesis of nucleic acids inside protocells. The same mechanism does not apply to nucleosides or their activated derivatives because sugars are locked in the furanose form, which contains fewer exocyclic hydroxyl groups than does pyranose. The results of this study underscore concerted early evolution of membranes and the biochemical processes that they encapsulated.
C1 [Wei, Chenyu; Pohorille, Andrew] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Wei, Chenyu; Pohorille, Andrew] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA.
RP Pohorille, A (reprint author), NASA, Ames Res Ctr, Mail Stop 239-4, Moffett Field, CA 94035 USA.
EM andrew.pohorille@nasa.gov
FU NASA Exobiology Program
FX This work was supported by a grant from the NASA Exobiology Program.
NASA Advanced Supercomputing (NAS) Division provided computational
resources needed to carry out this study. The authors thank Michael
Wilson for his valuable comments on the manuscript.
NR 60
TC 4
Z9 4
U1 2
U2 29
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1531-1074
J9 ASTROBIOLOGY
JI Astrobiology
PD FEB
PY 2013
VL 13
IS 2
BP 177
EP 188
DI 10.1089/ast.2012.0901
PG 12
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 093MN
UT WOS:000315196100006
PM 23397957
ER
PT J
AU Bargoma, E
La Duc, MT
Kwan, K
Vaishampayan, P
Venkateswaran, K
AF Bargoma, E.
La Duc, M. T.
Kwan, K.
Vaishampayan, P.
Venkateswaran, K.
TI Differential Recovery of Phylogenetically Disparate Microbes from
Spacecraft-Qualified Metal Surfaces
SO ASTROBIOLOGY
LA English
DT Article
DE Sampling; Recovery; Biomolecules; Clean room; DNA
ID 16S RIBOSOMAL-RNA; POLYMERASE-CHAIN-REACTION; QUANTITATIVE PCR;
NONPOROUS SURFACES; BACILLUS SPORES; STAINLESS-STEEL; CLONE LIBRARY;
CLEAN ROOM; TIME; DIVERSITY
AB Universal and species-specific quantitative polymerase chain reaction-based methods were employed to compare the effectiveness of four distinct materials used to collect biological samples from metal surfaces. Known cell densities of a model microbial community (MMC) were deposited onto metal surfaces and subsequently collected with cotton and nylon-flocked swabs for small surface areas and biological sampling kits (BiSKits) and polyester wipes for large surface areas. Ribosomal RNA gene-based quantitative PCR (qPCR) analyses revealed that cotton swabs were superior to nylon-flocked swabs for recovering nucleic acids (i.e., DNA) from small surface areas. Similarly, BiSKits outperformed polyester wipes for sampling large surface areas. Species-specific qPCR results show a differential recovery of rRNA genes of the various MMC constituents, seemingly dependent on the type of sampling device employed. Both cotton swabs and BiSKits recovered the rDNA of all nine of the MMC constituent microbes assayed, whereas nylon-flocked swabs and polyester wipes recovered the rDNA of only six and four of these MMC strains, respectively. The findings of this study demonstrate the importance and proficiency of molecular techniques in gauging the effectiveness and efficiency of various modes of biological sample collection from metal surfaces.
C1 [Bargoma, E.; La Duc, M. T.; Kwan, K.; Vaishampayan, P.; Venkateswaran, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, NASA, Mail Stop 89,Oak Grove Dr, Pasadena, CA 91109 USA.
EM kjvenkat@jpl.nasa.gov
FU Mars Program Office; National Aeronautics and Space Administration
FX Part of the research described in this publication was carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. This
research was funded by the Mars Program Office. We also appreciate the
valuable advice received from J.A. Spry, K. Buxbaum, and C. Conley.
Copyright 2011. All rights reserved.
NR 64
TC 2
Z9 2
U1 0
U2 11
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1531-1074
J9 ASTROBIOLOGY
JI Astrobiology
PD FEB
PY 2013
VL 13
IS 2
BP 189
EP 202
DI 10.1089/ast.2012.0917
PG 14
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 093MN
UT WOS:000315196100007
PM 23421553
ER
PT J
AU Allwood, A
Beaty, D
Bass, D
Conley, C
Kminek, G
Race, M
Vance, S
Westall, F
AF Allwood, Abigail
Beaty, David
Bass, Deborah
Conley, Cassie
Kminek, Gerhard
Race, Margaret
Vance, Steve
Westall, Frances
TI Conference Summary: Life Detection in Extraterrestrial Samples
SO ASTROBIOLOGY
LA English
DT Article
ID ALLAN HILLS 84001; MARS
C1 [Allwood, Abigail; Beaty, David] Jet Prop Lab, Pasadena, CA 91016 USA.
[Bass, Deborah] Jet Prop Lab, Mars Program Off, Pasadena, CA 91016 USA.
[Conley, Cassie] NASA Headquarters, Washington, DC USA.
[Kminek, Gerhard] ESA, Noordwijk, Netherlands.
[Race, Margaret] SETI, Mountain View, CA USA.
[Vance, Steve] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Westall, Frances] Natl Ctr Res & Sci, Ctr Biophys Mol, Orleans, France.
RP Allwood, A (reprint author), Jet Prop Lab, 4800 Oak Grove Dr,MS 183-301, Pasadena, CA 91016 USA.
EM Abigail.C.Allwood@jpl.nasa.gov; David.W.Beaty@jpl.nasa.gov
NR 18
TC 3
Z9 3
U1 1
U2 24
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1531-1074
J9 ASTROBIOLOGY
JI Astrobiology
PD FEB
PY 2013
VL 13
IS 2
BP 203
EP 216
DI 10.1089/ast.2012.0931
PG 14
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 093MN
UT WOS:000315196100008
PM 23421554
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Ashdown, M
Aumont, J
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Battaner, E
Battye, R
Benabed, K
Benoit, A
Bernard, JP
Bersanelli, M
Bhatia, R
Bikmaev, I
Bohringer, H
Bonaldi, A
Bond, JR
Borrill, J
Bouchet, FR
Bourdin, H
Brown, ML
Bucher, M
Burenin, R
Burigana, C
Butler, RC
Cabella, P
Carvalho, P
Catalano, A
Cayon, L
Chamballu, A
Chary, RR
Chiang, LY
Chon, G
Clements, DL
Colafrancesco, S
Colombi, S
Coulais, A
Crill, BP
Cuttaia, F
Da Silva, A
Dahle, H
Davies, RD
Davis, RJ
de Bernardis, P
de Gasperis, G
de Rosa, A
de Zotti, G
Delabrouille, J
Democles, J
Dickinson, C
Diego, JM
Dolag, K
Dole, H
Donzelli, S
Dore, O
Douspis, M
Dupac, X
Efstathiou, G
Ensslin, TA
Eriksen, HK
Feroz, F
Finelli, F
Flores-Cacho, I
Forni, O
Fosalba, P
Frailis, M
Franceschi, E
Fromenteau, S
Galeotta, S
Ganga, K
Genova-Santos, RT
Giard, M
Giraud-Heraud, Y
Gonzalez-Nuevo, J
Gorski, KM
Grainge, KJB
Gregorio, A
Gruppuso, A
Hansen, FK
Harrison, D
Henrot-Versille, S
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Holmes, WA
Huffenberger, KM
Hurier, G
Hurley-Walker, N
Jagemann, T
Juvela, M
Keihanen, E
Khamitov, I
Kneissl, R
Knoche, J
Kunz, M
Kurki-Suonio, H
Lagache, G
Lamarre, JM
Lasenby, A
Lawrence, CR
Le Jeune, M
Leach, S
Leonardi, R
Liddle, A
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Luzzi, G
Macias-Perez, JF
MacTavish, CJ
Maino, D
Mandolesi, N
Maris, M
Marleau, F
Marshall, DJ
Martinez-Gonzalez, E
Masi, S
Massardi, M
Matarrese, S
Matthai, F
Mazzotta, P
Meinhold, PR
Melchiorri, A
Melin, JB
Mendes, L
Mennella, A
Mitra, S
Miville-Deschenes, MA
Montier, L
Morgante, G
Munshi, D
Naselsky, P
Natoli, P
Norgaard-Nielsen, HU
Noviello, F
Novikov, D
Novikov, I
Olamaie, M
Osborne, S
Pajot, F
Paoletti, D
Pasian, F
Patanchon, G
Pearson, TJ
Perdereau, O
Perrott, YC
Perrotta, F
Piacentini, F
Pierpaoli, E
Platania, P
Pointecouteau, E
Polenta, G
Popa, L
Poutanen, T
Pratt, GW
Puget, JL
Rachen, JP
Rebolo, R
Reinecke, M
Remazeilles, M
Renault, C
Ricciardi, S
Ristorcelli, I
Rocha, G
Rodriuez-Gonzalvez, C
Rosset, C
Rossetti, M
Rubino-Martin, JA
Rumsey, C
Rusholme, B
Sandri, M
Saunders, RDE
Savini, G
Schammel, MP
Scott, D
Shimwell, TW
Smoot, GF
Starck, JL
Stivoli, F
Stolyarov, V
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Valenziano, L
Van Tent, B
Vielva, P
Villa, F
Vittorio, N
Wade, LA
Wandelt, BD
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Ashdown, M.
Aumont, J.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Battaner, E.
Battye, R.
Benabed, K.
Benoit, A.
Bernard, J. -P.
Bersanelli, M.
Bhatia, R.
Bikmaev, I.
Boehringer, H.
Bonaldi, A.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Bourdin, H.
Brown, M. L.
Bucher, M.
Burenin, R.
Burigana, C.
Butler, R. C.
Cabella, P.
Carvalho, P.
Catalano, A.
Cayon, L.
Chamballu, A.
Chary, R. -R.
Chiang, L. -Y.
Chon, G.
Clements, D. L.
Colafrancesco, S.
Colombi, S.
Coulais, A.
Crill, B. P.
Cuttaia, F.
Da Silva, A.
Dahle, H.
Davies, R. D.
Davis, R. J.
de Bernardis, P.
de Gasperis, G.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Democles, J.
Dickinson, C.
Diego, J. M.
Dolag, K.
Dole, H.
Donzelli, S.
Dore, O.
Douspis, M.
Dupac, X.
Efstathiou, G.
Ensslin, T. A.
Eriksen, H. K.
Feroz, F.
Finelli, F.
Flores-Cacho, I.
Forni, O.
Fosalba, P.
Frailis, M.
Franceschi, E.
Fromenteau, S.
Galeotta, S.
Ganga, K.
Genova-Santos, R. T.
Giard, M.
Giraud-Heraud, Y.
Gonzalez-Nuevo, J.
Gorski, K. M.
Grainge, K. J. B.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Harrison, D.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Holmes, W. A.
Huffenberger, K. M.
Hurier, G.
Hurley-Walker, N.
Jagemann, T.
Juvela, M.
Keihanen, E.
Khamitov, I.
Kneissl, R.
Knoche, J.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J. -M.
Lasenby, A.
Lawrence, C. R.
Le Jeune, M.
Leach, S.
Leonardi, R.
Liddle, A.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Luzzi, G.
Macias-Perez, J. F.
MacTavish, C. J.
Maino, D.
Mandolesi, N.
Maris, M.
Marleau, F.
Marshall, D. J.
Martinez-Gonzalez, E.
Masi, S.
Massardi, M.
Matarrese, S.
Matthai, F.
Mazzotta, P.
Meinhold, P. R.
Melchiorri, A.
Melin, J. -B.
Mendes, L.
Mennella, A.
Mitra, S.
Miville-Deschenes, M. -A.
Montier, L.
Morgante, G.
Munshi, D.
Naselsky, P.
Natoli, P.
Norgaard-Nielsen, H. U.
Noviello, F.
Novikov, D.
Novikov, I.
Olamaie, M.
Osborne, S.
Pajot, F.
Paoletti, D.
Pasian, F.
Patanchon, G.
Pearson, T. J.
Perdereau, O.
Perrott, Y. C.
Perrotta, F.
Piacentini, F.
Pierpaoli, E.
Platania, P.
Pointecouteau, E.
Polenta, G.
Popa, L.
Poutanen, T.
Pratt, G. W.
Puget, J. -L.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renault, C.
Ricciardi, S.
Ristorcelli, I.
Rocha, G.
Rodriuez-Gonzalvez, C.
Rosset, C.
Rossetti, M.
Rubino-Martin, J. A.
Rumsey, C.
Rusholme, B.
Sandri, M.
Saunders, R. D. E.
Savini, G.
Schammel, M. P.
Scott, D.
Shimwell, T. W.
Smoot, G. F.
Starck, J. -L.
Stivoli, F.
Stolyarov, V.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Valenziano, L.
Van Tent, B.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L. A.
Wandelt, B. D.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck AMI Collaborations
TI Planck intermediate results II. Comparison of Sunyaev-Zeldovich
measurements from Planck and from the Arcminute Microkelvin Imager for
11 galaxy clusters
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmology: observations; galaxies: clusters: general; galaxies:
clusters: intracluster medium; cosmic background radiation; X-rays:
galaxies: clusters
ID X-RAY-PROPERTIES; SOUTH-POLE TELESCOPE; PRE-LAUNCH STATUS; DISCRETE
OBJECT DETECTION; ASTRONOMICAL DATA SETS; FAST BAYESIAN-APPROACH; MHZ
SKY SURVEY; RADIO-SOURCES; XMM-NEWTON; HYDRODYNAMICAL SIMULATIONS
AB A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk and White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y-500) and the scale radius (theta(500)) of each cluster. Our resulting constraints in the Y-500 - theta(500) 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.
C1 [Bucher, M.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Remazeilles, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS, CEA,Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France.
[Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia.
[Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy.
[Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy.
[Ashdown, M.; Carvalho, P.; Feroz, F.; Grainge, K. J. B.; Hobson, M.; Hurley-Walker, N.; Lasenby, A.; Olamaie, M.; Perrott, Y. C.; Rodriuez-Gonzalvez, C.; Rumsey, C.; Saunders, R. D. E.; Schammel, M. P.; Shimwell, T. W.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile.
[Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France.
[Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, Madrid, Spain.
[Melin, J. -B.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France.
[Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia.
[Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada.
[Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Burigana, C.; Natoli, P.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy.
[Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy.
[Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain.
[Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile.
[Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain.
[Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands.
[Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy.
[Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy.
[Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy.
[Melchiorri, A.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy.
[Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France.
[Mitra, S.] IUCAA, Pune 411007, Maharashtra, India.
[Chamballu, A.; Clements, D. L.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England.
[Chary, R. -R.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA.
[Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France.
[Dole, H.] Inst Univ France, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Fromenteau, S.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR7095, F-75014 Paris, France.
[Fosalba, P.] CSIC, IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain.
[Popa, L.] Inst Space Sci, Bucharest, Romania.
[Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria.
[Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
[Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain.
[Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy.
[Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Battye, R.; Bonaldi, A.; Brown, M. L.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England.
[Ashdown, M.; Grainge, K. J. B.; Harrison, D.; Lasenby, A.; MacTavish, C. J.; Saunders, R. D. E.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England.
[Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Arnaud, M.; Democles, J.; Marshall, D. J.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France.
[Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France.
[Van Tent, B.] CNRS, F-91405 Orsay, France.
[Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Crill, B. P.] CALTECH, Observ Cosmol, Pasadena, CA 91125 USA.
[Savini, G.] UCL, Opt Sci Lab, London, England.
[Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy.
[Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Burenin, R.] Space Res Inst IKI, Moscow, Russia.
[Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia.
[Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Khamitov, I.] Tubitak Natl Observ, TR-07058 Antalya, Turkey.
[Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 6, UMR 7095, F-75014 Paris, France.
[Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain.
[Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Brown, ML (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester, Lancs, England.
EM mbrown@jb.man.ac.uk
RI Butler, Reginald/N-4647-2015; Remazeilles, Mathieu/N-1793-2015; Pearson,
Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio,
Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela,
Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; popa, lucia/B-4718-2012;
Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015;
Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016;
Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro,
Rita Belen/N-5442-2014; de Gasperis, Giancarlo/C-8534-2012;
Hurley-Walker, Natasha/B-9520-2013; Lopez-Caniego, Marcos/M-4695-2013;
Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva,
Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Yvon,
Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015;
Gonzalez-Nuevo, Joaquin/I-3562-2014;
OI Pierpaoli, Elena/0000-0002-7957-8993; Butler,
Reginald/0000-0003-4366-5996; Lopez-Caniego, Marcos/0000-0003-1016-9283;
Masi, Silvia/0000-0001-5105-1439; de Bernardis,
Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante,
Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266;
Maris, Michele/0000-0001-9442-2754; Pearson,
Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292;
Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi,
Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327;
Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta,
Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose
Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595;
Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733;
Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147;
Savini, Giorgio/0000-0003-4449-9416; Ricciardi,
Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI,
LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier,
Guillaume/0000-0002-1215-0706; Frailis, Marco/0000-0002-7400-2135;
Gregorio, Anna/0000-0003-4028-8785; Polenta,
Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375;
Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger,
Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet,
Francois/0000-0002-8051-2924; Herranz, Diego/0000-0003-4540-1417;
Barreiro, Rita Belen/0000-0002-6139-4272; de Gasperis,
Giancarlo/0000-0003-2899-2171; Hurley-Walker,
Natasha/0000-0002-5119-4808; Da Silva, Antonio/0000-0002-6385-1609;
Vielva, Patricio/0000-0003-0051-272X; Toffolatti,
Luigi/0000-0003-2645-7386; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; Gonzalez-Nuevo,
Joaquin/0000-0003-1354-6822; Franceschi, Enrico/0000-0002-0585-6591;
Valenziano, Luca/0000-0002-1170-0104; Matarrese,
Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115;
Pasian, Fabio/0000-0002-4869-3227; WANDELT,
Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott,
Douglas/0000-0002-6878-9840
FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF
(Italy); NASA (USA); Doe (USA); STFC (UK); UKSAR (UK); CSIC (Spain);
MICINN (Spain); JA (Spain); Tekes, (Finland); AoF, (Finland); CSC,
(Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); DEISA (EU); ESA member states
FX A description of the Planck Collaboration and a list of its members,
indicating which technical or scientific activities they have been
involved in, can be found at http://www.rssd.esa.int/Planck. The Planck
Collaboration acknowledges the support of: ESA; CNES and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and
CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark);
SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); and DEISA (EU). The AMI telescope is supported by Cambridge
University and the STFC. The AMI data analysis was carried out on the
COSMOS UK National Supercomputer at DAMTP, University of Cambridge and
the AMI Consortium thanks Andrey Kaliazin for computing assistance.;
Planck (http://www.esa.int/Planck) is a project of the European Space
Agency (ESA) with instruments provided by two scientific consortia
funded by ESA member states (in particular the lead countries France and
Italy), with contributions form NASA (USA) and telescope reflectors
provided by a collaboration between ESA and a scientific consortium led
and funded by Denmark.
NR 90
TC 14
Z9 14
U1 1
U2 25
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD FEB
PY 2013
VL 550
AR A128
DI 10.1051/0004-6361/201219361
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 089AJ
UT WOS:000314879700128
ER
PT J
AU Ade, PAR
Aghanim, N
Argueso, F
Arnaud, M
Ashdown, M
Atrio-Barandela, F
Aumont, J
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Battaner, E
Benabed, K
Benoit, A
Bernard, JP
Bersanelli, M
Bethermin, M
Bhatia, R
Bonaldi, A
Bond, JR
Borrill, J
Bouchet, FR
Burigana, C
Cabella, P
Cardoso, JF
Catalano, A
Cayon, L
Chamballu, A
Chary, RR
Chen, X
Chiang, LY
Christensen, PR
Clements, DL
Colafrancesco, S
Colombi, S
Colombo, LPL
Coulais, A
Crill, BP
Cuttaia, F
Danese, L
Davis, RJ
de Bernardis, P
de Gasperis, G
de Zotti, G
Delabrouille, J
Dickinson, C
Diego, JM
Dole, H
Donzelli, S
Dore, O
Dorl, U
Douspis, M
Dupac, X
Efstathiou, G
Ensslin, TA
Eriksen, HK
Finelli, F
Forni, O
Fosalba, P
Frailis, M
Franceschi, E
Galeotta, S
Ganga, K
Giard, M
Giardino, G
Giraud-Heraud, Y
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Hansen, FK
Harrison, D
Henrot-Versille, S
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Holmes, WA
Jaffe, TR
Jaffe, AH
Jagemann, T
Jones, WC
Juvela, M
Keihanen, E
Kisner, TS
Kneissl, R
Knoche, J
Knox, L
Kunz, M
Kurinsky, N
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Lasenby, A
Lawrence, CR
Leonardi, R
Lilje, PB
Lopez-Caniego, M
Macias-Perez, JF
Maino, D
Mandolesi, N
Maris, M
Marshall, DJ
Martinez-Gonzalez, E
Masi, S
Massardi, M
Matarrese, S
Mazzotta, P
Melchiorri, A
Mendes, L
Mennella, A
Mitra, S
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Mortlock, D
Munshi, D
Murphy, JA
Naselsky, P
Nati, F
Natoli, P
Norgaard-Nielsen, HU
Noviello, F
Novikov, D
Novikov, I
Osborne, S
Pajot, F
Paladini, R
Paoletti, D
Partridge, B
Pasian, F
Patanchon, G
Perdereau, O
Perotto, L
Perrotta, F
Piacentini, F
Piat, M
Pierpaoli, E
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Popa, L
Poutanen, T
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Reach, WT
Rebolo, R
Reinecke, M
Renault, C
Ricciardi, S
Riller, T
Ristorcelli, I
Rocha, G
Rosset, C
Rowan-Robinson, M
Rubino-Martin, JA
Rusholme, B
Sajina, A
Sandri, M
Savini, G
Scott, D
Smoot, GF
Starck, JL
Sudiwala, R
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tucci, M
Turler, M
Valenziano, L
Van Tent, B
Vielva, P
Villa, F
Vittorio, N
Wade, LA
Wandelt, BD
White, M
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Argueeso, F.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Battaner, E.
Benabed, K.
Benoit, A.
Bernard, J. -P.
Bersanelli, M.
Bethermin, M.
Bhatia, R.
Bonaldi, A.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Cabella, P.
Cardoso, J. -F.
Catalano, A.
Cayon, L.
Chamballu, A.
Chary, R. -R.
Chen, X.
Chiang, L. -Y
Christensen, P. R.
Clements, D. L.
Colafrancesco, S.
Colombi, S.
Colombo, L. P. L.
Coulais, A.
Crill, B. P.
Cuttaia, F.
Danese, L.
Davis, R. J.
de Bernardis, P.
de Gasperis, G.
de Zotti, G.
Delabrouille, J.
Dickinson, C.
Diego, J. M.
Dole, H.
Donzelli, S.
Dore, O.
Doerl, U.
Douspis, M.
Dupac, X.
Efstathiou, G.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Forni, O.
Fosalba, P.
Frailis, M.
Franceschi, E.
Galeotta, S.
Ganga, K.
Giard, M.
Giardino, G.
Giraud-Heraud, Y.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Harrison, D.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Holmes, W. A.
Jaffe, T. R.
Jaffe, A. H.
Jagemann, T.
Jones, W. C.
Juvela, M.
Keihanen, E.
Kisner, T. S.
Kneissl, R.
Knoche, J.
Knox, L.
Kunz, M.
Kurinsky, N.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Lasenby, A.
Lawrence, C. R.
Leonardi, R.
Lilje, P. B.
Lopez-Caniego, M.
Macias-Perez, J. F.
Maino, D.
Mandolesi, N.
Maris, M.
Marshall, D. J.
Martinez-Gonzalez, E.
Masi, S.
Massardi, M.
Matarrese, S.
Mazzotta, P.
Melchiorri, A.
Mendes, L.
Mennella, A.
Mitra, S.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Nati, F.
Natoli, P.
Norgaard-Nielsen, H. U.
Noviello, F.
Novikov, D.
Novikov, I.
Osborne, S.
Pajot, F.
Paladini, R.
Paoletti, D.
Partridge, B.
Pasian, F.
Patanchon, G.
Perdereau, O.
Perotto, L.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poutanen, T.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Reach, W. T.
Rebolo, R.
Reinecke, M.
Renault, C.
Ricciardi, S.
Riller, T.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Rowan-Robinson, M.
Rubino-Martin, J. A.
Rusholme, B.
Sajina, A.
Sandri, M.
Savini, G.
Scott, D.
Smoot, G. F.
Starck, J. -L.
Sudiwala, R.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tucci, M.
Tuerler, M.
Valenziano, L.
Van Tent, B.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L. A.
Wandelt, B. D.
White, M.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results VII. Statistical properties of infrared and
radio extragalactic sources from the Planck Early Release Compact Source
Catalogue at frequencies between 100 and 857 GHz
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmology: observations; surveys; galaxies: statistics; galaxies:
evolution; galaxies: star formation; galaxies: active
ID PROBE WMAP OBSERVATIONS; PRE-LAUNCH STATUS; SUBMILLIMETER NUMBER COUNTS;
STAR-FORMATION HISTORY; NORTH ECLIPTIC POLE; 500 MU-M; GALAXY EVOLUTION;
LUMINOSITY FUNCTIONS; LOCAL UNIVERSE; HERSCHEL
AB We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3mm to 350 mu m). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg(2) (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a large range of flux densities. We derive the multi-frequency Euclidean level - the plateau in the normalised differential counts at high flux-density - and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857 GHz.
C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, CEA Lrfu, Observ Paris,CNRS,IN2P3, F-75205 Paris 13, France.
[Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Kunz, M.] African Inst Math Sci, Cape Town, South Africa.
[Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy.
[Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy.
[Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile.
[Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, Madrid, Spain.
[Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France.
[Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Argueeso, F.] Univ Oviedo, Dept Matemat, Oviedo, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada.
[Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Kurinsky, N.; Sajina, A.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy.
[Balbi, A.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain.
[Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile.
[Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain.
[Giardino, G.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands.
[Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy.
[Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy.
[Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy.
[Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France.
[Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland.
[Mitra, S.] IUCAA, Pune 411007, Maharashtra, India.
[Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England.
[Chary, R. -R.; Chen, X.; Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France.
[Dole, H.] Inst Univ France, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Fosalba, P.] CSIC IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain.
[Popa, L.] Inst Space Sci, Bucharest, Romania.
[Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Efstathiou, G.; Harrison, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
[Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain.
[Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Bonaldi, A.; Davis, R. J.; Dickinson, C.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Ashdown, M.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England.
[Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Arnaud, M.; Bethermin, M.; Marshall, D. J.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, IRFU Serv Astrophys, Lab AIM,CNRS,CEA DSM, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France.
[Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
[Van Tent, B.] CNRS, F-91405 Orsay, France.
[Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Balbi, A.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Crill, B. P.] CALTECH, Pasadena, CA 91125 USA.
[Savini, G.] UCL, Opt Sci Lab, London, England.
[Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy.
[Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France.
[Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA.
[Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Dole, H (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France.
EM herve.dole@ias.u-psud.fr
RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016;
Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov,
Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati,
Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini,
Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov,
Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz,
Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita
Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez,
Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White,
Martin/I-3880-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego,
Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki,
Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti,
Luigi/K-5070-2014
OI De Zotti, Gianfranco/0000-0003-2868-2595; Matarrese,
Sabino/0000-0002-2573-1243; Lopez-Caniego, Marcos/0000-0003-1016-9283;
Masi, Silvia/0000-0001-5105-1439; de Bernardis,
Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante,
Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754;
Franceschi, Enrico/0000-0002-0585-6591; Valenziano,
Luca/0000-0002-1170-0104; Gruppuso, Alessandro/0000-0001-9272-5292;
Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi,
Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati,
Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327;
Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta,
Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose
Alberto/0000-0001-5289-3021; Paoletti, Daniela/0000-0003-4761-6147;
Savini, Giorgio/0000-0003-4449-9416; Pierpaoli,
Elena/0000-0002-7957-8993; Bethermin, Matthieu/0000-0002-3915-2015;
TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794;
Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192;
Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Sandri,
Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017;
Burigana, Carlo/0000-0002-3005-5796; Bouchet,
Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043;
Villa, Fabrizio/0000-0003-1798-861X; Galeotta,
Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT,
Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott,
Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135;
Gregorio, Anna/0000-0003-4028-8785; Polenta,
Gianluca/0000-0003-4067-9196; Herranz, Diego/0000-0003-4540-1417;
Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; Gonzalez-Nuevo,
Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; de
Gasperis, Giancarlo/0000-0003-2899-2171; Vielva,
Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386
FU ESA; NASA; CNES (France); CNRS/INSU-IN2P3INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC
(Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); PRACE (EU); National Aeronautics and Space Administration
FX Based on observations obtained with Planck (http://www.esa.int/Planck),
an ESA science mission with instruments and contributions directly
funded by ESA Member States, NASA, and Canada. The development of Planck
has been supported by: ESA; CNES and CNRS/INSU-IN2P3INP (France); ASI,
CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC,
MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG
(Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN
(Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). This
research has made use of the SIMBAD database, operated at CDS,
Strasbourg, France. This research has made use of the NASA/IPAC
Extragalactic Database (NED) which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration. This research has made
use of the NASA/IPAC Infrared Science Archive, which is operated by the
Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration. This
publication makes use of data products from the Wide-field Infrared
Survey Explorer, which is a joint project of the University of
California, Los Angeles, and the Jet Propulsion Laboratory/California
Institute of Technology, funded by the National Aeronautics and Space
Administration.
NR 101
TC 18
Z9 18
U1 1
U2 29
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD FEB
PY 2013
VL 550
AR A133
DI 10.1051/0004-6361/201220053
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 089AJ
UT WOS:000314879700133
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Ashdown, M
Atrio-Barandela, F
Aumont, J
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Bartlett, JG
Battaner, E
Benabed, K
Benoit, A
Bernard, JP
Bersanelli, M
Bhatia, R
Bikmaev, I
Bohringer, H
Bonaldi, A
Bond, JR
Borrill, J
Bouchet, FR
Bourdin, H
Burenin, R
Burigana, C
Cabella, P
Cardoso, JF
Castex, G
Catalano, A
Cayon, L
Chamballu, A
Chary, RR
Chiang, LY
Chon, G
Christensen, PR
Clements, DL
Colafrancesco, S
Colombo, LPL
Comis, B
Coulais, A
Crill, BP
Cuttaia, F
Da Silva, A
Dahle, H
Danese, L
Davis, RJ
de Bernardis, P
de Gasperis, G
de Zotti, G
Delabrouille, J
Democles, J
Desert, FX
Diego, JM
Dolag, K
Dole, H
Donzelli, S
Dore, O
Dorl, U
Douspis, M
Dupac, X
Efstathiou, G
Ensslin, TA
Eriksen, HK
Finelli, F
Flores-Cacho, I
Forni, O
Frailis, M
Franceschi, E
Frommert, M
Galeotta, S
Ganga, K
Genova-Santos, RT
Giard, M
Gilfanov, M
Giraud-Heraud, Y
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Hansen, FK
Harrison, D
Hempel, A
Henrot-Versille, S
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Holmes, WA
Hovest, W
Hurier, G
Jaffe, TR
Jaffe, AH
Jagemann, T
Jones, WC
Juvela, M
Khamitov, I
Kisner, TS
Kneissl, R
Knoche, J
Knox, L
Kunz, M
Kurki-Suonio, H
Lagache, G
Lamarre, JM
Lasenby, A
Lawrence, CR
Le Jeune, M
Leonardi, R
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Luzzi, G
Macias-Perez, JF
Maffei, B
Maino, D
Mandolesi, N
Maris, M
Marleau, F
Marshall, DJ
Martinez-Gonzalez, E
Masi, S
Massardi, M
Matarrese, S
Matthai, F
Mazzotta, P
Mei, S
Melchiorri, A
Melin, JB
Mendes, L
Mennella, A
Mitra, S
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Munshi, D
Murphy, JA
Naselsky, P
Nati, F
Natoli, P
Norgaard-Nielsen, HU
Noviello, F
Novikov, D
Novikov, I
Osborne, S
Pajot, F
Paoletti, D
Pasian, F
Patanchon, G
Perdereau, O
Perotto, L
Perrotta, F
Piacentini, F
Piat, M
Pierpaoli, E
Piffaretti, R
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Popa, L
Poutanen, T
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Rebolo, R
Reinecke, M
Remazeilles, M
Renault, C
Ricciardi, S
Riller, T
Ristorcelli, I
Rocha, G
Roman, M
Rosset, C
Rossetti, M
Rubino-Martin, JA
Rusholme, B
Sandri, M
Savini, G
Schaefer, BM
Scott, D
Smoot, GF
Starck, JL
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Valenziano, L
Van Tent, B
Vielva, P
Villa, F
Vittorio, N
Wade, LA
Wandelt, BD
Welikala, N
White, SDM
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Bartlett, J. G.
Battaner, E.
Benabed, K.
Benoit, A.
Bernard, J. -P.
Bersanelli, M.
Bhatia, R.
Bikmaev, I.
Boehringer, H.
Bonaldi, A.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Bourdin, H.
Burenin, R.
Burigana, C.
Cabella, P.
Cardoso, J. -F.
Castex, G.
Catalano, A.
Cayon, L.
Chamballu, A.
Chary, R. -R.
Chiang, L. -Y.
Chon, G.
Christensen, P. R.
Clements, D. L.
Colafrancesco, S.
Colombo, L. P. L.
Comis, B.
Coulais, A.
Crill, B. P.
Cuttaia, F.
Da Silva, A.
Dahle, H.
Danese, L.
Davis, R. J.
de Bernardis, P.
de Gasperis, G.
de Zotti, G.
Delabrouille, J.
Democles, J.
Desert, F. -X.
Diego, J. M.
Dolag, K.
Dole, H.
Donzelli, S.
Dore, O.
Doerl, U.
Douspis, M.
Dupac, X.
Efstathiou, G.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Flores-Cacho, I.
Forni, O.
Frailis, M.
Franceschi, E.
Frommert, M.
Galeotta, S.
Ganga, K.
Genova-Santos, R. T.
Giard, M.
Gilfanov, M.
Giraud-Heraud, Y.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Harrison, D.
Hempel, A.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Holmes, W. A.
Hovest, W.
Hurier, G.
Jaffe, T. R.
Jaffe, A. H.
Jagemann, T.
Jones, W. C.
Juvela, M.
Khamitov, I.
Kisner, T. S.
Kneissl, R.
Knoche, J.
Knox, L.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J. -M.
Lasenby, A.
Lawrence, C. R.
Le Jeune, M.
Leonardi, R.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Luzzi, G.
Macias-Perez, J. F.
Maffei, B.
Maino, D.
Mandolesi, N.
Maris, M.
Marleau, F.
Marshall, D. J.
Martinez-Gonzalez, E.
Masi, S.
Massardi, M.
Matarrese, S.
Matthai, F.
Mazzotta, P.
Mei, S.
Melchiorri, A.
Melin, J. -B.
Mendes, L.
Mennella, A.
Mitra, S.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Nati, F.
Natoli, P.
Norgaard-Nielsen, H. U.
Noviello, F.
Novikov, D.
Novikov, I.
Osborne, S.
Pajot, F.
Paoletti, D.
Pasian, F.
Patanchon, G.
Perdereau, O.
Perotto, L.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Piffaretti, R.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poutanen, T.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renault, C.
Ricciardi, S.
Riller, T.
Ristorcelli, I.
Rocha, G.
Roman, M.
Rosset, C.
Rossetti, M.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Savini, G.
Schaefer, B. M.
Scott, D.
Smoot, G. F.
Starck, J. -L.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Valenziano, L.
Van Tent, B.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L. A.
Wandelt, B. D.
Welikala, N.
White, S. D. M.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results VIII. Filaments between interacting clusters
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: clusters: general; large-scale structure of Universe
ID PRE-LAUNCH STATUS; X-RAY-STRUCTURE; GALAXY CLUSTERS; INTRACLUSTER
MEDIUM; OUTER REGIONS; SIMULATIONS; GAS; ABSORPTION; ENRICHMENT;
RADIATION
AB Context. About half of the baryons of the Universe are expected to be in the form of filaments of hot and low-density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories, which are limited in sensitivity to the diffuse low-density medium.
Aims. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters.
Methods. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we selected physical pairs of clusters as candidates. Using the Planck data, we constructed a local map of the tSZ effect centred on each pair of galaxy clusters. ROSAT data were used to construct X-ray maps of these pairs. After modelling and subtracting the tSZ effect and X-ray emission for each cluster in the pair, we studied the residuals on both the SZ and X-ray maps.
Results. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +/- 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 +/- 0.2) x 10(-4) cm(-3). Conclusions. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.
C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, CEA Lrfu, Observ Paris,CNRS,IN2P3, F-75205 Paris 13, France.
[Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia.
[Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy.
[Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy.
[Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Offices, Santiago, Chile.
[Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France.
[Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, Madrid, Spain.
[Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France.
[Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark.
[Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Geophys & Astron, Vancouver, BC, Canada.
[Colombo, L. P. L.; Pierpaoli, E.; Suur-Uski, A. -S.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Juvela, M.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy.
[Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy.
[Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain.
[Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile.
[Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain.
[Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands.
[Mei, S.] Observ Paris, GEPI, Sect Meudon, F-92195 Meudon, France.
[Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy.
[Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy.
[Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy.
[Melchiorri, A.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy.
[Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France.
[Mitra, S.] IUCAA, Pune 411007, Maharashtra, India.
[Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England.
[Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France.
[Dole, H.] Inst Univ France, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Popa, L.] Inst Space Sci, Bucharest, Romania.
[Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria.
[Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
[Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain.
[Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Bonaldi, A.; Davis, R. J.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England.
[Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Arnaud, M.; Democles, J.; Marshall, D. J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA DSM, IRFU Serv Astrophys,Lab AIM,CEA Saclay, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France.
[Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subat & Cosmol,IN2P3, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
[Van Tent, B.] CNRS, F-91405 Orsay, France.
[Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Crill, B. P.] CALTECH, Pasadena, CA 91125 USA.
[Savini, G.] UCL, Opt Sci Lab, London, England.
[Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy.
[Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Burenin, R.] Space Res Inst IKI, Moscow, Russia.
[Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey.
[Benabed, K.; Bouchet, F. R.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France.
[Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany.
[Mei, S.] Univ Paris 07, F-75205 Paris 13, France.
[Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse 4, France.
[Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.
EM hurier@lpsc.in2p3.fr
RI Remazeilles, Mathieu/N-1793-2015; Kurki-Suonio, Hannu/B-8502-2016;
Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo,
Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012;
Piacentini, Francesco/E-7234-2010; Atrio-Barandela,
Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Mazzotta,
Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner,
Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon,
Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015;
Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015;
de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013;
Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva,
Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014;
OI Sandri, Maura/0000-0003-4806-5375; Cuttaia,
Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796;
Bouchet, Francois/0000-0002-8051-2924; Ricciardi,
Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X;
Matarrese, Sabino/0000-0002-2573-1243; Galeotta,
Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT,
Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott,
Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135;
Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio,
Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Masi,
Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446;
Forni, Olivier/0000-0001-6772-9689; Morgante,
Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266;
Maris, Michele/0000-0001-9442-2754; Franceschi,
Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104;
Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi,
Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati,
Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327;
Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta,
Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose
Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595;
Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita
Belen/0000-0002-6139-4272; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; Gonzalez-Nuevo,
Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292;
de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva,
Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X;
Toffolatti, Luigi/0000-0003-2645-7386; Savini,
Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993;
TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794;
Hurier, Guillaume/0000-0002-1215-0706; Zacchei,
Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje,
Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147
FU ESA; NASA; CNES (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA
(USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA
(Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany);
MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland);
RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal)
FX Based on observations obtained with Planck (http://www.esa.int/Planck),
an ESA science mission with instruments and contributions directly
funded by ESA Member States, NASA, and Canada. The development of Planck
has been supported by: ESA; CNES and CNRS/INSU-IN2P3INP (France); ASI,
CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC,
MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG
(Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN
(Norway); SFI (Ireland); FCT/MCTES (Portugal); and The development of
Planck has been supported by: ESA; CNES and CNRS/INSU- IN2P3- INP
(France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA
(UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and
MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland);
RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). We
acknowledge the use of the Healpix software
NR 63
TC 14
Z9 14
U1 1
U2 29
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD FEB
PY 2013
VL 550
AR A134
DI 10.1051/0004-6361/201220194
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 089AJ
UT WOS:000314879700134
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Ashdown, M
Atrio-Barandela, F
Aumont, J
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Bartlett, JG
Battaner, E
Benabed, K
Benoit, A
Bernard, JP
Bersanelli, M
Bhatia, R
Bikmaev, I
Bohringer, H
Bonaldi, A
Bond, JR
Borrill, J
Bouchet, FR
Bourdin, H
Burenin, R
Burigana, C
Cabella, P
Cardoso, JF
Castex, G
Catalano, A
Cayon, L
Chamballu, A
Chiang, LY
Chon, G
Christensen, PR
Clements, DL
Colafrancesco, S
Colombi, S
Colombo, LPL
Comis, B
Coulais, A
Crill, BP
Cuttaia, F
Da Silva, A
Dahle, H
Danese, L
Davis, RJ
de Bernardis, P
de Gasperis, G
de Zotti, G
Delabrouille, J
Democles, J
Diego, JM
Dolag, K
Dole, H
Donzelli, S
Dore, O
Dorl, U
Douspis, M
Dupac, X
Efstathiou, G
Ensslin, TA
Eriksen, HK
Finelli, F
Flores-Cacho, I
Forni, O
Frailis, M
Franceschi, E
Frommert, M
Galeotta, S
Ganga, K
Genova-Santos, RT
Giard, M
Gilfanov, M
Giraud-Heraud, Y
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Hansen, FK
Harrison, D
Heinamaki, P
Hempel, A
Henrot-Versille, S
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Holmes, WA
Hurier, G
Jaffe, TR
Jaffe, AH
Jagemann, T
Jones, WC
Juvela, M
Keihanen, E
Khamitov, I
Kisner, TS
Kneissl, R
Knoche, J
Knox, L
Kunz, M
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Lasenby, A
Lawrence, CR
Le Jeune, M
Leonardi, R
Lilje, PB
Lopez-Caniego, M
Luzzi, G
Macias-Perez, JF
Maino, D
Mandolesi, N
Maris, M
Marleau, F
Marshall, DJ
Martinez-Gonzalez, E
Masi, S
Massardi, M
Matarrese, S
Mazzotta, P
Mei, S
Melchiorri, A
Melin, JB
Mendes, L
Mennella, A
Mitra, S
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Mortlock, D
Munshi, D
Murphy, JA
Naselsky, P
Nati, F
Natoli, P
Norgaard-Nielsen, HU
Noviello, F
Novikov, D
Novikov, I
Osborne, S
Pajot, F
Paoletti, D
Pasian, F
Patanchon, G
Perdereau, O
Perotto, L
Perrotta, F
Piacentini, F
Piat, M
Pierpaoli, E
Piffaretti, R
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Popa, L
Poutanen, T
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Rebolo, R
Reinecke, M
Remazeilles, M
Renault, C
Ricciardi, S
Riller, T
Ristorcelli, I
Rocha, G
Roman, M
Rosset, C
Rossetti, M
Rubino-Martin, JA
Rusholme, B
Sandri, M
Savini, G
Scott, D
Smoot, GF
Starck, JL
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tuovinen, J
Valenziano, L
Van Tent, B
Vielva, P
Villa, F
Vittorio, N
Wade, LA
Wandelt, BD
Welikala, N
Yvon, D
Zacchei, A
Zaroubi, S
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Bartlett, J. G.
Battaner, E.
Benabed, K.
Benoit, A.
Bernard, J. -P.
Bersanelli, M.
Bhatia, R.
Bikmaev, I.
Boehringer, H.
Bonaldi, A.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Bourdin, H.
Burenin, R.
Burigana, C.
Cabella, P.
Cardoso, J. -F.
Castex, G.
Catalano, A.
Cayon, L.
Chamballu, A.
Chiang, L. -Y
Chon, G.
Christensen, P. R.
Clements, D. L.
Colafrancesco, S.
Colombi, S.
Colombo, L. P. L.
Comis, B.
Coulais, A.
Crill, B. P.
Cuttaia, F.
Da Silva, A.
Dahle, H.
Danese, L.
Davis, R. J.
de Bernardis, P.
de Gasperis, G.
de Zotti, G.
Delabrouille, J.
Democles, J.
Diego, J. M.
Dolag, K.
Dole, H.
Donzelli, S.
Dore, O.
Doerl, U.
Douspis, M.
Dupac, X.
Efstathiou, G.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Flores-Cacho, I.
Forni, O.
Frailis, M.
Franceschi, E.
Frommert, M.
Galeotta, S.
Ganga, K.
Genova-Santos, R. T.
Giard, M.
Gilfanov, M.
Giraud-Heraud, Y.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Harrison, D.
Heinamaki, P.
Hempel, A.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Holmes, W. A.
Hurier, G.
Jaffe, T. R.
Jaffe, A. H.
Jagemann, T.
Jones, W. C.
Juvela, M.
Keihaenen, E.
Khamitov, I.
Kisner, T. S.
Kneissl, R.
Knoche, J.
Knox, L.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Lasenby, A.
Lawrence, C. R.
Le Jeune, M.
Leonardi, R.
Lilje, P. B.
Lopez-Caniego, M.
Luzzi, G.
Macias-Perez, J. F.
Maino, D.
Mandolesi, N.
Maris, M.
Marleau, F.
Marshall, D. J.
Martinez-Gonzalez, E.
Masi, S.
Massardi, M.
Matarrese, S.
Mazzotta, P.
Mei, S.
Melchiorri, A.
Melin, J. -B.
Mendes, L.
Mennella, A.
Mitra, S.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Mortlock, D.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Nati, F.
Natoli, P.
Norgaard-Nielsen, H. U.
Noviello, F.
Novikov, D.
Novikov, I.
Osborne, S.
Pajot, F.
Paoletti, D.
Pasian, F.
Patanchon, G.
Perdereau, O.
Perotto, L.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Piffaretti, R.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poutanen, T.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renault, C.
Ricciardi, S.
Riller, T.
Ristorcelli, I.
Rocha, G.
Roman, M.
Rosset, C.
Rossetti, M.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Savini, G.
Scott, D.
Smoot, G. F.
Starck, J. -L.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tuovinen, J.
Valenziano, L.
Van Tent, B.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L. A.
Wandelt, B. D.
Welikala, N.
Yvon, D.
Zacchei, A.
Zaroubi, S.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results VI. The dynamical structure of
PLCKG214.6+37.0, a Planck discovered triple system of galaxy clusters
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: clusters: general; large-scale structure of Universe;
galaxies: clusters: individual: PLCKG214.6+37.0
ID PRE-LAUNCH STATUS; XMM-NEWTON; SAMPLE; PROFILES; NEARBY; MASS; SPECTRUM;
REXCESS; A3558; CORE
AB The survey of galaxy clusters performed by Planck through the Sunyaev-Zeldovich effect has already discovered many interesting objects, thanks to its full sky coverage. One of the SZ candidates detected in the early months of the mission near to the signal-to-noise threshold, PLCKG214.6+37.0, was later revealed by XMM-Newton to be a triple system of galaxy clusters. We present the results from a deep XMM-Newton re-observation of PLCKG214.6+37.0, part of a multi-wavelength programme to investigate Planck discovered superclusters. The characterisation of the physical properties of the three components has allowed us to build a template model to extract the total SZ signal of this system with Planck data. We have partly reconciled the discrepancy between the expected SZ signal derived from X-rays and the observed one, which are now consistent within 1.2 sigma. We measured the redshift of the three components with the iron lines in the X-ray spectrum, and confirm that the three clumps are likely part of the same supercluster structure. The analysis of the dynamical state of the three components, as well as the absence of detectable excess X-ray emission, suggests that we are witnessing the formation of a massive cluster at an early phase of interaction.
C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, Observ Paris, CNRS,CEA Lrfu,IN2P3, F-75205 Paris 13, France.
[Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia.
[Kunz, M.] African Inst Math Sci, Cape Town, South Africa.
[Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy.
[Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy.
[Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Bhatia, R.; Kneissl, R.] ALMA Santiago, Cent Off, Santiago, Chile.
[Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Gorski, K. M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, Madrid, Spain.
[Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France.
[Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada.
[Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Coll Letter Arts & Sci, Dept Phys & Astron Dana & David Dornsife, Los Angeles, CA 90089 USA.
[Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain.
[Kneissl, R.; Lasenby, A.] European So Observ, ESO Vitacura, Santiago 19001, Chile.
[Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, ESAC, Madrid, Spain.
[Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands.
[Mei, S.] Observ Paris, GEPI, F-92195 Meudon, France.
[Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy.
[Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy.
[Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy.
[Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Ponthieu, N.] Univ Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France.
[Mitra, S.] IUCAA, Pune 411007, Maharashtra, India.
[Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England.
[Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France.
[Dole, H.] Inst Univ France, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Popa, L.] Inst Space Sci, Bucharest, Romania.
[Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria.
[Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
[Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain.
[Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Bonaldi, A.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Zaroubi, S.] Univ Groningen, Kapteyn Astron Inst, NL-9747 AD Groningen, Netherlands.
[Ashdown, M.; Harrison, D.; Sutton, D.] Kavli Inst Cosmol, Cambridge CB3 0HA, England.
[Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Arnaud, M.; Democles, J.; Marshall, D. J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, IRFU Serv Astrophys, CEA Saclay, CNRS,Lab AIM,CEA DSM, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France.
[Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
[Van Tent, B.] CNRS, F-91405 Orsay, France.
[Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Crill, B. P.] CALTECH, Pasadena, CA 91125 USA.
[Savini, G.] UCL, Opt Sci Lab, London, England.
[Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy.
[Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Burenin, R.] Space Res Inst IKI, Moscow, Russia.
[Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey.
[Heinamaki, P.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Piikkio 21500, Finland.
[Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France.
[Mei, S.] Univ Paris 07, F-75205 Paris 13, France.
[Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Rossetti, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy.
EM mariachiara.rossetti@unimi.it
RI Remazeilles, Mathieu/N-1793-2015; Gruppuso, Alessandro/N-5592-2015;
Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov,
Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati,
Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini,
Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov,
Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz,
Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita
Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez,
Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis,
Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva,
Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki,
Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti,
Luigi/K-5070-2014;
OI Polenta, Gianluca/0000-0003-4067-9196; Sandri,
Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017;
Burigana, Carlo/0000-0002-3005-5796; Bouchet,
Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043;
Matarrese, Sabino/0000-0002-2573-1243; Galeotta,
Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269;
Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840;
Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego,
Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Savini,
Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993;
Pasian, Fabio/0000-0002-4869-3227; Masi, Silvia/0000-0001-5105-1439; de
Bernardis, Paolo/0000-0001-6547-6446; Forni,
Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412;
Remazeilles, Mathieu/0000-0001-9126-6266; Maris,
Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591;
Valenziano, Luca/0000-0002-1170-0104; Gruppuso,
Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063;
Tomasi, Maurizio/0000-0002-1448-6131; Colombo,
Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088;
Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela,
Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748;
Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti,
Gianfranco/0000-0003-2868-2595; Herranz, Diego/0000-0003-4540-1417;
Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; Gonzalez-Nuevo,
Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171;
Da Silva, Antonio/0000-0002-6385-1609; Vielva,
Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386;
Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379;
Starck, Jean-Luc/0000-0003-2177-7794; Hurier,
Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192;
Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794;
Paoletti, Daniela/0000-0003-4761-6147
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC
(Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER /SSO (Switzerland); RCN (Norway); SFI (Ireland);
FCT/MCTES (Portugal); DEISA (EU); USA (NASA); Alfred P. Sloan
Foundation; National Science Foundation; U.S. Department of Energy
Office of Science
FX A description of the Planck Collaboration and a list of its members,
indicating which technical or scientific activities they have been
involved in, can be found at http://www.rssd.esa.int/Planck. The Planck
Collaboration acknowledges the support of: ESA; CNES and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MICINN, and JA (Spain); Tekes, AoF, and
CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark);
SER /SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); and DEISA (EU). The present paper is also partly based on
observations obtained with XMM-Newton, an ESA science mission with
instruments and contributions directly funded by ESA Member States and
the USA (NASA), and on data retrieved from SDSS-III. Funding for
SDSS-III has been provided by the Alfred P. Sloan Foundation, the
Participating Institutions, the National Science Foundation, and the
U.S. Department of Energy Office of Science. The SDSS-III web site is
http://www.sdss3.org/
NR 57
TC 6
Z9 6
U1 1
U2 30
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD FEB
PY 2013
VL 550
AR A132
DI 10.1051/0004-6361/201220039
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 089AJ
UT WOS:000314879700132
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Ashdown, M
Atrio-Barandela, F
Aumont, J
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Bartlett, JG
Battaner, E
Battye, R
Benabed, K
Bernard, JP
Bersanelli, M
Bhatia, R
Bikmaev, I
Bohringer, H
Bonaldi, A
Bond, JR
Borgani, S
Borrill, J
Bouchet, FR
Bourdin, H
Brown, ML
Bucher, M
Burenin, R
Burigana, C
Butler, RC
Cabella, P
Cardoso, JF
Carvalho, P
Chamballu, A
Chiang, LY
Chon, G
Clements, DL
Colafrancesco, S
Coulais, A
Cuttaia, F
Da Silva, A
Dahle, H
Davis, RJ
de Bernardis, P
de Gasperis, G
Delabrouille, J
Democles, J
Desert, FX
Diego, JM
Dolag, K
Dole, H
Donzelli, S
Dore, O
Douspis, M
Dupac, X
Efstathiou, G
Ensslin, TA
Eriksen, HK
Finelli, F
Flores-Cacho, I
Forni, O
Frailis, M
Franceschi, E
Frommert, M
Galeotta, S
Ganga, K
Genova-Santos, RT
Giard, M
Giraud-Heraud, Y
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Hansen, FK
Harrison, D
Hernandez-Monteagudo, C
Herranz, D
Hildebrandt, SR
Hivon, E
Hobson, M
Holmes, WA
Huffenberger, KM
Hurier, G
Jagemann, T
Juvela, M
Keihanen, E
Khamitov, I
Kneissl, R
Knoche, J
Kunz, M
Kurki-Suonio, H
Lagache, G
Lamarre, JM
Lasenby, A
Lawrence, CR
Le Jeune, M
Leach, S
Leonardi, R
Liddle, A
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Luzzi, G
Macias-Perez, JF
Maino, D
Mandolesi, N
Maris, M
Marleau, F
Marshall, DJ
Martinez-Gonzalez, E
Masi, S
Matarrese, S
Matthai, F
Mazzotta, P
Meinhold, PR
Melchiorri, A
Melin, JB
Mendes, L
Mitra, S
Miville-Deschenes, MA
Montier, L
Morgante, G
Munshi, D
Natoli, P
Norgaard-Nielsen, HU
Noviello, F
Osborne, S
Pajot, F
Paoletti, D
Partridge, B
Pearson, TJ
Perdereau, O
Perrotta, F
Piacentini, F
Piat, M
Pierpaoli, E
Piffaretti, R
Platania, P
Pointecouteau, E
Polenta, G
Ponthieu, N
Popa, L
Poutanen, T
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Rebolo, R
Reinecke, M
Remazeilles, M
Renault, C
Ricciardi, S
Ristorcelli, I
Rocha, G
Rosset, C
Rossetti, M
Rubino-Martin, JA
Rusholme, B
Sandri, M
Savini, G
Scott, D
Starck, JL
Stivoli, F
Stolyarov, V
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Valenziano, L
Van Tent, B
Vielva, P
Villa, F
Vittorio, N
Wandelt, BD
Weller, J
White, SDM
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Bartlett, J. G.
Battaner, E.
Battye, R.
Benabed, K.
Bernard, J. -P.
Bersanelli, M.
Bhatia, R.
Bikmaev, I.
Boehringer, H.
Bonaldi, A.
Bond, J. R.
Borgani, S.
Borrill, J.
Bouchet, F. R.
Bourdin, H.
Brown, M. L.
Bucher, M.
Burenin, R.
Burigana, C.
Butler, R. C.
Cabella, P.
Cardoso, J. -F.
Carvalho, P.
Chamballu, A.
Chiang, L. -Y.
Chon, G.
Clements, D. L.
Colafrancesco, S.
Coulais, A.
Cuttaia, F.
Da Silva, A.
Dahle, H.
Davis, R. J.
de Bernardis, P.
de Gasperis, G.
Delabrouille, J.
Democles, J.
Desert, F. -X.
Diego, J. M.
Dolag, K.
Dole, H.
Donzelli, S.
Dore, O.
Douspis, M.
Dupac, X.
Efstathiou, G.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Flores-Cacho, I.
Forni, O.
Frailis, M.
Franceschi, E.
Frommert, M.
Galeotta, S.
Ganga, K.
Genova-Santos, R. T.
Giard, M.
Giraud-Heraud, Y.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Harrison, D.
Hernandez-Monteagudo, C.
Herranz, D.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Holmes, W. A.
Huffenberger, K. M.
Hurier, G.
Jagemann, T.
Juvela, M.
Keihanen, E.
Khamitov, I.
Kneissl, R.
Knoche, J.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lamarre, J. -M.
Lasenby, A.
Lawrence, C. R.
Le Jeune, M.
Leach, S.
Leonardi, R.
Liddle, A.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Luzzi, G.
Macias-Perez, J. F.
Maino, D.
Mandolesi, N.
Maris, M.
Marleau, F.
Marshall, D. J.
Martinez-Gonzalez, E.
Masi, S.
Matarrese, S.
Matthai, F.
Mazzotta, P.
Meinhold, P. R.
Melchiorri, A.
Melin, J. -B.
Mendes, L.
Mitra, S.
Miville-Deschenes, M. -A.
Montier, L.
Morgante, G.
Munshi, D.
Natoli, P.
Norgaard-Nielsen, H. U.
Noviello, F.
Osborne, S.
Pajot, F.
Paoletti, D.
Partridge, B.
Pearson, T. J.
Perdereau, O.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Piffaretti, R.
Platania, P.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poutanen, T.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renault, C.
Ricciardi, S.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Rossetti, M.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Savini, G.
Scott, D.
Starck, J. -L.
Stivoli, F.
Stolyarov, V.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Valenziano, L.
Van Tent, B.
Vielva, P.
Villa, F.
Vittorio, N.
Wandelt, B. D.
Weller, J.
White, S. D. M.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results III. The relation between galaxy cluster
mass and Sunyaev-Zeldovich signal
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE X-rays: galaxies: clusters; galaxies: clusters: intracluster medium;
galaxies: clusters: general; cosmology: observations
ID WEAK LENSING ANALYSIS; PRE-LAUNCH STATUS; HUBBLE-SPACE-TELESCOPE;
SOUTH-POLE TELESCOPE; X-RAY-PROPERTIES; SCALING RELATIONS; XMM-NEWTON;
DARK-MATTER; REPRESENTATIVE SAMPLE; PARAMETER-ESTIMATION
AB We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D-A(2) Y-500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an M-WL-D-A(2) Y-500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R-500 are on average similar to 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations.
C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Rosset, C.] Univ Paris Diderot, APC, CNRS, CEA,Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France.
[Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia.
[Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy.
[Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy.
[Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile.
[Bond, J. R.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, Madrid, Spain.
[Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, SPP, Irfu, DSM, F-91191 Gif Sur Yvette, France.
[Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark.
[Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia.
[Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada.
[Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Borgani, S.; Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy.
[Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain.
[Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile.
[Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain.
[Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands.
[Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy.
[Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy.
[Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy.
[Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France.
[Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France.
[Mitra, S.] IUCAA, Pune 411007, Maharashtra, India.
[Chamballu, A.; Clements, D. L.] Univ London Imperial Col