FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Testa, P
De Pontieu, B
Martinez-Sykora, J
DeLuca, E
Hansteen, V
Cirtain, J
Winebarger, A
Golub, L
Kobayashi, K
Korreck, K
Kuzin, S
Walsh, R
DeForest, C
Title, A
Weber, M
AF Testa, Paola
De Pontieu, Bart
Martinez-Sykora, Juan
DeLuca, Ed
Hansteen, Viggo
Cirtain, Jonathan
Winebarger, Amy
Golub, Leon
Kobayashi, Ken
Korreck, Kelly
Kuzin, Sergey
Walsh, Robert
DeForest, Craig
Title, Alan
Weber, Mark
TI OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE Sun: activity; Sun: corona; Sun: magnetic topology; Sun: transition
region; Sun: UV radiation
ID X-RAY CORONA; TRANSITION REGION; HOT PLASMA; SOLAR CORONA; MAGNETIC
RECONNECTION; IMAGING SPECTROMETER; LOOPS OBSERVATIONS; EMISSION;
DYNAMICS; HINODE
AB The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193 angstrom images of the upper transition region moss at an unprecedented spatial (similar to 0 ''.3-0 ''.4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to similar to 15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 angstrom channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10(23) erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).
C1 [Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
[De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA.
[Martinez-Sykora, Juan] Bay Area Environm Res Inst, Sonoma, CA 95476 USA.
[Hansteen, Viggo] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway.
[Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Kuzin, Sergey] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia.
[Walsh, Robert] Univ Cent Lancashire, Preston PR1 2HE, Lancs, England.
[DeForest, Craig] Southwest Res Inst, Boulder, CO 80302 USA.
RP Testa, P (reprint author), Smithsonian Astrophys Observ, 60 Garden St,MS 58, Cambridge, MA 02138 USA.
EM ptesta@cfa.harvard.edu
RI Kuzin, Sergey/M-3435-2015; DeLuca, Edward/L-7534-2013;
OI DeLuca, Edward/0000-0001-7416-2895; Golub, Leon/0000-0001-9638-3082
FU Lockheed-Martin [SP02H1701R]; NASA [NNM07AB07C, NNX08BA99G, NNX08AH45G,
NNX11AN98G]
FX We thank the referees for their useful comments which greatly helped to
improve the Letter. P.T. was supported by contract SP02H1701R from
Lockheed-Martin, and NASA contract NNM07AB07C to SAO. B.D.P. was
supported through NASA grants NNX08BA99G, NNX08AH45G, and NNX11AN98G.
Hinode is a Japanese mission developed and launched by ISAS/JAXA, with
NAOJ, NASA, and STFC (UK) as partners, and operated by these agencies in
cooperation with ESA and NSC (Norway).
NR 50
TC 39
Z9 39
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 10
PY 2013
VL 770
IS 1
AR UNSP L1
DI 10.1088/2041-8205/770/1/L1
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 155CR
UT WOS:000319723500001
ER
PT J
AU Eckstein, MP
Mack, SC
Liston, DB
Bogush, L
Menzel, R
Krauzlis, RJ
AF Eckstein, Miguel P.
Mack, Stephen C.
Liston, Dorion B.
Bogush, Lisa
Menzel, Randolf
Krauzlis, Richard J.
TI Rethinking human visual attention: Spatial cueing effects and optimality
of decisions by honeybees, monkeys and humans
SO VISION RESEARCH
LA English
DT Article
DE Visual attention; Computational modeling; Posner cueing paradigm; Human
monkey bee psychophysics; Bayesian ideal observer
ID SIGNAL-DETECTION-THEORY; LEARNING SITUATION; APIS-MELLIFERA; SEARCH;
PROBABILITY; BEHAVIOR; UNCERTAINTY; PERCEPTION; MODELS; CUES
AB Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can approximate the benefits of the more computationally complex optimal Bayesian model. We discuss the implications of our findings on the field's common conceptualization of covert visual attention in the cueing task and what aspects, if any, might be unique to humans. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Eckstein, Miguel P.; Mack, Stephen C.] Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA.
[Liston, Dorion B.] San Jose State Univ, San Jose, CA 95192 USA.
[Liston, Dorion B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Bogush, Lisa; Menzel, Randolf] Free Univ Berlin, Dept Biol, Berlin, Germany.
[Krauzlis, Richard J.] NEI, Sensorimotor Res Lab, NIH, Bethesda, MD 20892 USA.
RP Eckstein, MP (reprint author), Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Vis & Image Understanding Lab, Santa Barbara, CA 93106 USA.
EM eckstein@psych.ucsb.edu; mack@psych.ucsb.edu; dorion.b.liston@nasa.gov;
bogusch@neurobiologie.fu-berlin.de; menzel@neurobiologie.fu-berlin.de;
richard.krauzlis@nih.gov
FU NEI NIH HHS [R01 EY015925]
NR 76
TC 8
Z9 8
U1 2
U2 23
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0042-6989
J9 VISION RES
JI Vision Res.
PD JUN 7
PY 2013
VL 85
SI SI
BP 5
EP 19
DI 10.1016/j.visres.2012.12.011
PG 15
WC Neurosciences; Ophthalmology
SC Neurosciences & Neurology; Ophthalmology
GA 171CU
UT WOS:000320903500002
PM 23298793
ER
PT J
AU Fuller, TL
Thomassen, HA
Peralvo, M
Buermann, W
Mila, B
Kieswetter, CM
Jarrin-V, P
Devitt, SEC
Mason, E
Schweizer, RM
Schlunegger, J
Chan, J
Wang, O
Schneider, CJ
Pollinger, JP
Saatchi, S
Graham, CH
Wayne, RK
Smith, TB
AF Fuller, Trevon L.
Thomassen, Henri A.
Peralvo, Manuel
Buermann, Wolfgang
Mila, Borja
Kieswetter, Charles M.
Jarrin-, Pablo, V
Devitt, Susan E. Cameron
Mason, Eliza
Schweizer, Rena M.
Schlunegger, Jasmin
Chan, Janice
Wang, Ophelia
Schneider, Christopher J.
Pollinger, John P.
Saatchi, Sassan
Graham, Catherine H.
Wayne, Robert K.
Smith, Thomas B.
TI Intraspecific morphological and genetic variation of common species
predicts ranges of threatened ones
SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
LA English
DT Article
DE biodiversity; conservation planning; indicator species; reserve
selection; surrogacy
ID RAIN-FOREST BIRD; CONSERVATION PRIORITIES; ECOLOGICAL GRADIENTS;
CLIMATE-CHANGE; SOUTH-AMERICA; DIVERSITY; BIODIVERSITY; PATTERNS;
ECUADOR; AREA
AB Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible.
C1 [Fuller, Trevon L.; Thomassen, Henri A.; Buermann, Wolfgang; Mila, Borja; Pollinger, John P.; Saatchi, Sassan; Smith, Thomas B.] Univ Calif Los Angeles, Ctr Trop Res Inst Environm & Sustainabil, Los Angeles, CA 90095 USA.
[Thomassen, Henri A.] Consorcio Desarrollo Sostenible Ecorreg Andina, Iniciativa Estudios Ambient, Quito, Ecuador.
[Buermann, Wolfgang] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
[Mila, Borja] CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain.
[Kieswetter, Charles M.] Boston Univ, Dept Biol, Boston, MA 02215 USA.
[Jarrin-, Pablo, V] Pontificia Univ Catolica Ecuador, Escuela Ciencias Biol, Yasuni Res Stn, Quito, Ecuador.
[Devitt, Susan E. Cameron] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA.
[Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Pollinger, John P.; Wayne, Robert K.; Smith, Thomas B.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA.
[Mason, Eliza] Univ N Carolina, Sch Med, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA.
[Wang, Ophelia] Univ Texas Austin, Dept Geog & Environm, Austin, TX 78712 USA.
[Wang, Ophelia] Univ Arizona, Ctr Sustainable Environm, Flagstaff, AZ 86011 USA.
[Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Graham, Catherine H.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA.
RP Fuller, TL (reprint author), Univ Calif Los Angeles, Ctr Trop Res Inst Environm & Sustainabil, La Kretz Hall,Suite 300,619 Charles E Young Dr Ea, Los Angeles, CA 90095 USA.
EM fullertl@ucla.edu
RI Cameron Devitt, Susan/E-2659-2013; Fuller, Trevon/B-8087-2014; Graham,
Catherine/A-9560-2011;
OI Mila, Borja/0000-0002-6446-0079
FU NSF [IRCEB9977072]; NASA [IDS/03-0169-0347, NNG05GB37G]
FX We thank R. Calsbeek, R. Harrigan, B. Larison, R. E. Ricklefs, three
reviewers and Associate Editor Daniel Rabosky for comments that improved
the manuscript. This work was supported by NSF grant no. IRCEB9977072 to
T. B. S, R. K. W. and C.J.S.; and NASA grant nos IDS/03-0169-0347 to T.
B. S., R. K. W., and C.J.S.; and NNG05GB37G to C.H.G.
NR 58
TC 1
Z9 2
U1 1
U2 67
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 0962-8452
EI 1471-2954
J9 P ROY SOC B-BIOL SCI
JI Proc. R. Soc. B-Biol. Sci.
PD JUN 7
PY 2013
VL 280
IS 1760
AR 20130423
DI 10.1098/rspb.2013.0423
PG 10
WC Biology; Ecology; Evolutionary Biology
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Evolutionary Biology
GA 131VH
UT WOS:000318024600013
PM 23595273
ER
PT J
AU Horikawa, DD
Cumbers, J
Sakakibara, I
Rogoff, D
Leuko, S
Harnoto, R
Arakawa, K
Katayama, T
Kunieda, T
Toyoda, A
Fujiyama, A
Rothschild, LJ
AF Horikawa, Daiki D.
Cumbers, John
Sakakibara, Iori
Rogoff, Dana
Leuko, Stefan
Harnoto, Raechel
Arakawa, Kazuharu
Katayama, Toshiaki
Kunieda, Takekazu
Toyoda, Atsushi
Fujiyama, Asao
Rothschild, Lynn J.
TI Analysis of DNA Repair and Protection in the Tardigrade Ramazzottius
varieornatus and Hypsibius dujardini after Exposure to UVC Radiation
SO PLOS ONE
LA English
DT Article
ID MILNESIUM-TARDIGRADUM; RICHTERSIUS-CORONIFER; THYMINE DIMERS; NEW-MODEL;
TOLERANCE; RESISTANCE; PHOTOLYASE; SPORES; VIVO
AB Tardigrades inhabiting terrestrial environments exhibit extraordinary resistance to ionizing radiation and UV radiation although little is known about the mechanisms underlying the resistance. We found that the terrestrial tardigrade Ramazzottius varieornatus is able to tolerate massive doses of UVC irradiation by both being protected from forming UVC-induced thymine dimers in DNA in a desiccated, anhydrobiotic state as well as repairing the dimers that do form in the hydrated animals. In R. varieornatus accumulation of thymine dimers in DNA induced by irradiation with 2.5 kJ/m(2) of UVC radiation disappeared 18 h after the exposure when the animals were exposed to fluorescent light but not in the dark. Much higher UV radiation tolerance was observed in desiccated anhydrobiotic R. varieornatus compared to hydrated specimens of this species. On the other hand, the freshwater tardigrade species Hypsibius dujardini that was used as control, showed much weaker tolerance to UVC radiation than R. varieornatus, and it did not contain a putative phrA gene sequence. The anhydrobiotes of R. varieornatus accumulated much less UVC-induced thymine dimers in DNA than hydrated one. It suggests that anhydrobiosis efficiently avoids DNA damage accumulation in R. varieornatus and confers better UV radiation tolerance on this species. Thus we propose that UV radiation tolerance in tardigrades is due to the both high capacities of DNA damage repair and DNA protection, a two-pronged survival strategy.
C1 [Horikawa, Daiki D.; Cumbers, John; Rogoff, Dana; Leuko, Stefan; Rothschild, Lynn J.] NASA Ames Res Ctr, Biospher Sci Branch, Moffett Field, CA USA.
[Horikawa, Daiki D.; Rothschild, Lynn J.] Brown Univ, NASA Astrobiol Inst, Providence, RI 02912 USA.
[Cumbers, John; Rothschild, Lynn J.] Brown Univ, Dept Mol Biol Cell Biol & Biochem, Providence, RI 02912 USA.
[Sakakibara, Iori] Inst Cochin Genet Mol, INSERM, U1016, F-75014 Paris, France.
[Sakakibara, Iori] CNRS, UMR 8104, Paris, France.
[Sakakibara, Iori] Univ Paris 05, Sorbonne Paris Cite, Paris, France.
[Harnoto, Raechel] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA.
[Arakawa, Kazuharu] Keio Univ, Inst Adv Biosci, Fujisawa, Kanagawa, Japan.
[Katayama, Toshiaki] Univ Tokyo, Inst Med Sci, Ctr Human Genome, Tokyo, Japan.
[Kunieda, Takekazu] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 113, Japan.
[Toyoda, Atsushi] Natl Inst Genet, Ctr Informat Biol, Mishima, Shizuoka 411, Japan.
[Fujiyama, Asao] Natl Inst Informat, Principles Informat Res Div, Tokyo, Japan.
RP Horikawa, DD (reprint author), NASA Ames Res Ctr, Biospher Sci Branch, Moffett Field, CA USA.
EM horikawadd@gmail.com; Lynn.J.Rothschild@nasa.gov
RI Kunieda, Takekazu/G-4946-2014
FU NASA Ames Research Center; NASA
FX This research was supported by an appointment to the NASA Postdoctoral
Program at the NASA Ames Research Center, administered by Oak Ridge
Associated Universities through a contract with NASA. The funder had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.
NR 31
TC 15
Z9 15
U1 12
U2 64
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 6
PY 2013
VL 8
IS 6
AR e64793
DI 10.1371/journal.pone.0064793
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 173SK
UT WOS:000321099000023
PM 23762256
ER
PT J
AU Stephenson, JD
Hallis, LJ
Nagashima, K
Freeland, SJ
AF Stephenson, James D.
Hallis, Lydia J.
Nagashima, Kazuhide
Freeland, Stephen J.
TI Boron Enrichment in Martian Clay
SO PLOS ONE
LA English
DT Article
ID AQUEOUS ALTERATION; MASS-SPECTROMETRY; WEST GREENLAND; METEORITE;
RIBOSE; ADSORPTION; EVOLUTION; CATALYSTS; ISOTOPES; SUGARS
AB We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.
C1 [Stephenson, James D.; Hallis, Lydia J.; Freeland, Stephen J.] Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA.
[Hallis, Lydia J.; Nagashima, Kazuhide] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
RP Stephenson, JD (reprint author), Univ Hawaii, NASA Astrobiol Inst, Honolulu, HI 96822 USA.
EM jds@ifa.hawaii.edu
OI Stephenson, James/0000-0002-6427-5703
FU National Aeronautics and Space Administration through the NASA
Astrobiology Institute through the Office of Space Science [NNA09DA77A]
FX This material is based upon work supported by the National Aeronautics
and Space Administration through the NASA Astrobiology Institute under
Cooperative Agreement No. NNA09DA77A issued through the Office of Space
Science. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.
NR 42
TC 5
Z9 5
U1 3
U2 20
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 6
PY 2013
VL 8
IS 6
AR e64624
DI 10.1371/journal.pone.0064624
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 173SK
UT WOS:000321099000009
PM 23762242
ER
PT J
AU Turner, W
AF Turner, Woody
CA 14 Co-Signatories
TI Satellites: make data freely accessible
SO NATURE
LA English
DT Letter
C1 [Turner, Woody] NASA, Div Earth Sci, Washington, DC 20546 USA.
RP Turner, W (reprint author), NASA, Div Earth Sci, Washington, DC 20546 USA.
EM woody.turner@nasa.gov
OI Szantoi, Zoltan/0000-0003-2580-4382
NR 1
TC 8
Z9 8
U1 0
U2 8
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD JUN 6
PY 2013
VL 498
IS 7452
BP 37
EP 37
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 158DC
UT WOS:000319947800021
PM 23739415
ER
PT J
AU Hanna, E
Navarro, FJ
Pattyn, F
Domingues, CM
Fettweis, X
Ivins, ER
Nicholls, RJ
Ritz, C
Smith, B
Tulaczyk, S
Whitehouse, PL
Zwally, HJ
AF Hanna, Edward
Navarro, Francisco J.
Pattyn, Frank
Domingues, Catia M.
Fettweis, Xavier
Ivins, Erik R.
Nicholls, Robert J.
Ritz, Catherine
Smith, Ben
Tulaczyk, Slawek
Whitehouse, Pippa L.
Zwally, H. Jay
TI Ice-sheet mass balance and climate change
SO NATURE
LA English
DT Review
ID SEA-LEVEL RISE; SATELLITE-GRAVIMETRY; RECONCILED ESTIMATE; RADAR
ALTIMETRY; GROUNDING LINES; WATER STORAGE; GREENLAND; SHELF; GLACIERS;
MODEL
AB Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.
C1 [Hanna, Edward] Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England.
[Navarro, Francisco J.] Univ Politecn Madrid, Dept Matemat Aplicada Tecnol Informac, E-28040 Madrid, Spain.
[Pattyn, Frank] Univ Libre Bruxelles, Lab Glaciol, B-1050 Brussels, Belgium.
[Domingues, Catia M.] Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Aspendale, Vic 3195, Australia.
[Fettweis, Xavier] Univ Liege, Dept Geog, B-4000 Liege, Belgium.
[Ivins, Erik R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Nicholls, Robert J.] Univ Southampton, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England.
[Ritz, Catherine] Univ Grenoble 1, CNRS, Lab Glaciol & Geophys Environm, F-38402 St Martin Dheres, France.
[Smith, Ben] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA.
[Tulaczyk, Slawek] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Whitehouse, Pippa L.] Univ Durham, Dept Geog, Durham DH1 3LE, England.
[Zwally, H. Jay] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
RP Hanna, E (reprint author), Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England.
EM ehanna@sheffield.ac.uk
RI Navarro, Francisco/L-2941-2014; Domingues, Catia /A-2901-2015; Hanna,
Edward/H-2219-2016; Nicholls, Robert/G-3898-2010;
OI Whitehouse, Pippa/0000-0002-9092-3444; Pattyn,
Frank/0000-0003-4805-5636; Navarro, Francisco/0000-0002-5147-0067;
Domingues, Catia /0000-0001-5100-4595; Hanna,
Edward/0000-0002-8683-182X; Nicholls, Robert/0000-0002-9715-1109;
Fettweis, Xavier/0000-0002-4140-3813
FU International Council for Science (ICSU); SCAR; IASC; WCRP;
International Glaciological Society (IGS); International Association of
Cryospheric Sciences (IACS); Climate and Cryosphere (CliC); Association
of Polar Early Career Scientists (APECS)
FX The work presented here is based on the Ice-Sheet Mass Balance and Sea
Level (ISMASS) workshop that was held in Portland, Oregon, USA, on 14
July 2012. This workshop was jointly organized by the Scientific
Committee on Antarctic Research (SCAR), the International Arctic Science
Committee (IASC) and the Word Climate Research Programme (WCRP), and was
co-sponsored by the International Council for Science (ICSU), SCAR,
IASC, WCRP, the International Glaciological Society (IGS) and the
International Association of Cryospheric Sciences (IACS), with support
from Climate and Cryosphere (CliC) and the Association of Polar Early
Career Scientists (APECS).
NR 100
TC 75
Z9 76
U1 11
U2 258
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD JUN 6
PY 2013
VL 498
IS 7452
BP 51
EP 59
DI 10.1038/nature12238
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 158DC
UT WOS:000319947800031
PM 23739423
ER
PT J
AU Kawai, J
Jagota, S
Kaneko, T
Obayashi, Y
Khare, BN
McKay, CP
Kobayashi, K
AF Kawai, Jun
Jagota, Seema
Kaneko, Takeo
Obayashi, Yumiko
Khare, Bishun N.
McKay, Christopher P.
Kobayashi, Kensei
TI Titan Tholins as Amino Acid Precursors and Their Solubility in Possible
Titan Liquidospheres
SO CHEMISTRY LETTERS
LA English
DT Article
ID HIGH-PRESSURE; HAZE; ATMOSPHERE; SIMULATION; CHEMISTRY; AEROSOLS;
AMMONIA; SURFACE; GAS
AB Experimental simulations have previously shown that tholins (complex solid organics) can be abundantly formed in Titan's atmosphere and that they contain precursors of amino acids. In this study, we investigated their relevance to possible chemical evolution toward the generation of life in various potential Titan environments (liquidospheres), using tholins synthesized by plasma discharge at low pressure (LP, 26 Pa) and high pressure (HP, 133 Pa). We focused our study on composition of amino acids recovered from LP and HP tholins, as well as on the solubility of these tholins in solvents such as hexane, acetonitrile, ethanol, methanol, water, and ammonia water. Both hydrolyzed extracts of LP and HP tholins were composed of a wide variety of amino acids. Tholins were dissolved more easily in polar solvents than in nonpolar ones: Ammonia water, simulating a potential Titan subsurface ocean, could dissolve tholins quite efficiently. These results show thus the possibility of starting chemical evolution toward life's origin in Titan's environment.
C1 [Kawai, Jun; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei] Yokohama Natl Univ, Grad Sch Chem & Biotechnol, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan.
[Jagota, Seema; Khare, Bishun N.; McKay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Kawai, J (reprint author), Yokohama Natl Univ, Grad Sch Chem & Biotechnol, Hodogaya Ku, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan.
EM kawai-jun-jy@ynu.ac.jp
OI Kaneko, Takeo/0000-0002-8904-1030; Kobayashi, Kensei/0000-0003-2951-1341
FU Leave a Nest Co.
FX We would like to thank the scientists at NASA Ames Research Center for
their cooperation in sample collection. We are also grateful to the
members of Yokohama National University for helpful discussions. This
research was funded by Leave a Nest Co.
NR 22
TC 0
Z9 0
U1 1
U2 23
PU CHEMICAL SOC JAPAN
PI TOKYO
PA 1-5 KANDA-SURUGADAI CHIYODA-KU, TOKYO, 101-8307, JAPAN
SN 0366-7022
EI 1348-0715
J9 CHEM LETT
JI Chem. Lett.
PD JUN 5
PY 2013
VL 42
IS 6
BP 633
EP 635
DI 10.1246/cl.130101
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 174RQ
UT WOS:000321173500021
ER
PT J
AU Morton, DC
Le Page, Y
DeFries, R
Collatz, GJ
Hurtt, GC
AF Morton, D. C.
Le Page, Y.
DeFries, R.
Collatz, G. J.
Hurtt, G. C.
TI Understorey fire frequency and the fate of burned forests in southern
Amazonia
SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
LA English
DT Article
DE deforestation; fire; feedbacks; climate; land use
ID CLIMATE-CHANGE; TROPICAL FORESTS; BRAZILIAN AMAZON; DEFORESTATION;
SCENARIOS; WILDFIRES
AB Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Para, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.
C1 [Morton, D. C.; Collatz, G. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Le Page, Y.; Hurtt, G. C.] Joint Global Change Res Inst, College Pk, MD 20740 USA.
[DeFries, R.] Columbia Univ, Dept Evolutionary Ecol & Environm Biol, New York, NY USA.
[Hurtt, G. C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
RP Morton, DC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM douglas.morton@nasa.gov
RI Morton, Douglas/D-5044-2012; collatz, george/D-5381-2012
FU NASA; US Department of Energy Office of Science Integrated Assessment
Program
FX This study was supported by the NASA Terrestrial Ecology and
Interdisciplinary Science Programs and the US Department of Energy
Office of Science Integrated Assessment Program.
NR 33
TC 43
Z9 43
U1 3
U2 51
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 0962-8436
J9 PHILOS T R SOC B
JI Philos. Trans. R. Soc. B-Biol. Sci.
PD JUN 5
PY 2013
VL 368
IS 1619
SI SI
AR 20120163
DI 10.1098/rstb.2012.0163
PG 8
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA 130LQ
UT WOS:000317918900007
PM 23610169
ER
PT J
AU DeLeon-Rodriguez, N
Lathem, TL
Rodriguez-R, LM
Barazesh, JM
Anderson, BE
Beyersdorf, AJ
Ziemba, LD
Bergin, M
Nenes, A
Konstantinidis, KT
AF DeLeon-Rodriguez, Natasha
Lathem, Terry L.
Rodriguez-R, Luis M.
Barazesh, James M.
Anderson, Bruce E.
Beyersdorf, Andreas J.
Ziemba, Luke D.
Bergin, Michael
Nenes, Athanasios
Konstantinidis, Konstantinos T.
TI Reply to Smith and Griffin: Methods, air flows, and conclusions are
robust in the DeLeon-Rodriguez et al. study
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
ID AIRBORNE
C1 [DeLeon-Rodriguez, Natasha; Rodriguez-R, Luis M.; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA.
[Lathem, Terry L.; Bergin, Michael; Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Barazesh, James M.; Bergin, Michael; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA.
[Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Anderson, Bruce E.; Beyersdorf, Andreas J.; Ziemba, Luke D.] NASA, Chem & Dynam Branch, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA.
RP Nenes, A (reprint author), Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA.
EM athanasios.nenes@gatech.edu; kostas@ce.gatech.edu
RI Beyersdorf, Andreas/N-1247-2013; Barazesh, James/L-5680-2013;
OI Rodriguez-R, Luis M/0000-0001-7603-3093
NR 6
TC 2
Z9 2
U1 0
U2 15
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 4
PY 2013
VL 110
IS 23
BP E2085
EP E2085
DI 10.1073/pnas.1304466110
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 165SD
UT WOS:000320503000002
PM 23882709
ER
PT J
AU Smith, DJ
Griffin, DW
AF Smith, David Joseph
Griffin, Dale Warren
TI Inadequate methods and questionable conclusions in atmospheric life
study
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Letter
C1 [Smith, David Joseph] NASA, Surface Syst Off, Kennedy Space Ctr, FL 32899 USA.
[Griffin, Dale Warren] US Geol Survey, Coastal & Marine Sci Ctr, St Petersburg, FL 33701 USA.
RP Smith, DJ (reprint author), NASA, Surface Syst Off, Kennedy Space Ctr, FL 32899 USA.
EM david.j.smith-3@nasa.gov
NR 3
TC 4
Z9 4
U1 0
U2 11
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 4
PY 2013
VL 110
IS 23
BP E2084
EP E2084
DI 10.1073/pnas.1302612110
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 165SD
UT WOS:000320503000001
PM 23633574
ER
PT J
AU Vasileiou, V
Jacholkowska, A
Piron, F
Bolmont, J
Couturier, C
Granot, J
Stecker, FW
Cohen-Tanugi, J
Longo, F
AF Vasileiou, V.
Jacholkowska, A.
Piron, F.
Bolmont, J.
Couturier, C.
Granot, J.
Stecker, F. W.
Cohen-Tanugi, J.
Longo, F.
TI Constraints on Lorentz invariance violation from Fermi-Large Area
Telescope observations of gamma-ray bursts
SO PHYSICAL REVIEW D
LA English
DT Article
ID LOOP QUANTUM-GRAVITY; HIGH-ENERGY; SPACE-TELESCOPE; CPT VIOLATION; GRB
090926A; COMPONENT; TESTS; DISPERSION; AFTERGLOW; EMISSION
AB We analyze the MeV/GeV emission from four bright gamma-ray bursts (GRBs) observed by the Fermi Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some quantum gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic, spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the QG energy scale (the energy scale where LIV-inducing QG effects become strong, E-QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high-energy photons propagate more slowly than lower-energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% C. L.) are obtained from GRB 090510 and are E-QG,E-1 > 7: 6 times the Planck energy (E-Pl) and E-QG,E-2 > 1.3 x 10(11) GeV for linear and quadratic leading-order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H. E. S. S. by a factor of similar to 2. Our results disfavor any class of models requiring E-QG,E-1 less than or similar to E-Pl.
C1 [Vasileiou, V.; Piron, F.; Cohen-Tanugi, J.] Univ Montpellier 2, Lab Univers & Particules Montpellier, CNRS, IN2P3,CC 72, F-34095 Montpellier 5, France.
[Jacholkowska, A.; Bolmont, J.; Couturier, C.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris 5, France.
[Granot, J.] Open Univ Israel, Dept Nat Sci, IL-43537 Raanana, Israel.
[Stecker, F. W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Stecker, F. W.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
RP Vasileiou, V (reprint author), Univ Montpellier 2, Lab Univers & Particules Montpellier, CNRS, IN2P3,CC 72, Pl Eugene Bataillon, F-34095 Montpellier 5, France.
EM vlasisva@gmail.com; agnieszka.jacholkowska@cern.ch
RI Couturier, Camille/K-7585-2013
OI Couturier, Camille/0000-0002-0168-1106
NR 67
TC 39
Z9 40
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUN 4
PY 2013
VL 87
IS 12
AR UNSP 122001
DI 10.1103/PhysRevD.87.122001
PG 31
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 157RX
UT WOS:000319917900001
ER
PT J
AU Klatt, CG
Inskeep, WP
Herrgard, MJ
Jay, ZJ
Rusch, DB
Tringe, SG
Parenteau, MN
Ward, DM
Boomer, SM
Bryant, DA
Miller, SR
AF Klatt, Christian G.
Inskeep, William P.
Herrgard, Markus J.
Jay, Zackary J.
Rusch, Douglas B.
Tringe, Susannah G.
Parenteau, M. Niki
Ward, David M.
Boomer, Sarah M.
Bryant, Donald A.
Miller, Scott R.
TI Community structure and function of high-temperature chlorophototrophic
microbial mats inhabiting diverse geothermal environments
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE microbial mats; microbial interactions; phototrophic bacteria;
functional genomics; thermophilic bacteria
ID YELLOWSTONE-NATIONAL-PARK; BLUE-GREEN-ALGAE; CANDIDATUS
CHLORACIDOBACTERIUM THERMOPHILUM; CYANOBACTERIUM
MASTIGOCLADUS-LAMINOSUS; PHOTOTROPHIC FE(II) OXIDATION; ALKALINE
HOT-SPRINGS; CHLOROFLEXUS-AURANTIACUS; SULFIDEQUINONE OXIDOREDUCTASE;
SOFTWARE ENVIRONMENT; NONSULFUR BACTERIA
AB Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average similar to 53 Mbp/site) were subjected to multiple taxonomic, phylogenetic, and functional analyses. All methods, including G + C content distribution, MEGAN analyses, and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Rosei-flexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such as photosynthesis, carbon fixation, sulfur oxidation, and fermentation.
C1 [Klatt, Christian G.; Inskeep, William P.; Jay, Zackary J.; Ward, David M.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA.
[Klatt, Christian G.; Inskeep, William P.; Jay, Zackary J.; Ward, David M.] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA.
[Herrgard, Markus J.] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Horsholm, Denmark.
[Rusch, Douglas B.] Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN USA.
[Tringe, Susannah G.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA.
[Parenteau, M. Niki] Search Extraterr Intelligence Inst, Mountain View, CA USA.
[Parenteau, M. Niki] NASA, Ames Res Ctr, Mountain View, CA USA.
[Boomer, Sarah M.] Western Oregon Univ, Monmouth, OR USA.
[Bryant, Donald A.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA.
[Bryant, Donald A.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA.
[Miller, Scott R.] Univ Montana, Dept Biol Sci, Missoula, MT USA.
RP Inskeep, WP (reprint author), Montana State Univ, Bozeman, MT 59717 USA.
EM binskeep@montana.edu
OI Tringe, Susannah/0000-0001-6479-8427
FU National Science Foundation Research Coordination Network Program [MCB
0342269]; DOE-Joint Genome Institute Community Sequencing Program [CSP
787081]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]; YNP metagenome project [YELL-5568]
FX Authors appreciate support from the National Science Foundation Research
Coordination Network Program (MCB 0342269), the DOE-Joint Genome
Institute Community Sequencing Program (CSP 787081) as well as all
individual author institutions and associated research support that
together has made this study possible. The work conducted by the U.S.
Department of Energy Joint Genome Institute is supported by the Office
of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. Authors appreciate research permitting focused on the
YNP metagenome project (Permit No, YELL-5568, 2007-2010), and managed by
C. Hendrix and S. Guenther (Center for Resources, YNP).
NR 105
TC 24
Z9 25
U1 5
U2 40
PU FRONTIERS RESEARCH FOUNDATION
PI LAUSANNE
PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND
SN 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD JUN 3
PY 2013
VL 4
AR 106
DI 10.3389/fmicb.2013.00106
PG 23
WC Microbiology
SC Microbiology
GA AA5US
UT WOS:000331165700001
PM 23761787
ER
PT J
AU Prasad, NS
Pliutau, D
AF Prasad, Narasimha S.
Pliutau, Denis
TI Cross-band relative absorption technique for the measurement of
molecular mixing ratios
SO OPTICS EXPRESS
LA English
DT Article
ID SPECTROSCOPIC DATABASE; ATMOSPHERIC CO2; LIDAR
AB We describe a new method for the measurement of molecular mixing ratios called Cross-Band Relative Absorption (CoBRA). The proposed method is based on relative measurements in different molecular bands referenced to a band of O-2 with properly selected wavelength combinations providing high level of cancelation in temperature sensitivities. The CoBRA approach is particularly promising for satellite based remote sensing of molecular mixing ratios of the atmospheric trace gases. Very low temperature sensitivities and the potential of achieving close weighting function matching for the measurement and reference wavelengths are the main advantages of the method. The effectiveness of CoBRA approach is demonstrated for the retrieval of CO2 mixing ratios (XCO2) with application to the ASCENDS mission. (C) 2013 Optical Society of America
C1 [Prasad, Narasimha S.; Pliutau, Denis] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Prasad, NS (reprint author), NASA, Langley Res Ctr, MS 468, Hampton, VA 23681 USA.
EM narasimha.s.prasad@nasa.gov
FU Earth Science Technology Office (ESTO); NASA
FX This study was supported by the Earth Science Technology Office (ESTO),
and the NASA Postdoctoral Program (NPP) administered by Oak Ridge
Associated Universities.
NR 15
TC 0
Z9 0
U1 1
U2 3
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD JUN 3
PY 2013
VL 21
IS 11
BP 13279
EP 13292
DI 10.1364/OE.21.013279
PG 14
WC Optics
SC Optics
GA 156II
UT WOS:000319814900032
PM 23736581
ER
PT J
AU Balin, Y
Kaul, B
Kokhanenko, G
Winker, D
AF Balin, Yury
Kaul, Bruno
Kokhanenko, Grigorii
Winker, David
TI Transformation of light backscattering phase matrices of crystal clouds
depending on the zenith sensing angle
SO OPTICS EXPRESS
LA English
DT Article
ID ORIENTED ICE PLATES; CIRRUS CLOUDS; PARTICLE ORIENTATION; LIDAR;
SCATTERING; DEPOLARIZATION
AB Problems encountered in the interpretation of results of laser sensing of crystal clouds are considered. The parameters characterizing the cloud particle orientation are determined through the backscattering phase matrix elements. It is demonstrated how these parameters are related to the probability density of particle distribution over the spatial orientation angles. Trends in the change of the backscattering phase matrices attendant to variations of the zenith sensing angle are shown on the example of a monodisperse ice particle ensemble. (C) 2013 Optical Society of America
C1 [Balin, Yury; Kaul, Bruno; Kokhanenko, Grigorii] Russian Acad Sci, Inst Atmospher Opt, Siberian Branch, Tomsk 634055, Russia.
[Winker, David] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Balin, Y (reprint author), Russian Acad Sci, Inst Atmospher Opt, Siberian Branch, Tomsk 634055, Russia.
EM kokh@iao.ru
FU Russian Foundation for Basic Research [13-05-00096-a]; Ministry of
Education and Science [11.519.11.6033, 14.518.11.7063]; CRDF
[RUGI-7053-TO-11]
FX This work was supported in part by the Russian Foundation for Basic
Research (grant No. 13-05-00096-a), the Ministry of Education and
Science (State Contracts Nos. 11.519.11.6033 and 14.518.11.7063), and
CRDF grant RUGI-7053-TO-11.
NR 30
TC 1
Z9 2
U1 0
U2 3
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD JUN 3
PY 2013
VL 21
IS 11
BP 13408
EP 13418
DI 10.1364/OE.21.013408
PG 11
WC Optics
SC Optics
GA 156II
UT WOS:000319814900044
PM 23736593
ER
PT J
AU Park, Y
Choi, SH
AF Park, Yeonjoon
Choi, Sang H.
TI Miniaturization of optical spectroscopes into Fresnel microspectrometers
SO JOURNAL OF NANOPHOTONICS
LA English
DT Article
DE microspectrometer; Fresnel diffraction grating; gradient grating; ring
grating
ID NANO-IMPRINT LITHOGRAPHY; FOURIER-TRANSFORM SPECTROSCOPY;
SMALL-F-NUMBER; FOCUSED-ION; STRAY-LIGHT; INFRARED SPECTROMETERS;
PLASMON RESONANCE; ZONE PLATES; BEAM; FABRICATION
AB Miniaturized optical instruments have become very important in industry as smart phones and tablet PCs increase in popularity. A chronology of spectrometer development shows that a simple numerical point of view affords important insights. A tiny spectrometer, which is smaller than a few millimeters size, cannot easily rely on the conventional Fraunhofer diffraction due to its optical criterion limit. As an alternate solution to build smaller spectrometers, a Fresnel spectrometer chip with a gradient line grating is attractive. The fabricated Fresnel spectrometers have optical path volumes of about 1 mm(3) and spectral resolutions of 10 to 23 nm. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
C1 [Park, Yeonjoon] Natl Inst Aerosp, Hampton, VA 23666 USA.
[Choi, Sang H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Park, Y (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA.
EM Sang.H.Choi@NASA.gov
FU NASA, USA [SAA-15546]; Gacheon University of Medicine and Science under
KOSEF program by the Ministry of Science, Technology, and Education,
Republic of Korea
FX This research was supported by the space act agreement SAA-15546 of
NASA, USA and Gacheon University of Medicine and Science under KOSEF
program by the Ministry of Science, Technology, and Education, Republic
of Korea.
NR 102
TC 4
Z9 5
U1 2
U2 15
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 1934-2608
J9 J NANOPHOTONICS
JI J. Nanophotonics
PD JUN 3
PY 2013
VL 7
AR 077599
DI 10.1117/1.JNP.7.077599
PG 18
WC Nanoscience & Nanotechnology; Optics
SC Science & Technology - Other Topics; Optics
GA 156CD
UT WOS:000319797100001
ER
PT J
AU Ojha, R
AF Ojha, Roopesh
TI Parsec-scale structure of quasars: dawn of the golden age?
SO BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA
LA English
DT Article
DE galaxies: quasars: general; galaxies: nuclei; galaxies: jets; radio
continuation: galaxies
ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION;
COMPACT SYMMETRIC OBJECTS; BASE-LINE ARRAY; EXTRAGALACTIC RADIO-SOURCES;
HEMISPHERE ICRF SOURCES; EGRET-DETECTED QUASARS; BL LACERTAE OBJECTS;
VLBI OBSERVATIONS
AB Half a century after their discovery, the study of quasars remains one of the most fascinating intellectual challenges in astronomy. Quasars are laboratories for everything from relativity to magnetohydrodynamics and are perhaps the best available probes for cosmology. A tremendous amount has been learned about quasars and yet many of the most fundamental questions about their physics remain open.
Parsec-scale observations have played an indispensable role in building up our current understanding of quasars; virtually everything we know about quasars depends on such observations. However, the finest hour for parsec scale observations may be just beginning. This is partly due to the development of highly reliable VLBI networks (which is continuing) but mostly due to the unprecedented availability of multiepoch, simultaneous, broadband observations that have long been the 'holy grail' for quasar researchers.
C1 [Ojha, Roopesh] NASA Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20770 USA.
[Ojha, Roopesh] Catholic Univ Amer, Washington, DC 20064 USA.
RP Ojha, R (reprint author), NASA Goddard Space Flight Ctr, Astroparticle Phys Lab, Code 661, Greenbelt, MD 20770 USA.
EM Roopesh.Ojha@nasa.gov
FU NASA [NNH10ZDA001N]; NASA Postdoctoral Program at the Goddard Space
Flight Center
FX The author gratefully acknowledges his colleagues in the TANAMI and
Fermi/LAT programs from whom he continues to learn. The author sincerely
apologizes for the vast range of wonderful work that he was unable to
touch upon in such a brief review. This research was funded in part by
NASA through Fermi Guest Investigator grant NNH10ZDA001N (proposal
number 41213). This research was supported by an appointment to the NASA
Postdoctoral Program at the Goddard Space Flight Center, administered by
Oak Ridge Associated Universities through a contract with NASA. This
research has made use of NASA's Astrophysics Data System. This research
has made use of the NASA/IPAC Extragalactic Database (NED) which is
operated by the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics and Space
Administration. This research has made use of the SIMBAD database
(operated at CDS, Strasbourg, France).
NR 112
TC 1
Z9 1
U1 0
U2 1
PU INDIAN INST ASTROPHYSICS
PI BANGALORE
PA G C ANUPAMA EDITOR, BANGALORE, 560 034, INDIA
SN 0304-9523
J9 B ASTRON SOC INDIA
JI Bull. Astron. Soc. India.
PD JUN
PY 2013
VL 41
IS 2
BP 117
EP 136
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA AE1UK
UT WOS:000333755700001
ER
PT J
AU Peters, BT
Brady, RA
Batson, CD
Guined, JR
Ploutz-Snyder, RJ
Mulavara, AP
Bloomberg, JJ
AF Peters, Brian T.
Brady, Rachel A.
Batson, Crystal D.
Guined, Jamie R.
Ploutz-Snyder, Robert J.
Mulavara, Ajitkumar P.
Bloomberg, Jacob J.
TI Adaptation in Locomotor Stability, Cognition, and Metabolic Cost During
Sensory Discordance
SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE
LA English
DT Article
DE human locomotion; sensory discordance; instability; perturbation; gait
adaptation
ID SPACE SUIT BIOENERGETICS; TREADMILL WALKING; EFFICIENCY; SPACEFLIGHT;
STRATEGIES; CLEARANCE; TASK
AB Background: Locomotor instability may affect planetary extravehicular activities during the initial adaptation to the new gravitational environment. The goal of this study was to quantify the locomotor, cognitive, and metabolic effects of exposure to a discordant sensory environment. Methods: A treadmill mounted on a 6-degree-of-freedom motion base was used to present 15 healthy subjects with a destabilizing support surface while they walked. Dependent measures of locomotor stability, cognitive load, and metabolic cost were stride frequency (SF), reaction time (RT), and the volume of oxygen consumed (VO2), respectively. Subjects completed an 8-min baseline walk followed by 20 min of walking with a continuous, sinusoidal, laterally oscillating support-surface perturbation. Data for minutes 1, 7, 13, and 20 of the support-surface perturbation period were compared with the baseline. Results: SF, RT, and VO2 were significantly greater during support-surface motion than during the baseline walking condition and showed a trend toward recovery to baseline levels during the perturbation period. Results demonstrated that adaptation to walking in a discordant sensory environment has quantifiable and significant costs in SF, RT, and VO2 as shown by mean increases of 9%, 20%, and 4%, respectively, collected during the first minute of exposure. By the fourth minute of exposure, mean VO2 consumption had increased to 20% over its baseline. Discussion: We believe that preflight sensorimotor adaptation training paradigms will impart gains in stability and the ability to multitask, and might increase productive mission time by extending work time in extravehicular activity suits where metabolic expenditure is a limiting factor.
C1 [Peters, Brian T.; Brady, Rachel A.; Batson, Crystal D.; Guined, Jamie R.; Ploutz-Snyder, Robert J.; Mulavara, Ajitkumar P.; Bloomberg, Jacob J.] NASA, Johnson Space Ctr, Houston, TX USA.
RP Peters, BT (reprint author), Wyle Sci Technol & Engn Grp, 1290 Hercules Dr,Suite 120, Houston, TX 77058 USA.
EM brian.peters-1@nasa.gov
FU National Space Biomedical Research Institute through NASA [NCC 9-58]
FX This work was supported by the National Space Biomedical Research
Institute through NASA NCC 9-58. None of the authors have any financial
or personal relationships with other people or organizations that could
inappropriately influence this work.
NR 29
TC 0
Z9 0
U1 1
U2 3
PU AEROSPACE MEDICAL ASSOC
PI ALEXANDRIA
PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA
SN 0095-6562
EI 1943-4448
J9 AVIAT SPACE ENVIR MD
JI Aviat. Space Environ. Med.
PD JUN
PY 2013
VL 84
IS 6
BP 567
EP 572
DI 10.3357/ASEM.3529.2013
PG 6
WC Public, Environmental & Occupational Health; Medicine, General &
Internal; Sport Sciences
SC Public, Environmental & Occupational Health; General & Internal
Medicine; Sport Sciences
GA AD1LS
UT WOS:000332996100003
PM 23745284
ER
PT J
AU Southern, T
Roberts, DP
Moiseev, N
Ross, A
Kim, JH
AF Southern, Theodore
Roberts, Dustyn P.
Moiseev, Nikolay
Ross, Amy
Kim, Joo H.
TI Space Suit Glove Design with Advanced Metacarpal Phalangeal Joints and
Robotic Hand Evaluation
SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE
LA English
DT Article
DE pressurized glove garment; space suit; robotic hand testing;
anthropometric; biomimetic design; neutral configuration; stiffness;
torque
ID PROSTHESIS
AB Background: One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip-the act of grasping a bar-is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. Method: This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. Results: MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. Discussion: The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.
C1 Final Frontier Design, Brooklyn, NY USA.
[Kim, Joo H.] NYU, Polytech Inst, Dept Mech & Aerosp Engn, Brooklyn, NY USA.
NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Kim, JH (reprint author), NYU, Polytech Inst, Dept Mech & Aerosp Engn, Brooklyn, NY USA.
EM jhkim@poly.edu
RI Kim, Joo/I-9517-2012
FU U.S. National Aeronautics and Space Administration (NASA) under Phase I
SBIR [NNX11CG24P]; National Science Foundation Graduate Research
Fellowship [DGE-1104522]
FX This research was supported in part by the U.S. National Aeronautics and
Space Administration (NASA) under Phase I SBIR grant NNX11CG24P and by a
National Science Foundation Graduate Research Fellowship to D. Roberts
under Grant No. DGE-1104522.
NR 20
TC 0
Z9 0
U1 1
U2 7
PU AEROSPACE MEDICAL ASSOC
PI ALEXANDRIA
PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA
SN 0095-6562
EI 1943-4448
J9 AVIAT SPACE ENVIR MD
JI Aviat. Space Environ. Med.
PD JUN
PY 2013
VL 84
IS 6
BP 633
EP 638
DI 10.3357/ASEM.3531.2013
PG 6
WC Public, Environmental & Occupational Health; Medicine, General &
Internal; Sport Sciences
SC Public, Environmental & Occupational Health; General & Internal
Medicine; Sport Sciences
GA AD1LS
UT WOS:000332996100013
PM 23745294
ER
PT J
AU Nguyen, N
AF Nhan Nguyen
TI Least-Squares Model-Reference Adaptive Control with Chebyshev Orthogonal
Polynomial Approximation
SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS
LA English
DT Article
ID NEURAL-NETWORKS; ROBUSTNESS; DYNAMICS
AB This paper presents a model-reference adaptive control approach for systems with unstructured uncertainty based on two least-squares parameter estimation methods: gradient-based method and recursive least-squares method. The unstructured uncertainty is approximated by Chebyshev orthogonal polynomial basis functions. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. The least-squares gradient adaptive control achieves superior parameter convergence as compared to the standard model-reference adaptive control. Flight control simulations were conducted with four adaptive controllers: least-squares gradient adaptive control, recursive least-squares adaptive control, standard model-reference adaptive control, and neural-network adaptive control. The results show that the recursive least-squares adaptive control achieves better robustness as measured by a time-delay margin, while the least-squares gradient adaptive control achieves better tracking performance than both the standard model-reference adaptive control and neural-network adaptive control.
C1 NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA.
RP Nguyen, N (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA.
EM nhan.t.nguyen@nasa.gov
NR 28
TC 2
Z9 2
U1 0
U2 8
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 1940-3151
EI 2327-3097
J9 J AEROSP INFORM SYST
JI J. Aerosp. Inf. Syst.
PD JUN
PY 2013
VL 10
IS 6
BP 268
EP 286
DI 10.2514/1.I010037
PG 19
WC Engineering, Aerospace
SC Engineering
GA AB2FV
UT WOS:000331609500002
ER
PT J
AU Doelling, DR
Loeb, NG
Keyes, DF
Nordeen, ML
Morstad, D
Nguyen, C
Wielicki, BA
Young, DF
Sun, MG
AF Doelling, David R.
Loeb, Norman G.
Keyes, Dennis F.
Nordeen, Michele L.
Morstad, Daniel
Nguyen, Cathy
Wielicki, Bruce A.
Young, David F.
Sun, Moguo
TI Geostationary Enhanced Temporal Interpolation for CERES Flux Products
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID ENERGY SYSTEM INSTRUMENT; ANGULAR-DISTRIBUTION MODELS; METEOROLOGICAL
SATELLITE IMAGERS; RADIATION BUDGET; PART I; RAPID CALIBRATION; TERRA
SATELLITE; CLOUDS; METHODOLOGY; CHANNELS
AB The Clouds and the Earth's Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth's top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1 degrees latitude x 1 degrees longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m(-2) over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.
C1 [Doelling, David R.; Loeb, Norman G.; Wielicki, Bruce A.; Young, David F.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Keyes, Dennis F.; Nordeen, Michele L.; Morstad, Daniel; Nguyen, Cathy; Sun, Moguo] SSAI, Hampton, VA USA.
RP Doelling, DR (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA.
EM david.r.doelling@nasa.gov
FU NASA CERES project
FX This work has been funded by the NASA CERES project. The products and
the validation could not have been accomplished without the help of the
CERES TISA team. The authors also thank the CERES, GERB,
Megha-Tropiques, and CLARREO science teams for their insightful temporal
averaging discussions. These data were obtained from the NASA Langley
Research Center EOSDIS Distributed Active Archive Center.
NR 31
TC 54
Z9 55
U1 0
U2 19
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD JUN
PY 2013
VL 30
IS 6
BP 1072
EP 1090
DI 10.1175/JTECH-D-12-00136.1
PG 19
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA 301EF
UT WOS:000330514900004
ER
PT J
AU Rose, FG
Rutan, DA
Charlock, T
Smith, GL
Kato, S
AF Rose, Fred G.
Rutan, David A.
Charlock, Thomas
Smith, G. Louis
Kato, Seiji
TI Algorithm for the Constraining of Radiative Transfer Calculations to
CERES-Observed Broadband Top-of-Atmosphere Irradiance
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID ENERGY SYSTEM INSTRUMENT; ANGULAR-DISTRIBUTION MODELS; BOUNDARY-LAYER
CLOUDS; AEROSOL RETRIEVALS; FLUX ALGORITHMS; TERRA SATELLITE; SURFACE
ALBEDO; VALIDATION; PARAMETERIZATION; METHODOLOGY
AB NASA's Clouds and the Earth's Radiant Energy System (CERES) project is responsible for operation and data processing of observations from scanning radiometers on board the Tropical Rainfall Measuring Mission (TRMM), Terra, Aqua, and Suomi National Polar-Orbiting Partnership (NPP) satellites. The clouds and radiative swath (CRS) CERES data product contains irradiances computed using a radiative transfer model for nearly all CERES footprints in addition to top-of-atmosphere (TOA) irradiances derived from observed radiances by CERES instruments. This paper describes a method to constrain computed irradiances by CERES-derived TOA irradiances using Lagrangian multipliers. Radiative transfer model inputs include profiles of atmospheric temperature, humidity, aerosols and ozone, surface temperature and albedo, and up to two sets of cloud properties for a CERES footprint. Those inputs are adjusted depending on predefined uncertainties to match computed TOA and CERES-derived TOA irradiance. Because CERES instantaneous irradiances for an individual footprint also include uncertainties, primarily due to the conversion of radiance to irradiance using anisotropic directional models, the degree of the constraint depends on CERES-derived TOA irradiance as well. As a result of adjustment, TOA computed-minus-observed standard deviations are reduced from 8 to 4 W m(-2) for longwave irradiance and from 15 to 6 W m(-2) for shortwave irradiance. While agreement of computed TOA with CERES-derived irradiances improves, comparisons with surface observations show that model constrainment to the TOA does not reduce computation bias error at the surface. After constrainment, shortwave down at the surface has an increased bias (standard deviation) of 1% (0.5%) and longwave increases by 0.2% (0.1%). Clear-sky changes are negligible.
C1 [Rose, Fred G.; Rutan, David A.; Smith, G. Louis] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Charlock, Thomas; Kato, Seiji] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23665 USA.
RP Rutan, DA (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA.
EM david.a.rutan@nasa.gov
OI Rose, Fred G/0000-0003-0769-0772
NR 52
TC 6
Z9 6
U1 1
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD JUN
PY 2013
VL 30
IS 6
BP 1091
EP 1106
DI 10.1175/JTECH-D-12-00058.1
PG 16
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA 301EF
UT WOS:000330514900005
ER
PT J
AU Meneghini, R
Liao, L
AF Meneghini, Robert
Liao, Liang
TI Modified Hitschfeld-Bordan Equations for Attenuation-Corrected Radar
Rain Reflectivity: Application to Nonuniform Beamfilling at Off-Nadir
Incidence
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID TRMM PRECIPITATION RADAR; PATH-INTEGRATED ATTENUATION; SURFACE REFERENCE
TECHNIQUE; SPACEBORNE RADAR; PROFILING ALGORITHM; SINGLE-FREQUENCY;
RETRIEVAL; AIRBORNE
AB As shown by Takahashi et al., multiple path attenuation estimates over the field of view of an airborne or spaceborne weather radar are feasible for off-nadir incidence angles. This follows from the fact that the surface reference technique, which provides path attenuation estimates, can be applied to each radar range gate that intersects the surface. This study builds on this result by showing that three of the modified Hitschfeld-Bordan estimates for the attenuation-corrected radar reflectivity factor can be generalized to the case where multiple path attenuation estimates are available, thereby providing a correction to the effects of nonuniform beamfilling. A simple simulation is presented showing some strengths and weaknesses of the approach.
C1 [Meneghini, Robert] NASA, GSFC, Greenbelt, MD 20771 USA.
[Liao, Liang] Goddard Earth Sci & Technol Ctr, Greenbelt, MD USA.
[Liao, Liang] Morgan State Univ, Greenbelt, MD USA.
RP Meneghini, R (reprint author), NASA, GSFC, Code 612, Greenbelt, MD 20771 USA.
EM robert.meneghini-1@nasa.gov
FU NASA headquarters under NASA's Precipitation Measurement Mission Program
[NNH09ZDA001N-PRECIP]
FX This work is supported by Dr. Ramesh Kakar of NASA headquarters under
NASA's Precipitation Measurement Mission Program NNH09ZDA001N-PRECIP.
NR 19
TC 7
Z9 7
U1 0
U2 1
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
EI 1520-0426
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD JUN
PY 2013
VL 30
IS 6
BP 1149
EP 1160
DI 10.1175/JTECH-D-12-00192.1
PG 12
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA 301EF
UT WOS:000330514900009
ER
PT J
AU Yu, LY
Leckey, CAC
AF Yu, Lingyu
Leckey, Cara A. C.
TI Lamb wave-based quantitative crack detection using a focusing array
algorithm
SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
LA English
DT Article
DE Focusing array imaging; crack detection; Lamb waves; finite integration;
simulation; elastodynamic finite integration technique; piezoelectric
wafer sensors
ID WAFER ACTIVE SENSORS; FINITE INTEGRATION TECHNIQUE; PLATE STRUCTURES;
DAMAGE DETECTION; TRANSDUCER ARRAYS; TIME-REVERSAL; LARGE AREAS;
INSPECTION; IDENTIFICATION; SCATTERING
AB Cracks are common defects in aluminum plate-like components that are in widespread use in aerospace, shipbuilding, and other industries. Ultrasonic detection using Lamb waves has proven to be an efficient method for crack detection and localization. However, quantitative information regarding crack size or orientation is of paramount importance for damage diagnosis and life prediction. In this article, employing a sparsely arranged piezoelectric sensor array, a quantitative crack detection and imaging approach using a Lamb wave-focusing array algorithm is developed and presented. Additionally, Lamb wave propagation on thin-wall plates and wave interaction with crack damage was studied using three-dimensional elastodynamic finite integration technique. The focusing array imaging algorithm was then developed and applied to both simulation and experimental data to generate intensity images of the structure under interrogation. Experimentally, wafer-type piezoelectric actuators/sensors are permanently installed on the testing structure to generate Lamb waves as well as to measure the waves propagating through the structures. Our results show that when applied to either experimental or simulated data, the focusing array algorithms yield images containing quantitative damage information. The results also demonstrate that three-dimensional elastodynamic finite integration technique can be used for future simulation-based investigations of sensing optimization for various damage scenarios.
C1 [Yu, Lingyu] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
[Leckey, Cara A. C.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA.
RP Yu, LY (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St,RM A111, Columbia, SC 29208 USA.
EM yu3@cec.sc.edu
FU South Carolina Research Foundation (SCRF) [SAA1-1181]; National
Aeronautics and Space Administration (NASA) Langley research center
[SAA1-1181]
FX This work was conducted in part through the non-reimbursement space act
umbrella agreement SAA1-1181 between the South Carolina Research
Foundation (SCRF) and the National Aeronautics and Space Administration
(NASA) Langley research center.
NR 49
TC 13
Z9 13
U1 2
U2 18
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1045-389X
EI 1530-8138
J9 J INTEL MAT SYST STR
JI J. Intell. Mater. Syst. Struct.
PD JUN
PY 2013
VL 24
IS 9
BP 1138
EP 1152
DI 10.1177/1045389X12469452
PG 15
WC Materials Science, Multidisciplinary
SC Materials Science
GA 298KZ
UT WOS:000330324100011
ER
PT J
AU Ivins, ER
James, TS
Wahr, J
Schrama, EJO
Landerer, FW
Simon, KM
AF Ivins, Erik R.
James, Thomas S.
Wahr, John
Schrama, Ernst J. O.
Landerer, Felix W.
Simon, Karen M.
TI Antarctic contribution to sea level rise observed by GRACE with improved
GIA correction
SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
LA English
DT Article
DE Antarctica; sea level rise; ice sheet mass balance; GRACE; GIA models;
mantle viscosity
ID GLACIAL ISOSTATIC-ADJUSTMENT; ICE-AGE EARTH; WEST ANTARCTICA; EAST
ANTARCTICA; GRAVITY-FIELD; MASS-BALANCE; DEGLACIAL HISTORY; EXPOSURE
AGES; UPLIFT RATES; SHEET
AB Antarctic volume changes during the past 21 thousand years are smaller than previously thought, and here we construct an ice sheet history that drives a forward model prediction of the glacial isostatic adjustment (GIA) gravity signal. The new model, in turn, should give predictions that are constrained with recent uplift data. The impact of the GIA signal on a Gravity Recovery and Climate Experiment (GRACE) Antarctic mass balance estimate depends on the specific GRACE analysis method used. For the method described in this paper, the GIA contribution to the apparent surface mass change is re-evaluated to be +5513 Gt/yr by considering a revised ice history model and a parameter search for vertical motion predictions that best fit the GPS observations at 18 high-quality stations. Although the GIA model spans a range of possible Earth rheological structure values, the data are not yet sufficient for solving for a preferred value of upper and lower mantle viscosity nor for a preferred lithospheric thickness. GRACE monthly solutions from the Center for Space Research Release 04 (CSR-RL04) release time series from January 2003 to the beginning of January 2012, uncorrected for GIA, yield an ice mass rate of +2.9 29 Gt/yr. The new GIA correction increases the solved-for ice mass imbalance of Antarctica to -5734 Gt/yr. The revised GIA correction is smaller than past GRACE estimates by about 50 to 90 Gt/yr. The new upper bound to the sea level rise from the Antarctic ice sheet, averaged over the time span 2003.0-2012.0, is about 0.160.09 mm/yr.
C1 [Ivins, Erik R.; Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[James, Thomas S.; Simon, Karen M.] Geol Survey Canada, Sidney, BC, Canada.
[James, Thomas S.; Simon, Karen M.] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada.
[Wahr, John] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Wahr, John] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Schrama, Ernst J. O.] Delft Univ Technol, Fac Aerosp Engn, Delft, Netherlands.
RP Ivins, ER (reprint author), CALTECH, Jet Prop Lab, MS 300-233,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM erik.r.ivins@jpl.nasa.gov
OI Landerer, Felix/0000-0003-2678-095X
FU NASA's Earth Science Division; NASA [NNX08AF02G, NNXI0AR66G]; NASA's
Making Earth Science Data Records for Use in Research Environments
(MEaSUREs) program; ArcticNet Networks of Centres of Excellence
FX The research support for E.R.I. and F.W.L. comes from NASA's Earth
Science Division with grants from both the Cryosphere Program and the
Earth Surface and Interior Focus Area as part of the GRACE Science Team
effort. The work of E.R.I. and F.W.L. was performed at the Jet
Propulsion Laboratory, California Institute of Technology. J.W. was
partially supported by NASA grants NNX08AF02G and NNXI0AR66G and by
NASA's Making Earth Science Data Records for Use in Research
Environments (MEaSUREs) program. Robert Briggs is thanked for
discussions and for providing data from his PhD Thesis. We thank Geruo A
for calculating the ICE-5G VM2 GIA responses and three anonymous
reviewers for thorough and helpful reviews. This is also a contribution
of the Climate Change Geoscience Program of the Earth Sciences Sector
(ESS) of Natural Resources Canada. T.S.J. and K.S. gratefully
acknowledge support from the ArcticNet Networks of Centres of
Excellence. The authors acknowledge Paul Wessel and the University of
Hawaii for General Mapping Tools [Wessel and Smith, 1998]. This is ESS
contribution 20120237.
NR 95
TC 53
Z9 58
U1 4
U2 36
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9313
EI 2169-9356
J9 J GEOPHYS RES-SOL EA
JI J. Geophys. Res.-Solid Earth
PD JUN
PY 2013
VL 118
IS 6
BP 3126
EP 3141
DI 10.1002/jgrb.50208
PG 16
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 295LW
UT WOS:000330118600031
ER
PT J
AU Lin, YNN
Sladen, A
Ortega-Culaciati, F
Simons, M
Avouac, JP
Fielding, EJ
Brooks, BA
Bevis, M
Genrich, J
Rietbrock, A
Vigny, C
Smalley, R
Socquet, A
AF Lin, Yu-nung Nina
Sladen, Anthony
Ortega-Culaciati, Francisco
Simons, Mark
Avouac, Jean-Philippe
Fielding, Eric J.
Brooks, Benjamin A.
Bevis, Michael
Genrich, Jeff
Rietbrock, Andreas
Vigny, Christophe
Smalley, Robert
Socquet, Anne
TI Coseismic and postseismic slip associated with the 2010 Maule
Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect
SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
LA English
DT Article
DE postseismic deformation; seismic cycle; finite fault model;
rate-and-state friction; barrier effect; Arauco Peninsula
ID SUMATRA-ANDAMAN EARTHQUAKE; TOKACHI-OKI EARTHQUAKE; INTERSEISMIC STRAIN
ACCUMULATION; SPACE-TIME DISTRIBUTION; SOUTH-CENTRAL CHILE;
SANRIKU-HARUKA-OKI; SUBDUCTION ZONE; FAULT SLIP; JAPAN TRENCH; SEISMIC
GAP
AB Observations of coseismic and postseismic deformation associated with the 2010 Mw=8.8 Maule earthquake in south-central Chile provide constraints on the spatial heterogeneities of frictional properties on a major subduction megathrust and how they have influenced the seismic rupture and postseismic effects. We find that the bulk of coseismic slip occurs within a single elongated patch approximately 460 km long and 100 km wide between the depths of 15 and 40km. We infer three major patches of afterslip: one extends northward along strike and downdip of the major coseismic patch between 40 and 60km depth; the other two bound the northern and southern ends of the coseismic patch. The southern patch offshore of the Arauco Peninsula is the only place showing resolvable afterslip shallower than 20 km depth. Estimated slip potency associated with postseismic slip in the 1.3years following the earthquake amounts to 20-30% of that generated coseismically. Our estimates of the megathrust frictional properties show that the Arauco Peninsula area has positive but relatively low (a-b)sigma(n) values (0.01 similar to 0.22MPa), that would have allowed dynamic rupture propagation into this rate-strengthening area and afterslip. Given the only modestly rate-strengthening megathrust friction in this region, the barrier effect may be attributed to its relatively large size of the rate-strengthening patch. Coseismic and postseismic uplift of the Arauco Peninsula exceeds interseismic subsidence since the time of the last major earthquake in 1835, suggesting that coseismic and postseismic deformation has resulted in some permanent strain in the forearc.
C1 [Lin, Yu-nung Nina; Ortega-Culaciati, Francisco; Simons, Mark; Avouac, Jean-Philippe; Genrich, Jeff] CALTECH, Pasadena, CA 91125 USA.
[Sladen, Anthony] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Geoazur, Valbonne, France.
[Fielding, Eric J.] Jet Prop Lab, La Canada Flintridge, CA USA.
[Brooks, Benjamin A.] Univ Hawaii, Honolulu, HI 96822 USA.
[Bevis, Michael] Ohio State Univ, Columbus, OH 43210 USA.
[Rietbrock, Andreas] Univ Liverpool, Liverpool L69 3BX, Merseyside, England.
[Vigny, Christophe] Ecole Normale Super, F-75231 Paris, France.
[Smalley, Robert] Univ Memphis, Memphis, TN 38152 USA.
[Socquet, Anne] Univ Grenoble 1, Grenoble, France.
RP Lin, YNN (reprint author), CALTECH, C100-23,1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM ninalin@gps.caltech.edu
RI Simons, Mark/N-4397-2015; Avouac, Jean-Philippe/B-5699-2015; Socquet,
Anne/A-5698-2011; Fielding, Eric/A-1288-2007; Sladen,
Anthony/A-2532-2017
OI Simons, Mark/0000-0003-1412-6395; Avouac,
Jean-Philippe/0000-0002-3060-8442; Socquet, Anne/0000-0002-9208-7136;
Fielding, Eric/0000-0002-6648-8067; Sladen, Anthony/0000-0003-4126-0020
FU NSF [EAR-1118239]; Gordon and Betty Moore Foundation [423.01]; NASA;
National Aeronautics and Space Administration; CONICYT; CNRS; ANR
[ANR-05-CATT-014]
FX We thank Matthew Pritchard, the other reviewer and the associate editor
of JGR-Solid Earth, for valuable comments and suggestions. We thank
Shengji Wei at Caltech for providing the coseismic deformation model for
the Pichilemu aftershock. We also thank Nadaya Cubas for her valuable
discussions and help in interpreting the frictional properties. ALOS
data is copyright Japanese Aerospace Exploration Agency and METI and
provided through the U.S. Government Research Consortium Data Pool at
the Alaska Satellite Facility and through the Group on Earth Observation
Geohazards Supersite. This research is co-funded by NSF grant
EAR-1118239, the Gordon and Betty Moore Foundation through Grant GBMF
#423.01 to the Caltech Tectonics Observatory, and the NASA Earth Surface
and Interior focus area and carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. Part of the cGPS data
used for this study have been acquired under the Chilean-French
international collaboration "LIA Montessus de ballore," supported by
CONICYT and CNRS; and ANR project SUBCHILE (grant #ANR-05-CATT-014).
This paper is Caltech Tectonic Observatory contribution 211 and
Seismolab contribution 10088.
NR 102
TC 37
Z9 37
U1 2
U2 31
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9313
EI 2169-9356
J9 J GEOPHYS RES-SOL EA
JI J. Geophys. Res.-Solid Earth
PD JUN
PY 2013
VL 118
IS 6
BP 3142
EP 3159
DI 10.1002/jgrb.50207
PG 18
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 295LW
UT WOS:000330118600032
ER
PT J
AU Wang, DH
Zhu, P
Yin, JF
Li, XF
Tao, WK
AF Wang, Donghai
Zhu, Ping
Yin, Jinfang
Li, Xiaofan
Tao, Wei-Kuo
TI Effects of Vertical Wind Shear, Radiation, and Ice Clouds on
Precipitation Distributions During a Landfall of Severe Tropical Storm,
Bilis (2006)
SO TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES
LA English
DT Article
DE Vertical wind shear; Radiation; Ice clouds; Rainfall; Severe
cloud-resolving model simulation
ID MICROSCALE STRUCTURE; RAINFALL PROCESSES; FRONTAL RAINBANDS; RESOLVING
MODEL; WATER; MESOSCALE; BUDGETS; HEAT; PARAMETERIZATIONS; ORGANIZATION
AB Torrential rainfall responses to vertical wind shear, radiation, and ice clouds during the landfall of severe Tropical Storm, Bilis (2006) are investigated via a rainfall partitioning analysis of grid-scale sensitivity experiment data. The rainfall data are partitioned into eight types based on surface rainfall budget. The largest contributions to total rainfall come from local atmospheric moistening, water vapor convergence, and hydrometeor loss/convergence (Type 3; 29%) when the large-scale upward motions occurred only in the upper troposphere on 15 July 2006. When the large-scale upward motion center moved to the mid troposphere on 16 July, Type 3 hydrometeor loss/convergence (26%) plus local atmospheric drying, water vapor divergence, and hydrometeor loss/convergence (Type 5; 25%) show equally important contributions to total rainfall.
The exclusion of vertical wind shear primarily reduced Type 5 rainfall because of the weakened hydrometeor loss/convergence on 16 July. The removal of cloud radiative effects enhances Type 5 rainfall due to increased local atmospheric drying and hydrometeor loss/convergence on 15 July. The elimination of ice clouds generally reduced Type 2 rainfall through the decreases in local atmospheric drying, water vapor convergence, and hydrometeor gain/divergence and Type 3 rainfall over two days.
C1 [Wang, Donghai; Yin, Jinfang] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China.
[Wang, Donghai] Sci Syst & Applicat Inc, Lanham, MD USA.
[Zhu, Ping] Florida Int Univ, Dept Earth & Environm, Miami, FL 33199 USA.
[Li, Xiaofan] NOAA, NESDIS, Ctr Satellite Applicat & Res, Camp Springs, MD USA.
[Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Wang, DH (reprint author), Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China.
EM d.wang@hotmail.com
RI Li, Xiaofan/G-2094-2014
FU State Key Basic Research Development Program [2012CB417204,
2009CB421504]; Ministry of Finance; Ministry of Science and Technology
[GYHY200806007, GYHY201006014, GYHY201206039]; National Natural Science
Foundation [40875022, 40633016, 41175064]; State Key Laboratory of
Severe Weather, Chinese Academy of Meteorological Sciences
FX The authors thank Prof. B. Jou at the National Taiwan University and an
anonymous reviewer for their constructive comments. This research is
jointly supported by the State Key Basic Research Development Program
(2012CB417204, 2009CB421504), the R&D Special Fund for Public Welfare
Industry (meteorology) by the Ministry of Finance and the Ministry of
Science and Technology (GYHY200806007, GYHY201006014 and GYHY201206039),
the National Natural Science Foundation (40875022, 40633016, and
41175064), and the Basic Research Project of the State Key Laboratory of
Severe Weather, Chinese Academy of Meteorological Sciences.
NR 32
TC 0
Z9 0
U1 0
U2 4
PU CHINESE GEOSCIENCE UNION
PI TAIPEI
PA PO BOX 23-59, TAIPEI 10764, TAIWAN
SN 1017-0839
J9 TERR ATMOS OCEAN SCI
JI Terr. Atmos. Ocean. Sci.
PD JUN
PY 2013
VL 24
IS 3
BP 383
EP 392
DI 10.3319/TAO.2013.01.11.02(A)
PG 10
WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences;
Oceanography
SC Geology; Meteorology & Atmospheric Sciences; Oceanography
GA 292ID
UT WOS:000329894500008
ER
PT J
AU Eckart, ME
Adams, JS
Bandler, SR
Busch, SE
Chervenak, JA
Ewin, AJ
Finkbeiner, FM
Kelley, RL
Kilbourne, CA
Porter, FS
Porst, JP
Sadleir, JE
Smith, SJ
Wassell, EJ
Figueroa-Feliciano, E
AF Eckart, M. E.
Adams, J. S.
Bandler, S. R
Busch, S. E.
Chervenak, J. A.
Ewin, A. J.
Finkbeiner, F. M.
Kelley, R. L.
Kilbourne, C. A.
Porter, F. S.
Porst, J.-P.
Sadleir, J. E.
Smith, S. J.
Wassell, E. J.
Figueroa-Feliciano, E.
TI Development of TES Microcalorimeter Arrays for the Micro-X Sounding
Rocket Experiment
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Astrophysics; superconducting devices; X-ray detectors
AB The Micro-X sounding rocket program will fly a 128-pixel array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of supernova remnants. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (2-4 eV at 1 keV), we have designed the pixels using 590 x 590 mu m(2) Au/Bi absorbers, which overhang 140 x 140 mu m(2) Mo/Au sensors. Here we report experimental results from flight-candidate arrays, including measurements of energy resolution, uniformity, and absorber thermalization. We describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel. In addition, we present measurements of devices that have an identical pixel architecture but were fabricated with thin (sub-micron) all-Au absorbers.
C1 [Eckart, M. E.; Adams, J. S.; Bandler, S. R; Busch, S. E.; Chervenak, J. A.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Porst, J.-P.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Eckart, M. E.; Adams, J. S.; Bandler, S. R; Smith, S. J.] Univ Maryland, CRESST, College Pk, MD 20742 USA.
[Finkbeiner, F. M.] Wyle Informat Syst, McLean, VA 22102 USA.
[Porst, J.-P.] Brown Univ, Providence, RI 02912 USA.
[Wassell, E. J.] MEI Technol Inc, Seabrook, MD 20706 USA.
[Figueroa-Feliciano, E.] MIT, Cambridge, MA 02139 USA.
RP Eckart, ME (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Megan.E.Eckart@nasa.gov
RI Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008; Porter,
Frederick/D-3501-2012
OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675;
Porter, Frederick/0000-0002-6374-1119
FU NASA Postdoctoral Program at GSFC; ORAU
FX S. E. Busch was supported in part by an appointment to the NASA
Postdoctoral Program at GSFC, administered by ORAU through a contract
with NASA.
NR 13
TC 1
Z9 1
U1 0
U2 10
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
EI 1558-2515
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2101705
DI 10.1109/TASC.2013.2244631
PN 1
PG 5
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 143KT
UT WOS:000318867100081
ER
PT J
AU Bednarcyk, BA
Yarrington, PW
Arnold, SM
AF Bednarcyk, Brett A.
Yarrington, Phillip W.
Arnold, Steven M.
TI Multiscale Fatigue Life Prediction for Composite Panels
SO CMC-COMPUTERS MATERIALS & CONTINUA
LA English
DT Article
ID HONEYCOMB SANDWICH BEAMS; STRENGTH; FOAM; CELLS
AB Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer's coupling with NASA's MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.
C1 [Bednarcyk, Brett A.; Arnold, Steven M.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Yarrington, Phillip W.] Collier Res Corp, Newport News, VA 23606 USA.
RP Bednarcyk, BA (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
FU NASA's Aviation Safety Program Integrated Vehicle Health Management
Project [NNC07CN66C]
FX The second author gratefully acknowledges funding for this work provided
by NASA's Aviation Safety Program Integrated Vehicle Health Management
Project (Contract NNC07CN66C) with Dr. Steven M. Arnold as Technical
Monitor. In addition, the authors acknowledge several helpful
communications with Dan Zenkert of Kungliga Tekniska Hogskolan,
Stockholm, Sweden, regarding the experimental data presented herein.
NR 31
TC 0
Z9 0
U1 1
U2 5
PU TECH SCIENCE PRESS
PI NORCROSS
PA 6825 JIMMY CARTER BLVD, STE 1850, NORCROSS, GA 30071 USA
SN 1546-2218
EI 1546-2226
J9 CMC-COMPUT MATER CON
JI CMC-Comput. Mat. Contin.
PD JUN
PY 2013
VL 35
IS 3
BP 229
EP 254
PG 26
WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary;
Mathematics, Interdisciplinary Applications
SC Engineering; Materials Science; Mathematics
GA 255GJ
UT WOS:000327227100003
ER
PT J
AU Hodges, J
AF Hodges, Jan
TI The Mutiny at Pisgah Forest
SO PROLOGUE-QUARTERLY OF THE NATIONAL ARCHIVES AND RECORDS ADMINISTRATION
LA English
DT Article
C1 [Hodges, Jan] Natl Archives, College Pk, MD USA.
[Hodges, Jan] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Hodges, J (reprint author), Natl Archives, College Pk, MD USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU NATL ARCHIVES RECORDS ADMINISTRATION
PI WASHINGTON
PA TRUST FUND BOARD, WASHINGTON, DC 20408 USA
SN 0033-1031
J9 PROLOGUE
JI Prologue
PD SUM
PY 2013
VL 45
IS 2
BP 28
EP 35
PG 8
WC History
SC History
GA 257BS
UT WOS:000327358900006
ER
PT J
AU Blossey, PN
Bretherton, CS
Zhang, MH
Cheng, AN
Endo, S
Heus, T
Liu, YG
Lock, AP
de Roode, SR
Xu, KM
AF Blossey, Peter N.
Bretherton, Christopher S.
Zhang, Minghua
Cheng, Anning
Endo, Satoshi
Heus, Thijs
Liu, Yangang
Lock, Adrian P.
de Roode, Stephan R.
Xu, Kuan-Man
TI Marine low cloud sensitivity to an idealized climate change: The CGILS
LES intercomparison
SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
LA English
DT Article
DE cloud feedbacks
ID LARGE-EDDY SIMULATION; BOUNDARY-LAYER CLOUDS; STRATIFORM CLOUDS;
STRATOCUMULUS; MODEL; PARAMETERIZATION; FEEDBACKS; UNCERTAINTIES;
ENTRAINMENT; FORMULATION
AB Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs) under well-mixed stratocumulus, cool SSTs under decoupled stratocumulus, and shallow cumulus clouds overlying warmer SSTs. The idealized climate change includes a uniform 2 K SST increase with corresponding moist-adiabatic warming aloft and subsidence changes, but no change in free-tropospheric relative humidity, surface wind speed, or CO2. For each case, realistic advective forcings and boundary conditions are generated for the control and perturbed states which each LES runs for 10 days into a quasi-steady state. For the control climate, the LESs correctly produce the expected cloud type at all three locations. With the perturbed forcings, all models simulate boundary-layer deepening due to reduced subsidence in the warmer climate, with less deepening at the warm-SST location due to regulation by precipitation. The models do not show a consistent response of liquid water path and albedo in the perturbed climate, though the majority predict cloud thickening (negative cloud feedback) at the cold-SST location and slight cloud thinning (positive cloud feedback) at the cool-SST and warm-SST locations. In perturbed climate simulations at the cold-SST location without the subsidence decrease, cloud albedo consistently decreases across the models. Thus, boundary-layer cloud feedback on climate change involves compensating thermodynamic and dynamic effects of warming and may interact with patterns of subsidence change.
C1 [Blossey, Peter N.; Bretherton, Christopher S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
[Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA.
[Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA.
[Endo, Satoshi; Liu, Yangang] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA.
[Heus, Thijs] Max Planck Inst Meteorol, D-20146 Hamburg, Germany.
[Lock, Adrian P.] Met Off, Fdn Sci, Exeter, Devon, England.
[de Roode, Stephan R.] Delft Univ Technol, Dept Multiscale Phys, Delft, Netherlands.
[Xu, Kuan-Man] NASA Langley Res Ctr, Sci Directorate, Hampton, VA USA.
RP Blossey, PN (reprint author), Univ Washington, Box 351640, Seattle, WA 98195 USA.
EM pblossey@uw.edu
RI Liu, Yangang/H-6154-2011; Xu, Kuan-Man/B-7557-2013; Heus,
Thijs/E-7336-2012
OI Xu, Kuan-Man/0000-0001-7851-2629; Heus, Thijs/0000-0003-2650-2423
FU Center for Multiscale Modeling and Prediction (CMMAP); NSF; European
Union Cloud Intercomparison, Process Study & Evaluation Project
(EUCLIPSE); European Union; Deutscher Wetter Dienst (DWD) through the
Hans-Ertel Centre for Weather Research; National Computing Facilities
Foundation (NCF); U.S. Department of Energy (DOE) Earth System Modeling
(ESM) program through the FASTER project; NASA Modeling and Analysis
Program (MAP); U.S. National Science Foundation
FX Blossey and Bretherton acknowledge support from the Center for
Multiscale Modeling and Prediction (CMMAP), supported by NSF. The
authors also thank Marat Khairoutdinov of Stony Brook University for his
sustained leadership in maintaining SAM, Matthew Wyant for providing
Figure 5, and Andy Ackerman for proposing the approach for computing
effective radius. De Roode is supported through the European Union Cloud
Intercomparison, Process Study & Evaluation Project (EUCLIPSE), funded
under Framework Program 7 of the European Union. Heus was funded by the
Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather
Research. The simulations with the Dutch LES model were sponsored by the
National Computing Facilities Foundation (NCF). Endo, Liu, and Zhang
were supported by the U.S. Department of Energy (DOE) Earth System
Modeling (ESM) program through the FASTER project (www.bnl.gov/esm).
Zhang was also supported by the NASA Modeling and Analysis Program (MAP)
and the U.S. National Science Foundation. The authors would also like to
thank two anonymous referees for their comments.
NR 53
TC 43
Z9 43
U1 2
U2 20
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1942-2466
J9 J ADV MODEL EARTH SY
JI J. Adv. Model. Earth Syst.
PD JUN
PY 2013
VL 5
IS 2
BP 234
EP 258
DI 10.1002/jame.20025
PG 25
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229OR
UT WOS:000325277300015
ER
PT J
AU An, D
Ramirez, SV
Sellgren, K
AF An, Deokkeun
Ramirez, Solange V.
Sellgren, Kris
TI THE GALACTIC CENTER: NOT AN ACTIVE GALACTIC NUCLEUS
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE galaxies: active; galaxies: ISM; galaxies: nuclei; galaxies: starburst;
infrared: ISM ISM: molecules; stars: formation
ID CENTER MOLECULAR CLOUDS; CENTER INTERSTELLAR-MEDIUM;
SPITZER-SPACE-TELESCOPE; NEARBY GALAXIES SURVEY; YOUNG STELLAR OBJECTS;
CENTER REGION; X-RAYS; SPECTROSCOPIC IDENTIFICATION; CHEMICAL
ABUNDANCES; STARBURST GALAXIES
AB We present 10 mu m-35 mu m Spitzer spectra of the interstellar medium in the Central Molecular Zone (CMZ), the central 210 pc x 60 pc of the Galactic center (GC). We present maps of the CMZ in ionic and H2 emission, covering a more extensive area than earlier spectroscopic surveys in this region. The radial velocities and intensities of ionic lines and H2 suggest that most of the H-2 0-0 S(0) emission comes from gas along the line-of-sight, as found by previous work. We compare diagnostic line ratios measured in the Spitzer Infrared Nearby Galaxies Survey to our data. Previous work shows that forbidden line ratios can distinguish star-forming galaxies from low-ionization nuclear emission-line regions (LINERs) and active galactic nuclei (AGNs). Our GC line ratios agree with star-forming galaxies and not with LINERs or AGNs.
C1 [An, Deokkeun] Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea.
[Ramirez, Solange V.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Sellgren, Kris] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
RP An, D (reprint author), Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea.
EM deokkeun@ewha.ac.kr
NR 60
TC 2
Z9 2
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUN
PY 2013
VL 206
IS 2
AR UNSP 20
DI 10.1088/0067-0049/206/2/20
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 234OX
UT WOS:000325654800011
ER
PT J
AU Galametz, A
Grazian, A
Fontana, A
Ferguson, HC
Ashby, MLN
Barro, G
Castellano, M
Dahlen, T
Donley, JL
Faber, SM
Grogin, N
Guo, Y
Huang, KH
Kocevski, DD
Koekemoer, AM
Lee, KS
McGrath, EJ
Peth, M
Willner, SP
Almaini, O
Cooper, M
Cooray, A
Conselice, CJ
Dickinson, M
Dunlop, JS
Fazio, GG
Foucaud, S
Gardner, JP
Giavalisco, M
Hathi, NP
Hartley, WG
Koo, DC
Lai, K
de Mello, DF
McLure, RJ
Lucas, RA
Paris, D
Pentericci, L
Santini, P
Simpson, C
Sommariva, V
Targett, T
Weiner, BJ
Wuyts, S
AF Galametz, Audrey
Grazian, Andrea
Fontana, Adriano
Ferguson, Henry C.
Ashby, M. L. N.
Barro, Guillermo
Castellano, Marco
Dahlen, Tomas
Donley, Jennifer L.
Faber, Sandy M.
Grogin, Norman
Guo, Yicheng
Huang, Kuang-Han
Kocevski, Dale D.
Koekemoer, Anton M.
Lee, Kyoung-Soo
McGrath, Elizabeth J.
Peth, Michael
Willner, S. P.
Almaini, Omar
Cooper, Michael
Cooray, Asantha
Conselice, Christopher J.
Dickinson, Mark
Dunlop, James S.
Fazio, G. G.
Foucaud, Sebastien
Gardner, Jonathan P.
Giavalisco, Mauro
Hathi, N. P.
Hartley, Will G.
Koo, David C.
Lai, Kamson
de Mello, Duilia F.
McLure, Ross J.
Lucas, Ray A.
Paris, Diego
Pentericci, Laura
Santini, Paola
Simpson, Chris
Sommariva, Veronica
Targett, Thomas
Weiner, Benjamin J.
Wuyts, Stijn
CA CANDELS Team
TI CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY
IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE galaxies: photometry; methods: data analysis; techniques: image
processing
ID EXTRAGALACTIC LEGACY SURVEY; GALAXY LUMINOSITY FUNCTION;
SPITZER-SPACE-TELESCOPE; ACTIVE GALACTIC NUCLEI; EARLY DATA RELEASE;
IMAGE SUBTRACTION; EVOLUTION SURVEY; SURVEY SXDS; SELECTION; CLUSTER
AB We present the multiwavelength-ultraviolet to mid-infrared-catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data); u-band data from CFHT/Megacam; B, V, R-c, i', and z' band data from Subaru/Suprime-Cam; Y and K-s band data from VLT/HAWK-I; J, H, and K band data from UKIDSS (Data Release 8); and Spitzer/IRAC data (3.6, 4.5 mu m from SEDS; 5.8 and 8.0 mu m from SpUDS). The present catalog is F160W-selected and contains 35, 932 sources over an area of 201.7 arcmin(2) and includes radio-and X-ray-detected sources and spectroscopic redshifts available for 210 sources.
C1 [Galametz, Audrey; Grazian, Andrea; Fontana, Adriano; Castellano, Marco; Paris, Diego; Pentericci, Laura; Santini, Paola; Sommariva, Veronica] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy.
[Ferguson, Henry C.; Dahlen, Tomas; Grogin, Norman; Huang, Kuang-Han; Koekemoer, Anton M.; Lai, Kamson; Lucas, Ray A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Barro, Guillermo; Faber, Sandy M.; Guo, Yicheng; Koo, David C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA.
[Donley, Jennifer L.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Guo, Yicheng; Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA.
[Huang, Kuang-Han; Peth, Michael] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Kocevski, Dale D.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
[Lee, Kyoung-Soo] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[McGrath, Elizabeth J.] Colby Coll, Dept Phys & Astron, Waterville, ME 04901 USA.
[Almaini, Omar; Conselice, Christopher J.; Hartley, Will G.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Cooper, Michael; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85726 USA.
[Dunlop, James S.; McLure, Ross J.; Targett, Thomas] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh, Midlothian, Scotland.
[Foucaud, Sebastien] Natl Taiwan Normal Univ, Taipei, Taiwan.
[Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
[Hathi, N. P.] Observ Carnegie Inst Sci, Pasadena, CA USA.
[de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[Simpson, Chris] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead, Merseyside, England.
[Weiner, Benjamin J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Wuyts, Stijn] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany.
RP Galametz, A (reprint author), INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy.
EM audrey.galametz@oa-roma.inaf.it
RI Hathi, Nimish/J-7092-2014;
OI Hathi, Nimish/0000-0001-6145-5090; Castellano,
Marco/0000-0001-9875-8263; Weiner, Benjamin/0000-0001-6065-7483;
Santini, Paola/0000-0002-9334-8705; Koekemoer,
Anton/0000-0002-6610-2048; fontana, adriano/0000-0003-3820-2823
NR 54
TC 73
Z9 73
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUN
PY 2013
VL 206
IS 2
AR UNSP 10
DI 10.1088/0067-0049/206/2/10
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 234OX
UT WOS:000325654800001
ER
PT J
AU Seader, S
Tenenbaum, P
Jenkins, JM
Burke, CJ
AF Seader, Shawn
Tenenbaum, Peter
Jenkins, Jon M.
Burke, Christopher J.
TI chi(2) DISCRIMINATORS FOR TRANSITING PLANET DETECTION IN KEPLER DATA
SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
LA English
DT Article
DE methods: statistical
ID ERROR-CORRECTION; LIGHT CURVES; SCIENCE
AB The Kepler spacecraft observes a host of target stars to detect transiting planets. Requiring a 7.1s detection in three years of data yields over 100,000 detections, many of which are false alarms. After a second cut is made on a robust detection statistic, some 50,000 or more targets still remain. These false alarms waste resources as they propagate through the remainder of the software pipeline and so a method to discriminate against them is crucial in maintaining the desired sensitivity to true events. This paper describes a.2 test which represents a novel application of an existing formalism developed for false alarm mitigation in searches for gravitational waves. Using this technique, the false alarm rate can be lowered to similar to 5%.
C1 [Seader, Shawn; Tenenbaum, Peter; Jenkins, Jon M.; Burke, Christopher J.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA.
RP Seader, S (reprint author), NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA.
EM shawn.seader@nasa.gov; peter.tenenbaum@nasa.gov; jon.jenkins@nasa.gov;
christopher.j.burke@nasa.gov
FU NASA's Science Mission Directorate
FX The author thanks Bruce Allen for the original work on this subject on
whichmost of this work is based. Kepler was selected as the 10th mission
of NASA's Discovery Program. Funding for this work is provided by NASA's
Science Mission Directorate.
NR 18
TC 12
Z9 12
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0067-0049
EI 1538-4365
J9 ASTROPHYS J SUPPL S
JI Astrophys. J. Suppl. Ser.
PD JUN
PY 2013
VL 206
IS 2
AR UNSP 25
DI 10.1088/0067-0049/206/2/25
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 234OX
UT WOS:000325654800016
ER
PT J
AU Adrian-Martinez, S
Al Samarai, I
Albert, A
Andre, M
Anghinolfi, M
Anton, G
Anvar, S
Ardid, M
Astraatmadja, T
Aubert, JJ
Baret, B
Basa, S
Bertin, V
Biagi, S
Bigongiari, C
Bogazzi, C
Bou-Cabo, M
Bouhou, B
Bouwhuis, MC
Brunner, J
Busto, J
Capone, A
Arloganu, CC
Carr, J
Cecchini, S
Charif, Z
Charvis, P
Chiarusi, T
Circella, M
Coniglione, R
Core, L
Costantini, H
Coyle, P
Creusot, A
Curtil, C
De Bonis, G
Decowski, MP
Dekeyser, I
Deschamps, A
Distefano, C
Donzaud, C
Dornic, D
Dorosti, Q
Drouhin, D
Eberl, T
Emanuele, U
Enzenhofer, A
Ernenwein, JP
Escoffier, S
Fehn, K
Fermani, P
Ferri, M
Ferry, S
Flaminio, V
Folger, F
Fritsch, U
Fuda, JL
Galata, S
Gay, P
Geyer, K
Giacomelli, G
Giordano, V
Gomez-Gonzalez, JP
Graf, K
Guillard, G
Hallewell, G
Hamal, M
van Haren, H
Heijboer, AJ
Hello, Y
Hernandez-Rey, JJ
Herold, B
Hossl, J
Hsu, CC
de Jong, M
Kadler, M
Kalekin, O
Kappes, A
Katz, U
Kavatsyuk, O
Kooijman, P
Kopper, C
Kouchner, A
Kreykenbohm, I
Kulikovskiy, V
Lahmann, R
Lambard, G
Larosa, G
Lattuada, D
Lefevre, D
Lim, G
Lo Presti, D
Loehner, H
Loucatos, S
Louis, F
Mangano, S
Marcelin, M
Margiotta, A
Martinez-Mora, JA
Martini, S
Meli, A
Montaruli, T
Morganti, M
Moscoso, L
Motz, H
Neff, M
Nezri, E
Palioselitis, D
Pavalas, GE
Payet, K
Petrovic, J
Piattelli, P
Popa, V
Pradier, T
Presani, E
Racca, C
Reed, C
Riccobene, G
Richardt, C
Richter, R
Riviere, C
Robert, A
Roensch, K
Rostovtsev, A
Ruiz-Rivas, J
Rujoiu, M
Russo, GV
Samtleben, DFE
Sanchez-Losa, A
Sapienza, P
Schmid, J
Schnabel, J
Schock, F
Schuller, JP
Schussler, F
Seitz, T
Shanidze, R
Simeone, F
Spies, A
Spurio, M
Steijger, JJM
Stolarczyk, T
Taiuti, M
Tamburini, C
Trovato, A
Vallage, B
Vallee, C
Van Elewyck, V
Vecchi, M
Vernin, P
Visser, E
Wagner, S
Wijnker, G
Wilms, J
de Wolf, E
Yepes, H
Zaborov, D
Zornoza, JD
Zuniga, J
Aasi, J
Abadie, J
Abbott, BP
Abbott, R
Abbott, TD
Abernathy, M
Accadia, T
Acernese, F
Adams, C
Adams, T
Addesso, P
Adhikari, R
Affeldt, C
Agathos, M
Agatsuma, K
Ajith, P
Allen, B
Allocca, A
Ceron, EA
Amariutei, D
Anderson, SB
Anderson, WG
Arai, K
Araya, MC
Ast, S
Aston, SM
Astone, P
Atkinson, D
Aufmuth, P
Aulbert, C
Aylott, BE
Babak, S
Baker, P
Ballardin, G
Ballmer, S
Bao, Y
Barayoga, JCB
Barker, D
Barone, F
Barr, B
Barsotti, L
Barsuglia, M
Barton, MA
Bartos, I
Bassiri, R
Bastarrika, M
Basti, A
Batch, J
Bauchrowitz, J
Bauer, TS
Bebronne, M
Beck, D
Behnke, B
Bejger, M
Beker, MG
Bell, AS
Bell, C
Belopolski, I
Benacquista, M
Berliner, JM
Bertolini, A
Betzwieser, J
Beveridge, N
Beyersdorf, PT
Bhadbade, T
Bilenko, IA
Billingsley, G
Birch, J
Biswas, R
Bitossi, M
Bizouard, MA
Black, E
Blackburn, JK
Blackburn, L
Blair, D
Bland, B
Blom, M
Bock, O
Bodiya, TP
Bogan, C
Bond, C
Bondarescu, R
Bondu, F
Bonelli, L
Bonnand, R
Bork, R
Born, M
Boschi, V
Bose, S
Bosi, L
Braccini, S
Bradaschia, C
Brady, PR
Braginsky, VB
Branchesi, M
Brau, JE
Breyer, J
Briant, T
Bridges, DO
Brillet, A
Brinkmann, M
Brisson, V
Britzger, M
Brooks, AF
Brown, DA
Bulik, T
Bulten, HJ
Buonanno, A
Burguet-Castell, J
Buskulic, D
Buy, C
Byer, RL
Cadonati, L
Cagnoli, G
Calloni, E
Camp, JB
Campsie, P
Cannon, K
Canuel, B
Cao, J
Capano, CD
Carbognani, F
Carbone, L
Caride, S
Caudill, S
Cavaglia, M
Cavalier, F
Cavalieri, R
Cella, G
Cepeda, C
Cesarini, E
Chalermsongsak, T
Charlton, P
Chassande-Mottin, E
Chen, W
Chen, X
Chen, Y
Chincarini, A
Chiummo, A
Cho, HS
Chow, J
Christensen, N
Chua, SSY
Chung, CTY
Chung, S
Ciani, G
Clara, F
Clark, DE
Clark, JA
Clayton, JH
Cleva, F
Coccia, E
Cohadon, PF
Colacino, CN
Colla, A
Colombini, M
Conte, A
Conte, R
Cook, D
Corbitt, TR
Cordier, M
Cornish, N
Corsi, A
Costa, CA
Coughlin, M
Coulon, JP
Couvares, P
Coward, DM
Cowart, M
Coyne, DC
Creighton, JDE
Creighton, TD
Cruise, AM
Cumming, A
Cunningham, L
Cuoco, E
Cutler, RM
Dahl, K
Damjanic, M
Danilishin, SL
D'Antonio, S
Danzmann, K
Dattilo, V
Daudert, B
Daveloza, H
Davier, M
Daw, EJ
Day, R
Dayanga, T
De Rosa, R
Debra, D
Debreczeni, G
Degallaix, J
Del Pozzo, W
Dent, T
Dergachev, V
DeRosa, R
Dhurandhar, S
Di Fiore, L
Di Lieto, A
Di Palma, I
Emilio, MD
Di Virgilio, A
Diaz, M
Dietz, A
Donovan, F
Dooley, KL
Doravari, S
Dorsher, S
Drago, M
Drever, RWP
Driggers, JC
Du, Z
Dumas, JC
Dwyer, S
Eberle, T
Edgar, M
Edwards, M
Effler, A
Ehrens, P
Endroczi, G
Engel, R
Etzel, T
Evans, K
Evans, M
Evans, T
Factourovich, M
Fafone, V
Fairhurst, S
Farr, BF
Favata, M
Fazi, D
Fehrmann, H
Feldbaum, D
Ferrante, I
Ferrini, F
Fidecaro, F
Finn, LS
Fiori, I
Fisher, RP
Flaminio, R
Foley, S
Forsi, E
Forte, LA
Fotopoulos, N
Fournier, JD
Franc, J
Franco, S
Frasca, S
Frasconi, F
Frede, M
Frei, MA
Frei, Z
Freise, A
Frey, R
Fricke, TT
Friedrich, D
Fritschel, P
Frolov, VV
Fujimoto, MK
Fulda, PJ
Fyffe, M
Gair, J
Galimberti, M
Gammaitoni, L
Garcia, J
Garufi, F
Gaspar, ME
Gelencser, G
Gemme, G
Genin, E
Gennai, A
Gergely, LA
Ghosh, S
Giaime, JA
Giampanis, S
Giardina, KD
Giazotto, A
Gil-Casanova, S
Gill, C
Gleason, J
Goetz, E
Gonzalez, G
Gorodetsky, ML
Gossler, S
Gouaty, R
Graef, C
Graff, PB
Granata, M
Grant, A
Gray, C
Greenhalgh, RJS
Gretarsson, AM
Griffo, C
Grote, H
Grover, K
Grunewald, S
Guidi, GM
Guido, C
Gupta, R
Gustafson, EK
Gustafson, R
Hallam, JM
Hammer, D
Hammond, G
Hanks, J
Hanna, C
Hanson, J
Harms, J
Harry, GM
Harry, IW
Harstad, ED
Hartman, MT
Haughian, K
Hayama, K
Hayau, JF
Heefner, J
Heidmann, A
Heintze, MC
Heitmann, H
Hello, P
Hemming, G
Hendry, MA
Heng, IS
Heptonstall, AW
Herrera, V
Heurs, M
Hewitson, M
Hild, S
Hoak, D
Hodge, KA
Holt, K
Holtrop, M
Hong, T
Hooper, S
Hough, J
Howell, EJ
Hughey, B
Husa, S
Huttner, SH
Huynh-Dinh, T
Ingram, DR
Inta, R
Isogai, T
Ivanov, A
Izumi, K
Jacobson, M
James, E
Jang, YJ
Jaranowski, P
Jesse, E
Johnson, WW
Jones, DI
Jones, R
Jonker, RJG
Ju, L
Kalmus, P
Kalogera, V
Kandhasamy, S
Kang, G
Kanner, JB
Kasprzack, M
Kasturi, R
Katsavounidis, E
Katzman, W
Kaufer, H
Kaufman, K
Kawabe, K
Kawamura, S
Kawazoe, F
Keitel, D
Kelley, D
Kells, W
Keppel, DG
Keresztes, Z
Khalaidovski, A
Khalili, FY
Khazanov, EA
Kim, BK
Kim, C
Kim, H
Kim, K
Kim, N
Kim, YM
King, PJ
Kinzel, DL
Kissel, JS
Klimenko, S
Kline, J
Kokeyama, K
Kondrashov, V
Koranda, S
Korth, WZ
Kowalska, I
Kozak, D
Kringel, V
Krishnan, B
Krolak, A
Kuehn, G
Kumar, P
Kumar, R
Kurdyumov, R
Kwee, P
Lam, PK
Landry, M
Langley, A
Lantz, B
Lastzka, N
Lawrie, C
Lazzarini, A
Le Roux, A
Leaci, P
Lee, CH
Lee, HK
Lee, HM
Leong, JR
Leonor, I
Leroy, N
Letendre, N
Lhuillier, V
Li, J
Li, TGF
Lindquist, PE
Litvine, V
Liu, Y
Liu, Z
Lockerbie, NA
Lodhia, D
Logue, J
Lorenzini, M
Loriette, V
Lormand, M
Losurdo, G
Lough, J
Lubinski, M
Lueck, H
Lundgren, AP
Macarthur, J
Macdonald, E
Machenschalk, B
MacInnis, M
Macleod, DM
Mageswaran, M
Mailand, K
Majorana, E
Maksimovic, I
Malvezzi, V
Man, N
Mandel, I
Mandic, V
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Markosyan, A
Maros, E
Marque, J
Martelli, F
Martin, IW
Martin, RM
Marx, JN
Mason, K
Masserot, A
Matichard, F
Matone, L
Matzner, RA
Mavalvala, N
Mazzolo, G
McCarthy, R
McClelland, DE
McGuire, SC
McIntyre, G
McIver, J
Meadors, GD
Mehmet, M
Meier, T
Melatos, A
Melissinos, AC
Mendell, G
Menendez, DF
Mercer, RA
Meshkov, S
Messenger, C
Meyer, MS
Miao, H
Michel, C
Milano, L
Miller, J
Minenkov, Y
Mingarelli, CMF
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moe, B
Mohan, M
Mohapatra, SRP
Moraru, D
Moreno, G
Morgado, N
Morgia, A
Mori, T
Morriss, SR
Mosca, S
Mossavi, K
Mours, B
Mow-Lowry, CM
Mueller, CL
Mueller, G
Mukherjee, S
Mullavey, A
Muller-Ebhardt, H
Munch, J
Murphy, D
Murray, PG
Mytidis, A
Nash, T
Naticchioni, L
Necula, V
Nelson, J
Neri, I
Newton, G
Nguyen, T
Nishizawa, A
Nitz, A
Nocera, F
Nolting, D
Normandin, ME
Nuttall, L
Ochsner, E
O'Dell, J
Oelker, E
Ogin, GH
Oh, JJ
Oh, SH
Oldenberg, RG
O'Reilly, B
O'Shaughnessy, R
Osthelder, C
Ott, CD
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Page, A
Palladino, L
Palomba, C
Pan, Y
Pankow, C
Paoletti, F
Paoletti, R
Papa, MA
Parisi, M
Pasqualetti, A
Passaquieti, R
Passuello, D
Pedraza, M
Penn, S
Perreca, A
Persichetti, G
Phelps, M
Pichot, M
Pickenpack, M
Piergiovanni, F
Pierro, V
Pihlaja, M
Pinard, L
Pinto, IM
Pitkin, M
Pletsch, HJ
Plissi, MV
Poggiani, R
Pold, J
Postiglione, F
Poux, C
Prato, M
Predoi, V
Prestegard, T
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prix, R
Prodi, GA
Prokhorov, LG
Puncken, O
Punturo, M
Puppo, P
Quetschke, V
Quitzow-James, R
Raab, FJ
Rabeling, DS
Racz, I
Radkins, H
Raffai, P
Rakhmanov, M
Ramet, C
Rankins, B
Rapagnani, P
Raymond, V
Re, V
Reed, CM
Reed, T
Regimbau, T
Reid, S
Reitze, DH
Ricci, F
Riesen, R
Riles, K
Roberts, M
Robertson, NA
Robinet, F
Robinson, C
Robinson, EL
Rocchi, A
Roddy, S
Rodriguez, C
Rodruck, M
Rolland, L
Rollins, JG
Romano, JD
Romano, R
Romie, JH
Rosinska, D
Rover, C
Rowan, S
Rudiger, A
Ruggi, P
Ryan, K
Salemi, F
Sammut, L
Sandberg, V
Sankar, S
Sannibale, V
Santamaria, L
Santiago-Prieto, I
Santostasi, G
Saracco, E
Sassolas, B
Sathyaprakash, BS
Saulson, PR
Savage, RL
Schilling, R
Schnabel, R
Schofield, RMS
Schulz, B
Schutz, BF
Schwinberg, P
Scott, J
Scott, SM
Seifert, F
Sellers, D
Sentenac, D
Sergeev, A
Shaddock, DA
Shaltev, M
Shapiro, B
Shawhan, P
Shoemaker, DH
Sidery, TL
Siemens, X
Sigg, D
Simakov, D
Singer, A
Singer, L
Sintes, AM
Skelton, GR
Slagmolen, BJJ
Slutsky, J
Smith, JR
Smith, MR
Smith, RJE
Smith-Lefebvre, ND
Somiya, K
Sorazu, B
Speirits, FC
Sperandio, L
Stefszky, M
Steinert, E
Steinlechner, J
Steinlechner, S
Steplewski, S
Stochino, A
Stone, R
Strain, KA
Strigin, SE
Stroeer, AS
Sturani, R
Stuver, AL
Summerscales, TZ
Sung, M
Susmithan, S
Sutton, PJ
Swinkels, B
Szeifert, G
Tacca, M
Taffarello, L
Talukder, D
Tanner, DB
Tarabrin, SP
Taylor, R
ter Braack, APM
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Thuring, A
Titsler, C
Tokmakov, KV
Tomlinson, C
Toncelli, A
Tonelli, M
Torre, O
Torres, CV
Torrie, CI
Tournefier, E
Travasso, F
Traylor, G
Tse, M
Ugolini, D
Vahlbruch, H
Vajente, G
van den Brand, JFJ
Van den Broeck, C
van der Putten, S
van Veggel, AA
Vass, S
Vasuth, M
Vaulin, R
Vavoulidis, M
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Venkateswara, K
Verkindt, D
Vetrano, F
Vicere, A
Villar, AE
Vinet, JY
Vitale, S
Vocca, H
Vorvick, C
Vyatchanin, SP
Wade, A
Wade, L
Wade, M
Waldman, SJ
Wallace, L
Wan, Y
Wang, M
Wang, X
Wanner, A
Ward, RL
Was, M
Weinert, M
Weinstein, AJ
Weiss, R
Welborn, T
Wen, L
Wessels, P
West, M
Westphal, T
Wette, K
Whelan, JT
Whitcomb, SE
White, DJ
Whiting, BF
Wiesner, K
Wilkinson, C
Willems, PA
Williams, L
Williams, R
Willke, B
Wimmer, M
Winkelmann, L
Winkler, W
Wipf, CC
Wiseman, AG
Wittel, H
Woan, G
Wooley, R
Worden, J
Yablon, J
Yakushin, I
Yamamoto, H
Yamamoto, K
Yancey, CC
Yang, H
Yeaton-Massey, D
Yoshida, S
Yvert, M
Zadrozny, A
Zanolin, M
Zendri, JP
Zhang, F
Zhang, L
Zhao, C
Zotov, N
Zucker, ME
Zweizig, J
AF Adrian-Martinez, S.
Al Samarai, I.
Albert, A.
Andre, M.
Anghinolfi, M.
Anton, G.
Anvar, S.
Ardid, M.
Astraatmadja, T.
Aubert, J-J.
Baret, B.
Basa, S.
Bertin, V.
Biagi, S.
Bigongiari, C.
Bogazzi, C.
Bou-Cabo, M.
Bouhou, B.
Bouwhuis, M. C.
Brunner, J.
Busto, J.
Capone, A.
Arloganu, C. C.
Carr, J.
Cecchini, S.
Charif, Z.
Charvis, Ph.
Chiarusi, T.
Circella, M.
Coniglione, R.
Core, L.
Costantini, H.
Coyle, P.
Creusot, A.
Curtil, C.
De Bonis, G.
Decowski, M. P.
Dekeyser, I.
Deschamps, A.
Distefano, C.
Donzaud, C.
Dornic, D.
Dorosti, Q.
Drouhin, D.
Eberl, T.
Emanuele, U.
Enzenhoefer, A.
Ernenwein, J-P.
Escoffier, S.
Fehn, K.
Fermani, P.
Ferri, M.
Ferry, S.
Flaminio, V.
Folger, F.
Fritsch, U.
Fuda, J-L.
Galata, S.
Gay, P.
Geyer, K.
Giacomelli, G.
Giordano, V.
Gomez-Gonzalez, J. P.
Graf, K.
Guillard, G.
Hallewell, G.
Hamal, M.
van Haren, H.
Heijboer, A. J.
Hello, Y.
Hernandez-Rey, J. J.
Herold, B.
Hoessl, J.
Hsu, C. C.
de Jong, M.
Kadler, M.
Kalekin, O.
Kappes, A.
Katz, U.
Kavatsyuk, O.
Kooijman, P.
Kopper, C.
Kouchner, A.
Kreykenbohm, I.
Kulikovskiy, V.
Lahmann, R.
Lambard, G.
Larosa, G.
Lattuada, D.
Lefevre, D.
Lim, G.
Lo Presti, D.
Loehner, H.
Loucatos, S.
Louis, F.
Mangano, S.
Marcelin, M.
Margiotta, A.
Martinez-Mora, J. A.
Martini, S.
Meli, A.
Montaruli, T.
Morganti, M.
Moscoso, L.
Motz, H.
Neff, M.
Nezri, E.
Palioselitis, D.
Pavalas, G. E.
Payet, K.
Petrovic, J.
Piattelli, P.
Popa, V.
Pradier, T.
Presani, E.
Racca, C.
Reed, C.
Riccobene, G.
Richardt, C.
Richter, R.
Riviere, C.
Robert, A.
Roensch, K.
Rostovtsev, A.
Ruiz-Rivas, J.
Rujoiu, M.
Russo, G. V.
Samtleben, D. F. E.
Sanchez-Losa, A.
Sapienza, P.
Schmid, J.
Schnabel, J.
Schoeck, F.
Schuller, J-P.
Schuessler, F.
Seitz, T.
Shanidze, R.
Simeone, F.
Spies, A.
Spurio, M.
Steijger, J. J. M.
Stolarczyk, Th.
Taiuti, M.
Tamburini, C.
Trovato, A.
Vallage, B.
Vallee, C.
Van Elewyck, V.
Vecchi, M.
Vernin, P.
Visser, E.
Wagner, S.
Wijnker, G.
Wilms, J.
de Wolf, E.
Yepes, H.
Zaborov, D.
Zornoza, J. D.
Zuniga, J.
Aasi, J.
Abadie, J.
Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M.
Accadia, T.
Acernese, F.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Ajith, P.
Allen, B.
Allocca, A.
Ceron, E. Amador
Amariutei, D.
Anderson, S. B.
Anderson, W. G.
Arai, K.
Araya, M. C.
Ast, S.
Aston, S. M.
Astone, P.
Atkinson, D.
Aufmuth, P.
Aulbert, C.
Aylott, B. E.
Babak, S.
Baker, P.
Ballardin, G.
Ballmer, S.
Bao, Y.
Barayoga, J. C. B.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Barton, M. A.
Bartos, I.
Bassiri, R.
Bastarrika, M.
Basti, A.
Batch, J.
Bauchrowitz, J.
Bauer, Th. S.
Bebronne, M.
Beck, D.
Behnke, B.
Bejger, M.
Beker, M. G.
Bell, A. S.
Bell, C.
Belopolski, I.
Benacquista, M.
Berliner, J. M.
Bertolini, A.
Betzwieser, J.
Beveridge, N.
Beyersdorf, P. T.
Bhadbade, T.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Biswas, R.
Bitossi, M.
Bizouard, M. A.
Black, E.
Blackburn, J. K.
Blackburn, L.
Blair, D.
Bland, B.
Blom, M.
Bock, O.
Bodiya, T. P.
Bogan, C.
Bond, C.
Bondarescu, R.
Bondu, F.
Bonelli, L.
Bonnand, R.
Bork, R.
Born, M.
Boschi, V.
Bose, S.
Bosi, L.
Braccini, S.
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Branchesi, M.
Brau, J. E.
Breyer, J.
Briant, T.
Bridges, D. O.
Brillet, A.
Brinkmann, M.
Brisson, V.
Britzger, M.
Brooks, A. F.
Brown, D. A.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Burguet-Castell, J.
Buskulic, D.
Buy, C.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Calloni, E.
Camp, J. B.
Campsie, P.
Cannon, K.
Canuel, B.
Cao, J.
Capano, C. D.
Carbognani, F.
Carbone, L.
Caride, S.
Caudill, S.
Cavaglia, M.
Cavalier, F.
Cavalieri, R.
Cella, G.
Cepeda, C.
Cesarini, E.
Chalermsongsak, T.
Charlton, P.
Chassande-Mottin, E.
Chen, W.
Chen, X.
Chen, Y.
Chincarini, A.
Chiummo, A.
Cho, H. S.
Chow, J.
Christensen, N.
Chua, S. S. Y.
Chung, C. T. Y.
Chung, S.
Ciani, G.
Clara, F.
Clark, D. E.
Clark, J. A.
Clayton, J. H.
Cleva, F.
Coccia, E.
Cohadon, P. -F.
Colacino, C. N.
Colla, A.
Colombini, M.
Conte, A.
Conte, R.
Cook, D.
Corbitt, T. R.
Cordier, M.
Cornish, N.
Corsi, A.
Costa, C. A.
Coughlin, M.
Coulon, J. -P.
Couvares, P.
Coward, D. M.
Cowart, M.
Coyne, D. C.
Creighton, J. D. E.
Creighton, T. D.
Cruise, A. M.
Cumming, A.
Cunningham, L.
Cuoco, E.
Cutler, R. M.
Dahl, K.
Damjanic, M.
Danilishin, S. L.
D'Antonio, S.
Danzmann, K.
Dattilo, V.
Daudert, B.
Daveloza, H.
Davier, M.
Daw, E. J.
Day, R.
Dayanga, T.
De Rosa, R.
Debra, D.
Debreczeni, G.
Degallaix, J.
Del Pozzo, W.
Dent, T.
Dergachev, V.
DeRosa, R.
Dhurandhar, S.
Di Fiore, L.
Di Lieto, A.
Di Palma, I.
Emilio, M. Di Paolo
Di Virgilio, A.
Diaz, M.
Dietz, A.
Donovan, F.
Dooley, K. L.
Doravari, S.
Dorsher, S.
Drago, M.
Drever, R. W. P.
Driggers, J. C.
Du, Z.
Dumas, J. -C.
Dwyer, S.
Eberle, T.
Edgar, M.
Edwards, M.
Effler, A.
Ehrens, P.
Endroczi, G.
Engel, R.
Etzel, T.
Evans, K.
Evans, M.
Evans, T.
Factourovich, M.
Fafone, V.
Fairhurst, S.
Farr, B. F.
Favata, M.
Fazi, D.
Fehrmann, H.
Feldbaum, D.
Ferrante, I.
Ferrini, F.
Fidecaro, F.
Finn, L. S.
Fiori, I.
Fisher, R. P.
Flaminio, R.
Foley, S.
Forsi, E.
Forte, L. A.
Fotopoulos, N.
Fournier, J. -D.
Franc, J.
Franco, S.
Frasca, S.
Frasconi, F.
Frede, M.
Frei, M. A.
Frei, Z.
Freise, A.
Frey, R.
Fricke, T. T.
Friedrich, D.
Fritschel, P.
Frolov, V. V.
Fujimoto, M. -K.
Fulda, P. J.
Fyffe, M.
Gair, J.
Galimberti, M.
Gammaitoni, L.
Garcia, J.
Garufi, F.
Gaspar, M. E.
Gelencser, G.
Gemme, G.
Genin, E.
Gennai, A.
Gergely, L. A.
Ghosh, S.
Giaime, J. A.
Giampanis, S.
Giardina, K. D.
Giazotto, A.
Gil-Casanova, S.
Gill, C.
Gleason, J.
Goetz, E.
Gonzalez, G.
Gorodetsky, M. L.
Gossler, S.
Gouaty, R.
Graef, C.
Graff, P. B.
Granata, M.
Grant, A.
Gray, C.
Greenhalgh, R. J. S.
Gretarsson, A. M.
Griffo, C.
Grote, H.
Grover, K.
Grunewald, S.
Guidi, G. M.
Guido, C.
Gupta, R.
Gustafson, E. K.
Gustafson, R.
Hallam, J. M.
Hammer, D.
Hammond, G.
Hanks, J.
Hanna, C.
Hanson, J.
Harms, J.
Harry, G. M.
Harry, I. W.
Harstad, E. D.
Hartman, M. T.
Haughian, K.
Hayama, K.
Hayau, J. -F.
Heefner, J.
Heidmann, A.
Heintze, M. C.
Heitmann, H.
Hello, P.
Hemming, G.
Hendry, M. A.
Heng, I. S.
Heptonstall, A. W.
Herrera, V.
Heurs, M.
Hewitson, M.
Hild, S.
Hoak, D.
Hodge, K. A.
Holt, K.
Holtrop, M.
Hong, T.
Hooper, S.
Hough, J.
Howell, E. J.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh-Dinh, T.
Ingram, D. R.
Inta, R.
Isogai, T.
Ivanov, A.
Izumi, K.
Jacobson, M.
James, E.
Jang, Y. J.
Jaranowski, P.
Jesse, E.
Johnson, W. W.
Jones, D. I.
Jones, R.
Jonker, R. J. G.
Ju, L.
Kalmus, P.
Kalogera, V.
Kandhasamy, S.
Kang, G.
Kanner, J. B.
Kasprzack, M.
Kasturi, R.
Katsavounidis, E.
Katzman, W.
Kaufer, H.
Kaufman, K.
Kawabe, K.
Kawamura, S.
Kawazoe, F.
Keitel, D.
Kelley, D.
Kells, W.
Keppel, D. G.
Keresztes, Z.
Khalaidovski, A.
Khalili, F. Y.
Khazanov, E. A.
Kim, B. K.
Kim, C.
Kim, H.
Kim, K.
Kim, N.
Kim, Y. M.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Klimenko, S.
Kline, J.
Kokeyama, K.
Kondrashov, V.
Koranda, S.
Korth, W. Z.
Kowalska, I.
Kozak, D.
Kringel, V.
Krishnan, B.
Krolak, A.
Kuehn, G.
Kumar, P.
Kumar, R.
Kurdyumov, R.
Kwee, P.
Lam, P. K.
Landry, M.
Langley, A.
Lantz, B.
Lastzka, N.
Lawrie, C.
Lazzarini, A.
Le Roux, A.
Leaci, P.
Lee, C. H.
Lee, H. K.
Lee, H. M.
Leong, J. R.
Leonor, I.
Leroy, N.
Letendre, N.
Lhuillier, V.
Li, J.
Li, T. G. F.
Lindquist, P. E.
Litvine, V.
Liu, Y.
Liu, Z.
Lockerbie, N. A.
Lodhia, D.
Logue, J.
Lorenzini, M.
Loriette, V.
Lormand, M.
Losurdo, G.
Lough, J.
Lubinski, M.
Lueck, H.
Lundgren, A. P.
Macarthur, J.
Macdonald, E.
Machenschalk, B.
MacInnis, M.
Macleod, D. M.
Mageswaran, M.
Mailand, K.
Majorana, E.
Maksimovic, I.
Malvezzi, V.
Man, N.
Mandel, I.
Mandic, V.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Marka, Z.
Markosyan, A.
Maros, E.
Marque, J.
Martelli, F.
Martin, I. W.
Martin, R. M.
Marx, J. N.
Mason, K.
Masserot, A.
Matichard, F.
Matone, L.
Matzner, R. A.
Mavalvala, N.
Mazzolo, G.
McCarthy, R.
McClelland, D. E.
McGuire, S. C.
McIntyre, G.
McIver, J.
Meadors, G. D.
Mehmet, M.
Meier, T.
Melatos, A.
Melissinos, A. C.
Mendell, G.
Menendez, D. F.
Mercer, R. A.
Meshkov, S.
Messenger, C.
Meyer, M. S.
Miao, H.
Michel, C.
Milano, L.
Miller, J.
Minenkov, Y.
Mingarelli, C. M. F.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moe, B.
Mohan, M.
Mohapatra, S. R. P.
Moraru, D.
Moreno, G.
Morgado, N.
Morgia, A.
Mori, T.
Morriss, S. R.
Mosca, S.
Mossavi, K.
Mours, B.
Mow-Lowry, C. M.
Mueller, C. L.
Mueller, G.
Mukherjee, S.
Mullavey, A.
Mueller-Ebhardt, H.
Munch, J.
Murphy, D.
Murray, P. G.
Mytidis, A.
Nash, T.
Naticchioni, L.
Necula, V.
Nelson, J.
Neri, I.
Newton, G.
Nguyen, T.
Nishizawa, A.
Nitz, A.
Nocera, F.
Nolting, D.
Normandin, M. E.
Nuttall, L.
Ochsner, E.
O'Dell, J.
Oelker, E.
Ogin, G. H.
Oh, J. J.
Oh, S. H.
Oldenberg, R. G.
O'Reilly, B.
O'Shaughnessy, R.
Osthelder, C.
Ott, C. D.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Page, A.
Palladino, L.
Palomba, C.
Pan, Y.
Pankow, C.
Paoletti, F.
Paoletti, R.
Papa, M. A.
Parisi, M.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Pedraza, M.
Penn, S.
Perreca, A.
Persichetti, G.
Phelps, M.
Pichot, M.
Pickenpack, M.
Piergiovanni, F.
Pierro, V.
Pihlaja, M.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Pletsch, H. J.
Plissi, M. V.
Poggiani, R.
Poeld, J.
Postiglione, F.
Poux, C.
Prato, M.
Predoi, V.
Prestegard, T.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prix, R.
Prodi, G. A.
Prokhorov, L. G.
Puncken, O.
Punturo, M.
Puppo, P.
Quetschke, V.
Quitzow-James, R.
Raab, F. J.
Rabeling, D. S.
Racz, I.
Radkins, H.
Raffai, P.
Rakhmanov, M.
Ramet, C.
Rankins, B.
Rapagnani, P.
Raymond, V.
Re, V.
Reed, C. M.
Reed, T.
Regimbau, T.
Reid, S.
Reitze, D. H.
Ricci, F.
Riesen, R.
Riles, K.
Roberts, M.
Robertson, N. A.
Robinet, F.
Robinson, C.
Robinson, E. L.
Rocchi, A.
Roddy, S.
Rodriguez, C.
Rodruck, M.
Rolland, L.
Rollins, J. G.
Romano, J. D.
Romano, R.
Romie, J. H.
Rosinska, D.
Roever, C.
Rowan, S.
Ruediger, A.
Ruggi, P.
Ryan, K.
Salemi, F.
Sammut, L.
Sandberg, V.
Sankar, S.
Sannibale, V.
Santamaria, L.
Santiago-Prieto, I.
Santostasi, G.
Saracco, E.
Sassolas, B.
Sathyaprakash, B. S.
Saulson, P. R.
Savage, R. L.
Schilling, R.
Schnabel, R.
Schofield, R. M. S.
Schulz, B.
Schutz, B. F.
Schwinberg, P.
Scott, J.
Scott, S. M.
Seifert, F.
Sellers, D.
Sentenac, D.
Sergeev, A.
Shaddock, D. A.
Shaltev, M.
Shapiro, B.
Shawhan, P.
Shoemaker, D. H.
Sidery, T. L.
Siemens, X.
Sigg, D.
Simakov, D.
Singer, A.
Singer, L.
Sintes, A. M.
Skelton, G. R.
Slagmolen, B. J. J.
Slutsky, J.
Smith, J. R.
Smith, M. R.
Smith, R. J. E.
Smith-Lefebvre, N. D.
Somiya, K.
Sorazu, B.
Speirits, F. C.
Sperandio, L.
Stefszky, M.
Steinert, E.
Steinlechner, J.
Steinlechner, S.
Steplewski, S.
Stochino, A.
Stone, R.
Strain, K. A.
Strigin, S. E.
Stroeer, A. S.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sung, M.
Susmithan, S.
Sutton, P. J.
Swinkels, B.
Szeifert, G.
Tacca, M.
Taffarello, L.
Talukder, D.
Tanner, D. B.
Tarabrin, S. P.
Taylor, R.
ter Braack, A. P. M.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Thuering, A.
Titsler, C.
Tokmakov, K. V.
Tomlinson, C.
Toncelli, A.
Tonelli, M.
Torre, O.
Torres, C. V.
Torrie, C. I.
Tournefier, E.
Travasso, F.
Traylor, G.
Tse, M.
Ugolini, D.
Vahlbruch, H.
Vajente, G.
van den Brand, J. F. J.
Van den Broeck, C.
van der Putten, S.
van Veggel, A. A.
Vass, S.
Vasuth, M.
Vaulin, R.
Vavoulidis, M.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Venkateswara, K.
Verkindt, D.
Vetrano, F.
Vicere, A.
Villar, A. E.
Vinet, J. -Y.
Vitale, S.
Vocca, H.
Vorvick, C.
Vyatchanin, S. P.
Wade, A.
Wade, L.
Wade, M.
Waldman, S. J.
Wallace, L.
Wan, Y.
Wang, M.
Wang, X.
Wanner, A.
Ward, R. L.
Was, M.
Weinert, M.
Weinstein, A. J.
Weiss, R.
Welborn, T.
Wen, L.
Wessels, P.
West, M.
Westphal, T.
Wette, K.
Whelan, J. T.
Whitcomb, S. E.
White, D. J.
Whiting, B. F.
Wiesner, K.
Wilkinson, C.
Willems, P. A.
Williams, L.
Williams, R.
Willke, B.
Wimmer, M.
Winkelmann, L.
Winkler, W.
Wipf, C. C.
Wiseman, A. G.
Wittel, H.
Woan, G.
Wooley, R.
Worden, J.
Yablon, J.
Yakushin, I.
Yamamoto, H.
Yamamoto, K.
Yancey, C. C.
Yang, H.
Yeaton-Massey, D.
Yoshida, S.
Yvert, M.
Zadrozny, A.
Zanolin, M.
Zendri, J. -P.
Zhang, F.
Zhang, L.
Zhao, C.
Zotov, N.
Zucker, M. E.
Zweizig, J.
CA ANTARES Collaboration
ANTARES Collaboration
LIGO Sci Collaboration
LIGO Sci Collaboration
Virgo Collaboration
TI A first search for coincident gravitational waves and high energy
neutrinos using LIGO, Virgo and ANTARES data from 2007
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE gravitational waves / experiments; neutrino astronomy
ID GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC
STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT
SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPE
AB We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
C1 [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Ferri, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain.
[Al Samarai, I.; Aubert, J-J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J-P.; Escoffier, S.; Galata, S.; Hallewell, G.; Riviere, C.; Vallee, C.; Vecchi, M.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
[Albert, A.; Drouhin, D.; Racca, C.] GRPHE Inst Univ Technol Colmar, F-68008 Colmar, France.
[Andre, M.] Tech Univ Catalonia, Lab Appl Bioacoust, Barcelona 08800, Spain.
[Anghinolfi, M.; Kulikovskiy, V.; Taiuti, M.; Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geyer, K.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Lahmann, R.; Meli, A.; Motz, H.; Neff, M.; Richardt, C.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Schoeck, F.; Seitz, T.; Shanidze, R.; Spies, A.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Anvar, S.; Louis, F.] CEA Saclay, Direct Sci Mat, Inst Rech Fondamentales Univers, Serv Elect Detecteurs & Informat, F-91191 Gif Sur Yvette, France.
[Albert, A.; Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M. C.; Decowski, M. P.; Heijboer, A. J.; Hsu, C. C.; de Jong, M.; Kooijman, P.; Kopper, C.; Lim, G.; Palioselitis, D.; Petrovic, J.; Presani, E.; Reed, C.; Samtleben, D. F. E.; Steijger, J. J. M.; Visser, E.; Wijnker, G.; de Wolf, E.; Agathos, M.; Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Del Pozzo, W.; Jonker, R. J. G.; Li, T. G. F.; Rabeling, D. S.; ter Braack, A. P. M.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.; Vitale, S.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands.
[Baret, B.; Bouhou, B.; Creusot, A.; Donzaud, C.; Kouchner, A.; Moscoso, L.; Van Elewyck, V.; Barsuglia, M.; Buy, C.; Chassande-Mottin, E.; Ward, R. L.] Univ Paris Diderot, APC, CNRS IN2P3, CEA IRFU,Observ Paris,Sorbonne Paris Cite, F-75205 Paris, France.
[Basa, S.; Marcelin, M.; Nezri, E.] LAM, Pole Etoile Site Chateau Gombert, F-13388 Marseille 13, France.
[Biagi, S.; Cecchini, S.; Chiarusi, T.; Giacomelli, G.; Margiotta, A.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy.
[Biagi, S.; Giacomelli, G.; Margiotta, A.; Spurio, M.; Dergachev, V.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy.
[Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, Valencia 46071, Spain.
[Capone, A.; De Bonis, G.; Fermani, P.; Simeone, F.; Astone, P.; Colla, A.; Conte, A.; Frasca, S.; Majorana, E.; Naticchioni, L.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Albert, A.; Arloganu, C. C.; De Bonis, G.; Fermani, P.; Simeone, F.; Allocca, A.; Colla, A.; Colombini, M.; Conte, A.; Frasca, S.; Naticchioni, L.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Gay, P.; Guillard, G.] Univ Clermont Ferrand, Clermont Univ, CNRS IN2P3, Lab Phys Corpusculaire, F-63000 Clermont Ferrand, France.
[Charvis, Ph.; Deschamps, A.; Hello, Y.] Univ Nice Sophia Antipolis, Geoazur, CNRS INSU, IRD,Observ Cote Azur, F-06235 Villefranche Sur Mer, France.
[Charvis, Ph.; Deschamps, A.; Hello, Y.] Univ Paris 06, F-06235 Villefranche Sur Mer, France.
[Circella, M.; Montaruli, T.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Coniglione, R.; Distefano, C.; Giordano, V.; Lattuada, D.; Piattelli, P.; Riccobene, G.; Sapienza, P.] Ist Nazl Fis Nucl, LNS, I-95123 Catania, Italy.
[Dekeyser, I.; Fuda, J-L.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C.] Aix Marseille Univ, MIO, F-13288 Marseille 9, France.
[Dekeyser, I.; Fuda, J-L.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C.] Univ Sud Toulon Var, CNRS INSU, IRD UM 110, F-83957 La Garde, France.
[Donzaud, C.] Univ Paris 11, F-91405 Orsay, France.
[Dorosti, Q.; Kavatsyuk, O.; Loehner, H.] Univ Groningen, KVI, NL-9747 AA Groningen, Netherlands.
[Ferry, S.; Loucatos, S.; Moscoso, L.; Payet, K.; Schuller, J-P.; Schuessler, F.; Stolarczyk, Th.; Vallage, B.; Vernin, P.] CEA Saclay, Direct Sci Mat, Inst Rech Fondamentales Univers, Serv Phys Particules, F-91191 Gif Sur Yvette, France.
[Flaminio, V.; Morganti, M.; Allocca, A.; Basti, A.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Paoletti, R.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy.
[Flaminio, V.; Allocca, A.; Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Hamal, M.] Univ Mohammed 1, Lab Phys Matter & Radiat, Oujda 6000, Morocco.
[van Haren, H.; Bitossi, M.] Royal Netherlands Inst Sea Res NIOZ, NL-1797 SZ Thorntje, Texel, Netherlands.
[Kadler, M.; Kreykenbohm, I.; Wilms, J.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany.
[Kooijman, P.] Univ Utrecht, Fac Betawetenschappen, NL-3584 CC Utrecht, Netherlands.
[Kooijman, P.; Lim, G.; de Wolf, E.] Univ Amsterdam, Inst Hoge Energie Fys, NL-1098 XG Amsterdam, Netherlands.
[Kulikovskiy, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia.
[Lo Presti, D.; Russo, G. V.; Trovato, A.] INFN, Sez Catania, I-95125 Catania, Italy.
[Lo Presti, D.; Russo, G. V.] Univ Catania, Dipartimento Fis & Astron, I-95125 Catania, Italy.
[Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland.
[Pavalas, G. E.; Popa, V.; Rujoiu, M.] Inst Space Sci, R-77125 Bucharest, Magurele, Romania.
[Pradier, T.] Univ Strasbourg, IPHC, F-67037 Strasbourg 2, France.
[Pradier, T.] CNRS IN2P3, F-67037 Strasbourg 2, France.
[Rostovtsev, A.; Zaborov, D.] ITEP, Moscow 117218, Russia.
[Taiuti, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Astraatmadja, T.; de Jong, M.] Leiden Univ, NL-2300 RA Leiden, Netherlands.
[Morganti, M.] Accademia Navale Livorno, Livorno, Italy.
[Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C. B.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chalermsongsak, T.; Corsi, A.; Coyne, D. C.; Daudert, B.; Doravari, S.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Fotopoulos, N.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Jacobson, M.; James, E.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Litvine, V.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Pedraza, M.; Poux, C.; Price, L. R.; Privitera, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sannibale, V.; Santamaria, L.; Seifert, F.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Williams, R.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA.
[Abbott, T. D.; Griffo, C.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Bell, C.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Evans, K.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Lawrie, C.; Logue, J.; Macarthur, J.; Macdonald, E.; Martin, I. W.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Accadia, T.; Bebronne, M.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France.
[Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.; Romano, R.] INFN, Sez Napoli, I-80126 Naples, Italy.
[Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy.
[Acernese, F.; Addesso, P.; Barone, F.; Conte, R.; Postiglione, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy.
[Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Heintze, M. C.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Le Roux, A.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thorne, K. A.; Traylor, G.; Welborn, T.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA.
[Adams, T.; Dent, T.; Edwards, M.; Fairhurst, S.; Macleod, D. M.; Messenger, C.; Nuttall, L.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales.
[Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[Pierro, V.; Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy.
[Affeldt, C.; Allen, B.; Ast, S.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Phelps, M.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Affeldt, C.; Allen, B.; Allocca, A.; Ast, S.; Aufmuth, P.; Aulbert, C.; Basti, A.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brillet, A.; Brinkmann, M.; Britzger, M.; Buonanno, A.; Dahl, K.; Damjanic, M.; Danzmann, K.; Di Palma, I.; Dooley, K. L.; Eberle, T.; Fehrmann, H.; Frede, M.; Fricke, T. T.; Friedrich, D.; Goetz, E.; Gossler, S.; Graef, C.; Grote, H.; Heurs, M.; Hewitson, M.; Kaufer, H.; Kawazoe, F.; Keitel, D.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Lastzka, N.; Leong, J. R.; Lueck, H.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Mehmet, M.; Meier, T.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Simakov, D.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Thuering, A.; Vahlbruch, H.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Wiesner, K.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wittel, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Agatsuma, K.; Fujimoto, M. -K.; Hayama, K.; Izumi, K.; Kawamura, S.; Mori, T.; Nishizawa, A.] Natl Astron Observ Japan, Tokyo 1818588, Japan.
[Allen, B.; Ceron, E. Amador; Anderson, W. G.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Favata, M.; Giampanis, S.; Hammer, D.; Hughey, B.; Kline, J.; Koranda, S.; Mercer, R. A.; Moe, B.; Ochsner, E.; Oldenberg, R. G.; O'Shaughnessy, R.; Pankow, C.; Papa, M. A.; Siemens, X.; Skelton, G. R.; Wade, L.; Wade, M.; Wiseman, A. G.] Univ Wisconsin Milwaukee, Milwaukee, WI 53201 USA.
[Allocca, A.; Paoletti, R.; Torre, O.] Univ Siena, I-53100 Siena, Italy.
[Amariutei, D.; Bao, Y.; Ciani, G.; Feldbaum, D.; Gleason, J.; Hartman, M. T.; Klimenko, S.; Liu, Z.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA.
[Atkinson, D.; Barker, D.; Barton, M. A.; Batch, J.; Berliner, J. M.; Bland, B.; Clara, F.; Cook, D.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lhuillier, V.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rodruck, M.; Ryan, K.; Sandberg, V.; Savage, R. L.; Schwinberg, P.; Sigg, D.; Steinert, E.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA.
[Aylott, B. E.; Bond, C.; Carbone, L.; Cruise, A. M.; Cutler, R. M.; Freise, A.; Fulda, P. J.; Grover, K.; Hallam, J. M.; Lodhia, D.; Mandel, I.; Mingarelli, C. M. F.; Page, A.; Sidery, T. L.; Smith, R. J. E.; Vecchio, A.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Robinson, E. L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany.
[Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA.
[Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Chiummo, A.; Cuoco, E.; Dattilo, V.; Day, R.; Ferrini, F.; Fiori, I.; Genin, E.; Hemming, G.; Kasprzack, M.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy.
[Ballmer, S.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Harry, I. W.; Kelley, D.; Kumar, P.; Lough, J.; Nitz, A.; Perreca, A.; Saulson, P. R.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA.
[Barsotti, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Katsavounidis, E.; Kissel, J. S.; Kwee, P.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Oelker, E.; Sankar, S.; Shapiro, B.; Shoemaker, D. H.; Smith-Lefebvre, N. D.; Vaulin, R.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA.
[Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Murphy, D.; Raffai, P.; Tse, M.] Columbia Univ, New York, NY 10027 USA.
[Bassiri, R.; Beck, D.; Bhadbade, T.; Byer, R. L.; Clark, D. E.; Debra, D.; Herrera, V.; Kim, N.; Kurdyumov, R.; Lantz, B.; Markosyan, A.; Roberts, M.] Stanford Univ, Stanford, CA 94305 USA.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland.
[Bejger, M.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland.
[Jaranowski, P.] Bialystok Univ, PL-15424 Bialystok, Poland.
[Krolak, A.; Zadrozny, A.] NCBJ, PL-05400 Otwock, Poland.
[Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland.
[Benacquista, M.; Biswas, R.; Cagnoli, G.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Stroeer, A. S.; Torres, C. V.] Univ Texas Brownsville, Brownsville, TX 78520 USA.
[Beyersdorf, P. T.; Cordier, M.] San Jose State Univ, San Jose, CA 95192 USA.
[Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia.
[Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Franco, S.; Hello, P.; Kasprzack, M.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France.
[Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France.
[Blackburn, L.; Camp, J. B.; Kanner, J. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Blair, D.; Chen, X.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Dumas, J. -C.; Hooper, S.; Howell, E. J.; Ju, L.; Susmithan, S.; Wen, L.; Whitcomb, S. E.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia.
[Bondarescu, R.; Finn, L. S.; Menendez, D. F.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA.
[Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France.
[Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France.
[Bonnand, R.; Cagnoli, G.; Degallaix, J.; Flaminio, R.; Franc, J.; Galimberti, M.; Granata, M.; Michel, C.; Morgado, N.; Pinard, L.; Saracco, E.; Sassolas, B.] Univ Lyon 1, CNRS, IN2P3, LMA, F-69622 Villeurbanne, Lyon, France.
[Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA.
[Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-06123 Perugia, Italy.
[Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy.
[Branchesi, M.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy.
[Branchesi, M.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy.
[Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Quitzow-James, R.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA.
[Briant, T.; Cohadon, P. -F.; Heidmann, A.] Univ Paris 06, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France.
[Capano, C. D.; Kanner, J. B.; Pan, Y.; Shawhan, P.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA.
[Buonanno, A.; Burguet-Castell, J.; Gil-Casanova, S.; Husa, S.; Sintes, A. M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain.
[Cadonati, L.; Clark, J. A.; Hoak, D.; McIver, J.; Mohapatra, S. R. P.] Univ Massachusetts Amherst, Amherst, MA 01003 USA.
[Cannon, K.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada.
[Cao, J.; Chen, W.; Du, Z.; Li, J.; Liu, Y.; Wan, Y.; Wang, X.; Zhang, F.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kokeyama, K.; Mullavey, A.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Cavaglia, M.; Dietz, A.; Rankins, B.] Univ Mississippi, University, MS 38677 USA.
[Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia.
[Chen, Y.; Hong, T.; Kaufman, K.; Miao, H.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA.
[Cho, H. S.; Kim, Y. M.; Lee, C. H.] Pusan Natl Univ, Pusan 609735, South Korea.
[Chow, J.; Chua, S. S. Y.; Inta, R.; Lam, P. K.; McClelland, D. E.; Miller, J.; Mow-Lowry, C. M.; Mullavey, A.; Nguyen, T.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.; Wade, A.] Australian Natl Univ, Canberra, ACT 0200, Australia.
[Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA.
[Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia.
[Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Malvezzi, V.; Minenkov, Y.; Morgia, A.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Emilio, M. Di Paolo; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy.
[Costa, C. A.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil.
[Daw, E. J.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[Debreczeni, G.; Endroczi, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, Wigner RCP, H-1121 Budapest, Hungary.
[Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Dorsher, S.; Kandhasamy, S.; Mandic, V.; Pihlaja, M.; Prestegard, T.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Drago, M.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Povo, Trento, Italy.
[Drago, M.; Prodi, G. A.; Yamamoto, K.] Univ Trento, I-38050 Povo, Trento, Italy.
[Taffarello, L.; Vedovato, G.; Zendri, J. -P.] INFN, Sez Padova, I-35131 Padua, Italy.
[Yamamoto, K.] Univ Padua, I-35131 Padua, Italy.
[Drever, R. W. P.; Harms, J.; Langley, A.] CALTECH, Pasadena, CA 91125 USA.
[Farr, B. F.; Fazi, D.; Jang, Y. J.; Kalogera, V.; Raymond, V.; Rodriguez, C.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA.
[Frei, M. A.; Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Frei, Z.; Gelencser, G.; Raffai, P.; Szeifert, G.] Eotvos Lorand Univ, H-1117 Budapest, Hungary.
[Gair, J.; Graff, P. B.] Univ Cambridge, Cambridge CB2 1TN, England.
[Gergely, L. A.; Keresztes, Z.] Univ Szeged, H-6720 Szeged, Hungary.
[Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Gretarsson, A. M.; Jesse, E.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Hanna, C.] Perimeter Inst Theoret Phys, Toronto, ON N2L 2Y5, Canada.
[Harry, G. M.] American Univ, Washington, DC 20016 USA.
[Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA.
[Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Kang, G.; Kim, B. K.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Kasturi, R.; Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, C.] Lund Observ, SE-22100 Lund, Sweden.
[Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea.
[Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea.
[Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland.
[Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA.
[McGuire, S. C.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA.
[Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA.
[Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Oh, J. J.; Oh, S. H.] Natl Inst Math Sci, Taejon 305390, South Korea.
[Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA.
[Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
[Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA.
[Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA.
RP Adrian-Martinez, S (reprint author), Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain.
EM Irene.DiPalma@aei.mpg.de; thierry.pradier@iphc.cnrs.fr
RI Howell, Eric/H-5072-2014; Costa, Cesar/G-7588-2012; Chow,
Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011;
Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev,
Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Ward, Robert/I-8032-2014;
Frasconi, Franco/K-1068-2016; Charvis, Philippe/K-1576-2016; Simeone,
Francesco/L-1057-2016; Pinto, Innocenzo/L-3520-2016; Ferrante,
Isidoro/F-1017-2012; Prato, Mirko/D-8531-2012; Travasso,
Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Punturo,
Michele/I-3995-2012; Cella, Giancarlo/A-9946-2012; Lo Presti,
Domenico/G-2709-2013; Cesarini, Elisabetta/C-4507-2017; Ardid,
Miguel/H-9544-2015; Branchesi, Marica/P-2296-2015; Gehring,
Tobias/A-8596-2016; Strain, Kenneth/D-5236-2011; Trovato,
Agata/F-4160-2016; Biagi, Simone/G-4557-2016; Heidmann,
Antoine/G-4295-2016; Distefano, Carla/G-5213-2016; Bao,
Yiliang/G-9848-2016; Riccobene, Giorgio Maria/A-4502-2010; Ott,
Christian/G-2651-2011; mosca, simona/I-7116-2012; Eberl,
Thomas/J-4826-2016; Hernandez-Rey, Juan Jose/N-5955-2014; Puppo,
Paola/J-4250-2012; Tacca, Matteo/J-1599-2015; Graef,
Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi,
Fabio/K-3263-2015; Neri, Igor/F-1482-2010; cabo, bou/N-2076-2014;
Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Vicere,
Andrea/J-1742-2012; Rocchi, Alessio/O-9499-2015; Martinez-Mora, Juan
Antonio/P-3552-2015; Martelli, Filippo/P-4041-2015; Piattelli,
Paolo/J-2958-2012; Canuel, Benjamin/C-7459-2014; Capone,
Antonio/F-1098-2010; Schussler, Fabian/G-5313-2013; Lee,
Chang-Hwan/B-3096-2015; Khalili, Farit/D-8113-2012; McClelland,
David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry,
Conor/F-8843-2015; Brunner, Juergen/G-3540-2015; Finn, Lee
Samuel/A-3452-2009; Anton, Gisela/C-4840-2013; Zuniga, Juan/P-4385-2014;
Sigg, Daniel/I-4308-2015; Salemi, Francesco/F-6988-2014; Gorodetsky,
Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Mitrofanov,
Valery/D-8501-2012; Bell, Angus/E-7312-2011; Bilenko, Igor/D-5172-2012;
Kumar, Prem/B-6691-2009; Vecchi, Manuela/J-9180-2014; Losurdo,
Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Zornoza, Juan de
Dios/L-1604-2014; Hild, Stefan/A-3864-2010; Danilishin,
Stefan/K-7262-2012; Katz, Uli/E-1925-2013; Lohner, Herbert/B-2397-2014;
Khazanov, Efim/B-6643-2014; prodi, giovanni/B-4398-2010; Gemme,
Gianluca/C-7233-2008; Wilms, Joern/C-8116-2013; Prokhorov,
Leonid/I-2953-2012; Gammaitoni, Luca/B-5375-2009; Steinlechner,
Sebastian/D-5781-2013; Miao, Haixing/O-1300-2013; Parisi,
Maria/D-2817-2013; Marchesoni, Fabio/A-1920-2008;
OI Guidi, Gianluca/0000-0002-3061-9870; Drago, Marco/0000-0002-3738-2431;
Pierro, Vincenzo/0000-0002-6020-5521; Coccia,
Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461;
Vetrano, Flavio/0000-0002-7523-4296; Naticchioni,
Luca/0000-0003-2918-0730; Milano, Leopoldo/0000-0001-9487-5876; Hsu,
Ching-Cheng/0000-0001-9406-2023; Papa, M.Alessandra/0000-0002-1007-5298;
Aulbert, Carsten/0000-0002-1481-8319; Ferri Garcia,
Marcelino/0000-0002-2049-3821; Pinto, Innocenzo M./0000-0002-2679-4457;
Escoffier, Stephanie/0000-0002-2847-7498; Farr, Ben/0000-0002-2916-9200;
Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576;
Vedovato, Gabriele/0000-0001-7226-1320; Howell,
Eric/0000-0001-7891-2817; Boschi, Valerio/0000-0001-8665-2293;
Matichard, Fabrice/0000-0001-8982-8418; Chow, Jong/0000-0002-2414-5402;
Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338;
Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski,
Piotr/0000-0001-8085-3414; Swinkels, Bas/0000-0002-3066-3601; Spurio,
Maurizio/0000-0002-8698-3655; Ward, Robert/0000-0001-5503-5241;
Frasconi, Franco/0000-0003-4204-6587; Charvis,
Philippe/0000-0003-4397-7842; Ferrante, Isidoro/0000-0002-0083-7228;
Prato, Mirko/0000-0002-2188-8059; Travasso, Flavio/0000-0002-4653-6156;
Punturo, Michele/0000-0001-8722-4485; Cella,
Giancarlo/0000-0002-0752-0338; Lo Presti, Domenico/0000-0002-4540-2885;
Cesarini, Elisabetta/0000-0001-9127-3167; Ardid,
Miguel/0000-0002-3199-594X; Nitz, Alexander/0000-0002-1850-4587; Mandel,
Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669;
Murphy, David/0000-0002-8538-815X; Pitkin, Matthew/0000-0003-4548-526X;
Veitch, John/0000-0002-6508-0713; Husa, Sascha/0000-0002-0445-1971; Di
Paolo Emilio, Maurizio/0000-0002-9558-3610; Vitale,
Salvatore/0000-0003-2700-0767; Aguilar Sanchez, Juan
Antonio/0000-0003-2252-9514; Kanner, Jonah/0000-0001-8115-0577;
PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Kadler,
Matthias/0000-0001-5606-6154; Freise, Andreas/0000-0001-6586-9901;
Gehring, Tobias/0000-0002-4311-2593; Strain,
Kenneth/0000-0002-2066-5355; Trovato, Agata/0000-0002-9714-1904; Biagi,
Simone/0000-0001-8598-0017; Heidmann, Antoine/0000-0002-0784-5175;
Distefano, Carla/0000-0001-8632-1136; Riccobene, Giorgio
Maria/0000-0002-0600-2774; Ott, Christian/0000-0003-4993-2055; mosca,
simona/0000-0001-7869-8275; Eberl, Thomas/0000-0002-5301-9106;
Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Puppo,
Paola/0000-0003-4677-5015; Tacca, Matteo/0000-0003-1353-0441; Graef,
Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Neri,
Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494;
Postiglione, Fabio/0000-0003-0628-3796; Vicere,
Andrea/0000-0003-0624-6231; Rocchi, Alessio/0000-0002-1382-9016;
Martinez-Mora, Juan Antonio/0000-0001-7956-2847; Martelli,
Filippo/0000-0003-3761-8616; O'Shaughnessy, Richard/0000-0001-5832-8517;
Presani, Eleonora/0000-0001-6254-9603; Vocca,
Helios/0000-0002-1200-3917; Fairhurst, Stephen/0000-0001-8480-1961;
Addesso, Paolo/0000-0003-0895-184X; Allen, Bruce/0000-0003-4285-6256;
Granata, Massimo/0000-0003-3275-1186; Sanchez Losa,
Agustin/0000-0001-9596-7078; Bigongiari, Ciro/0000-0003-3293-8522;
Nishizawa, Atsushi/0000-0003-3562-0990; Piattelli,
Paolo/0000-0003-4748-6485; calloni, enrico/0000-0003-4819-3297; Scott,
Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Bondu,
Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; Del
Pozzo, Walter/0000-0003-3978-2030; Schussler,
Fabian/0000-0003-1500-6571; Lee, Chang-Hwan/0000-0003-3221-1171;
McClelland, David/0000-0001-6210-5842; Vecchio,
Alberto/0000-0002-6254-1617; Brunner, Juergen/0000-0002-5052-7236; Finn,
Lee Samuel/0000-0002-3937-0688; Anton, Gisela/0000-0003-2039-4724;
Zuniga, Juan/0000-0002-1041-6451; Sigg, Daniel/0000-0003-4606-6526;
Gorodetsky, Michael/0000-0002-5159-2742; Bell,
Angus/0000-0003-1523-0821; Losurdo, Giovanni/0000-0003-0452-746X; Lam,
Ping Koy/0000-0002-4421-601X; Zornoza, Juan de Dios/0000-0002-1834-0690;
Danilishin, Stefan/0000-0001-7758-7493; Katz, Uli/0000-0002-7063-4418;
Lohner, Herbert/0000-0002-7441-739X; prodi,
giovanni/0000-0001-5256-915X; Gemme, Gianluca/0000-0002-1127-7406;
Wilms, Joern/0000-0003-2065-5410; Gammaitoni, Luca/0000-0002-4972-7062;
Steinlechner, Sebastian/0000-0003-4710-8548; Miao,
Haixing/0000-0003-4101-9958; Marchesoni, Fabio/0000-0001-9240-6793;
Principe, Maria/0000-0002-6327-0628
FU United States National Science Foundation; Science and Technology
Facilities Council of the United Kingdom; Max-Planck-Society; State of
Niedersachsen/Germany; Australian Research Council; International
Science Linkages program of the Commonwealth of Australia; Council of
Scientific and Industrial Research of India; Istituto Nazionale di
Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia;
Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes
Balears; Foundation for Fundamental Research on Matter; Netherlands
Organisation for Scientific Research; Polish Ministry of Science and
Higher Education; FOCUS Programme of Foundation for Polish Science;
Royal Society; Scottish Funding Council; Scottish Universities Physics
Alliance; National Aeronautics and Space Administration; Carnegie Trust;
Leverhulme Trust; David and Lucile Packard Foundation; Research
Corporation; Alfred P. Sloan Foundation; Centre National de la Recherche
Scientifique (CNRS); Commissariat a l'energie atomique et aux energies
alternatives (CEA); Agence National de la Recherche (ANR); Commission
Europeenne (FEDER fund and Marie Curie Program); Region Alsace (contrat
CPER); Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville
de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung
(BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy;
Stichting voor Fundamenteel Onderzoek der Materie (FOM), the
Netherlands; Nederlandse organisatie voor Wetenschappelijk Onderzoek
(NWO), the Netherlands; Council of the President of the Russian
Federation for young scientists and leading scientific schools
supporting grants, Russia; National Authority for Scientific Research
(ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Spain;
Prometeo of Generalitat Valenciana (GVA), Spain; Multi-Dark, Spain
FX The authors gratefully acknowledge the support of the United States
National Science Foundation for the construction and operation of the
LIGO Laboratory, the Science and Technology Facilities Council of the
United Kingdom, the Max-Planck-Society, and the State of
Niedersachsen/Germany for support of the construction and operation of
the GEO600 detector, and the Italian Istituto Nazionale di Fisica
Nucleare and the French Centre National de la Recherche Scientifique for
the construction and operation of the Virgo detector. The authors also
gratefully acknowledge the support of the research by these agencies and
by the Australian Research Council, the International Science Linkages
program of the Commonwealth of Australia, the Council of Scientific and
Industrial Research of India, the Istituto Nazionale di Fisica Nucleare
of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria
d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the
Foundation for Fundamental Research on Matter supported by the
Netherlands Organisation for Scientific Research, the Polish Ministry of
Science and Higher Education, the FOCUS Programme of Foundation for
Polish Science, the Royal Society, the Scottish Funding Council, the
Scottish Universities Physics Alliance, The National Aeronautics and
Space Administration, the Carnegie Trust, the Leverhulme Trust, the
David and Lucile Packard Foundation, the Research Corporation, and the
Alfred P. Sloan Foundation.; The authors also acknowledge the financial
support of the funding agencies for the construction and operation of
the ANTARES neutrino telescope: Centre National de la Recherche
Scientifique (CNRS), Commissariat a l'energie atomique et aux energies
alternatives (CEA), Agence National de la Recherche (ANR), Commission
Europeenne (FEDER fund and Marie Curie Program), Region Alsace (contrat
CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville
de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung
(BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy;
Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse
organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands;
Council of the President of the Russian Federation for young scientists
and leading scientific schools supporting grants, Russia; National
Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia
e Innovacion (MICINN), Prometeo of Generalitat Valenciana (GVA) and
Multi-Dark, Spain. They also acknowledge the technical support of
Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3
for the computing facilities. This publication has been assigned LIGO
Document Number LIGO-P1200006.
NR 153
TC 11
Z9 11
U1 6
U2 101
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD JUN
PY 2013
IS 6
AR 008
DI 10.1088/1475-7516/2013/06/008
PG 40
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 175AB
UT WOS:000321200100008
ER
PT J
AU Chen, Y
Velicogna, I
Famiglietti, JS
Randerson, JT
AF Chen, Yang
Velicogna, Isabella
Famiglietti, James S.
Randerson, James T.
TI Satellite observations of terrestrial water storage provide early
warning information about drought and fire season severity in the Amazon
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
DE wildfire; deforestation; soil moisture recharge; teleconnection;
Tropical Rain Measuring Mission (TRMM); Atmospheric Infrared Sounder
(AIRS)
ID EL-NINO; SOUTHERN-OSCILLATION; SURFACE TEMPERATURES; CLIMATE; FOREST;
MODIS; DEFORESTATION; GRACE; BASIN; PRECIPITATION
AB Fire risk in the Amazon can be predicted several months before the onset of the dry season using sea surface temperatures in the tropical north Atlantic and tropical Pacific. The lead times between ocean state and the period of maximum burning (4-11 months) may enable the development of forecasts with benefits for forest conservation, yet the underlying physical and biological mechanisms responsible for these temporal offsets are not well known. Here, we examined the hypothesis that year-to-year variations in soil water recharge during the wet season modify atmospheric water vapor and fire behavior during the following dry season. We tested this hypothesis by analyzing terrestrial water storage observations from the Gravity Recovery and Climate Experiment (GRACE), active fires from the Moderate Resolution Imaging Spectroradiometer (MODIS), and several other satellite and atmospheric reanalysis datasets during 2002-2011. We found that terrestrial water storage deficits preceded severe fire seasons across the southern Amazon. The most significant relationships between monthly terrestrial water storage and the sum of active fires during the dry season occurred during April-August (p<0.02), corresponding to 1-5 month lead times before the peak month of burning (September). Analysis of other datasets provided evidence for a cascade of processes during drought events, with lower cumulative precipitation (and higher cumulative evapotranspiration) in the wet season substantially reducing terrestrial water storage, and subsequently, surface and column atmospheric water vapor. Our results suggest that terrestrial water storage observations from GRACE have the potential to improve fire season forecasts for the southern Amazon.
C1 [Chen, Yang; Velicogna, Isabella; Famiglietti, James S.; Randerson, James T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Velicogna, Isabella] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Chen, Y (reprint author), Univ Calif Irvine, 2101C Croul Hall, Irvine, CA 92697 USA.
EM yang.chen@uci.edu
FU NASA [NNX11AF96G]; Atmosphere, Cryosphere, Hydrology, and
Interdisciplinary Science (IDS) programs [NNX10AT83G]; National Science
Foundation [AGS-1048890]; Gordon and Betty Moore Foundation [GBMF 3269]
FX This work was supported by NASA Carbon Cycle (NNX11AF96G), Atmosphere
(NNX10AT83G), Cryosphere, Hydrology, and Interdisciplinary Science (IDS)
programs, the National Science Foundation (AGS-1048890), and the Gordon
and Betty Moore Foundation (GBMF 3269).
NR 68
TC 20
Z9 20
U1 2
U2 43
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD JUN
PY 2013
VL 118
IS 2
BP 495
EP 504
DI 10.1002/jgrg.20046
PG 10
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA 224TU
UT WOS:000324913100011
ER
PT J
AU Scott-Denton, LE
Moore, DJP
Rosenbloom, NA
Kittel, TGF
Burns, SP
Schimel, DS
Monson, RK
AF Scott-Denton, Laura E.
Moore, David J. P.
Rosenbloom, Nan A.
Kittel, Timothy G. F.
Burns, Sean P.
Schimel, David S.
Monson, Russell K.
TI Forecasting net ecosystem CO2 exchange in a subalpine forest using model
data assimilation combined with simulated climate and weather generation
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
DE warming; carbon cycle; sequestration
ID DAILY SOLAR-RADIATION; WATER-USE EFFICIENCY; HIGH-ELEVATION; TERRESTRIAL
ECOSYSTEMS; DATA FUSION; DAILY PRECIPITATION; CIRCULATION MODEL; CARBON
SINK; FLUXES; FUTURE
AB Forecasting the carbon uptake potential of terrestrial ecosystems in the face of future climate change has proven challenging. Process models, which have been increasingly used to study ecosystem-atmosphere carbon and water exchanges when conditioned with tower-based eddy covariance data, have the potential to inform us about biogeochemical processes in future climate regimes, but only if we can reconcile the spatial and temporal scales used for observed fluxes and projected climate. Here, we used weather generator and ecosystem process models conditioned on observed weather dynamics and carbon/water fluxes, and embedded them within climate projections from a suite of six Earth Systems Models. Using this combination of models, we studied carbon cycle processes in a subalpine forest within the context of future (2080-2099) climate regimes. The assimilation of daily averaged, observed net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) into the ecosystem process model resulted in retrieval of projected NEE with a level of accuracy that was similar to that following the assimilation of half-daily averaged observations; the assimilation of 30min averaged fluxes or monthly averaged fluxes caused degradation in the model's capacity to accurately simulate seasonal patterns in observed NEE. Using daily averaged flux data with daily averaged weather data projected for the period 2080-2099, we predicted greater forest net CO2 uptake in response to a lengthening of the growing season. These results contradict our previous observations of reduced CO2 uptake in response to longer growing seasons in the current (1999-2008) climate regime. The difference between these analyses is due to a projected increase in the frequency of rain versus snow during warmer winters of the future. Our results demonstrate the sensitivity of modeled processes to local variation in meteorology, which is often left unresolved in traditional approaches to earth systems modeling, and the importance of maintaining similarity in the timescales used in ecosystem process models driven by downscaled climate projections.
C1 [Scott-Denton, Laura E.; Monson, Russell K.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA.
[Moore, David J. P.; Monson, Russell K.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ USA.
[Rosenbloom, Nan A.; Burns, Sean P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Kittel, Timothy G. F.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.
[Burns, Sean P.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA.
[Schimel, David S.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Monson, Russell K.] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA.
RP Scott-Denton, LE (reprint author), Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA.
EM laura_ontheweb@yahoo.com
RI Burns, Sean/A-9352-2008; Moore, David/A-6268-2013
OI Burns, Sean/0000-0002-6258-1838;
FU U.S. National Science Foundation [DEB-0743251]; U.S. Department of
Energy [ER-65088]
FX We are grateful to Kurt Chowanski, Mark Losleben, Lucas Zukiewicz, Kelly
Matheson, Dave Millar, John Knowles, and Kirk Ranno for data collection
at the Niwot Ridge C1 climate station. We thank the USDA Natural
Resources Conservation Service, Colorado Snow Survey Program, for the
SNOTEL network data. We thank Julie Arblaster and Gerald Meehl of the
National Center for Atmospheric Research for providing ESM results for
the spatial grids used in this analysis. We thank Sean Worthington for
making the map in Figure 1. Diego Riveros-Iregui, John Zobitz, and Ankur
Desai provided valuable discussions about the SIPNET modeling. This
research was supported by the U.S. National Science Foundation (grant
DEB-0743251) and the U.S. Department of Energy (grant ER-65088).
NR 75
TC 6
Z9 6
U1 1
U2 26
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
EI 2169-8961
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD JUN
PY 2013
VL 118
IS 2
BP 549
EP 565
DI 10.1002/jgrg.20039
PG 17
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA 224TU
UT WOS:000324913100014
ER
PT J
AU Yi, YH
Kimball, JS
Jones, LA
Reichle, RH
Nemani, R
Margolis, HA
AF Yi, Yonghong
Kimball, John S.
Jones, Lucas A.
Reichle, Rolf H.
Nemani, Ramakrishna
Margolis, Hank A.
TI Recent climate and fire disturbance impacts on boreal and arctic
ecosystem productivity estimated using a satellite-based terrestrial
carbon flux model
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
DE gross primary productivity; net ecosystem exchange; fire disturbance;
high latitudes; satellite remote sensing
ID NET PRIMARY PRODUCTION; GROSS PRIMARY PRODUCTION; SOIL ORGANIC-CARBON;
CONSTANT FRACTION; DECIDUOUS FOREST; USE EFFICIENCY; RESPIRATION;
EXCHANGE; DROUGHT; MODIS
AB Warming and changing fire regimes in the northern (45 degrees N) latitudes have consequences for land-atmosphere carbon feedbacks to climate change. A terrestrial carbon flux model integrating satellite Normalized Difference Vegetation Index and burned area records with global meteorology data was used to quantify daily vegetation gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) over a pan-boreal/Arctic domain and their sensitivity to climate variability, drought, and fire from 2000 to 2010. Model validation against regional tower carbon flux measurements showed overall good agreement for GPP (47 sites: R=0.83, root mean square difference (RMSD)=1.93gCm(-2)d(-1)) and consistency for NEE (22 sites: R=0.56, RMSD=1.46gCm(-2)d(-1)). The model simulations also tracked post-fire NEE recovery indicated from three boreal tower fire chronosequence networks but with larger model uncertainty during early succession. Annual GPP was significantly (p<0.005) larger in warmer years than in colder years, except for Eurasian boreal forest, which showed greater drought sensitivity due to characteristic warmer, drier growing seasons relative to other areas. The NEE response to climate variability and fire was mitigated by compensating changes in GPP and respiration, though NEE carbon losses were generally observed in areas with severe drought or burning. Drought and temperature variations also had larger regional impacts on GPP and NEE than fire during the study period, though fire disturbances were heterogeneous, with larger impacts on carbon fluxes for some areas and years. These results are being used to inform development of similar operational carbon products for the NASA Soil Moisture Active Passive (SMAP) mission.
C1 [Yi, Yonghong; Kimball, John S.; Jones, Lucas A.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA.
[Yi, Yonghong; Kimball, John S.; Jones, Lucas A.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA.
[Reichle, Rolf H.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Nemani, Ramakrishna] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Margolis, Hank A.] Univ Laval, Fac Foresterie Geog & Geomat, Ctr Etud Foret, Quebec City, PQ, Canada.
RP Yi, YH (reprint author), Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA.
EM yonghong.yi@ntsg.umt.edu
RI Reichle, Rolf/E-1419-2012; Yi, Yonghong/C-2395-2017
FU NASA Terrestrial Ecology program [NNX09AP52G, NNX11AD46G];
CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for
Biogeochemistry; National Science Foundation; University of Tuscia;
Universite Laval and Environment Canada; US Department of Energy; NOAA
ESRL
FX We thank the Editor, Eric Kasischke, Richard Waring, and one anonymous
reviewer for their constructive comments. This work was supported with
funding from the NASA Terrestrial Ecology program (NNX09AP52G and
NNX11AD46G). This work used eddy covariance data acquired by the FLUXNET
community, which was supported by the CarboEuropeIP, FAO-GTOS-TCO,
iLEAPS, Max Planck Institute for Biogeochemistry, National Science
Foundation, University of Tuscia, Universite Laval and Environment
Canada, US Department of Energy and NOAA ESRL, as well as many local
funders including Global Change Research Centre AS Czech Republic,
Wisconsin Focus on Energy, and Forest Department of the Autonomous
Province of Bolzano-CO2-measuring station of Renon/Ritten. We
thank Drs. K.J. Davis, P. Bolstad, A. E. Andrews, B. D. Cook, A. R.
Desai, and many other PIs for sharing the flux tower data.
NR 74
TC 12
Z9 14
U1 4
U2 61
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD JUN
PY 2013
VL 118
IS 2
BP 606
EP 622
DI 10.1002/jgrg.20053
PG 17
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA 224TU
UT WOS:000324913100018
ER
PT J
AU Berry, J
Wolf, A
Campbell, JE
Baker, I
Blake, N
Blake, D
Denning, AS
Kawa, SR
Montzka, SA
Seibt, U
Stimler, K
Yakir, D
Zhu, ZX
AF Berry, Joe
Wolf, Adam
Campbell, J. Elliott
Baker, Ian
Blake, Nicola
Blake, Don
Denning, A. Scott
Kawa, S. Randy
Montzka, Stephen A.
Seibt, Ulrike
Stimler, Keren
Yakir, Dan
Zhu, Zhengxin
TI A coupled model of the global cycles of carbonyl sulfide and CO2: A
possible new window on the carbon cycle
SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
LA English
DT Article
DE Carbonyl Sulfide; Carbon dioxide; PCTM; SiB
ID STOMATAL CONDUCTANCE; CANOPY REFLECTANCE; ATMOSPHERIC CO2; GAS-EXCHANGE;
LEAF MODELS; PHOTOSYNTHESIS; TRANSPIRATION; ANHYDRASE; LEAVES; FLUXES
AB Carbonyl sulfide (COS) is an atmospheric trace gas that participates in some key reactions of the carbon cycle and thus holds great promise for studies of carbon cycle processes. Global monitoring networks and atmospheric sampling programs provide concurrent data on COS and CO2 concentrations in the free troposphere and atmospheric boundary layer over vegetated areas. Here we present a modeling framework for interpreting these data and illustrate what COS measurements might tell us about carbon cycle processes. We implemented mechanistic and empirical descriptions of leaf and soil COS uptake into a global carbon cycle model (SiB 3) to obtain new estimates of the COS land flux. We then introduced these revised boundary conditions to an atmospheric transport model (Parameterized Chemical Transport Model) to simulate the variations in the concentration of COS and CO2 in the global atmosphere. To balance the threefold increase in the global vegetation sink relative to the previous baseline estimate, we propose a new ocean COS source. Using a simple inversion approach, we optimized the latitudinal distribution of this ocean source and found that it is concentrated in the tropics. The new model is capable of reproducing the seasonal variation in atmospheric concentration at most background atmospheric sites. The model also reproduces the observed large vertical gradients in COS between the boundary layer and free troposphere. Using a simulation experiment, we demonstrate that comparing drawdown of CO2 with COS could provide additional constraints on differential responses of photosynthesis and respiration to environmental forcing. The separation of these two distinct processes is essential to understand the carbon cycle components for improved prediction of future responses of the terrestrial biosphere to changing environmental conditions.
C1 [Berry, Joe] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA.
[Wolf, Adam] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA.
[Campbell, J. Elliott] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA.
[Baker, Ian; Denning, A. Scott] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Blake, Nicola; Blake, Don] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA.
[Kawa, S. Randy; Zhu, Zhengxin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Montzka, Stephen A.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Seibt, Ulrike] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA.
[Stimler, Keren; Yakir, Dan] Weizmann Inst Sci, IL-76100 Rehovot, Israel.
RP Berry, J (reprint author), Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA.
EM joeberry@stanford.edu
RI Yakir, Dan/K-1500-2012
FU NASA Earth Science Program; Office of Science (BER), U. S. Department of
Energy
FX We gratefully acknowledge George Wolf and Orrick, Herrington & Sutcliffe
LLP for providing a meeting space to develop this work and Mohammad
Abu-Naser for helping in the preparation of figures. This research was
supported in part by the NASA Earth Science Program and the Office of
Science (BER), U. S. Department of Energy. This research also had
substantial contributions that were conducted without grant support and
reflect the generosity of our colleagues and home institutions.
NR 55
TC 34
Z9 34
U1 3
U2 49
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-8953
J9 J GEOPHYS RES-BIOGEO
JI J. Geophys. Res.-Biogeosci.
PD JUN
PY 2013
VL 118
IS 2
BP 842
EP 852
DI 10.1002/jgrg.20068
PG 11
WC Environmental Sciences; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA 224TU
UT WOS:000324913100034
ER
PT J
AU Parizek, BR
Christianson, K
Anandakrishnan, S
Alley, RB
Walker, RT
Edwards, RA
Wolfe, DS
Bertini, GT
Rinehart, SK
Bindschadler, RA
Nowicki, SMJ
AF Parizek, B. R.
Christianson, K.
Anandakrishnan, S.
Alley, R. B.
Walker, R. T.
Edwards, R. A.
Wolfe, D. S.
Bertini, G. T.
Rinehart, S. K.
Bindschadler, R. A.
Nowicki, S. M. J.
TI Dynamic (in)stability of Thwaites Glacier, West Antarctica
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE glaciers; glaciology; modeling; dynamics; subglacial processes; radar
ID PINE ISLAND GLACIER; DIGITAL ELEVATION MODEL; SHELF-OCEAN INTERACTION;
SHEET GROUNDING LINES; ICE-SHEET; SEA-LEVEL; SUBGLACIAL LAKES;
MASS-BALANCE; FLOW SPEED; LASER DATA
AB Thwaites Glacier, West Antarctica, has the potential to directly contribute approximate to 1m to sea level and currently is losing mass and thinning rapidly. Here, we report on regional results for the Sea-level Response to Ice Sheet Evolution (SeaRISE) experiments and investigate the impact of i) spatial resolution within existing data sets, ii) grounding-zone processes, and iii) till rheology on the dynamics of this outlet glacier. In addition to the SeaRISE data sets, we use detailed aerogeophysical and satellite data from Thwaites Glacier as input to a coupled ice stream/ice-shelf/ocean-plume model that includes oceanic influences across a several kilometers wide grounding zone suggested by new, high-resolution data. Our results indicate that the ice tongue provides limited stability, and that while future atmospheric warming will likely add mass to the surface of the glacier, strong ice stream stabilization on bedrock highs narrower than the length of the grounding zone may be ephemeral if circulating waters substantially reduce basal resistance and enhance melting beneath grounded ice within this zone. However, we find that stability is significantly enhanced by effectively plastic till beds. Accurate projections of future sea level change relies on correct understanding of the till rheology as well as local basal processes near the grounding line.
C1 [Parizek, B. R.] Penn State Univ, Du Bois, PA 15801 USA.
[Christianson, K.; Anandakrishnan, S.; Alley, R. B.; Walker, R. T.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
[Christianson, K.; Anandakrishnan, S.; Alley, R. B.; Walker, R. T.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA.
[Christianson, K.] St Olaf Coll, Dept Phys, Northfield, MN 55057 USA.
[Walker, R. T.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Walker, R. T.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
[Edwards, R. A.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA.
[Wolfe, D. S.] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA.
[Bertini, G. T.] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16802 USA.
[Rinehart, S. K.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Bindschadler, R. A.; Nowicki, S. M. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Parizek, BR (reprint author), Penn State Univ, Du Bois, PA 15801 USA.
EM parizek@psu.edu
FU NSF [0531211, 0632198, 0732844, 0758274, 0909335]; Center for Remote
Sensing of Ice Sheets (CReSIS) [0424589]; NASA [NRA-04-OES-02,
NNX-09-AV94G, NNX-10-AI04G, 10-CRYO10-0025]; NASA Cryospheric Science
program [281945.02.53.02.19]; NSF graduate research fellowship
FX This work was supported by NSF grants 0531211, 0632198, 0732844,
0758274, 0909335, the Center for Remote Sensing of Ice Sheets (CReSIS)
0424589, by NASA under grants NRA-04-OES-02, NNX-09-AV94G, NNX-10-AI04G,
10-CRYO10-0025, and the NASA Cryospheric Science program (Grant
281945.02.53.02.19), as well as an NSF graduate research fellowship (K.
C.). We thank Operation IceBridge and the National Snow and Ice Data
Center for access to aerogeophysical data and the SeaRISE community of
scientists for all of the collaborative work over the past several
years. Finally, we would like to recognize the efforts of the Scientific
Editor, Bryn Hubbard, the Associate Editor, and two anonymous referees.
Their critical reviews were invaluable.
NR 85
TC 30
Z9 30
U1 2
U2 22
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD JUN
PY 2013
VL 118
IS 2
BP 638
EP 655
DI 10.1002/jgrf.20044
PG 18
WC Geosciences, Multidisciplinary
SC Geology
GA 225VU
UT WOS:000324993900019
ER
PT J
AU Schlegel, NJ
Larour, E
Seroussi, H
Morlighem, M
Box, JE
AF Schlegel, N. -J.
Larour, E.
Seroussi, H.
Morlighem, M.
Box, J. E.
TI Decadal-scale sensitivity of Northeast Greenland ice flow to errors in
surface mass balance using ISSM
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE Greenland; ice flow; sensitivity; surface mass balance; ice dynamics;
ice stream
ID SPATIAL-RESOLUTION; SHEET; CLIMATE; MODEL; ACCELERATION; ANTARCTICA;
GLACIERS; STREAM; BASAL
AB The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40km.
C1 [Schlegel, N. -J.; Larour, E.; Seroussi, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Morlighem, M.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
[Box, J. E.] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA.
RP Schlegel, NJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr MS 300-227, Pasadena, CA 91109 USA.
EM schlegel@eps.berkeley.edu
RI Morlighem, Mathieu/O-9942-2014; Box, Jason/H-5770-2013
OI Morlighem, Mathieu/0000-0001-5219-1310;
FU National Aeronautics and Space Administration's Modeling, Analysis and
Prediction (MAP) Program; NASA [NNX10AT68G]; NSF [ANT-0424589]
FX This work was performed at the California Institute of Technology's Jet
Propulsion Laboratory under a contract with the National Aeronautics and
Space Administration's Modeling, Analysis and Prediction (MAP) Program.
H. S. was supported by an appointment to the NASA Postdoctoral Program
at the Jet Propulsion Laboratory, administered by Oak Ridge Associated
Universities through a contract with NASA. The authors would like to
acknowledge the data provided by the National Snow and Ice Data Center
DAAC, University of Colorado, Boulder, CO, Operation IceBridge, as well
as CReSIS data generated from NSF grant ANT-0424589 and NASA grant
NNX10AT68G. They also wish to thank John Schiermeier for the time he
dedicated to the implementation of the DAKOTA-ISSM interface and for the
helpful discussions regarding UQ methods.
NR 62
TC 6
Z9 6
U1 0
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD JUN
PY 2013
VL 118
IS 2
BP 667
EP 680
DI 10.1002/jgrf.20062
PG 14
WC Geosciences, Multidisciplinary
SC Geology
GA 225VU
UT WOS:000324993900021
ER
PT J
AU Borstad, CP
McClung, DM
AF Borstad, C. P.
McClung, D. M.
TI A higher-order method for determining quasi-brittle tensile fracture
parameters governing the release of slab avalanches and a new tool for
in situ indexing
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE quasi-brittle; avalanches; fracture mechanics; brittleness
ID PROCESS ZONE LENGTH; SNOW; TOUGHNESS; STRENGTH; SIZE; ENERGY; ICE
AB The tensile fracture of heterogeneous earth materials such as snow, ice, and rocks can be characterized by two fracture parametersthe fracture toughness and the fracture process zone length. The latter length scale characterizes the zone of microcracking surrounding a crack tip in a heterogeneous material. For alpine snow, these two fracture parameters influence the release dimensions and thus destructive potential of slab avalanches. In general, it is difficult to determine these parameters concurrently, and most experimental methods are based on first-order scaling laws that have considerable errors unless very large test specimens are used. Here we introduce a simple experimental method based on a higher-order quasi-brittle scaling law that has never been applied to snow nor any other geophysical material. We conducted hundreds of beam bending experiments using natural cohesive snow samples to produce the most comprehensive measurements to date of the tensile fracture toughness and effective process zone length of snow. We also adopt a new penetration resistance gauge to index the fracture toughness data, addressing a longstanding need for better proxy measurements to characterize snow structure. The peak penetration resistance met by a thin blade proved better than the bulk snow density for predicting fracture toughness, a finding that will improve field predictions and facilitate comparisons of results across studies. The tensile fracture process zone, previously a highly uncertain length scale related to avalanche fractures, is shown to be about 5-10 times the snow grain size, implying nonlinear fracture scaling for the majority of avalanches.
C1 [Borstad, C. P.] Univ British Columbia, Dept Civil Engn, Vancouver, BC, Canada.
[McClung, D. M.] Univ British Columbia, Dept Geog, Vancouver, BC, Canada.
RP Borstad, CP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM cborstad@gmail.com
OI Borstad, Christopher/0000-0001-6992-1770
FU Natural Sciences and Engineering Research Council of Canada; Canadian
Mountain Holidays; University of British Columbia
FX We are grateful for the financial support of the Natural Sciences and
Engineering Research Council of Canada, Canadian Mountain Holidays, and
the University of British Columbia. In-kind support was graciously
provided by the Avalanche Control Section of Parks Canada at Rogers
Pass.
NR 50
TC 2
Z9 2
U1 1
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD JUN
PY 2013
VL 118
IS 2
BP 900
EP 912
DI 10.1002/jgrf.20065
PG 13
WC Geosciences, Multidisciplinary
SC Geology
GA 225VU
UT WOS:000324993900035
ER
PT J
AU Nowicki, S
Bindschadler, RA
Abe-Ouchi, A
Aschwanden, A
Bueler, E
Choi, H
Fastook, J
Granzow, G
Greve, R
Gutowski, G
Herzfeld, U
Jackson, C
Johnson, J
Khroulev, C
Larour, E
Levermann, A
Lipscomb, WH
Martin, MA
Morlighem, M
Parizek, BR
Pollard, D
Price, SF
Ren, DD
Rignot, E
Saito, F
Sato, T
Seddik, H
Seroussi, H
Takahashi, K
Walker, R
Wang, WL
AF Nowicki, Sophie
Bindschadler, Robert A.
Abe-Ouchi, Ayako
Aschwanden, Andy
Bueler, Ed
Choi, Hyeungu
Fastook, Jim
Granzow, Glen
Greve, Ralf
Gutowski, Gail
Herzfeld, Ute
Jackson, Charles
Johnson, Jesse
Khroulev, Constantine
Larour, Eric
Levermann, Anders
Lipscomb, William H.
Martin, Maria A.
Morlighem, Mathieu
Parizek, Byron R.
Pollard, David
Price, Stephen F.
Ren, Diandong
Rignot, Eric
Saito, Fuyuki
Sato, Tatsuru
Seddik, Hakime
Seroussi, Helene
Takahashi, Kunio
Walker, Ryan
Wang, Wei Li
TI Insights into spatial sensitivities of ice mass response to
environmental change from the SeaRISE ice sheet modeling project I:
Antarctica
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE Antarctica; ice-sheet; sea-level; model; ensemble
ID GROUNDING-LINE MIGRATION; INTERCOMPARISON PROJECT; OCEAN CIRCULATION;
CLIMATE-CHANGE; SEA-LEVEL; PISM-PIK; PART 1; GREENLAND; SHELF; FLOW
AB Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.
C1 [Nowicki, Sophie; Bindschadler, Robert A.; Walker, Ryan; Wang, Wei Li] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Abe-Ouchi, Ayako] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan.
[Aschwanden, Andy; Bueler, Ed; Khroulev, Constantine] Univ Alaska, Inst Geophys, Fairbanks, AR USA.
[Choi, Hyeungu] Sigma Space Corp, Lanham, MD USA.
[Fastook, Jim] Univ Maine, Comp Sci Quaternary Inst, Orono, ME USA.
[Granzow, Glen; Johnson, Jesse] Univ Montana, Coll Arts & Sci, Missoula, MT 59812 USA.
[Greve, Ralf; Sato, Tatsuru; Seddik, Hakime] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 060, Japan.
[Gutowski, Gail; Jackson, Charles] Univ Texas Austin, Inst Geophys, Austin, TX USA.
[Herzfeld, Ute] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA.
[Herzfeld, Ute] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Larour, Eric; Rignot, Eric; Seroussi, Helene] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Levermann, Anders; Martin, Maria A.] Potsdam Inst Climate Res, Potsdam, Germany.
[Lipscomb, William H.; Price, Stephen F.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Morlighem, Mathieu; Rignot, Eric] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
[Parizek, Byron R.] Penn State DuBois, Math & Geosci, Du Bois, PA USA.
[Pollard, David] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA.
[Ren, Diandong] Curtin Univ Technol, Dept Phys, Perth, WA, Australia.
[Saito, Fuyuki; Takahashi, Kunio] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Kanazawa Ku, Yokohama, Kanagawa, Japan.
[Walker, Ryan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Nowicki, S (reprint author), NASA, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA.
EM sophie.nowicki@nasa.gov
RI Greve, Ralf/G-2336-2010; Abe-Ouchi, Ayako/M-6359-2013; Price, Stephen
/E-1568-2013; Rignot, Eric/A-4560-2014; Seddik, Hakime/F-7640-2014;
Morlighem, Mathieu/O-9942-2014; Jackson, Charles/A-2202-2009; Ren,
Diandong/C-8870-2013; Levermann, Anders/G-4666-2011
OI SAITO, Fuyuki/0000-0001-5935-9614; Greve, Ralf/0000-0002-1341-4777;
Abe-Ouchi, Ayako/0000-0003-1745-5952; Price, Stephen
/0000-0001-6878-2553; Rignot, Eric/0000-0002-3366-0481; Seddik,
Hakime/0000-0002-0241-590X; Morlighem, Mathieu/0000-0001-5219-1310;
Jackson, Charles/0000-0002-2870-4494; Ren, Diandong/0000-0002-5757-7527;
Levermann, Anders/0000-0003-4432-4704
FU Japan Society for the Promotion of Science (JSPS) [22244058]; NASA
[NNX11AP39G, NNX-09-AV94G, NNX-10-AI04G, 281945.02.53.02.19]; German
Federal Ministry of Education and Research (BMBF); U.S. National Science
Foundation [0531211, 0758274, 0909335]; Center for Remote Sensing of Ice
Sheets (CReSIS) [0424589]; US National Science Foundation [ANT-0424589,
1043018, 25-0550-0001, OCE-1202632]; U.S. Department of Energy (DOE)
Office of Science Office of Biological and Environmental Research; DOE's
Office of Science [DE-AC02-05CH11231, DE-AC05-00OR22725]; NASA
Cryospheric Sciences Program; Jet Propulsion Laboratory Research
Technology and Development Program; NASA High-End Computing (HEC)
Program through the NASA Advanced Supercomputing (NAS) Division at Ames
Research Center; NSF [0909335, CReSIS 0424589]; NASA Cryospheric Science
program
FX A project of this magnitude and scope required extensive support from
many persons not listed as authors. Data sets, both published and in
pre-publication forms, were contributed by A. LeBrocq, H. Pritchard, B.
Csatho (dh/dt), T. Bracegirdle, CReSIS, and NASA's IceBridge mission and
posted on the University of Montana CISM web site to be available to all
SeaRISE modelers. This web site also served as a discussion forum for
SeaRISE during its early stages of model initialization and experiment
design. The Los Alamos National Laboratory also offered use of a web
site that became the repository of all communication files (telecom
notes and meeting presentations of SeaRISE). Participation in SeaRISE
remained voluntary and, in most cases, came without financial support.
Thus, participants had to leverage off of existing funding activities
with objectives that overlapped with SeaRISE goals. [51] R. Greve, H.
Seddik, and T. Sato were supported by a Grant-in-Aid for Scientific
Research A (22244058) from the Japan Society for the Promotion of
Science (JSPS). U. Herzfeld was supported by a NASA Cryospheric Sciences
Award (NNX11AP39G). M. A. Martin was supported by the German Federal
Ministry of Education and Research (BMBF). B. Parizek was supported by
the U.S. National Science Foundation under grants 0531211, 0758274,
0909335, and the Center for Remote Sensing of Ice Sheets (CReSIS)
0424589 and by NASA under grants NNX-09-AV94G and NNX-10-AI04G. D.
Pollard was supported by the US National Science Foundation under grants
ANT-0424589, 1043018, 25-0550-0001, and OCE-1202632. S. F. Price and W.
H. Lipscomb were supported by the U.S. Department of Energy (DOE) Office
of Science Office of Biological and Environmental Research. Simulations
were conducted at The National Energy Research Scientific Computing
Center (supported by DOE's Office of Science under contract
DE-AC02-05CH11231) using time awarded through DOE's ASCR Leadership
Computing Challenge allocation to the project "Projections of Ice Sheet
Evolution Using Advanced Ice and Ocean Models." Model development and
simulations were also conducted at the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, supported by DOE's Office
of Science under contract DE-AC05-00OR22725. CISM development and
simulations relied on additional support by K. J. Evans, P. H. Worley,
and J. A. Nichols (all of Oak Ridge National Laboratory) and by A. G.
Salinger (Sandia National Laboratories). H. Seroussi and M. Morlighem
are supported by the NASA Cryospheric Sciences Program and Modeling
Analysis and Prediction Program and a contract with the Jet Propulsion
Laboratory Research Technology and Development Program. H. Seroussi was
also supported by an appointment to the NASA Postdoctoral Program at the
Jet Propulsion Laboratory, administered by Oak Ridge Associated
Universities through a contract with NASA. Resources supporting this
work were provided by the NASA High-End Computing (HEC) Program through
the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.
E. Larour and E. Rignot further enabled their participation on SeaRISE.
R. Walker was supported by NSF through grants 0909335 and CReSIS
0424589, by NASA under grants NNX-09-AV94G and NNX-10-AI04G, and by the
Gary Comer Science and Education Foundation. W. Wang was supported by
the NASA Cryospheric Science program (grant 281945.02.53.02.19).
Finally, S. Nowicki and R.; Bindschadler wish to gratefully acknowledge
the unwavering encouragement and financial support from the NASA
Cryospheric Science program for the core funding enabling SeaRISE to
reach a successful conclusion. We thank the reviewers (two anonymous and
A. Vieli), the Associate Editor P. Christoffersen, and the Editor B.
Hubbard for their very thoughtful comments to the original draft that
led to a more constructive final manuscript.
NR 119
TC 20
Z9 20
U1 0
U2 26
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD JUN
PY 2013
VL 118
IS 2
BP 1002
EP 1024
DI 10.1002/jgrf.20081
PG 23
WC Geosciences, Multidisciplinary
SC Geology
GA 225VU
UT WOS:000324993900042
ER
PT J
AU Nowicki, S
Bindschadler, RA
Abe-Ouchi, A
Aschwanden, A
Bueler, E
Choi, H
Fastook, J
Granzow, G
Greve, R
Gutowski, G
Herzfeld, U
Jackson, C
Johnson, J
Khroulev, C
Larour, E
Levermann, A
Lipscomb, WH
Martin, MA
Morlighem, M
Parizek, BR
Pollard, D
Price, SF
Ren, DD
Rignot, E
Saito, F
Sato, T
Seddik, H
Seroussi, H
Takahashi, K
Walker, R
Wang, WL
AF Nowicki, Sophie
Bindschadler, Robert A.
Abe-Ouchi, Ayako
Aschwanden, Andy
Bueler, Ed
Choi, Hyeungu
Fastook, Jim
Granzow, Glen
Greve, Ralf
Gutowski, Gail
Herzfeld, Ute
Jackson, Charles
Johnson, Jesse
Khroulev, Constantine
Larour, Eric
Levermann, Anders
Lipscomb, William H.
Martin, Maria A.
Morlighem, Mathieu
Parizek, Byron R.
Pollard, David
Price, Stephen F.
Ren, Diandong
Rignot, Eric
Saito, Fuyuki
Sato, Tatsuru
Seddik, Hakime
Seroussi, Helene
Takahashi, Kunio
Walker, Ryan
Wang, Wei Li
TI Insights into spatial sensitivities of ice mass response to
environmental change from the SeaRISE ice sheet modeling project II:
Greenland
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE Greenland; ice-sheet; sea-level; model; ensemble
ID OUTLET GLACIER; CLIMATE-CHANGE; SURFACE MELT; SEA-LEVEL; ANTARCTICA;
ACCELERATION; FLOW; SIMULATIONS; VARIABILITY; BALANCE
AB The Sea-level Response to Ice Sheet Evolution (SeaRISE) effort explores the sensitivity of the current generation of ice sheet models to external forcing to gain insight into the potential future contribution to sea level from the Greenland and Antarctic ice sheets. All participating models simulated the ice sheet response to three types of external forcings: a change in oceanic condition, a warmer atmospheric environment, and enhanced basal lubrication. Here an analysis of the spatial response of the Greenland ice sheet is presented, and the impact of model physics and spin-up on the projections is explored. Although the modeled responses are not always homogeneous, consistent spatial trends emerge from the ensemble analysis, indicating distinct vulnerabilities of the Greenland ice sheet. There are clear response patterns associated with each forcing, and a similar mass loss at the full ice sheet scale will result in different mass losses at the regional scale, as well as distinct thickness changes over the ice sheet. All forcings lead to an increased mass loss for the coming centuries, with increased basal lubrication and warmer ocean conditions affecting mainly outlet glaciers, while the impacts of atmospheric forcings affect the whole ice sheet.
C1 [Nowicki, Sophie; Bindschadler, Robert A.; Walker, Ryan; Wang, Wei Li] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Abe-Ouchi, Ayako] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan.
[Aschwanden, Andy; Bueler, Ed; Khroulev, Constantine] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA.
[Choi, Hyeungu] Sigma Space Corp, Lanham, MD USA.
[Fastook, Jim] Univ Maine, Comp Sci Quaternary Inst, Orono, ME USA.
[Granzow, Glen; Johnson, Jesse] Univ Montana, Coll Arts & Sci, Missoula, MT 59812 USA.
[Greve, Ralf; Sato, Tatsuru; Seddik, Hakime] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 060, Japan.
[Gutowski, Gail; Jackson, Charles] Univ Texas Austin, Inst Geophys, Austin, TX USA.
[Herzfeld, Ute] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA.
[Herzfeld, Ute] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Larour, Eric; Rignot, Eric; Seroussi, Helene] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Levermann, Anders; Martin, Maria A.] Univ Potsdam, Inst Phys, Potsdam, Germany.
[Lipscomb, William H.; Price, Stephen F.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Morlighem, Mathieu; Rignot, Eric] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
[Parizek, Byron R.] Penn State DuBois, Dept Math & Geosci, Du Bois, PA USA.
[Pollard, David] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA.
[Ren, Diandong] Curtin Univ Technol, Dept Phys, Perth, WA, Australia.
[Saito, Fuyuki; Takahashi, Kunio] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Yokohama, Kanagawa, Japan.
[Walker, Ryan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Nowicki, S (reprint author), NASA, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA.
EM sophie.nowicki@nasa.gov
RI Greve, Ralf/G-2336-2010; Abe-Ouchi, Ayako/M-6359-2013; Price, Stephen
/E-1568-2013; Rignot, Eric/A-4560-2014; Seddik, Hakime/F-7640-2014;
Morlighem, Mathieu/O-9942-2014; Jackson, Charles/A-2202-2009; Ren,
Diandong/C-8870-2013; Levermann, Anders/G-4666-2011;
OI Greve, Ralf/0000-0002-1341-4777; Abe-Ouchi, Ayako/0000-0003-1745-5952;
Price, Stephen /0000-0001-6878-2553; Rignot, Eric/0000-0002-3366-0481;
Seddik, Hakime/0000-0002-0241-590X; Morlighem,
Mathieu/0000-0001-5219-1310; Jackson, Charles/0000-0002-2870-4494; Ren,
Diandong/0000-0002-5757-7527; Levermann, Anders/0000-0003-4432-4704;
SAITO, Fuyuki/0000-0001-5935-9614
FU Japan Society for the Promotion of Science (JSPS) [22244058]; NASA
Cryospheric Sciences Award [NNX11AP39G]; German Federal Ministry of
Education and Research (BMBF); U.S. National Science Foundation
[0531211, 0758274, 0909335, ANT-0424589, 1043018, 25-0550-0001,
OCE-1202632]; Center for Remote Sensing of Ice Sheets (CReSIS)
[0424589]; NASA [NNX-09-AV94G, NNX-10-AI04G]; U.S. Department of Energy
(DOE) Office of Science, Biological and Environmental Research; DOE's
Office of Science [DE-AC02-05CH11231, DE-AC05-00OR22725]; DOE's ASCR;
NASA Postdoctoral Program at the Jet Propulsion Laboratory; NASA
High-End Computing (HEC) Program through the NASA Advanced
Supercomputing (NAS) Division at Ames Research Center; NSF [0909335,
CReSIS 0424589]; Gary Comer Science and Education Foundation; NASA
Cryospheric Science program [281945.02.53.02.19]; NASA Cryospheric
Science program
FX R. Greve, H. Seddik, and T. Sato were supported by a Grant-in-Aid for
Scientific Research (22244058) from the Japan Society for the Promotion
of Science (JSPS). U. Herzfeld was supported by a NASA Cryospheric
Sciences Award (NNX11AP39G). M. A. Martin was supported by the German
Federal Ministry of Education and Research (BMBF). B. Parizek was
supported by the U.S. National Science Foundation under grants 0531211,
0758274, 0909335 and the Center for Remote Sensing of Ice Sheets
(CReSIS) 0424589, and by NASA under grants NNX-09-AV94G and
NNX-10-AI04G. D. Pollard was supported by the U.S. National Science
Foundation under grants ANT-0424589, 1043018, 25-0550-0001, and
OCE-1202632. S. F. Price and W. H. Lipscomb were supported by the U.S.
Department of Energy (DOE) Office of Science, Biological and
Environmental Research. Simulations were conducted at the National
Energy Research Scientific Computing Center (supported by DOE's Office
of Science under contract DE-AC02-05CH11231) using time awarded through
DOE's ASCR Leadership Computing Challenge allocation to the project
"Projections of Ice Sheet Evolution Using Advanced Ice and Ocean
Models." Model development and simulations were also conducted at the
Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, supported by DOE's Office of Science under contract
DE-AC05-00OR22725. CISM development and simulations relied on additional
support by K.J. Evans, P. H. Worley, and J.A. Nichols (all of Oak Ridge
National Laboratory) and A. G. Salinger (Sandia National Laboratories).
H Seroussi and M. Morlighem are supported by the NASA Cryospheric
Sciences Program and Modeling Analysis and Prediction Program and a
contract with the Jet Propulsion Laboratory Research Technology and
Development Program. H Seroussi was also supported by an appointment to
the NASA Postdoctoral Program at the Jet Propulsion Laboratory,
administered by Oak Ridge Associated Universities through a contract
with NASA. Resources supporting this work were provided by the NASA
High-End Computing (HEC) Program through the NASA Advanced
Supercomputing (NAS) Division at Ames Research Center. E. Larour and E.
Rignot further enabled their participation on SeaRISE. R. Walker was
supported by NSF through grants 0909335 and CReSIS 0424589, by NASA
under grants NNX-09-AV94G and NNX-10-AI04G, and by the Gary Comer
Science and Education Foundation. W. Wang was supported by the NASA
Cryospheric Science program (grant 281945.02.53.02.19). Finally, S.
Nowicki and R. Bindschadler wish to gratefully acknowledge the
unwavering encouragement and financial support from the NASA Cryospheric
Science program for the core funding enabling SeaRISE to reach a
successful conclusion. We thank the reviewers (one anonymous and A.
Vieli) and the Associate Editor P. Christoffersen for their very
thoughtful comments to the original draft that led to a more
constructive final manuscript.
NR 84
TC 31
Z9 31
U1 3
U2 37
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD JUN
PY 2013
VL 118
IS 2
BP 1025
EP 1044
DI 10.1002/jgrf.20076
PG 20
WC Geosciences, Multidisciplinary
SC Geology
GA 225VU
UT WOS:000324993900043
ER
PT J
AU Kirchner, N
Furrer, R
Jakobsson, M
Zwally, HJ
Robbins, JW
AF Kirchner, N.
Furrer, R.
Jakobsson, M.
Zwally, H. J.
Robbins, J. W.
TI Statistical modeling of a former Arctic Ocean ice shelf complex using
Antarctic analogies
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE Arctic Ocean ice shelves; extreme value theory; deep-draft ice berg
scours; multivariate linear model; ICESat data in Arctic-Antarctic
analogy approach
ID LAST GLACIAL MAXIMUM; LOMONOSOV RIDGE; YERMAK PLATEAU; MARINE-ICE;
SHEET; SEA; SEDIMENTATION; SENSITIVITY; LAURENTIDE; ICEBERGS
AB Geophysical mapping and coring of the central Arctic Ocean seafloor provide evidence for repeated occurrences of ice sheet/ice shelf complexes during previous glacial periods. Several ridges and bathymetric highs shallower than present water depths of approximate to 1000m show signs of erosion from deep-drafting (armadas of) icebergs, which originated from thick outlet glaciers and ice shelves. Mapped glacigenic landforms and dates of cored sediments suggest that the largest ice shelf complex was confined to the Amerasian sector of the Arctic Ocean during Marine Isotope Stage (MIS) 6. However, the spatial extent of ice shelves can not be well reconstructed from occasional groundings on bathymetric highs. Therefore, we apply a statistical approach to provide independent support for an extensive MIS 6 ice shelf complex, which previously was inferred only from interpretation of geophysical and geological data. Specifically, we assess whether this ice shelf complex comprises a likely source of the deep-draft icebergs responsible for the mapped scour marks. The statistical modeling is based on exploiting relations between contemporary Antarctic ice shelves and their local physical environments and the assumption that Arctic Ocean MIS6 ice shelves scale similarly. Analyzing ice thickness data along the calving front of contemporary ice shelves, a peak over threshold method is applied to determine sources of deep-drafting icebergs in the Arctic Ocean MIS6 ice shelf complex. This approach is novel to modeling Arctic paleoglacial configurations. Predicted extreme calving front drafts match observed deep-draft iceberg scours if the ice shelf complex is sufficiently large.
C1 [Kirchner, N.] Stockholm Univ, Dept Phys Geog & Quaternary Geol, S-10691 Stockholm, Sweden.
[Furrer, R.] Univ Zurich, Inst Math, CH-8001 Zurich, Switzerland.
[Jakobsson, M.] Stockholm Univ, Dept Geol Sci, S-10691 Stockholm, Sweden.
[Zwally, H. J.; Robbins, J. W.] NASA, Cryospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Kirchner, N (reprint author), Stockholm Univ, Dept Phys Geog & Quaternary Geol, S-10691 Stockholm, Sweden.
EM nina.kirchner@natgeo.su.se
RI Furrer, Reinhard/A-4580-2011; Jakobsson, Martin/F-6214-2010;
OI Furrer, Reinhard/0000-0002-6319-2332; Jakobsson,
Martin/0000-0002-9033-3559
FU SNSF [129782, 143282]; URPP Systems Biology
FX N.K. and R. F. are joint first authors of this manuscript. N.K. thanks
C. Stover Wiederwohl, Texas A&M University, for introduction to and
guidance through the WOCE-SODB database during the "Oden Southern Ocean
0910" cruise to Pine Island Bay/West Antarctica. R. F. acknowledges
funding from SNSF 129782, 143282 and URPP Systems Biology. This is a
contribution from the Bolin Center for Climate Research at Stockholm
University, Sweden. We thank the editor, Bryn Hubbard, the associate
editor, Mike Bentley, as well as Jesse Johnson, and five anonymous
reviewers for valuable comments on the manuscript.
NR 47
TC 1
Z9 1
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD JUN
PY 2013
VL 118
IS 2
BP 1105
EP 1117
DI 10.1002/jgrf.20077
PG 13
WC Geosciences, Multidisciplinary
SC Geology
GA 225VU
UT WOS:000324993900047
ER
PT J
AU Brucker, L
Markus, T
AF Brucker, Ludovic
Markus, Thorsten
TI Arctic-scale assessment of satellite passive microwave-derived snow
depth on sea ice using Operation IceBridge airborne data
SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
LA English
DT Article
DE SD on sea ice; evaluation of satellite product; Operation IceBridge
Airborne data
ID AMSR-E; RADAR BACKSCATTER; RETRIEVALS; ROUGHNESS; EXCHANGE; ENERGY; EOS
AB Snow depth on sea ice (SD) is a key geophysical variable, knowledge of which is critical for calculating the energy and mass balance budgets. Moreover, accurate knowledge of the SD distribution is important to retrieve sea-ice thicknesses from altimetry data. So far, only space-based microwave radiometers (e.g., Advanced Microwave Scanning Radiometer for Earth Observing System; AMSR-E) provide operational SD on seasonal sea-ice retrievals. A thorough assessment of these retrievals is needed on a large scale and on a variety of sea-ice types. Our study presents such an assessment on Arctic sea ice using NASA's airborne Operation IceBridge (OIB) SDs, retrieved from radar measurements. Between 2009 and 2011, approximate to 610 12.5 km satellite grid cells were covered by seasonal sea ice where both satellite SD retrievals and OIB data were available. Using all the available data, the difference between the AMSR-E product and the averaged OIB snow-radar-derived SD is 0.000.07 m. Satellite-derived SD was accurate in the Beaufort Sea and the Canadian Archipelago but underestimated (approximate to 0.07 m) in the Nares Strait. The RMSE between the two products ranges between 0.03 and 0.15 m. The RMSE is less than 0.06 m over a shallow snow cover (<0.20 m), in areas where satellite-retrieved ice concentrations are higher than 90%, surface smooth, and ice thicker than approximate to 0.5 m. Locally the AMSR-E algorithm can significantly underestimate SD. Several regions where the retrievals were less accurate (error >0.10 m) have been identified and related to the presence of either low ice concentration or significant fraction of multiyear ice within the grid cell that has not been flagged.
C1 [Brucker, Ludovic; Markus, Thorsten] NASA GSFC, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
[Brucker, Ludovic] Univ Space Res Assoc, Greenbelt, MD USA.
RP Brucker, L (reprint author), NASA GSFC, Cryospher Sci Lab, Code 615, Greenbelt, MD 20771 USA.
EM ludovic.brucker@nasa.gov
RI Brucker, Ludovic/A-8029-2010
OI Brucker, Ludovic/0000-0001-7102-8084
NR 25
TC 14
Z9 14
U1 0
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9275
J9 J GEOPHYS RES-OCEANS
JI J. Geophys. Res.-Oceans
PD JUN
PY 2013
VL 118
IS 6
BP 2892
EP 2905
DI 10.1002/jgrc.20228
PG 14
WC Oceanography
SC Oceanography
GA 224KZ
UT WOS:000324885500010
ER
PT J
AU Hauck, SA
Margot, JL
Solomon, SC
Phillips, RJ
Johnson, CL
Lemoine, FG
Mazarico, E
McCoy, TJ
Padovan, S
Peale, SJ
Perry, ME
Smith, DE
Zuber, MT
AF Hauck, Steven A., II
Margot, Jean-Luc
Solomon, Sean C.
Phillips, Roger J.
Johnson, Catherine L.
Lemoine, Frank G.
Mazarico, Erwan
McCoy, Timothy J.
Padovan, Sebastiano
Peale, Stanton J.
Perry, Mark E.
Smith, David E.
Zuber, Maria T.
TI The curious case of Mercury's internal structure
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE Mercury; Internal Structure; MESSENGER
ID EQUATION-OF-STATE; FE-RICH PORTION; HIGH-PRESSURE; MAGNETIC-FIELD;
GRAVITY-FIELD; EARTHS CORE; MELTING RELATIONS; HIGH-TEMPERATURE;
PLANETARY CORES; PHASE-RELATIONS
AB The recent determination of the gravity field of Mercury and new Earth-based radar observations of the planet's spin state afford the opportunity to explore Mercury's internal structure. These observations provide estimates of two measures of the radial mass distribution of Mercury: the normalized polar moment of inertia and the fractional polar moment of inertia of the solid portion of the planet overlying the liquid core. Employing Monte Carlo techniques, we calculate several million models of the radial density structure of Mercury consistent with its radius and bulk density and constrained by these moment of inertia parameters. We estimate that the top of the liquid core is at a radius of 202030km, the mean density above this boundary is 3380200kgm(-3), and the density below the boundary is 6980280kgm(-3). We find that these internal structure parameters are robust across a broad range of compositional models for the core and planet as a whole. Geochemical observations of Mercury's surface by MESSENGER indicate a chemically reducing environment that would favor the partitioning of silicon or both silicon and sulfur into the metallic core during core-mantle differentiation. For a core composed of Fe-S-Si materials, the thermodynamic properties at elevated pressures and temperatures suggest that an FeS-rich layer could form at the top of the core and that a portion of it may be presently solid.
C1 [Hauck, Steven A., II] Case Western Reserve Univ, Dept Earth Environm & Planetary Sci, Cleveland, OH 44106 USA.
[Margot, Jean-Luc] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA.
[Margot, Jean-Luc; Padovan, Sebastiano] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
[Solomon, Sean C.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC USA.
[Solomon, Sean C.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
[Phillips, Roger J.] SW Res Inst, Planetary Sci Directorate, Boulder, CO USA.
[Johnson, Catherine L.] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC V5Z 1M9, Canada.
[Johnson, Catherine L.] Planetary Sci Inst, Tucson, AZ USA.
[Lemoine, Frank G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Mazarico, Erwan; Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA.
[McCoy, Timothy J.] Smithsonian Inst, Dept Mineral Sci, Natl Museum Nat Hist, Washington, DC 20560 USA.
[Peale, Stanton J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Perry, Mark E.] Johns Hopkins Appl Phys Lab, Space Dept, Laurel, MD USA.
RP Hauck, SA (reprint author), Case Western Reserve Univ, Dept Earth Environm & Planetary Sci, Cleveland, OH 44106 USA.
EM hauck@case.edu
RI Hauck, Steven/A-7865-2008; Margot, Jean-Luc/A-6154-2012; Lemoine,
Frank/D-1215-2013; Mazarico, Erwan/N-6034-2014; Perry, Mark/B-8870-2016
OI Hauck, Steven/0000-0001-8245-146X; Margot, Jean-Luc/0000-0001-9798-1797;
Mazarico, Erwan/0000-0003-3456-427X; Perry, Mark/0000-0003-1600-6856
FU NASA MESSENGER [NNX07AR77G]; NASA [NASW-00002, NAS5-97271]
FX We thank the entire MESSENGER team for the development and operation of
the mission and the acquisition of the data from the first spacecraft to
orbit Mercury. Discussions with Larry Nittler and Nathalie Michel on an
early draft are greatly appreciated. Comments by Frank Sohl and an
anonymous reviewer helped sharpen the manuscript. This work is supported
by NASA MESSENGER Participating Scientist grant NNX07AR77G to S. A. H.
The MESSENGER project is supported by the NASA Discovery Program under
contracts NASW-00002 to the Carnegie Institution of Washington and
NAS5-97271 to The Johns Hopkins University Applied Physics Laboratory.
This work made use of the High Performance Computing Resource in the
Core Facility for Advanced Research Computing at Case Western Reserve
University.
NR 73
TC 52
Z9 52
U1 3
U2 40
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JUN
PY 2013
VL 118
IS 6
BP 1204
EP 1220
DI 10.1002/jgre.20091
PG 17
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 224TI
UT WOS:000324911900004
ER
PT J
AU Thomson, BJ
Bridges, NT
Cohen, J
Hurowitz, JA
Lennon, A
Paulsen, G
Zacny, K
AF Thomson, B. J.
Bridges, N. T.
Cohen, J.
Hurowitz, J. A.
Lennon, A.
Paulsen, G.
Zacny, K.
TI Estimating rock compressive strength from Rock Abrasion Tool (RAT)
grinds
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE Mars; physical properties; basalt; rock strength; MER
ID GUSEV CRATER; SANDSTONE
AB Each Mars Exploration Rover carries a Rock Abrasion Tool (RAT) whose intended use was to abrade the outer surfaces of rocks to expose more pristine material. Motor currents drawn by the RAT motors are related to the strength and hardness of rock surfaces undergoing abrasion, and these data can be used to infer more about a target rock's physical properties. However, no calibration of the RAT exists. Here, we attempt to derive an empirical correlation using an assemblage of terrestrial rocks and apply this correlation to data returned by the rover Spirit. The results demonstrate a positive correlation between rock strength and RAT grind energy for rocks with compressive strengths less than about 150MPa, a category that includes all but the strongest intact rocks. Applying this correlation to rocks abraded by Spirit's RAT, the results indicate a large divide in strength between more competent basaltic rocks encountered in the plains of Gusev crater (Adirondack-class rocks) and the weaker variety of rock types measured in the Columbia Hills. Adirondack-class rocks have estimated compressive strengths in the range of 70-130MPa and are significantly less strong than fresh terrestrial basalts; this may be indicative of a degree of weathering-induced weakening. Rock types in the Columbia Hills (Wishstone, Watchtower, Clovis, and Peace class) all have compressive strengths <50MPa and are consistent with impactites or volcanoclastic materials. In general, when considered alongside chemical, spectral, and rock textural data, these inferred compressive strength results help inform our understanding of rock origins and modification history.
C1 [Thomson, B. J.] Boston Univ, Ctr Remote Sensing, Boston, MA 02215 USA.
[Bridges, N. T.; Lennon, A.] Johns Hopkins Appl Phys Lab, Laurel, MD USA.
[Cohen, J.; Paulsen, G.; Zacny, K.] Honeybee Robot, Pasadena, CA USA.
[Hurowitz, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Thomson, BJ (reprint author), Boston Univ, Ctr Remote Sensing, 725 Commonwealth Ave,Rm 433, Boston, MA 02215 USA.
EM bjt@bu.edu
RI Bridges, Nathan/D-6341-2016
FU NASA
FX This project has benefitted from helpful discussions with current and
former Honeybee Robotics engineers; insightful and constructive reviews
from Ralph Lorenz and an anonymous reviewer also improved the
manuscript. Support for this research was provided by a NASA Mars
Fundamental Research Program grant to BJT. The authors also gratefully
acknowledge Robert Anderson and Gregory Peters from JPL for help with
rock sample procurement.
NR 36
TC 5
Z9 5
U1 1
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JUN
PY 2013
VL 118
IS 6
BP 1233
EP 1244
DI 10.1002/jgre.20061
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 224TI
UT WOS:000324911900006
ER
PT J
AU Jordan, AP
Stubbs, TJ
Joyce, CJ
Schwadron, NA
Spence, HE
Wilson, JK
AF Jordan, A. P.
Stubbs, T. J.
Joyce, C. J.
Schwadron, N. A.
Spence, H. E.
Wilson, J. K.
TI The formation of molecular hydrogen from water ice in the lunar regolith
by energetic charged particles
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE galactic cosmic rays; solar energetic particles; water ice; permanently
shadowed region; Moon; molecular hydrogen
ID SOLAR-WIND; UV PHOTOLYSIS; BOMBARDMENT; IRRADIATION; POLES; RADIATION;
DEPOSITS; RECORD; PLUME; MOON
AB On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket into the permanently shadowed region (PSR) within Cabeus crater and detected water vapor and ice, as well as other volatiles, in the ejecta plume. The Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph on board the Lunar Reconnaissance Orbiter (LRO), observed this plume as FUV emissions from the fluorescence of sunlight by molecular hydrogen (H-2) and other constituents. Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs), can dissociate the molecules in water ice to form H-2. We examine how much H(2)can be formed by these types of particle radiation interacting with water ice sequestered in the regolith within PSRs, and we assess whether it can account for the H-2 observed by LAMP. To estimate H(2)formation, we use the GCR and SEP radiation dose rates measured by the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER). The exposure time of the ice is calculated by considering meteoritic gardening and the penetration depth of the energetic particles. We find that GCRs and SEPs could convert at least 1-7% of the original water molecules into H-2. Therefore, given the amount of water detected by LCROSS, such particle radiationinduced dissociation of water ice could likely account for a significant percentage (10-100%) of the H(2)measured by LAMP.
C1 [Jordan, A. P.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Wilson, J. K.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Stubbs, T. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Jordan, AP (reprint author), Univ New Hampshire, Inst Study Earth Oceans & Space, Morse Hall Room 308,8 Coll Rd, Durham, NH 03824 USA.
EM a.p.jordan@unh.edu
RI Stubbs, Timothy/I-5139-2013;
OI Stubbs, Timothy/0000-0002-5524-645X; Spence, Harlan/0000-0002-2526-2205
FU NASA [NNG11PA03C]
FX This work was supported by NASA grant NNG11PA03C. The authors wish to
thank Alex Crew and Alex Boyd for helpful discussions. The authors also
wish to thank the two reviewers for their valuable suggestions for
improving this paper. The OMNI data were obtained from the GSFC/SPDF
OMNIWeb interface at http://omniweb.gsfc.nasa.gov.
NR 52
TC 9
Z9 9
U1 2
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JUN
PY 2013
VL 118
IS 6
BP 1257
EP 1264
DI 10.1002/jgre.20095
PG 8
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 224TI
UT WOS:000324911900008
ER
PT J
AU Kahre, MA
Vines, SK
Haberle, RM
Hollingsworth, JL
AF Kahre, Melinda A.
Vines, Sarah K.
Haberle, Robert M.
Hollingsworth, Jeffery L.
TI The early Martian atmosphere: Investigating the role of the dust cycle
in the possible maintenance of two stable climate states
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE Mars; atmosphere
ID GENERAL-CIRCULATION MODEL; PARTICLE SIZES; MARS; SIMULATIONS
AB C. Leovy (personal communication, 2007) speculated that two stable climate states on early Mars could have resulted from interactions between the dust and CO2 cycles. In one state, a highly active dust cycle would prevent atmospheric collapse, and in the second, the collapsed atmosphere would not maintain an active dust cycle. An initial assessment of this idea is presented based on a Mars general circulation model parameter study. A range of global dust loadings, CO2 ice albedos, and obliquities are investigated to explore conditions in which increasing the atmospheric dust content stabilizes an otherwise unstable atmosphere. We find that dust only stabilizes the atmosphere at high obliquity and when the CO2 ice albedo is high. Although results suggest that two stable states could have existed on early Mars under limited conditions, further work is needed to know if the conditions necessary are physically plausible.
C1 [Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Vines, Sarah K.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA.
RP Kahre, MA (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA.
EM melinda.a.kahre@nasa.gov
RI Dennis, Allison/A-7654-2014
FU Mars Fundamental Research Program
FX This project would not have come about if it were not for Conway Leovy.
His participation in this ongoing work will be greatly missed. This work
was funded by the Mars Fundamental Research Program. The authors thank
Claire Newman and an anonymous reviewer for their insightful comments
and suggestions.
NR 31
TC 5
Z9 5
U1 2
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JUN
PY 2013
VL 118
IS 6
BP 1388
EP 1396
DI 10.1002/jgre.20099
PG 9
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 224TI
UT WOS:000324911900015
ER
PT J
AU Matteini, L
Hellinger, P
Goldstein, BE
Landi, S
Velli, M
Neugebauer, M
AF Matteini, Lorenzo
Hellinger, Petr
Goldstein, Bruce E.
Landi, Simone
Velli, Marco
Neugebauer, Marcia
TI Signatures of kinetic instabilities in the solar wind
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE Solar Wind; Kinetic Instabilities; Observations in situ; Space Plasmas
ID ELECTROMAGNETIC PROTON/PROTON INSTABILITIES; PROTON TEMPERATURE
ANISOTROPY; ULYSSES OBSERVATIONS; ION-BEAMS; PLASMA; VELOCITY;
DISTRIBUTIONS; CONSTRAINT; COLLISIONS; TURBULENCE
AB An analysis of ion non-thermal properties in the fast solar wind based on Ulysses data is reported. The radial evolution of the main proton moments (density, temperature, and drift velocities) and their empirical correlations with other plasma parameters are investigated in detail and compared with theoretical expectations. The stability of the plasma is studied against different ion kinetic instabilities driven by ion temperature anisotropies and differential velocities, focusing on the identification of possible signatures of relevant instabilities in the observed core-beam structure of proton distributions. The temperature anisotropy of the total proton distribution appears to be constrained by fire hose instabilities, in agreement with previous studies, while if considered separately, beam and core populations exhibit opposite anisotropies, with core protons characterized by perpendicular temperatures larger than the parallel ones, possibly (marginally) unstable for ion-cyclotron instability. The evolution with distance of the drift velocity between the secondary population and the main core is found to be nonadiabatic, leading to the identification of a marginal stability path of a magnetosonic ion-beam instability. As a conclusion, we find that a large fraction of the proton distributions observed by Ulysses display signatures of either a beam or a fire hose instability, suggesting that such kinetic processes play an important role in regulating the solar wind thermal energetics during the plasma expansion.
C1 [Matteini, Lorenzo] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England.
[Matteini, Lorenzo; Landi, Simone; Velli, Marco] Univ Florence, Dipartimento Fis & Astron, Florence, Italy.
[Hellinger, Petr] AS CR, Astron Inst, Prague, Czech Republic.
[Goldstein, Bruce E.; Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Neugebauer, Marcia] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
RP Matteini, L (reprint author), Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
EM matteini@arcetri.astro.it
RI Hellinger, Petr/F-5267-2014; Landi, Simone/G-7282-2015
OI Hellinger, Petr/0000-0002-5608-0834; Landi, Simone/0000-0002-1322-8712
FU European Commission [284515]; Science and Technology Facilities Council
(STFC); Grant Agency of the Czech Republic [P209/12/2023]; National
Aeronautics and Space Administration
FX The authors thank Roland Grappin, Tim Horbury, and Robert Wicks for
useful discussions. The research leading to these results has received
funding from the European Commission's Seventh Framework Programme (FP7)
under the grant agreement SHOCK (project 284515) and from the Science
and Technology Facilities Council (STFC). PH acknowledges the grant
P209/12/2023 of the Grant Agency of the Czech Republic. The research
described in this paper was also carried out in part at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.
NR 54
TC 28
Z9 28
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 2771
EP 2782
DI 10.1002/jgra.50320
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100002
ER
PT J
AU Le, G
Chi, PJ
Blanco-Cano, X
Boardsen, S
Slavin, JA
Anderson, BJ
Korth, H
AF Le, Guan
Chi, Peter J.
Blanco-Cano, Xochitl
Boardsen, Scott
Slavin, James A.
Anderson, Brian J.
Korth, Haje
TI Upstream ultra-low frequency waves in Mercury's foreshock region:
MESSENGER magnetic field observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE Mercury upstream waves; Mercury's foreshock; MESSENGER spacecraft; Low
Mach number shocks; Upstream whistler waves; Upstream magnetosonic waves
ID EARTHS BOW SHOCK; ONE-HERTZ WAVES; COLLISIONLESS SHOCKS; IONS UPSTREAM;
MACH-NUMBER; ULF WAVES; MAGNETOSHEATH; BEAMS; ACCELERATION; BOUNDARY
AB Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body. The availability of MESSENGER orbiter data enables us for the first time to conduct an in-depth study of upstream waves in Mercury's foreshock. This paper reports first results of an observational study of upstream ULF waves in Mercury's foreshock using high-time resolution magnetic field data from the MESSENGER spacecraft to understand the general morphology of these waves. We find that the most common wave phenomenon in Mercury's foreshock has frequencies2Hz, with properties similar to the 1 Hz whistler waves in the Earth's foreshock. Their generation appears to be generic to the shock and not affected by the weak strength and small size of Mercury's bow shock. On the other hand, the most common wave phenomenon in the Earth's foreshock is the large-amplitude 30 second waves, identified as fast magnetosonic waves generated by backstreaming ions. Similar waves at Mercury have wave frequencies at0.3Hz, but occur only sporadically. The general lack of strong 30 second magnetosonic waves at Mercury can be attributed to the lack of strong backstreaming ions due to a weak bow shock and not enough time for wave growth due to the small foreshock size. Superposed on the 1 Hz whistler waves, there are short bursts of spectral peaks at0.8Hz that are new and have not been reported previously in Mariner 10 data.
C1 [Le, Guan; Chi, Peter J.; Boardsen, Scott] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Space Weather Lab, Greenbelt, MD 20771 USA.
[Chi, Peter J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
[Blanco-Cano, Xochitl] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City, DF, Mexico.
[Slavin, James A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Anderson, Brian J.; Korth, Haje] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
RP Le, G (reprint author), NASA, Goddard Space Flight Ctr, Code 674, Greenbelt, MD 20771 USA.
EM Guan.Le@nasa.gov
RI Slavin, James/H-3170-2012; Le, Guan/C-9524-2012
OI Slavin, James/0000-0002-9206-724X; Le, Guan/0000-0002-9504-5214
NR 52
TC 12
Z9 12
U1 2
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 2809
EP 2823
DI 10.1002/jgra.50342
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100006
ER
PT J
AU Maneva, YG
Vinas, AF
Ofman, L
AF Maneva, Y. G.
Vinas, A. F.
Ofman, L.
TI Turbulent heating and acceleration of He++ ions by spectra of
Alfven-cyclotron waves in the expanding solar wind: 1.5-D hybrid
simulations
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE turbulent heating; ion acceleration; solar wind expansion;
Alfven-cyclotron waves; wave-particle interactions; parametric decays
ID DIFFERENTIAL FLOW; PLASMA; CORONA; DISTRIBUTIONS; ANISOTROPIES;
PARTICLE; PROTONS; ULYSSES
AB Both remote sensing and in situ measurements show that the fast solar wind plasma significantly deviates from thermal equilibrium and is strongly permeated by turbulent electromagnetic waves, which regulate the ion temperature anisotropies and relative drifts. Thus, the ion kinetics is governed by heating and cooling related to absorption and emission of ion-acoustic and ion-cyclotron waves, as well as nonresonant pitch angle scattering and diffusion in phase space. Additionally, the solar wind properties are affected by its nonadiabatic expansion as the wind travels away from the Sun. In this study we present results from 1.5-D hybrid simulations to investigate the effects of a nonlinear turbulent spectrum of Alfven-cyclotron waves and the solar wind expansion on the anisotropic heating and differential acceleration of protons and He++ ions. We compare the different heating and acceleration by turbulent Alfven-cyclotron wave spectra and by pure monochromatic waves. For the waves and the wave spectra used in our model, we find that the He++ ions are preferentially heated and by the end of the simulations acquire much more than mass-proportional temperature ratios, T/T-p>m/m(p). The differential acceleration between the two species strongly depends on the initial wave amplitude and the related spectral index and is often suppressed by the solar wind expansion. We also find that the expansion leads to perpendicular cooling for both species, and depending on the initial wave spectra, it can either heat or cool the ions in parallel direction. Despite the cooling effect of the expansion in perpendicular direction, the wave-particle interactions provide an additional heating source, and the perpendicular temperature components remain higher than the adiabatic predictions.
C1 [Maneva, Y. G.; Ofman, L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[Maneva, Y. G.; Vinas, A. F.; Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Maneva, YG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM yana.g.maneva@nasa.gov
FU NASA [NNX10AC56G]
FX This work was supported by NASA, grant NNX10AC56G. The 1.5-D code used
to obtain the results of this paper is an extension of the hybrid code
used by Araneda et al. [2009]. Fruitful discussions with J. Araneda are
highly appreciated.
NR 38
TC 18
Z9 18
U1 0
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 2842
EP 2853
DI 10.1002/jgra.50363
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100009
ER
PT J
AU Jones, SL
Lessard, MR
Rychert, K
Spanswick, E
Donovan, E
Jaynes, AN
AF Jones, S. L.
Lessard, M. R.
Rychert, K.
Spanswick, E.
Donovan, E.
Jaynes, A. N.
TI Persistent, widespread pulsating aurora: A case study
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE pulsating aurora; substorm onset; recovery phase
ID PITCH-ANGLE DIFFUSION; MORNINGSIDE AURORAE; FAST SATELLITE; MORPHOLOGY;
OBSERVATORIES; GENERATION; SUBSTORMS; EXPANSION; ELECTRONS; REGION
AB Observations of a pulsating aurora event occurring on 11 February 2008, using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) All-Sky Imager (ASI) array, indicate a spatially and temporally continuous event with a duration of greater than 15h and covering a region with a maximum size of greater than 10h magnetic local time. The optical pulsations are at times locally interrupted or drowned out by auroral substorm activity but are observed in the same location once the discrete aurora recedes. The pulsations following the auroral breakup appear to be brighter and have a larger patch size than before breakup. This suggests that, while the onset of pulsating aurora is not necessarily dependent upon a substorm precursor, the pulsations are affected and possibly enhanced by the substorm process. The long duration of this pulsating aurora event, lasting approximately 8h without interruption as imaged from Gillam station, is significantly longer than the typical 2-3h substorm recovery phase, suggesting that pulsating aurora is not strictly a recovery phase phenomenon. This paper is accompanied by a movie of the THEMIS ASI array data, from 0000 to 1715UT, plotted in mosaic and superimposed onto a map of North America.
C1 [Jones, S. L.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA.
[Lessard, M. R.; Rychert, K.; Jaynes, A. N.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Spanswick, E.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Donovan, E.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada.
RP Jones, SL (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM sarah.l.jones@nasa.gov
RI Jones, Sarah/D-5293-2012;
OI Jones, Sarah/0000-0002-3816-4954; Donovan, Eric/0000-0002-8557-4155
FU NASA [NNX08AT38H]
FX Research at the University of New Hampshire was supported by NASA grant
NNX08AT38H. Ground magnetometer data was provided by the Danish
Meteorological Institute (Narsarsuaq) and by the Geological Survey of
Canada (Iqaluit) through World Data Center for Geomagnetism, Kyoto. AU
and AL indices were provided by the World Data Center for Geomagnetism,
Kyoto.
NR 38
TC 10
Z9 10
U1 0
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 2998
EP 3006
DI 10.1002/jgra.50301
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100025
ER
PT J
AU Samsonov, AA
Sibeck, DG
AF Samsonov, A. A.
Sibeck, D. G.
TI Large-scale flow vortices following a magnetospheric sudden impulse
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE sudden impulse; flow vortices; MHD discontinuities
ID TRAVELING CONVECTION VORTICES; SOLAR-WIND; INTERPLANETARY SHOCK; THEMIS
OBSERVATIONS; DENSITY PULSE; SIMULATION; COMMENCEMENT; PROPAGATION;
WAVES
AB Global MHD simulations predict the generation of flow vortices on the magnetospheric flanks near the equatorial plane after the impact of solar wind dynamic pressure pulses on the magnetosphere. These vortices are associated with field-aligned currents, having similar senses to those responsible for the main impulse, i.e., the second impulse of the well-known sudden impulse variations at high geomagnetic latitudes. We investigate the evolution of the vortices and show that they result from the interaction of a fast MHD wave and the inner (near-Earth) boundary of numerical models. Near the inner boundary, the Ampere force decelerates plasma flow resulting in two closely related phenomena: the generation of flow vortices and the launch of a reflected fast wave moving sunward. The vortices propagate antisunward and split into several parts during several minutes. The reflected wave interacts with the magnetopause and bow shock and changes its velocity. The interaction between the reflected wave and bow shock results in two new discontinuities moving earthward through the magnetosheath. The first is either a very weak fast rarefaction wave or a weak fast shock, and the second is either a tangential discontinuity or a compound discontinuity with a decrease of the density and magnetic field and an increase of the temperature. We speculate that the inner boundary in simulations may correspond to either the plasmasphere or ionosphere.
C1 [Samsonov, A. A.] St Petersburg State Univ, Fac Phys, Dept Earth Phys, St Petersburg 198504, Russia.
[Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Samsonov, AA (reprint author), St Petersburg State Univ, Fac Phys, Dept Earth Phys, St Petersburg 198504, Russia.
EM andre.samsonov@gmail.com
RI Samsonov, Andrey/I-7057-2012
OI Samsonov, Andrey/0000-0001-8243-1151
FU NASA
FX This work was partly supported by NASA's Guest Investigator program.
Simulation results have been provided by the Community Coordinated
Modeling Center (http://ccmc.gsfc.nasa.gov) at Goddard Space Flight
Center. In figures, we have shown results of the runs "Andrey Samsonov
120507 1" and "Andrey Samsonov 081408 1."
NR 41
TC 8
Z9 8
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3055
EP 3064
DI 10.1002/jgra.50329
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100030
ER
PT J
AU Cohen, IJ
Lessard, MR
Kaeppler, SR
Bounds, SR
Kletzing, CA
Streltsov, AV
LaBelle, JW
Dombrowski, MP
Jones, SL
Pfaff, RF
Rowland, DE
Anderson, BJ
Korth, H
Gjerloev, JW
AF Cohen, I. J.
Lessard, M. R.
Kaeppler, S. R.
Bounds, S. R.
Kletzing, C. A.
Streltsov, A. V.
LaBelle, J. W.
Dombrowski, M. P.
Jones, S. L.
Pfaff, R. F.
Rowland, D. E.
Anderson, B. J.
Korth, H.
Gjerloev, J. W.
TI Auroral Current and Electrodynamics Structure (ACES) observations of
ionospheric feedback in the Alfven resonator and model responses
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE magnetosphere-ionosphere coupling; ionospheric feedback instability;
Alfven resonator; ACES; rocket; IFI
ID MAGNETOSPHERE; INSTABILITY; WAVES; ARCS
AB The ACES-High rocket, part of the Auroral Current and Electrodynamics Structure (ACES) mission launched from Poker Flat Research Range on 29 January 2009, obtained the first in situ measurements indicative of both of the observational characteristics associated with the ionospheric feedback instability as it flew through an auroral arc and its associated return current region. ACES-High observed Alfvenic wave structures localized in areas of roughly 10km near the boundaries of the return current region associated with the discrete auroral arc and increased electron density with a temperature characteristic of a cold ionosphere. This density enhancement is believed to be caused by the excavation of plasma from lower altitudes via the ponderomotive force produced by the ionospheric Alfven resonator, as shown by Streltsov and Lotko (2008). While this density is lower than expected from simulations and other observations by as much as an order of magnitude, the ratio of the enhancement to the background density is in agreement with predictions. The observations made by ACES-High agree with the model results by Streltsov and Lotko (2008) but show the localized wave structures only near the boundaries of the return current region and not throughout it. This can be explained by strong small-scale magnetic field-aligned currents that are generated by the interaction between the large-scale downward current and the ionosphere at these boundaries. Finally, a new model, based on that by Streltsov and Marklund (2006), was run with only one downward current region and produced results very similar to the observations seen by ACES-High.
C1 [Cohen, I. J.; Lessard, M. R.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03820 USA.
[Kaeppler, S. R.; Bounds, S. R.; Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Streltsov, A. V.] Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL USA.
[LaBelle, J. W.; Dombrowski, M. P.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
[Jones, S. L.; Pfaff, R. F.; Rowland, D. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Anderson, B. J.; Korth, H.; Gjerloev, J. W.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD USA.
[Gjerloev, J. W.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
RP Cohen, IJ (reprint author), Univ New Hampshire, Ctr Space Sci, Morse Hall,8 Coll Rd, Durham, NH 03820 USA.
EM ian.cohen@unh.edu
RI Rowland, Douglas/F-5589-2012; Jones, Sarah/D-5293-2012; Cohen,
Ian/K-3038-2015;
OI Rowland, Douglas/0000-0003-0948-6257; Jones, Sarah/0000-0002-3816-4954;
Cohen, Ian/0000-0002-9163-6009; Kletzing, Craig/0000-0002-4136-3348
FU National Aeronautics and Space Administration [NNX07AK01G, NNX11AK71H,
NNX10AL17G, NNX12AI44G, NNX10AL18G, NNX07AJ97G]
FX The authors would also like to extend our gratefulness to the staff and
engineers at NASA Wallops Flight Facility. The work in this paper was
supported by several grants from the National Aeronautics and Space
Administration: NNX07AK01G, NNX11AK71H, and NNX10AL17G to the University
of New Hampshire; NNX12AI44G and NNX10AL18G to Dartmouth College; and
NNX07AJ97G to the University of Iowa.
NR 22
TC 4
Z9 4
U1 1
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3288
EP 3296
DI 10.1002/jgra.50348
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100049
ER
PT J
AU Zhang, H
Sibeck, DG
Zong, QG
Omidi, N
Turner, D
Clausen, LBN
AF Zhang, H.
Sibeck, D. G.
Zong, Q. -G.
Omidi, N.
Turner, D.
Clausen, L. B. N.
TI Spontaneous hot flow anomalies at quasi-parallel shocks: 1. Observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE hot flow anomaly; quasi-parallel shocks; foreshock
ID EARTHS BOW SHOCK; GLOBAL HYBRID SIMULATION; FORESHOCK CAVITIES;
DIAMAGNETIC CAVITIES; SOLAR-WIND; MAGNETOPAUSE; INSTRUMENT; UPSTREAM
AB We present Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations of a Spontaneous Hot Flow Anomaly (SHFA) upstream from the prenoon bow shock at 0431 UT on 12 August 2007. Although the SHFA exhibited the greatly heated and deflected solar wind plasmas used to identify hot flow anomalies (HFAs), it did not result from the standard mechanism invoked for the formation of HFAs, namely the interaction of an interplanetary magnetic field (IMF) discontinuity with the bow shock. We employ THEMIS A, B, C, and D observations to describe the evolution of the event from a proto-SHFA exhibiting regions of depressed magnetic field strength and density but little evidence for plasma heating or flow deflection, to a well-developed SHFA further downstream. These observations show that SHFA can be generated without the presence of an IMF discontinuity and are therefore a new category of HFAs.
C1 [Zhang, H.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA.
[Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Zong, Q. -G.] Univ Massachusetts Lowell, Ctr Atmospher Res, Lowell, MA USA.
[Zong, Q. -G.] Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China.
[Omidi, N.] Solana Sci Inc, Solana Beach, CA USA.
[Turner, D.] Univ Calif Los Angeles, ESS, IGPP, Los Angeles, CA USA.
[Clausen, L. B. N.] TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany.
RP Zhang, H (reprint author), Univ Alaska, Inst Geophys, 903 Koyukuk Dr,POB 757320, Fairbanks, AK 99775 USA.
EM hzhang@gi.alaska.edu
RI Turner, Drew/G-3224-2012
FU NSF [AGS-0963111, AGS-0962815, AGS-1007449]; Deutsches Zentrum f. Luft-
und Raumfahrt [50OC1102, 50OC1001]
FX This work is supported by NSF grants AGS-0963111, AGS-0962815, and
AGS-1007449. L.B.N.C. acknowledges funding from the Deutsches Zentrum f.
Luft- und Raumfahrt under grants 50OC1102 and 50OC1001.
NR 32
TC 19
Z9 19
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3357
EP 3363
DI 10.1002/jgra.50376
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100055
ER
PT J
AU Birn, J
Hesse, M
AF Birn, J.
Hesse, M.
TI The substorm current wedge in MHD simulations
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE substorm; current wedge; field-aligned currents
ID BURSTY BULK FLOWS; FIELD-ALIGNED CURRENTS; PLASMA SHEET; AURORAL
STREAMERS; MAGNETIC RECONNECTION; FLUX TUBES; MAGNETOTAIL; TAIL;
DIPOLARIZATION; MAGNETOSPHERE
AB Using magnetohydrodynamic (MHD) simulations of magnetotail dynamics, we investigate the build-up and evolution of the substorm current wedge (SCW) and its association with plasma flows from the tail. Three different scenarios are considered: the propagation of magnetic flux ropes of artificially reduced entropy (bubbles), and the formation and propagation of bubbles resulting from magnetic reconnection in the near and far tail. The simulations confirm the important role of the entropy reduction in the earthward penetration of bubbles, as well as in the build-up of field-aligned current signatures attributed to the SCW. Low-entropy flow channels can indeed propagate close to the Earth from the distant tail, as suggested recently. However, this requires substantial entropy reduction, presumably from progression of reconnection into the lobes. The major SCW and pressure build-up occurred when the low-entropy flow channels were braked and the flow diverted azimuthally in the near-Earth region. The flows commonly exhibit multiple narrow channels, separated in space and time, whereas the associated increases in B-z (dipolarization) accumulate over a wider spatial range, spreading both azimuthally and radially. This suggests a picture of the SCW as being composed of multiple smaller wedgelets, rather than one big wedge.
C1 [Birn, J.] Space Sci Inst, Boulder, CO 80301 USA.
[Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Birn, J.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Birn, J (reprint author), Space Sci Inst, Boulder, CO 80301 USA.
EM jbirn@spacescience.org
RI feggans, john/F-5370-2012; NASA MMS, Science Team/J-5393-2013
OI NASA MMS, Science Team/0000-0002-9504-5214
FU US Department of Energy at Los Alamos; NASA; NSF GEM [1203711];
International Space Science Institute, Bern, Switzerland
FX This work was performed mostly at Los Alamos under the auspices of the
US Department of Energy, supported by NASA's MMS/SMART Theory and
Modeling and SR&T Programs and NSF GEM grant 1203711. JB also
acknowledges the hospitality and support of the International Space
Science Institute, Bern, Switzerland, and fruitful discussions with Mike
Henderson, Los Alamos, and the members of the ISSI team, Larry Kepko,
Olaf Amm, Mark Lester, Bob McPherron, Rumi Nakamura, Tuija Pulkkinen,
and Victor Sergeev.
NR 55
TC 30
Z9 30
U1 0
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3364
EP 3376
DI 10.1002/jgra.50187
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100056
ER
PT J
AU Valek, PW
Goldstein, J
McComas, DJ
Ilie, R
Buzulukova, N
Fok, MC
Perez, JD
AF Valek, P. W.
Goldstein, J.
McComas, D. J.
Ilie, R.
Buzulukova, N.
Fok, M. -C.
Perez, J. D.
TI Oxygen-hydrogen differentiated observations from TWINS: The 22 July 2009
storm
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE magnetic storms; ENAs; Oxygen; TWINS
ID THIN CARBON FOILS; RING CURRENT; GEOMAGNETIC STORM; ION COMPOSITION;
SOLAR-ACTIVITY; IMAGE MISSION; ENA EMISSION; MAGNETOSPHERE; ALTITUDES
AB The 22 July 2009 magnetic storm is the first significant storm during the emergence of the recent prolonged solar cycle minimum. This moderate storm (minimum Dst approximately -78 nT) has received a good deal of attention in the community. We present here global observations of the H and O populations in the inner magnetosphere using Energetic Neutral Atom (ENA) observations from the TWINS mission. We develop and provide the methodology for separating H and O ENAs, based on mass dependent differences in the pulse height distributions of the microchannel plate (MCP) based detectors. We present the first composition separated H and O ENA images at central energies of 16 and 32keV. We also show that TWINS has sufficient angular resolution to separate the High Altitude Emissions (HAEs) from the Low Altitude Emissions (LAEs). We observe that all ENA emissions in this energy range quickly rise, but the O ENAs have a larger relative increase, and stay at elevated levels much longer, well into the recovery phase.
C1 [Valek, P. W.; Goldstein, J.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA.
[Valek, P. W.; Goldstein, J.; McComas, D. J.] Univ Texas San Antonio, San Antonio, TX USA.
[Ilie, R.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Buzulukova, N.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Buzulukova, N.; Fok, M. -C.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA.
[Buzulukova, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Perez, J. D.] Auburn Univ, Auburn, AL 36849 USA.
RP Valek, PW (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA.
EM PValek@swri.edu
RI Fok, Mei-Ching/D-1626-2012;
OI Valek, Philip/0000-0002-2318-8750
FU TWINS mission, NASA's Explorer program
FX This work was supported by the TWINS mission, which is a part of NASA's
Explorer program. We thank the World Data Center for Geomagnetism, Kyoto
for suppling Real Time Dst and AE indices. We also thank the ACE and
Wind plasma and magnetometer teams for L1 data and the OMNI data set for
their propagation of these data.
NR 49
TC 7
Z9 7
U1 1
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3377
EP 3393
DI 10.1002/jgra.50204
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100057
ER
PT J
AU Christon, SP
Hamilton, DC
DiFabio, RD
Mitchell, DG
Krimigis, SM
Jontof-Hutter, DS
AF Christon, S. P.
Hamilton, D. C.
DiFabio, R. D.
Mitchell, D. G.
Krimigis, S. M.
Jontof-Hutter, D. S.
TI Saturn suprathermal O-2(+) and mass-28(+) molecular ions: Long-term
seasonal and solar variation
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE Saturn; ion; molecule; season; dust
ID E-RING PARTICLES; INNER MAGNETOSPHERE; ENCELADUS; PLASMA; DYNAMICS;
PLUME; WATER; DUST; MODEL; REDISTRIBUTION
AB Suprathermal singly charged molecular ions, O-2(+) (at similar to 32 Da/e) and the Mass-28 ion group M-28(+) (ions at similar to 28 Da/e, with possible contributions from C2H5+, HCNH+, N-2(+), and/or CO+), are present throughout Saturn's similar to 4-20 Rs (1 Saturn radius, Rs=60,268 km) near-equatorial magnetosphere from mid-2004 until mid-2012. These similar to 83-167 keV/e heavy ions measured by Cassini's CHarge-Energy-Mass Spectrometer have long-term temporal profiles that differ from each other and differ relative to the dominant water group ions, W+ (O+, OH+, H2O+, and H3O+). O-2(+)/W+, initially similar to 0.05, declined steadily until equinox in mid-2009 by a factor of similar to 6, and M-28(+)/W+, initially similar to 0.007, declined similarly until early-2007 by a factor of similar to 2. The O-2(+)/W+ decline is consistent with Cassini's in situ ring-ionosphere thermal ion measurements, and with proposed and modeled seasonal photolysis of Saturn's rings for thermal O-2 and O-2(+). The water ice-dominated main rings and Enceladus plume depositions thereon are the two most likely O-2(+) sources. Enceladus' dynamic plumes, though, have no known long-term dependence. After declining, O-2(+)/W+ and M-28(+)/W+ levels remained low until late-2011 when O-2(+)/W+ increased, but M-28(+)/W+ did not. The O-2(+)/W+ increase was steady and became statistically significant by mid-2012, indicating a clear increase after a decline, that is, a possibly delayed O-2(+) seasonal recovery. Ring insolation is driven by solar UV flux which itself varies with the sun's 11 year activity cycle. The O-2(+)/W+ and M-28(+)/W+ declines are consistent with seasonal ring insolation. No O-2(+)/W+ response to the late-2008 solar-cycle UV minimum and recovery is evident. However, the O-2(+)/W+ recovery from the postequinox baseline levels in late-2011 coincided with a strong solar UV enhancement. We suggest a scenario/framework in which the O-2(+) observations can be understood.
C1 [Christon, S. P.] Focused Anal & Res, Columbia, MD 21044 USA.
[Hamilton, D. C.; DiFabio, R. D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[DiFabio, R. D.] Univ Louisiana, Dept Phys, Lafayette, LA USA.
[Mitchell, D. G.; Krimigis, S. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Krimigis, S. M.] Acad Athens, Athens, Greece.
[Jontof-Hutter, D. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Christon, SP (reprint author), Focused Anal & Res, Columbia, MD 21044 USA.
EM spchriston@aol.com
OI Christon, Stephen/0000-0003-1770-2458; Hamilton,
Douglas/0000-0001-6103-8019
FU NASA [NAS5-97271, NNX08BA50G]
FX We used the Cassini magnetopause and bow shock crossings list for SOI
through 2007 compiled by H. J. McAndrews, S. J. Kanani, A. Masters, and
J. C. Cutler. We thank L. J. Spilker, A. Flandes, H. W. Hsu, J. H.
Westlake, H. T. Smith, S. Kempf, and J. Vandegriff for their help and
useful discussions. S.P.C. thanks NASA for support through contract
NAS5-97271 and grant NNX08BA50G.
NR 105
TC 5
Z9 5
U1 0
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3446
EP 3462
DI 10.1002/jgra.50383
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100062
ER
PT J
AU Huang, CS
de La Beaujardiere, O
Roddy, PA
Hunton, DE
Ballenthin, JO
Hairston, MR
Pfaff, RF
AF Huang, Chao-Song
de La Beaujardiere, O.
Roddy, P. A.
Hunton, D. E.
Ballenthin, J. O.
Hairston, M. R.
Pfaff, R. F.
TI Large-scale quasiperiodic plasma bubbles: C/NOFS observations and causal
mechanism
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE equatorial ionosphere; plasma bubbles; atmospheric gravity waves
ID EQUATORIAL-SPREAD-F; MESOSPHERIC GRAVITY-WAVES; TO-DAY VARIABILITY;
NONLINEAR EVOLUTION; VELOCITY SHEAR; IRREGULARITIES; CAMPAIGN; REGION;
LAYER; INSTABILITIES
AB Large-scale periodic plasma bubbles are often observed by ionospheric radars and satellites. The seeding effect of atmospheric gravity waves has been widely used to explain the generation of periodic plasma bubbles. However, it has not been well understood where the seeding process occurs and how a series of plasma bubbles is triggered. In this study, we present the observations of equatorial plasma bubbles by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. We show examples of quasiperiodic plasma bubbles in the post-midnight sector, with nearly equal distance of 800-1000km between adjacent bubbles, in 2008 under deep solar minimum conditions. The bubble chain covered a longitudinal range of similar to 7000km between 00:00 and 04:00 LT. Quasiperiodic plasma bubbles were also measured by C/NOFS in the evening sector in 2011 during the ascending phase of the solar activity, and the longitudinal distance between adjacent bubbles was similar to 500km. We propose a causal mechanism to explain the generation of quasiperiodic plasma bubbles. In this scenario, atmospheric gravity waves are generated near the sunset terminator and initiate the Rayleigh-Taylor instability there. The spatial (longitudinal) periodicity of plasma bubbles is determined by the temporal periodicity of the seeding gravity waves. A period of 15-30min of the seeding gravity waves corresponds to a longitudinal separation of 500-1000km between adjacent bubbles. This mechanism provides a reasonable explanation of the observed quasiperiodic plasma bubbles.
C1 [Huang, Chao-Song; de La Beaujardiere, O.; Roddy, P. A.; Hunton, D. E.; Ballenthin, J. O.] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA.
[Hairston, M. R.] Univ Texas Dallas, Hanson Ctr Space Sci, Dallas, TX 75230 USA.
[Pfaff, R. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Huang, CS (reprint author), Air Force Res Lab, Space Vehicles Directorate, Bldg 570,Rm 2125,3550 Aberdeen Ave SE, Kirtland AFB, NM 87117 USA.
EM chaosong.huang@kirtland.af.mil
OI Hairston, Marc/0000-0003-4524-4837
FU AFOSR Task [11RV04COR]; NASA [NNH09AM20I]; Air Force Research
Laboratory; Department of Defense Space Test Program; National
Aeronautics and Space Administration (NASA); Naval Research Laboratory;
Aerospace Corporation
FX Work by CSH was supported by the AFOSR Task 11RV04COR and the NASA grant
NNH09AM20I. The C/NOFS mission is supported by the Air Force Research
Laboratory, the Department of Defense Space Test Program, the National
Aeronautics and Space Administration (NASA), the Naval Research
Laboratory, and The Aerospace Corporation.
NR 43
TC 15
Z9 16
U1 0
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3602
EP 3612
DI 10.1002/jgra.50338
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100079
ER
PT J
AU Burkholder, BS
Hutchins, ML
McCarthy, MP
Pfaff, RF
Holzworth, RH
AF Burkholder, Brian S.
Hutchins, Michael L.
McCarthy, Michael P.
Pfaff, Robert F.
Holzworth, Robert H.
TI Attenuation of lightning-produced sferics in the Earth-ionosphere
waveguide and low-latitude ionosphere
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE lightning; vlf; sferic; wwlln
ID COLLISION FREQUENCY; LOCATION NETWORK; C/NOFS SATELLITE; MAGNETIC-FIELD;
VLF; PROPAGATION; WHISTLERS; PRECIPITATION; VALIDATION; ALTITUDES
AB We compare radio atmospherics (sferics) detected by the World Wide Lightning Location Network (WWLLN) to very low frequency (VLF) whistler waves observed in the low-latitude ionosphere by the Vector Electric Field Instrument of the Communications/Navigation Outage Forecasting System (C/NOFS) satellite. We also model the propagation of these sferics through the Earth-ionosphere waveguide to the subsatellite point using the Long-Wavelength Propagation Capability software and compare this result to the same C/NOFS data set. This unprecedentedly expansive data set allows comparison to theory and prior observation of VLF radio wave propagation in the Earth-ionosphere waveguide and low-latitude ionosphere. We show that WWLLN and C/NOFS observe the well-known effect of variable attenuation with direction within the Earth-ionosphere waveguide. Propagation within the ionosphere is also examined, and a lack of attenuation above 400km is observed. Finally, in comparison to recent works using Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) data by Fiser et al. and Chum et al., we find that C/NOFS successfully detects whistlers with comparable amplitudes at much greater distances, compared to those reported for DEMETER.
C1 [Burkholder, Brian S.; Hutchins, Michael L.; McCarthy, Michael P.; Holzworth, Robert H.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98107 USA.
[Pfaff, Robert F.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA.
RP Burkholder, BS (reprint author), Univ Washington, Dept Earth & Space Sci, 4000 15th Ave NE, Seattle, WA 98107 USA.
EM bburk2@uw.edu
FU AFOSR [FA955009-1-0309]; NASA [NNX08AD12G]; DARPA [HR0011-10-1-0060]
FX The authors wish to thank the World Wide Lightning Location Network
(http://wwlln.net), a collaboration among over 50 universities and
institutions, for providing the lightning location data used in this
paper. This research was supported in part by AFOSR grant
FA955009-1-0309, NASA grant NNX08AD12G, and DARPA grant
HR0011-10-1-0060.
NR 31
TC 4
Z9 4
U1 2
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3692
EP 3699
DI 10.1002/jgra.50351
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100087
ER
PT J
AU Christensen, AB
Bishop, RL
Budzien, SA
Hecht, JH
Mlynczak, MG
Russell, JM
Stephan, AW
Walterscheid, RW
AF Christensen, A. B.
Bishop, R. L.
Budzien, S. A.
Hecht, J. H.
Mlynczak, M. G.
Russell, J. M., III
Stephan, A. W.
Walterscheid, R. W.
TI Altitude profiles of lower thermospheric temperature from RAIDS/NIRS and
TIMED/SABER remote sensing experiments
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE Thermosphere; Temperature
ID KINETIC TEMPERATURE; SABER EXPERIMENT; BAND SYSTEM; ATMOSPHERE;
EMISSIONS; DAYGLOW; MIDDLE; SPHERE
AB Thermospheric temperatures derived from limb observations of the O-2 A-Band (0,0) emission spectrum obtained from January-July 2010, with the Remote Atmospheric and Ionospheric Detection System (RAIDS) Near Infrared Spectrometer (NIRS) aboard the International Space Station, are compared to temperature results from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment. To account for a lack of simultaneous common volume observations, the observed temperatures were scaled by the NRLMSIS-00 model temperatures for comparison. It was found that on average SABER, temperatures are warmer than NIRS at all altitudes between 90 and 140km. In the altitude range 90-100km, the SABER temperatures were warmer than NIRS by similar to 10K consistent with previous validation experiments and in agreement with Optical Spectrograph and Infrared Imaging System (OSIRIS) O-2 A-band comparisons in the polar mesopause region. At higher altitudes, the differences between SABER and NIRS exceed 30K on average. Thus, the NIRS observations reinforce the idea that the SABER temperatures are too warm below similar to 110km; and above that altitude, they are increasingly in error consistent with expectations based on estimated inaccuracies in the retrieval algorithm. Large standard deviations of the SABER and NIRS ratios are reflective of substantial variability of the thermospheric temperatures throughout the region.
C1 [Christensen, A. B.] Dixie State Univ, St George, UT 84770 USA.
[Bishop, R. L.; Hecht, J. H.; Walterscheid, R. W.] Aerosp Corp, Los Angeles, CA 90009 USA.
[Budzien, S. A.; Stephan, A. W.] Naval Res Lab, Washington, DC USA.
[Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Russell, J. M., III] Hampton Univ, Sch Sci, Hampton, VA 23668 USA.
RP Christensen, AB (reprint author), Dixie State Univ, 225 South 700 East, St George, UT 84770 USA.
EM andrew.christensen@aero.org
FU Office of Naval Research; Aerospace Corporation Independent Research and
Development Program; Aerospace Corporation's Sustained Experimentation
and Research for Program Applications; NRL [76-9880]; NASA [NNX11AD71G]
FX RAIDS is part of the HICO-RAIDS Experiment Payload (HREP), integrated
and flown under the direction of the DOD Space Test Program. RAIDS is a
joint project of the Naval Research Laboratory and the Aerospace
Corporation, with support from the Office of Naval Research and the
Aerospace Corporation Independent Research and Development Program and
the Aerospace Corporation's Sustained Experimentation and Research for
Program Applications. Scott A. Budzien and Andrew W. Stephan were
supported by NRL Base Program work unit 76-9880. We would like to
acknowledge the programming support from Dixie College Students Nefi
Oliva, Stuart Landsee, Landon Terry, Chris Palmer, and Tucker Fife. This
work was supported by NASA grant NNX11AD71G to the Aerospace Corporation
and subcontracted to Dixie State College. Thanks also go to Chris
Mertens from NASA Langley and the SABER data processing team at GATS,
Inc. for providing SABER data.
NR 32
TC 7
Z9 7
U1 2
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3740
EP 3746
DI 10.1002/jgra.50317
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100092
ER
PT J
AU Shume, EB
Mannucci, AJ
Butala, MD
Pi, X
Valladares, CE
AF Shume, E. B.
Mannucci, A. J.
Butala, M. D.
Pi, X.
Valladares, C. E.
TI Flux tube analysis of L-band ionospheric scintillation
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE equatorial and low latitude ionosphere; ionospheric irregularities;
scintillation; spectral analysis
ID EQUATORIAL SPREAD-F; PLASMA DEPLETIONS; PHASE SCREEN; SATELLITE; FIELD;
IRREGULARITIES; AERONOMY; CAMPAIGN; SPECTRA; IMAGES
AB This manuscript presents magnetic flux tube analysis of L-band signal scintillation in the nighttime equatorial and low-latitude ionosphere. Residues of the scintillation index S4 estimated from the L-band signals received from Geostationary Earth Orbit (GEO) satellites are employed in the analysis. The S4 estimates have been shown to be associated with simultaneous GPS VTEC variations derived from JPL's GIPSY-GIM package. We have applied the wavelet decomposition technique simultaneously on the S4 time series in a flux tube over the equatorial and low-latitude regions. The technique decomposes the S4 signal to identify the dominant mode of variabilities and the temporal variations of scintillation-producing irregularities in the context of a flux tube. Statistically significant regions of the wavelet power spectra considered in our study have mainly shown that (a) dominant plasma irregularities associated with S4 variabilities in a flux tube have periods of about 4 to 15 minutes (horizontal irregularity scales of about 24 to 90km). These periods match short period gravity waves, (b) scintillation-producing irregularities are anisotropic along the flux tube and in the east-west direction, and (c) the occurrences of scintillation-producing irregularities along the flux tube indicate that the entire flux tube became unstable. However, plasma instability occurrences were not simultaneous in most cases along the flux tube, there were time delays of various orders. Understanding the attributes of L-band scintillation-producing irregularities could be important for developing measures to mitigate L-band signal degradation.
C1 [Shume, E. B.; Mannucci, A. J.; Butala, M. D.; Pi, X.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Valladares, C. E.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02167 USA.
RP Shume, EB (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA USA.
EM Esayas.B.Shume@jpl.nasa.gov
RI Shume, Esayas/I-3354-2013;
OI Shume, Esayas/0000-0002-4696-1283
FU National Aeronautics and Space Administration; NASA; Air Force Research
Laboratory [FA8718-09-C-0041]; NSF [ATM-1135675]
FX The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. E. B. Shume acknowledges the NPP
program administered by the Oak Ridge Associated Universities (ORAU)
through a contract with NASA. E. B. Shume thanks B. Iijima for the
useful discussion regarding the GEO satellite orbits. One of the authors
C. E. Valladares was partially supported by Air Force Research
Laboratory contract FA8718-09-C-0041 and NSF grant ATM-1135675.
Low-latitude Ionospheric Sensor Network (LISN) is a project led by
Boston College in collaboration with the Geophysical Institute of Per
and other institutions that provide information in benefit of the
scientific community.
NR 53
TC 3
Z9 3
U1 3
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3791
EP 3804
DI 10.1002/jgra.50285
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100096
ER
PT J
AU Briggs, MS
Xiong, SL
Connaughton, V
Tierney, D
Fitzpatrick, G
Foley, S
Grove, JE
Chekhtman, A
Gibby, M
Fishman, GJ
McBreen, S
Chaplin, VL
Guiriec, S
Layden, E
Bhat, PN
Hughes, M
Greiner, J
von Kienlin, A
Kippen, RM
Meegan, CA
Paciesas, WS
Preece, RD
Wilson-Hodge, C
Holzworth, RH
Hutchins, ML
AF Briggs, Michael S.
Xiong, Shaolin
Connaughton, Valerie
Tierney, Dave
Fitzpatrick, Gerard
Foley, Suzanne
Grove, J. Eric
Chekhtman, Alexandre
Gibby, Melissa
Fishman, Gerald J.
McBreen, Shelia
Chaplin, Vandiver L.
Guiriec, Sylvain
Layden, Emily
Bhat, P. N.
Hughes, Maximilian
Greiner, Jochen
von Kienlin, Andreas
Kippen, R. Marc
Meegan, Charles A.
Paciesas, William S.
Preece, Robert D.
Wilson-Hodge, Colleen
Holzworth, Robert H.
Hutchins, Michael L.
TI Terrestrial gamma-ray flashes in the Fermi era: Improved observations
and analysis methods
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE TGFs; terrestrial gamma-ray flashes; lightning; gamma-ray; Fermi GBM;
WWLLN
ID OPTICAL TRANSIENT DETECTOR; LIGHTNING LOCATION; BURST; SPACE; AIR
AB A new data mode and new analysis methods are used to detect Terrestrial Gamma-ray Flashes (TGFs) with the Fermi Gamma-ray Burst Monitor (GBM) 10 times more frequently than previously. In 1037h of observations at times and over regions for which TGFs are expected, 384 new TGFs were found in addition to the 39 TGFs and two Terrestrial Electron Beam events already detected without the new data mode and methodology. Cosmic ray showers were found to be an important background; they show characteristic signatures in the data of both GBM and the Fermi Large Area Telescope Calorimeter that enable their removal, leaving a sample estimated to consist of approximate to 98% TGFs. The sample includes shorter TGFs than previously found with GBM. The true duration distribution likely contains additional short TGFs because their detection by GBM is limited by detector dead time. One-third of this sample has matches with locations from the World Wide Lightning Location Network (WWLLN)maps of these locations show the geographic and meteorological features more clearly than maps of spacecraft locations. The intrinsic TGF rate is evaluated using the lightning rate maps of the Lightning Imaging Sensor, accounting for the detection efficiency of GBM as a function of spacecraft-source offset, from which we estimate a global TGF rate of approximate to 400,000 per year. With continuous production of data in the new mode we estimate that GBM will detect approximate to 850 TGFs per year.
C1 [Briggs, Michael S.; Xiong, Shaolin; Connaughton, Valerie; Chaplin, Vandiver L.; Guiriec, Sylvain; Layden, Emily; Bhat, P. N.; Preece, Robert D.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA.
[Briggs, Michael S.; Connaughton, Valerie] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA.
[Tierney, Dave; Fitzpatrick, Gerard; Foley, Suzanne; McBreen, Shelia] Univ Coll Dublin, Sch Phys, Dublin 2, Ireland.
[Grove, J. Eric] US Naval Res Lab, Space Sci Div, Washington, DC 20375 USA.
[Chekhtman, Alexandre] George Mason Univ, Sch Phys, Fairfax, VA 22030 USA.
[Gibby, Melissa] Jacobs Engn Grp Inc, Huntsville, VA USA.
[Fishman, Gerald J.; Wilson-Hodge, Colleen] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA.
[Greiner, Jochen] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Hughes, Maximilian] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA.
[Greiner, Jochen; von Kienlin, Andreas] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Kippen, R. Marc] Los Alamos Natl Lab, ISR 1, Los Alamos, NM USA.
[Meegan, Charles A.; Paciesas, William S.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA.
[Holzworth, Robert H.; Hutchins, Michael L.] Univ Washington, Seattle, WA 98195 USA.
RP Briggs, MS (reprint author), CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA.
EM michael.briggs@uah.edu
OI Preece, Robert/0000-0003-1626-7335
FU Fermi Guest Investigator Program; Irish Research Council for Science,
Engineering and Technology; Marie Curie Actions under FP7; Science
Foundation Ireland [09-RFP-AST-2400]
FX We thank Richard Blakeslee, Garry Case, Martino Marisaldi, David Smith,
Steven Cummer and Michael Splitt for discussions or assistance. The
Fermi GBM Collaboration acknowledges support for GBM development,
operations, and data analysis from National Aeronautics and Space
Administration (NASA) in the United States and from the
Bundesministerium fur Wirtschaft und Technologie (BMWi)/Deutsches
Zentrum fur Luft und Raumfahrt (DLR) in Germany. This work was supported
in part by the Fermi Guest Investigator Program. The authors wish to
thank the World Wide Lightning Location Network (http://wwlln.net), a
collaboration among over 50 universities and institutions, for providing
the lightning location data used in this paper. The Fermi LAT
Collaboration acknowledges generous ongoing support from a number of
agencies and institutes that have supported both the development and the
operation of the LAT as well as scientific data analysis. These include
NASA and the Department of Energy in the United States, the Commissariat
a l'Energie Atomique and the Centre National de la Recherche
Scientifique/Institut National de Physique Nucleaire et de Physique des
Particules in France, the Agenzia Spaziale Italiana and the Istituto
Nazionale di Fisica Nucleare in Italy, the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), High Energy Accelerator
Research Organization (KEK) and Japan Aerospace Exploration Agency
(JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish
Research Council and the Swedish National Space Board in Sweden. G. F.
acknowledges the support of the Irish Research Council for Science,
Engineering and Technology. S. F. acknowledges the support of the Irish
Research Council for Science, Engineering and Technology, co-funded by
Marie Curie Actions under FP7. D. T. acknowledges support from Science
Foundation Ireland under grant number 09-RFP-AST-2400. The authors thank
Nikolai Ostgaard and an anonymous reviewer for their comments, which
improved the paper.
NR 67
TC 36
Z9 36
U1 1
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3805
EP 3830
DI 10.1002/jgra.50205
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100097
ER
PT J
AU Fejer, BG
Tracy, BD
Pfaff, RF
AF Fejer, Bela G.
Tracy, Brian D.
Pfaff, Robert F.
TI Equatorial zonal plasma drifts measured by the C/NOFS satellite during
the 2008-2011 solar minimum
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE electric fields; equatorial ionosphere; equatorial zonal drifts;
ionospheric dynamics
ID VERTICAL ION DRIFTS; LATENT-HEAT RELEASE; LATITUDE IONOSPHERE; MIDDLE;
MODEL; DE-2; ELECTRODYNAMICS; CLIMATOLOGY; JICAMARCA; TIDES
AB We use the measurements by the Vector Electric Field Investigation (VEFI) on board the Communication/Navigation Outage Forecasting System (C/NOFS) satellite to study the local time and seasonal- and longitudinal-dependent climatology of equatorial F region zonal plasma drifts during 2008-2011. These drifts are essentially westward during the day and eastward at night. Over Jicamarca Radio Observatory, the satellite measurements are in good agreement with incoherent scatter radar drifts. Our data show strong longitudinal variations, particularly in the South American sector during the solstices. The equinoctial data exhibit short-lived and largely enhanced westward drifts near sunrise and wave-4 structures from the early afternoon to late night equinoctial periods. The nighttime eastward drifts are largest near the western American sector at all seasons. The June solstice postmidnight eastward drifts decrease sharply at longitudes of about 310 degrees and have much smaller values in the entire Eastern Hemisphere. We also briefly discuss the relationship between the longitude-dependent vertical and zonal plasma drifts.
C1 [Fejer, Bela G.; Tracy, Brian D.] Utah State Univ, Ctr Atmospher & Space Sci, Logan, UT 84322 USA.
[Pfaff, Robert F.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Fejer, BG (reprint author), Utah State Univ, Ctr Atmospher & Space Sci, 4405 Old Main Hill, Logan, UT 84322 USA.
EM bela.fejer@usu.edu
FU Aeronomy Program, Division of Atmospheric Sciences of the National
Science Foundation [AGS-1068104]; NASA [NNH12C02C, NNX09ANSSG]; NSF
through Cornell University [AGS-0905448]
FX This work was supported by the Aeronomy Program, Division of Atmospheric
Sciences of the National Science Foundation through grant AGS-1068104
and by NASA through grants NNH12C02C and NNX09ANSSG. The Jicamarca Radio
Observatory is a facility of the Instituto Geofisico del Peru and is
operated with support from the NSF cooperative agreement AGS-0905448
through Cornell University.
NR 40
TC 8
Z9 8
U1 0
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN
PY 2013
VL 118
IS 6
BP 3891
EP 3897
DI 10.1002/jgra.50382
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 228UQ
UT WOS:000325217100104
ER
PT J
AU Guhathakurta, M
Davila, JM
Gopalswamy, N
AF Guhathakurta, Madhulika
Davila, Joseph M.
Gopalswamy, Nat
TI The International Space Weather Initiative (ISWI)
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
DE space weather
C1 [Guhathakurta, Madhulika] NASA, Living With A Star Program, Washington, DC 20546 USA.
[Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Guhathakurta, M (reprint author), NASA, Living With A Star Program, Washington, DC 20546 USA.
EM madhulika.guhathakurta@nasa.gov
NR 3
TC 1
Z9 1
U1 1
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JUN
PY 2013
VL 11
IS 6
BP 327
EP 329
DI 10.1002/swe.20048
PG 3
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA 231OI
UT WOS:000325426100001
ER
PT J
AU Evans, RM
Pulkkinen, AA
Zheng, YH
Mays, ML
Taktakishvili, A
Kuznetsova, MM
Hesse, M
AF Evans, Rebekah M.
Pulkkinen, Antti A.
Zheng, Yihua
Mays, M. Leila
Taktakishvili, Aleksandre
Kuznetsova, Maria M.
Hesse, Michael
TI The SCORE Scale: A Coronal Mass Ejection Typification System Based On
Speed
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Editorial Material
DE coronal mass ejection
C1 [Evans, Rebekah M.; Pulkkinen, Antti A.; Zheng, Yihua; Mays, M. Leila; Taktakishvili, Aleksandre; Kuznetsova, Maria M.] NASA, Space Weather Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Pulkkinen, Antti A.] NASA, Space Weather Res Ctr, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Mays, M. Leila; Taktakishvili, Aleksandre] Catholic Univ Amer, Washington, DC 20064 USA.
[Kuznetsova, Maria M.] NASA, Community Coordinated Modeling Ctr, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Hesse, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Evans, RM (reprint author), NASA, Space Weather Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM rebekah.e.frolov@nasa.gov
RI feggans, john/F-5370-2012
NR 0
TC 7
Z9 7
U1 2
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JUN
PY 2013
VL 11
IS 6
BP 333
EP 334
DI 10.1002/swe.20058
PG 2
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA 231OI
UT WOS:000325426100003
ER
PT J
AU Joyce, CJ
Schwadron, NA
Wilson, JK
Spence, HE
Kasper, JC
Golightly, M
Blake, JB
Mazur, J
Townsend, LW
Case, AW
Semones, E
Smith, S
Zeitlin, CJ
AF Joyce, C. J.
Schwadron, N. A.
Wilson, J. K.
Spence, H. E.
Kasper, J. C.
Golightly, M.
Blake, J. B.
Mazur, J.
Townsend, L. W.
Case, A. W.
Semones, E.
Smith, S.
Zeitlin, C. J.
TI Validation of PREDICCS using LRO/CRaTER observations during three major
solar events in 2012
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
DE radiation model; doserate; modulation potential
AB PREDICCS (Predictions of Radiation from Release, EMMREM, and Data Incorporating the CRaTER, COSTEP and other SEP measurements, prediccs.sr.unh.edu) is an online system designed to provide a near real-time characterization of the radiation environment of the inner heliosphere. PREDICCS utilizes data from various satellites in conjunction with numerical models such as the Earth-Moon-Mars Radiation Environment Module (EMMREM) to produce dose rate and particle flux data at the Earth, Moon and Mars. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument launched aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft in 2009 and designed to measure energetic particle radiation, offers an opportunity to test the capability of PREDICCS to accurately describe the lunar radiation environment. We provide comparisons between dose rates produced by PREDICCS with those measured by CRaTER during three major solar energetic particle (SEP) events that occurred in 2012. In addition, using EMMREM data products together with our archive of measured CRaTER dose rates, we compute the modulation potential at the Moon throughout the LRO mission and, using this, compute the background GCR dose rate during each event. We demonstrate reasonable agreement between PREDICCS and CRaTER dose rates and come to the conclusion that PREDICCS provides credible characterization of the lunar radiation environment. This study represents the first multi-event validation, via in situ measurement, of radiation models such as EMMREM, which should prove to be valuable in future efforts in risk assessment and in the study of radiation in the inner heliosphere.
C1 [Joyce, C. J.; Schwadron, N. A.; Wilson, J. K.; Spence, H. E.; Golightly, M.; Smith, S.] Univ New Hampshire, Dept Phys, Ctr Space Sci, Durham, NH 03824 USA.
[Kasper, J. C.; Case, A. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Blake, J. B.] Aerosp Corp, Los Angeles, CA 90009 USA.
[Mazur, J.] Aerosp Corp, Space Sci Dept Chantilly, Chantilly, VA USA.
[Townsend, L. W.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
[Semones, E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Zeitlin, C. J.] SW Res Inst, Boulder, CO USA.
RP Joyce, CJ (reprint author), Univ New Hampshire, Dept Phys, Ctr Space Sci, 39 Coll Rd, Durham, NH 03824 USA.
EM cjl46@unh.edu
OI Spence, Harlan/0000-0002-2526-2205
FU NASA LRO/CRaTER/PREDICCS Project [NNG11PA03C]; NSF/FESD Sun-to-Ice
Project [AGS1135432]; NASA/LWS/NSF EMMREM Project [NNX11AC06G]
FX This work is supported by NASA LRO/CRaTER/PREDICCS Project (Contract
NNG11PA03C), the NSF/FESD Sun-to-Ice Project (Grant AGS1135432), and the
NASA/LWS/NSF EMMREM Project (Grant NNX11AC06G). We thank the ACE SIS
instrument team and the ACE Science Center for providing the ACE data
used here.
NR 10
TC 9
Z9 9
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JUN
PY 2013
VL 11
IS 6
BP 350
EP 360
DI 10.1002/swe.20059
PG 11
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA 231OI
UT WOS:000325426100007
ER
PT J
AU Pulkkinen, A
Rastatter, L
Kuznetsova, M
Singer, H
Balch, C
Weimer, D
Toth, G
Ridley, A
Gombosi, T
Wiltberger, M
Raeder, J
Weigel, R
AF Pulkkinen, A.
Rastaetter, L.
Kuznetsova, M.
Singer, H.
Balch, C.
Weimer, D.
Toth, G.
Ridley, A.
Gombosi, T.
Wiltberger, M.
Raeder, J.
Weigel, R.
TI Community-wide validation of geospace model ground magnetic field
perturbation predictions to support model transition to operations
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
DE model transition; geomagnetically induced currents; model validation
ID IONOSPHERE-THERMOSPHERE MODEL; HORIZONTAL GEOMAGNETIC-FIELD; EXPLORER 12
OBSERVATIONS; SOLAR-WIND; CIRCULATION MODEL; SPACE WEATHER;
MAGNETOSPHERIC MODEL; GLOBAL SIMULATION; ELECTRIC-FIELDS; MHD SIMULATION
AB In this paper we continue the community-wide rigorous modern space weather model validation efforts carried out within GEM, CEDAR and SHINE programs. In this particular effort, in coordination among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), modelers, and science community, we focus on studying the models' capability to reproduce observed ground magnetic field fluctuations, which are closely related to geomagnetically induced current phenomenon. One of the primary motivations of the work is to support NOAA SWPC in their selection of the next numerical model that will be transitioned into operations. Six geomagnetic events and 12 geomagnetic observatories were selected for validation. While modeled and observed magnetic field time series are available for all 12 stations, the primary metrics analysis is based on six stations that were selected to represent the high-latitude and mid-latitude locations. Events-based analysis and the corresponding contingency tables were built for each event and each station. The elements in the contingency table were then used to calculate Probability of Detection (POD), Probability of False Detection (POFD) and Heidke Skill Score (HSS) for rigorous quantification of the models' performance. In this paper the summary results of the metrics analyses are reported in terms of POD, POFD and HSS. More detailed analyses can be carried out using the event by event contingency tables provided as an online appendix. An online interface built at CCMC and described in the supporting information is also available for more detailed time series analyses.
C1 [Pulkkinen, A.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[Pulkkinen, A.; Rastaetter, L.; Kuznetsova, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Singer, H.; Balch, C.] NOAA, Space Weather Predict Ctr, Boulder, CO USA.
[Weimer, D.] Virginia Polytech Inst & State Univ, Ctr Space Sci & Engn Res, Blacksburg, VA 24061 USA.
[Toth, G.; Ridley, A.; Gombosi, T.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Wiltberger, M.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA.
[Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Raeder, J.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Weigel, R.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA.
RP Pulkkinen, A (reprint author), Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE, Washington, DC 20064 USA.
EM antti.a.pulkkinen@nasa.gov
RI Toth, Gabor/B-7977-2013; Wiltberger, Michael/B-8781-2008; Rastaetter,
Lutz/D-4715-2012; Ridley, Aaron/F-3943-2011; Gombosi, Tamas/G-4238-2011
OI Toth, Gabor/0000-0002-5654-9823; Wiltberger,
Michael/0000-0002-4844-3148; Rastaetter, Lutz/0000-0002-7343-4147;
Ridley, Aaron/0000-0001-6933-8534; Gombosi, Tamas/0000-0001-9360-4951
NR 95
TC 23
Z9 23
U1 3
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JUN
PY 2013
VL 11
IS 6
BP 369
EP 385
DI 10.1002/swe.20056
PG 17
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA 231OI
UT WOS:000325426100009
ER
PT J
AU Patel, A
Brown, AD
Hsieh, WT
Stevenson, T
Moseley, SH
U-yen, K
Ehsan, N
Barrentine, E
Manos, G
Wollack, EJ
AF Patel, Amil
Brown, Ari-David
Hsieh, Wen-Ting
Stevenson, Thomas
Moseley, S. Harvey
U-yen, Kongpop
Ehsan, Negar
Barrentine, Emily
Manos, George
Wollack, Edward J.
TI Fabrication of MKIDS for the MicroSpec Spectrometer
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Microstrip devices; microwave kinetic inductance detector (MKID);
molybdenum nitride; niobium; spectrometer; wafer bonding
ID ARRAYS
AB Microspec is a new class of submillimeter and millimeter (250-700 mu m wavelength) spectrometer, in which the wavelength separation and detection of incident light is done on a single substrate. The instrument is designed for space exploration by offering high spectral resolving power over a broad band, while being orders of magnitude smaller in mass and volume than the present state-of-the-art. The key enabling components for Microspec are background-limited microwave kinetic inductance detectors, which operate over the full bandwidth of the spectrometer. Here we present our fabrication strategy for making these sensitive detectors. A microstrip architecture utilizing a 0.45-mu m crystalline silicon dielectric with a molybdenum nitride kinetic inductor material has been adopted. We have optimized wafer-scale lithographic patterning, and have developed processes that allow us to minimize surface roughness that may contribute to detector noise. Additionally, we have optimized the low-temperature wafer bonding process; this process allows us to build superconductors on both sides of the silicon dielectric layer. We present a final fabricated device and resonator operation at cryogenic temperatures.
C1 [Patel, Amil; Brown, Ari-David; Hsieh, Wen-Ting; Stevenson, Thomas; Moseley, S. Harvey; U-yen, Kongpop; Ehsan, Negar; Barrentine, Emily; Manos, George; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Patel, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM amil.a.patel@nasa.gov; ari.d.brown@nasa.gov
RI Wollack, Edward/D-4467-2012
OI Wollack, Edward/0000-0002-7567-4451
FU NASA ROSES-APRA program; GSFC IRAD program
FX This work was carried out at NASA Goddard Space Flight Center and was
supported in part by the NASA ROSES-APRA program and the GSFC IRAD
program.
NR 11
TC 4
Z9 4
U1 2
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
EI 1558-2515
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2400404
DI 10.1109/TASC.2013.2240152
PN 1
PG 4
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 143KT
UT WOS:000318867100069
ER
PT J
AU House, CH
Oehler, DZ
Sugitani, K
Mimura, K
AF House, C. H.
Oehler, D. Z.
Sugitani, K.
Mimura, K.
TI Carbon isotopic analyses of ca. 3.0 Ga microstructures imply planktonic
autotrophs inhabited Earth's early oceans
SO GEOLOGY
LA English
DT Article
ID INDIVIDUAL PRECAMBRIAN MICROFOSSILS; BARBERTON GREENSTONE-BELT; STRELLEY
POOL FORMATION; WESTERN-AUSTRALIA; PILBARA CRATON; SOUTH-AFRICA;
BIOGENICITY; SIGNATURES; EVOLUTION; FRACTIONATION
AB The ca. 3 Ga Farrel Quartzite (FQ, Western Australia) contains possible organic microfossils of unusual spindle-like morphology that are surprisingly large and complex, preserved along with spheroids. The unusual nature of the possible fossils, coupled with their antiquity, makes their interpretation as biogenic difficult and debatable. Here, we report 32 in situ carbon isotopic analyses of 15 individual FQ specimens. The spheroids and the spindle-like forms have a weighted mean delta C-13 value of -37 parts per thousand, an isotopic composition that is quite consistent with a biogenic origin. Both the spheroids and the spindle-like structures are isotopically distinct from the background organic matter in the same thin section (weighted mean delta C-13 value of -33 parts per thousand), which shows that the preserved microstructures are not pseudofossils formed from physical reprocessing of the bulk sedimentary organic material. When considered along with published morphological and chemical studies, these results indicate that the FQ microstructures are bona fide microfossils, and support the interpretation that the spindles were planktonic. Our results also provide metabolic constraints that imply most of these preserved microorganisms were autotrophic. The existence of similar spindles in the ca. 3.4 Ga Strelley Pool Formation of Australia and the ca. 3.4 Ga Onverwacht Group of South Africa suggests that the spindle-containing microbiota may be one of the oldest, morphologically preserved examples of life. If this is the case, then the FQ structures represent the remains of a cosmopolitan biological experiment that appears to have lasted for several hundred million years, starting in the Paleoarchean.
C1 [House, C. H.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
[House, C. H.] Penn State Univ, Astrobiol Res Ctr, University Pk, PA 16802 USA.
[Oehler, D. Z.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA.
[Sugitani, K.] Nagoya Univ, Grad Sch Environm Studies, Dept Environm Engn & Architecture, Nagoya, Aichi 4648601, Japan.
[Mimura, K.] Nagoya Univ, Grad Sch Environm Studies, Dept Earth & Environm Sci, Nagoya, Aichi 4648601, Japan.
RP House, CH (reprint author), Penn State Univ, Dept Geosci, 220 Deike Bldg, University Pk, PA 16802 USA.
EM chrishouse@psu.edu; dorothy.z.oehler@nasa.gov
RI UCLA, SIMS/A-1459-2011
FU NASA Astrobiology Institute [NNA09DA76A]; Astromaterials Research and
Exploration Science Directorate at Johnson Space Center; Japan Society
for the Promotion of Science [22340149, 24654162]
FX We thank A. K. Schmitt and K. D. McKeegan for assistance with
measurements, J.W. Schopf for information from his Raman studies, and T.
Nagaoka for preparation of the thin sections. This work was funded by
the NASA Astrobiology Institute (NNA09DA76A), and by support from the
Astromaterials Research and Exploration Science Directorate at Johnson
Space Center. The UCLA facility is partly supported by the Earth
Sciences Instrumentation and Facilities Program, National Science
Foundation. Sugitani received support from the Japan Society for the
Promotion of Science (Japan-Australia Joint Research Program and
Grant-in-Aid numbers 22340149 and 24654162).
NR 33
TC 13
Z9 13
U1 0
U2 24
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
J9 GEOLOGY
JI Geology
PD JUN
PY 2013
VL 41
IS 6
BP 651
EP 654
DI 10.1130/G34055.1
PG 4
WC Geology
SC Geology
GA 203DF
UT WOS:000323269800007
ER
PT J
AU Warner, NH
Sowe, M
Gupta, S
Dumke, A
Goddard, K
AF Warner, Nicholas H.
Sowe, Mariam
Gupta, Sanjeev
Dumke, Alexander
Goddard, Kate
TI Fill and spill of giant lakes in the eastern Valles Marineris region of
Mars
SO GEOLOGY
LA English
DT Article
ID INTERIOR LAYERED DEPOSITS; ORIGIN; CRATER
AB The existence of Hesperian age (3.7-3.4 Ga) surface water bodies on Mars is a contentious issue, often conflicting with favored climate models. Extensive lakes are proposed to have filled parts of Valles Marineris during this period, yet evidence for their presence and temporal continuity is poorly constrained. Here we report geomorphic and chronologic evidence for the initiation and demise of a voluminous lake system within the basins of eastern Valles Marineris. We find that independent, kilometer-deep lakes were present here well after the wetter, global climate optimum that characterized the previous Noachian epoch (4.1-3.7 Ga). Relative and impact crater chronologies of flood channels emerging from lake basins indicate relatively late lake spillover in the Early Amazonian (ca. 3.0 Ga). Drawdown of the lake and cessation of interbasin sedimentation may be recorded by a similar Early Amazonian (ca. 3.1 Ga) crater retention age on the surface of Capri Mensa, a 4-km-tall, sulfate-bearing interior layered deposit. The topography data demonstrate that incision of the bedrock barriers between the basins during spillover was driven by a dramatic local base-level difference between the lake surface and downstream basin floors. We postulate that the lake spillover process created an integrated drainage routing system between a voluminous equatorial water supply and the northern plains basin.
C1 [Warner, Nicholas H.; Gupta, Sanjeev; Goddard, Kate] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England.
[Sowe, Mariam; Dumke, Alexander] Free Univ Berlin, Inst Geol Sci Planetary Sci & Remote Sensing, D-12249 Berlin, Germany.
RP Warner, NH (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Nicholas.H.Warner@jpl.nasa.gov
OI Dumke, Alexander/0000-0002-2709-3169
FU UK Science and Technology Facilities Council (STFC) [ST/F003099/1];
Helmholtz Alliance "Planetary Evolution and Life''; Deutsche
Forschungsgemeinschaft [SO 1143/1]; German Space Agency [50QM1001];
German Federal Ministry of Economics and Technology; STFC; Jet
Propulsion Laboratory-California Institute of Technology; NASA
FX We thank the HRSC (High-Resolution Stereo Camera) team at Freie
Universitat Berlin, the German Aerospace Centre (DLR), the European
Space Agency (ESA), as well as the CTX (Context Camera) and HiRISE (High
Resolution Imaging Science Experiment) teams. Warner and Gupta were
supported by the UK Science and Technology Facilities Council (STFC)
under grant ST/F003099/1. Sowe was funded in part by the Helmholtz
Alliance "Planetary Evolution and Life'' and Deutsche
Forschungsgemeinschaft travel grant SO 1143/1. Dumke was supported by
German Space Agency grant 50QM1001 (HRSC on Mars Express) on behalf of
the German Federal Ministry of Economics and Technology. Goddard was
funded by an STFC doctoral studentship. Warner was partially supported
by an appointment to the NASA Postdoctoral Program at the Jet Propulsion
Laboratory-California Institute of Technology, administered by Oak Ridge
Associated Universities through a contract with NASA. We thank Brian
Hynek, Samuel C. Schon, and two anonymous reviewers for their comments.
NR 21
TC 19
Z9 19
U1 0
U2 17
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
J9 GEOLOGY
JI Geology
PD JUN
PY 2013
VL 41
IS 6
BP 675
EP 678
DI 10.1130/G34172.1
PG 4
WC Geology
SC Geology
GA 203DF
UT WOS:000323269800013
ER
PT J
AU Ekstrand, AL
Webley, PW
Garay, MJ
Dehn, J
Prakash, A
Nelson, DL
Dean, KG
Steensen, T
AF Ekstrand, Angela L.
Webley, Peter W.
Garay, Michael J.
Dehn, Jonathan
Prakash, Anupma
Nelson, David L.
Dean, Kenneson G.
Steensen, Torge
TI A multi-sensor plume height analysis of the 2009 Redoubt eruption
SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH
LA English
DT Article
DE Remote sensing; Redoubt; Ash clouds; MISR; MODIS; AVHRR
ID VOLCANIC ASH CLOUDS; SATELLITE-OBSERVATIONS; WEATHER RADAR; RETRIEVAL;
DYNAMICS; ALASKA; MODEL; MISR; TOP
AB During an explosive volcanic eruption, accurately determining the height of a volcanic plume or cloud is essential to accurately forecast its motion because volcanic ash transport and dispersion models require the initial plume height as an input parameter. The direct use of satellite infrared temperatures for height determination, one of the most commonly employed methods at the Alaska Volcano Observatory, often does not yield unique solutions for height. This result is documented here for the 2009 eruption of Redoubt Volcano. Satellite temperature heights consistently underestimated the height of ash plumes in comparison to other methods such as ground-based radar and Multi-angle Imaging SpectroRadiometer (MISR) stereo heights. For ash plumes below the tropopause, increasing transparency of a plume begins to affect the accuracy of simple temperature height retrievals soon after eruption. With decreasing opacity, plume temperature heights become increasingly inaccurate. Comparison with dispersion models and aircraft gas flight data confirms that radar and MISR stereo heights are more accurate than basic satellite temperature heights. Even in the cases in which satellite temperature results appeared to be relatively accurate (e.g., for plumes below the tropopause), a mixed signal of plume and ground radiation still presented an issue for almost every event studied. This was true regardless of the fact that a band differencing method was used to remove presumably translucent pixels. The data presented here make a strong case for the use of data fusion in volcano monitoring, as there is a need to confirm satellite temperature heights with other height data. If only basic satellite temperature heights are available for a given eruption, then these heights must be considered with a significant margin of error. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Ekstrand, Angela L.; Webley, Peter W.; Dehn, Jonathan; Prakash, Anupma; Dean, Kenneson G.; Steensen, Torge] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA.
[Ekstrand, Angela L.; Webley, Peter W.; Dehn, Jonathan; Dean, Kenneson G.; Steensen, Torge] Univ Alaska Fairbanks, Alaska Volcano Observ, Fairbanks, AK 99775 USA.
[Garay, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Nelson, David L.] Raytheon Co, Pasadena, CA 91101 USA.
RP Ekstrand, AL (reprint author), Univ Alaska Fairbanks, Inst Geophys, Alaska Volcano Observ, 903 Koyukuk Dr, Fairbanks, AK 99775 USA.
EM angela.ekstrand@gi.alaska.edu
RI Webley, Peter/F-8238-2015
OI Webley, Peter/0000-0001-5327-8151
FU American Reinvestment and Recovery Act; Alaska Space Grant Program;
National Aeronautics and Space Administration
FX We would like to thank Lovro Valcic (AVO/UAF-GI) and Scott McFarlane
(AVO/UAF-GI) for assistance in obtaining and processing AVHRR and MODIS
satellite imagery, David McAlpin (UAF-GI) for processing of the DEM
data, Jeremy Harbeck for assistance with programming and computational
analysis in IDL, David Schneider (USGS) for providing radar data, Peter
Kelly (USGS) for providing gas flight data, and Steve McNutt
(AVO/UAF-GI) for providing seismic data. Thanks to Ralph Kahn (NASA
GSFC) and Michael Pavolonis (NOAA) and one anonymous reviewer for
helpful comments and feedback. This work was supported in part by The
American Reinvestment and Recovery Act, as well as the Alaska Space
Grant Program. Portions of this work were carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.
NR 59
TC 5
Z9 5
U1 1
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0377-0273
J9 J VOLCANOL GEOTH RES
JI J. Volcanol. Geotherm. Res.
PD JUN 1
PY 2013
VL 259
SI SI
BP 170
EP 184
DI 10.1016/j.jvolgeores.2012.09.008
PG 15
WC Geosciences, Multidisciplinary
SC Geology
GA 195FU
UT WOS:000322688500013
ER
PT J
AU Mersel, MK
Smith, LC
Andreadis, KM
Durand, MT
AF Mersel, Matthew K.
Smith, Laurence C.
Andreadis, Konstantinos M.
Durand, Michael T.
TI Estimation of river depth from remotely sensed hydraulic relationships
SO WATER RESOURCES RESEARCH
LA English
DT Article
DE hydraulic geometry; river depth; surface water and ocean topography;
SWO; slope break
ID SATELLITE RADAR ALTIMETRY; SYNTHETIC-APERTURE RADAR; WATER-LEVEL
CHANGES; AMAZON FLOODPLAIN; WETLAND DYNAMICS; INUNDATION AREA;
SURFACE-WATER; GEOMETRY; DISCHARGE; BASIN
AB The Surface Water and Ocean Topography (SWOT) radar interferometer satellite mission will provide unprecedented global measurements of water surface elevation (h) for inland water bodies. However, like most remote sensing technologies SWOT will not observe river channel bathymetry below the lowest observed water surface, thus limiting its value for estimating river depth and/or discharge. This study explores if remotely sensed observations of river inundation width and h alone, when accumulated over time, may be used to estimate this unmeasurable flow depth. To test this possibility, synthetic values of h and either cross-sectional flow width (w) or effectivewidth (We, inundation area divided by reach length) are extracted from 1495 previously surveyed channel cross-sections for the Upper Mississippi, Illinois, Rio Grande, and Ganges-Brahmaputra river systems, and from 62 km of continuously acquired sonar data for the Upper Mississippi. Two proposed methods (called "Linear" and "Slope-Break") are tested that seek to identify a small subset of geomorphically "optimal" locations where w or We covary strongly with h, such that they may be usefully extrapolated to estimate mean cross-sectional flow depth (d). While the simplest Linear Method is found to have considerable uncertainty, the Slope-Break Method, identifying locations where two distinct hydraulic relationships are identified (one for moderate to high flows and one for low flows), holds promise. Useful slope breaks were discovered in all four river systems, ranging from 6 (0.04%) to 242 (16%) of the 1495 studied cross-sections, assuming channel bathymetric exposures ranging from 20% to 95% of bankfull conditions, respectively. For all four rivers, the derived depth estimates from the Slope-Break Method have root mean squared errors (RMSEs) of <20% (relative to bankfull mean depth) assuming at least one channel bathymetry exposure of similar to 25% or greater. Based on historic discharge records and HEC-RAS hydraulic modeling, the Upper Mississippi and Rio Grande rivers experience adequate channel exposures at least similar to 60% and similar to 42% of the time, respectively. For the Upper Mississippi, so-called "reach-averaging" (spatial averaging along some predetermined river length) of native-resolution h and We values reduces both RMSE and longitudinal variability in the derived depth estimates, especially at reach-averaging lengths of similar to 1000-2000 m. These findings have positive implications for SWOT and other sensors attempting to estimate river flow depth and/or discharge solely from incomplete, remotely sensed hydraulic variables, and suggest that useful depth retrievals can be obtained within the spatial and temporal constraints of satellite observations.
C1 [Mersel, Matthew K.; Smith, Laurence C.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA.
[Smith, Laurence C.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
[Andreadis, Konstantinos M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Durand, Michael T.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Durand, Michael T.] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA.
RP Mersel, MK (reprint author), Cold Reg Res & Engn Lab, RS GIS 103,72 Lyme Rd, Hanover, NH 03755 USA.
EM mmersel@ucla.edu
RI Durand, Michael/D-2885-2013; Smith, Laurence/E-7785-2012
OI Smith, Laurence/0000-0001-6866-5904
FU NASA Physical Oceanography Program [NNX10AE96G]
FX This research was funded by the NASA Physical Oceanography Program
(grant NNX10AE96G), managed by Eric Lindstrom. In situ cross-section
data for the Ganges-Brahmaputra river system was provided by Faissal
Hossain (Tennessee Technical University) as part of a Memorandum of
Understanding between the Institute of Water Modeling-Bangladesh and
Tennessee Technical University. In situ cross-section data for the Rio
Grande (surveyed by Tetra Tech Inc.) and for the Upper Mississippi and
Illinois rivers (surveyed by the U. S. Army Corps of Engineers) was
provided to the authors by Edward Beighley (FM Global). The continuous
in situ bathymetric data set for the Upper Mississippi was provided by
the USGS, as part of the Long Term Resource Monitoring Program. The
authors thank Doug Alsdorf, Paul Bates, and one anonymous reviewer for
their constructive feedback on this paper.
NR 51
TC 19
Z9 19
U1 3
U2 49
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
J9 WATER RESOUR RES
JI Water Resour. Res.
PD JUN
PY 2013
VL 49
IS 6
BP 3165
EP 3179
DI 10.1002/wrcr.20176
PG 15
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 189BF
UT WOS:000322241300007
ER
PT J
AU Corron, NJ
Stahl, MT
Harrison, RC
Blakely, JN
AF Corron, Ned J.
Stahl, Mark T.
Harrison, R. Chase
Blakely, Jonathan N.
TI Acoustic detection and ranging using solvable chaos
SO CHAOS
LA English
DT Article
ID COLPITTS OSCILLATOR; AMBIGUITY FUNCTIONS; RADAR; SIGNALS
AB Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements in the presence of noise and interference from a second chaotic emitter are presented to demonstrate the viability of the approach.
C1 [Corron, Ned J.; Harrison, R. Chase; Blakely, Jonathan N.] US Army Aviat & Missile Res Dev & Engn Ctr, Charles M Bowden Lab, Redstone Arsenal, AL 35898 USA.
[Stahl, Mark T.] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Corron, NJ (reprint author), US Army Aviat & Missile Res Dev & Engn Ctr, Charles M Bowden Lab, Redstone Arsenal, AL 35898 USA.
OI Corron, Ned/0000-0002-3232-5024
NR 21
TC 8
Z9 8
U1 0
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1054-1500
J9 CHAOS
JI Chaos
PD JUN
PY 2013
VL 23
IS 2
AR 023119
DI 10.1063/1.4808252
PG 7
WC Mathematics, Applied; Physics, Mathematical
SC Mathematics; Physics
GA 174HR
UT WOS:000321146500019
PM 23822484
ER
PT J
AU MacLachlan, GA
Shenoy, A
Sonbas, E
Dhuga, KS
Cobb, BE
Ukwatta, TN
Morris, DC
Eskandarian, A
Maximon, LC
Parke, WC
AF MacLachlan, G. A.
Shenoy, A.
Sonbas, E.
Dhuga, K. S.
Cobb, B. E.
Ukwatta, T. N.
Morris, D. C.
Eskandarian, A.
Maximon, L. C.
Parke, W. C.
TI Minimum variability time-scales of long and short GRBs
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: analytical; methods: data analysis; methods: statistical;
gamma-ray burst: general
ID GAMMA-RAY BURSTS; FRACTIONAL BROWNIAN MOTIONS; LUMINOSITY RELATION;
LIGHT CURVES; DURATION; PULSES; ACCRETION; LAG
AB We have investigated the time variations in the light curves from a sample of long and short Fermi/GBM gamma-ray bursts (GRBs) using an impartial wavelet analysis. The results indicate that in the source frame, the variability time-scales for long bursts differ from that for short bursts, variabilities of the order of a few milliseconds are not uncommon and an intriguing relationship exists between the minimum variability time and the burst duration.
C1 [MacLachlan, G. A.; Shenoy, A.; Dhuga, K. S.; Cobb, B. E.; Ukwatta, T. N.; Morris, D. C.; Eskandarian, A.; Maximon, L. C.; Parke, W. C.] George Washington Univ, Dept Phys, Washington, DC 20052 USA.
[Sonbas, E.] Adiyaman Univ, Dept Phys, TR-02040 Adiyaman, Turkey.
[Sonbas, E.; Ukwatta, T. N.; Morris, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Morris, D. C.] Univ Virgin Isl, Dept Phys, St Thomas, VI USA.
RP MacLachlan, GA (reprint author), George Washington Univ, Dept Phys, Washington, DC 20052 USA.
EM maclach@gwu.edu
FU NASA [NNX11AE36G]
FX The NASA grant NNX11AE36G provided partial support for this work and is
gratefully acknowledged. The authors, in particular GAM and KSD,
acknowledge very useful discussions with Jon Hakkila and Narayan Bhat
early in the manuscript development. GAM and KSD also acknowledge
helpful correspondences with Jeffery Scargle.
NR 38
TC 14
Z9 14
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 2
BP 857
EP 865
DI 10.1093/mnras/stt241
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 156OP
UT WOS:000319832300001
ER
PT J
AU Jerzykiewicz, M
Lehmann, H
Niemczura, E
Molenda-Zakowicz, J
Dymitrov, W
Fagas, M
Guenther, DB
Hartmann, M
Hrudkova, M
Kaminski, K
Moffat, AFJ
Kuschnig, R
Leto, G
Matthews, JM
Rowe, JF
Rucinski, SM
Sasselov, D
Weiss, WW
AF Jerzykiewicz, M.
Lehmann, H.
Niemczura, E.
Molenda-Zakowicz, J.
Dymitrov, W.
Fagas, M.
Guenther, D. B.
Hartmann, M.
Hrudkova, M.
Kaminski, K.
Moffat, A. F. J.
Kuschnig, R.
Leto, G.
Matthews, J. M.
Rowe, J. F.
Rucinski, S. M.
Sasselov, D.
Weiss, W. W.
TI mu Eridani from MOST star and from the ground: an orbit, the SPB
component's fundamental parameters and the SPB frequencies
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE binaries: eclipsing; binaries: spectroscopic; stars: early-type; stars:
individual: mu Eridani; stars: oscillations
ID B-TYPE STARS; EMPIRICAL EFFECTIVE TEMPERATURES; SOLAR MODEL PROBLEM;
BOLOMETRIC CORRECTIONS; RADIAL-VELOCITIES; ECLIPSING BINARIES; BETA
PHOTOMETRY; SURFACE GRAVITY; NU-ERIDANI; F-STARS
AB MOST time series photometry of mu Eri, an SB1 eclipsing binary with a rapidly rotating SPB primary, is reported and analysed. The analysis yields a number of sinusoidal terms, mainly due to the intrinsic variation of the primary, and the eclipse light curve. New radial-velocity observations are presented and used to compute parameters of a spectroscopic orbit. Frequency analysis of the radial-velocity residuals from the spectroscopic orbital solution fails to uncover periodic variations with amplitudes greater than 2 km s (1). A Rossiter-McLaughlin anomaly is detected from observations covering ingress. From archival photometric indices and the revised Hipparcos parallax, we derive the primary's effective temperature, surface gravity, bolometric correction and the luminosity. An analysis of a high signal-to-noise spectrogram yields the effective temperature and surface gravity in good agreement with the photometric values. From the same spectrogram, we determine the abundance of He, C, N, O, Ne, Mg, Al, Si, P, S, Cl and Fe. The eclipse light curve is solved by means of EBOP. For a range of mass of the primary, a value of mean density, very nearly independent of assumed mass, is computed from the parameters of the system. Contrary to a recent report, this value is approximately equal to the mean density obtained from the star's effective temperature and luminosity. Despite limited frequency resolution of the MOST data, we were able to recover the closely spaced SPB frequency quadruplet discovered from the ground in 2002-2004. The other two SPB terms seen from the ground were also recovered. Moreover, our analysis of the MOST data adds 15 low-amplitude SPB terms with frequencies ranging from 0.109 to 2.786 d(-1).
C1 [Jerzykiewicz, M.; Niemczura, E.; Molenda-Zakowicz, J.] Uniwersytetu Wroclawskiego, Inst Astron, PL-51622 Wroclaw, Poland.
[Lehmann, H.; Hartmann, M.; Hrudkova, M.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany.
[Dymitrov, W.; Fagas, M.; Kaminski, K.] Adam Mickiewicz Univ, Astron Observ Inst, Fac Phys, PL-60286 Poznan, Poland.
[Guenther, D. B.; Weiss, W. W.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada.
[Hrudkova, M.] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Canary Islands, Spain.
[Moffat, A. F. J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada.
[Kuschnig, R.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria.
[Kuschnig, R.; Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Leto, G.] Osserv Astrofis Catania, INAF, I-95123 Catania, Italy.
[Rowe, J. F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Rucinski, S. M.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Sasselov, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Jerzykiewicz, M (reprint author), Uniwersytetu Wroclawskiego, Inst Astron, Kopernika 11, PL-51622 Wroclaw, Poland.
EM mjerz@astro.uni.wroc.pl
RI Leto, Giuseppe/N-3355-2015
OI Leto, Giuseppe/0000-0002-0040-5011
FU MNiSW grant [N N203 405139]; NCN grant [2011/01/B/St9/05448]; Wroclaw
Centre for Networking and Supercomputing [214]; DFG [HA 3279/5-1];
Natural Sciences and Engineering Research Council (NSERC) of Canada;
Fonds de recherche du Quebec (FQNRT)
FX We are indebted to Dr Paul B. Etzel for providing the source code of his
computer program EBOP and explanations and to Dr Jadwiga
Daszynska-Daszkiewicz for computing the evolutionary tracks used in
Section 8. MJ, EN and JM-.Z acknowledge support from MNiSW grant N N203
405139. EN acknowledges support from NCN grant 2011/01/B/St9/05448.
Calculations have been partially carried out at the Wroclaw Centre for
Networking and Supercomputing under grant No. 214. MHr acknowledges
support from DFG grant HA 3279/5-1. WD thanks his students, Karolina
Bakowska, Adrian Kruszewski, Krystian Kurzawa and Anna Przybyszewska for
assisting in observations. DBG, JMM, AFJM and SMR acknowledge funding
support of the Natural Sciences and Engineering Research Council (NSERC)
of Canada. AFJM is also grateful for financial assistance from Fonds de
recherche du Quebec (FQNRT). In this research, we have used the Aladin
service, operated at CDS, Strasbourg, France, and the SAO/NASA
Astrophysics Data System Abstract Service.
NR 59
TC 2
Z9 2
U1 1
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 2
BP 1032
EP 1045
DI 10.1093/mnras/stt522
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 156OP
UT WOS:000319832300015
ER
PT J
AU Paragi, Z
van der Horst, AJ
Belloni, T
Miller-Jones, JCA
Linford, J
Taylor, G
Yang, J
Garrett, MA
Granot, J
Kouveliotou, C
Kuulkers, E
Wijers, RAMJ
AF Paragi, Z.
van der Horst, A. J.
Belloni, T.
Miller-Jones, J. C. A.
Linford, J.
Taylor, G.
Yang, J.
Garrett, M. A.
Granot, J.
Kouveliotou, C.
Kuulkers, E.
Wijers, R. A. M. J.
TI VLBI observations of the shortest orbital period black hole binary, MAXI
J1659-152
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: individual: MAXI J1659-152; ISM: jets and outflows; X-rays:
binaries
ID X-RAY BINARIES; RADIO JET; RELATIVISTIC JETS; LOW/HARD STATE; GX 339-4;
CANDIDATE; OUTBURST; CYGNUS-X-3; EMISSION; TRANSIENT
AB The X-ray transient MAXI J1659-152 was discovered by Swift/Burst Alert Telescope and it was initially identified as a gamma-ray burst. Soon its Galactic origin and binary nature were established. There exists a wealth of multiwavelength monitoring data for this source, providing a great coverage of the full X-ray transition in this candidate black hole binary system. We obtained two epochs of European very long baseline interferometry (VLBI) Network (EVN) electronic-VLBI and four epochs of Very Long Baseline Array data of MAXI J1659-152 which show evidence for outflow in the early phases. The overall source properties (polarization, milliarcsecond-scale radio structure, flat radio spectrum) are described well with the presence of a compact jet in the system through the transition from the hard-intermediate to the soft X-ray spectral state. The apparent dependence of source size and the radio core position on the observed flux density (luminosity-dependent core shift) supports this interpretation as well. We see no evidence for major discrete ejecta during the outburst. For the source proper motion we derive 2 Sigma upper limits of 115 mu as d(-1) in right ascension, and 37 mu as d(-1) in declination, over a time baseline of 12 d. These correspond to velocities of 1400 and 440 km s(-1), respectively, assuming a source distance of similar to 7 kpc.
C1 [Paragi, Z.; Yang, J.] Joint Inst VLBI Europe, NL-7990 AA Dwingeloo, Netherlands.
[van der Horst, A. J.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands.
[Belloni, T.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy.
[Miller-Jones, J. C. A.] Curtin Univ Technol, Int Ctr Radio Astron Res, Perth, WA 6845, Australia.
[Linford, J.; Taylor, G.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Garrett, M. A.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands.
[Garrett, M. A.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Granot, J.] Open Univ Israel, Dept Nat Sci, IL-43537 Raanana, Israel.
[Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 38512 USA.
[Kuulkers, E.] European Space Astron Ctr ESA ESAC, Sci Operat Dept, E-28691 Madrid, Spain.
[Wijers, R. A. M. J.] Univ Amsterdam, Astron Inst, NL-1098 XH Amsterdam, Netherlands.
RP Paragi, Z (reprint author), Joint Inst VLBI Europe, Postbus 2, NL-7990 AA Dwingeloo, Netherlands.
EM zparagi@jive.nl
RI Miller-Jones, James/B-2411-2013;
OI Miller-Jones, James/0000-0003-3124-2814; Wijers,
Ralph/0000-0002-3101-1808
FU European Union [RI-261525]; Australian Research Council [DP120102393];
European Community [ITN 215212]; European national research council;
Chinese national research council; South African national research
council; Netherlands Foundation for Scientific Research
FX We thank the anonymous referee for the constructive comments, which
helped to improve our paper significantly. ZP thanks to Andrei Lobanov
for discussions about the compact jet model. e-VLBI research
infrastructure in Europe is supported by the European Union's Seventh
Framework Programme (FP7/2007-2013) under grant agreement RI-261525
NEXPReS. JCAMJ acknowledges support from an Australian Research Council
Discovery Grant (DP120102393). The EVN is a joint facility of European,
Chinese, South African and other radio astronomy institutes funded by
their national research councils. The WSRT is operated by Netherlands
Institute for Radio Astronomy (ASTRON) with support from the Netherlands
Foundation for Scientific Research. The National Radio Astronomy
Observatory is a facility of the National Science Foundation operated
under cooperative agreement by Associated Universities, Inc. This work
made use of the Swinburne University of Technology software correlator,
developed as part of the Australian Major National Research Facilities
Programme and operated under license. The research leading to these
results has received funding from the European Community's Seventh
Framework Programme (FP7/2007-2013) under grant agreement ITN 215212.
NR 55
TC 9
Z9 9
U1 0
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 2
BP 1319
EP 1329
DI 10.1093/mnras/stt545
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 156OP
UT WOS:000319832300036
ER
PT J
AU Foster, DL
Charles, PA
Swartz, DA
Misra, R
Stassun, KG
AF Foster, D. L.
Charles, P. A.
Swartz, D. A.
Misra, R.
Stassun, K. G.
TI Monitoring the very-long-term variability of X-ray sources in the giant
elliptical galaxy M87
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE accretion, accretion discs; black hole physics; X-rays: binaries
ID HUBBLE-SPACE-TELESCOPE; MASS BLACK-HOLE; NGC 5408 X-1; PERIODIC
MODULATION; GLOBULAR-CLUSTERS; SPECTRAL-ANALYSIS; CENTRAL REGION;
CHANDRA; M31; SUPERSOFT
AB We report on our search for very-long-term variability (weeks to years) in X-ray binaries (XRBs) in the giant elliptical galaxy M87. We have used archival Chandra imaging observations to characterize the long-term variability of eight of the brightest members of the XRB population in M87. The peak brightness of some of the sources exceeded the ultraluminous X-ray source (ULXs) threshold luminosity of similar to 10(39) erg s(-1), and one source could exhibit dips or eclipses. We show that for one source, if it has similar modulation amplitude as in SS433, then period recoverability analysis on the current data would detect periodic modulations, but only for a narrow range of periods less than 120 d. We conclude that a dedicated monitoring campaign, with appropriately defined sampling, is essential if we are to investigate properly the nature of the long-term modulations such as those seen in Galactic sources.
C1 [Foster, D. L.] S African Astron Observ, ZA-7935 Observatory, South Africa.
[Foster, D. L.; Stassun, K. G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Charles, P. A.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Swartz, D. A.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35805 USA.
[Misra, R.] Inter Univ Ctr Astron & Astrophys, Pune, Maharashtra, India.
[Stassun, K. G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA.
RP Foster, DL (reprint author), S African Astron Observ, POB 9, ZA-7935 Observatory, South Africa.
EM deatrick@saao.ac.za
FU NASA; Vanderbilt-Cape Town Partnership Program; Astrophysics, Cosmology
& Gravity Centre (ACGC) at the University of Cape Town; International
Academic Programmes Office (IAPO) at the University of Cape Town
FX DLF acknowledges support from NASA in the form of a Harriett G. Jenkins
Fellowship; the Vanderbilt-Cape Town Partnership Program; the
Astrophysics, Cosmology & Gravity Centre (ACGC) at the University of
Cape Town; and the International Academic Programmes Office (IAPO) at
the University of Cape Town.
NR 35
TC 1
Z9 1
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 2
BP 1375
EP 1381
DI 10.1093/mnras/stt557
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 156OP
UT WOS:000319832300042
ER
PT J
AU Martin, RG
Lubow, SH
AF Martin, Rebecca G.
Lubow, Stephen H.
TI Propagation of the gravo-magneto disc instability
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE accretion, accretion discs; planets and satellites: formation;
protoplanetary discs; stars: pre-main-sequence
ID LONG-TERM EVOLUTION; I PLANET MIGRATION; T TAURI DISKS; PROTOSTELLAR
DISKS; DEAD ZONES; MAGNETOROTATIONAL-INSTABILITY; ACCRETION DISK;
PROTOPLANETARY DISCS; EPISODIC ACCRETION; LAYERED ACCRETION
AB Discs that contain dead zones are subject to the gravo-magneto instability which arises when the turbulence shifts from gravitational to magnetic. We have previously described this instability through a local analysis at some radius in the disc in terms of a limit cycle. A disc may be locally unstable over a radial interval. In this paper, we consider how the local instability model can describe global disc outbursts. The outburst is triggered near the middle of the range of locally unstable radii. The sudden increase in turbulence within high surface density material causes a snowplough of density that propagates both inwards and outwards. All radii inside the trigger radius become unstable, as well as locally unstable radii outside the trigger radius. In addition, a locally stable region outside the trigger radius may also become unstable as the gravitational instability is enhanced by the snowplough. For the circumstellar disc model we consider, we find that a quarter of the disc mass is accreted on to the central object during the outburst. The radius out to which the disc is globally unstable is twice that for which it is locally unstable.
C1 [Martin, Rebecca G.] Univ Colorado, JILA, Boulder, CO 80309 USA.
[Lubow, Stephen H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
RP Martin, RG (reprint author), NASA, Washington, DC 20546 USA.
EM rebecca.martin@jila.colorado.edu
FU California Institute of Technology (Caltech); NASA [NNX11AK61G]
FX We thank the anonymous referee for useful comments. RGM acknowledges
support provided in part through a contract with the California
Institute of Technology (Caltech), funded by NASA, under the Sagan
Fellowship Program. SHL acknowledges support from NASA grant NNX11AK61G.
NR 43
TC 12
Z9 12
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 2
BP 1616
EP 1622
DI 10.1093/mnras/stt580
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 156OP
UT WOS:000319832300058
ER
PT J
AU Barnes, J
Dove, M
Lahsen, M
Mathews, A
McElwee, P
McIntosh, R
Moore, F
O'Reilly, J
Orlove, B
Puri, R
Weise, H
Yager, K
AF Barnes, Jessica
Dove, Michael
Lahsen, Myanna
Mathews, Andrew
McElwee, Pamela
McIntosh, Roderick
Moore, Frances
O'Reilly, Jessica
Orlove, Ben
Puri, Rajindra
Weise, Harvey
Yager, Karina
TI Contribution of anthropology to the study of climate change
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID COLLAPSE; DISINTEGRATION; CIVILIZATION; SCIENCE; WEST; EAST
AB Understanding the challenge that climate change poses and crafting appropriate adaptation and mitigation mechanisms requires input from the breadth of the natural and social sciences. Anthropology's in-depth fieldwork methodology, long engagement in questions of society-environment interactions and broad, holistic view of society yields valuable insights into the science, impacts and policy of climate change. Yet the discipline's voice in climate change debates has remained a relatively marginal one until now. Here, we identify three key ways that anthropological research can enrich and deepen contemporary understandings of climate change.
C1 [Barnes, Jessica; Dove, Michael] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.
[Barnes, Jessica; Dove, Michael] Yale Climate & Energy Inst, New Haven, CT 06511 USA.
[Lahsen, Myanna] Ctr Earth Syst Sci, Sao Jose Dos Campos, Brazil.
[Mathews, Andrew] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA.
[McElwee, Pamela] Rutgers State Univ, New Brunswick, NJ 07102 USA.
[McIntosh, Roderick; Weise, Harvey] Yale Univ, New Haven, CT 06511 USA.
[Moore, Frances] Stanford Univ, Stanford, CA 94305 USA.
[O'Reilly, Jessica] St Johns Univ, Coll St Benedicts, St Joseph, MN 56374 USA.
[Orlove, Ben] Columbia Univ, New York, NY 10027 USA.
[Puri, Rajindra] Univ Kent, Canterbury CT2 7NZ, Kent, England.
[Yager, Karina] NASA, Greenbelt, MD 20771 USA.
RP Barnes, J (reprint author), Yale Univ, Sch Forestry & Environm Studies, 195 Prospect St, New Haven, CT 06511 USA.
EM jessica.barnes@yale.edu
RI Lahsen, Myanna/E-3697-2013;
OI Puri, Rajindra/0000-0002-3442-8537; McElwee, Pamela/0000-0003-3525-9285
FU Yale Climate and Energy Institute; Edward J. and Dorothy Clarke Kempf
Fund; MacMillan Center for International and Area Studies; Tropical
Resources Institute at Yale
FX Funding for the workshop discussion that informed this Perspective and
for the writing of the Perspective was provided by the Yale Climate and
Energy Institute, the Edward J. and Dorothy Clarke Kempf Fund, the
MacMillan Center for International and Area Studies and the Tropical
Resources Institute at Yale.
NR 50
TC 34
Z9 34
U1 2
U2 61
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD JUN
PY 2013
VL 3
IS 6
BP 541
EP 544
DI 10.1038/NCLIMATE1775
PG 4
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 174OX
UT WOS:000321166400011
ER
PT J
AU Shindell, D
Faluvegi, G
Nazarenko, L
Bowman, K
Lamarque, JF
Voulgarakis, A
Schmidt, GA
Pechony, O
Ruedy, R
AF Shindell, Drew
Faluvegi, Greg
Nazarenko, Larissa
Bowman, Kevin
Lamarque, Jean-Francois
Voulgarakis, Apostolos
Schmidt, Gavin A.
Pechony, Olga
Ruedy, Reto
TI Attribution of historical ozone forcing to anthropogenic emissions
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID CLIMATE; SYSTEM
AB Anthropogenic ozone radiative forcing is traditionally separately attributed to tropospheric and stratospheric changes assuming that these have distinct causes(1). Using the interactive composition-climate model GISS-E2-R we find that this assumption is not justified. Our simulations show that changes in. emissions of tropospheric ozone precursors have substantial effects on ozone in both regions, as do anthropogenic halocarbon emissions. On the basis of our results, further simulations with the NCAR-CAM3.5 model(2), and published studies(3,4), we estimate industrial era (1850-2005) whole-atmosphere ozone forcing of similar to 0.5Wm(-2) due to anthropogenic tropospheric precursors and about -0.2 W m(-2) due to halocarbons. The net troposphere plus stratosphere forcing is similar to the net halocarbon plus precursor ozone forcing, but the latter provides a more useful perspective. The halocarbon-induced ozone forcing is roughly two-thirds the magnitude of the halocarbon direct forcing but opposite in sign, yielding a net forcing of only similar to 0.1 W m(-2). Thus, the net effect of halocarbons has been smaller, and the effect of tropospheric ozone precursors has been greater, than generally recognized.
C1 [Shindell, Drew; Faluvegi, Greg; Nazarenko, Larissa; Voulgarakis, Apostolos; Schmidt, Gavin A.; Pechony, Olga; Ruedy, Reto] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Shindell, Drew; Faluvegi, Greg; Nazarenko, Larissa; Voulgarakis, Apostolos; Schmidt, Gavin A.; Pechony, Olga; Ruedy, Reto] Columbia Univ, New York, NY 10025 USA.
[Bowman, Kevin] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA.
[Lamarque, Jean-Francois] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
RP Shindell, D (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
EM drew.t.shindell@nasa.gov
RI Schmidt, Gavin/D-4427-2012; Shindell, Drew/D-4636-2012; Lamarque,
Jean-Francois/L-2313-2014
OI Schmidt, Gavin/0000-0002-2258-0486; Lamarque,
Jean-Francois/0000-0002-4225-5074
FU NASA MAP
FX We thank NASA MAP for financial support and the NCCS for computer
services.
NR 20
TC 13
Z9 13
U1 1
U2 18
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD JUN
PY 2013
VL 3
IS 6
BP 567
EP 570
DI 10.1038/NCLIMATE1835
PG 4
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 174OX
UT WOS:000321166400016
ER
PT J
AU Xu, L
Myneni, RB
Chapin, FS
Callaghan, TV
Pinzon, JE
Tucker, CJ
Zhu, Z
Bi, J
Ciais, P
Tommervik, H
Euskirchen, ES
Forbes, BC
Piao, SL
Anderson, BT
Ganguly, S
Nemani, RR
Goetz, SJ
Beck, PSA
Bunn, AG
Cao, C
Stroeve, JC
AF Xu, L.
Myneni, R. B.
Chapin, F. S., III
Callaghan, T. V.
Pinzon, J. E.
Tucker, C. J.
Zhu, Z.
Bi, J.
Ciais, P.
Tommervik, H.
Euskirchen, E. S.
Forbes, B. C.
Piao, S. L.
Anderson, B. T.
Ganguly, S.
Nemani, R. R.
Goetz, S. J.
Beck, P. S. A.
Bunn, A. G.
Cao, C.
Stroeve, J. C.
TI Temperature and vegetation seasonality diminishment over northern lands
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID ARCTIC VEGETATION; TUNDRA; ECOSYSTEMS; PLANT; DYNAMICS
AB Global temperature is increasing, especially over northern lands (>50 degrees N), owing to positive feedbacks(1). As this increase is most pronounced in winter, temperature seasonality (S-T)-conventionally defined as the difference between summer and winter temperatures-is diminishing over time(2), a phenomenon that is analogous to its equatorward decline at an annual scale. The initiation, termination and performance of vegetation photosynthetic activity are tied to threshold temperatures(3). Trends in the timing of these thresholds and cumulative temperatures above them may alter vegetation productivity, or modify vegetation seasonality (S-V), over time. The relationship between S-T and S-V is critically examined here with newly improved ground and satellite data sets. The observed diminishment of S-T and S-V, is equivalent to 4 degrees and 7 degrees (5 degrees and 6 degrees) latitudinal shift equatorward during the past 30 years in the Arctic. (boreal) region. Analysis of simulations from 17 state-of-the-art climate models(4) indicates an additional S-T diminishment equivalent to a 20 equatorward shift could occur this century. How S-V will change in response to such large projected S-T declines and the impact this will have on ecosystem services(5) are not well understood. Hence the need for continued monitoring(6) of northern lands as their seasonal temperature profiles evolve to resemble those further south.
C1 [Xu, L.; Myneni, R. B.; Zhu, Z.; Bi, J.; Anderson, B. T.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA.
[Chapin, F. S., III; Euskirchen, E. S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA.
[Callaghan, T. V.] Royal Swedish Acad Sci, S-10405 Stockholm, Sweden.
[Callaghan, T. V.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.
[Pinzon, J. E.; Tucker, C. J.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA.
[Ciais, P.] UVSQ, CNRS, CEA, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France.
[Tommervik, H.] Norwegian Inst Nat Res, Fram High North Res Ctr Climate & Environm, N-9296 Tromso, Norway.
[Forbes, B. C.] Univ Lapland, Arctic Ctr, FI-96101 Rovaniemi, Finland.
[Piao, S. L.] Peking Univ, Dept Ecol, Beijing 100871, Peoples R China.
[Piao, S. L.] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China.
[Ganguly, S.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA.
[Nemani, R. R.] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA.
[Goetz, S. J.; Beck, P. S. A.] Woods Hole Res Ctr, Falmouth, MA 02540 USA.
[Bunn, A. G.] Western Washington Univ, Huxley Coll, Dept Environm Sci, Bellingham, WA 98225 USA.
[Cao, C.] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China.
[Cao, C.] Univ Elect Sci & Technol China, Sch Resource & Environm, Chengdu 611731, Sichuan, Peoples R China.
[Stroeve, J. C.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA.
RP Xu, L (reprint author), Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA.
EM xuliang@bu.edu; ranga.myneni@gmail.com
RI Forbes, Bruce/L-4431-2013; ganguly, sangram/B-5108-2010; Myneni,
Ranga/F-5129-2012; Goetz, Scott/A-3393-2015; Xu, Liang/D-1247-2013;
Callaghan, Terens/N-7640-2014;
OI Forbes, Bruce/0000-0002-4593-5083; Goetz, Scott/0000-0002-6326-4308;
Chapin III, F Stuart/0000-0002-2558-9910
FU NASA Earth Science Division
FX This work was financially supported by the NASA Earth Science Division.
We thank CRU, NSIDC, NASA MODIS Project, CAVM team and the CMIP5 climate
modelling groups (listed in Supplementary Table S7) for making their
data available. The authors thank U. S. Bhatt, H. E. Epstein, G. R.
North, M. K. Raynolds, A. R. Stine, G. Schmidt and D. A. Walker for
their comments on various parts of this article.
NR 30
TC 150
Z9 159
U1 33
U2 230
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD JUN
PY 2013
VL 3
IS 6
BP 581
EP 586
DI 10.1038/NCLIMATE1836
PG 6
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 174OX
UT WOS:000321166400019
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Ashdown, M
Atrio-Barandela, F
Aumont, J
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Bartlett, JG
Battaner, E
Benabed, K
Benoit, A
Bernard, JP
Bersanelli, M
Bikmaev, I
Bohringer, H
Bonaldi, A
Bond, JR
Borrill, J
Bouchet, FR
Bourdin, H
Brown, ML
Brown, SD
Burenin, R
Burigana, C
Cabella, P
Cardoso, JF
Carvalho, P
Catalano, A
Cayon, L
Chiang, LY
Chon, G
Christensen, PR
Churazov, E
Clements, DL
Colafrancesco, S
Colombo, LPL
Coulais, A
Crill, BP
Cuttaia, F
Da Silva, A
Dahle, H
Danese, L
Davis, RJ
de Bernardis, P
de Gasperis, G
de Rosa, A
de Zotti, G
Delabrouille, J
Democles, J
Desert, FX
Dickinson, C
Diego, JM
Dolag, K
Dole, H
Donzelli, S
Dore, O
Dorl, U
Douspis, M
Dupac, X
Ensslin, TA
Eriksen, HK
Finelli, F
Flores-Cacho, I
Forni, O
Frailis, M
Franceschi, E
Frommert, M
Galeotta, S
Ganga, K
Genova-Santos, RT
Giard, M
Gilfanov, M
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Hansen, FK
Harrison, D
Henrot-Versille, S
Hernandez-Monteagudo, C
Hildebrandt, SR
Hivon, E
Hobson, M
Holmes, WA
Hornstrup, A
Hovest, W
Huffenberger, KM
Hurier, G
Jaffe, TR
Jagemann, T
Jones, WC
Juvela, M
Keihanen, E
Khamitov, I
Kneissl, R
Knoche, J
Knox, L
Kunz, M
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Lasenby, A
Lawrence, CR
Le Jeune, M
Leonardi, R
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maffei, B
Maino, D
Mandolesi, N
Maris, M
Marleau, F
Martinez-Gonzalez, E
Masi, S
Massardi, M
Matarrese, S
Matthai, F
Mazzotta, P
Mei, S
Melchiorri, A
Melin, JB
Mendes, L
Mennella, A
Mitra, S
Miville-Deschenes, MA
Moneti, A
Montier, L
Morgante, G
Munshi, D
Murphy, JA
Naselsky, P
Natoli, P
Norgaard-Nielsen, HU
Noviello, F
Novikov, D
Novikov, I
Osborne, S
Pajot, F
Paoletti, D
Perdereau, O
Perrotta, F
Piacentini, F
Piat, M
Pierpaoli, E
Piffaretti, R
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Popa, L
Poutanen, T
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Rebolo, R
Reinecke, M
Remazeilles, M
Renault, C
Ricciardi, S
Riller, T
Ristorcelli, I
Rocha, G
Roman, M
Rosset, C
Rossetti, M
Rubino-Martin, JA
Rudnick, L
Rusholme, B
Sandri, M
Savini, G
Schaefer, BM
Scott, D
Smoot, GF
Stivoli, F
Sudiwala, R
Sunyaev, R
Sutton, D
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Tuovinen, J
Turler, M
Umana, G
Valenziano, L
Van Tent, B
Varis, J
Vielva, P
Villa, F
Vittorio, N
Wade, LA
Wandelt, BD
Welikala, N
White, SDM
Yvon, D
Zacchei, A
Zaroubi, S
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Bartlett, J. G.
Battaner, E.
Benabed, K.
Benoit, A.
Bernard, J. -P.
Bersanelli, M.
Bikmaev, I.
Boehringer, H.
Bonaldi, A.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Bourdin, H.
Brown, M. L.
Brown, S. D.
Burenin, R.
Burigana, C.
Cabella, P.
Cardoso, J. -F.
Carvalho, P.
Catalano, A.
Cayon, L.
Chiang, L. -Y
Chon, G.
Christensen, P. R.
Churazov, E.
Clements, D. L.
Colafrancesco, S.
Colombo, L. P. L.
Coulais, A.
Crill, B. P.
Cuttaia, F.
Da Silva, A.
Dahle, H.
Danese, L.
Davis, R. J.
de Bernardis, P.
de Gasperis, G.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Democles, J.
Desert, F. -X.
Dickinson, C.
Diego, J. M.
Dolag, K.
Dole, H.
Donzelli, S.
Dore, O.
Doerl, U.
Douspis, M.
Dupac, X.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Flores-Cacho, I.
Forni, O.
Frailis, M.
Franceschi, E.
Frommert, M.
Galeotta, S.
Ganga, K.
Genova-Santos, R. T.
Giard, M.
Gilfanov, M.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Harrison, D.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Hildebrandt, S. R.
Hivon, E.
Hobson, M.
Holmes, W. A.
Hornstrup, A.
Hovest, W.
Huffenberger, K. M.
Hurier, G.
Jaffe, T. R.
Jagemann, T.
Jones, W. C.
Juvela, M.
Keihanen, E.
Khamitov, I.
Kneissl, R.
Knoche, J.
Knox, L.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Lasenby, A.
Lawrence, C. R.
Le Jeune, M.
Leonardi, R.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maffei, B.
Maino, D.
Mandolesi, N.
Maris, M.
Marleau, F.
Martinez-Gonzalez, E.
Masi, S.
Massardi, M.
Matarrese, S.
Matthai, F.
Mazzotta, P.
Mei, S.
Melchiorri, A.
Melin, J. -B.
Mendes, L.
Mennella, A.
Mitra, S.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Morgante, G.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Natoli, P.
Norgaard-Nielsen, H. U.
Noviello, F.
Novikov, D.
Novikov, I.
Osborne, S.
Pajot, F.
Paoletti, D.
Perdereau, O.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Piffaretti, R.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poutanen, T.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Remazeilles, M.
Renault, C.
Ricciardi, S.
Riller, T.
Ristorcelli, I.
Rocha, G.
Roman, M.
Rosset, C.
Rossetti, M.
Rubino-Martin, J. A.
Rudnick, L.
Rusholme, B.
Sandri, M.
Savini, G.
Schaefer, B. M.
Scott, D.
Smoot, G. F.
Stivoli, F.
Sudiwala, R.
Sunyaev, R.
Sutton, D.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tuovinen, J.
Tuerler, M.
Umana, G.
Valenziano, L.
Van Tent, B.
Varis, J.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L. A.
Wandelt, B. D.
Welikala, N.
White, S. D. M.
Yvon, D.
Zacchei, A.
Zaroubi, S.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results X. Physics of the hot gas in the Coma
cluster
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: clusters: individual: Coma cluster; galaxies: clusters:
intracluster medium; X-rays: galaxies: clusters; cosmology:
observations; galaxies: clusters: general; cosmic background radiation
ID LARGE-SCALE STRUCTURE; PRE-LAUNCH STATUS; SIMULATED GALAXY CLUSTERS;
ALL-SKY SURVEY; SUNYAEV-ZELDOVICH; RADIO HALOS; XMM-NEWTON; SHOCK-WAVES;
MAGNETIC-FIELD; TEMPERATURE STRUCTURE
AB We present an analysis of Planck satellite data on the Coma cluster observed via the Sunyaev-Zeldovich effect. Thanks to its great sensitivity, Planck is able, for the first time, to detect SZ emission up to r approximate to 3 x R-500. We test previously proposed spherically symmetric models for the pressure distribution in clusters against the azimuthally averaged data. In particular, we find that the Arnaud et al. (2010, A&A, 517, A92) "universal" pressure profile does not fit Coma, and that their pressure profile for merging systems provides a reasonable fit to the data only at r < R-500; by r = 2 x R-500 it underestimates the observed y profile by a factor of similar or equal to 2. This may indicate that at these larger radii either: i) the cluster SZ emission is contaminated by unresolved SZ sources along the line of sight; or ii) the pressure profile of Coma is higher at r > R-500 than the mean pressure profile predicted by the simulations used to constrain the models. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Planck y profiles extracted from corresponding sectors we find pressure jumps of 4.9(-0.2)(+0.4) and 5.0(-0.1)(+1.3) in the west and south-east, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number M-w = 2.03(-0.04)(+0.09) and M-se = 2.05(-0.02)(+0.25) in the west and south-east, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales, with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.
C1 [Bartlett, J. G.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Irfu, F-75205 Paris 13, France.
[Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Russia.
[Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy.
[Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy.
[Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Santiago 7630355, Chile.
[Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France.
[Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA.
[Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Rebolo, R.] CSIC, Madrid, Spain.
[Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark.
[Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland.
[Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada.
[Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA.
[Brown, S. D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy.
[Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy.
[Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy.
[Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy.
[Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain.
[Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile.
[Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] Planck Sci Off, ESAC, European Space Agcy, Madrid, Spain.
[Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands.
[Mei, S.] Observ Paris, Sect Meudon, GEPI, F-92195 Meudon, France.
[Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[Umana, G.] Osserv Astrofis Catania, INAF, I-95125 Catania, Italy.
[de Zotti, G.] Osserv Astrofis Catania, INAF, I-35131 Padua, Italy.
[Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy.
[Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy.
[Massardi, M.] CNR, Ist Radioastron, INAF, I-40126 Bologna, Italy.
[Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy.
[Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France.
[Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, IPAG, CNRS INSU, UMR 5274, F-38041 Grenoble, France.
[Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland.
[Mitra, S.] IUCAA, Pune 411007, Maharashtra, India.
[Clements, D. L.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England.
[Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Benoit, A.] Univ Grenoble 1, Inst Neel, CNRS, F-38041 Grenoble, France.
[Dole, H.] Inst Univ France, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Balbi, A.; Benoit, A.; Bonaldi, A.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, Inst Astrophys Spatiale, CNRS UMR 8617, Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Popa, L.] Inst Space Sci, Bucharest, Romania.
[Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria.
[Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
[Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain.
[Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Bonaldi, A.; Brown, M. L.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Zaroubi, S.] Univ Groningen, Kapteyn Astron Inst, NL-9747 AD Groningen, Netherlands.
[Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England.
[Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France.
[Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Arnaud, M.; Democles, J.; Piffaretti, R.; Pratt, G. W.] Univ Paris Diderot, CNRS, Lab AIM, IRFU Serv Astrophys,CEA,DSM,CEA Saclay, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France.
[Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
[Van Tent, B.] CNRS, F-91405 Orsay, France.
[Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland.
[Rudnick, L.] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland.
[Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA.
[Savini, G.] UCL, Opt Sci Lab, London, England.
[Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy.
[Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Burenin, R.] Space Res Inst IKI, Moscow, Russia.
[Churazov, E.; Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Khamitov, I.] Akdeniz Univ Campus, TUBITAK Natl Observ, TR-07058 Antalya, Turkey.
[Benabed, K.; Bouchet, F. R.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR7095, F-75014 Paris, France.
[Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany.
[Mei, S.] Univ Paris 07, F-75205 Paris 13, France.
[Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse 4, France.
[Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany.
[Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain.
[Huffenberger, K. M.] Univ Miami, Coral Gables, FL USA.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Mazzotta, P (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy.
EM mazzotta@roma2.infn.it
RI Remazeilles, Mathieu/N-1793-2015; Gruppuso, Alessandro/N-5592-2015;
Novikov, Dmitry/P-1807-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi,
Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo,
Loris/J-2415-2016; popa, lucia/B-4718-2012; Piacentini,
Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Mazzotta,
Pasquale/B-1225-2016; Battaner, Eduardo/P-7019-2014; de Gasperis,
Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva,
Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Barreiro, Rita
Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez,
Enrique/E-9534-2015; Churazov, Eugene/A-7783-2013; Gonzalez-Nuevo,
Joaquin/I-3562-2014; Lahteenmaki, Anne/L-5987-2013; Vielva,
Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014
OI Sandri, Maura/0000-0003-4806-5375; Cuttaia,
Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099;
Burigana, Carlo/0000-0002-3005-5796; Bouchet,
Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043;
Villa, Fabrizio/0000-0003-1798-861X; Matarrese,
Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115;
WANDELT, Benjamin/0000-0002-5854-8269; Finelli,
Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott,
Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135;
Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio,
Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Masi,
Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446;
Forni, Olivier/0000-0001-6772-9689; Morgante,
Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266;
Maris, Michele/0000-0001-9442-2754; Franceschi,
Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104;
Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379;
Hurier, Guillaume/0000-0002-1215-0706; Zacchei,
Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje,
Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini,
Giorgio/0000-0003-4449-9416; Gruppuso, Alessandro/0000-0001-9272-5292;
Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi,
Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732;
Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela,
Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748;
Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti,
Gianfranco/0000-0003-2868-2595; de Gasperis,
Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609;
Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; Gonzalez-Nuevo,
Joaquin/0000-0003-1354-6822; Vielva, Patricio/0000-0003-0051-272X;
Toffolatti, Luigi/0000-0003-2645-7386
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC
(Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); DEISA (EU); U.S. NSF [09-08668]
FX A description of the Planck Collaboration and a list of its members,
indicating which technical or scientific activities they have been
involved in, can be found at
http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration
acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France);
ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK);
CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG
(Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN
(Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). Partial
support for this work for L. Rudnick comes from U.S. NSF Grant 09-08668
to the University of Minnesota. We would also like to acknowledge useful
conversations with G. Brunetti.
NR 94
TC 23
Z9 23
U1 1
U2 32
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2013
VL 554
AR A140
DI 10.1051/0004-6361/201220247
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 164XA
UT WOS:000320444200138
ER
PT J
AU Ade, PAR
Aghanim, N
Arnaud, M
Ashdown, M
Atrio-Barandela, F
Aumont, J
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Bartlett, JG
Battaner, E
Benabed, K
Benoit, A
Bernard, JP
Bersanelli, M
Bonaldi, A
Bond, JR
Borrill, J
Bouchet, FR
Burigana, C
Cabella, P
Cardoso, JF
Catalano, A
Cayon, L
Chary, RR
Chiang, LY
Christensen, PR
Clements, DL
Colombo, LPL
Coulais, A
Crill, BP
Cuttaia, F
Danese, L
D'Arcangelo, O
Davis, RJ
de Bernardis, P
de Rosa, A
de Zotti, G
Delabrouille, J
Dickinson, C
Diego, JM
Dobler, G
Dole, H
Donzelli, S
Dore, O
Dorl, U
Douspis, M
Dupac, X
Efstathiou, G
Ensslin, TA
Eriksen, HK
Finelli, F
Forni, O
Frailis, M
Franceschi, E
Galeotta, S
Ganga, K
Giard, M
Giardino, G
Gonzaalez-Nuevo, J
Gorski, KM
Gratton, S
Gregorio, A
Gruppuso, A
Hansen, FK
Harrison, D
Helou, G
Henrot-Versille, S
Hernandez-Monteagudo, C
Hildebrandt, SR
Hobson, M
Holmes, WA
Hornstrup, A
Hovest, W
Huffenberger, KM
Jaffe, TR
Jagemann, T
Jewell, J
Jones, WC
Juvela, M
Keihacn, E
Knoche, J
Knox, L
Kunz, M
Kurki-Suonio, H
Lagache, G
Lahteenmaki, A
Lamarre, JM
Lasenby, A
Lawrence, CR
Leach, S
Leonardi, R
Lilje, PB
Linden-Vornle, M
Lopez-Caniego, M
Lubin, PM
Macias-Perez, JF
Maffei, B
Maino, D
Mandolesi, N
Maris, M
Marshall, DJ
Martin, PG
Martinez-Gonzalez, E
Masi, S
Massardi, M
Matarrese, S
Matthai, F
Mazzotta, P
Meinhold, PR
Melchiorri, A
Mendes, L
Mennella, A
Mitra, S
Moneti, A
Montier, L
Morgante, G
Munshi, D
Murphy, JA
Naselsky, P
Natoli, P
Norgaard-Nielsen, HU
Noviello, F
Novikov, D
Osborne, S
Pajot, F
Paladini, R
Paoletti, D
Partridge, B
Pearson, TJ
Perdereau, O
Perrotta, F
Piacentini, F
Piat, M
Pierpaoli, E
Pietrobon, D
Plaszczynski, S
Pointecouteau, E
Polenta, G
Ponthieu, N
Popa, L
Poutanen, T
Pratt, GW
Prunet, S
Puget, JL
Rachen, JP
Rebolo, R
Reinecke, M
Renault, C
Ricciardi, S
Riller, T
Ristorcelli, I
Rocha, G
Rosset, C
Rubino-Martin, JA
Rusholme, B
Sandri, M
Savini, G
Schaefer, BM
Scott, D
Smoot, GF
Spencer, L
Stivoli, F
Sudiwala, R
Suur-Uski, AS
Sygnet, JF
Tauber, JA
Terenzi, L
Toffolatti, L
Tomasi, M
Tristram, M
Turler, M
Umana, G
Valenziano, L
Van Tent, B
Vielva, P
Villa, F
Vittorio, N
Wade, LA
Wandelt, BD
White, M
Yvon, D
Zacchei, A
Zonca, A
AF Ade, P. A. R.
Aghanim, N.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Bartlett, J. G.
Battaner, E.
Benabed, K.
Benoit, A.
Bernard, J. -P.
Bersanelli, M.
Bonaldi, A.
Bond, J. R.
Borrill, J.
Bouchet, F. R.
Burigana, C.
Cabella, P.
Cardoso, J. -F.
Catalano, A.
Cayon, L.
Chary, R. -R.
Chiang, L. -Y.
Christensen, P. R.
Clements, D. L.
Colombo, L. P. L.
Coulais, A.
Crill, B. P.
Cuttaia, F.
Danese, L.
D'Arcangelo, O.
Davis, R. J.
de Bernardis, P.
de Rosa, A.
de Zotti, G.
Delabrouille, J.
Dickinson, C.
Diego, J. M.
Dobler, G.
Dole, H.
Donzelli, S.
Dore, O.
Doerl, U.
Douspis, M.
Dupac, X.
Efstathiou, G.
Ensslin, T. A.
Eriksen, H. K.
Finelli, F.
Forni, O.
Frailis, M.
Franceschi, E.
Galeotta, S.
Ganga, K.
Giard, M.
Giardino, G.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gratton, S.
Gregorio, A.
Gruppuso, A.
Hansen, F. K.
Harrison, D.
Helou, G.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Hildebrandt, S. R.
Hobson, M.
Holmes, W. A.
Hornstrup, A.
Hovest, W.
Huffenberger, K. M.
Jaffe, T. R.
Jagemann, T.
Jewell, J.
Jones, W. C.
Juvela, M.
Keihaecn, E.
Knoche, J.
Knox, L.
Kunz, M.
Kurki-Suonio, H.
Lagache, G.
Lahteenmaki, A.
Lamarre, J. -M.
Lasenby, A.
Lawrence, C. R.
Leach, S.
Leonardi, R.
Lilje, P. B.
Linden-Vornle, M.
Lopez-Caniego, M.
Lubin, P. M.
Macias-Perez, J. F.
Maffei, B.
Maino, D.
Mandolesi, N.
Maris, M.
Marshall, D. J.
Martin, P. G.
Martinez-Gonzalez, E.
Masi, S.
Massardi, M.
Matarrese, S.
Matthai, F.
Mazzotta, P.
Meinhold, P. R.
Melchiorri, A.
Mendes, L.
Mennella, A.
Mitra, S.
Moneti, A.
Montier, L.
Morgante, G.
Munshi, D.
Murphy, J. A.
Naselsky, P.
Natoli, P.
Norgaard-Nielsen, H. U.
Noviello, F.
Novikov, D.
Osborne, S.
Pajot, F.
Paladini, R.
Paoletti, D.
Partridge, B.
Pearson, T. J.
Perdereau, O.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Pietrobon, D.
Plaszczynski, S.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poutanen, T.
Pratt, G. W.
Prunet, S.
Puget, J. -L.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Renault, C.
Ricciardi, S.
Riller, T.
Ristorcelli, I.
Rocha, G.
Rosset, C.
Rubino-Martin, J. A.
Rusholme, B.
Sandri, M.
Savini, G.
Schaefer, B. M.
Scott, D.
Smoot, G. F.
Spencer, L.
Stivoli, F.
Sudiwala, R.
Suur-Uski, A. -S.
Sygnet, J. -F.
Tauber, J. A.
Terenzi, L.
Toffolatti, L.
Tomasi, M.
Tristram, M.
Tuerler, M.
Umana, G.
Valenziano, L.
Van Tent, B.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L. A.
Wandelt, B. D.
White, M.
Yvon, D.
Zacchei, A.
Zonca, A.
CA Planck Collaboration
TI Planck intermediate results IX. Detection of the Galactic haze with
Planck
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE Galaxy: nucleus; ISM: structure; ISM: bubbles; radio continuum: ISM
ID MICROWAVE-ANISOTROPY-PROBE; PRE-LAUNCH STATUS; BAYESIAN COMPONENT
SEPARATION; INTERSTELLAR-MEDIUM EMISSION; POWER SPECTRUM ESTIMATION;
SPINNING DUST GRAINS; WMAP OBSERVATIONS; FOREGROUND EMISSION;
TEMPERATURE DATA; NORTHERN SKY
AB Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterise the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre, and extends to vertical bar b vertical bar similar to 35-50 degrees in Galactic latitude and vertical bar l vertical bar similar to 15-20 degrees in longitude. By combining the Planck data with observations from the Wilkinson Microwave Anisotropy Probe, we were able to determine the spectrum of this emission to high accuracy, unhindered by the strong systematic biases present in previous analyses. The derived spectrum is consistent with power-law emission with a spectral index of -2.56 +/- 0.05, thus excluding free-free emission as the source and instead favouring hard-spectrum synchrotron radiation from an electron population with a spectrum (number density per energy) dN/dE proportional to E-2.1. At Galactic latitudes vertical bar b vertical bar < 30 degrees, the microwave haze morphology is consistent with that of the Fermi gamma-ray "haze" or "bubbles", while at b similar to -50 degrees we have identified an edge in the microwave haze that is spatially coincident with the edge in the gamma-ray bubbles. Taken together, this indicates that we have a multi-wavelength view of a distinct component of our Galaxy. Given both the very hard spectrum and the extended nature of the emission, it is highly unlikely that the haze electrons result from supernova shocks in the Galactic disk. Instead, a new astrophysical mechanism for cosmic-ray acceleration in the inner Galaxy is implied.
C1 [Bartlett, J. G.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS IN2P3,CEA Irfu,Observ Paris, F-75205 Paris 13, France.
[Lahteenmaki, A.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland.
[Kunz, M.] African Inst Math Sci, Cape Town, South Africa.
[Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy.
[Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy.
[Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Bond, J. R.; Martin, P. G.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada.
[Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France.
[Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.] CALTECH, Pasadena, CA 91125 USA.
[Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain.
[Borrill, J.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA.
[Rebolo, R.] CSIC, Madrid, Spain.
[Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France.
[Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark.
[Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland.
[Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada.
[Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter,Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Juvela, M.; Keihaecn, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA.
[Cayon, L.; Mendes, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy.
[Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy.
[de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Bersanelli, M.; Maino, D.; Mennella, A.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy.
[Balbi, A.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy.
[Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark.
[Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain.
[Dupac, X.; Jagemann, T.; Leonardi, R.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain.
[Giardino, G.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands.
[Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[Umana, G.] INAF Osserv Astrofis Catania, Catania, Italy.
INAF Osserv Astron Padova, Padua, Italy.
[Polenta, G.] INAF Osserv Astron Roma, Monte Porzio Catone, Italy.
[de Zotti, G.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osserv Astron Trieste, Trieste, Italy.
[Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy.
[Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy.
[Melchiorri, A.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy.
[Stivoli, F.] Univ Paris 11, Lab Rech Informat, INRIA, F-91405 Orsay, France.
[Ponthieu, N.] Univ Grenoble 1, CNRS INSU, UMR 5274, IPAG, F-38041 Grenoble, France.
[Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland.
[Mitra, S.] Pune Univ Campus, IUCAA, Pune 411007, Maharashtra, India.
[Clements, D. L.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England.
[Chary, R. -R.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France.
[Dole, H.] Inst Univ France, F-75005 Paris, France.
[Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Pajot, F.; Ponthieu, N.; Puget, J. -L.] Univ Paris 11, UMR 8617, CNRS, Inst Astrophys Spatiale, Orsay, France.
[Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Popa, L.] Inst Space Sci, Bucharest, Romania.
[Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Efstathiou, G.; Gratton, S.; Harrison, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
[Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain.
[Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander, Spain.
[D'Arcangelo, O.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy.
[Bonaldi, A.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Ashdown, M.; Gratton, S.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England.
[Dobler, G.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
[Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France.
[Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Arnaud, M.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CEA DSM, Lab AIM,IRFU Serv Astrophys,CNRS, F-91191 Gif Sur Yvette, France.
[Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France.
[Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France.
[Catalano, A.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS IN2P3, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France.
[Van Tent, B.] Univ Paris 11, Lab Phys Theor, CNRS, F-91405 Orsay, France.
[Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Co Kildare, Ireland.
[Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Crill, B. P.] CALTECH, Pasadena, CA 36717 USA.
[Savini, G.] UCL, Opt Sci Lab, London, England.
[Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy.
[Ade, P. A. R.; Munshi, D.; Spencer, L.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff, S Glam, Wales.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Benabed, K.; Bouchet, F. R.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France.
[Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany.
[Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain.
[Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
RP Gorski, KM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.
EM krzysztof.m.gorski@jpl.nasa.gov
RI Lopez-Caniego, Marcos/M-4695-2013; Gonzalez-Nuevo, Joaquin/I-3562-2014;
White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso,
Alessandro/N-5592-2015; Bouchet, Francois/B-5202-2014; Lahteenmaki,
Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti,
Luigi/K-5070-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita
Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez,
Enrique/E-9534-2015; Novikov, Dmitry/P-1807-2015; Kurki-Suonio,
Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Colombo,
Loris/J-2415-2016; popa, lucia/B-4718-2012; Piacentini,
Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Mazzotta,
Pasquale/B-1225-2016;
OI Masi, Silvia/0000-0001-5105-1439; de Bernardis,
Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante,
Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754;
Franceschi, Enrico/0000-0002-0585-6591; Valenziano,
Luca/0000-0002-1170-0104; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822;
White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231;
Gruppuso, Alessandro/0000-0001-9272-5292; Vielva,
Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386;
Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; Pierpaoli, Elena/0000-0002-7957-8993;
Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733;
Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147;
Savini, Giorgio/0000-0003-4449-9416; Huffenberger,
Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet,
Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043;
Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379;
Matarrese, Sabino/0000-0002-2573-1243; Galeotta,
Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269;
Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840;
Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego,
Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta,
Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375;
Cuttaia, Francesco/0000-0001-6608-5017; Kurki-Suonio,
Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131;
Colombo, Loris/0000-0003-4572-7732; Piacentini,
Francesco/0000-0002-5444-9327; Atrio-Barandela,
Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748;
Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Finelli,
Fabio/0000-0002-6694-3269; De Zotti, Gianfranco/0000-0003-2868-2595
FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR
(Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC
(Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC
(Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space
(Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); DEISA (EU); National Aeronautics and Space Administration;
Harvey L. Karp Discovery Award
FX The development of Planck has been supported by ESA; CNES and
CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE
(USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and
CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark);
SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES
(Portugal); and DEISA (EU). A description of the Planck Collaboration
and a list of its members, including the technical or scientific
activities in which they have been involved, can be found at
http://www.rssd.esa.int/Planck. Part of the research described in this
publication was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration. G. Dobler has been supported by the Harvey L.
Karp Discovery Award. Some of the results in this paper have been
derived using the HEALPix (Gorski et al. 2005) package.
NR 69
TC 30
Z9 30
U1 1
U2 24
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2013
VL 554
AR A139
DI 10.1051/0004-6361/201220271
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 164XA
UT WOS:000320444200137
ER
PT J
AU Burgarella, D
Buat, V
Gruppioni, C
Cucciati, O
Heinis, S
Berta, S
Bethermin, M
Bock, J
Cooray, A
Dunlop, JS
Farrah, D
Franceschini, A
Le Floc'h, E
Lutz, D
Magnelli, B
Nordon, R
Oliver, SJ
Page, MJ
Popesso, P
Pozzi, F
Riguccini, L
Vaccari, M
Viero, M
AF Burgarella, D.
Buat, V.
Gruppioni, C.
Cucciati, O.
Heinis, S.
Berta, S.
Bethermin, M.
Bock, J.
Cooray, A.
Dunlop, J. S.
Farrah, D.
Franceschini, A.
Le Floc'h, E.
Lutz, D.
Magnelli, B.
Nordon, R.
Oliver, S. J.
Page, M. J.
Popesso, P.
Pozzi, F.
Riguccini, L.
Vaccari, M.
Viero, M.
TI Herschel PEP/HerMES: the redshift evolution (0 <= z <= 4) of dust
attenuation and of the total (UV plus IR) star formation rate density
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE early Universe; cosmology: observations; galaxies: star formation;
infrared: galaxies; galaxies: starburst; ultraviolet: galaxies
ID LYMAN-BREAK GALAXIES; EARLY RELEASE SCIENCE; LUMINOSITY FUNCTION;
FORMATION HISTORY; FORMING GALAXIES; DISTANT GALAXIES; GAS ACCRETION;
STELLAR MASS; ULTRAVIOLET; MULTIWAVELENGTH
AB Using new homogeneous luminosity functions (LFs) in the far-ultraviolet (FUV) from VVDS and in the far-infrared (FIR) from Herschel/PEP and Herschel/HerMES, we studied the evolution of the dust attenuation with redshift. With this information, we were able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density (SFRDTOT). By integrating SFRDTOT, we followed the mass building and analyzed the redshift evolution of the stellar mass density (SMD). This article aims at providing a complete view of star formation from the local Universe to z similar to 4 and, using assumptions on earlier star formation history, compares this evolution with previously published data in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. Our main conclusions are that: 1) the dust attenuation A(FUV) is found to increase from z = 0 to z similar to 1.2 and then starts to decrease until our last data point at z = 3 : 6; 2) the estimated SFRD confirms published results to z similar to 2. At z > 2, we observe either a plateau or a small increase up to z similar to 3 and then a likely decrease up to z = 3.6; 3) the peak of AFUV is delayed with respect to the plateau of SFRDTOT and a probable origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (exponential rise and linear rise with time) for the evolution of the star formation density from z = 3 : 6 to z(form) = 10, we integrated SFRDTOT and obtained a good agreement with the published SMDs.
C1 [Burgarella, D.; Buat, V.; Heinis, S.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
[Gruppioni, C.; Cucciati, O.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy.
[Berta, S.; Lutz, D.; Magnelli, B.; Nordon, R.; Popesso, P.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany.
[Bethermin, M.; Le Floc'h, E.; Riguccini, L.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France.
[Bock, J.; Cooray, A.; Viero, M.] CALTECH, Pasadena, CA 91125 USA.
[Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Dunlop, J. S.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Farrah, D.; Oliver, S. J.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA.
[Franceschini, A.; Vaccari, M.] Univ Padua, Dipartimento Fis & Astron, I-35122 Padua, Italy.
[Page, M. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Pozzi, F.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy.
[Vaccari, M.] Univ Western Cape, Astrophys Grp, Dept Phys, ZA-7535 Cape Town, South Africa.
RP Burgarella, D (reprint author), Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France.
EM denis.burgarella@oamp.fr
RI Vaccari, Mattia/R-3431-2016
OI Vaccari, Mattia/0000-0002-6748-0577
FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany);
ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA
(France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB
(Sweden); STFC (UK); UKSA (UK); NASA (USA); PRIN-INAF [1.06.09.05];
ASI-INAF [I00507/1, I005110]; Stockholm Observatory (Sweden)
FX PACS has been developed by a consortium of institutes led by MPE
(Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium);
CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA
(Italy); IAC (Spain). This development has been supported by the funding
agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR
(Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been
developed by a consortium of institutes led by Cardiff Univ. (UK) and
including: Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France);
IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden);
Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and
Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been
supported by national funding agencies: CSA (Canada); NAOC (China); CEA,
CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC,
UKSA (UK); and NASA (USA). The authors acknowledge financial
contribution from the contracts PRIN-INAF 1.06.09.05 and ASI-INAF
I00507/1 and I005110. SPIRE has been developed by a consortium of
institutes led by Cardiff University (UK) and including University of
Lethbridge (Canada); NAOC (China); CEA, OAMP (France); IFSI, University
of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial
College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); and
Caltech/JPL, IPAC, University of Colorado (USA). This development has
been supported by national funding agencies: CSA (Canada); NAOC (China);
CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm
Observatory (Sweden); STFC (UK); and NASA (USA). The data presented in
this paper will be released through the Herschel Database in Marseille
(HeDaM; http://hedam.oamp.fr/HerMES). This work makes use of TOPCAT
(http://www.star.bristol.ac.uk/?mbt/topcat/).
NR 59
TC 33
Z9 33
U1 0
U2 6
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2013
VL 554
AR A70
DI 10.1051/0004-6361/201321651
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 164XA
UT WOS:000320444200069
ER
PT J
AU Daemgen, S
Petr-Gotzens, MG
Correia, S
Teixeira, PS
Brandner, W
Kley, W
Zinnecker, H
AF Daemgen, S.
Petr-Gotzens, M. G.
Correia, S.
Teixeira, P. S.
Brandner, W.
Kley, W.
Zinnecker, H.
TI Protoplanetary disk evolution and stellar parameters of T Tauri binaries
in Chamaeleon I
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE stars: late-type; stars: formation; circumstellar matter; binaries:
visual
ID STAR-FORMING REGION; MAIN-SEQUENCE STARS; LOW-MASS STARS; SUBMILLIMETER
CONTINUUM FLUX; ORION NEBULA CLUSTER; CIRCUMSTELLAR DISKS; YOUNG
BINARIES; SPECTROSCOPIC SURVEY; MULTIPLE SYSTEMS; MOLECULAR CLOUD
AB Aims: This study aims to determine the impact of stellar binary companions on the lifetime and evolution of circumstellar disks in the Chamaeleon I (Cha I) star-forming region by measuring the frequency and strength of accretion and circumstellar dust signatures around the individual components of T Tauri binary stars.
Methods. We used high-angular resolution adaptive optics JHK(s)L'-band photometry and 1.5-2.5 mu m spectroscopy of 19 visual binary and 7 triple stars in Cha I - including one newly discovered tertiary component - with separations between similar to 25 and similar to 1000 AU. The data allowed us to infer stellar component masses and ages and, from the detection of near-infrared excess emission and the strength of Brackett-gamma emission, the presence of ongoing accretion and hot circumstellar dust of the individual stellar components of each binary.
Results. Of all the stellar components in close binaries with separations of 25-100 AU, 10(-5)(+15)% show signs of accretion. This is less than half of the accretor fraction found in wider binaries, which itself appears significantly reduced (similar to 44%) compared with previous measurements of single stars in Cha I. Hot dust was found around 50(-15)(+30)% of the target components, a value that is indistinguishable from that of Cha I single stars. Only the closest binaries (<25 AU) were inferred to have a significantly reduced fraction (less than or similar to 25%) of components that harbor hot dust. Accretors were exclusively found in binary systems with unequal component masses M-secondary/M-primary < 0.8, implying that the detected accelerated disk dispersal is a function of mass-ratio. This agrees with the finding that only one accreting secondary star was found, which is also the weakest accretor in the sample.
Conclusions. The results imply that disk dispersal is more accelerated the stronger the dynamical disk truncation, i.e., the smaller the inferred radius of the disk. Nonetheless, the overall measured mass accretion rates appear to be independent of the cluster environment or the existence of stellar companions at any separation greater than or similar to 25 AU, because they agree well with observations from our previous binary study in the Orion Nebula cluster and with studies of single stars in these and other star-forming regions.
C1 [Daemgen, S.; Petr-Gotzens, M. G.] European So Observ, D-85748 Garching, Germany.
[Daemgen, S.] Univ Toronto, Dept Astron Astrophys, Toronto, ON M5S 3H4, Canada.
[Correia, S.] Univ Hawaii, Inst Astron, Pukalani, HI 96768 USA.
[Teixeira, P. S.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria.
[Brandner, W.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Kley, W.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany.
[Zinnecker, H.] NASA Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA.
[Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany.
RP Daemgen, S (reprint author), European So Observ, Karl Schwarzschildstr 2, D-85748 Garching, Germany.
EM daemgen@astro.utoronto.ca
RI Teixeira, Paula Stella/O-2289-2013; Kley, Wilhelm/A-4921-2012;
OI Teixeira, Paula Stella/0000-0002-3665-5784; Daemgen,
Sebastian/0000-0001-9915-2132
FU National Aeronautics and Space Administration; National Science
Foundation; Austrian Science Fund (FWF)
FX We thank the anonymous referee for a thoughtful report. This research
has made use of the SIMBAD database, operated at CDS, Strasbourg,
France. It has used data products from the Two Micron All Sky Survey,
which is a joint project of the University of Massachusetts and the
Infrared Processing and Analysis Center/California Institute of
Technology, funded by the National Aeronautics and Space Administration
and the National Science Foundation. This publication is supported by
the Austrian Science Fund (FWF).
NR 75
TC 13
Z9 13
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2013
VL 554
AR A43
DI 10.1051/0004-6361/201321220
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 164XA
UT WOS:000320444200042
ER
PT J
AU Grinberg, V
Hell, N
Pottschmidt, K
Bock, M
Nowak, MA
Rodriguez, J
Bodaghee, A
Bel, MC
Case, GL
Hanke, M
Kuhnel, M
Markoff, SB
Pooley, GG
Rothschild, RE
Tomsick, JA
Wilson-Hodge, CA
Wilms, J
AF Grinberg, V.
Hell, N.
Pottschmidt, K.
Boeck, M.
Nowak, M. A.
Rodriguez, J.
Bodaghee, A.
Bel, M. Cadolle
Case, G. L.
Hanke, M.
Kuehnel, M.
Markoff, S. B.
Pooley, G. G.
Rothschild, R. E.
Tomsick, J. A.
Wilson-Hodge, C. A.
Wilms, J.
TI Long term variability of Cygnus X-1 V. State definitions with all sky
monitors
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE X-rays: binaries; stars: individual: Cygnus X-1; binaries: close
ID RAY-TIMING-EXPLORER; GLAST BURST MONITOR; X-RAY; ORBITAL MODULATION;
RADIO-EMISSION; HARD STATE; BINARIES; JET; EVOLUTION; SPECTROSCOPY
AB We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.
C1 [Grinberg, V.; Hell, N.; Hanke, M.; Kuehnel, M.; Wilms, J.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, D-96049 Bamberg, Germany.
[Hell, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Pottschmidt, K.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA.
[Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Boeck, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Nowak, M. A.] MIT CXC, Cambridge, MA 02139 USA.
[Rodriguez, J.] Univ Paris Diderot, Lab AIM, UMR 7158, IRFU SAp, F-91191 Gif Sur Yvette, France.
[Bodaghee, A.; Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Bel, M. Cadolle] European Space Astron Ctr ESA ESAC, Madrid 28691, Spain.
[Grinberg, V.; Case, G. L.] La Sierra Univ, Dept Phys, Riverside, CA 92515 USA.
[Kuehnel, M.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1058 SJ Amsterdam, Netherlands.
[Pooley, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA.
[Wilson-Hodge, C. A.] NASA Marshall Space Flight Ctr, ZP 12, Huntsville, AL 35812 USA.
RP Grinberg, V (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany.
EM victoria.grinberg@fau.de
RI Wilms, Joern/C-8116-2013;
OI Wilms, Joern/0000-0003-2065-5410; Rodriguez, Jerome/0000-0002-4151-4468
FU Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum
fur Luft- und Raumfahrt Grant [50OR1007, 50OR1113]; European Commission
through "Black Hole Universe" [ITN 215212]; LLNL [DE-AC52-07NA27344];
NASA; Faculty of the European Space Astronomy Centre (ESAC)
FX This work has been partially funded by the Bundesministerium fur
Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und
Raumfahrt Grants 50OR1007 and 50OR1113 and by the European Commission
through ITN 215212 "Black Hole Universe". It was partially completed by
LLNL under Contract DE-AC52-07NA27344, and is supported by NASA grants
to LLNL and NASA/GSFC. This research has made use of the MAXI data
provided by RIKEN, JAXA and the MAXI team. We thank John E. Davis for
the development of the slxfig module used to prepare all figures in this
work. V.G. thanks NASA's Goddard Space Flight Center for its hospitality
during the time when the research presented here was done. V.G. and
M.C.B. acknowledge support from the Faculty of the European Space
Astronomy Centre (ESAC).
NR 53
TC 18
Z9 18
U1 0
U2 2
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2013
VL 554
AR A88
DI 10.1051/0004-6361/201321128
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 164XA
UT WOS:000320444200087
ER
PT J
AU Hacar, A
Tafalla, M
Kauffmann, J
Kovacs, A
AF Hacar, A.
Tafalla, M.
Kauffmann, J.
Kovacs, A.
TI Cores, filaments, and bundles: hierarchical core formation in the
L1495/B213 Taurus region
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE ISM: clouds; ISM: kinematics and dynamics; ISM: molecules; ISM:
structure; stars: formation; radio lines: ISM
ID DENSE CLOUD CORES; STAR-FORMATION; MOLECULAR CLOUD; DARK CLOUDS;
INTERNAL STRUCTURE; INITIAL CONDITIONS; DUST CLOUDS; GOULD BELT;
FRAGMENTATION; EVOLUTION
AB Context. Core condensation is a critical step in the star-formation process, but it is still poorly characterized observationally.
Aims. We have studied the 10 pc-long L1495/B213 complex in Taurus to investigate how dense cores have condensed out of the lower density cloud material.
Methods. We observed L1495/B213 in (CO)-O-18(1-0), N2H+ (1-0), and SO(J(N) = 3(2)-2(1)) with the 14m FCRAO telescope, and complemented the data with dust continuum observations using APEX (870 mu m) and IRAM 30 m (1200 mu m).
Results. From the N2H+ emission, we identify 19 dense cores, some starless and some protostellar. They are not distributed uniformly, but tend to cluster with relative separations on the order of 0.25 pc. From the (CO)-O-18 emission, we identify multiple velocity components in the gas. We have characterized them by fitting Gaussians to the spectra and by studying the distribution of the fits in position-position-velocity space. In this space, the (CO)-O-18 components appear as velocity-coherent structures, and we identify them automatically using a dedicated algorithm (FIVE: Friends In VElocity). Using this algorithm, we identify 35 filamentary components with typical lengths of 0.5 pc, sonic internal velocity dispersions, and mass-per-unit length close to the stability threshold of isothermal cylinders at 10 K. Core formation seems to have occurred inside the filamentary components via fragmentation, with few fertile components with higher mass-per-unit length being responsible for most cores in the cloud. On large scales, the filamentary components appear grouped into families, which we refer to as bundles.
Conclusions. Core formation in L1495/B213 has proceeded by hierarchical fragmentation. The cloud fragmented first into several pc-scale regions. Each of these regions later fragmented into velocity-coherent filaments of about 0.5 pc in length. Finally, a small number of these filaments fragmented quasi-statically and produced the individual dense cores we see today.
C1 [Hacar, A.; Tafalla, M.] Observ Astron Nacl IGN, Madrid 28014, Spain.
[Hacar, A.] Univ Vienna, Inst Astrophys, A-1180 Vienna, Austria.
[Kauffmann, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Kovacs, A.] Univ Minnesota, Minneapolis, MN 55414 USA.
RP Hacar, A (reprint author), Observ Astron Nacl IGN, Alfonso 12 3, Madrid 28014, Spain.
EM alvaro.hacar@univie.ac.at
RI Kovacs, Attila/C-1171-2010;
OI Kovacs, Attila/0000-0001-8991-9088; Hacar, Alvaro/0000-0001-5397-6961
FU MINECO [CSD2009-00038]; INSU/CNRS (France); MPG (Germany); IGN (Spain)
FX We thank Mark Heyer for assistance during the FCRAO observations We
thank Carlos De Breuck, Thomas Stanke, and Giorgio Siringo for
assistance during the APEX observations, and Axel Weiss and Arnaud
Belloche for help with the data reduction. We also thank Guillermo
Quintana-Lacaci and the IRAM staff for help during the MAMBO
observations. An anonymous referee provided a number of useful comments
and suggestions that are greatly appreciated. This publication is
supported by the Austrian Science Fund (FWF). This research made use of
NASA's Astrophysics Data System Bibliographic Services and the SIMBAD
database, operated at the CDS, Strasbourg, France. M.T. acknowledges
support by MINECO within the program CONSOLIDER INGENIO 2010, under
grant "Molecular Astrophysics: The Herschel and ALMA era - ASTROMOL"
(ref.: CSD2009-00038).; Based on observations carried out with the FCRAO
14m and IRAM 30m telescopes. IRAM is supported by INSU/CNRS (France),
MPG (Germany), and IGN (Spain). Also based on data acquired with the
Atacama Pathfinder Experiment (APEX). APEX is a collaboration between
the Max-Planck-Institut fur Radioastronomie, the European Southern
Observatory, and the Onsala Space Observatory (ESO projects 080.C-3054
and 083.C-0453).
NR 77
TC 83
Z9 84
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2013
VL 554
AR A55
DI 10.1051/0004-6361/201220090
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 164XA
UT WOS:000320444200054
ER
PT J
AU Pineda, JL
Langer, WD
Velusamy, T
Goldsmith, PF
AF Pineda, J. L.
Langer, W. D.
Velusamy, T.
Goldsmith, P. F.
TI A Herschel [C II] Galactic plane survey I. The global distribution of
ISM gas components
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE ISM: general; stars: formation; evolution; ISM: clouds; ISM: structure;
submillimeter: ISM
ID LARGE-MAGELLANIC-CLOUD; CO-TO-H-2 CONVERSION FACTOR; FINE-STRUCTURE
TRANSITION; PHOTON-DOMINATED REGIONS; NEUTRAL ATOMIC PHASES; MILKY-WAY;
INTERSTELLAR-MEDIUM; MOLECULAR CLOUDS; 158 MICRON; IRREGULAR GALAXIES
AB Context. The [C II] 158 mu m line is an important tool for understanding the life cycle of interstellar matter. Ionized carbon is present in a variety of phases of the interstellar medium (ISM), including the diffuse ionized medium, warm and cold atomic clouds, clouds in transition from atomic to molecular, and dense and warm photon dominated regions.
Aims. Velocity-resolved observations of [C II] are the most powerful technique available to disentangle the emission produced by these components. These observations can also be used to trace CO-dark H-2 gas and determine the total mass of the ISM.
Methods. The Galactic Observations of Terahertz C+ (GOTC+) project surveys the [C II] 158 mu m line over the entire Galactic disk with velocity-resolved observations using the Herschel/HIFI instrument. We present the first longitude-velocity maps of the [C II] emission for Galactic latitudes b = 0 degrees, +/- 0.5 degrees, and +/- 1.0 degrees. We combine these maps with those of Hi, (CO)-C-12, and (CO)-C-13 to separate the different phases of the ISM and study their properties and distribution in the Galactic plane.
Results. [C II] emission is mostly associated with spiral arms, mainly emerging from Galactocentric distances between 4 and 10 kpc. It traces the envelopes of evolved clouds as well as clouds that are in the transition between atomic and molecular. We estimate that most of the observed [C II] emission is produced by dense photon dominated regions (similar to 47%), with smaller contributions from CO-dark H-2 gas (similar to 28%), cold atomic gas (similar to 21%), and ionized gas (similar to 4%). Atomic gas inside the Solar radius is mostly in the form of cold neutral medium (CNM), while the warm neutral medium gas dominates the outer galaxy. The average fraction of CNM relative to total atomic gas is similar to 43%. We find that the warm and diffuse CO-dark H2 is distributed over a larger range of Galactocentric distances (4-11 kpc) than the cold and dense H-2 gas traced by (CO)-C-12 and (CO)-C-13 (4-8 kpc). The fraction of CO-dark H-2 to total H-2 increases with Galactocentric distance, ranging from similar to 20% at 4 kpc to similar to 80% at 10 kpc. On average, CO-dark H-2 accounts for similar to 30% of the molecular mass of the Milky Way. When the CO-dark H-2 component is included, the radial distribution of the CO-to-H-2 conversion factor is steeper than that when only molecular gas traced by CO is considered. Most of the observed [C II] emission emerging from dense photon dominated regions is associated with modest far-ultraviolet fields in the range chi(0) similar or equal to 1-30.
C1 [Pineda, J. L.; Langer, W. D.; Velusamy, T.; Goldsmith, P. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Pineda, JL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Jorge.Pineda@jpl.nasa.gov
RI Goldsmith, Paul/H-3159-2016;
OI Pineda, Jorge/0000-0001-8898-2800
FU National Aeronautics and Space Administration
FX This research was conducted at the Jet Propulsion Laboratory, California
Institute of Technology under contract with the National Aeronautics and
Space Administration. We thank the staffs of the ESA and NASA Herschel
Science Centers for their help. We would like to thank Roberto Assef for
enlightening discussions. The Galactic Arecibo L-Band Feed Array Hi
(GALFA-H I) Survey data set was obtained with the Arecibo L-band Feed
Array (ALFA) on the Arecibo 305m telescope. Arecibo Observatory is part
of the National Astronomy and Ionosphere Center, formerly operated by
Cornell University under Cooperative Agreement with the National Science
Foundation of the United States of America. c (C) 2013 California
Institute of Technology. Government sponsorship acknowledged.
NR 91
TC 48
Z9 48
U1 1
U2 5
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JUN
PY 2013
VL 554
AR A103
DI 10.1051/0004-6361/201321188
PG 28
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 164XA
UT WOS:000320444200102
ER
PT J
AU Chae, CS
Johnson, JT
AF Chae, Chun-Sik
Johnson, Joel T.
TI A Study of Sea Surface Range-Resolved Doppler Spectra Using Numerically
Simulated Low-Grazing-Angle Backscatter Data
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Doppler radar; Doppler spectrum; low-grazing-angle radar; rough surface
scattering; sea surface scattering
ID FORWARD-BACKWARD METHOD; ROUGH SURFACES; OCEAN SURFACE; SCATTERING;
ACCELERATION; COMPUTATION; RADAR; SHIFT; BAND
AB A numerical study of sea surface range-resolved Doppler spectra using low-grazing-angle backscatter measurements is described. Backscattered fields as a function of frequency are computed using the method of moments (MOM) for a single realization of a 1-D oceanlike surface profile as the realization evolves in time. Transformation into the range-Doppler domain enables examination of properties of the resulting Doppler spectra (for both HH and VV polarizations) and their relationship to properties of the surface profile. In general, a strong correspondence between the "long-wave" orbital velocity of the surface projected along the radar line of sight and the Doppler centroid frequency is observed for visible portions of the surface, as well as some evidence of relationships between the "width" of the Doppler spectrum and variations of the projected velocity in time at a given range point. Evidence of similar relationships even in some shadowed portions of the surface is also provided. Doppler spectra from HH and VV polarizations are qualitatively similar, despite differences in total power levels, although the portion of shadowed surface points from which Doppler information is available is somewhat larger in VV polarization. A further examination is conducted using backscattered fields computed with a single-scattering method, which neglects shadowing and any multiple-scattering effects. The remarkable similarities observed between MOM and single-scattered Doppler spectra even in some shadowed portions of the surface suggest that non-line-of-sight propagation effects do not significantly influence Doppler properties in such regions.
C1 [Chae, Chun-Sik; Johnson, Joel T.] Ohio State Univ, Dept Elect & Comp Engn, ElectroSci Lab, Columbus, OH 43212 USA.
RP Chae, CS (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM chun.sik.chae@jpl.nasa.gov; johnson@ece.osu.edu
NR 25
TC 8
Z9 10
U1 0
U2 11
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
EI 1558-0644
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD JUN
PY 2013
VL 51
IS 6
BP 3452
EP 3460
DI 10.1109/TGRS.2012.2223216
PN 1
PG 9
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA 171PE
UT WOS:000320940600021
ER
PT J
AU Khankhoje, UK
van Zyl, JJ
Cwik, TA
AF Khankhoje, Uday K.
van Zyl, Jakob J.
Cwik, Thomas A.
TI Computation of Radar Scattering From Heterogeneous Rough Soil Using the
Finite-Element Method
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Electromagnetic scattering by rough surfaces; finite-element methods
(FEMs); Monte Carlo simulations; subsurface sensing
ID MONTE-CARLO SIMULATIONS; SURFACE SCATTERING; ELECTROMAGNETIC SCATTERING;
NUMERICAL-SIMULATION; BISTATIC SCATTERING; BOUNDARY-CONDITIONS;
MOISTURE; WAVE; ABSORPTION; EQUATIONS
AB A 2-D vector-element-based finite-element method (FEM) is used to calculate the radar backscatter from 1-D bare rough soil surfaces which can have an underlying heterogeneous substrate. Monte Carlo simulation results are presented for scattering at L-band (lambda = 0.24 m). For homogeneous soils with rough surfaces, the results of FEM are compared with the predictions of the small perturbation method. In the case of heterogeneous substrates, soil moisture (and, hence, soil permittivity) is assumed to vary as a function of depth. In this case, the results of FEM are compared with those of the transfer matrix method for flat soil surfaces. In both cases, a good agreement is found. For homogeneous rough soils, it is found that polarimetric radar backscatter and copolarized phase difference have a nonlinear relationship with soil moisture. Finally, it is found that the nature of the soil moisture variation in the top few centimeters of the soil has a strong influence on the backscatter and, hence, on the inferred soil moisture content.
C1 [Khankhoje, Uday K.; van Zyl, Jakob J.; Cwik, Thomas A.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA.
RP Khankhoje, UK (reprint author), Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA.
EM uday@alumni.caltech.edu; jakob.j.vanzyl@jpl.nasa.gov;
thomas.a.cwik@jpl.nasa.gov
OI Khankhoje, Uday/0000-0002-9629-3922
NR 36
TC 8
Z9 8
U1 0
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD JUN
PY 2013
VL 51
IS 6
BP 3461
EP 3469
DI 10.1109/TGRS.2012.2225431
PN 1
PG 9
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA 171PE
UT WOS:000320940600022
ER
PT J
AU Che, H
Drake, JF
Swisdak, M
Goldstein, ML
AF Che, H.
Drake, J. F.
Swisdak, M.
Goldstein, M. L.
TI The adiabatic phase mixing and heating of electrons in Buneman
turbulence
SO PHYSICS OF PLASMAS
LA English
DT Article
ID MAGNETIC RECONNECTION; PLASMA TURBULENCE; INSTABILITY; MECHANISM;
EVOLUTION
AB The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Omega(e)/omega(pe) < 1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process. (C) 2013 AIP Publishing LLC.
C1 [Che, H.; Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Drake, J. F.; Swisdak, M.] Univ Maryland, IREAP, College Pk, MD 20742 USA.
RP Che, H (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RI NASA MMS, Science Team/J-5393-2013
OI NASA MMS, Science Team/0000-0002-9504-5214
FU NASA Postdoctoral Program at NASA/GSFC; NASA
FX This research was supported by the NASA Postdoctoral Program at
NASA/GSFC administered by Oak Ridge Associated Universities through a
contract with NASA. The simulations and analysis were partially carried
out at NASA/Ames High-End Computing Capacity, at the National Energy
Research Scientific Computing Center and at the National Institute for
Computation Sciences, on Kraken.
NR 26
TC 9
Z9 9
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2013
VL 20
IS 6
AR 061205
DI 10.1063/1.4811137
PG 4
WC Physics, Fluids & Plasmas
SC Physics
GA 175ZT
UT WOS:000321273200007
ER
PT J
AU Hesse, M
Aunai, N
Zenitani, S
Kuznetsova, M
Birn, J
AF Hesse, Michael
Aunai, Nicolas
Zenitani, Seiji
Kuznetsova, Masha
Birn, Joachim
TI Aspects of collisionless magnetic reconnection in asymmetric systems
SO PHYSICS OF PLASMAS
LA English
DT Article
ID FIELD; MAGNETOPAUSE
AB Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide. (C) 2013 AIP Publishing LLC.
C1 [Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA.
[Zenitani, Seiji] Natl Astron Observ Japan, Tokyo, Japan.
[Birn, Joachim] Space Sci Inst, Boulder, CO 80301 USA.
RP Hesse, M (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Code 670, Greenbelt, MD 20771 USA.
RI Zenitani, Seiji/D-7988-2013; feggans, john/F-5370-2012; NASA MMS,
Science Team/J-5393-2013
OI Zenitani, Seiji/0000-0002-0945-1815; NASA MMS, Science
Team/0000-0002-9504-5214
FU NASA; NASA's NPP program
FX The authors gratefully acknowledge support by NASA's MMS mission and
SR&T program. One of us (NA) gratefully acknowledges support from NASA's
NPP program.
NR 17
TC 18
Z9 18
U1 2
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUN
PY 2013
VL 20
IS 6
AR 061210
DI 10.1063/1.4811467
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 175ZT
UT WOS:000321273200012
ER
PT J
AU Pullen, AR
Hirata, CM
AF Pullen, Anthony R.
Hirata, Christopher M.
TI Systematic Effects in Large-Scale Angular Power Spectra of Photometric
Quasars and Implications for Constraining Primordial Non-Gaussianity
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC
LA English
DT Article
ID DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; INFLATIONARY
UNIVERSE SCENARIO; GALAXY SURVEYS; DATA RELEASE; SDSS-III;
PERTURBATIONS; SAMPLE; FLUCTUATIONS; GENERATION
AB Primordial non-Gaussianity of local type is predicted to lead to enhanced halo clustering on very large scales. Photometric quasars, which can be seen from cosmological redshifts z > 2 even in wide-shallow optical surveys, are promising tracers for constraining non-Gaussianity using this effect. However, large-scale systematics can also mimic this signature of non-Gaussianity. In order to assess the contribution of systematic effects, we cross-correlate overdensity maps of photometric quasars from the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6) in different redshift ranges. We find that the maps are significantly correlated on large scales, even though we expect the angular distributions of quasars at different redshifts to be uncorrelated. This implies that the quasar maps are contaminated with systematic errors. We investigate the use of external templates that provide information on the spatial dependence of potential systematic errors to reduce the level of spurious clustering in the quasar data. We find that templates associated with stellar density, the stellar color locus, airmass, and seeing are major contaminants of the quasar maps, with seeing having the largest effect. Using template projection, we are able to decrease the significance of the cross-correlation measurement on the largest scales from 9.2 sigma to 5.4 sigma. Although this is an improvement, the remaining cross-correlation suggests the contamination in this quasar sample is too great to allow a competitive constraint on f(NL) by correlations internal to this sample. The SDSS quasar catalog exhibits spurious number density fluctuations of approximately 2% rms, and we need a contamination level less than 1% (0.6%) in order to measure values of f(NL) less than 100 (10). Properly dealing with be paramount for future large scale structure surveys that seek to constrain non-Gaussianity.
C1 [Pullen, Anthony R.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA.
[Hirata, Christopher M.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
RP Pullen, AR (reprint author), CALTECH, NASA Jet Prop Lab, 4800 Oak Grove Dr,MS 169-234, Pasadena, CA 91109 USA.
EM anthony.r.pullen@jpl.nasa.gov
RI Pullen, Anthony/I-7007-2015
OI Pullen, Anthony/0000-0002-2091-8738
NR 71
TC 23
Z9 24
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6280
EI 1538-3873
J9 PUBL ASTRON SOC PAC
JI Publ. Astron. Soc. Pac.
PD JUN
PY 2013
VL 125
IS 928
BP 705
EP 718
DI 10.1086/671189
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 172JX
UT WOS:000321000400009
ER
PT J
AU Nakata, M
Sano, I
Mukai, S
Holben, BN
AF Nakata, Makiko
Sano, Itaru
Mukai, Sonoyo
Holben, Brent N.
TI Spatial and Temporal Variations of Atmospheric Aerosol in Osaka
SO ATMOSPHERE
LA English
DT Article
DE atmospheric particles; dust storm; radiation simulation; ground
measurements; SEM/EDX
ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; ACE-ASIA; AERONET;
NETWORK; MODEL; DUST; TRANSPORT; QUALITY; SUN
AB It is well known that the aerosol distribution in Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in Asian urban cities are important. In this work, we focus on the spatial and temporal variations of atmospheric particles around Higashi-Osaka in Japan. Higashi-Osaka is located in the eastern part of Osaka, the second-largest city in Japan, and is famous for small-and medium-sized manufacturing enterprises. For this study, we placed various ground measurement devices around the Higashi-Osaka campus of Kinki University including a Cimel sunphotometer supported by NASA/AERONET (Aerosol robotics network), suspended particulate matter (SPM) sampler and LIDAR (light detection and ranging). Individual particle analyses with a SEM (scanning electron microscope)/EDX (energy-dispersive X-ray analyzer) show the temporal variations of particle properties, such as size, shape and components, during a dust event on 21 March 2010. The simultaneous measurement using a portable sun photometer with AERONET was conducted from April to November 2011. A comparison of the data at each site and the combination of the observed LIDAR data and model simulations indicate the difference in the transportation processes between dust and anthropogenic particles. We suppose this difference is attributed to the differences in the vertical aerosol profiles, where one aerosol is transported over Mount Ikoma and the other is blocked by it.
C1 [Nakata, Makiko] Kinki Univ, Fac Appl Sociol, Higashi Osaka 5778502, Japan.
[Sano, Itaru; Mukai, Sonoyo] Kinki Univ, Grad Sch Sci & Technol, Higashi Osaka 5778502, Japan.
[Holben, Brent N.] NASA, GSFC, Greenbelt, MD 20771 USA.
RP Nakata, M (reprint author), Kinki Univ, Fac Appl Sociol, 3-4-1 Kowakae, Higashi Osaka 5778502, Japan.
EM nakata@socio.kindai.ac.jp; sano@info.kindai.ac.jp;
mukai@info.kindai.ac.jp; brent.n.holben@nasa.gov
FU Japan Society for the Promotion of Science [23120708]; Global Change
Observation Mission-Climate (GCOM-C) by JAXA [JX-PSPC-308878]
FX The authors thank NASA/AERONET team for data processing. This work was
supported in part by a Grant-in-Aid for Scientific Research from the
Japan Society for the Promotion of Science (No. 23120708) and by Global
Change Observation Mission-Climate (GCOM-C) by JAXA (No.
JX-PSPC-308878).
NR 25
TC 5
Z9 5
U1 1
U2 12
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2073-4433
J9 ATMOSPHERE-BASEL
JI Atmosphere
PD JUN
PY 2013
VL 4
IS 2
BP 157
EP 168
DI 10.3390/atmos4020157
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 175RZ
UT WOS:000321251200005
ER
PT J
AU Pozzi, W
Sheffield, J
Stefanski, R
Cripe, D
Pulwarty, R
Vogt, JV
Heim, RR
Brewer, MJ
Svoboda, M
Westerhoff, R
van Dijk, AIJM
Lloyd-Hughes, B
Pappppenberger, F
Werner, M
Dutra, E
Wetterhall, F
Wagner, W
Schubert, S
Mo, KT
Nicholson, M
Bettio, L
Nunez, L
van Beek, R
Bierkens, M
de Goncalves, LGG
De Mattos, JGZ
Lawford, R
AF Pozzi, Will
Sheffield, Justin
Stefanski, Robert
Cripe, Douglas
Pulwarty, Roger
Vogt, Juergen V.
Heim, Richard R., Jr.
Brewer, Michael J.
Svoboda, Mark
Westerhoff, Rogier
van Dijk, Albert I. J. M.
Lloyd-Hughes, Benjamin
Pappppenberger, Florian
Werner, Micha
Dutra, Emanuel
Wetterhall, Fredrik
Wagner, Wolfgang
Schubert, Siegfried
Mo, Kingtse
Nicholson, Margaret
Bettio, Lynette
Nunez, Liliana
van Beek, Rens
Bierkens, Marc
Goncalves de Goncalves, Luis Gustavo
Zell de Mattos, Joao Gerd
Lawford, Richard
TI TOWARD GLOBAL DROUGHT EARLY WARNING CAPABILITY: Expanding International
Cooperation for the Development of a Framework for Monitoring and
Forecasting
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID SUB-SAHARAN AFRICA; SOIL-MOISTURE; UNITED-STATES; 20TH-CENTURY DROUGHT;
FOOD SECURITY
AB Drought is a global problem that has far-reaching impacts, especially on vulnerable populations in developing regions. This paper highlights the need for a Global Drought Early Warning System (GDEWS), the elements that constitute its underlying framework (GDEWF), and the recent progress made toward its development. Many countries lack drought monitoring systems, as well as the capacity to respond via appropriate political, institutional, and technological frameworks, and these have inhibited the development of integrated drought management plans or early warning systems. The GDEWS will provide a source of drought tools and products via the GDEWF for countries and regions to develop tailored drought early warning systems for their own users. A key goal of a GDEWS is to maximize the lead time for early warning, allowing drought managers and disaster coordinators more time to put mitigation measures in place to reduce the vulnerability to drought. To address this, the GDEWF will take both a top-down approach to provide global realtime drought monitoring and seasonal forecasting, and a bottom-up approach that builds upon existing national and regional systems to provide continental-to-global coverage. A number of challenges must be overcome, however, before a GDEWS can become a reality, including the lack of in situ measurement networks and modest seasonal forecast skill in many regions, and the lack of infrastructure to translate data into useable information. A set of international partners, through a series of recent workshops and evolving collaborations, has made progress toward meeting these challenges and developing a global system.
C1 [Pozzi, Will; Wagner, Wolfgang] Vienna Univ Technol, Inst Photogrammetry & Remote Sensing IPF, A-1040 Vienna, Austria.
[Sheffield, Justin] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.
[Stefanski, Robert] World Meteorol Org, Climate & Water Dept, Agr Meteorol Div, Geneva, Switzerland.
[Cripe, Douglas] Grp Earth Observ Secretariat, Geneva, Switzerland.
[Pulwarty, Roger] Natl Integrated Drought Informat Syst, Boulder, CO USA.
[Vogt, Juergen V.] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy.
[Heim, Richard R., Jr.; Brewer, Michael J.] NOAA, Natl Climat Data Ctr, Asheville, NC USA.
[Westerhoff, Rogier; Werner, Micha] Deltares, Delft, Netherlands.
[van Dijk, Albert I. J. M.] CSIRO, Canberra, ACT, Australia.
[van Dijk, Albert I. J. M.] Australian Natl Univ, Canberra, ACT, Australia.
[Pappppenberger, Florian; Dutra, Emanuel; Wetterhall, Fredrik] European Ctr Medium Range Weather Forecasts, Predictabil & Diagnost Sect, Reading RG2 9AX, Berks, England.
[Werner, Micha] UNESCO IHE, Delft, Netherlands.
[Lloyd-Hughes, Benjamin] Univ Reading, Walker Inst, Reading RG6 2AH, Berks, England.
[Svoboda, Mark] Natl Drought Mitigat Ctr, Monitoring Program Area, Lincoln, NE USA.
[Schubert, Siegfried] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Mo, Kingtse] NOAA, US Ctr Climate Predict, Washington, DC USA.
[Nicholson, Margaret] Australia Bur Agr & Econ Sci, Canberra, ACT, Australia.
[Nunez, Liliana] Argentina Serv Meteorol Nacl, Buenos Aires, DF, Argentina.
[Bettio, Lynette] Bur Meteorol, Natl Climate Ctr, Melbourne, Vic, Australia.
[van Beek, Rens; Bierkens, Marc] Univ Utrecht, NL-3508 TC Utrecht, Netherlands.
[Goncalves de Goncalves, Luis Gustavo; Zell de Mattos, Joao Gerd] Inst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Sao Paulo, Brazil.
[Lawford, Richard] Morgan State Univ, Baltimore, MD 21239 USA.
RP Pozzi, W (reprint author), Vienna Univ Technol, Inst Photogrammetry & Remote Sensing IPF, Gusshausstr 27-29, A-1040 Vienna, Austria.
EM will.pozzi@gmail.com
RI Werner, Micha/C-8144-2009; Wetterhall, Fredrik/I-2374-2012;
Pappenberger, Florian/A-2839-2009; Dutra, Emanuel/A-3774-2010; Van Dijk,
Albert/B-3106-2011; van Beek, Rens/B-4904-2014;
OI Werner, Micha/0000-0003-4198-5638; Wetterhall,
Fredrik/0000-0001-5331-9064; Pappenberger, Florian/0000-0003-1766-2898;
Dutra, Emanuel/0000-0002-0643-2643; Van Dijk,
Albert/0000-0002-6508-7480; van Beek, Rens/0000-0002-4758-108X; Wagner,
Wolfgang/0000-0001-7704-6857
NR 26
TC 38
Z9 38
U1 5
U2 51
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD JUN
PY 2013
VL 94
IS 6
BP 776
EP 785
DI 10.1175/BAMS-D-11-00176.1
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 175TK
UT WOS:000321256100001
ER
PT J
AU Peterson, TC
Heim, RR
Hirsch, R
Kaiser, DP
Brooks, H
Diffenbaugh, NS
Dole, RM
Giovannettone, JP
Guirguis, K
Karl, TR
Katz, RW
Kunkel, K
Lettenmaier, D
McCabe, GJ
Paciorek, CJ
Ryberg, KR
Schubert, S
Silva, VBS
Stewart, BC
Vecchia, AV
Villarini, G
Vose, RS
Walsh, J
Wehner, M
Wolock, D
Wolter, K
Woodhouse, CA
Wuebbles, D
AF Peterson, Thomas C.
Heim, Richard R., Jr.
Hirsch, Robert
Kaiser, Dale P.
Brooks, Harold
Diffenbaugh, Noah S.
Dole, Randall M.
Giovannettone, Jason P.
Guirguis, Kristen
Karl, Thomas R.
Katz, Richard W.
Kunkel, Kenneth
Lettenmaier, Dennis
McCabe, Gregory J.
Paciorek, Christopher J.
Ryberg, Karen R.
Schubert, Siegfried
Silva, Viviane B. S.
Stewart, Brooke C.
Vecchia, Aldo V.
Villarini, Gabriele
Vose, Russell S.
Walsh, John
Wehner, Michael
Wolock, David
Wolter, Klaus
Woodhouse, Connie A.
Wuebbles, Donald
TI MONITORING AND UNDERSTANDING CHANGES IN HEAT WAVES, COLD WAVES, FLOODS,
AND DROUGHTS IN THE UNITED STATES: State of Knowledge
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID SOUTHWESTERN NORTH-AMERICA; SOIL-MOISTURE; CLIMATE-CHANGE; WATER
MANAGEMENT; GREAT-PLAINS; NEW-ENGLAND; DUST-BOWL; US; TEMPERATURE;
STREAMFLOW
AB Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale memory in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.
C1 [Peterson, Thomas C.; Heim, Richard R., Jr.; Vose, Russell S.] NOAA, Natl Climat Data Ctr, Asheville, NC 28803 USA.
[Hirsch, Robert] US Geol Survey, Reston, VA 22092 USA.
[Kaiser, Dale P.] US DOE, Carbon Dioxide Informat Anal Ctr, Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Brooks, Harold] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA.
[Diffenbaugh, Noah S.] Stanford Univ, Stanford, CA 94305 USA.
[Dole, Randall M.; Wolter, Klaus] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Giovannettone, Jason P.] US Army Corp Engineers, Inst Water Resources, Alexandria, VA USA.
[Guirguis, Kristen] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Guirguis, Kristen] Univ Corp Atmospher Res, Boulder, CO USA.
[Katz, Richard W.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Kunkel, Kenneth] Cooperat Inst Climate & Satellites, Asheville, NC USA.
[Lettenmaier, Dennis] Univ Washington, Seattle, WA 98195 USA.
[McCabe, Gregory J.; Wolock, David] USGS, Lawrence, KS USA.
[Paciorek, Christopher J.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA.
[Ryberg, Karen R.; Vecchia, Aldo V.] US Geol Survey, Bismarck, ND USA.
[Schubert, Siegfried] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Silva, Viviane B. S.] NOAA, Climate Serv Div, NWS, OCWWS, Silver Spring, MD USA.
[Stewart, Brooke C.] STG, Asheville, NC USA.
[Villarini, Gabriele] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA USA.
[Walsh, John] Univ Alaska Fairbanks, Fairbanks, AK USA.
[Wehner, Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Woodhouse, Connie A.] Univ Arizona, Tucson, AZ USA.
[Wuebbles, Donald] Univ Illinois, Urbana, IL USA.
RP Peterson, TC (reprint author), NOAA, Natl Climat Data Ctr, 151 Patton Ave, Asheville, NC 28803 USA.
EM thomas.c.peterson@noaa.gov
RI lettenmaier, dennis/F-8780-2011; Diffenbaugh, Noah/I-5920-2014; Kunkel,
Kenneth/C-7280-2015; Wolter, Klaus/D-5988-2015; Katz,
Richard/K-4133-2012; Ryberg, Karen/E-1871-2016; Villarini,
Gabriele/F-8069-2016;
OI lettenmaier, dennis/0000-0003-3317-1327; Diffenbaugh,
Noah/0000-0002-8856-4964; Kunkel, Kenneth/0000-0001-6667-7047; Katz,
Richard/0000-0002-0267-8953; Ryberg, Karen/0000-0002-9834-2046;
Villarini, Gabriele/0000-0001-9566-2370; Hirsch,
Robert/0000-0002-4534-075X
NR 95
TC 84
Z9 85
U1 10
U2 132
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD JUN
PY 2013
VL 94
IS 6
BP 821
EP 834
DI 10.1175/BAMS-D-12-00066.1
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 175TK
UT WOS:000321256100005
ER
PT J
AU Roegner, GC
Daly, EA
Brodeur, RD
AF Roegner, G. Curtis
Daly, Elizabeth A.
Brodeur, Richard D.
TI Surface distribution of brachyuran megalopae and ichthyoplankton in the
Columbia River plume during transition from downwelling to upwelling
conditions
SO CONTINENTAL SHELF RESEARCH
LA English
DT Article
DE Columbia River plume; Crab megalopae; Juvenile fishes; Neuston;
Upwelling; California Current
ID CRAB CANCER-MAGISTER; NORTHERN CALIFORNIA CURRENT; DUNGENESS CRAB;
OCEANOGRAPHIC CONDITIONS; COMMUNITY STRUCTURE; RECRUITMENT LIMITATION;
SPATIAL-DISTRIBUTION; JUVENILE SALMONIDS; VERTICAL MIGRATION; WILLAPA
BAY
AB In the California Current coastal boundary zone, the spring transition between downwelling and upwelling conditions, along with the fluctuating structure of the Columbia River plume, creates highly dynamic interactions. In this study, we investigated whether the surface distribution of brachyuran larvae and ichthyoplankton would track the dynamics of the Columbia River plume. By happenstance, the cruise period coincided with the spring transition from downwelling to sustained upwelling conditions in 2010, a year when the transition was delayed and Columbia River flow was substantially higher than average. We used time series of wind and freshwater input to evaluate the influence of physical forcing on oceanographic patterns, and sampled hydrography and surface plankton concentrations within a 182 km(2) grid off Willapa Bay, WA. Additionally, two longer transects, one cross-shelf and the other along-shore, were made to discern the extent of plume influence on larval crab and fish abundance. We found that plume waters that were trapped in a northward-flowing coastal-boundary current during downwelling conditions were advected offshore after several days of upwelling-favorable winds. Neustonic collections of brachyuran larvae and ichthyoplankton varied in response to this large seaward advective event. Megalopae of cancrid crabs exhibited patterns of both offshore transport (Cancer oregonensis/productus) and nearshore retention (C. magister). Additionally, abundant numbers of large juvenile widow (Sebastes entomelas) and yellowtail (S. flavidus) rockfish of a size appropriate for settlement were sampled during a period when ocean conditions favored high recruitment success. These results demonstrated that the response of planktonic crab larvae and ichthyoplankton to large-scale advection varied by species, with larger and more vagile fish exhibiting less evidence of passive transport than smaller crab larvae. Importantly, portions of the planktonic fish and crab community were able to maintain nearshore distributions in favorable settlement habitat, despite physical advection offshore. Published by Elsevier Ltd.
C1 [Roegner, G. Curtis] NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Point Adams Res Stn, Hammond, OR 97121 USA.
[Daly, Elizabeth A.] Oregon State Univ, Cooperat Inst Marine Resources Studies, Hatfield Marine Sci Ctr, Newport, OR 97365 USA.
[Brodeur, Richard D.] NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA.
RP Roegner, GC (reprint author), NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Point Adams Res Stn, POB 155, Hammond, OR 97121 USA.
EM Curtis.Roegner@noaa.gov
FU Bonneville Power Administration; National Marine Fisheries Service
FX We sincerely thank scientists Sarikka Attoe, Caren Barcelo, and Amanda
Gladics, and electronic technicians Manuel Calderon and Phil White for
help with the sampling. Toby Auth, JoAnne Butzerin, Jennifer Fisher, and
Kurt Fresh provided very helpful comments on an earlier version of the
manuscript. Funding for this research was provided by Bonneville Power
Administration and the National Marine Fisheries Service.
NR 60
TC 5
Z9 5
U1 2
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0278-4343
J9 CONT SHELF RES
JI Cont. Shelf Res.
PD JUN 1
PY 2013
VL 60
BP 70
EP 86
DI 10.1016/j.csr.2013.04.007
PG 17
WC Oceanography
SC Oceanography
GA 174QW
UT WOS:000321171500007
ER
PT J
AU Chan, KL
Mayr, HG
AF Chan, Kwing L.
Mayr, Hans G.
TI Numerical simulation of convectively generated vortices: Application to
the Jovian planets
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE vortices; convection; giant planets; Great Red Spot; White Ovals
ID GREAT-RED-SPOT; SHALLOW-WATER TURBULENCE; NONLINEAR SIMULATIONS;
ROTATING CONVECTION; VERTICAL STRUCTURE; GIANT PLANETS; COMPRESSIBLE
CONVECTION; JUPITER; JETS; MODEL
AB Numerical experiments are performed to study the possibility of long-lived vortex generation in rotating convection zones. The domain of computation is a rectangular box with fixed latitude. The fully compressible fluid equations are solved using an explicit, strongly conservative finite difference method. A total of eight cases covering two different latitudes and four different rotation rates were computed. As the rotation rate increases, a long-lived cyclone first appears. The high latitude environment is more favorable for vortex formation. An anticyclone appears when the rotation is adequately fast. Possible implications of the numerical results to the Jovian planets are discussed. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Chan, Kwing L.] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China.
[Mayr, Hans G.] Hong Kong Univ Sci & Technol, Ctr Space Sci Res, Hong Kong, Hong Kong, Peoples R China.
[Mayr, Hans G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Mayr, Hans G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
RP Chan, KL (reprint author), Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China.
EM maklchan@ust.hk
OI Chan, Kwing/0000-0002-6428-1812
FU Hong Kong Research Grants Council [HKUST 600309]
FX We thank the anonymous reviewers for comments leading to improvement of
the manuscript KLC thanks the Hong Kong Research Grants Council for
support (HKUST 600309).
NR 44
TC 6
Z9 6
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
EI 1385-013X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD JUN
PY 2013
VL 371
BP 212
EP 219
DI 10.1016/j.epsl.2013.03.046
PG 8
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 173KC
UT WOS:000321077400021
ER
PT J
AU Reeves, JD
Eveleigh, T
Holzer, TH
Sarkani, S
AF Reeves, John D.
Eveleigh, Tim
Holzer, Thomas H.
Sarkani, Shahryar
TI Risk Identification Biases and Their Impact to Space System Development
Project Performance
SO EMJ-ENGINEERING MANAGEMENT JOURNAL
LA English
DT Article
DE Engineering Management; Program and Project Management; Risk Management;
Systems Engineering
AB Risk identification during the design and development phases of complex systems is commonly implemented, but often fails to result in the identification of events and circumstances that truly challenge project performance. Inefficiencies in cost and schedule estimation are usually held accountable for cost and schedule overruns, but the true root cause is often the realization of programmatic and technical risks. This research explores risk identification trends and biases pervasive during space system development that limit the awareness of such risks. The findings and results provide insight into how future engineering and risk managers can potentially avoid these shortfalls.
C1 [Reeves, John D.] NASA, Langley Res Ctr, Space Mission Anal Branch, Hampton, VA 23681 USA.
[Eveleigh, Tim; Holzer, Thomas H.] George Washington Univ, Washington, DC 20052 USA.
[Sarkani, Shahryar] George Washington Univ, Dept Engn Management & Syst Engn, Washington, DC 20052 USA.
RP Reeves, JD (reprint author), NASA, Langley Res Ctr, MS 426, Hampton, VA 23681 USA.
EM john.d.reeves@nasa.gov
NR 17
TC 2
Z9 2
U1 0
U2 9
PU AMER SOC ENGINEERING MANAGEMENT
PI ROLLA
PA PO BOX 820, ROLLA, MO 65402 USA
SN 1042-9247
J9 EMJ-ENG MANAG J
JI EMJ-Eng. Manag. J.
PD JUN
PY 2013
VL 25
IS 2
SI SI
BP 3
EP 12
PG 10
WC Engineering, Industrial; Management
SC Engineering; Business & Economics
GA 174MA
UT WOS:000321158400003
ER
PT J
AU Zhou, DK
Larar, AM
Liu, X
AF Zhou, Daniel K.
Larar, Allen M.
Liu, Xu
TI MetOp-A/IASI Observed Continental Thermal IR Emissivity Variations
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Geophysical inverse problems; infrared measurements; remote sensing;
satellite applications; surface emissivity
ID LAND-SURFACE EMISSIVITY
AB Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth's environment. Long-term and large-scale observations that are needed for global monitoring and research can only be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last five and half years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T-s and spectral emissivity epsilon(nu)) with a spatial resolution of 0.5 x 0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. Continental IR spectral emissivity derived from satellite ultraspectral IR measurements reveals its variation depending on surface weather and climate conditions. Variation behaviors of continental IR spectral emissivity, associated with the seasonal change as well as weather and climate conditions are initially captured by IASI measurements and will be continuously monitored as provided by the satellite measurements. Surface epsilon(nu) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(nu) together with T-s from current and future operational weather satellites can be utilized as a means of long-term and large-scale monitoring of Earth's surface weather environment and associated changes.
C1 [Zhou, Daniel K.; Larar, Allen M.; Liu, Xu] NASA, Langley Res Ctr, Hampton, VA 23693 USA.
RP Zhou, DK (reprint author), NASA, Langley Res Ctr, Hampton, VA 23693 USA.
EM daniel.k.zhou@nasa.gov
RI Richards, Amber/K-8203-2015
FU NASA Langley Research Center; NASA Headquarters
FX IASI was developed and built under the responsibility of the Centre
National d'Etudes Spatiales (CNES). It is flown aboard the MetOp
satellites as part of the EUMETSAT Polar System. The IASI L1C data are
received through NOAA Comprehensive Large Array-data Stewardship System
(CLASS). This research is supported by NASA Langley Research Center and
NASA Headquarters. The authors are grateful to Dr. L. Larrabee Strow
(University of Maryland-Baltimore County) and Dr. Ping Yang (Texas A&M
University) for providing the fast molecular and cloud radiative
transfer models, and also grateful to Prof. William L. Smith, Sr.
(University of Wisconsin-Madison and Hampton University) for his
encouragement. The authors wish to acknowledge support from NASA
Headquarters Research Division Director Dr. Jack Kaye, and to extend
their appreciation to the anonymous reviewers.
NR 22
TC 1
Z9 1
U1 2
U2 11
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1156
EP 1162
DI 10.1109/JSTARS.2013.2238892
PG 7
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800012
ER
PT J
AU Parkinson, CL
AF Parkinson, Claire L.
TI Summarizing the First Ten Years of NASA's Aqua Mission
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Satellite Earth observations; Aqua; global energy budget; water cycle
ID AMSR-E; MODIS; CLIMATE; SYSTEM; WATER; TEMPERATURE; RETRIEVALS;
VALIDATION; SCIENCE; IMPACT
AB The Aqua spacecraft was launched on May 4, 2002 with six Earth-observing instruments on board to collect data on a wide variety of Earth system variables. After ten years of on-orbit operations, Aqua has provided data that have contributed to over 2 000 scientific publications, with new results on the Earth's energy budget, trace gases and particulate matter in the atmosphere, vegetation on land and in the oceans, and many aspects of the water cycle, including evaporation and transpiration, water vapor, cloud cover, precipitation, the oceans, sea ice and land ice, snow cover, and soil moisture. Additionally, Aqua data have been used to assist in practical applications ranging from weather forecasting to the deployment of firefighters and the routing of aircraft. Although the six-year design life of the satellite has been successfully completed and exceeded, enough fuel remains on Aqua for approximately another ten years of operations.
C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Parkinson, CL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM claire.l.parkinson@nasa.gov
RI Parkinson, Claire/E-1747-2012
OI Parkinson, Claire/0000-0001-6730-4197
FU Earth Science Division at NASA Headquarters
FX This work was funded by the Earth Science Division at NASA Headquarters.
NR 50
TC 8
Z9 8
U1 2
U2 29
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1179
EP 1188
DI 10.1109/JSTARS.2013.2239608
PG 10
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800015
ER
PT J
AU Ramachandran, R
Rushing, J
Lin, A
Conover, H
Li, X
Graves, S
Nair, US
Kuo, KS
Smith, DK
AF Ramachandran, Rahul
Rushing, John
Lin, Amy
Conover, Helen
Li, Xiang
Graves, Sara
Nair, U. S.
Kuo, Kwo-Sen
Smith, Deborah K.
TI Data Prospecting-A Step Towards Data Intensive Science
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Architecture; data analysis; data preprocessing; data systems; data
visualization; information retrieval; remote sensing; sea surface
ID MONTANE CLOUD FORESTS; ARABIAN SEA; SOMALI-JET; VISUALIZATION; IMPACT
AB Data-intensive science is a scientific discovery process that is driven by knowledge extracted from large volumes of data rather than the traditional hypothesis driven discovery process. One of the key challenges in data-intensive science is development of enabling technologies to allow researchers to effectively utilize these large volumes of data in an effective manner. This paper introduces the concept of "data prospecting" to address the challenges of data intensive science. With data prospecting, we extend the familiar metaphor of data mining to describe an initial phase of data exploration used to determine promising areas for deeper analysis. Data prospecting enhances data selection through the use of interactive discovery engines. Interactive exploration enables a researcher to filter the data based on the "first look" analytics, discover interesting and previously unknown patterns to start new science investigations, verify the quality of the data, and corroborate whether patterns in the data match existing science theories or mental models. This paper describes our initial evaluation of the value of"data prospecting" to Earth Science researchers as part of their research process. The paper describes our discovery engine prototype to support data prospecting for specific data products along with its current limitations. Example science investigations from three different researchers using our prototype discovery engine to explore the Special Sensor Microwave/Imager and Sounder (SSM/I, SSMIS) data products are also presented.
C1 [Ramachandran, Rahul; Rushing, John; Lin, Amy; Conover, Helen; Li, Xiang; Graves, Sara; Nair, U. S.] Univ Alabama, Huntsville, AL 35899 USA.
[Kuo, Kwo-Sen] NASA, Caelum Res Corp, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Smith, Deborah K.] Remote Sensing Syst, Santa Rosa, CA 95401 USA.
RP Ramachandran, R (reprint author), Univ Alabama, Huntsville, AL 35899 USA.
EM rramachandran@itsc.uah.edu; jrushing@itsc.uah.edu; alin@itsc.uah.edu;
hconover@itsc.uah.edu; xli@itsc.uah.edu; sgraves@itsc.uah.edu;
nair@nsstc.uah.edu; kwo-sen.kuo@nasa.gov; smith@remss.com
OI Ramachandran, Rahul/0000-0002-0647-1941
NR 28
TC 0
Z9 0
U1 0
U2 17
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1233
EP 1241
DI 10.1109/JSTARS.2013.2248133
PG 9
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800021
ER
PT J
AU Percivall, GS
Alameh, NS
Caumont, H
Moe, KL
Evans, JD
AF Percivall, George S., III
Alameh, Nadine S.
Caumont, Herve
Moe, Karen L.
Evans, John D.
TI Improving Disaster Management Using Earth Observations-GEOSS and CEOS
Activities
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Architecture; Committee on Earth Observation Satellites (CEOS); disaster
management; earth observations; Group on Earth Observations (GEO);
Global Earth Observing System of Systems (GEOSS); interoperability; Open
Geospatial Consortium (OGC)
AB This paper describes how the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS) are individually and collaboratively strengthening worldwide ability for agencies to manage the disasters lifecycle. The Architecture Implementation Pilot (AIP) of GEO has, through an agile development process, deployed and tested advanced information systems for Earth Observations based on interoperability arrangements. In particular, AIP has focused on several disaster management scenarios resulting in an architecture that has improved the ready viability and usability of data for disasters. CEOS is constructing a reference architecture, intended to streamline access to satellite data and services for disaster management and risk assessment. The CEOS approach aims to support disaster management activities with satellite information in a holistic fashion, taking account of their overlaps and interdependencies. Jointly GEO and CEOS are now working to align the approaches for disaster management to describe enterprise components and improve understanding of contributed systems and their roles. The coordination has lead to refinements of the Disaster Management Scenario via further implementation in AIP-5. By collaborating via the CEOS working groups and the Global Earth Observing System of Systems (GEOSS) communities of practice, these efforts are intended to engage the international community focused on disaster management and risk assessment to fully utilize remote sensing resources for societal benefit.
C1 [Percivall, George S., III; Alameh, Nadine S.] Open Geospatial Consortium, Crofton, MD 21114 USA.
[Caumont, Herve] Terradue, Paris, France.
[Moe, Karen L.] NASA, Earth Sci Technol Off, Greenbelt, MD 20771 USA.
[Evans, John D.] Global Sci & Technol Inc, Greenbelt, MD 20770 USA.
RP Percivall, GS (reprint author), Open Geospatial Consortium, Crofton, MD 21114 USA.
EM gpercivall@opengeospatial.org; nalameh@opengeospatial.org;
herve.caumont@ter-radue.com; karen.moe@nasa.gov; john.evans@gst.com
NR 28
TC 6
Z9 6
U1 1
U2 17
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1368
EP 1375
DI 10.1109/JSTARS.2013.2253447
PG 8
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800033
ER
PT J
AU Liao, L
Meneghini, R
Nowell, HK
Liu, GS
AF Liao, Liang
Meneghini, Robert
Nowell, Holly Kreutzer
Liu, Guosheng
TI Scattering Computations of Snow Aggregates From Simple Geometrical
Particle Models
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Radar; radiometer; scattering; snow
ID ICE; APPROXIMATION; DISTRIBUTIONS; FREQUENCIES; SNOWFLAKES
AB Scattering results from snowflakes generated from aggregates comprised of 6-branch bullet rosette crystals are compared with those obtained from spherical or spheroidal ice-air mixed phase particles. The scattering parameters of the aggregates are computed by the discrete dipole approximation (DDA) numerical approach at frequencies from 10.65 to 183.31 GHz (where the particular frequencies match those of the Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR)). Two mass density models are used to specify the snow density of the simple geometrical particles. In one model, the density is prescribed as a function of the maximum dimension of the aggregates (variable snow density model); in the other the density is independent of particle size (fixed snow density model). Comparisons of the results indicate that the scattering parameters of large complex aggregates differ significantly from those obtained from the equivalent-mass spherical/spheroidal-shaped particles when variable snow density is assumed. In contrast to the variable snow density model, the scattering properties of the aggregates are fairly well reproduced by the fixed snow density model. Although the results from a fixed snow densities between 0.2 and 0.3 g/cm(3) reveal good overall agreement with those from the aggregates, the value of 0.2 g/cm(3) yields the best agreement for the frequencies less than or equal to 35.6 GHz while the model results with a density set to 0.3 g/cm(3) show the best match with the aggregates at frequencies higher than 35.6 GHz. Moreover, scattering parameters of the randomly-oriented spheroidal ice-airmixtures tend to agree better with those from the aggregates than do spherical snow particles. It is anticipated that these findings will have direct implication for the development of the GPM algorithms for estimates of precipitation rate.
C1 [Liao, Liang] Morgan State Univ, Baltimore, MD 21251 USA.
[Meneghini, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Nowell, Holly Kreutzer; Liu, Guosheng] Florida State Univ, Tallahassee, FL 32306 USA.
RP Liao, L (reprint author), Morgan State Univ, Baltimore, MD 21251 USA.
RI Liu, Guosheng/D-3479-2011; Measurement, Global/C-4698-2015
OI Liu, Guosheng/0000-0001-7899-6125;
FU NASA Headquarters under NASA's Precipitation Measurement Mission (PMM)
[NNH06ZDA001N-PMM]
FX This work was supported by Dr. R. Kakar of NASA Headquarters under
NASA's Precipitation Measurement Mission (PMM) Grant NNH06ZDA001N-PMM.
NR 27
TC 8
Z9 8
U1 2
U2 19
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1409
EP 1417
DI 10.1109/JSTARS.2013.2255262
PG 9
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800037
ER
PT J
AU LeCompte, M
Bindschadler, R
Hayden, LB
Jefferson, M
Bridgers, YS
Lawrence, R
Bevins, J
Brownlow, J
Evans, R
Hawk, K
Koch, G
AF LeCompte, Malcolm
Bindschadler, Robert
Hayden, Linda Bailey
Jefferson, Michael
Bridgers, Ya' Shonti
Lawrence, Ryan
Bevins, Joyce
Brownlow, Jessica
Evans, Robyn
Hawk, Kirsten
Koch, Glenn
TI Reduction and Loss of an Ice Shelf in Elizabeth City State University
Bay, Antarctica: 1972-2003
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Antarctica; ENVI; grounding line; ice shelf; Landsat
ID PINE ISLAND; WEST ANTARCTICA; GLACIER; PENINSULA; ACCELERATION;
EMBAYMENT; LARSEN
AB Gradual reduction of a small ice shelf in the Pine Island Bay area is measured using eleven Landsat images spanning 1972 to 2003. Measurements of Ice shelf area indicate that it expanded slightly during the first two decades of observations from approximately 6.19 km(2) measured on December 7, 1972 to a maximum of about 6.82 km(2) observed in 1986. This maximum was followed by a nearly continuous decrease in area and ultimate disappearance of the ice shelf by January 17, 2003. No ice shelf has reappeared since 2003 as observed in subsequent Landsat images. Ten of the eleven Landsat images were co-registered and warped to one of a pair of 2003 geographic reference images before area measurement. Individual study team members made independent measurements of the ice shelf area apparent in each image. The average of these measurements had a standard deviation of 0.14 km(2).
The specific cause of this ice shelf disappearance is unknown, but is probably related to increased basalmelting by warmer ocean waters reaching Pine Island Bay. Intrusions of warm "Circumpolar Deep Water" are related to ice shelf and outlet glacier thinning and retreat as reported throughout the Amundsen Sea region. This is the first report of complete ice shelf loss so far south or in the Amundsen Bay region. This small, previously unnamed ice shelf formerly occupied what is now known as the Elizabeth City State University Bay.
C1 [LeCompte, Malcolm; Hayden, Linda Bailey; Jefferson, Michael; Bridgers, Ya' Shonti; Lawrence, Ryan; Evans, Robyn; Koch, Glenn] Elizabeth City State Univ, Elizabeth City, NC 27909 USA.
[Bindschadler, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Brownlow, Jessica] Mississippi Valley State Univ, Itta Bena, MS 38941 USA.
[Hawk, Kirsten] Spelman Univ, Atlanta, GA 30314 USA.
RP LeCompte, M (reprint author), Elizabeth City State Univ, Elizabeth City, NC 27909 USA.
FU NASA [NNX08AE01G]; NASA's Cryospheric Sciences program
FX This work was supported by NASA Grant NNX08AE01G and NASA's Cryospheric
Sciences program.
NR 21
TC 0
Z9 0
U1 1
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1509
EP 1515
DI 10.1109/JSTARS.2013.2258325
PG 7
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800048
ER
PT J
AU Pan, CH
Kowalewski, M
Buss, R
Flynn, L
Wu, XQ
Caponi, M
Weng, FZ
AF Pan, Chunhui
Kowalewski, Matthew
Buss, Rich
Flynn, L.
Wu, Xiangqian
Caponi, Maria
Weng, Fuzhong
TI Performance and Calibration of the Nadir Suomi-NPP Ozone Mapping
Profiler Suite From Early-Orbit Images
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Calibration; charge coupled device (CCD); Ozone Mapping Profiler Suite
(OMPS); remote sensing
ID SOLAR; OMPS; UARS
AB The Ozone Mapping Profiler Suite (OMPS) was launched aboard the Suomi National Polar-orbiting Partnership spacecraft on October 28, 2011. A successful thorough Early Orbit Checkout (EOC) enabled the current Intensive Calibration and Validation stage. We present our analyses and results of OMPS Nadir early-orbit sensor performance and calibration. We collected and analyzed data from both nominal and diagnostic activities via orbital measurements of detector dark current, sensor linearity, and solar irradiance. Our results demonstrate that the OMPS Nadir sensors smoothly transitioned from ground to orbit by meeting or exceeding sensor level requirements. The orbital measurements agree with the predicted values determined during the prelaunch calibration and characterization of OMPS. Our results also suggest that the effects of charge coupled device (CCD) lattice damage due to energetic particle hits onto the CCD must be accounted for in the dark current calibration.
C1 [Pan, Chunhui] Univ Maryland CICS, College Pk, MD 20740 USA.
[Pan, Chunhui; Flynn, L.; Wu, Xiangqian; Weng, Fuzhong] NOAA NESDIS Satellite Applicat & Res, College Pk, MD 20740 USA.
[Kowalewski, Matthew] Univ Space Res Assoc, Columbia, MD 21044 USA.
[Kowalewski, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Buss, Rich] Raytheon Corp, Riverdale, MD 20737 USA.
[Caponi, Maria] Aerosp Corp, El Segundo, CA 90245 USA.
RP Pan, CH (reprint author), Univ Maryland CICS, College Pk, MD 20740 USA.
EM chpan@umd.edu
RI Flynn, Lawrence/B-6321-2009; Wu, Xiangqian/F-5634-2010; Weng,
Fuzhong/F-5633-2010
OI Flynn, Lawrence/0000-0001-6856-2614; Wu, Xiangqian/0000-0002-7804-5650;
Weng, Fuzhong/0000-0003-0150-2179
FU NOAA at the University of Maryland [NA09NES4400006]
FX This work was supported by NOAA Grant NA09NES4400006 (Cooperative
Institute for Climate and Satellites-CICS) at the University of
Maryland.
NR 14
TC 9
Z9 9
U1 0
U2 9
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1539
EP 1551
DI 10.1109/JSTARS.2013.2259144
PG 13
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800052
ER
PT J
AU Sun, XL
Abshire, JB
McGarry, JF
Neumann, GA
Smith, JC
Cavanaugh, JF
Harding, DJ
Zwally, HJ
Smith, DE
Zuber, MT
AF Sun, Xiaoli
Abshire, James B.
McGarry, Jan F.
Neumann, Gregory A.
Smith, James C.
Cavanaugh, John F.
Harding, David J.
Zwally, H. Jay
Smith, David E.
Zuber, Maria T.
TI Space Lidar Developed at the NASA Goddard Space Flight Center-The First
20 Years
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Laser altimeter; lidar
ID ORBITER LASER ALTIMETER; LUNAR RECONNAISSANCE ORBITER; OPTICAL-SYSTEM
DESIGN; MESSENGER MISSION; MERCURY; MARS; PERFORMANCE; INTEGRATION;
EARTH; TRANSMITTER
AB During the past 20 years the NASA Goddard Space Flight Center has developed five different lidar for space, and has successfully used them in orbital missions to map Mars, the Earth, the Moon and Mercury. Although similar in some ways, each of these lidar has had a different combination of measurement requirements, payload constraints, and operational environments. Together they have improved space-based lasermeasurement technologies and advanced planetary science. This paper gives a brief overview of these instruments, their measurement approaches and designs, and some highlights from their scientific observations.
C1 [Sun, Xiaoli; Abshire, James B.; McGarry, Jan F.; Neumann, Gregory A.; Harding, David J.; Smith, David E.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Smith, James C.; Cavanaugh, John F.] NASA, Instrument Syst & Technol Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Zwally, H. Jay] NASA, Div Earth Sci, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci EAPS, Cambridge, MA 02139 USA.
RP Sun, XL (reprint author), NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM xiaoli.sun-1@nasa.gov
RI Abshire, James/I-2800-2013; Sun, Xiaoli/B-5120-2013; Neumann,
Gregory/I-5591-2013; Harding, David/F-5913-2012
OI Neumann, Gregory/0000-0003-0644-9944;
NR 62
TC 4
Z9 9
U1 2
U2 24
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1660
EP 1675
DI 10.1109/JSTARS.2013.2259578
PG 16
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800064
ER
PT J
AU Tsang, L
Koh, IS
Liao, TH
Huang, SW
Xu, XL
Njoku, EG
Kerr, YH
AF Tsang, Leung
Koh, Il-Suek
Liao, Tien-Hao
Huang, Shaowu
Xu, Xiaolan
Njoku, Eni G.
Kerr, Yann H.
TI Active and Passive Vegetated Surface Models With Rough Surface Boundary
Conditions From NMM3D
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Active and passive remote sensings; data cubes; L band; rough surface;
tau-omega model
ID SOIL-MOISTURE RETRIEVAL; MICROWAVE EMISSION; NUMERICAL-SOLUTIONS;
MAXWELL EQUATIONS; SIMULATIONS; SCATTERING
AB In this paper, we derive an expression of the brightness temperatures of a vegetated surface based on the tau-omega model with the rough surface boundary condition that replaces the conventional exp(-h) model by NMM3D (Numerical Simulations of 3D Maxwell equations). A purpose of the paper is that the same physical rough surface scattering model based on NMM3D and the same physical paramters of rms heights and correlation lengths can be used for both passive and active remote sensing of the same scene of vegetated surfaces. The bistatic scattering of rough surfaces are decomposed into the coherent wave and the co-polarization and the cross-polarization of the incoherent waves to quantify the contribution of each of these components. Numerical results are illustrated for a variety of roughness conditions. Comparisons are made with the exp(-h) model. Results are compared with the experimental passive measurements of PORTOS 1993 for bare soil cases. Data cubes for grassland are calculated for both active and passive signatures at L band. Comparisons are then made with the L band PALS data for the grassland of SGP99 using these data cubes.
C1 [Tsang, Leung; Liao, Tien-Hao; Huang, Shaowu] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA.
[Koh, Il-Suek] Inha Univ, Dept Elect Engn, Inchon 402451, South Korea.
[Xu, Xiaolan; Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Kerr, Yann H.] CESBIO CNES, F-31401 Toulouse, France.
RP Tsang, L (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA.
EM tsang@ee.washington.edu
FU NASA/SMAP
FX The research was supported by NASA/SMAP.
NR 21
TC 8
Z9 8
U1 0
U2 14
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1698
EP 1709
DI 10.1109/JSTARS.2013.2257694
PG 12
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800067
ER
PT J
AU Yoon, Y
Durand, M
Merry, CJ
Rodriguez, E
AF Yoon, Yeosang
Durand, Michael
Merry, Carolyn J.
Rodriguez, Ernesto
TI Improving Temporal Coverage of the SWOT Mission Using Spatiotemporal
Kriging
SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING
LA English
DT Article; Proceedings Paper
CT IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
CY JUL 22-27, 2012
CL Munich, GERMANY
SP IEEE, IEEE Geosci & Remote Sensing Soc, DLR, ESA
DE Kriging; river height and discharge; SWOT; temporal resolution
ID SURFACE-WATER; RIVER; ASSIMILATION; SIMULATION; ALTIMETRY
AB The upcoming Surface Water and Ocean Topography (SWOT) satellite mission will measure water surface elevation, its spatial and temporal derivatives, and inundated area. These observations can be used to estimate river discharge at a global scale. SWOT will measure a given area on mid-latitude rivers two or three times per 22-day repeat cycle. In this paper, we suggest an interpolation-based method of estimating water height for times without SWOT observations (i.e., in between SWOT overpasses). A local space-time ordinary kriging (LSTOK) method is developed. Two sets of synthetic SWOT observations are generated by corrupting two different types of true river height with the instrument error. The true river heights are extracted from: 1) simulation of the LISFLOOD-FP hydrodynamic model, and from 2) in situ gage measurements from five USGS gages. Both of these synthetic SWOT observations datasets are important for the following reasons. The model-based dataset provides a complete spatiotemporal picture of river height that is unavailable from in situ measurements, but neglects the effects of e. g. human management actions on river dynamics. On the other hand, the gage-based dataset samples only five locations on the river (1,050 km in length), but represents all effects of human management, tributaries, or other influences on river heights, which are not included in the model. The results are evaluated by a comparison with truth and simple linear interpolation estimates as a first-guess. The model-based experiment shows the LSTOK recovered the river heights with a mean spatial and temporal root mean square error (RMSE) of 11 cm and 12 cm, respectively; these accuracies show a 46% and 54% improvement compared to the RMSEs of the linear interpolation estimates. The gage-based experiment shows a temporal RMSE of 32 cm on average; the LSTOK estimates show a 23% improvement over the linear interpolation estimates. The degradation in performance of the LSTOK for the gage-based analysis as compared to the model-based analysis is apparently due to the effects of human management on river dynamics. Further work is needed to model the effects of human management, and to extend the analysis to consider river tributaries and the main stem of the river simultaneously.
C1 [Yoon, Yeosang; Merry, Carolyn J.] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA.
[Yoon, Yeosang; Durand, Michael; Merry, Carolyn J.] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA.
[Durand, Michael] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Rodriguez, Ernesto] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Yoon, Y (reprint author), Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA.
EM yoon.203@osu.edu
RI Durand, Michael/D-2885-2013
FU NASA Headquarters under the NASA Earth and Space Science [NNX11AL60H];
NASA Physical Oceanography [NNX10AE96G]; Ohio Supercomputer Center
[PAS0503]
FX This work was supported by NASA Headquarters under the NASA Earth and
Space Science Fellowship Program-Grant NNX11AL60H, and the NASA Physical
Oceanography grant NNX10AE96G. Computational support for this project
was provided by the Ohio Supercomputer Center, under project PAS0503.
NR 26
TC 8
Z9 8
U1 1
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1939-1404
EI 2151-1535
J9 IEEE J-STARS
JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 1719
EP 1729
DI 10.1109/JSTARS.2013.2257697
PG 11
WC Engineering, Electrical & Electronic; Geography, Physical; Remote
Sensing; Imaging Science & Photographic Technology
SC Engineering; Physical Geography; Remote Sensing; Imaging Science &
Photographic Technology
GA 170RR
UT WOS:000320871800069
ER
PT J
AU Thompson, DR
Bornstein, BJ
Chien, SA
Schaffer, S
Tran, D
Bue, BD
Castano, R
Gleeson, DF
Noell, A
AF Thompson, David R.
Bornstein, Benjamin J.
Chien, Steve A.
Schaffer, Steven
Tran, Daniel
Bue, Brian D.
Castano, Rebecca
Gleeson, Damhnait F.
Noell, Aaron
TI Autonomous Spectral Discovery and Mapping Onboard the EO-1 Spacecraft
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Endmember detection; hyperspectral imagery; mineralogy; pattern
recognition; remote planetary geology; spacecraft autonomy
ID IMAGING SPECTROMETER DATA; HYPERSPECTRAL DATA; SCIENCECRAFT EXPERIMENT;
ENDMEMBER EXTRACTION; HYPERION; EUROPA; MARS; IDENTIFICATION;
SEGMENTATION; COMPRESSION
AB Imaging spectrometers are valuable instruments for space exploration, but their large data volumes limit the number of scenes that can be downlinked. Missions could improve science yield by acquiring surplus images and analyzing them onboard the spacecraft. This onboard analysis could generate surficial maps, summarizing scenes in a bandwidth-efficient manner to indicate data cubes that warrant a complete downlink. Additionally, onboard analysis could detect targets of opportunity and trigger immediate automated follow-up measurements by the spacecraft. Here, we report a first step toward these goals with demonstrations of fully automatic hyperspectral scene analysis, feature discovery, and mapping onboard the Earth Observing One (EO-1) spacecraft. We describe a series of overflights in which the spacecraft analyzes a scene and produces summary maps along with lists of salient features for prioritized downlink. The onboard system uses a superpixel endmember detection approach to identify compositionally distinctive features in each image. This procedure suits the limited computing resources of the EO-1 flight processor. It requires very little advance information about the anticipated spectral features, but the resulting surface composition maps agree well with canonical human interpretations. Identical spacecraft commands detect outlier spectral features in multiple scenarios having different constituents and imaging conditions.
C1 [Thompson, David R.; Bornstein, Benjamin J.; Chien, Steve A.; Schaffer, Steven; Tran, Daniel; Castano, Rebecca; Gleeson, Damhnait F.; Noell, Aaron] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Bue, Brian D.] Rice Univ, Houston, TX 77005 USA.
RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM david.r.thompson@jpl.nasa.gov; benjamin.j.bornstein@jpl.nasa.gov;
steve.chien@jpl.nasa.gov; steven.r.schaffer@jpl.nasa.gov;
daniel.q.tran@jpl.nasa.gov; bbue@rice.edu; rebecca.castano@jpl.nasa.gov;
dgleeson@sciops.esa.int; aaron.c.noell@jpl.nasa.gov
FU Technology Development Grant under the Advanced Multimission Operating
System; National Aeronautics and Space Administration; U.S. Government
FX The authors would like to thank the Autonomous Sciencecraft Experiment,
the Earth Observing One mission, and the Goddard Space Flight Center
(GSFC) for their assistance. The authors would also like to thank the
GSFC Science team including E. Middleton, S. Ungar, P. Campbell, and L.
Ong. The authors would like to thank D. Mandl and S. Frye for the
operations support. The original segmentation methodology was developed
by a Technology Development Grant under the Advanced Multimission
Operating System and the Multimission Ground Support Services office,
with support by J. Wyatt and L. Hall. The authors would like to thank L.
Mandrake and M. Gilmore for their help in developing the superpixel
segmentation approach. The authors would also like to thank F. Kruse for
his assistance and the use of previous work. The research was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration. U.S. Government support acknowledged.
NR 71
TC 8
Z9 8
U1 1
U2 18
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD JUN
PY 2013
VL 51
IS 6
BP 3567
EP 3579
DI 10.1109/TGRS.2012.2226040
PN 2
PG 13
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA 171PK
UT WOS:000320941300008
ER
PT J
AU Pasolli, E
Melgani, F
Alajlan, N
Conci, N
AF Pasolli, Edoardo
Melgani, Farid
Alajlan, Naif
Conci, Nicola
TI Optical Image Classification: A Ground-Truth Design Framework
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Clustering; ground-truth design; hyperspectral; image classification;
level set segmentation; support vector machines (SVMs); very high
resolution (VHR)
ID REMOTELY-SENSED IMAGERY; ACTIVE LEARNING-METHODS; TRAINING DATA; LEVEL
SET; SEGMENTATION; ALGORITHMS; SVM
AB In the remote sensing field, ground-truth design for collecting training samples represents a tricky and critical problem since it has a direct impact on most of the subsequent image processing and analysis steps. In this paper, we propose a novel framework for assisting a human user in designing ground-truth by photointerpretation for optical remote sensing image classification. The proposed approach is (almost) completely automatic and comprehensive since it aims at assisting the human user from the first to the last step of the process. It is based on unsupervised methods of segmentation and clustering, in order to investigate both the spatial and the spectral information in the process of ground-truth design. The resulting ground-truth is classifier-free and can be further improved by making it classifier-driven through an active learning process. To validate the proposed framework, an experimental study was conducted on very high spatial resolution and hyperspectral images acquired by the IKONOS and the Reflective Optics System Imaging Spectrometer sensors, respectively. The obtained results show the usefulness and effectiveness of the proposed approach.
C1 [Pasolli, Edoardo; Melgani, Farid; Conci, Nicola] Univ Trent, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy.
[Alajlan, Naif] King Saud Univ, Adv Lab Intelligent Syst Res, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia.
RP Pasolli, E (reprint author), NASA, Goddard Space Flight Ctr, Computat & Informat Sci & Technol Off, Greenbelt, MD 20771 USA.
EM edoardo.pasolli@nasa.gov; melgani@disi.unitn.it; najlan@ksu.edu.sa;
conci@disi.unitn.it
RI Alajlan, Naif/A-3904-2008;
OI Alajlan, Naif/0000-0003-1846-1131; Pasolli, Edoardo/0000-0003-0799-3490
NR 52
TC 7
Z9 7
U1 0
U2 25
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD JUN
PY 2013
VL 51
IS 6
BP 3580
EP 3597
DI 10.1109/TGRS.2012.2226041
PN 2
PG 18
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA 171PK
UT WOS:000320941300009
ER
PT J
AU Moradi, I
Meng, H
Ferraro, RR
Bilanow, S
AF Moradi, Isaac
Meng, Huan
Ferraro, Ralph R.
Bilanow, Stephen
TI Correcting Geolocation Errors for Microwave Instruments Aboard NOAA
Satellites
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Geolocation; microwave remote sensing; navigation; National Oceanic and
Atmospheric Administration (NOAA); satellite; satellite tracking
ID AMSU-B; PRECIPITABLE WATER; SOUNDING UNIT; SENSOR; RETRIEVAL
AB Microwave ( MW) satellite data are widely used as input in numerical weather prediction models and also in other applications such as climate monitoring and re-analysis. MW satellite data are prone to different problems, including geolocation errors. These data do not have a fine spatial resolution like visible and infrared data; therefore, the accuracy of their geolocation cannot be easily determined using the normal methods such as superimposing coastlines on the satellite images. Currently, no geolocation correction is performed on data from MW instruments aboard the satellites in the National Oceanic and Atmospheric Administration ( NOAA) Polar Operational Environmental Satellite program. However, geolocation error can be a significant source of bias in the satellite measurements. In this paper, we investigated and corrected the geolocation errors of the observations from the Advanced Microwave Sounding Unit ( AMSU)-A aboard NOAA-15 to NOAA-19, AMSU-B aboard NOAA-15 to NOAA-17, and Microwave Humidity Sounder ( MHS) aboard NOAA-18 and NOAA-19. We used the difference between ascending and descending observations along the coastlines to quantify the geolocation errors in terms of the satellite attitudes ( Euler angles), i.e., pitch, roll, and yaw. Then, new geographical coordinates and scan/local zenith angles were calculated using new attitudes. The results show that NOAA-15 AMSU-A2 instrument has a mounting error of about 1.2 degrees cross-track, and -0.5 degrees along-track, NOAA-16 AMSU-A1 and -A2 instruments have a mounting error of about -0.5 degrees along-track, and NOAA-18 AMSU-A2 instrument has a mounting error of more than -1 degrees along-track.
C1 [Moradi, Isaac] Univ Maryland, Cooperat Inst Climate & Satellites, ESSIC, College Pk, MD 20740 USA.
[Meng, Huan; Ferraro, Ralph R.] NOAA, Ctr Satellite Applicat & Res, Natl Environm Satellite Data & Informat Serv, College Pk, MD 20740 USA.
[Bilanow, Stephen] NASA, Goddard Space Flight Ctr, Wyle Informat Syst, Greenbelt, MD 20770 USA.
RP Moradi, I (reprint author), Univ Maryland, Cooperat Inst Climate & Satellites, ESSIC, College Pk, MD 20740 USA.
EM imoradi@umd.edu
RI Meng, Huan/F-5613-2010; Ferraro, Ralph/F-5587-2010; Moradi,
Isaac/A-7539-2008
OI Meng, Huan/0000-0001-6449-890X; Ferraro, Ralph/0000-0002-8393-7135;
Moradi, Isaac/0000-0003-2194-1427
FU National Oceanic and Atmospheric Administration (NOAA)/National Climatic
Data Center at the Earth System Science Interdisciplinary Center,
University of Maryland [NA09NES4400006]
FX Manuscript received March 5, 2012; revised August 7, 2012 and September
18, 2012; accepted October 14, 2012. Date of publication January 22,
2013; date of current version May 16, 2013. This work was supported by
the National Oceanic and Atmospheric Administration (NOAA)/National
Climatic Data Center under Grant NA09NES4400006 (Cooperative Institute
for Climate and Satellites) at the Earth System Science
Interdisciplinary Center, University of Maryland. The views, opinions,
and findings contained in this report are those of the authors and
should not be construed as an official NOAA or U.S. Government position,
policy, or decision.
NR 21
TC 10
Z9 12
U1 0
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD JUN
PY 2013
VL 51
IS 6
BP 3625
EP 3637
DI 10.1109/TGRS.2012.2225840
PN 2
PG 13
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA 171PK
UT WOS:000320941300013
ER
PT J
AU Pellish, JA
Galloway, KF
AF Pellish, Jonathan A.
Galloway, Kenneth F.
TI IEEE Nuclear and Space Radiation Effects Conference: Notes on the Early
Conferences
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Radiation effects; radiation hardness assurance
ID SILICON
AB This paper gathers the remembrances of several key contributors who participated in the earliest Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conferences (NSRECs).
C1 [Pellish, Jonathan A.] NASA, Goddard Space Flight Ctr, Flight Data Syst & Radiat Effects Branch, Greenbelt, MD 20771 USA.
[Galloway, Kenneth F.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA.
RP Pellish, JA (reprint author), NASA, Goddard Space Flight Ctr, Flight Data Syst & Radiat Effects Branch, Greenbelt, MD 20771 USA.
EM jonathan.pellish@nasa.gov; ken.galloway@vanderbilt.edu
FU NASA Electronic Parts and Packaging Program; Defense Threat Reduction
Agency
FX This work was supported in part by the NASA Electronic Parts and
Packaging Program and the Defense Threat Reduction Agency.
NR 12
TC 0
Z9 0
U1 1
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2013
VL 60
IS 3
SI SI
BP 1681
EP 1689
DI 10.1109/TNS.2013.2262805
PN 2
PG 9
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 170MU
UT WOS:000320857200004
ER
PT J
AU Xapsos, MA
O'Neill, PM
O'Brien, TP
AF Xapsos, Michael A.
O'Neill, Patrick M.
O'Brien, T. Paul
TI Near-Earth Space Radiation Models
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Galactic cosmic rays; solar particle events; space radiation models;
trapped particles
ID ENERGETIC PARTICLE EVENTS; SELF-ORGANIZED CRITICALITY; PROTON FLUENCE
MODEL; COSMIC-RAY EVENTS; HEAVY-ION MODEL; PROBABILITY MODEL; DOSE
FLUCTUATIONS; PEAK FLUXES; SOLAR; ENVIRONMENT
AB Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.
C1 [Xapsos, Michael A.; O'Neill, Patrick M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[O'Brien, T. Paul] Aerosp Corp, Chantilly, VA 20151 USA.
RP Xapsos, MA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Michael.A.Xapsos@nasa.gov; Patrick.M.ONeill@nasa.gov;
Paul.OBrien@aero.org
NR 94
TC 14
Z9 14
U1 0
U2 14
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2013
VL 60
IS 3
SI SI
BP 1691
EP 1705
DI 10.1109/TNS.2012.2225846
PN 2
PG 15
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 170MU
UT WOS:000320857200005
ER
PT J
AU Reed, RA
Weller, RA
Akkerman, A
Barak, J
Culpepper, W
Duzellier, S
Foster, C
Gaillardin, M
Hubert, G
Jordan, T
Jun, I
Koontz, S
Lei, F
McNulty, P
Mendenhall, MH
Murat, M
Nieminen, P
O'Neill, P
Raine, M
Reddell, B
Saigne, F
Santin, G
Sihver, L
Tang, HHK
Truscott, PR
Wrobel, F
AF Reed, R. A.
Weller, R. A.
Akkerman, A.
Barak, J.
Culpepper, W.
Duzellier, S.
Foster, C.
Gaillardin, M.
Hubert, G.
Jordan, T.
Jun, I.
Koontz, S.
Lei, F.
McNulty, P.
Mendenhall, M. H.
Murat, M.
Nieminen, P.
O'Neill, P.
Raine, M.
Reddell, B.
Saigne, F.
Santin, G.
Sihver, L.
Tang, H. H. K.
Truscott, P. R.
Wrobel, F.
TI Anthology of the Development of Radiation Transport Tools as Applied to
Single Event Effects
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Monte Carlo radiation transport; single event effects
ID NEUTRON-INDUCED SEU; MONTE-CARLO CALCULATIONS; INDUCED SOFT ERRORS;
ACCURATE UNIVERSAL PARAMETERIZATION; ABSORPTION CROSS-SECTIONS; INDUCED
NUCLEAR-REACTIONS; HEAVY-ION TRANSPORT; MICRODOSIMETRIC KINETIC-MODEL;
TERRESTRIAL COSMIC-RAYS; UPSET RATE PREDICTION
AB This anthology contains contributions from eleven different groups, each developing and/or applying Monte Carlo-based radiation transport tools to simulate a variety of effects that result from energy transferred to a semiconductor material by a single particle event. The topics span from basic mechanisms for single-particle induced failures to applied tasks like developing websites to predict on-orbit single event failure rates using Monte Carlo radiation transport tools.
C1 [Reed, R. A.; Weller, R. A.; Mendenhall, M. H.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37212 USA.
[Reed, R. A.; Weller, R. A.; Mendenhall, M. H.] Vanderbilt Univ, Inst Space & Def Elect, Nashville, TN 37212 USA.
[Akkerman, A.; Barak, J.; Murat, M.] Soreq NRC, IL-81800 Yavne, Israel.
[Duzellier, S.; Hubert, G.] French Aerosp Lab ONERA, F-31055 Toulouse, France.
[Gaillardin, M.; Raine, M.] CEA, DAM, DIF, F-91297 Arpajon, France.
[Jordan, T.] EMP Consultants, Gaithersburg, MD 20885 USA.
[Jun, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Culpepper, W.; Foster, C.; Koontz, S.; O'Neill, P.; Reddell, B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[McNulty, P.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA.
[Nieminen, P.; Santin, G.] ESA ESTEC, Space Environments & Effects Sect TOS EES, NL-2200 AG Noordwijk, Netherlands.
[Saigne, F.; Wrobel, F.] Univ Montpellier 2, F-34095 Montpellier 5, France.
[Santin, G.] Rhea Syst SA, B-1348 Louvain, Belgium.
[Sihver, L.] Chalmers, S-41296 Gothenburg, Sweden.
[Sihver, L.] Roanoke Coll, Salem, VA 24153 USA.
[Sihver, L.] Texas A&M Univ, College Stn, TX 77843 USA.
[Truscott, P. R.] Kallisto Consultancy Ltd, Yorktown Hts, NY 10598 USA.
RP Reed, RA (reprint author), Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37212 USA.
EM robert.reed@vanderbilt.edu
RI Reed, Robert/N-1988-2013; Raine, Melanie/F-6357-2011
OI Raine, Melanie/0000-0002-1898-9473
NR 276
TC 21
Z9 21
U1 0
U2 19
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2013
VL 60
IS 3
SI SI
BP 1876
EP 1911
DI 10.1109/TNS.2013.2262101
PN 2
PG 36
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 170MU
UT WOS:000320857200015
ER
PT J
AU Adell, PC
Scheick, LZ
AF Adell, P. C.
Scheick, L. Z.
TI Radiation Effects in Power Systems: A Review
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE DC-DC converters; digital control; linear regulators; power systems;
single event effects; total dose
ID SINGLE-EVENT TRANSIENTS; LINEAR VOLTAGE REGULATORS; DOSE-RATE;
OPERATIONAL-AMPLIFIER; PROTON IRRADIATION; IONIZING-RADIATION;
ANGULAR-DEPENDENCE; CIRCUIT RESPONSE; GATE-RUPTURE; HEAVY-ION
AB To guarantee mission success and minimize the risk of anomalies in space, current space-power architectures are designed conservatively and use electronics that are several generations behind the current state of the art. In parallel, the commercial industry is burgeoning with exciting new solutions for power management; however, their reliability and radiation robustness for space application have yet to be proven. The goal of this paper is to review common radiation issues related to power converters, which are the main design blocks of current space power system architectures. We first provide some background material and introduce the basic principles of power converter operation, as well as a brief introduction of common radiation effect that might damage these designs. Then, we explain common radiation-induced failure mechanisms (radiation-induced failure or instability) or temporary perturbations observed in various converter topologies. Their radiation hardness is compared based on simulation and experimental studies reported in the literature. Some radiation hardening by design solutions and mitigation techniques are also presented. Finally, we provide a status of emerging technologies under consideration for the next-generation of space power systems.
C1 [Adell, P. C.; Scheick, L. Z.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Adell, PC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM philippe.c.adell@jpl.nasa.gov
FU NASA Electronic Parts and Packaging Program; National Reconnaissance
Office, Vanderbilt University; Jet Propulsion Laboratory, California
Institute of Technology
FX The authors would like to thank the NASA Electronic Parts and Packaging
Program, the National Reconnaissance Office, Vanderbilt University and
Jet Propulsion Laboratory, California Institute of Technology research
and development funds for having supported this research into radiation
effects in power systems over many years.
NR 78
TC 12
Z9 12
U1 3
U2 22
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2013
VL 60
IS 3
SI SI
BP 1929
EP 1952
DI 10.1109/TNS.2013.2262235
PN 2
PG 24
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 170MU
UT WOS:000320857200017
ER
PT J
AU Gerardin, S
Bagatin, M
Paccagnella, A
Grurmann, K
Gliem, F
Oldham, TR
Irom, F
Nguyen, DN
AF Gerardin, S.
Bagatin, M.
Paccagnella, A.
Gruermann, K.
Gliem, F.
Oldham, T. R.
Irom, F.
Nguyen, D. N.
TI Radiation Effects in Flash Memories
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Flash memories; floating gate (FG); single event functional interrupts
(SEFI); single event upset (SEU); soft errors
ID FLOATING-GATE MEMORIES; HEAVY-ION IRRADIATION; CHARGE LOSS; MOSFET
DOSIMETER; COMMERCIAL NAND; SIO2 LAYERS; CELLS; EXPOSURE; ARRAYS;
RELIABILITY
AB We review ionizing radiation effects in Flash memories, the current dominant technology in the commercial non-volatile memory market. A comprehensive discussion of total dose and single event effects results is presented, concerning both floating gate cells and peripheral circuitry. The latest developments, including new findings on the mechanism underlying upsets due to heavy ions and destructive events, are illustrated.
C1 [Gerardin, S.; Bagatin, M.; Paccagnella, A.] Univ Padua, Dipartimento Ingn Informaz, RREACT Grp, I-35131 Padua, Italy.
[Bagatin, M.; Paccagnella, A.] Ist Nazl Fis Nucl INFN, I-35131 Padua, Italy.
[Gruermann, K.; Gliem, F.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Comp & Network Engn, IDA, D-38106 Braunschweig, Germany.
[Oldham, T. R.] Ball Aerosp Technol Ctr, Boulder, CO 80301 USA.
[Irom, F.; Nguyen, D. N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Gerardin, S (reprint author), Univ Padua, Dipartimento Ingn Informaz, RREACT Grp, I-35131 Padua, Italy.
EM simone.ger-ardin@dei.unipdit; marta.bagatin@dei.unipd.it;
alessandro.paccagnella@dei.unipd.it; toldham@ball.com
NR 82
TC 39
Z9 39
U1 4
U2 34
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2013
VL 60
IS 3
SI SI
BP 1953
EP 1969
DI 10.1109/TNS.2013.2254497
PN 2
PG 17
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 170MU
UT WOS:000320857200018
ER
PT J
AU Johnston, AH
AF Johnston, Allan H.
TI Radiation Effects in Optoelectronic Devices
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Detectors; laser diodes; light-emitting diodes; optoelectronics;
radiation effects
ID LIGHT-EMITTING-DIODES; DISPLACEMENT DAMAGE; ENERGY-DEPENDENCE; PROTON
DAMAGE; LASER-DIODES; HARDNESS ASSURANCE; SILICON DEVICES; COSMIC-RAYS;
IRRADIATED SILICON; CARRIER REMOVAL
AB This review paper discusses radiation effects in a variety of optoelectronic devices. The main emphasis is on displacement and total dose damage under conditions that are representative of various space missions. However, the mechanisms for degradation in space are also applicable to other environments, such as nuclear reactors, and the extremely high-energy particles associated with the Large Hadron Collider at CERN. In addition to permanent damage effects, there is also an abbreviated treatment of single-event effects in optoelectronic devices.
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Johnston, AH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM allan.h.johnston@jpl.nasa.gov
NR 107
TC 13
Z9 13
U1 2
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
EI 1558-1578
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD JUN
PY 2013
VL 60
IS 3
SI SI
BP 2054
EP 2073
DI 10.1109/TNS.2013.2259504
PN 2
PG 20
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 170MU
UT WOS:000320857200023
ER
PT J
AU Ahmed, R
Siqueira, P
Hensley, S
Bergen, K
AF Ahmed, Razi
Siqueira, Paul
Hensley, Scott
Bergen, Kathleen
TI Uncertainty of Forest Biomass Estimates in North Temperate Forests Due
to Allometry: Implications for Remote Sensing
SO REMOTE SENSING
LA English
DT Article
DE biomass; allometry; uncertainty; Harvard forest; Howland forest
AB Estimates of above ground biomass density in forests are crucial for refining global climate models and understanding climate change. Although data from field studies can be aggregated to estimate carbon stocks on global scales, the sparsity of such field data, temporal heterogeneity and methodological variations introduce large errors. Remote sensing measurements from spaceborne sensors are a realistic alternative for global carbon accounting; however, the uncertainty of such measurements is not well known and remains an active area of research. This article describes an effort to collect field data at the Harvard and Howland Forest sites, set in the temperate forests of the Northeastern United States in an attempt to establish ground truth forest biomass for calibration of remote sensing measurements. We present an assessment of the quality of ground truth biomass estimates derived from three different sets of diameter-based allometric equations over the Harvard and Howland Forests to establish the contribution of errors in ground truth data to the error in biomass estimates from remote sensing measurements.
C1 [Ahmed, Razi; Hensley, Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Siqueira, Paul] Univ Massachusetts, Coll Engn, Amherst, MA 01002 USA.
[Bergen, Kathleen] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA.
RP Ahmed, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM razi.u.ahmed@jpl.nasa.gov; siqueira@ecs.umass.edu;
scott.hensley@jpl.nasa.gov; kbergen@umich.edu
FU National Aeronautics and Space Administration; NASA [NNX09AI18G]; NASA's
Terrestrial Ecology program
FX Part of this work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. This research was supported by
NASA under the Terrestrial Ecology grant NNX09AI18G. The authors would
like to express appreciation to the Harvard Forest who facilitated much
of the ground validation work described here. Field data for the Howland
Research Forest and Harvard Forest was acquired through the DESDynI
field campaign, also funded by NASA's Terrestrial Ecology program.
NR 5
TC 9
Z9 12
U1 1
U2 37
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD JUN
PY 2013
VL 5
IS 6
BP 3007
EP 3036
DI 10.3390/rs5063007
PG 30
WC Remote Sensing
SC Remote Sensing
GA 169HP
UT WOS:000320771100020
ER
PT J
AU Quinn, RC
Martucci, HFH
Miller, SR
Bryson, CE
Grunthaner, FJ
Grunthaner, PJ
AF Quinn, Richard C.
Martucci, Hana F. H.
Miller, Stephanie R.
Bryson, Charles E.
Grunthaner, Frank J.
Grunthaner, Paula J.
TI Perchlorate Radiolysis on Mars and the Origin of Martian Soil Reactivity
SO ASTROBIOLOGY
LA English
DT Article
DE Mars; Radiolysis; Organic degradation; in situ measurement; Planetary
habitability and biosignatures
ID GAS-EXCHANGE EXPERIMENT; VIKING; MODEL; CHEMISTRY; PRODUCT; SIMULATIONS
AB Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO-), trapped oxygen (O-2), and chlorine dioxide (ClO2). Our results show that the release of trapped O-2 (g) from radiation-damaged perchlorate salts and the reaction of ClO- with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments.
C1 [Quinn, Richard C.] NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Moffett Field, CA 94035 USA.
[Martucci, Hana F. H.] San Jose State Univ, Dept Chem, San Jose, CA 95192 USA.
[Miller, Stephanie R.] NASA, Ames Educ Associates Program, Moffett Field, CA USA.
[Bryson, Charles E.] Apparati Inc, Mountain View, CA USA.
[Grunthaner, Frank J.; Grunthaner, Paula J.] NASA, Jet Prop Lab, Pasadena, CA USA.
RP Quinn, RC (reprint author), NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, MS 239-4, Moffett Field, CA 94035 USA.
EM Richard.C.Quinn@nasa.gov
FU NASA [NNX09AM93G]
FX Funding was provided by the NASA Astrobiology: Exobiology and
Evolutionary Biology Program (grant NNX09AM93G). The authors thank C.P.
McKay, C.R. Stoker and Inge ten Kate for their reviews and comments. The
authors also acknowledge Dr. Cynthia B. Phillips (SETI Institute) and
Dr. Monika Kress (SJSU). Partial funding for H. Martucci was provided by
the NASA Education and Public Outreach in Earth and Space Science
(EPOESS) program.
NR 32
TC 29
Z9 29
U1 4
U2 49
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1531-1074
J9 ASTROBIOLOGY
JI Astrobiology
PD JUN
PY 2013
VL 13
IS 6
BP 515
EP 520
DI 10.1089/ast.2013.0999
PG 6
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 168LO
UT WOS:000320707500001
PM 23746165
ER
PT J
AU Lomeli, MJM
Wakefield, WW
AF Lomeli, Mark J. M.
Wakefield, W. Waldo
TI A flexible sorting grid to reduce Pacific halibut (Hippoglossus
stenolepis) bycatch in the US west coast groundfish bottom trawl fishery
SO FISHERIES RESEARCH
LA English
DT Article
DE Bycatch reduction device; Flexible sorting grid; Pacific halibut; Bottom
trawl
ID SELECTIVE FLATFISH TRAWL; HERDING BEHAVIOR; SIZE SELECTION; DIEL
VARIATION; DEVICES BRDS; NORTH-SEA; ROCKFISH; NIGHT; CATCHABILITY;
MERLUCCIUS
AB This study examined a flexible sorting grid excluder designed to reduce Pacific halibut (Hippoglossus stenolepis) bycatch in the US west coast groundfish bottom trawl fishery. Tests occurred off Washington during 2011 aboard a commercial trawler. A recapture net was used to quantify the retention rates of target and non-target species. Pacific halibut bycatch was reduced 61.6% by weight and 57.0% by numbers. Exclusion was greatest for Pacific halibut weighing more than 4.5 kg. A significant difference in the mean total length was also noted between Pacific halibut caught in the codend and the recapture net, with larger fish occurring in the recapture net. The retention of primary target groundfishes of marketable-size ranged from 76.7 to 89.3%. We demonstrated the capability of a flexible sorting grid excluder to reduce Pacific halibut bycatch in the groundfish bottom trawl fishery while retaining a relatively high proportion of the targeted species. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lomeli, Mark J. M.] Pacific States Marine Fisheries Commiss, Newport, OR 97365 USA.
[Wakefield, W. Waldo] Natl Ocean & Atmospher Adm, Fishery Resource Anal & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA.
RP Lomeli, MJM (reprint author), Pacific States Marine Fisheries Commiss, 2032 SE OSU Dr, Newport, OR 97365 USA.
EM mlomeli@psmfc.org
FU NOAA National Marine Fisheries Service Bycatch Reduction Engineering
Program
FX We would like to thank the captain and crew of the F/V Miss Leona for
their assistance with this research. We would also like to thank Craig
Rose (NOAA Fisheries-Alaska Fisheries Science Center), John Gauvin
(Gauvin and Associates), and Dantrawl Inc. as they played important
roles in developing this project, Andi Stephens (NOM Fisheries-Northwest
Fisheries Science Center) for assisting with the GLMM analysis, and the
internal (Jason Jannot, NOAA Fisheries-Northwest Fisheries Science
Center) and external reviewers who critically reviewed and contributed
to this manuscript. Funding for this study was provided by NOAA National
Marine Fisheries Service Bycatch Reduction Engineering Program.
NR 29
TC 3
Z9 3
U1 0
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0165-7836
J9 FISH RES
JI Fish Res.
PD JUN
PY 2013
VL 143
BP 102
EP 108
DI 10.1016/j.fishres.2013.01.017
PG 7
WC Fisheries
SC Fisheries
GA 151WS
UT WOS:000319491700011
ER
PT J
AU Shebalin, JV
AF Shebalin, John V.
TI Broken ergodicity, magnetic helicity, and the MHD dynamo
SO GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS
LA English
DT Article
DE Magnetohydrodynamics; Turbulence; Statistical Mechanics; Dynamo theory
ID MAGNETOHYDRODYNAMIC TURBULENCE; FIELD
AB We consider an unforced, incompressible, turbulent magnetofluid constrained by concentric inner and outer spherical surfaces. We define a model system in which normal components of the velocity, magnetic field, vorticity, and electric current are zero on the boundaries. This choice allows us to find a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity and current. The model dynamical system represents magnetohydrodynamic (MHD) turbulence in a spherical domain and is analyzed by the methods similar to those applied to homogeneous MHD turbulence. We find a statistical theory of ideal (i.e. no dissipation) MHD turbulence analogous to that found in the homogeneous case, including the prediction of coherent structure in the form of a large-scale quasistationary magnetic field. This MHD dynamo depends on broken ergodicity, an effect that is enhanced when total magnetic helicity is increased relative to total energy. When dissipation is added and large scales are only weakly damped, quasiequilibrium may occur for long periods of time, so that the ideal theory is still pertinent on a global scale. Over longer periods of time, the selective decay of energy over magnetic helicity further enhances the effects of broken ergodicity. Thus, broken ergodicity is an essential mechanism and relative magnetic helicity is a critical parameter in this model MHD dynamo theory.
C1 NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Shebalin, JV (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
EM john.v.shebalin@nasa.gov
NR 42
TC 4
Z9 4
U1 0
U2 4
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0309-1929
EI 1029-0419
J9 GEOPHYS ASTRO FLUID
JI Geophys. Astrophys. Fluid Dyn.
PD JUN 1
PY 2013
VL 107
IS 3
BP 353
EP 375
DI 10.1080/03091929.2012.689299
PG 23
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics
GA 166RU
UT WOS:000320575600005
ER
PT J
AU Wong, WC
Zalesak, S
Yoets, A
Capriotti, J
Smith, MJ
Castro, VA
Pierson, DL
AF Wong, Wing C.
Zalesak, Selina
Yoets, Airan
Capriotti, Jason
Smith, Melanie J.
Castro, Victoria A.
Pierson, Duane L.
TI Engineering Case Report: Effectiveness of HEPA Filter Vacuum in Removing
Transient Microbial Contaminants on Cargo Bags Destined for the
International Space Station
SO JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE
LA English
DT Article
C1 [Wong, Wing C.; Yoets, Airan; Smith, Melanie J.; Castro, Victoria A.] Enterprise Advisory Serv, Houston, TX USA.
[Zalesak, Selina] Univ Space Res Assoc, Houston, TX USA.
[Wong, Wing C.; Capriotti, Jason] NIST, Gaithersburg, MD 20899 USA.
[Pierson, Duane L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Wong, WC (reprint author), NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA.
EM wing.wong@nist.gov
FU NASA ISS [NAS9-02078]
FX The authors thank Rebekah Bruce and Thomas Molina of the Microbiology
Laboratory at NASA Johnson Space Center for their assistance in this
study. This study was supported by NASA ISS funding NAS9-02078.
NR 8
TC 0
Z9 0
U1 1
U2 5
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA
SN 1545-9624
J9 J OCCUP ENVIRON HYG
JI J. Occup. Environ. Hyg.
PD JUN 1
PY 2013
VL 10
IS 6
BP D71
EP D75
DI 10.1080/15459624.2013.784179
PG 5
WC Environmental Sciences; Public, Environmental & Occupational Health
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health
GA 172DL
UT WOS:000320980100002
PM 23621341
ER
PT J
AU Benafan, O
Padula, SA
Noebe, RD
Brown, DW
Clausen, B
Vaidyanathan, R
AF Benafan, O.
Padula, S. A., II
Noebe, R. D.
Brown, D. W.
Clausen, B.
Vaidyanathan, R.
TI An in situ neutron diffraction study of shape setting shape memory NiTi
SO ACTA MATERIALIA
LA English
DT Article
DE NiTi; Shape setting; Neutron diffraction; Blocking stress; Stress
relaxation
ID CONSTRAINED PHASE-TRANSFORMATION; MARTENSITIC-TRANSFORMATION; RIETVELD
REFINEMENT; STRESS-RELAXATION; TEXTURE ANALYSIS; RECOVERY STRESS;
ALLOYS; STRAIN; BEHAVIOR; DEFORMATION
AB A bulk polycrystalline Ni49.9Ti50.1 (at.%) shape memory alloy specimen was shape set while neutron diffraction spectra were simultaneously acquired. The objective was to correlate internal stress, phase volume fraction, and texture measurements (from neutron diffraction spectra) with the macroscopic stress and shape changes (from load cell and extensometry measurements) during the shape setting procedure and subsequent shape recovery. Experimental results showed the evolution of the martensitic transformation (lattice strains, phase fractions and texture) against external constraints during both heating and cooling. Constrained heating resulted in a build-up of stresses during the martensite to austenite transformation, followed by stress relaxation due to thermal expansion, final conversion of retained martensite, and recovery processes. Constrained cooling also resulted in stress build-up arising from thermal contraction and early formation of martensite, followed by relaxation as the austenite fully transformed to martensite. Comparisons were also made between specimens pre-shape set and post-shape set with and without external constraints. The specimens displayed similar shape memory behavior consistent with the microstructure of the shape set sample, which was mostly unchanged by the shape setting process and similar to that of the as-received material. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
C1 [Benafan, O.; Vaidyanathan, R.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Mat & Aerosp Engn Dept, Orlando, FL 32816 USA.
[Benafan, O.; Padula, S. A., II; Noebe, R. D.] NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA.
[Brown, D. W.; Clausen, B.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA.
RP Benafan, O (reprint author), NASA, Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA.
EM othmane.benafan@nasa.gov
RI Clausen, Bjorn/B-3618-2015
OI Clausen, Bjorn/0000-0003-3906-846X
FU NASA Fundamental Aeronautics Program; Aeronautical Sciences Project;
Office of Basic Energy Sciences DOE; DOE [DE-AC52-06NA25396]
FX Funding from the NASA Fundamental Aeronautics Program, Aeronautical
Sciences Project is gratefully acknowledged. The authors thank T.A.
Sisneros at LANL, and D. Gaydosh, G. Bigelow and A. Garg at NASA GRC for
technical support and helpful discussions. The authors also thank S. Qiu
and D.E. Nicholson from UCF for their help in performing the neutron
diffraction experiments. This work has benefited from the use of the
Lujan Neutron Scattering Center at LANSCE, which is funded by the Office
of Basic Energy Sciences DOE. LANL is operated by Los Alamos National
Security LLC under DOE Contract No. DE-AC52-06NA25396.
NR 49
TC 13
Z9 14
U1 2
U2 37
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUN
PY 2013
VL 61
IS 10
BP 3585
EP 3599
DI 10.1016/j.actamat.2013.02.040
PG 15
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 149FM
UT WOS:000319304400005
ER
PT J
AU Lee, CP
Anilkumar, AV
Cox, MC
Lioi, CB
Grugel, RN
AF Lee, C. P.
Anilkumar, A. V.
Cox, M. C.
Lioi, C. B.
Grugel, R. N.
TI Evolution of elongated pores at the melt-solid interface during
controlled directional solidification
SO ACTA MATERIALIA
LA English
DT Article
DE Gasarite; Eutectic; Pore formation; Directional solidification;
Jackson-Hunt equation
ID GASARITE EUTECTIC GROWTH; FABRICATION
AB The evolution of elongated gaseous pores during directional solidification has been examined through a theoretical model and compared to previous experimental findings from the literature. The model is based on the observation and interpretation of a wedge-shaped structure on the solid side that extends beyond the melt solid interface and wraps around the bubble at its equator. At the tip of the wedge is the meeting point of the melt, solid and gas. The model takes into account the competition around the meeting point between the law of segregation of the solute at the melt solid interface on one hand, and Henry's law, which governs the concentration of the solute at the melt-pore interface at a given pressure, on the other. It predicts VR2 = constant, where V is the processing speed and R is the pore radius, and agrees well with reported experimental data. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
C1 [Lee, C. P.] Craft Tech Inc, Huntsville, AL 35801 USA.
[Anilkumar, A. V.; Cox, M. C.; Lioi, C. B.] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA.
[Grugel, R. N.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Grugel, RN (reprint author), NASA, George C Marshall Space Flight Ctr, EM 30, Huntsville, AL 35812 USA.
EM Richard.N.Grugel@nasa.gov
NR 12
TC 3
Z9 3
U1 0
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD JUN
PY 2013
VL 61
IS 10
BP 3752
EP 3757
DI 10.1016/j.actamat.2013.03.006
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 149FM
UT WOS:000319304400020
ER
PT J
AU Barth, AJ
Pancoast, A
Bennert, VN
Brewer, BJ
Canalizo, G
Filippenko, AV
Gates, EL
Greene, JE
Li, WD
Malkan, MA
Sand, DJ
Stern, D
Treu, T
Woo, JH
Assef, RJ
Bae, HJ
Buehler, T
Cenko, SB
Clubb, KI
Cooper, MC
Diamond-Stanic, AM
Honig, SF
Joner, MD
Laney, CD
Lazarova, MS
Nierenberg, AM
Silverman, JM
Tollerud, EJ
Walsh, JL
AF Barth, Aaron J.
Pancoast, Anna
Bennert, Vardha N.
Brewer, Brendon J.
Canalizo, Gabriela
Filippenko, Alexei V.
Gates, Elinor L.
Greene, Jenny E.
Li, Weidong
Malkan, Matthew A.
Sand, David J.
Stern, Daniel
Treu, Tommaso
Woo, Jong-Hak
Assef, Roberto J.
Bae, Hyun-Jin
Buehler, Tabitha
Cenko, S. Bradley
Clubb, Kelsey I.
Cooper, Michael C.
Diamond-Stanic, Aleksandar M.
Hoenig, Sebastian F.
Joner, Michael D.
Laney, C. David
Lazarova, Mariana S.
Nierenberg, A. M.
Silverman, Jeffrey M.
Tollerud, Erik J.
Walsh, Jonelle L.
TI THE LICK AGN MONITORING PROJECT 2011: Fe II REVERBERATION FROM THE OUTER
BROAD-LINE REGION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; galaxies: individual (Mrk 1511, NGC 4593); galaxies:
nuclei
ID ACTIVE GALACTIC NUCLEI; VELOCITY-DELAY MAPS; SEYFERT 1 GALAXIES;
BLACK-HOLE MASSES; IMAGE SUBTRACTION; EMISSION FEATURES; CORRELATION
SPACE; ARP 151; QUASARS; VARIABILITY
AB The prominent broad Fe II emission blends in the spectra of active galactic nuclei have been shown to vary in response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe II lines have met with only limited success. Here we report the detection of Fe II reverberation in two Seyfert 1 galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. Light curves for emission lines including H beta and Fe II were measured by applying a fitting routine to decompose the spectra into several continuum and emission-line components, and we use cross-correlation techniques to determine the reverberation lags of the emission lines relative to V-band light curves. In both cases, the measured lag (tau(cen)) of Fe II is longer than that of H beta, although the inferred lags are somewhat sensitive to the choice of Fe II template used in the fit. For spectral decompositions done using the Fe II template of Veron-Cetty et al., we find tau(cen)(Fe II)/tau(cen)(H beta) = 1.9 +/- 0.6 in NGC 4593 and 1.5 +/- 0.3 in Mrk 1511. The detection of highly correlated variations between Fe II and continuum emission demonstrates that the Fe II emission in these galaxies originates in photoionized gas, located predominantly in the outer portion of the broad-line region.
C1 [Barth, Aaron J.; Cooper, Michael C.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Pancoast, Anna; Treu, Tommaso; Hoenig, Sebastian F.; Nierenberg, A. M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Bennert, Vardha N.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA.
[Brewer, Brendon J.] Univ Auckland, Dept Stat, Auckland 1142, New Zealand.
[Canalizo, Gabriela; Lazarova, Mariana S.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Clubb, Kelsey I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Gates, Elinor L.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA.
[Greene, Jenny E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Malkan, Matthew A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Sand, David J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA.
[Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Woo, Jong-Hak] Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul 151742, South Korea.
[Bae, Hyun-Jin] Yonsei Univ, Dept Astron, Seoul 120749, South Korea.
[Bae, Hyun-Jin] Yonsei Univ, Ctr Galaxy Evolut Res, Seoul 120749, South Korea.
[Buehler, Tabitha] Brigham Young Univ, Dept Phys & Astron, ESC N283, Provo, UT 84602 USA.
[Diamond-Stanic, Aleksandar M.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA.
[Lazarova, Mariana S.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA.
[Silverman, Jeffrey M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Tollerud, Erik J.] Yale Univ, Dept Astron, New Haven, CT 06510 USA.
RP Barth, AJ (reprint author), Univ Calif Irvine, Dept Phys & Astron, 4129 Frederick Reines Hall, Irvine, CA 92697 USA.
EM barth@uci.edu
RI Woo, Jong-Hak/A-2790-2014; Bae, Hyun-Jin/J-8037-2015;
OI Bae, Hyun-Jin/0000-0001-5134-5517; Tollerud, Erik/0000-0002-9599-310X;
Hoenig, Sebastian/0000-0002-6353-1111; Barth, Aaron/0000-0002-3026-0562
FU NSF [AST-110812, 1107865, 1108665, 1108835, AST-1211916, AST-1102845,
AST-0618209]; Gary & Cynthia Bengier; Richard & Rhoda Goldman Fund;
TABASGO Foundation; Christopher R. Redlich Fund; Packard Research
Fellowship; NASA; National Research Foundation of Korea (NRF); Korea
government (MEST) [2012-006087]
FX We are extremely grateful to the Lick Observatory staff for their
outstanding assistance during our 2011 observing run. The Lick AGN
Monitoring Project 2011 is supported by NSF grants AST-110812, 1107865,
1108665, and 1108835. A. P. acknowledges support from the NSF through
the Graduate Research Fellowship Program. A.V.F.'s group at UC Berkeley
received additional funding through NSF grant AST-1211916, Gary &
Cynthia Bengier, the Richard & Rhoda Goldman Fund, the TABASGO
Foundation, and the Christopher R. Redlich Fund. KAIT and its ongoing
operation were made possible by donations from Sun Microsystems, Inc.,
the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory,
the NSF, the University of California, the Sylvia & Jim Katzman
Foundation, and the TABASGO Foundation. T. T. acknowledges a Packard
Research Fellowship. The work of D. S. and R.J.A. was carried out at Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA. Research by J.L.W. is supported by NSF grant
AST-1102845. J.H.W. acknowledges support by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MEST;
No. 2012-006087). The West Mountain Observatory receives support from
NSF grant AST-0618209. We thank the anonymous referee for helpful
suggestions. We mourn the tragic passing of our friend and collaborator,
Weidong Li, who devotedly oversaw the nightly operation of KAIT and
taught us much about photometry. This work is dedicated to the memory of
Lick Observatory staff member Greg Sulger.
NR 81
TC 43
Z9 43
U1 0
U2 10
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR UNSP 128
DI 10.1088/0004-637X/769/2/128
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100044
ER
PT J
AU Boersma, C
Bregman, JD
Allamandola, LJ
AF Boersma, C.
Bregman, J. D.
Allamandola, L. J.
TI PROPERTIES OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE NORTHWEST PHOTON
DOMINATED REGION OF NGC 7023. I. PAH SIZE, CHARGE, COMPOSITION, AND
STRUCTURE DISTRIBUTION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrochemistry; infrared: ISM; ISM: individual objects (NGC 7023);
molecular data; techniques: spectroscopic
ID INFRARED-EMISSION SPECTRA; BLIND SIGNAL SEPARATION;
SPITZER-SPACE-TELESCOPE; REFLECTION NEBULAE; CARBON GRAINS;
PHOTODISSOCIATION REGIONS; SPECTROSCOPIC DATABASE; INTERSTELLAR DUST;
AMORPHOUS-CARBON; FEATURES
AB Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer Infrared Spectrograph spectral map of the northwest photon dominated region (PDR) in NGC 7023 was analyzed exclusively using PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb). The 5-15 mu m spectrum at each pixel is fitted using a non-negative-least-squares fitting approach. The fits are of good quality, allowing decomposition of the PAH emission into four subclasses: size, charge, composition, and hydrogen adjacency (structure). Maps tracing PAH subclass distributions across the region paint a coherent astrophysical picture. Once past some 20 seconds of arc from HD 200775, the emission is dominated by the more stable, large, symmetric, compact PAH cations with smaller, neutral PAHs taking over along the lines-of-sight toward the more distant molecular cloud. The boundary between the PDR and the denser cloud material shows up as a distinct discontinuity in the breakdown maps. Noteworthy is the requirement for PANH cations to fit the bulk of the 6.2 and 11.0 mu m features and the indication of PAH photo-dehydrogenation and fragmentation close to HD 200775. Decomposition of the spectral maps into "principal" subclass template spectra provides additional insight into the behavior of each subclass. However, the general applicability of this computationally more efficient approach is presently undetermined. This is the first time the spectra of individual PAHs are exclusively used to fit the 5-15 mu m region and analyze the spatial behavior of the aromatic infrared bands, providing fundamental, new information about astronomical PAH subpopulations including their dependence on, and response to, changes in local conditions.
C1 [Boersma, C.; Bregman, J. D.; Allamandola, L. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Boersma, C (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA.
EM Christiaan.Boersma@nasa.gov
RI Boersma, Christiaan/L-7696-2014
OI Boersma, Christiaan/0000-0002-4836-217X
FU NASA [1407]; NASA's Laboratory Astrophysics; "Carbon in the Galaxy"
consortium [NNH10ZDA001N]; NASA's Astrobiology; Astronomy + Physics
Research and Analysis (APRA) [NNX07AH02G]; Spitzer Space Telescope
Support Programs [50082]; San Jose State University Research Foundation
[NNX11AJ33A]
FX This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under NASA contract 1407. Support
from NASA's Laboratory Astrophysics, "Carbon in the Galaxy" consortium
grant (NNH10ZDA001N); and NASA's Astrobiology; Astronomy + Physics
Research and Analysis (APRA; NNX07AH02G), and Spitzer Space Telescope
Support Programs (50082) are greatly acknowledged. C. B. is especially
grateful for appointments to the NASA Post-doctoral Program at the Ames
Research Center administered by Oak Ridge Associated Universities
through a contract with NASA and by San Jose State University Research
Foundation (grant NNX11AJ33A). Lastly, the careful reading and helpful
suggestions made by an anonymous referee are acknowledged.
NR 71
TC 31
Z9 31
U1 0
U2 22
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR UNSP 117
DI 10.1088/0004-637X/769/2/117
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100033
ER
PT J
AU Bridge, CR
Blain, A
Borys, CJK
Petty, S
Benford, D
Eisenhardt, P
Farrah, D
Griffith, RL
Jarrett, T
Lonsdale, C
Stanford, SA
Stern, D
Tsai, CW
Wright, EL
Wu, JW
AF Bridge, Carrie R.
Blain, Andrew
Borys, Colin J. K.
Petty, Sara
Benford, Dominic
Eisenhardt, Peter
Farrah, Duncan
Griffith, Roger L.
Jarrett, Tom
Lonsdale, Carol
Stanford, Spencer A.
Stern, Daniel
Tsai, Chao-Wei
Wright, Edward L.
Wu, Jingwen
TI A NEW POPULATION OF HIGH-z, DUSTY Ly alpha EMITTERS AND BLOBS DISCOVERED
BY WISE: FEEDBACK CAUGHT IN THE ACT?
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: formation; galaxies: high-redshift; galaxies: ISM; galaxies:
starburst; infrared: galaxies
ID SPITZER-SPACE-TELESCOPE; SUBMILLIMETER-SELECTED GALAXIES; SPECTRAL
ENERGY-DISTRIBUTIONS; AROMATIC-HYDROCARBON EMISSION; LUMINOUS INFRARED
GALAXIES; DRIVEN STAR-FORMATION; QUASI-STELLAR OBJECT; GOODS SOUTH
FIELD; BROAD-BAND SURVEY; EQUAL-TO 2.3
AB By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 less than or similar to z less than or similar to 4.6 dusty Ly alpha emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Ly alpha "blobs" (LABs). The objects have a surface density of only similar to 0.1 deg(-2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L-IR greater than or similar to 10(13)-10(14) L-circle dot) and have warm colors. They are typically more luminous and warmer than other dusty, z similar to 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.
C1 [Bridge, Carrie R.] CALTECH, Pasadena, CA 91125 USA.
[Blain, Andrew] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Borys, Colin J. K.; Griffith, Roger L.; Tsai, Chao-Wei] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Petty, Sara; Farrah, Duncan] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA.
[Benford, Dominic] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Eisenhardt, Peter; Stern, Daniel; Wu, Jingwen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Jarrett, Tom] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa.
[Lonsdale, Carol] Natl Radio Astron Observ, Charlottesville, VA 22903 USA.
[Stanford, Spencer A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Wright, Edward L.; Wu, Jingwen] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA.
RP Bridge, CR (reprint author), CALTECH, MS249-17, Pasadena, CA 91125 USA.
EM bridge@astro.caltech.edu
RI Benford, Dominic/D-4760-2012
OI Benford, Dominic/0000-0002-9884-4206
FU National Aeronautics and Space Administration; W. M. Keck Foundation
FX The authors would like to thank the anonymous referee for suggestions
that improved the clarity of this paper. This publication makes use of
data products from the Wide-field Infrared Survey Explorer, a joint
project of the University of California, Los Angeles, and the Jet
Propulsion Laboratory/California Institute of Technology, funded by the
National Aeronautics and Space Administration.; Some of the data
presented herein were obtained at the W. M. Keck Observatory, which is
operated as a scientific partnership among the California Institute of
Technology, the University of California and the National Aeronautics
and Space Administration. The Observatory was made possible by the
generous financial support of the W. M. Keck Foundation.
NR 78
TC 36
Z9 36
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR UNSP 91
DI 10.1088/0004-637X/769/2/91
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100007
ER
PT J
AU Degenaar, N
Miller, JM
Kennea, J
Gehrels, N
Reynolds, T
Wijnands, R
AF Degenaar, N.
Miller, J. M.
Kennea, J.
Gehrels, N.
Reynolds, T.
Wijnands, R.
TI THE X-RAY FLARING PROPERTIES OF Sgr A* DURING SIX YEARS OF MONITORING
WITH SWIFT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; black hole physics; Galaxy: center; X-rays:
individual (Sgr A*)
ID SUPERMASSIVE BLACK-HOLE; CENTER CLOUD G2; ACTIVE GALACTIC NUCLEI; SOFT
GAMMA-RAY; SAGITTARIUS-A; XMM-NEWTON; ELECTRON ACCELERATION; CHANDRA
OBSERVATIONS; BRIGHTEST FLARE; STELLAR ORBITS
AB Starting in 2006, Swift has been targeting a region of similar or equal to 21' x 21' around Sagittarius A* (Sgr A*) with the onboard X-Ray Telescope. The short, quasi-daily observations offer a unique view of the long-term X-ray behavior of the supermassive black hole. We report on the data obtained between 2006 February and 2011 October, which encompasses 715 observations with a total accumulated exposure time of similar or equal to 0.8 Ms. A total of six X-ray flares were detected with Swift, which all had an average 2-10 keV luminosity of L-X similar or equal to (1 - 3) x 10(35) erg s(-1) (assuming a distance of 8 kpc). This more than doubles the number of such bright X-ray flares observed from Sgr A*. One of the Swift-detected flares may have been softer than the other five, which would indicate that flares of similar intensity can have different spectral properties. The Swift campaign allows us to constrain the occurrence rate of bright (L-X greater than or similar to 10(35) erg s(-1)) X-ray flares to be similar or equal to 0.1-0.2 day(-1), which is in line with previous estimates. This analysis of the occurrence rate and properties of the X-ray flares seen with Swift offers an important calibration point to assess whether the flaring behavior of Sgr A* changes as a result of its interaction with the gas cloud that is projected to make a close passage in 2013.
C1 [Degenaar, N.; Miller, J. M.; Reynolds, T.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Kennea, J.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
[Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands.
RP Degenaar, N (reprint author), Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA.
EM degenaar@umich.edu
FU NASA from the Space Telescope Science Institute [HST-HF-51287.01-A];
NASA [NAS5-26555]; European Research Council; Penn State University by
NASA [NAS5-00136]
FX N.D. is supported by NASA through Hubble Postdoctoral Fellowship grant
No. HST-HF-51287.01-A from the Space Telescope Science Institute, which
is operated by the Association of Universities for Research in
Astronomy, Incorporated, under NASA contract NAS5-26555. R. W. is
supported by a European Research Council starting grant. This work made
use of public data from the Swift data archive, and data supplied by the
UK Swift Science Data Center at the University of Leicester. Swift is
supported at Penn State University by NASA Contract NAS5-00136. This
research has made use of the XRT Data Analysis Software (XRTDAS)
developed under the responsibility of the ASI Science Data Center
(ASDC), Italy.
NR 65
TC 24
Z9 24
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR UNSP 155
DI 10.1088/0004-637X/769/2/155
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100071
ER
PT J
AU Henry, A
Martin, CL
Finlator, K
Dressler, A
AF Henry, Alaina
Martin, Crystal L.
Finlator, Kristian
Dressler, Alan
TI THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT
INTERMEDIATE REDSHIFT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: abundances; galaxies: evolution
ID STAR-FORMING GALAXIES; EMISSION-LINE GALAXIES; DIGITAL SKY SURVEY;
SUBARU DEEP FIELD; H-II REGIONS; STELLAR MASS; LUMINOSITY FUNCTION;
GALACTIC OUTFLOWS; COSMOLOGICAL SIMULATIONS; POPULATION SYNTHESIS
AB We present abundance measurements from 26 emission-line-selected galaxies at z similar to 0.6-0.7. By reaching stellar masses as low as 10(8)M(circle dot), these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(9)M(circle dot). For the portion of our sample above M > 10(9)M(circle dot) (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M-* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation. We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.
C1 [Henry, Alaina; Martin, Crystal L.; Finlator, Kristian] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Henry, Alaina] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Dressler, Alan] Carnegie Observ, Pasadena, CA 91101 USA.
RP Henry, A (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
EM alaina.henry@nasa.gov
RI Finlator, Kristian/M-4809-2014
OI Finlator, Kristian/0000-0002-0496-1656
FU W. M. Keck Foundation; National Aeronautics and Space Administration;
NSF [AST-0808161, AST-1109288]
FX Some of the data presented herein were obtained at the W. M. Keck
Observatory, which is operated as a scientific partnership among the
California Institute of Technology, the University of California, and
the National Aeronautics and Space Administration. The Observatory was
made possible by the generous financial support of the W. M. Keck
Foundation.; The authors thank Jane Rigby, Dawn Erb, Joey Wong, Amber
Straughn, Evan Skillman, Molly Peeples, Nicolas Bouche, Brian Siana, and
Susan Kassin for insightful discussions. We also wish to thank the
anonymous referee for helping to improve this manuscript. We are
grateful to Esther Hu and Jabran Zahid for providing tabular data, and
Peter Capak and the COSMOS team for the high-level science products that
made this project possible. This research has made use of the NASA/IPAC
Infrared Science Archive, which is operated by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration. This work was supported
by NSF grants AST-0808161 and AST-1109288. The authors recognize and
acknowledge the very significant cultural role and reverence that the
summit of Mauna Kea has always had within the indigenous Hawaiian
community. We are most fortunate to have the opportunity to conduct
observations from this mountain.
NR 108
TC 31
Z9 31
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR UNSP 148
DI 10.1088/0004-637X/769/2/148
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100064
ER
PT J
AU Ireland, J
Tolbert, AK
Schwartz, RA
Holman, GD
Dennis, BR
AF Ireland, J.
Tolbert, A. K.
Schwartz, R. A.
Holman, G. D.
Dennis, B. R.
TI ESTIMATING THE PROPERTIES OF HARD X-RAY SOLAR FLARES BY CONSTRAINING
MODEL PARAMETERS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE methods: data analysis; methods: statistical; Sun: flares; Sun: X-rays,
gamma rays
ID ELECTRON FLUX SPECTRA; NONUNIFORM IONIZATION; ENERGY PARTITION; ATOMIC
DATABASE; EMISSION-LINES; ACCELERATION; RHESSI; DISTRIBUTIONS;
SPECTROMETER; EXPLANATION
AB We wish to better constrain the properties of solar flares by exploring how parameterized models of solar flares interact with uncertainty estimation methods. We compare four different methods of calculating uncertainty estimates in fitting parameterized models to Ramaty High Energy Solar Spectroscopic Imager X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method is also based on the difference between the data and the model, but instead uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the Geostationary Operational Environmental Satellite X1.3 class flare of 2005 January 19, and the other from the X4.8 flare of 2002 July 23. We find that the four methods give approximately the same uncertainty estimates for the 2005 January 19 spectral fit parameters, but lead to very different uncertainty estimates for the 2002 July 23 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent results that can differ greatly depending on the shape of the hypersurface. The hypersurface arising from the 2005 January 19 analysis is consistent with a normal distribution; therefore, the assumptions behind the three non-Bayesian uncertainty estimation methods are satisfied and similar estimates are found. The 2002 July 23 analysis shows that the hypersurface is not consistent with a normal distribution, indicating that the assumptions behind the three non-Bayesian uncertainty estimation methods are not satisfied, leading to differing estimates of the uncertainty. We find that the shape of the hypersurface is crucial in understanding the output from each uncertainty estimation technique, and that a crucial factor determining the shape of hypersurface is the location of the low-energy cutoff relative to energies where the thermal emission dominates. The Bayesian/MCMC approach also allows us to provide detailed information on probable values of the low-energy cutoff, E-c, a crucial parameter in defining the energy content of the flare-accelerated electrons. We show that for the 2002 July 23 flare data, there is a 95% probability that E-c lies below approximately 40 keV, and a 68% probability that it lies in the range 7-36 keV. Further, the low-energy cutoff is more likely to be in the range 25-35 keV than in any other 10 keV wide energy range. The low-energy cutoff for the 2005 January 19 flare is more tightly constrained to 107 +/- 4 keV with 68% probability. Using the Bayesian/ MCMC approach, we also estimate for the first time probability density functions for the total number of flare-accelerated electrons and the energy they carry for each flare studied. For the 2002 July 23 event, these probability density functions are asymmetric with long tails orders of magnitude higher than the most probable value, caused by the poorly constrained value of the low-energy cutoff. The most probable electron power is estimated at 10(28.1) erg s(-1), with a 68% credible interval estimated at 10(28.1)-10(29.0) erg s(-1), and a 95% credible interval estimated at 10(28.0)-10(30.2) erg s(-1).
For the 2005 January 19 flare spectrum, the probability density functions for the total number of flare-accelerated electrons and their energy are much more symmetric and narrow: the most probable electron power is estimated at 10(27.66+/-0.01) erg s(-1) (68% credible intervals). However, in this case the uncertainty due to systematic sources of error is estimated to dominate the uncertainty due to statistical sources of error.
C1 [Ireland, J.] NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA.
[Tolbert, A. K.; Schwartz, R. A.] Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Holman, G. D.; Dennis, B. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Ireland, J (reprint author), NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA.
FU NASA ROSES award [NNH09ZDA001N-SHP]; HESPE (High Energy Solar Physics
Data in Europe) collaboration
FX This work was supported by a NASA ROSES award made under the opportunity
NNH09ZDA001N-SHP entitled "Investigation of the low energy cutoff in
solar flares," and by the HESPE (High Energy Solar Physics Data in
Europe) collaboration. We are grateful to D. van Dyk and C. A. Young for
their helpful suggestions. CHIANTI is an Atomic Database Package for
Spectroscopic Diagnostics of Astrophysical Plasmas. It is a
collaborative project involving the Naval Research Laboratory (USA), the
University of Florence (Italy), the University of Cambridge, and the
Rutherford Appleton Laboratory (UK).
NR 40
TC 12
Z9 12
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR 89
DI 10.1088/0004-637X/769/2/89
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100005
ER
PT J
AU Moore, RL
Sterling, AC
Falconer, DA
Robe, D
AF Moore, Ronald L.
Sterling, Alphonse C.
Falconer, David A.
Robe, Dominic
TI THE COOL COMPONENT AND THE DICHOTOMY, LATERAL EXPANSION, AND AXIAL
ROTATION OF SOLAR X-RAY JETS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE solar wind; Sun: activity; Sun: chromosphere; Sun: corona; Sun: magnetic
topology
ID HORIZONTAL MAGNETIC-FIELDS; QUIET-SUN INTERNETWORK; POLAR CORONAL HOLES;
EXTREME-ULTRAVIOLET; BRIGHT POINTS; ENERGY-FLOW; HINODE; TELESCOPE;
SPICULES; REGIONS
AB We present results from a study of 54 polar X-ray jets that were observed in coronal X-ray movies from the X-ray Telescope on Hinode and had simultaneous coverage in movies of the cooler transition region (T similar to 10(5) K) taken in the He II 304 angstrom band of the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatory. These dual observations verify the standard-jet/blowout-jet dichotomy of polar X-ray jets previously found primarily from XRT movies alone. In accord with models of blowout jets and standard jets, the AIA 304 angstrom movies show a cool (T similar to 10(5) K) component in nearly all blowout X-ray jets and in a small minority of standard X-ray jets, obvious lateral expansion in blowout X-ray jets but none in standard X-ray jets, and obvious axial rotation in both blowout X-ray jets and standard X-ray jets. In our sample, the number of turns of axial rotation in the cool-component standard X-ray jets is typical of that in the blowout X-ray jets, suggesting that the closed bipolar magnetic field in the jet base has substantial twist not only in all blowout X-ray jets but also in many standard X-ray jets. We point out that our results for the dichotomy, lateral expansion, and axial rotation of X-ray jets add credence to published speculation that type-II spicules are miniature analogs of X-ray jets, are generated by granule-size emerging bipoles, and thereby carry enough energy to power the corona and solar wind.
C1 [Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.] Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, Huntsville, AL 35812 USA.
[Falconer, David A.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA.
[Falconer, David A.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA.
[Robe, Dominic] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA.
RP Moore, RL (reprint author), Marshall Space Flight Ctr, Heliophys & Planetary Sci Off, ZP13, Huntsville, AL 35812 USA.
EM ron.moore@nasa.gov
FU Heliophysics Division of NASA's Science Mission Directorate through the
Living With a Star Targeted Research and Technology Program; Hinode
Project; NSF
FX We thank the referee for insightful comments and suggestions that
improved the paper. This work was funded by the Heliophysics Division of
NASA's Science Mission Directorate through the Living With a Star
Targeted Research and Technology Program and the Hinode Project, and by
the NSF through its Research Experience for Undergraduates Program.
NR 50
TC 31
Z9 32
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR UNSP 134
DI 10.1088/0004-637X/769/2/134
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100050
ER
PT J
AU Schnittman, JD
Krolik, JH
Noble, SC
AF Schnittman, Jeremy D.
Krolik, Julian H.
Noble, Scott C.
TI X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK
HOLES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; black hole physics; X-rays: binaries
ID QUASI-PERIODIC OSCILLATION; ACTIVE GALACTIC NUCLEI; XMM-NEWTON/EPIC-PN;
LOW-HARD STATE; SEYFERT-GALAXIES; DOMINATED ACCRETION; LIGHT CURVES;
CYGNUS X-1; TURBULENT COMPTONIZATION; ENERGY EXTRACTION
AB We present the results of a new global radiation transport code coupled to a general relativistic magnetohydrodynamic simulation of an accreting, non-rotating black hole. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is T-e similar to 10 keV in a boundary layer near the disk and rises smoothly to T-e greater than or similar to 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximate to 6M as the accretion rate decreases, we find that the shape of the Fe K alpha line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.
C1 [Schnittman, Jeremy D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Krolik, Julian H.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Noble, Scott C.] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA.
RP Schnittman, JD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM jeremy.schnittman@nasa.gov; jhk@pha.jhu.edu; scn@astro.rit.edu
FU NSF [AST-0507455, AST-0908336, AST-1028087]; National Science Foundation
FX We thank C. Done, A. Fabian, T. Kallman, and C. Reynolds for helpful
discussions. This work was partially supported by NSF grants AST-0507455
and AST-0908336 (J.H.K.) and AST-1028087 (S.C.N.). The ThinHR simulation
was carried out on the Teragrid Ranger system at the Texas Advance
Computing Center, which is supported in part by the National Science
Foundation.
NR 107
TC 31
Z9 31
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 1
PY 2013
VL 769
IS 2
AR UNSP 156
DI 10.1088/0004-637X/769/2/156
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 158UM
UT WOS:000319999100072
ER
PT J
AU Mangel, M
MacCall, AD
Brodziak, J
Dick, EJ
Forrest, RE
Pourzand, R
Ralston, S
AF Mangel, Marc
MacCall, Alec D.
Brodziak, Jon
Dick, E. J.
Forrest, Robyn E.
Pourzand, Roxanna
Ralston, Stephen
TI A perspective on steepness, reference points, and stock assessment
SO CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES
LA English
DT Article
ID NEW-ENGLAND GROUNDFISH; WEST-COAST; FISHERIES MANAGEMENT; RECRUITMENT
RELATIONSHIP; NATURAL MORTALITY; ASSESSMENT MODELS; HARVEST RATES;
LIFE-HISTORY; PARAMETERS; SELECTIVITY
AB We provide a perspective on steepness, reference points for fishery management, and stock assessment. We first review published data and give new results showing that key reference points are fixed when steepness and other life history parameters are fixed in stock assessments using a Beverton-Holt stock-recruitment relationship. We use both production and age-structured models to explore these patterns. For the production model, we derive explicit relationships for steepness and life history parameters and then for steepness and major reference points. For the age-structured model, we are required to generally use numerical computation, and so we provide an example that complements the analytical results of the production model. We discuss what it means to set steepness equal to 1 and how to construct a prior for steepness. Ways out of the difficult situation raised by fixing steepness and life history parameters include not fixing them, using a more complicated stock-recruitment relationship, and being more explicit about the information content of the data and what that means for policy makers. We discuss the strengths and limitations of each approach.
C1 [Mangel, Marc; Pourzand, Roxanna] Univ Calif Santa Cruz, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA.
[Mangel, Marc] Univ Bergen, Dept Biol, N-5020 Bergen, Norway.
[MacCall, Alec D.; Dick, E. J.; Ralston, Stephen] Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Santa Cruz, CA 95060 USA.
[Brodziak, Jon] Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96822 USA.
[Forrest, Robyn E.] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC V9T 6N7, Canada.
RP Mangel, M (reprint author), Univ Calif Santa Cruz, Ctr Stock Assessment Res, MS E-2, Santa Cruz, CA 95064 USA.
EM msmangel@soe.ucsc.edu
FU Pacific Islands Fisheries Science Center; Center for Stock Assessment
Research; Southwest Fisheries Science Center Santa Cruz Laboratory;
University of California Santa Cruz
FX This work was supported by the Pacific Islands Fisheries Science Center
through a contract to Marine Resources Assessment Group (MRAG) Americas
and by the Center for Stock Assessment Research, a partnership between
the Southwest Fisheries Science Center Santa Cruz Laboratory and the
University of California Santa Cruz. We thank reviewers (the Associate
Editor, one anonymous reviewer, Chris Francis, and Michael Sissenwine),
colleagues at the Northwest Fisheries Science Center, and Ian Boyd, Bill
de la Mare, and Sidney Holt for thoughtful comments that lead us to new
insights and in new directions.
NR 78
TC 19
Z9 19
U1 3
U2 48
PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
PI OTTAWA
PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA
SN 0706-652X
J9 CAN J FISH AQUAT SCI
JI Can. J. Fish. Aquat. Sci.
PD JUN
PY 2013
VL 70
IS 6
BP 930
EP 940
DI 10.1139/cjfas-2012-0372
PG 11
WC Fisheries; Marine & Freshwater Biology
SC Fisheries; Marine & Freshwater Biology
GA 160FC
UT WOS:000320101500013
ER
PT J
AU Hipkin, VJ
Voytek, MA
Meyer, MA
Leveille, R
Domagal-Goldman, SD
AF Hipkin, V. J.
Voytek, M. A.
Meyer, M. A.
Leveille, R.
Domagal-Goldman, S. D.
TI Analogue sites for Mars missions: NASA's Mars Science Laboratory and
beyond - Overview of an international workshop held at The Woodlands,
Texas, on March 5-6, 2011
SO ICARUS
LA English
DT Editorial Material
ID METHANE
AB Recent research results from analogue sites, with a strong focus on astrobiology-related investigations, are presented in this special issue on 'Analogue sites for Mars missions'. In addition, this article describes workshop discussions and a resulting improved framework for reporting, evaluating, and comparing analogue sites. Developed through consideration of a broad range of sites, including many of those described in this special issue, this framework comprises an analogue site abstract, a rubric for the scientific evaluation of analogue sites, and a rubric for logistical information. An overview of the Mars Analogues Workshop is provided, and the rubrics are presented for further discussion. Crown Copyright (c) 2013 Published by Elsevier Inc. All rights reserved.
C1 [Hipkin, V. J.; Leveille, R.] Canadian Space Agcy, John H Chapman Space Ctr, St Hubert, PQ J3Y 8Y9, Canada.
[Voytek, M. A.; Meyer, M. A.] NASA Headquarters, Washington, DC 20546 USA.
[Domagal-Goldman, S. D.] UW Astron, Seattle, WA 98195 USA.
RP Hipkin, VJ (reprint author), Canadian Space Agcy, John H Chapman Space Ctr, 6767 Route Aeroport, St Hubert, PQ J3Y 8Y9, Canada.
EM victoria.hipkin@asc-csa.gc.ca
RI Domagal-Goldman, Shawn/F-3521-2012
OI Domagal-Goldman, Shawn/0000-0003-0354-9325
NR 21
TC 1
Z9 1
U1 1
U2 13
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 261
EP 267
DI 10.1016/j.icarus.2013.02.021
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200001
ER
PT J
AU Tazaz, AM
Bebout, BM
Kelley, CA
Poole, J
Chanton, JP
AF Tazaz, Amanda M.
Bebout, Brad M.
Kelley, Cheryl A.
Poole, Jennifer
Chanton, Jeffrey P.
TI Redefining the isotopic boundaries of biogenic methane: Methane from
endoevaporites
SO ICARUS
LA English
DT Article
DE Astrobiology; Mars; Organic chemistry
ID SULFATE-REDUCING BACTERIA; HYPERSALINE MICROBIAL MAT;
BAJA-CALIFORNIA-SUR; GUERRERO-NEGRO; HYDROCARBON GASES; METHYLATED
AMINES; LAGUNA MORMONA; MEXICO; SEDIMENTS; MARS
AB The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleoenvironments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption, particularly in hypersaline environments. Methane in the atmosphere of Mars may be an indication of extant life, but it may also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. On Earth these methane sources can be distinguished using stable isotopic analyses and the ratio of methane (C-1) to C-2 and C-3 alkanes present in the gas source (C-1/(C-2 + C-3)). We report here that methane produced in hypersaline environments on Earth has an isotopic composition and alkane content outside the values presently considered to indicate a biogenic origin. Methane-rich bubbles released from sub-aqueous substrates contained delta C-13(CH4) and delta H-2(CH4) values ranging from -65 parts per thousand to -35 parts per thousand and -350 parts per thousand to -140 parts per thousand respectively. Higher salinity endoevaporites yielded what would be considered non-biogenic methane based upon stable isotopic and alkane content, however incubation of crustal and algal mat samples resulted in methane production with similar isotopic values. Radiocarbon analysis indicated that the production of the methane was from recently fixed carbon. An extension of the isotopic boundaries of biogenic methane is necessary in order to avoid the possibility of false negatives returned from measurements of methane on Mars and other planetary bodies. Published by Elsevier Inc.
C1 [Tazaz, Amanda M.; Chanton, Jeffrey P.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA.
[Bebout, Brad M.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA.
[Kelley, Cheryl A.; Poole, Jennifer] Univ Missouri, Dept Geol Sci, Columbia, MO 65211 USA.
RP Bebout, BM (reprint author), NASA, Ames Res Ctr, Exobiol Branch, MS 239-4, Moffett Field, CA 94035 USA.
EM Brad.M.Bebout@nasa.gov
RI Kelley, Cheryl/K-9392-2015
FU NASA's Exobiology Program; Florida State University; University of
Missouri; Florida Education Fund McKnight Fellowship
FX We thank Exportadora de Sal, S.A. de C.V., US Fish and Wildlife Service,
and Don Edwards National Wildlife Refuge for access to their salt ponds.
We thank Angela Detweiler, Adrienne Frisbee and Claire Langford for
excellent technical support in the laboratory and in the field. This
research was supported by NASA's Exobiology Program, Florida State
University and the University of Missouri. A.M.T. was supported by the
Florida Education Fund McKnight Fellowship.
NR 64
TC 11
Z9 11
U1 0
U2 17
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 268
EP 275
DI 10.1016/j.icarus.2012.06.008
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200002
ER
PT J
AU Etiope, G
Ehlmann, BL
Schoell, M
AF Etiope, Giuseppe
Ehlmann, Bethany L.
Schoell, Martin
TI Low temperature production and exhalation of methane from serpentinized
rocks on Earth: A potential analog for methane production on Mars
SO ICARUS
LA English
DT Article
DE Mars; Earth; Geological processes; Mineralogy
ID HYDROGEN ISOTOPE FRACTIONATION; MARTIAN ATMOSPHERE; ZAMBALES OPHIOLITE;
SAMAIL OPHIOLITE; CARBON-DIOXIDE; GROUND ICE; GAS SEEPS; WATER; ORIGIN;
FRACTURE
AB We evaluate, based on terrestrial analogs, the potential flux, origin and isotopic signature of methane (CH4) from serpentinized or serpentinizing rocks on Mars. The Tekirova ophiolites, in Turkey, have been shown to release, either via focused vents or through diffuse microseepage, substantial amounts of CH4 which could be produced via catalyzed abiotic methanation (Sabatier reaction) at low temperatures (<50 degrees C). Serpentinized ultramafic rocks on Mars are likely to have necessary chemical constituents for methane production and fractures for release of gas to the atmosphere, similar to those on Earth. A simple, first-order estimation gas-advection model suggests that methane fluxes on the order of several mg m(-2) d(-1), similar to microseepage observed in terrestrial ophiolites, could occur in martian rocks. High temperature, hydrothermal conditions may not be necessary for abiotic CH4 synthesis on Mars: low temperature (<50 degrees C) methanation is possible in the presence of catalysts like ruthenium, rhodium or, more commonly, chromium minerals, which occur in terrestrial ophiolites as in martian mantle meteorites. The terrestrial analog environment of abiotic microseepage may thus explain production of methane on Mars in the ancient past or at present. The wide range of martian C-12/C-13 and D/H ratios and the potential secondary alteration of CH4 by abiotic oxidation, as observed on Earth, could result in large isotope variations of methane on Mars. CH4 isotopic composition alone may not allow definitive determination of biotic vs. abiotic gas origin. Using our terrestrial vs. martian analysis as guide to future Mars exploration we propose that direct methane and ethane gas detection and isotopic measurements on the ground over serpentinized/serpentinizing rocks should be considered in developing future strategies for unraveling the source and origin of methane on Mars. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Etiope, Giuseppe] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy.
[Etiope, Giuseppe] Univ Babes Bolyai, Fac Environm Sci & Engn, Cluj Napoca 400294, Romania.
[Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Schoell, Martin] GasConsult Int Inc, Berkeley, CA 94703 USA.
RP Etiope, G (reprint author), Ist Nazl Geofis & Vulcanol, Sez Roma 2,Via V Murata 605, I-00143 Rome, Italy.
EM etiope@ingv.it
RI Etiope, Giuseppe/H-3343-2011
OI Etiope, Giuseppe/0000-0001-8614-4221
FU Research and Scientific Support Department of the European Space Agency
(ESA-RSSD)
FX This work is part of the "Interdisciplinary Study of Methane on Mars"
funded by the Research and Scientific Support Department of the European
Space Agency (ESA-RSSD) and coordinated by Olivier Witasse.
Ravindranathan Thampi provided useful inputs about catalyzed
methanation. Thanks are due to three anonymous reviewers for their
valuable comments and suggestions to improve the paper.
NR 84
TC 19
Z9 19
U1 4
U2 41
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 276
EP 285
DI 10.1016/j.icarus.2012.05.009
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200003
ER
PT J
AU Stern, JC
McAdam, AC
Ten Kate, IL
Bish, DL
Blake, DF
Morris, RV
Bowden, R
Fogel, ML
Glamoclija, M
Mahaffy, PR
Steele, A
Amundsen, HEF
AF Stern, Jennifer C.
McAdam, Amy C.
Ten Kate, Inge L.
Bish, David L.
Blake, David F.
Morris, Richard V.
Bowden, Roxane
Fogel, Marilyn L.
Glamoclija, Mihaela
Mahaffy, Paul R.
Steele, Andrew
Amundsen, Hans E. F.
TI Isotopic and geochemical investigation of two distinct Mars analog
environments using evolved gas techniques in Svalbard, Norway
SO ICARUS
LA English
DT Article
ID PHOENIX LANDING SITE; MARTIAN METEORITE ALH84001; EXOBIOLOGICAL
IMPLICATIONS; JANUSFJELLET SUBGROUP; WEATHERING PRODUCTS; CARBONATE
GLOBULES; TERRESTRIAL ANALOG; HYDROCARBON SEEPS; ORGANIC-COMPOUNDS; ICE
INTERACTIONS
AB The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks. Published by Elsevier Inc.
C1 [Stern, Jennifer C.; McAdam, Amy C.; Ten Kate, Inge L.; Mahaffy, Paul R.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20910 USA.
[Ten Kate, Inge L.] Univ Oslo, Ctr Phys Geol Proc, N-0316 Oslo, Norway.
[Bish, David L.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA.
[Blake, David F.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA.
[Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Astromat Branch, Houston, TX 77058 USA.
[Bowden, Roxane; Fogel, Marilyn L.; Glamoclija, Mihaela; Steele, Andrew] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
[Amundsen, Hans E. F.] Earth & Planetary Explorat Serv, Oslo, Norway.
RP Stern, JC (reprint author), NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Code 699, Greenbelt, MD 20910 USA.
EM Jennifer.C.Stern@nasa.gov
RI Stern, Jennifer/E-3135-2012; Fogel, Marilyn/M-2395-2015
OI Stern, Jennifer/0000-0002-0162-8807; Fogel, Marilyn/0000-0002-1176-3818
FU NASA's Astrobiology Science and Technology for Exploring Planets (ASTEP)
Program
FX The authors would like to acknowledge NASA's Astrobiology Science and
Technology for Exploring Planets (ASTEP) Program for funding, the entire
2010 AMASE Team, the Ny Alesund community, the Norwegian Polar
Institute, and the European Space Agency. The authors also thank two
anonymous reviewers for their helpful comments.
NR 92
TC 4
Z9 4
U1 5
U2 32
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 297
EP 308
DI 10.1016/j.icarus.2012.07.010
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200005
ER
PT J
AU Bishop, JL
Franz, HB
Goetz, W
Blake, DF
Freissinet, C
Steininger, H
Goesmann, F
Brinckerhoff, WB
Getty, S
Pinnick, VT
Mahaffy, PR
Dyar, MD
AF Bishop, Janice L.
Franz, Heather B.
Goetz, Walter
Blake, David F.
Freissinet, Caroline
Steininger, Harald
Goesmann, Fred
Brinckerhoff, William B.
Getty, Stephanie
Pinnick, Veronica T.
Mahaffy, Paul R.
Dyar, M. Darby
TI Coordinated analyses of Antarctic sediments as Mars analog materials
using reflectance spectroscopy and current flight-like instruments for
CheMin, SAM and MOMA
SO ICARUS
LA English
DT Article
DE Mars; surface; Mineralogy; Organic chemistry; Spectroscopy
ID MCMURDO DRY VALLEYS; INDUCED BREAKDOWN SPECTROSCOPY; MARTIAN METEORITE
ALH84001; COVERED LAKE-HOARE; RAMAN-SPECTROSCOPY; IN-SITU; GEOCHEMICAL
ANALYSES; TAYLOR VALLEY; ICE; MINERALS
AB Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface-operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 mu m could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at similar to 1.37-1.41, 1.92, and 2.19 mu m in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic region sample using the SAM/MTBSTFA technique. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Bishop, Janice L.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA.
[Bishop, Janice L.; Blake, David F.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA.
[Franz, Heather B.; Freissinet, Caroline; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; Mahaffy, Paul R.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA.
[Franz, Heather B.; Freissinet, Caroline; Pinnick, Veronica T.] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA.
[Goetz, Walter; Steininger, Harald; Goesmann, Fred] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
[Dyar, M. Darby] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA.
RP Bishop, JL (reprint author), Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA.
EM jbishop@seti.org
RI Getty, Stephanie/D-7037-2012; freissinet, caroline/F-2431-2012;
Brinckerhoff, William/F-3453-2012;
OI Brinckerhoff, William/0000-0001-5121-2634; Steininger,
Harald/0000-0003-4880-1635
FU NSF's Office of Polar Programs; NASA's PGG program
FX The authors are grateful to NSF's Office of Polar Programs for
sponsoring collection of these samples from the Dry Valleys, to Dr. T.
Hiroi for assistance measuring the reflectance spectra, and to Dr. J.
Wray for helpful editorial comments. Thanks are also due to NASA's PGG
program for supporting Brown University's RELAB facility.
NR 94
TC 12
Z9 12
U1 6
U2 41
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 309
EP 325
DI 10.1016/j.icarus.2012.05.014
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200006
ER
PT J
AU Wierzchos, J
Davila, AF
Artieda, O
Camara-Gallego, B
Rios, AD
Nealson, KH
Valea, S
Garcia-Gonzalez, MT
Ascaso, C
AF Wierzchos, Jacek
Davila, Alfonso F.
Artieda, Octavio
Camara-Gallego, Beatriz
Rios, Asuncion de los
Nealson, Kenneth H.
Valea, Sergio
Garcia-Gonzalez, M. Teresa
Ascaso, Carmen
TI Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama
Desert: Implications for the search for life on Mars
SO ICARUS
LA English
DT Article
DE Geophysics; Mars; Search for extraterrestrial life
ID ARCTIC CRYPTOENDOLITHIC HABITATS; BIOWEATHERED GRANITIC BIOTITE;
VOLCANIC GLASS; MICROBIAL LIFE; APOLLINARIS-PATERA; LICHEN ACTIVITY;
MINERAL SOILS; COLONIZATION; CYANOBACTERIA; COMMUNITIES
AB The hyper-arid core of the Atacama Desert in Chile is considered the driest and most life-limited place on Earth, with few habitats capable of sustaining an active microbial ecosystem. As such, it is one of the best terrestrial analogues of the extreme arid conditions on Mars, and an ideal environment to explore survival and biological adaptation strategies as the environment becomes increasingly dry. Here we show that weakly welded rhyolitic ignimbrites in this desert are abundantly colonized by endolithic cyanobacteria and associated heterotrophic bacteria. We propose that the porous ignimbrite interior provides protection from damaging UV radiation and excessive levels of visible light. Rock porosity also favors cell hydration through water retention after scarce rainfall events, even when the surrounding environment remains stubbornly dry. This is the first known example of an endolithic microbial community colonizing ignimbrite rocks in an extremely dry environment. The existence of a habitat capable of supporting abundant phototrophic and heterotrophic communities in an environment that precludes most life forms suggests that, if similar deposits are found on Mars, these should be considered important targets in the search for life. Indeed, ignimbrite rocks have been tentatively identified in Gale Crater, the landing site of the Mars Science Laboratory (MSL) mission and could be directly analyzed by its rover Curiosity. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Wierzchos, Jacek; Camara-Gallego, Beatriz; Rios, Asuncion de los; Valea, Sergio; Ascaso, Carmen] CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain.
[Davila, Alfonso F.] NASA, Ames Res Ctr, Moffett Field, CA 95136 USA.
[Artieda, Octavio] Univ Extremadura, Plasencia 10600, Spain.
[Nealson, Kenneth H.] Univ So Calif, Los Angeles, CA 90089 USA.
[Garcia-Gonzalez, M. Teresa] CSIC, Inst Ciencias Agr, E-28006 Madrid, Spain.
RP Wierzchos, J (reprint author), CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain.
EM j.wierzchos@mncn.csic.es
RI de los Rios, Asuncion/L-3694-2014; Ascaso, Carmen/F-5369-2011; Camara
Gallego, Beatriz/H-6407-2015
OI de los Rios, Asuncion/0000-0002-0266-3516; Ascaso,
Carmen/0000-0001-9665-193X; Camara Gallego, Beatriz/0000-0003-4945-3134
FU Spanish Ministry of Science and Innovation [CGL2010-16004, CTM
2009-12838-C04-03]; NASA Exobiology program [NNX12AD61G]
FX The authors thank F. Pinto, V. Souza-Egipsy and T. Carnota for technical
assistance, and L. Tormo for help with the ESEM, R. Gonzalez with the
FRX, M. Juanco with the XRD, and A.L. Duque and D. Gamarra with the MIP
work. D. Herrera is thanked for field assistance in the Atacama Desert.
We also thank A. Burton for polishing our English. This work was funded
by grant CGL2010-16004 and CTM 2009-12838-C04-03 from the Spanish
Ministry of Science and Innovation. A.F.D., O.A. and J.W. were supported
by Grant NNX12AD61G of the NASA Exobiology program.
NR 79
TC 16
Z9 16
U1 9
U2 67
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 334
EP 346
DI 10.1016/j.icarus.2012.06.009
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200008
ER
PT J
AU Battler, MM
Osinski, GR
Lim, DSS
Davila, AF
Michel, FA
Craig, MA
Izawa, MRM
Leoni, L
Slater, GF
Fairen, AG
Preston, J
Banerjee, NR
AF Battler, Melissa M.
Osinski, Gordon R.
Lim, Darlene S. S.
Davila, Alfonso F.
Michel, Frederick A.
Craig, Michael A.
Izawa, Matthew R. M.
Leoni, Lisa
Slater, Gregory F.
Fairen, Alberto G.
Preston, Louisa J.
Banerjee, Neil R.
TI Characterization of the acidic cold seep emplaced jarositic Golden
Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars
SO ICARUS
LA English
DT Article
DE Mars; Geological processes; Mineralogy; Spectroscopy; Astrobiology
ID SOLID-SOLUTION SERIES; MERIDIANI-PLANUM; RIO-TINTO; TERRESTRIAL ANALOGS;
NORTHWEST-TERRITORIES; OPPORTUNITY ROVER; SULFATE MINERALS; SUBSURFACE
WATER; SOUTHWEST SPAIN; LANDING SITE
AB Surficial deposits of the OH-bearing iron sulfate mineral jarosite have been observed in several places on Mars, such as Meridiani Planum and Mawrth Vallis. The specific depositional conditions and mechanisms are not known, but by comparing martian sites to analogous locations on Earth, the conditions of formation and, thus, the martian depositional paleoenvironments may be postulated. Located in a cold semi-arid desert similar to 100 km east of Norman Wells, Northwest Territories, Canada, the Golden Deposit (GD) is visible from the air as a brilliant golden-yellow patch of unvegetated soil, approximately 140 m x 50 m. The GD is underlain by permafrost and consists of yellow sediment, which is precipitating from seeps of acidic, iron-bearing groundwater. On the surface, the GD appears as a patchwork of raised polygons, with acidic waters flowing from seeps in troughs between polygonal islands. Although UV-Vis-NIR spectral analysis detects only jarosite, mineralogy, as determined by X-ray diffraction and inductively coupled plasma emission spectrometry, is predominantly natrojarosite and jarosite, with hydronium jarosite, goethite, quartz, clays, and small amounts of hematite. Water pH varies significantly over short distances depending on proximity to acid seeps, from 2.3 directly above seeps, to 5.7 several m downstream from seeps within the deposit, and up to 6.5 in ponds proximal to the deposit. Visual observations of microbial filament communities and phospholipid fatty acid analyses confirm that the GD is capable of supporting life for at least part of the year. Jarosite-bearing sediments extend beneath vegetation up to 70 m out from the deposit and are mixed with plant debris and minerals presumably weathered from bedrock and glacial till. This site is of particular interest because mineralogy (natrojarosite, jarosite, hematite, and goethite) and environmental conditions (permafrost and arid conditions) at the time of deposition are conceivably analogous to jarosite deposits on Mars. Most terrestrial analogues for Mars jarosites have been identified in temperate environments, where evaporation rates are very high and jarosites form along with other sulfates due to rapid evaporation (e.g. Rio Tinto, Spain; Western Australian acidic saline lake deposits). The GD is a rare example of an analogue site where jarosite precipitates under dominant freezing processes similar to those which could have prevailed on early Mars. Thus, the GD offers a new perspective on jarosite deposition by the upwelling of acidic waters through permafrost at Meridiani Planum and Mawrth Vallis, Mars. The GD also demonstrates that martian deposits may show considerably more chemical and mineral variability than indicated by the current remote sensing data sets. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Battler, Melissa M.; Osinski, Gordon R.; Craig, Michael A.; Izawa, Matthew R. M.; Preston, Louisa J.; Banerjee, Neil R.] Univ Western Ontario, Ctr Planetaty Sci & Explorat, Dept Earth Sci, London, ON N6A 5B7, Canada.
[Osinski, Gordon R.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 5B7, Canada.
[Lim, Darlene S. S.; Davila, Alfonso F.; Fairen, Alberto G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Lim, Darlene S. S.; Davila, Alfonso F.; Fairen, Alberto G.] SETI Inst, Mountain View, CA 94043 USA.
[Michel, Frederick A.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada.
[Leoni, Lisa; Slater, Gregory F.] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON L8S 4K1, Canada.
RP Battler, MM (reprint author), Univ Western Ontario, Ctr Planetaty Sci & Explorat, Dept Earth Sci, 1151 Richmond St, London, ON N6A 5B7, Canada.
EM mbattle@uwo.ca
RI Battler, Melissa/N-2591-2014;
OI Izawa, Matthew/0000-0001-5456-2912
FU Canadian Space Agency (CSA) Canadian Analogue Research Network (CARN);
Natural Science and Engineering Research Council of Canada (NSERC)
FX Roberta Flemming is thanked for guidance with mineral identification and
the use of the EVA software, and Kim Law is thanked for guidance with
the use of the XRD. Nicola Barry is thanked for assistance in the lab.
We also wish to thank two anonymous reviewers for their helpful
feedback. This study was supported by grants from the Canadian Space
Agency (CSA) Canadian Analogue Research Network (CARN) and the Natural
Science and Engineering Research Council of Canada (NSERC) to GRO.
NR 72
TC 5
Z9 5
U1 2
U2 29
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 382
EP 398
DI 10.1016/j.icarus.2012.05.015
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200011
ER
PT J
AU Clarke, JDA
Stoker, CR
AF Clarke, Jonathan D. A.
Stoker, Carol R.
TI Searching for stromatolites: The 3.4 Ga Strelley Pool Formation (Pilbara
region, Western Australia) as a Mars analogue
SO ICARUS
LA English
DT Article
DE Astrobiology; Mars, surface; Search for extraterrestrial life
ID NORTH-POLE; ARCHEAN STROMATOLITES; FOSSIL BACTERIA; EARLY-LIFE; CRATON;
ENVIRONMENT; CHERT; GEOCHEMISTRY; MICROFOSSILS; BIOGENICITY
AB Stromatolites are readily identified, outcrop scale indicators of potential biological activity, even though constructed by microbes. Their presence in -J.5 Ga volcano-sedimentary successions of the Pilbara region of Western Australia suggests that they might also occur in similar, Noachian-agc successions On Mars. Field and basic laboratory studies of one such occurrence near Nullagine highlight many issues that would be faced by any stromatolite search strategy on Mars. Firstly, the stromatolites are found in local aggregations that make up a very small part of the overall succession, possibly as little as one millionth of the outcrop area. An effective search strategy would require a combination of remote sensing to highlight features with high probability of hosting stromatolites, precision landing, and extensive cross-country mobility, difficult to achieve with a purely unmanned exploration system. Secondly, the limited analytical suite available to any unmanned mission would make conclusive determination of the biogenicity of any stromatolite-like feature on Mars very difficult. This is shown by the controversy over the biogenicity of the Pilbara examples, despite a much greater range of analytical techniques applied to the Pilbara examples. Once possible stromatolites features have been found on Mars, sample return would be imperative to determine their biogenicity. (c) 2013 Elsevier Inc. All rights reserved.
C1 [Clarke, Jonathan D. A.] Mars Soc Australia, Monash, ACT 2904, Australia.
[Stoker, Carol R.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA.
RP Clarke, JDA (reprint author), Mars Soc Australia, C-O 43 Michell St, Monash, ACT 2904, Australia.
EM Jon.Clarke@bigpond.com
FU Royalties for Regions of the Western Australian Government; CSIRO; The
Pilbara Development Commission; NASA Spaceward Bound; MSA
FX Funding for the Spaceward Bound Pilbara Expedition was provided by
Royalties for Regions of the Western Australian Government, CSIRO, The
Pilbara Development Commission, NASA Spaceward Bound, MSA, and
individual donors. The PIMA was loaned to the lead author by Liz Webber
of Geoscience Australia. We thank Kath Grey, an anonymous reviewer and
the editor of Icarus for their helpful comments in preparing this
manuscript for publication.
NR 53
TC 4
Z9 4
U1 6
U2 20
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 413
EP 423
DI 10.1016/j.icarus.2013.02.006
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200013
ER
PT J
AU Allen, CC
Oehler, DZ
Etiope, G
Van Rensbergen, P
Baciu, C
Feyzullayev, A
Martinelli, G
Tanaka, K
Van Rooij, D
AF Allen, Carlton C.
Oehler, Dorothy Z.
Etiope, Giuseppe
Van Rensbergen, Pieter
Baciu, Calin
Feyzullayev, Akper
Martinelli, Giovanni
Tanaka, Kazuhiro
Van Rooij, David
TI Fluid expulsion in terrestrial sedimentary basins: A process providing
potential analogs for giant polygons and mounds in the martian lowlands
SO ICARUS
LA English
DT Article
DE Mars; Mars, Surface; Geological processes; Earth
ID LOWER CONGO BASIN; EASTERN MEDITERRANEAN SEA; FINE-GRAINED SEDIMENTS;
MID-NORWEGIAN MARGIN; MUD VOLCANO FIELD; FAULT SYSTEMS; NORTH-SEA;
SPATIAL-DISTRIBUTION; FLOOR POCKMARKS; UTOPIA PLANITIA
AB On Earth, burial of fine-grained sediments in offshore passive margins (e.g., underwater fans and deltas) commonly results in fluid expulsion features including large-scale polygonal fractures, mud volcanoes, and pockmarks. Comparison of resulting offshore polygons and mud volcanoes with giant polygons and high-albedo mounds in the Chryse-Acidalia region of Mars shows the terrestrial and martian features to be similar in size, morphology, geologic context, and general co-occurrence within the same basin. These similarities suggest that the process of terrestrial fluid expulsion may provide an analog that could link the giant polygons and mounds in Chryse and Acidalia to a single process.
Moreover, while the terrestrial offshore polygons and mud volcanoes commonly develop in the same basins, these features do not necessarily occur in exactly the same locations within those basins, as they are independent responses to compaction and dewatering. Thus, the fluid expulsion analog does not require that the martian giant polygons and mounds have identical distributions. This is the situation in Chryse and Acidalia where the giant polygons and mounds are extensively developed and generally have overlapping distributions, but where each set of features may occur in places without the other. This fluid expulsion analog is enhanced by the fact that giant polygons and mounds in Chryse and Acidalia co-occur in a regional sense and in a geologic setting that is consistent with a fluid expulsion model of formation.
Implications of this analog may impact our view of the role of water in the depositional history of the martian lowlands. Published by Elsevier Inc.
C1 [Allen, Carlton C.; Oehler, Dorothy Z.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA.
[Etiope, Giuseppe] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy.
[Van Rensbergen, Pieter] Shell Int Explorat & Prod BV, NL-2288 GS Rijswijk, Netherlands.
[Etiope, Giuseppe; Baciu, Calin] Univ Babes Bolyai, Fac Environm Sci & Engn, R-3400 Cluj Napoca, Romania.
[Feyzullayev, Akper] Natl Acad Sci, Geol Inst Azerbaijan, Petr Geol & Geochem Dept, AZ-1143 Baku, Azerbaijan.
[Martinelli, Giovanni] Agenzia Reg Prevenz & Ambiente Emilia Romagna, I-42100 Reggio Emilia, Italy.
[Tanaka, Kazuhiro] Yamaguchi Univ, Grad Sch Sci & Engn, Dept Earth Sci, Yamaguchi, Japan.
[Van Rooij, David] Univ Ghent, Renard Ctr Marine Geol, Dept Geol & Soil Sci, B-9000 Ghent, Belgium.
RP Allen, CC (reprint author), NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM carlton.c.allen@nasa.gov; dorothy.z.oehler@nasa.gov; etiope@ingv.it;
Pieter.VanRensbergen@shell.com; calin.baciu@ubbcluj.ro;
fakper@gmail.com; Giovanni.martinelli15@tin.it;
ka-tanak@yamaguchi-u.ac.jp; david.vanrooij@ugent.be
RI Van Rooij, David/A-7938-2014; Baciu, Calin/C-4186-2011; Etiope,
Giuseppe/H-3343-2011
OI Van Rooij, David/0000-0003-3633-3344; Baciu, Calin/0000-0002-1142-0620;
Etiope, Giuseppe/0000-0001-8614-4221
FU ARES grant from the Innovative Research and Development program at JSC;
Romanian CNCS [PN-II-ID-PCE-2011-3-0537]; Astromaterials Research and
Exploration Science (ARES) Directorate at Johnson Space Center (JSC)
FX The Astromaterials Research and Exploration Science (ARES) Directorate
at Johnson Space Center (JSC) provided facilities and support. This work
was partially supported by an ARES grant from the Innovative Research
and Development program at JSC. The contribution of Dr. Calin Baciu was
supported by a grant of Romanian CNCS, Project PN-II-ID-PCE-2011-3-0537.
We are also grateful to Dr. J.A. Cartwright, Dr. S.M. Clifford, and an
anonymous reviewer for many thoughtful comments which helped us to
improve this manuscript.
NR 104
TC 2
Z9 2
U1 2
U2 23
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD JUN
PY 2013
VL 224
IS 2
SI SI
BP 424
EP 432
DI 10.1016/j.icarus.2012.09.018
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 162VD
UT WOS:000320293200014
ER
PT J
AU Rice, JL
Phoha, VV
Robinson, P
AF Rice, Justin L.
Phoha, Vir V.
Robinson, Philip
TI Using Mussel-Inspired Self-Organization and Account Proxies to Obfuscate
Workload Ownership and Placement in Clouds
SO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
LA English
DT Article
DE Distributed systems; animal behavior; multi-agent systems; data privacy;
data security; risk analysis
AB Recent research has provided evidence indicating how a malicious user could perform coresidence profiling and public-to-private IP mapping to target and exploit customers which share physical resources. The attacks rely on two steps: resource placement on the target's physical machine and extraction. Our proposed solution, in part inspired by mussel self-organization, relies on user account and workload clustering to mitigate coresidence profiling. Users with similar preferences and workload characteristics are mapped to the same cluster. To obfuscate the public-to-private IP map, each cluster is managed and accessed by an account proxy. Each proxy uses one public IP address, which is shared by all clustered users when accessing their instances, and maintains the mapping to private IP addresses. We describe a set of capabilities and attack paths an attacker needs to execute for targeted coresidence, and present arguments to show how our approach disrupts the critical steps in the attack path for most cases. We then perform a risk assessment to determine the likelihood an individual user will be victimized, given that a successful nondirected exploit has occurred. Our results suggest that while possible, this event is highly unlikely.
C1 [Rice, Justin L.; Phoha, Vir V.] Louisiana Tech Univ, Dept Comp Sci, Ruston, LA 71272 USA.
[Rice, Justin L.] NASA, Goddard Space Flight Ctr, Flight Software Syst Branch, Greenbelt, MD 20771 USA.
[Robinson, Philip] SAP Next Business & Technol, Belfast BT3 9DT, Antrim, North Ireland.
RP Rice, JL (reprint author), Louisiana Tech Univ, Dept Comp Sci, Ruston, LA 71272 USA.
EM jlr060@latech.edu; phoha@latech.edu; philip.robinson@sap.com
NR 26
TC 0
Z9 1
U1 0
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1556-6013
EI 1556-6021
J9 IEEE T INF FOREN SEC
JI IEEE Trans. Inf. Forensic Secur.
PD JUN
PY 2013
VL 8
IS 6
SI SI
BP 963
EP 972
DI 10.1109/TIFS.2013.2259158
PG 10
WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic
SC Computer Science; Engineering
GA 155CX
UT WOS:000319724100012
ER
PT J
AU De Lannoy, GJM
Reichle, RH
Pauwels, VRN
AF De Lannoy, Gabrielle J. M.
Reichle, Rolf H.
Pauwels, Valentijn R. N.
TI Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer
Model over Nonfrozen Land Using SMOS Observations
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID SURFACE SOIL-MOISTURE; L-MEB MODEL; BRIGHTNESS TEMPERATURES; DATA
ASSIMILATION; WATER-CONTENT; BARE FIELD; 1.4 GHZ; EMISSION; VEGETATION;
VALIDATION
AB A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions. Simulations using literature values for the RTM parameters result in Tb biases of 10-50 K against SMOS observations. Multiangular SMOS observations during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the microwave roughness h, vegetation opacity t and/or scattering albedo v separately for each observed 36-km land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological) mean values and standard deviations between SMOS observations and simulations, without attempting to reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V polarization [e.g., the global average absolute difference is 2.7 K for TbH(42.58), i.e., at 42.58 incidence angle]. The calibrated parameter values depend to some extent on the specific land surface conditions simulated by the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distributions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for Tb-H(42.58 degrees)].
C1 [De Lannoy, Gabrielle J. M.; Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[De Lannoy, Gabrielle J. M.; Pauwels, Valentijn R. N.] Univ Ghent, Lab Hydrol & Water Management, Ghent, Belgium.
RP De Lannoy, GJM (reprint author), NASA, Goddard Space Flight Ctr, Code 610-1, Greenbelt, MD 20771 USA.
EM gabrielle.delannoy@nasa.gov
RI Reichle, Rolf/E-1419-2012;
OI Pauwels, Valentijn/0000-0002-1290-9313
FU NASA Soil Moisture Active Passive mission; NASA program on the Science
of Terra and Aqua [NNH09ZDA001N-TERRAQUA]; NASA High End Computing
Program
FX Gabrielle De Lannoy was a research fellow of the Research Foundation
Flanders (FWO). Funding for Gabrielle De Lannoy and Rolf Reichle was
also provided by the NASA Soil Moisture Active Passive mission and by
the NASA program on the Science of Terra and Aqua
(NNH09ZDA001N-TERRAQUA). Computing was supported by the NASA High End
Computing Program. The first author thanks Niko Verhoest for supporting
research abroad. The authors thank Yann Kerr, Patricia de Rosnay,
Delphine Leroux, and Ali Mahmoodi for many helpful discussions in the
development of this research and Jean-Pierre Wigneron for feedback to
this manuscript. We also greatly appreciate the insightful suggestions
from three anonymous reviewers.
NR 78
TC 31
Z9 31
U1 3
U2 24
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD JUN
PY 2013
VL 14
IS 3
BP 765
EP 785
DI 10.1175/JHM-D-12-092.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 162XZ
UT WOS:000320300600005
ER
PT J
AU Li, HY
Wigmosta, MS
Wu, H
Huang, MY
Ke, YH
Coleman, AM
Leung, LR
AF Li, Hongyi
Wigmosta, Mark S.
Wu, Huan
Huang, Maoyi
Ke, Yinghai
Coleman, Andre M.
Leung, L. Ruby
TI A Physically Based Runoff Routing Model for Land Surface and Earth
System Models
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; CLIMATE-CHANGE; RIVER FLOW; WATER;
SIMULATION; HYDROLOGY; VELOCITY; COLUMBIA; ALGORITHM; WETLANDS
AB A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a "tributary subnetwork'' before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration. MOSART has been applied to the Columbia River basin at 1/16 degrees, 1/88 degrees, 1/4 degrees, and 1/2 degrees spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations of MOSART and future directions for improvements are discussed.
C1 [Li, Hongyi; Wigmosta, Mark S.; Huang, Maoyi; Ke, Yinghai; Coleman, Andre M.; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Wu, Huan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Wu, Huan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Li, HY (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-33, Richland, WA 99352 USA.
EM hongyi.li@pnnl.gov
RI Li, Hong-Yi/C-9143-2014; Wu, Huan/K-1003-2013; Huang, Maoyi/I-8599-2012
OI Li, Hong-Yi/0000-0001-5690-3610; Wu, Huan/0000-0003-2920-8860; Huang,
Maoyi/0000-0001-9154-9485
FU Department of Energy Biological and Environmental Research (BER) (ESM)
and (IAM) programs through the (iESM) and (CSSEF) projects; Platform for
Regional Integrated Modeling and Analysis (PRIMA) initiative; U.S.
Department of Energy [DE-AC06-76RLO1830]
FX This study is supported by the Department of Energy Biological and
Environmental Research (BER) Earth System Modeling (ESM) and Integrated
Assessment Modeling (IAM) programs through the Integrated Earth System
Modeling (iESM) and Climate Science for Sustainable Energy Future
(CSSEF) projects. Development of the datasets used in this study is also
partly supported by the Platform for Regional Integrated Modeling and
Analysis (PRIMA) initiative. In addition, some data and information were
provided by the Surface Hydrology Group, University of Washington
(http://www.hydro.washington.edu/2860/). We thank Sara Kallio, William
Perkins, and Marshall Richmond of PNNL for providing the simulation
results from the MASS model. The Pacific Northwest National Laboratory
is operated by Battelle for the U.S. Department of Energy under Contract
DE-AC06-76RLO1830.
NR 61
TC 37
Z9 38
U1 0
U2 49
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD JUN
PY 2013
VL 14
IS 3
BP 808
EP 828
DI 10.1175/JHM-D-12-015.1
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 162XZ
UT WOS:000320300600007
ER
PT J
AU Rebora, N
Molini, L
Casella, E
Comellas, A
Fiori, E
Pignone, F
Siccardi, F
Silvestro, F
Tanelli, S
Parodi, A
AF Rebora, N.
Molini, L.
Casella, E.
Comellas, A.
Fiori, E.
Pignone, F.
Siccardi, F.
Silvestro, F.
Tanelli, S.
Parodi, A.
TI Extreme Rainfall in the Mediterranean: What Can We Learn from
Observations?
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID SEA-SURFACE TEMPERATURE; NUMERICAL SIMULATIONS; PRECIPITATING EVENTS;
MOUNTAIN RIDGE; FLASH-FLOOD; MECHANISMS; CONVECTION; HURRICANES;
FORECASTS; FLOWS
AB Flash floods induced by extreme rainfall events represent one of the most life-threatening phenomena in the Mediterranean. While their catastrophic ground effects are well documented by postevent surveys, the extreme rainfall events that generate them are still difficult to observe properly. Being able to collect observations of such events will help scientists to better understand and model these phenomena. The recent flash floods that hit the Liguria region (Italy) between the end of October and beginning of November 2011 give us the opportunity to use the measurements available from a large number of sensors, both ground based and spaceborne, to characterize these events. In this paper, the authors analyze the role of the key ingredients (e.g., unstable air masses, moist low-level jets, steep orography, and a slow-evolving synoptic pattern) for severe rainfall processes over complex orography. For the two Ligurian events, this role has been analyzed through the available observations (e.g., Meteosat Second Generation, Moderate Resolution Imaging Spectroradiometer, the Italian Radar Network mosaic, and the Italian rain gauge network observations). The authors then address the possible role of sea-atmosphere interactions and propose a characterization of these events in terms of their predictability.
C1 [Rebora, N.; Molini, L.; Casella, E.; Comellas, A.; Fiori, E.; Pignone, F.; Siccardi, F.; Silvestro, F.; Parodi, A.] CIMA Res Fdn, I-17100 Savona, Italy.
[Casella, E.; Comellas, A.; Fiori, E.; Pignone, F.; Siccardi, F.] Univ Genoa, Genoa, Italy.
[Tanelli, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Rebora, N (reprint author), CIMA Res Fdn, Via Magliotto 2, I-17100 Savona, Italy.
EM nicola.rebora@cimafoundation.org
FU Italian Civil Protection Department; Regione Liguria; National
Aeronautics and Space Administration; Precipitation Measurement Missions
program; FP7 DRIHM (Distributed Research Infrastructure for
Hydro-Meteorology) project [283568]
FX This work is supported by Italian Civil Protection Department and by
Regione Liguria. We acknowledge Regione Liguria and Regione Piemonte for
providing us with the data of the regional meteorological observation
networks. We acknowledge the Italian Civil Protection Department for
providing us with the Italian Radar Network data. We acknowledge the
LIMET association for providing us with the data from their
meteorological observation network. We acknowledge the Institute of
Atmospheric Sciences and Climate-Satellite Oceanography Group (ISAC-GOS)
for providing us with the CNR MED sea surface temperature data. We are
very grateful to the meteorologists and the hydrologists of the
Meteo-Hydrologic Centre of Liguria Region for many useful discussions.
The portion of work carried out by Simone Tanelli was performed at the
Jet Propulsion Laboratory, California Institute of Technology, under a
contract with National Aeronautics and Space Administration; support
from the Precipitation Measurement Missions program is gratefully
acknowledged. Nicola Rebora and Antonio Parodi would like to acknowledge
the support by the FP7 DRIHM (Distributed Research Infrastructure for
Hydro-Meteorology, 2011-2015) project (Contract 283568). The authors
also thank Garvin Cummings for help in revising this paper.
NR 36
TC 36
Z9 36
U1 0
U2 19
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD JUN
PY 2013
VL 14
IS 3
BP 906
EP 922
DI 10.1175/JHM-D-12-083.1
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 162XZ
UT WOS:000320300600012
ER
PT J
AU Yu, SS
Pearson, JC
Drouin, BJ
AF Yu, Shanshan
Pearson, John C.
Drouin, Brian J.
TI Terahertz spectroscopy of water in its second triad
SO JOURNAL OF MOLECULAR SPECTROSCOPY
LA English
DT Article
DE High temperature water; THz spectroscopy; DC discharge
ID VIBRATIONAL-STATES; ROTATIONAL LEVELS; ENERGY-LEVELS; LINE; (H2O)-O-16;
MOLECULE; SPECTRA
AB Terahertz absorption spectroscopy was employed to measure rotational transitions of water in its second triad 3v(2), v(1) + v(2) and v(3) + v(2). Highly excited water molecules were created with a DC discharge, which allowed observation of transitions with lower state energies up to 5939 cm(-1). In the 0.5-2.0 THz region, 38 pure rotational transitions in the second triad were observed with MW accuracy for the first time. Additionally, 91 new rotational and ro-vibrational transitions within the ground state, v(2), and the first triad (2v(2), v(1) and v(3)) were measured with multiplier chains covering the 1.3-2.0 THz region. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Yu, Shanshan; Pearson, John C.; Drouin, Brian J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Yu, SS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
EM shanshan.yu@jpl.nasa.gov
RI Yu, Shanshan/D-8733-2016
FU National Aeronautics and Space Administration; California Institute of
Technology. Government
FX We would like to thank Laurent Coudert for providing his linelist of the
second triad rotational transitions before his publication. The research
described in this paper was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National
Aeronautics and Space Administration. Copyright 2013 California
Institute of Technology. Government sponsorship acknoledged.
NR 14
TC 2
Z9 2
U1 0
U2 26
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2852
J9 J MOL SPECTROSC
JI J. Mol. Spectrosc.
PD JUN
PY 2013
VL 288
BP 7
EP 10
DI 10.1016/j.jms.2013.03.011
PG 4
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA 163QA
UT WOS:000320350800002
ER
PT J
AU Cohen, EA
Drouin, BJ
AF Cohen, Edward A.
Drouin, Brian J.
TI Submillimeter wave spectrum of sulfuric acid, H2SO4
SO JOURNAL OF MOLECULAR SPECTROSCOPY
LA English
DT Article
DE H2SO4; Sulfuric acid; Submillimeter spectrum; Rotational constants
ID ROTATIONAL SPECTRUM; DIPOLE-MOMENT
AB The submillimeter spectrum of H2SO4 has been measured in selected regions up to 655.6 GHz. The new measurements have been combined with available literature rotational data in a merged fit. This has resulted in an improved and extended set of rotational and centrifugal constants which accurately describe the spectrum well into the submillimeter region. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Cohen, Edward A.; Drouin, Brian J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Cohen, EA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Edward.A.Cohen@jpl.nasa.gov
FU National Aeronautics and Space Administration
FX We thank Kenneth R. Leopold and Carolyn S. Brauer for providing Fourier
transform microwave data prior to publication. This work was done at the
Jet Propulsion Laboratory, California Institute of Technology under
contract with the National Aeronautics and Space Administration.
NR 9
TC 1
Z9 1
U1 1
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2852
J9 J MOL SPECTROSC
JI J. Mol. Spectrosc.
PD JUN
PY 2013
VL 288
BP 67
EP 69
DI 10.1016/j.jms.2013.04.008
PG 3
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA 163QA
UT WOS:000320350800011
ER
PT J
AU Ohman, T
Preeden, U
AF Ohman, Teemu
Preeden, Ulla
TI Shock metamorphic features in quartz grains from the Saarijarvi and
Soderfjarden impact structures, Finland
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Review
ID PLANAR DEFORMATION FEATURES; WESTERN FINLAND; CRATERING RECORD;
FENNOSCANDIA; LAMELLAE; DEPOSITS; TVAREN; VAASA; ROCKS
AB Shock metamorphic features at the Saarijarvi (D>2km) and Soderfjarden (D=6.5km) structures in Finland have so far only been studied tentatively, although both are considered to be proven impact structures. This work presents the first detailed universal stage study of planar deformation features (PDFs), feather feature lamellae (FFL), and planar fractures (PFs) in quartz grains from a polymict impact breccia dike from Soderfjarden, and from sedimentary crater-fill rocks from Saarijarvi. Planar microstructures, particularly PDFs, are very rare and poorly developed or preserved in Saarijarvi, whereas in Soderfjarden they are much more common and well defined. Miller-Bravais indices of the planar microstructures in both Saarijarvi and Soderfjarden are indicative of relatively low-shock pressure but high shear conditions, only compatible with an impact origin for these structures. Although a Proterozoic age for Saarijarvi cannot be ruled out, the observations of shock features throughout the sedimentary crater-fill sequence and a brecciated sedimentary dike below the crater floor are more consistent with a Lower Cambrian (or younger) impact age.
C1 [Ohman, Teemu] Univ Space Res Assoc, Lunar & Planetary Inst, Houston, TX 77508 USA.
[Ohman, Teemu] NASA, Ctr Lunar Sci & Explorat, Lunar Sci Inst, Washington, DC USA.
[Ohman, Teemu] Univ Oulu, Dept Geosci, FI-90014 Oulu, Finland.
[Ohman, Teemu] Univ Oulu, Dept Phys, Planetol Grp, FI-90014 Oulu, Finland.
[Preeden, Ulla] Univ Tartu, Dept Geol, EE-50411 Tartu, Estonia.
[Preeden, Ulla] Polva Cty Govt, EE-63308 Polva, Estonia.
RP Ohman, T (reprint author), Univ Space Res Assoc, Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77508 USA.
EM ohman@lpi.usra.edu
OI Ohman, Teemu/0000-0001-8214-841X
FU Magnus Ehrnrooth Foundation; Finnish Graduate School in Geology and
Vilho; Yrjo and Kalle Vaisala Foundation; NASA [NNX08AC28A]; NASA Lunar
Science Institute [NNA09DB33A]
FX T. Ohman would like to thank the following people for providing data,
samples, comments, thought-provoking discussions, help in various forms,
and collaboration on different aspects of Soderfjarden and particularly
Saarijarvi studies, only a small part of which have been directly
touched upon in this report, but which have greatly affected the
development of ideas of the formation and evolution of these structures:
A. Abels, D. D. Badjukov, P. Eden, S. Elo, B. M. French, M. J. Holma, J.
Kohonen, T. Korja, G. Y. Kramer, D. A. Kring, M. Kurimo, M. Lehtinen, J.
Moilanen, A. L. Nahm, K. Nuutinen, L. J. Pesonen, J. Plado, J. Raitala,
K. Strand, K. Tiensuu, P. Tuisku, P. Turunen, A. Uutela, M. Vaarma, S.
Vishnevsky, and J. Vuollo. U. Preeden thanks J. Kirs and K. Kirsimae. We
acknowledge the detailed and constructive reviews by M. Poelchau and L.
Ferriere, as well as comments by associate editor G. Osinski, which
greatly improved the manuscript. Magnus Ehrnrooth Foundation is thanked
for funding the logging of Saarijarvi drill cores, which was crucial for
Saarijarvi geology to start making any sense. Early parts of this
research were made possible by funding from the Finnish Graduate School
in Geology and Vilho, Yrjo and Kalle Vaisala Foundation, whereas the
later work was supported by NASA under the LPI Cooperative Agreement
NNX08AC28A, and NASA Lunar Science Institute contract NNA09DB33A (PI
David A. Kring). This is LPI Contribution 1724.
NR 97
TC 2
Z9 2
U1 2
U2 16
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD JUN
PY 2013
VL 48
IS 6
BP 955
EP 975
DI 10.1111/maps.12112
PG 21
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 164EQ
UT WOS:000320392100002
ER
PT J
AU Lindgren, P
Lee, MR
Sofe, MR
Zolensky, ME
AF Lindgren, Paula
Lee, Martin R.
Sofe, Mahmood R.
Zolensky, Michael E.
TI Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101:
Evidence for aqueous alteration prior to complex mixing
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID KRYMKA LL3.1 CHONDRITE; PARENT BODY; CI CHONDRITES; FOSSIL
MICROMETEORITES; MINERALOGY; METEORITE; ORIGIN; PHYLLOSILICATES;
HOWARDITES; CARBONATES
AB Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks (LON) 94101 have been characterized using scanning and transmission electron microscopy and electron microprobe analysis to determine their degrees of aqueous alteration, and the timing of alteration relative to incorporation of clasts into the host. The provenance of the clasts, and the mechanism by which they were incorporated and mixed with their host material are also considered. Results show that at least five distinct types of clasts occur in LON 94101, of which four have been aqueously altered to various degrees and one is largely anhydrous. The fact that they have had different alteration histories implies that the main part of aqueous activity occurred prior to the mixing and assimilation of the clasts with their host. Further, the presence of such a variety of clasts suggests complex mixing in a dynamic environment involving material from various sources. Two of the clasts, one containing approximately 46 vol% carbonate and the other featuring crystals of pyrrhotite up to approximately 1mm in size, are examples of unusual lithologies and indicate concentration of chemical elements in discrete areas of the parent body(ies), possibly by flow of aqueous solutions.
C1 [Lindgren, Paula; Lee, Martin R.; Sofe, Mahmood R.] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland.
[Zolensky, Michael E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Lindgren, P (reprint author), Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland.
EM paula.lindgren@glasgow.ac.uk
RI Lee, Martin/D-9169-2011
OI Lee, Martin/0000-0002-6004-3622
FU Science and Technology Facilities Council (STFC); NASA Cosmochemistry
Program
FX We are grateful to the Meteorite Working Group for loan of the thin
sections. We thank Peter Chung, Brian Miller, and Colin How at the
University of Glasgow, and Chris Hayward at the University of Edinburgh
for skilled technical support, and Science and Technology Facilities
Council (STFC) for funding. MEZ was supported by the NASA Cosmochemistry
Program.
NR 64
TC 7
Z9 7
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD JUN
PY 2013
VL 48
IS 6
BP 1074
EP 1090
DI 10.1111/maps.12133
PG 17
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 164EQ
UT WOS:000320392100010
ER
PT J
AU Ball, P
Caillat, T
AF Ball, Philip
Caillat, Thierry
TI Thermoelectric heat recovery could boost auto fuel economy
SO MRS BULLETIN
LA English
DT Editorial Material
C1 [Caillat, Thierry] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM p.ball@btinternet.com
NR 0
TC 3
Z9 3
U1 2
U2 12
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0883-7694
J9 MRS BULL
JI MRS Bull.
PD JUN
PY 2013
VL 38
IS 6
BP 446
EP 447
DI 10.1557/mrs.2013.138
PG 2
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 159FA
UT WOS:000320029200008
ER
PT J
AU Cliver, EW
Richardson, IG
Ling, AG
AF Cliver, E. W.
Richardson, I. G.
Ling, A. G.
TI Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation
SO SPACE SCIENCE REVIEWS
LA English
DT Review
DE Sun; Solar Cycle; Solar Wind; Coronal Mass Ejections; High-speed
Streams; Galactic Cosmic Rays; Cosmic Ray Modulation
ID CORONAL MASS EJECTIONS; HELIOSPHERIC CURRENT SHEET; DEPENDENT DRIFT
MODEL; MERGED INTERACTION REGIONS; NONAXISYMMETRIC OPEN FLUX; WIND
MAGNETIC-FIELD; VOYAGER-2 OBSERVATIONS; GEOMAGNETIC-ACTIVITY; PARTICLE
DRIFT; TILT ANGLE
AB In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift at such times. In 2009, the similar to 2 GV GCR intensity measured by the Newark neutron monitor increased by similar to 5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (similar to 20A degrees vs. similar to 14A degrees), while solar wind B was significantly lower (similar to 3.9 nT vs. similar to 5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including post-shock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the similar to 1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent Be-10-based reconstruction covering the past similar to 10(4) years shows nine abrupt and relatively short-lived drops of B to a parts per thousand(2)0 nT, with the first of these corresponding to the Sporer minimum. Such dips are at variance with the recent suggestion that B has a minimum or floor value of similar to 2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30-40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.
C1 [Cliver, E. W.] USA, Space Vehicles Directorate, Res Lab, Hanscom Afb, MA USA.
[Richardson, I. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Richardson, I. G.] Univ Maryland, Dept Astron, CRESST, College Pk, MD 20742 USA.
[Ling, A. G.] Atmospher & Environm Res Inc, Lexington, MA USA.
RP Cliver, EW (reprint author), USA, Space Vehicles Directorate, Res Lab, Hanscom Afb, MA USA.
EM afrl.rvb.pa@hanscom.af.mil
OI Richardson, Ian/0000-0002-3855-3634
FU AFRL [FA8718-05-C-0036]
FX It is a pleasure to thank Jurg Beer, Bernd Heber, Randy Jokipii, Jozsef
Kota, Frank McDonald, Harm Moraal, and Rudolf von Steiger for organizing
this timely and stimulating workshop. In addition, we are grateful to
Marius Potgieter for constructive criticism. A.G.L. acknowledges support
from AFRL contract FA8718-05-C-0036.
NR 75
TC 22
Z9 22
U1 0
U2 9
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-6308
J9 SPACE SCI REV
JI Space Sci. Rev.
PD JUN
PY 2013
VL 176
IS 1-4
BP 3
EP 19
DI 10.1007/s11214-011-9746-3
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 163ZX
UT WOS:000320379200002
ER
PT J
AU Wiedenbeck, ME
AF Wiedenbeck, M. E.
TI Cosmic-Ray Energy Spectra and Time Variations in the Local Interstellar
Medium: Constraints and Uncertainties
SO SPACE SCIENCE REVIEWS
LA English
DT Review
DE Cosmic rays; Interstellar medium; Solar modulation
ID DIFFUSE GAMMA-RAYS; IONIZATION RATE; SUPERNOVA-REMNANTS; SOLAR
MODULATION; MOLECULAR CLOUDS; PROPAGATION; ELECTRONS; ACCELERATION;
SPECTROMETER; HELIOSPHERE
AB The spectra of galactic cosmic rays that are observed inside the heliosphere result from the interaction of the spectra present in the local interstellar medium with the structured but turbulent magnetic field carried by the solar wind. Observational tests of solar modulation theory depend on comparisons between spectra inside and outside the heliosphere. Our knowledge of the local interstellar spectra are indirect, using extrapolations of interplanetary spectra measured at high energies where solar modulation effects are minimal and modeling of the physical processes that occur during particle acceleration and transport in the interstellar medium. The resulting estimates of the interstellar spectra can also be checked against observations of the effects that cosmic rays have on the chemistry of the interstellar medium and on the production of the diffuse galactic gamma-ray background. I review the present understanding of the local galactic cosmic-ray spectra, emphasizing the constraints set by observations and the uncertainties that remain.
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA.
RP Wiedenbeck, ME (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA.
EM mark.e.wiedenbeck@jpl.nasa.gov
FU NASA at Caltech; JPL [NNX08AI11G]
FX I wish to thank the organizers of the April 2010 ISSI workshop on Cosmic
Rays in the Heliosphere II for putting together a very interesting
multidisciplinary meeting. I am grateful to Richard Leske for his
careful reading of the manuscript. This research was supported, in part,
by NASA at Caltech and JPL under grant NNX08AI11G.
NR 55
TC 2
Z9 2
U1 0
U2 8
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-6308
J9 SPACE SCI REV
JI Space Sci. Rev.
PD JUN
PY 2013
VL 176
IS 1-4
BP 35
EP 46
DI 10.1007/s11214-011-9778-8
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 163ZX
UT WOS:000320379200004
ER
PT J
AU Richardson, JD
Burlaga, LF
AF Richardson, J. D.
Burlaga, L. F.
TI The Solar Wind in the Outer Heliosphere and Heliosheath
SO SPACE SCIENCE REVIEWS
LA English
DT Review
DE Solar wind; Termination shock; Heliosheath; Heliopause; Pickup ions;
Interstellar neutral atoms; Anomalous cosmic rays
ID COSMIC-RAY MODULATION; INTERSTELLAR MAGNETIC-FIELD; TERMINATION SHOCK;
VOYAGER-2 OBSERVATIONS; GEOMAGNETIC-ACTIVITY; DISTANT HELIOSPHERE;
INTERACTION REGIONS; ION DISTRIBUTIONS; PICKUP PROTONS; SLOWDOWN
AB The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the "CR-B" relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.
C1 [Richardson, J. D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Richardson, JD (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM jdr@space.mit.edu; lburlagahsp@verizon.net
FU NASA from JPL [959203]
FX The work at MIT was supported under NASA contract 959203 from JPL to
MIT.
NR 67
TC 9
Z9 9
U1 2
U2 11
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-6308
EI 1572-9672
J9 SPACE SCI REV
JI Space Sci. Rev.
PD JUN
PY 2013
VL 176
IS 1-4
BP 217
EP 235
DI 10.1007/s11214-011-9825-5
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 163ZX
UT WOS:000320379200016
ER
PT J
AU Kukreja, SL
AF Kukreja, Sunil L.
TI Data-Driven Model Development for the SuperSonic SemiSpan Transport
SO AIAA JOURNAL
LA English
DT Article
ID PROPER ORTHOGONAL DECOMPOSITION; ORDER; SYSTEMS; IDENTIFICATION;
REDUCTION; SIMULATION; FLOW
AB We investigate two common approaches to model development for robust control synthesis in the aerospace community; namely, reduced-order aeroservoelastie modeling based on structural finite-element and computational-fluid-dynamics-based aerodynamic models and a data-driven system-identification procedure. It is shown via analysis of experimental SuperSonic SemiSpan Transport wind-tunnel data that, using a system-identification approach, it is possible to estimate a model at a fixed Mach number that is parsimonious and robust across varying dynamic pressures while the numerical reduced-order model offers significantly less predicative capability.
C1 NASA, Dryden Flight Res Ctr, Struct Dynam Grp, Edwards AFB, CA 93523 USA.
RP Kukreja, SL (reprint author), NASA, Dryden Flight Res Ctr, Struct Dynam Grp, Mail Stop T-47, Edwards AFB, CA 93523 USA.
EM Sunil.L.Kukreja@nasa.gov
NR 54
TC 0
Z9 0
U1 1
U2 4
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
EI 1533-385X
J9 AIAA J
JI AIAA J.
PD JUN
PY 2013
VL 51
IS 6
BP 1333
EP 1341
DI 10.2514/1.J051721
PG 9
WC Engineering, Aerospace
SC Engineering
GA 154CB
UT WOS:000319648000006
ER
PT J
AU Nielsen, EJ
Diskin, B
AF Nielsen, Eric J.
Diskin, Boris
TI Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic
Overset Unstructured Grids
SO AIAA JOURNAL
LA English
DT Article
ID NAVIER-STOKES EQUATIONS; SENSITIVITY-ANALYSIS; COMPLEX-VARIABLES;
OPTIMIZATION; MESHES; ADAPTATION; ALGORITHM; IMPLICIT
AB A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids that may be static, undergoing rigid or deforming motions, or any combination thereof. General parent child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind-turbine geometry, a biologically inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced, and all specified constraints are satisfied.
C1 [Nielsen, Eric J.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA.
[Diskin, Boris] Natl Inst Aerosp, Hampton, VA 23681 USA.
RP Nielsen, EJ (reprint author), NASA, Langley Res Ctr, Computat AeroSci Branch, MS 128, Hampton, VA 23681 USA.
FU Fundamental Aeronautics Project within the NASA Aeronautics Research
Mission Directorate; NASA [NNL07AA23C, NNL09AA00A]
FX The first author is supported by the subsonic rotary-wing element of the
Fundamental Aeronautics Project within the NASA Aeronautics Research
Mission Directorate. The second author acknowledges the support from
NASA through contract NNL07AA23C and cooperative agreement NNL09AA00A.
Both authors wish to thank Robert Biedron of NASA Langley Research
Center and Nail Yamaleev of North Carolina A&T State University for many
helpful conversations pertaining to the current work. The enabling
contributions of Elizabeth Lee-Rausch and William Jones of NASA Langley
Research Center in the areas of grid generation and parameterization are
very much appreciated. The work has also greatly benefitted from the
high-performance computing research conducted by Dana Hammond of NASA
Langley Research Center. Discussions with David Darmofal, Qiqi Wang, and
Josh Krakos of the Massachusetts Institute of Technology (MIT) and
Yuping Sun of Vestas Wind Systems were very useful. Ralph Noack of
Pennsylvania State University is acknowledged for his support and
assistance in using his overset grid libraries. Thanks are due to C.
Eric Lynch of Naval Air Systems Command for providing the mesh used for
the wind-turbine example. The authors are grateful to John Moore of MIT
and the staff of the Air Force Research Laboratory for providing the
mesh and problem definition for the flapping-wing case.
NR 70
TC 15
Z9 15
U1 2
U2 13
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
J9 AIAA J
JI AIAA J.
PD JUN
PY 2013
VL 51
IS 6
BP 1355
EP 1373
DI 10.2514/1.J051859
PG 19
WC Engineering, Aerospace
SC Engineering
GA 154CB
UT WOS:000319648000008
ER
PT J
AU Kaul, UK
AF Kaul, Upender K.
TI Stability Enhanced High-Order Hyperviscosity-Based Shock Capturing
Algorithm
SO AIAA JOURNAL
LA English
DT Article
ID FINITE-DIFFERENCE SCHEMES; FLOWS; SIMULATION; RESOLUTION; MESHES; WAVES
C1 NASA Ames Res Ctr, Appl Modeling Simulat Branch, NASA Adv Supercomp NAS Div, Moffett Field, CA 94035 USA.
RP Kaul, UK (reprint author), NASA Ames Res Ctr, Appl Modeling Simulat Branch, NASA Adv Supercomp NAS Div, Moffett Field, CA 94035 USA.
FU NASA
FX The author would like to thank Peter Coen and Don Durston for their
interest and support of the development of the new flow solver, EDLFLOW,
under the aegis of the Supersonics/EDL Project of the NASA Fundamental
Aeronautics Program. The author would also like to thank Chuck Player
for subsequent support of this work under the Hypersonics/ADT Project of
the Fundamental Aeronautics Program. The geometry definition for the
tension cone LAD provided by Ian Clark of Georgia Institute of
Technology is gratefully acknowledged. The review of this manuscript by
Shishir Pandya and Jasim Ahmad of NASA Ames Research Center is
thankfully acknowledged.
NR 33
TC 1
Z9 1
U1 1
U2 2
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
EI 1533-385X
J9 AIAA J
JI AIAA J.
PD JUN
PY 2013
VL 51
IS 6
BP 1516
EP 1521
DI 10.2514/1.J051704
PG 6
WC Engineering, Aerospace
SC Engineering
GA 154CB
UT WOS:000319648000021
ER
PT J
AU Dorodnitsyn, A
AF Dorodnitsyn, A.
TI Probing AGN unification with radiation hydrodynamics simulations of
dusty obscuring winds
SO HIGH ENERGY DENSITY PHYSICS
LA English
DT Article
DE Acceleration of particles; Galaxies: active; Hydrodynamics; Methods:
numerical
ID ACTIVE NUCLEUS; OBSCURATION; NGC-1068; TORUS
AB Observational properties of active galactic nucleus are essentially influenced by their winds. The illumination of a parsec-scale, geometrically thin, dusty accretion disk by X-rays, and UV radiation leads to the conversion of such radiation into IR. In result the disk becomes geometrically thick due to pressure of the IR radiation on dust, and eventually develops a rigorous IR-driven accretion disk wind. Here we present the results from the radiation hydrodynamics simulations that take into account the conversion of X-rays into IR with the latter calculated in a flux-limited diffusion approximation. We show that when AGN luminosity, exceeds 0.1L(edd), the outflowing dusty wind provides the obscuration with IR pressure on dust playing a major role. The outer dense and cold part of the flow provides obscuration while the inner hot, and photoionized has properties similar to those of a warm absorber flow. At luminosities <0.1L(edd) episodes of the outflow are followed by extended periods when the wind switches to slow accretion. (c) 2013 Elsevier B.V. All rights reserved.
C1 [Dorodnitsyn, A.] NASA, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Dorodnitsyn, A.] Univ Maryland, Dept Astron CRESST, College Pk, MD 20742 USA.
RP Dorodnitsyn, A (reprint author), Univ Maryland, Dept Astron CRESST, College Pk, MD 20742 USA.
EM dorodnitsyn@gmail.com
FU NASA Goddard Space Flight Center; NASA; NASA Astrophysics Theory Program
[10-ATP10-0171]
FX This research was supported by an appointment at the NASA Goddard Space
Flight Center, administered by CRESST/UMD through a contract with NASA,
and by grants from the NASA Astrophysics Theory Program 10-ATP10-0171.
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1574-1818
J9 HIGH ENERG DENS PHYS
JI High Energy Density Phys.
PD JUN
PY 2013
VL 9
IS 2
BP 277
EP 279
DI 10.1016/j.hedp.2012.12.015
PG 3
WC Physics, Fluids & Plasmas
SC Physics
GA 158EN
UT WOS:000319952300008
ER
PT J
AU Leal-Sevillano, CA
Reck, TJ
Jung-Kubiak, C
Chattopadhyay, G
Ruiz-Cruz, JA
Montejo-Garai, JR
Rebollar, JM
AF Leal-Sevillano, Carlos A.
Reck, Theodore J.
Jung-Kubiak, Cecile
Chattopadhyay, Goutam
Ruiz-Cruz, Jorge A.
Montejo-Garai, Jose R.
Rebollar, Jesus M.
TI Silicon Micromachined Canonical E-Plane and H-Plane Bandpass Filters at
the Terahertz Band
SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS
LA English
DT Article
DE Deep reactive ion etching (DRIE); filter; micromachining; terahertz;
WR-15
AB In this letter, several bandpass filters operating in the WR-1.5 band (500 to 750 GHz) are presented. The deep reactive ion etching (DRIE) silicon micromachining process is used for the fabrication of the filters. Two canonical filter topologies based on E- and H-plane are implemented. The work presented here has two specific objectives: a) to get important fabrication process parameters, such as tolerances, vertical angles, surface roughness, and repeatability and b) to validate the proper working of the waveguide filters in the terahertz band. These filters do not have any tuning element. Experimental results show better than 10 dB return loss and approximately 1 and 2.5 dB insertion loss (for 6% fractional bandwidth) for the E- and H-plane topology, respectively. The obtained results are in agreement with fabrication tolerances of 2 mu m and vertical angles deviations up to 3 degrees.
C1 [Leal-Sevillano, Carlos A.; Montejo-Garai, Jose R.; Rebollar, Jesus M.] Univ Politecn Madrid, Dept Electromagnetismo & Teoria Circuitos, ETSI Telecomunicac, E-28040 Madrid, Spain.
[Reck, Theodore J.; Jung-Kubiak, Cecile; Chattopadhyay, Goutam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Ruiz-Cruz, Jorge A.] Univ Autonoma Madrid, Escuela Politecn Super, E-28049 Madrid, Spain.
RP Leal-Sevillano, CA (reprint author), Univ Politecn Madrid, Dept Electromagnetismo & Teoria Circuitos, ETSI Telecomunicac, E-28040 Madrid, Spain.
EM caleal@etc.upm.es
RI Ruiz-Cruz, Jorge/C-8159-2014
OI Ruiz-Cruz, Jorge/0000-0003-3909-8263
FU National Aeronautincs and Space Administration; Universidad Politecnica
de Madrid; Spanish government [TEC2010-17795]; CONSOLIDER
[CSD2008-00068]
FX This work was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA, under a contract with the
National Aeronautincs and Space Administration. This work was supported
in part by the Spanish government program TEC2010-17795, the CONSOLIDER
CSD2008-00068 and a Ph.D. grant from Universidad Politecnica de Madrid.
NR 11
TC 14
Z9 14
U1 0
U2 15
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1531-1309
J9 IEEE MICROW WIREL CO
JI IEEE Microw. Wirel. Compon. Lett.
PD JUN
PY 2013
VL 23
IS 6
BP 288
EP 290
DI 10.1109/LMWC.2013.2258097
PG 3
WC Engineering, Electrical & Electronic
SC Engineering
GA 160PM
UT WOS:000320131600006
ER
PT J
AU Jiang, XA
Maloney, ED
Li, JLF
Waliser, DE
AF Jiang, Xianan
Maloney, Eric D.
Li, Jui-Lin F.
Waliser, Duane E.
TI Simulations of the Eastern North Pacific Intraseasonal Variability in
CMIP5 GCMs
SO JOURNAL OF CLIMATE
LA English
DT Article
ID MADDEN-JULIAN OSCILLATION; GENERAL-CIRCULATION MODELS; AMERICAN-MONSOON;
BOREAL SUMMER; MIDSUMMER DROUGHT; AGCM SIMULATIONS; CLIMATE MODELS; PART
I; SYSTEM; MJO
AB As a key component of tropical atmospheric variability, intraseasonal variability (ISV) over the eastern North Pacific Ocean (ENP) exerts pronounced influences on regional weather and climate. Since general circulation models (GCMs) are essential tools for prediction and projection of future climate, current model deficiencies in representing this important variability leave us greatly disadvantaged in studies and prediction of climate change. In this study, the authors have assessed model fidelity in representing ENP ISV by analyzing 16 GCMs participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Among the 16 CMIP5 GCMs examined in this study, only seven GCM scapture the spatial pattern of the leading ENP ISV mode relatively well, although even these GCMs exhibit biases in simulating ISV amplitude. Analyses indicate that model fidelity in representing ENP ISV is closely associated with the ability to simulate a realistic summer mean state. The presence of westerly or weak mean easterly winds over the ENP warm pool region could be conducive to more realistic simulations of the ISV. One hypothesis to explain this relationship is that a realistic mean state could produce the correct sign of surface flux anomalies relative to the ISV convection, which helps to destabilize local intraseasonal disturbances. The projected changes in characteristics of ENP ISV under the representative concentration pathway 8.5 (RCP8.5) projection scenario are also explored based on simulations from three CMIP5 GCMs. Results suggest that, in a future climate, the amplitude of ISV could be enhanced over the southern part of the ENP while reduced over the northern ENP off the coast of Mexico/Central America and the Caribbean.
C1 [Jiang, Xianan] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.
[Jiang, Xianan; Li, Jui-Lin F.; Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Maloney, Eric D.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
RP Jiang, XA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 233-300, Pasadena, CA 91109 USA.
EM xianan@jifresse.ucla.edu
RI Jiang, Xianan/A-2283-2012; Maloney, Eric/A-9327-2008
OI Maloney, Eric/0000-0002-2660-2611
FU NOAA MAPP program as part of the CMIP5 Task Force; National Science
Foundation's Climate and Large-Scale Dynamics Program [ATM-0934285,
AGS-0946911, AGS-1025584]; National Aeronautics and Space
Administration; [NA09OAR4310191]; [NA11OAR4310086]; [NA08OAR4320893
7]; [NA08OAR4320893 14]
FX The authors acknowledge the support of the NOAA MAPP program as part of
the CMIP5 Task Force. Work was supported under grants NA09OAR4310191 and
NA11OAR4310086 (X.J.), and NA08OAR4320893 #7 and #14 (E.D.M.). We also
acknowledge support from the National Science Foundation's Climate and
Large-Scale Dynamics Program under Awards ATM-0934285 (X.J.),
AGS-0946911, and AGS-1025584 (E.D.M.). Part of this research was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration. Global ocean heat flux and evaporation products were
provided by the WHOI OAFlux project (http://oaflux.whoi.edu).
NR 44
TC 11
Z9 12
U1 2
U2 25
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
J9 J CLIMATE
JI J. Clim.
PD JUN
PY 2013
VL 26
IS 11
BP 3489
EP 3510
DI 10.1175/JCLI-D-12-00526.1
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 155HT
UT WOS:000319739300001
ER
PT J
AU Colas, F
Capet, X
Mcwilliams, JC
Li, ZJ
AF Colas, Francois
Capet, Xavier
Mcwilliams, James C.
Li, Zhijin
TI Mesoscale Eddy Buoyancy Flux and Eddy-Induced Circulation in Eastern
Boundary Currents
SO JOURNAL OF PHYSICAL OCEANOGRAPHY
LA English
DT Article
ID CALIFORNIA CURRENT SYSTEM; OCEAN CIRCULATION; MIXED-LAYER; SURFACE
VORTEX; PART I; MODELS; DYNAMICS; PARAMETERIZATION; TRANSPORT; VELOCITY
AB A dynamical interpretation is made of the mesoscale eddy buoyancy fluxes in the Eastern Boundary Currents off California and Peru-Chile, based on regional equilibrium simulations. The eddy fluxes are primarily shoreward and upward across a swath several hundred kilometers wide in the upper ocean; as such they serve to balance mean offshore air-sea heating and coastal upwelling. In the stratified interior the eddy fluxes are consistent with the adiabatic hypothesis associated with a mean eddy-induced velocity advecting mean buoyancy and tracers. Furthermore, with a suitable gauge choice, the horizontal fluxes are almost entirely aligned with the mean horizontal buoyancy gradient, consistent with the advective parameterization scheme of Gent and McWilliams. The associated diffusivity kappa is surface intensified, matching the vertical stratification profile. The fluxes span the across-shore band of high eddy energy, but their alongshore structure is unresolved because of sampling limitations. In the surface layer the eddy flux is significantly diabatic with a shallow eddy-induced circulation cell and downgradient lateral diapycnal flux. The dominant eddy generation process is baroclinic instability, but there are significant regional differences between the upwelling systems in the flux and kappa that are not consistent with simple instability theory.
C1 [Colas, Francois; Mcwilliams, James C.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA.
[Capet, Xavier] Lab Phys Oceans, Plouzane, France.
[Li, Zhijin] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Colas, F (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA.
EM francois@atmos.ucla.edu
RI Colas, Francois/B-4920-2012
OI Colas, Francois/0000-0002-5859-6586
FU Office of Naval Research [N00014- 08-1-0597]; National Science
Foundation [ATM-0747533]
FX This research was supported by the Office of Naval Research, Grant
N00014- 08-1-0597 and the National Science Foundation, Grant
ATM-0747533. The computations were made at the National Center for
Supercomputing Applications.
NR 65
TC 18
Z9 18
U1 0
U2 19
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-3670
J9 J PHYS OCEANOGR
JI J. Phys. Oceanogr.
PD JUN
PY 2013
VL 43
IS 6
BP 1073
EP 1095
DI 10.1175/JPO-D-11-0241.1
PG 23
WC Oceanography
SC Oceanography
GA 161AN
UT WOS:000320162300001
ER
PT J
AU Gopalswamy, N
Xie, H
Makela, P
Yashiro, S
Akiyama, S
Uddin, W
Srivastava, AK
Joshi, NC
Chandra, R
Manoharan, PK
Mahalakshmi, K
Dwivedi, VC
Jain, R
Awasthi, AK
Nitta, NV
Aschwanden, MJ
Choudhary, DP
AF Gopalswamy, N.
Xie, H.
Maekelae, P.
Yashiro, S.
Akiyama, S.
Uddin, W.
Srivastava, A. K.
Joshi, N. C.
Chandra, R.
Manoharan, P. K.
Mahalakshmi, K.
Dwivedi, V. C.
Jain, R.
Awasthi, A. K.
Nitta, N. V.
Aschwanden, M. J.
Choudhary, D. P.
TI Height of shock formation in the solar corona inferred from observations
of type II radio bursts and coronal mass ejections
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Coronal mass ejections; Shock; Type II radio bursts
ID NEAR-SUN; WAVES
AB Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona. Published by Elsevier Ltd. on behalf of COSPAR.
C1 [Gopalswamy, N.; Xie, H.; Maekelae, P.; Yashiro, S.; Akiyama, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Uddin, W.; Srivastava, A. K.; Joshi, N. C.] ARIES Nainital, Naini Tal 263129, India.
[Chandra, R.] Kumaun Univ, Naini Tal 263129, India.
[Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.] TIFR NCRA Radio Astron Ctr, Ootacamund 643001, India.
[Jain, R.; Awasthi, A. K.] Phys Res Lab, Ahmadabad 380009, Gujarat, India.
[Nitta, N. V.; Aschwanden, M. J.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA.
[Choudhary, D. P.] Calif State Univ Northridge, Northridge, CA 91330 USA.
RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA.
EM nat.gopalswamy@nasa.gov
RI Srivastava, Abhishek /C-5017-2012; Awasthi, Arun/H-5596-2016
OI Awasthi, Arun/0000-0001-5313-1125
FU NASA's LWS TRT program; ISRO's CAWSES-India Program
FX This study was conducted as a part of the Indo-US Science and Technology
Forum's Joint Center on Solar Eruptive Events. We acknowledge the use of
radio dynamic spectra made available on line at Culgoora, Hiraiso, Green
Bank, and the RSTN data from NGDC. This work was supported by NASA's LWS
TRT program. PKM was partly supported by ISRO's CAWSES-India Program.
NR 19
TC 26
Z9 26
U1 0
U2 4
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD JUN 1
PY 2013
VL 51
IS 11
BP 1981
EP 1989
DI 10.1016/j.asr.2013.01.006
PG 9
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 152RV
UT WOS:000319549700002
ER
PT J
AU Grillmair, CJ
Cutri, R
Masci, FJ
Conrow, T
Sesar, B
Eisenhardt, PRM
Wright, EL
AF Grillmair, Carl J.
Cutri, Roc
Masci, Frank J.
Conrow, Tim
Sesar, Branimir
Eisenhardt, Peter R. M.
Wright, Edward L.
TI DETECTION OF A NEARBY HALO DEBRIS STREAM IN THE WISE AND 2MASS SURVEYS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE Galaxy: halo; Galaxy: structure; globular clusters: general; globular
clusters: individual (NGC 288)
ID SMALL-MAGELLANIC-CLOUD; GLOBULAR-CLUSTERS; SKY SURVEY; MILKY-WAY; TIDAL
TAILS; STELLAR STREAM; STAR STREAM; PALOMAR 5; TELESCOPE; EVOLUTION
AB Combining the Wide-Field Infrared Survey Explorer All-Sky Release with the Two Micron All Sky Survey Point Source Catalog, we detect a nearby, moderately metal-poor stellar debris stream spanning 24 degrees across the southern sky. The stream, which we designate Alpheus, is at an estimated distance of similar to 1.9 kpc. Its position, orientation, width, estimated metallicity, and, to some extent, its distance, are in approximate agreement with what one might expect of the leading tidal tail of the southern globular cluster NGC 288.
C1 [Grillmair, Carl J.] Spitzer Sci Ctr, Pasadena, CA 91125 USA.
[Cutri, Roc; Masci, Frank J.; Conrow, Tim; Sesar, Branimir] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA.
[Sesar, Branimir] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Eisenhardt, Peter R. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Wright, Edward L.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA.
RP Grillmair, CJ (reprint author), Spitzer Sci Ctr, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM carl@ipac.caltech.edu; roc@ipac.caltech.edu; fmasci@ipac.caltech.edu;
tim@ipac.caltech.edu; bsesar@astro.caltech.edu;
peter.r.eisenhardt@jpl.nasa.gov; wright@astro.ucla.edu
FU NASA [NNX12AI57G]; National Aeronautics and Space Administration;
National Science Foundation
FX We gratefully acknowledge several probing questions by an anonymous
referee which helped us to improve and clarify the manuscript. We also
thank S. van den Bergh for suggesting a new source of stream
designations. This paper is based upon work supported in part by NASA
under award No. NNX12AI57G.This publication makes use of data products
from the Wide-Field Infrared Survey Explorer, which is a joint project
of the University of California, Los Angeles, and the Jet Propulsion
Laboratory/California Institute of Technology, funded by the National
Aeronautics and Space Administration. It also makes use of data products
from the Two Micron All Sky Survey, which is a joint project of the
University of Massachusetts and the Infrared Processing and Analysis
Center, funded by the National Aeronautics and Space Administration and
the National Science Foundation.
NR 41
TC 8
Z9 8
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 1
PY 2013
VL 769
IS 2
AR L23
DI 10.1088/2041-8205/769/2/L23
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 151JR
UT WOS:000319457300005
ER
PT J
AU Pavan, J
Vinas, AF
Yoon, PH
Ziebell, LF
Gaelzer, R
AF Pavan, J.
Vinas, A. F.
Yoon, P. H.
Ziebell, L. F.
Gaelzer, R.
TI SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE diffusion; instabilities; interplanetary medium; plasmas; solar wind;
waves
ID THERMAL NOISE SPECTROSCOPY; SUPRATHERMAL ELECTRONS; INTERPLANETARY
MEDIUM; WHISTLER WAVES; HALO; TEMPERATURE; DENSITY; CORONA; CORE
AB This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
C1 [Pavan, J.; Gaelzer, R.] Univ Fed Pelotas, Pelotas, Brazil.
[Vinas, A. F.] NASA GSFC, Greenbelt, MD 20771 USA.
[Yoon, P. H.] UMD, IPST, College Pk, MD USA.
[Ziebell, L. F.] Univ Fed Rio Grande do Sul, Porto Alegre, RS, Brazil.
[Yoon, P. H.] KHU, SSR, Yongin, South Korea.
RP Pavan, J (reprint author), Univ Fed Pelotas, Pelotas, Brazil.
EM joel.pavan@ufpel.edu.br; adolfo.vinas@nasa.gov; yoonp@umd.edu;
luiz.ziebell@ufrgs.br
RI Yoon, Peter/E-2395-2013; Ziebell, Luiz/N-7334-2014; Gaelzer,
Rudi/E-4437-2013
OI Gaelzer, Rudi/0000-0001-5851-7959
FU Brazilian agency CNPq; Brazilian agency FAPERGS; NASA; NSF [AGS1242331];
WCU grant from the Korean Ministry of Education, Science, and Technology
[R31-10016]
FX The research carried out at UFPEL and UFRGS was supported by Brazilian
agencies CNPq and FAPERGS. A. F. V. thanks NASA for funding support
received by the Cluster mission and PEACE experiment at the Goddard
Space Flight Center. The research at the University of Maryland was
supported by NSF grant AGS1242331. The research carried out at Kyung Hee
University, Korea, was supported by WCU grant R31-10016 from the Korean
Ministry of Education, Science, and Technology.
NR 33
TC 10
Z9 10
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 1
PY 2013
VL 769
IS 2
AR L30
DI 10.1088/2041-8205/769/2/L30
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 151JR
UT WOS:000319457300012
ER
PT J
AU Zemcov, M
Blain, A
Cooray, A
Bethermin, M
Bock, J
Clements, DL
Conley, A
Conversi, L
Dowell, CD
Farrah, D
Glenn, J
Griffin, M
Halpern, M
Jullo, E
Kneib, JP
Marsden, G
Nguyen, HT
Oliver, SJ
Richard, J
Roseboom, IG
Schulz, B
Scott, D
Shupe, DL
Smith, AJ
Valtchanov, I
Viero, M
Wang, L
Wardlow, J
AF Zemcov, M.
Blain, A.
Cooray, A.
Bethermin, M.
Bock, J.
Clements, D. L.
Conley, A.
Conversi, L.
Dowell, C. D.
Farrah, D.
Glenn, J.
Griffin, M.
Halpern, M.
Jullo, E.
Kneib, J. -P.
Marsden, G.
Nguyen, H. T.
Oliver, S. J.
Richard, J.
Roseboom, I. G.
Schulz, B.
Scott, Douglas
Shupe, D. L.
Smith, A. J.
Valtchanov, I.
Viero, M.
Wang, L.
Wardlow, J.
TI HerMES: A DEFICIT IN THE SURFACE BRIGHTNESS OF THE COSMIC INFRARED
BACKGROUND DUE TO GALAXY CLUSTER GRAVITATIONAL LENSING
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE cosmic background radiation
ID DARK-MATTER; MAGNIFICATION; EMISSION; Z=0.2; CORES; DUST; MASS
AB We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I-250 mu m > 0.69(-0.03)(+0.03)(stat.)(-0.06)(+0.11)(sys.) MJy sr(-1), with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.
C1 [Zemcov, M.; Cooray, A.; Bock, J.; Dowell, C. D.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Viero, M.] CALTECH, Pasadena, CA 91125 USA.
[Zemcov, M.; Bock, J.; Dowell, C. D.; Nguyen, H. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Blain, A.] Univ Leicester, Leicester LE1 7RH, Leics, England.
[Cooray, A.; Wardlow, J.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Bethermin, M.] Univ Paris Diderot, Lab AIM Paris Saclay, CEA DSM Irfu, CNRS, F-91191 Gif Sur Yvette, France.
[Bethermin, M.] Univ Paris 11, IAS, F-91405 Orsay, France.
[Bethermin, M.] CNRS, UMR 8617, F-91405 Orsay, France.
[Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England.
[Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA.
[Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, E-28691 Madrid, Spain.
[Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Farrah, D.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA.
[Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Griffin, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Halpern, M.; Marsden, G.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Jullo, E.; Kneib, J. -P.] Aix Marseille Univ, CNRS, LAM, UMR7326, F-13388 Marseille, France.
[Kneib, J. -P.] Observ Sauverny, EPFL, Astrophys Lab, CH-1290 Versoix, Switzerland.
[Richard, J.] Univ Lyon 1, Ctr Rech Astron Lyon, F-69230 St Genis Laval, France.
[Richard, J.] Ecole Normale Super Lyon, UMR 5574, CNRS, F-69007 Lyon, France.
[Roseboom, I. G.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Schulz, B.; Shupe, D. L.] CALTECH, Infrared Proc & Anal Ctr, JPL, Pasadena, CA 91125 USA.
RP Zemcov, M (reprint author), CALTECH, 1200 East Calif Blvd, Pasadena, CA 91125 USA.
EM zemcov@caltech.edu
RI Wardlow, Julie/C-9903-2015; Kneib, Jean-Paul/A-7919-2015;
OI Wardlow, Julie/0000-0003-2376-8971; Kneib,
Jean-Paul/0000-0002-4616-4989; Scott, Douglas/0000-0002-6878-9840;
Bethermin, Matthieu/0000-0002-3915-2015
FU NASA; CSA (Canada); NAOC (China); CEA; CNES; CNRS (France); ASI (Italy);
MCINN (Spain); SNSB (Sweden); STFC; UKSA (UK); NASA (USA)
FX Support for this work was provided by NASA.; SPIRE has been developed by
a consortium of institutes led by Cardiff University (UK) and including:
University of Lethbridge (Canada); NAOC (China); CEA, LAM (France);
IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory
(Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of
Sussex (UK); Caltech, JPL, NHSC, University of Colorado (USA). This
development has been supported by national funding agencies: CSA
(Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN
(Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA).
NR 30
TC 7
Z9 7
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 1
PY 2013
VL 769
IS 2
AR L31
DI 10.1088/2041-8205/769/2/L31
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 151JR
UT WOS:000319457300013
ER
PT J
AU Gu, GJ
Adler, RF
AF Gu, Guojun
Adler, Robert F.
TI Interdecadal variability/long-term changes in global precipitation
patterns during the past three decades: global warming and/or pacific
decadal variability?
SO CLIMATE DYNAMICS
LA English
DT Article
ID 20TH-CENTURY CLIMATE VARIATIONS; SPATIOTEMPORAL STRUCTURE; PART II;
REANALYSES; TRENDS; CYCLE
AB This study explores how global precipitation and tropospheric water vapor content vary on the interdecadal/long-term time scale during past three decades (1988-2010 for water vapor), in particular to what extent the spatial structures of their variations relate to changes in surface temperature. EOF analyses of satellite-based products indicate that the first two modes of global precipitation and columnar water vapor content anomalies are in general related to the El Nio-Southern oscillation. The spatial patterns of their third modes resemble the corresponding linear fits/trends estimated at each grid point, which roughly represent the interdecadal/long-term changes happening during the same time period. Global mean sea surface temperature (SST) and land surface temperature have increased during the past three decades. However, the water vapor and precipitation patterns of change do not reflect the pattern of warming, in particular in the tropical Pacific basin. Therefore, other mechanisms in addition to global warming likely exist to account for the spatial structures of global precipitation changes during this time period. An EOF analysis of longer-record (1949-2010) SST anomalies within the Pacific basin (60(o)N-60(o)S) indicates the existence of a strong climate regime shift around 1998/1999, which might be associated with the Pacific decadal variability (PDV) as suggested in past studies. Analyses indicate that the observed linear changes/trends in both precipitation and tropospheric water vapor during 1988-2010 seem to result from a combined impact of global mean surface warming and the PDV shift. In particular, in the tropical central-eastern Pacific, a band of increases along the equator in both precipitation and water vapor sandwiched by strong decreases south and north of it are likely caused by the opposite effects from global-mean surface warming and PDV-related, La Nia-like cooling in the tropical central-eastern Pacific. This narrow band of precipitation increase could also be considered an evidence for the influence of global mean surface warming.
C1 [Gu, Guojun; Adler, Robert F.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Gu, Guojun] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Gu, GJ (reprint author), NASA, Atmospheres Lab, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA.
EM Guojun.Gu-1@nasa.gov
FU NASA Energy and Water-cycle Study (NEWS) program
FX The RSS-SSM/I and RSS-SSMIS columnar water vapor data were downloaded
from http://www.remss.com. The ERSST data set (v3b) was downloaded from
the NOAA-NCDC website at http://www.ncdc.noaa.gov/ersst/. The NASA-GISS
global surface temperature anomaly product was downloaded from its
website at http://data.giss.nasa.gov/. This research is supported under
the NASA Energy and Water-cycle Study (NEWS) program.
NR 44
TC 15
Z9 15
U1 2
U2 39
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
J9 CLIM DYNAM
JI Clim. Dyn.
PD JUN
PY 2013
VL 40
IS 11-12
BP 3009
EP 3022
DI 10.1007/s00382-012-1443-8
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 149ZU
UT WOS:000319360800025
ER
PT J
AU Wild, M
Folini, D
Schar, C
Loeb, N
Dutton, EG
Konig-Langlo, G
AF Wild, Martin
Folini, Doris
Schaer, Christoph
Loeb, Norman
Dutton, Ellsworth G.
Koenig-Langlo, Gert
TI The global energy balance from a surface perspective
SO CLIMATE DYNAMICS
LA English
DT Article
DE Earth Radiation Budget; Surface energy balance; Global climate models;
Global energy balance; Surface/Satellite observations; CMIP5/IPCC-AR5
model evaluation
ID GENERAL-CIRCULATION MODELS; LONGWAVE IRRADIANCE UNCERTAINTY; RADIATION
BUDGET EXPERIMENT; SHORTWAVE IRRADIANCE; ATMOSPHERE RADIATION; CLIMATE
RESEARCH; SOLAR-RADIATION; ERA-INTERIM; UPPER-OCEAN; FLUXES
AB In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm(-2), respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 and 397 Wm(-2), respectively, this leaves 106 Wm(-2) of surface net radiation available globally for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm(-2) on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.
C1 [Wild, Martin; Folini, Doris; Schaer, Christoph] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland.
[Loeb, Norman] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Dutton, Ellsworth G.] NOAA, ESRL, R GMD, Boulder, CO 80305 USA.
[Koenig-Langlo, Gert] Alfred Wegener Inst, D-27570 Bremerhaven, Germany.
RP Wild, M (reprint author), ETH, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland.
EM martin.wild@env.ethz.ch
RI Konig-Langlo, Gert/K-5048-2012; Schar, Christoph/A-1033-2008; Wild,
Martin/J-8977-2012
OI Konig-Langlo, Gert/0000-0002-6100-4107; Schar,
Christoph/0000-0002-4171-1613;
FU National Centre for Competence in Climate Research (NCCR Climate) of the
Swiss National Science Foundation as part of the NCCR Project HyClim;
Office of Science, U.S. Department of Energy
FX This study is supported by the National Centre for Competence in Climate
Research (NCCR Climate) of the Swiss National Science Foundation as part
of the NCCR Project HyClim. We are grateful to Prof. Atsumu Ohmura for
numerous discussions and for his leadership in the establishment of GEBA
and BSRN. We highly acknowledge Barbara Schar for the design of the
global energy balance figure. We would like to thank Dr. Guido Muller
for processing the BSRN data and Dr. Urs Beyerle and Dr. Thierry Corti
for all their efforts to download the immense CMIP5 dataset. We
acknowledge the international modeling groups for providing their data
for analysis, the Program for Climate Model Diagnosis and
Intercomparison (PCMDI) for collecting and archiving the model data, the
JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled
Model Intercomparison Project (CMIP) and Climate Simulation Panel for
organizing the model data analysis activity, and the IPCC WG1 TSU for
technical support. The IPCC Data Archive at Lawrence Livermore National
Laboratory is supported by the Office of Science, U.S. Department of
Energy. We would like to take this opportunity to acknowledge many hard
working site scientists, as listed in
http://hdl.handle.net/10013/epic.40092.d001. BSRN data used in this
study are available at http://dx.doi.org/10.1594/PANGAEA.792618. We
dedicate this study to our dear friend and colleague Ellsworth G.
Dutton, who passed away the day this paper was accepted. His enthusiasm
and devotion as BSRN project manager over 20 years was invaluable for
the success of BSRN.
NR 76
TC 86
Z9 89
U1 9
U2 110
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0930-7575
EI 1432-0894
J9 CLIM DYNAM
JI Clim. Dyn.
PD JUN
PY 2013
VL 40
IS 11-12
BP 3107
EP 3134
DI 10.1007/s00382-012-1569-8
PG 28
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 149ZU
UT WOS:000319360800030
ER
PT J
AU Tam, CKW
Parrish, SA
Envia, E
Chien, EW
AF Tam, Christopher K. W.
Parrish, Sarah A.
Envia, Edmane
Chien, Eugene W.
TI Physical processes influencing acoustic radiation from jet engine inlets
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
DE acoustics; aeroacoustics
ID TURBOFAN NOISE RADIATION; BOUNDARY-CONDITIONS; COMPUTATIONAL
AEROACOUSTICS; FLOW; SIMULATION; PATTERNS; FLIGHT; DUCT
AB Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream-propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic duct mode to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of a duct mode by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number, duct mode frequency, azimuthal mode number and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition versus one in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.
C1 [Tam, Christopher K. W.; Parrish, Sarah A.] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA.
[Envia, Edmane] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Chien, Eugene W.] Goodrich Aerostruct Grp, Chula Vista, CA 91910 USA.
RP Tam, CKW (reprint author), Florida State Univ, Dept Math, Tallahassee, FL 32306 USA.
EM tam@math.fsu.edu
NR 48
TC 0
Z9 0
U1 2
U2 9
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
EI 1469-7645
J9 J FLUID MECH
JI J. Fluid Mech.
PD JUN
PY 2013
VL 725
BP 152
EP 194
DI 10.1017/jfm.2013.181
PG 43
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA 152DQ
UT WOS:000319511200007
ER
PT J
AU Ueyama, R
Gerber, EP
Wallace, JM
Frierson, DMW
AF Ueyama, Rei
Gerber, Edwin P.
Wallace, John M.
Frierson, Dargan M. W.
TI The Role of High-Latitude Waves in the Intraseasonal to Seasonal
Variability of Tropical Upwelling in the Brewer-Dobson Circulation
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID MEAN MERIDIONAL CIRCULATION; GENERAL-CIRCULATION; LOWER STRATOSPHERE;
MIDDLE ATMOSPHERE; ANNUAL CYCLE; TROPOPAUSE TEMPERATURES; DOWNWARD
CONTROL; PLANETARY-WAVES; TROPOSPHERE; MODEL
AB The forcing of tropical upwelling in the Brewer-Dobson circulation (BDC) on intraseasonal to seasonal time scales is investigated in integrations of an idealized general circulation model, ECMWF Interim ReAnalysis, and lower-stratospheric temperature measurements from the (Advanced) Microwave Sounding Unit, with a focus on the extended boreal winter season. Enhanced poleward eddy heat fluxes in the high latitudes (45 degrees-90 degrees N) at the 100-hPa level are associated with anomalous tropical cooling and anomalous warming on the poleward side of the polar night jet at the 70-hPa level and above. In both the model and the observations, planetary waves entering the stratosphere at high latitudes propagate equatorward to the subtropics and tropics at levels above 70 hPa over an approximately 10-day period, exerting a force at sufficiently low latitudes to modulate the tropical upwelling in the upper branch of the BDC, even on time scales longer than the radiative relaxation time scale of the lower stratosphere. To the extent that they force the BDC via downward as opposed to sideways control, planetary waves originating in high latitudes contribute to the seasonally varying climatological mean and the interannual variability of tropical upwelling at the 70-hPa level and above. Their influence upon the strength of the tropical upwelling, however, diminishes rapidly with depth below 70 hPa. In particular, tropical upwelling at the cold-point tropopause, near 100 hPa, appears to be modulated by variations in the strength of the lower branch of the BDC.
C1 [Ueyama, Rei] NASA, Div Earth Sci, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Gerber, Edwin P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USA.
[Wallace, John M.; Frierson, Dargan M. W.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
RP Ueyama, R (reprint author), NASA, Div Earth Sci, Ames Res Ctr, Mail Stop 245-5, Moffett Field, CA 94035 USA.
EM rei.ueyama@nasa.gov
RI Frierson, Dargan/F-1763-2010;
OI Frierson, Dargan/0000-0001-8952-5644; Gerber, Edwin/0000-0002-6010-6638
FU NOAA Climate and Global Change Program; NSF [1122989]; division of
Atmospheric and Geospace Sciences [0938325, 0846641, 0936059]; NASA
[NNX09AH73G]; NOAA [NA08OAR4310725]
FX MSU/AMSU data are produced by Remote Sensing Systems and sponsored by
the NOAA Climate and Global Change Program. We thank two anonymous
reviewers for their thoughtful comments and suggestions on the
manuscript. This work was partially funded by NSF Climate Dynamics
Program Office Grant 1122989 and the division of Atmospheric and
Geospace Sciences Grants 0938325, 0846641, and 0936059; NASA Grant
NNX09AH73G; and NOAA Grant NA08OAR4310725. R. Ueyama also thanks Dr.
Leonhard Pfister and the NASA Postdoctoral Program for support.
NR 55
TC 18
Z9 18
U1 0
U2 19
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD JUN
PY 2013
VL 70
IS 6
BP 1631
EP 1648
DI 10.1175/JAS-D-12-0174.1
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 154IP
UT WOS:000319668400008
ER
PT J
AU Gruppioni, C
Pozzi, F
Rodighiero, G
Delvecchio, I
Berta, S
Pozzetti, L
Zamorani, G
Andreani, P
Cimatti, A
Ilbert, O
Le Floc'h, E
Lutz, D
Magnelli, B
Marchetti, L
Monaco, P
Nordon, R
Oliver, S
Popesso, P
Riguccini, L
Roseboom, I
Rosario, DJ
Sargent, M
Vaccari, M
Altieri, B
Aussel, H
Bongiovanni, A
Cepa, J
Daddi, E
Dominguez-Sanchez, H
Elbaz, D
Schreiber, NF
Genzel, R
Iribarrem, A
Magliocchetti, M
Maiolino, R
Poglitsch, A
Garcia, AP
Sanchez-Portal, M
Sturm, E
Tacconi, L
Valtchanov, I
Amblard, A
Arumugam, V
Bethermin, M
Bock, J
Boselli, A
Buat, V
Burgarella, D
Castro-Rodriguez, N
Cava, A
Chanial, P
Clements, DL
Conley, A
Cooray, A
Dowell, CD
Dwek, E
Eales, S
Franceschini, A
Glenn, J
Griffin, M
Hatziminaoglou, E
Ibar, E
Isaak, K
Ivison, RJ
Lagache, G
Levenson, L
Lu, N
Madden, S
Maffei, B
Mainetti, G
Nguyen, HT
O'Halloran, B
Page, MJ
Panuzzo, P
Papageorgiou, A
Pearson, CP
Perez-Fournon, I
Pohlen, M
Rigopoulou, D
Rowan-Robinson, M
Schulz, B
Scott, D
Seymour, N
Shupe, DL
Smith, AJ
Stevens, JA
Symeonidis, M
Trichas, M
Tugwell, KE
Vigroux, L
Wang, L
Wright, G
Xu, CK
Zemcov, M
Bardelli, S
Carollo, M
Contini, T
Le Fevre, O
Lilly, S
Mainieri, V
Renzini, A
Scodeggio, M
Zucca, E
AF Gruppioni, C.
Pozzi, F.
Rodighiero, G.
Delvecchio, I.
Berta, S.
Pozzetti, L.
Zamorani, G.
Andreani, P.
Cimatti, A.
Ilbert, O.
Le Floc'h, E.
Lutz, D.
Magnelli, B.
Marchetti, L.
Monaco, P.
Nordon, R.
Oliver, S.
Popesso, P.
Riguccini, L.
Roseboom, I.
Rosario, D. J.
Sargent, M.
Vaccari, M.
Altieri, B.
Aussel, H.
Bongiovanni, A.
Cepa, J.
Daddi, E.
Dominguez-Sanchez, H.
Elbaz, D.
Schreiber, N. Foerster
Genzel, R.
Iribarrem, A.
Magliocchetti, M.
Maiolino, R.
Poglitsch, A.
Perez Garcia, A.
Sanchez-Portal, M.
Sturm, E.
Tacconi, L.
Valtchanov, I.
Amblard, A.
Arumugam, V.
Bethermin, M.
Bock, J.
Boselli, A.
Buat, V.
Burgarella, D.
Castro-Rodriguez, N.
Cava, A.
Chanial, P.
Clements, D. L.
Conley, A.
Cooray, A.
Dowell, C. D.
Dwek, E.
Eales, S.
Franceschini, A.
Glenn, J.
Griffin, M.
Hatziminaoglou, E.
Ibar, E.
Isaak, K.
Ivison, R. J.
Lagache, G.
Levenson, L.
Lu, N.
Madden, S.
Maffei, B.
Mainetti, G.
Nguyen, H. T.
O'Halloran, B.
Page, M. J.
Panuzzo, P.
Papageorgiou, A.
Pearson, C. P.
Perez-Fournon, I.
Pohlen, M.
Rigopoulou, D.
Rowan-Robinson, M.
Schulz, B.
Scott, D.
Seymour, N.
Shupe, D. L.
Smith, A. J.
Stevens, J. A.
Symeonidis, M.
Trichas, M.
Tugwell, K. E.
Vigroux, L.
Wang, L.
Wright, G.
Xu, C. K.
Zemcov, M.
Bardelli, S.
Carollo, M.
Contini, T.
Le Fevre, O.
Lilly, S.
Mainieri, V.
Renzini, A.
Scodeggio, M.
Zucca, E.
TI The Herschel* PEP/HerMES luminosity function - I. Probing the evolution
of PACS selected Galaxies to z similar or equal to 4
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: active; galaxies: evolution; galaxies: luminosity function;
mass function; galaxies: starburst; cosmology: observations; infrared:
galaxies
ID STAR-FORMING GALAXIES; DEEP-FIELD-SOUTH; ACTIVE GALACTIC NUCLEI;
SPECTRAL ENERGY-DISTRIBUTIONS; SUPERMASSIVE BLACK-HOLES; REDSHIFT
SURVEY; GOODS-SOUTH; MU-M; PHOTOMETRIC REDSHIFTS; FORMATION HISTORY
AB We exploit the deep and extended far-IR data sets (at 70, 100 and 160 mu m) of the Herschel Guaranteed Time Observation (GTO) PACS Evolutionary Probe (PEP) Survey, in combination with the Herschel Multi-tiered Extragalactic Survey data at 250, 350 and 500 mu m, to derive the evolution of the rest-frame 35-, 60-, 90-and total infrared (IR) luminosity functions (LFs) up to z similar to 4. We detect very strong luminosity evolution for the total IR LF (L-IR alpha (1 + z)(3.55 +/- 0.10) up to z similar to 2, and. (1 + z) 1.62 similar to 0.51 at 2 < z less than or similar to 4) combined with a density evolution ( (1 + z)-0.57 +/- 0.22 up to z similar to 1 and. (1 + z)-3.92 +/- 0.34 at 1 < z less than or similar to 4). In agreement with previous findings, the IR luminosity density (.IR) increases steeply to z similar to 1, then flattens between z similar to 1 and z similar to 3 to decrease at z similar to 3. Galaxies with different spectral energy distributions, masses and specific star formation rates (SFRs) evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to.IR. Galaxies occupying the well-established SFR-stellar mass main sequence (MS) are found to dominate both the total IR LF and.IR at all redshifts, with the contribution from off-MS sources (= 0.6 dex above MS) being nearly constant (similar to 20 per cent of the total IR) and showing no significant signs of increase with increasing z over the whole 0.8 < z < 2.2 range. Sources with mass in the range 10 = log(M/M-circle dot) = 11 are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z (greater than or similar to 2) LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the Super Massive Black Holes (SMBH) grows and is obscured by dust (possibly triggered by a major merging event), is followed by an AGN-dominated phase, then evolving towards a local elliptical. On the other hand, moderately star-forming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies.
C1 [Gruppioni, C.; Pozzetti, L.; Zamorani, G.; Dominguez-Sanchez, H.; Bardelli, S.; Zucca, E.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy.
[Pozzi, F.; Delvecchio, I.; Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy.
[Rodighiero, G.; Marchetti, L.; Vaccari, M.; Franceschini, A.; Mainetti, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy.
[Berta, S.; Lutz, D.; Magnelli, B.; Nordon, R.; Popesso, P.; Rosario, D. J.; Schreiber, N. Foerster; Genzel, R.; Poglitsch, A.; Sturm, E.; Tacconi, L.] Max Planck Inst Extraterr Phys MPE, D-85741 Garching, Germany.
[Andreani, P.; Iribarrem, A.; Hatziminaoglou, E.; Mainieri, V.] ESO, D-85748 Garching, Germany.
[Ilbert, O.; Boselli, A.; Buat, V.; Burgarella, D.; Le Fevre, O.] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France.
[Le Floc'h, E.; Riguccini, L.; Sargent, M.; Aussel, H.; Daddi, E.; Elbaz, D.; Bethermin, M.; Chanial, P.; Madden, S.; Panuzzo, P.] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France.
[Marchetti, L.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.
[Monaco, P.] Univ Trieste, Dipartimento Fis, Sez Astron, I-34131 Trieste, Italy.
[Oliver, S.; Roseboom, I.; Smith, A. J.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England.
[Roseboom, I.; Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Vaccari, M.] Univ Western Cape, Dept Phys, Astrophys Grp, ZA-7535 Bellville, South Africa.
[Altieri, B.; Perez Garcia, A.; Sanchez-Portal, M.; Valtchanov, I.] ESA Herschel Sci Ctr, E-28692 Villafranca, Spain.
[Bongiovanni, A.; Cepa, J.; Dominguez-Sanchez, H.; Castro-Rodriguez, N.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Spain.
[Iribarrem, A.] Univ Fed Rio de Janeiro, Observ Valongo, BR-21941 Rio De Janeiro, Brazil.
[Magliocchetti, M.] INAF IFSI, I-00133 Rome, Italy.
[Maiolino, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Amblard, A.] NASA, Ames Res Ctr, Moett Field, CA 94035 USA.
[Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA.
[Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Castro-Rodriguez, N.; Perez-Fournon, I.] Univ La Laguna ULL, Dept Astrofis, E-38205 San Cristobal la Laguna, Spain.
[Cava, A.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain.
[Clements, D. L.; O'Halloran, B.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, 3Astrophys Grp, London SW7 2AZ, England.
[Conley, A.; Glenn, J.] Univ Colorado, Ctr Astrophys & Space Astron UCB 389, Boulder, CO 80309 USA.
[Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Dwek, E.] NASA, Observ Cosmol Lab, Code 665, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Eales, S.; Griffin, M.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Ibar, E.; Ivison, R. J.; Wright, G.] UK Astron Technol Ctr, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Isaak, K.] ESTEC SRE SA, ESA Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands.
[Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France.
[Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Infrared Proc & Anal Ctr, JPL, Pasadena, CA 91125 USA.
[Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Pearson, C. P.; Rigopoulou, D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada.
[Rigopoulou, D.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England.
[Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Seymour, N.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia.
[Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Trichas, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vigroux, L.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Carollo, M.; Lilly, S.] Swiss Fed Inst Technol ETH Honggerberg, Inst Astron, CH-8093 Zurich, Switzerland.
[Contini, T.] Univ Toulouse, CNRS, Inst Rech Astrophys & Plantol, F-31400 Toulouse, France.
[Renzini, A.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy.
[Scodeggio, M.] INAF IASF Milano, I-20133 Milan, Italy.
RP Gruppioni, C (reprint author), INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy.
EM carlotta.gruppioni@oabo.inaf.it
RI Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; Daddi,
Emanuele/D-1649-2012; Bongiovanni, Angel/J-6176-2012; amblard,
alexandre/L-7694-2014; Bardelli, Sandro/O-9369-2015; Zucca,
Elena/O-9396-2015; Ivison, R./G-4450-2011;
OI Scott, Douglas/0000-0002-6878-9840; Marchetti,
Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536;
Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275;
Scodeggio, Marco/0000-0002-2282-5850; Pozzetti,
Lucia/0000-0001-7085-0412; Magliocchetti, Manuela/0000-0001-9158-4838;
Daddi, Emanuele/0000-0002-3331-9590; amblard,
alexandre/0000-0002-2212-5395; Bardelli, Sandro/0000-0002-8900-0298;
Zucca, Elena/0000-0002-5845-8132; Ivison, R./0000-0001-5118-1313;
Gruppioni, Carlotta/0000-0002-5836-4056
FU national funding agencies: CSA (Canada); national funding agencies: NAOC
(China); CEA; CNES; CNRS (France); ASI (Italy); MCINN (Spain); SNSB
(Sweden); STFC; UKSA (UK); NASA (USA); University of Trieste [FRA2009];
[PRIN- INAF 1.06.09.05]; [ASI- INAF I00507/1]; [I005110]
FX PACS has been developed by a consortium of institutes led by MPE
(Germany) and including: UVIE (Austria); KU Leuven, CSL, IMEC (Belgium);
CEA, LAM (France); MPIA (Germany); INAFIFSI/ OAA/OAP/OAT, LENS, SISSA
(Italy); and IAC (Spain). This development has been supported by the
funding agencies BMVIT (Austria), ESA- PRODEX (Belgium), CEA/CNES
(France), DLR (Germany), ASI/INAF (Italy) and CICYT/MCYT (Spain). SPIRE
has been developed by a consortium of institutes led by CardiffUniv.
(UK) and including: Univ. Lethbridge (Canada); NAOC (China); CEA,
LAM(France); IFSI, Univ. Padua (Italy); IAC (Spain);
StockholmObservatory (Sweden); Imperial College London, RAL, UCLMSSL,
UKATC, Univ. Sussex (UK) and Caltech, JPL, NHSC, Univ. Colorado (USA).
This development has been supported by national funding agencies: CSA
(Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN
(Spain); SNSB (Sweden); STFC, UKSA (UK) and NASA (USA). CG and FP
acknowledge financial contribution from the contracts PRIN- INAF
1.06.09.05 and ASI- INAF I00507/1 and I005110. PM thanks the University
of Trieste for the grant FRA2009. The authors thank an anonymous referee
for the helpful comments that greatly improved the quality of the paper.
NR 138
TC 106
Z9 105
U1 1
U2 7
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 1
BP 23
EP 52
DI 10.1093/mnras/stt308
PG 30
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 152IG
UT WOS:000319524600023
ER
PT J
AU Siwak, M
Rucinski, SM
Matthews, JM
Kuschnig, R
Guenther, DB
Moffat, AFJ
Rowe, JF
Sasselov, D
Weiss, WW
AF Siwak, Michal
Rucinski, Slavek M.
Matthews, Jaymie M.
Kuschnig, Rainer
Guenther, David B.
Moffat, Anthony F. J.
Rowe, Jason F.
Sasselov, Dimitar
Weiss, Werner W.
TI Photometric variability in FU Ori and Z CMa as observed by MOST
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE accretion, accretion discs; stars: individual: FU Ori; stars:
individual: Z CMa
ID Z-CANIS-MAJORIS; T TAURI STAR; SYSTEM Z CMA; AU-SCALE; ORIONIS OBJECTS;
2008 OUTBURST; DISK; SPECTROSCOPY; COMPANION; COMPONENT
AB Photometric observations obtained by the MOST satellite were used to characterize optical small-scale variability of the young stars FU Ori and Z CMa. Wavelet analysis for FU Ori reveals the possible existence of several 2-9 d quasi-periodic features occurring nearly simultaneously; they may be interpreted as plasma parcels or other localized disc heterogeneities revolving at different Keplerian radii in the accretion disc. Their periods may shorten slowly which may be due to spiralling in of individual parcels towards the inner disc radius, estimated at 4.8 +/- 0.2 R-circle dot. Analysis of additional multicolour data confirms the previously obtained relation between variations in the B - V colour index and the V magnitude. In contrast to the FU Ori results, the oscillation spectrum of Z CMa does not reveal any periodicities with the wavelet spectrum possibly dominated by outburst of the Herbig Be component.
C1 [Siwak, Michal] Cracov Pedag Univ, Mt Suhora Astron Observ, PL-30084 Krakow, Poland.
[Rucinski, Slavek M.] Univ Toronto, Deparntment Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Matthews, Jaymie M.; Kuschnig, Rainer] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Kuschnig, Rainer; Weiss, Werner W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria.
[Guenther, David B.] St Marys Univ, Dept Phys & Astron, Inst Computat Astrophys, Halifax, NS B3H 3C3, Canada.
[Moffat, Anthony F. J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada.
[Rowe, Jason F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Sasselov, Dimitar] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Siwak, M (reprint author), Cracov Pedag Univ, Mt Suhora Astron Observ, Ul Podchorazych 2, PL-30084 Krakow, Poland.
EM siwak@nac.oa.uj.edu.pl
FU Canadian Space Agency; Natural Sciences and Engineering Research Council
of Canada; FQRNT (Quebec); Austrian Science Funds [P22691-N16]
FX The Natural Sciences and Engineering Research Council of Canada supports
the research of DBG, JMM, AFJM and SMR. Additional support for AFJM
comes from FQRNT (Quebec). RK is supported by the Canadian Space Agency
and WWW is supported by the Austrian Science Funds (P22691-N16).
NR 37
TC 4
Z9 4
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 1
BP 194
EP 199
DI 10.1093/mnras/stt441
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 152IG
UT WOS:000319524600033
ER
PT J
AU Schmidt, KB
Rix, HW
da Cunha, E
Brammer, GB
Cox, TJ
van Dokkum, P
Schreiber, NMF
Franx, M
Fumagalli, M
Jonsson, P
Lundgren, B
Maseda, MV
Momcheva, I
Nelson, EJ
Skelton, RE
van der Wel, A
Whitaker, KE
AF Schmidt, Kasper B.
Rix, Hans-Walter
da Cunha, Elisabete
Brammer, Gabriel B.
Cox, Thomas J.
van Dokkum, Pieter
Schreiber, Natascha M. Foerster
Franx, Marijn
Fumagalli, Mattia
Jonsson, Patrik
Lundgren, Britt
Maseda, Michael V.
Momcheva, Ivelina
Nelson, Erica J.
Skelton, Rosalind E.
van der Wel, Arjen
Whitaker, Katherine E.
TI The spatial extent and distribution of star formation in 3D-HST mergers
at z similar to 1.5
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: formation; galaxies: interactions; galaxies: starburst;
galaxies: structure
ID INTEGRAL FIELD SPECTROSCOPY; DISC GALAXY MERGERS; DARK ENERGY SURVEY;
ULTRA-DEEP-FIELD; FORMING GALAXIES; MASSIVE GALAXIES; HIGH-REDSHIFT;
FORMATION HISTORY; NEARBY GALAXIES; MAJOR MERGERS
AB We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H alpha or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z similar to 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.
C1 [Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Maseda, Michael V.; van der Wel, Arjen] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Schmidt, Kasper B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Brammer, Gabriel B.] European So Observ, Santiago 19, Chile.
[Cox, Thomas J.] Carnegie Observ, Pasadena, CA 91101 USA.
[van Dokkum, Pieter; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Schreiber, Natascha M. Foerster] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Franx, Marijn; Fumagalli, Mattia] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Jonsson, Patrik] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Whitaker, Katherine E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
RP Schmidt, KB (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
EM kschmidt@physics.ucsb.edu
RI Skelton, Rosalind/S-1845-2016
OI Skelton, Rosalind/0000-0001-7393-3336
FU ERC grant HIGHZ [227749]; Marie Curie Initial Training Network ELIXIR of
the European Commission [PITN-GA-2008-214227]; NASA [NAS5-26555]
FX We acknowledge funding from ERC grant HIGHZ no. 227749. This work was
funded in part by the Marie Curie Initial Training Network ELIXIR of the
European Commission under contract PITN-GA-2008-214227. The work was
mainly done while KBS was a member of the International Max Planck
Research School for Astronomy and Cosmic Physics at the University of
Heidelberg (IMPRS-HD), Germany. This work is based on observations taken
by the 3D-HST Treasury Program with the NASA/ESA HST, which is operated
by the Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS5-26555.
NR 96
TC 9
Z9 9
U1 1
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 432
IS 1
BP 285
EP 300
DI 10.1093/mnras/stt459
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 152IG
UT WOS:000319524600040
ER
PT J
AU Inayoshi, K
Hosokawa, T
Omukai, K
AF Inayoshi, Kohei
Hosokawa, Takashi
Omukai, Kazuyuki
TI Pulsational instability of supergiant protostars: do they grow
supermassive by accretion?
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: mass-loss; stars: oscillations; stars: Population III; stars:
protostars; galaxies: nuclei; early Universe
ID MAIN-SEQUENCE STARS; BLACK-HOLE FORMATION; MASSIVE PRIMORDIAL STARS;
DARK-MATTER HALOES; DIRECT COLLAPSE; VIRIAL TEMPERATURES; VIBRATIONAL
INSTABILITY; NONLINEAR PULSATIONS; EPSILON-MECHANISM; POPULATION III
AB Supermassive stars (SMSs; M-* greater than or similar to 10(5) M-circle dot) and their remnant black holes are promising progenitors for supermassive black holes (SMBHs) observed in the early universe at z greater than or similar to 7. It has been postulated that SMSs form through very rapid mass accretion on to a protostar at a high rate exceeding 0.01 M-circle dot yr(-1). According to recent studies, such rapidly accreting protostars evolve into 'supergiant protostars', i.e. protostars consisting of a bloated envelope and a contracting core, similar to giant star. However, like massive stars as well as giant stars, both of which are known to be pulsationally unstable, supergiant protostars may also be unstable to launch strong pulsation-driven outflows. If this is the case, the stellar growth via accretion will be hindered by the mass-loss. We here study the pulsational stability of the supergiant protostars in the mass range M-* greater than or similar to 10(3) M-circle dot through the method of the linear perturbation analysis. We find that the supergiant protostars with M-* greater than or similar to 600 M-circle dot and very high accretion rate (M) over dot(acc) greater than or similar to 1.0 M-circle dot yr(-1) are unstable due to the kappa mechanism. The pulsation is excited in the He+ ionization layer in the envelope. Even under a conservative assumption that all the pulsation energy is converted into the kinetic energy of the outflows, the mass-loss rate is similar to 10(-) M-3(circle dot) yr(-1), which is lower than the accretion rate by more than two orders of magnitude. We thus conclude that the supergiant protostars should grow stably via rapid accretion at least in the mass range we studied. As long as the rapid accretion is maintained in the later stage, protostars will become SMSs, which eventually produce seeds for the high-z SMBHs.
C1 [Inayoshi, Kohei; Omukai, Kazuyuki] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan.
[Hosokawa, Takashi] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Hosokawa, Takashi] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Inayoshi, K (reprint author), Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan.
EM inayoshi@tap.scphys.kyoto-u.ac.jp
FU Ministry of Education, Culture, and Science of Japan [23.838, 2168407,
21244021]
FX We would like to thank Takashi Nakamura for his continuous
encouragement, Takafumi Sonoi and Kei Tanaka for fruitful discussions,
and Shunsuke Katayama for improving the manuscript. This work is
supported in part by the Grants-in-Aid by the Ministry of Education,
Culture, and Science of Japan (23.838 KI; 2168407 and 21244021 KO).
NR 55
TC 15
Z9 15
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 431
IS 4
BP 3036
EP 3044
DI 10.1093/mnras/stt362
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 151RX
UT WOS:000319479000007
ER
PT J
AU Cropper, M
Hoekstra, H
Kitching, T
Massey, R
Amiaux, J
Miller, L
Mellier, Y
Rhodes, J
Rowe, B
Pires, S
Saxton, C
Scaramella, R
AF Cropper, Mark
Hoekstra, Henk
Kitching, Thomas
Massey, Richard
Amiaux, Jerome
Miller, Lance
Mellier, Yannick
Rhodes, Jason
Rowe, Barnaby
Pires, Sandrine
Saxton, Curtis
Scaramella, Roberto
TI Defining a weak lensing experiment in space
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE gravitational lensing: weak; methods: statistical; space vehicles:
instruments; cosmological parameters; cosmology: observations
ID POINT-SPREAD FUNCTION; GALAXY SHAPE MEASUREMENT; CHARGE-TRANSFER
INEFFICIENCY; PIXEL-BASED CORRECTION; COSMIC SHEAR; ADVANCED CAMERA;
DARK ENERGY; SYSTEMATIC-ERRORS; IMAGE-ANALYSIS; TELESCOPE
AB This paper describes the definition of a typical next-generation space-based weak gravitational lensing experiment. We first adopt a set of top-level science requirements from the literature, based on the scale and depth of the galaxy sample, and the avoidance of systematic effects in the measurements which would bias the derived shear values. We then identify and categorize the contributing factors to the systematic effects, combining them with the correct weighting, in such a way as to fit within the top-level requirements. We present techniques which permit the performance to be evaluated and explore the limits at which the contributing factors can be managed. Besides the modelling biases resulting from the use of weighted moments, the main contributing factors are the reconstruction of the instrument point spread function, which is derived from the stellar images on the image, and the correction of the charge transfer inefficiency in the CCD detectors caused by radiation damage.
C1 [Cropper, Mark; Kitching, Thomas; Saxton, Curtis] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Hoekstra, Henk] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Kitching, Thomas; Massey, Richard] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Massey, Richard] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Amiaux, Jerome; Mellier, Yannick; Pires, Sandrine] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France.
[Miller, Lance] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Mellier, Yannick] Univ Paris 06, CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France.
[Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Rhodes, Jason; Rowe, Barnaby] CALTECH, Pasadena, CA 91125 USA.
[Rowe, Barnaby] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Scaramella, Roberto] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy.
RP Cropper, M (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England.
EM m.cropper@ucl.ac.uk
RI Saxton, Curtis/A-6435-2013;
OI Saxton, Curtis/0000-0002-5441-1978; Scaramella,
Roberto/0000-0003-2229-193X; Rowe, Barnaby/0000-0002-7042-9174;
Hoekstra, Henk/0000-0002-0641-3231
FU Netherlands Organization for Scientific Research through VIDI;
Netherlands Research School for Astronomy (NOVA); Royal Astronomical
Society; Royal Society; ERC International Reintegration Grants; European
Research Council [240672]; JPL
FX We thank Rene Laureijs, Pierre Ferruit, Tim Oosterbroek and Ludovic
Duvet at ESA for their support. We also thank Elisabetta Semboloni for
her comments on the paper. We acknowledge the referee who made some
valuable suggestions which improved the accessibility of this paper. HH
is supported by the Netherlands Organization for Scientific Research
through VIDI grants and acknowledges support from the Netherlands
Research School for Astronomy (NOVA). TDK was supported by a Royal
Astronomical Society 2010 Fellowship and now by a Royal Society
University Research Fellowship. RM is supported by a Royal Society
University Research Fellowship. RM and HH also acknowledge support from
ERC International Reintegration Grants. BR acknowledges support from
European Research Council in the form of a Starting Grant with number
240672. JR was supported by JPL, run by Caltech under a contract for
NASA.
NR 76
TC 32
Z9 32
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN
PY 2013
VL 431
IS 4
BP 3103
EP 3126
DI 10.1093/mnras/stt384
PG 24
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 151RX
UT WOS:000319479000011
ER
PT J
AU Otto, A
Otto, FEL
Boucher, O
Church, J
Hegerl, G
Forster, PM
Gillett, NP
Gregory, J
Johnson, GC
Knutti, R
Lewis, N
Lohmann, U
Marotzke, J
Myhre, G
Shindell, D
Stevens, B
Allen, MR
AF Otto, Alexander
Otto, Friederike E. L.
Boucher, Olivier
Church, John
Hegerl, Gabi
Forster, Piers M.
Gillett, Nathan P.
Gregory, Jonathan
Johnson, Gregory C.
Knutti, Reto
Lewis, Nicholas
Lohmann, Ulrike
Marotzke, Jochem
Myhre, Gunnar
Shindell, Drew
Stevens, Bjorn
Allen, Myles R.
TI Energy budget constraints on climate response
SO NATURE GEOSCIENCE
LA English
DT Letter
ID SENSITIVITY
C1 [Otto, Alexander; Otto, Friederike E. L.; Allen, Myles R.] Univ Oxford, Environm Change Inst, Oxford OX1 3QY, England.
[Boucher, Olivier] UPMC, CNRS, IPSL, Lab Meteorol Dynam, Paris, France.
[Church, John] CSIRO Marine & Atmospher Res Hobart, Hobart, Tas 7000, Australia.
[Hegerl, Gabi] Univ Edinburgh, Grant Inst, Edinburgh EH9 3JW, Midlothian, Scotland.
[Forster, Piers M.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
[Gillett, Nathan P.] Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada.
[Gregory, Jonathan] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England.
[Johnson, Gregory C.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Knutti, Reto; Lohmann, Ulrike] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland.
[Lewis, Nicholas] Walden, Bath BA2 6ED, Avon, England.
[Marotzke, Jochem; Stevens, Bjorn] Max Planck Inst Meteorol, D-20146 Hamburg, Germany.
[Myhre, Gunnar] CICERO, N-0318 Oslo, Norway.
[Shindell, Drew] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Allen, Myles R.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
RP Otto, A (reprint author), Univ Oxford, Environm Change Inst, S Parks Rd, Oxford OX1 3QY, England.
EM alexander.otto@ouce.ox.ac.uk
RI Church, John/A-1541-2012; Forster, Piers/F-9829-2010; Stevens,
Bjorn/A-1757-2013; Johnson, Gregory/I-6559-2012; Knutti,
Reto/B-8763-2008; Shindell, Drew/D-4636-2012; Myhre, Gunnar/A-3598-2008;
Lohmann, Ulrike/B-6153-2009; Gregory, Jonathan/J-2939-2016
OI Church, John/0000-0002-7037-8194; Forster, Piers/0000-0002-6078-0171;
Stevens, Bjorn/0000-0003-3795-0475; Johnson,
Gregory/0000-0002-8023-4020; Knutti, Reto/0000-0001-8303-6700; Myhre,
Gunnar/0000-0002-4309-476X; Lohmann, Ulrike/0000-0001-8885-3785;
Gregory, Jonathan/0000-0003-1296-8644
FU Natural Environment Research Council [NE/E016189/1]
NR 16
TC 107
Z9 107
U1 6
U2 103
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
J9 NAT GEOSCI
JI Nat. Geosci.
PD JUN
PY 2013
VL 6
IS 6
BP 415
EP 416
DI 10.1038/ngeo1836
PG 2
WC Geosciences, Multidisciplinary
SC Geology
GA 154ET
UT WOS:000319655200003
ER
PT J
AU Yoon, J
Hunter, G
Akbar, S
Dutta, PK
AF Yoon, Junro
Hunter, Gary
Akbar, Sheikh
Dutta, Prabir K.
TI Interface reaction and its effect on the performance of a CO2 gas sensor
based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode
SO SENSORS AND ACTUATORS B-CHEMICAL
LA English
DT Article
DE CO2 sensor; Electrochemical device; Lithium lanthanum titanate;
Electrode-electrolyte interface; Interface reaction; Lithium ion
conductor
ID SOLID REFERENCE ELECTRODE; LITHIUM LANTHANUM TITANATES; ELECTROCHEMICAL
CO2; POTENTIOMETRIC SENSOR; IONIC-CONDUCTIVITY; TEMPERATURE; STABILITY;
NASICON; OXIDE; LA0.67-XLI3XTIO3
AB A new potentiometric CO2 gas sensor using lithium-lanthanum-titanate (Li0.35La0.55TiO3, LLTO) electrolyte, Li2CO3 sensing electrode, and Li2TiO3 + TiO2 reference electrode was investigated. The microstructure and electrical properties of the optimized solid electrolyte were examined and the measured conductivity values were found consistent with those reported in literature. The performance of the sensor depended both on the fabrication temperature and the sensor operation temperature. Sensors with the sensing electrode fabricated above 500 degrees C performed poorly. For sensing electrodes fabricated at 500 degrees C, as the sensing temperature increased from 300 to 450 degrees C, the performance of the sensor improved (near Nernstian response), but above 450 degrees C, the sensor degraded. The proposed hypothesis for the degradation beyond 450 degrees C is that at low levels of CO2 (ppb in the background), Li2CO3 reacts with LLTO resulting in insertion of Li+ into LLTO that causes changes in the electrical properties of the electrolyte. Poor performance of sensors fabricated at 700 degrees C was due to formation of a new phase, LaLi1/3Ti2/3O3. Thermodynamic calculations combined with X-ray diffraction of the reaction products are used to support the hypothesis. Introduction of high concentrations of CO2 (similar to 99.99%) during sensor fabrication (650 degrees C) eliminated the reaction between Li2CO3 and LLTO, and also facilitated the bonding between the electrode and the electrolyte. As for long-term device performance, it is shown that the sensor can measure changes in CO2 concentrations reproducibly below temperatures of 450 degrees C, as long as it is operated in conditions where there is a background of CO2, such as in ambient atmosphere or combustion environments. The sensor exhibits minimal interference toward oxygen, but significant interference to humidity. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Yoon, Junro; Akbar, Sheikh; Dutta, Prabir K.] Ohio State Univ, Ctr Ind Sensors & Measurements, Columbus, OH 43210 USA.
[Yoon, Junro; Akbar, Sheikh] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA.
[Hunter, Gary] NASA, Glenn Res Ctr, Cleveland, OH USA.
[Dutta, Prabir K.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA.
RP Akbar, S (reprint author), Ohio State Univ, Ctr Ind Sensors & Measurements, 2041 Coll Rd, Columbus, OH 43210 USA.
EM akbar@matsceng.ohio-state.edu; dutta.1@osu.edu
RI Akbar, Sheikh/J-6170-2013
OI Akbar, Sheikh/0000-0003-3567-274X
FU NASA
FX We acknowledge funding from NASA for this research.
NR 53
TC 7
Z9 7
U1 3
U2 53
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-4005
J9 SENSOR ACTUAT B-CHEM
JI Sens. Actuator B-Chem.
PD JUN
PY 2013
VL 182
BP 95
EP 103
DI 10.1016/j.snb.2013.02.104
PG 9
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA 151VP
UT WOS:000319488800014
ER
PT J
AU Lintott, CJ
Schwamb, ME
Barclay, T
Sharzer, C
Fischer, DA
Brewer, J
Giguere, M
Lynn, S
Parrish, M
Batalha, N
Bryson, S
Jenkins, J
Ragozzine, D
Rowe, JF
Schwainski, K
Gagliano, R
Gilardi, J
Jek, KJ
Paakkonen, JP
Smits, T
AF Lintott, Chris J.
Schwamb, Megan E.
Barclay, Thomas
Sharzer, Charlie
Fischer, Debra A.
Brewer, John
Giguere, Matthew
Lynn, Stuart
Parrish, Michael
Batalha, Natalie
Bryson, Steve
Jenkins, Jon
Ragozzine, Darin
Rowe, Jason F.
Schwainski, Kevin
Gagliano, Robert
Gilardi, Joe
Jek, Kian J.
Paeaekkoenen, Jari-Pekka
Smits, Tjapko
TI PLANET HUNTERS: NEW KEPLER PLANET CANDIDATES FROM ANALYSIS OF QUARTER 2
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE planets and satellites: detection; planets and satellites: individual
(KIC 4552729b, KIC 10005758b, KIC 10005758c)
ID GALAXY ZOO; SYSTEMS; STELLAR
AB We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8R(circle plus). The latter star has an additional known planet candidate with a radius of 5.05R(circle plus) and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged.
C1 [Lintott, Chris J.] Oxford Astrophys, Oxford OX1 3RH, England.
[Lintott, Chris J.; Lynn, Stuart; Parrish, Michael] Adler Planetarium, Chicago, IL 60605 USA.
[Schwamb, Megan E.; Schwainski, Kevin] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Schwamb, Megan E.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Barclay, Thomas; Batalha, Natalie; Bryson, Steve; Rowe, Jason F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Barclay, Thomas] Bay Area Environm Res Inst, Sonoma, CA 95476 USA.
[Sharzer, Charlie; Fischer, Debra A.; Brewer, John; Giguere, Matthew] Yale Univ, Dept Astron, New Haven, CT 06511 USA.
[Jenkins, Jon] SETI Inst, Mountain View, CA 94043 USA.
[Ragozzine, Darin] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Lintott, CJ (reprint author), Oxford Astrophys, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England.
EM cjl@astro.ox.ac.uk
OI Brewer, John/0000-0002-9873-1471; Schwamb, Megan/0000-0003-4365-1455;
Fischer, Debra/0000-0003-2221-0861
FU Yale University; NASA [10-OUTRCH.210-0001, NAS5-26555]; NSF Astronomy
and Astrophysics Postdoctoral Fellowship [AST-100325]; Leverhulme Trust;
National Science Foundation [DRL-0941610]; National Aeronautics and
Space Administration; NASA Office of Space Science [NNX09AF08G]
FX D.F. acknowledges funding support from Yale University and support from
the NASA Supplemental Outreach Award, 10-OUTRCH.210-0001. M.E.S. is
supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship
under award AST-100325. The Zooniverse is supported by The Leverhulme
Trust. The Talk system used by Planet Hunters was built during work
supported by the National Science Foundation under grant No.
DRL-0941610. We gratefully acknowledge the dedication and achievements
of Kepler Science Team and all those who contributed to the success of
the mission. We acknowledge use of public release data served by the
NASA/IPAC/NExScI Star and Exoplanet Database, which is operated by the
Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration. This
research has made use of NASA's Astrophysics Data System Bibliographic
Services. This paper includes data collected by the Kepler spacecraft,
and we gratefully acknowledge the entire Kepler mission team's efforts
in obtaining and providing the light curves used in this analysis.
Funding for the Kepler mission is provided by the NASA Science Mission
directorate. The publicly released Kepler light curves were obtained
from the Mikulski Archive for Space Telescopes at the Space Telescope
Science Institute (MAST). STScI is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract
NAS5-26555. Support for MAST for non-HST data is provided by the NASA
Office of Space Science via grant NNX09AF08G and by other grants and
contracts.
NR 26
TC 10
Z9 10
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
J9 ASTRON J
JI Astron. J.
PD JUN
PY 2013
VL 145
IS 6
AR 151
DI 10.1088/0004-6256/145/6/151
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 147LC
UT WOS:000319167400008
ER
PT J
AU Lang, C
Doostan, A
Maute, K
AF Lang, Christapher
Doostan, Alireza
Maute, Kurt
TI Extended stochastic FEM for diffusion problems with uncertain material
interfaces
SO COMPUTATIONAL MECHANICS
LA English
DT Article
DE X-SFEM; Polynomial chaos; Level set method; Uncertainty analysis;
Enrichment
ID FINITE-ELEMENT-METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; LEVEL SET METHOD;
POLYNOMIAL CHAOS; COMPOSITE-MATERIALS; RANDOM DOMAINS; CRACK-GROWTH;
PROPAGATION; INCLUSIONS; SIMULATION
AB This paper is concerned with the prediction of heat transfer in composite materials with uncertain inclusion geometry. To numerically solve the governing equation, which is defined on a random domain, an approach based on the combination of the Extended finite element method (X-FEM) and the spectral stochastic finite element method is studied. Two challenges of the extended stochastic finite element method (X-SFEM) are choosing an enrichment function and numerical integration over the probability domain. An enrichment function, which is based on knowledge of the interface location, captures the C-0-continuous solution in the spatial and probability domains without a conforming mesh. Standard enrichment functions and enrichment functions tailored to X-SFEM are analyzed and compared, and the basic elements of a successful enrichment function are identified. We introduce a partition approach for accurate integration over the probability domain. The X-FEM solution is studied as a function of the parameters describing the inclusion geometry and the different enrichment functions. The efficiency and accuracy of a spectral polynomial chaos expansion and a finite element approximation in the probability domain are compared. Numerical examples of a two-dimensional heat conduction problem with a random inclusion show the spectral PC approximation with a suitable choice of enrichment function is as accurate and more efficient than the finite element approach. Though focused on heat transfer in composite materials, the techniques and observations in this paper are also applicable to other types of problems with uncertain geometry.
C1 [Lang, Christapher] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23665 USA.
[Doostan, Alireza; Maute, Kurt] Univ Colorado, Boulder, CO 80309 USA.
RP Doostan, A (reprint author), Univ Colorado, Boulder, CO 80309 USA.
EM alireza.doostan@colorado.edu
FU NASA Fundamental Aeronautics Program; Department of Energy
[DE-SC0006402]; National Science Foundation [EFRI-1038305]
FX The first author acknowledges the support of the NASA Fundamental
Aeronautics Program, and the second author acknowledges the support of
the Department of Energy under grant DE-SC0006402. The third author
acknowledges the support of the National Science Foundation under grant
EFRI-1038305. The opinions and conclusions presented are those of the
authors and do not necessarily reflect the views of the sponsoring
organizations.
NR 40
TC 7
Z9 7
U1 0
U2 15
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0178-7675
J9 COMPUT MECH
JI Comput. Mech.
PD JUN
PY 2013
VL 51
IS 6
BP 1031
EP 1049
DI 10.1007/s00466-012-0785-8
PG 19
WC Mathematics, Interdisciplinary Applications; Mechanics
SC Mathematics; Mechanics
GA 149UI
UT WOS:000319346500013
ER
PT J
AU Atteia, GE
Collins, MJ
AF Atteia, G. E.
Collins, Michael J.
TI On the use of compact polarimetry SAR for ship detection
SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING
LA English
DT Article
DE Ship detection; Polarimetry; Compact polarimetry; Synthetic aperture
radar
ID SYNTHETIC-APERTURE RADAR; POL SAR; CLASSIFICATION; ARCHITECTURE;
PERFORMANCE
AB Quad-pol data are generally acknowledged as providing the highest performance in ship detection applications using SAR data. Yet quad-pol data have half the swath width of single and dual-pol data and are thus less useful for maritime surveillance, where wide area coverage is crucial. Compact polarimetry (CP) has been proposed as a compromise between swath width and polarization information. The circular-transmit-linear-receive (CTLR) CP data have certain engineering advantages over other CP configurations. CF data may be used to reconstruct a reduced quad-pol covariance matrix (termed pseudo-quad, or PQ data) and the potential of these data in terrestrial applications has recently been demonstrated. We present some of the first results on the use of CTLR data and reconstructed quad-pol data for ship detection. We use Radarsat-2 fine-quad (FQ) data to examine 76 ships over a range of incidence angles and ship orientations at low to moderate wind speeds. We examined the ship detection performance of full quad-pol and full-PQ data; several dual-pol configurations suggested in the literature, HV and PQ HV and the raw CTLR data. We find that the ship detection performance of the PQHV data is the strongest of all the detectors we examined, with performance that was comparable to quad-pol data. Other strong performers were HV and CTLR data. (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
C1 [Atteia, G. E.; Collins, Michael J.] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada.
[Collins, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Collins, MJ (reprint author), Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada.
EM mjcollin@ucalgary.ca
RI chen, zhu/K-5923-2013
FU Defence Research and Development Canada; Natural Science and Engineering
Research Council (NSERC) of Canada
FX Paris Vachon of Defence Research and Development Canada provided both
funding and data. Chen Liu, also of DRDC, helped us implement the LRT.
We also acknowledge Francois Charbonneau, of the Canada Centre for
Remote Sensing, for leading the Canadian working group on compact
polarimetry. We further acknowledge funding support from Natural Science
and Engineering Research Council (NSERC) of Canada.
NR 46
TC 18
Z9 21
U1 0
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0924-2716
J9 ISPRS J PHOTOGRAMM
JI ISPRS-J. Photogramm. Remote Sens.
PD JUN
PY 2013
VL 80
BP 1
EP 9
DI 10.1016/j.isprsjprs.2013.01.009
PG 9
WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing;
Imaging Science & Photographic Technology
SC Physical Geography; Geology; Remote Sensing; Imaging Science &
Photographic Technology
GA 148KI
UT WOS:000319243100001
ER
PT J
AU Orwoll, ES
Adler, RA
Amin, S
Binkley, N
Lewiecki, EM
Petak, SM
Shapses, SA
Sinaki, M
Watts, NB
Sibonga, JD
AF Orwoll, Eric S.
Adler, Robert A.
Amin, Shreyasee
Binkley, Neil
Lewiecki, E. Michael
Petak, Steven M.
Shapses, Sue A.
Sinaki, Mehrsheed
Watts, Nelson B.
Sibonga, Jean D.
TI Skeletal health in long-duration astronauts: Nature, assessment, and
management recommendations from the NASA bone summit
SO JOURNAL OF BONE AND MINERAL RESEARCH
LA English
DT Review
DE SPACEFLIGHT; OSTEOPOROSIS; QCT; FINITE ELEMENT MODELING; DXA; FRACTURE;
MICROGRAVITY
ID PROXIMAL FEMORAL STRENGTH; FINITE-ELEMENT-ANALYSIS; BED-REST;
SPACE-FLIGHT; HIP FRACTURE; MINERAL DENSITY; CANCELLOUS BONE;
SPACEFLIGHT; MEN; WEIGHTLESSNESS
AB Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions.
C1 [Orwoll, Eric S.] Oregon Hlth & Sci Univ, Bone & Mineral Unit, Portland, OR 97201 USA.
[Adler, Robert A.] McGuire Vet Affairs Med Ctr, Dept Endocrinol, Richmond, VA USA.
[Adler, Robert A.] Virginia Commonwealth Univ, Sch Med, Richmond, VA USA.
[Amin, Shreyasee] Mayo Clin, Div Rheumatol, Rochester, MN USA.
[Binkley, Neil] Univ Wisconsin, Osteoporosis Clin Ctr, Madison, WI USA.
[Binkley, Neil] Univ Wisconsin, Res Program, Madison, WI USA.
[Lewiecki, E. Michael] New Mexico Clin Res & Osteoporosis Ctr, Albuquerque, NM USA.
[Petak, Steven M.] Texas Inst Reprod Med & Endocrinol, Houston, TX USA.
[Shapses, Sue A.] Rutgers State Univ, Dept Nutr Sci, New Brunswick, NJ 08903 USA.
[Sinaki, Mehrsheed] Mayo Clin, Dept Phys Med & Rehabil, Rochester, MN USA.
[Watts, Nelson B.] Mercy Hlth Osteoporosis Serv, Cincinnati, OH USA.
[Watts, Nelson B.] Mercy Bone Hlth Serv, Cincinnati, OH USA.
[Sibonga, Jean D.] NASA, Human Hlth & Performance Directorate, Johnson Space Ctr, Houston, TX 77058 USA.
RP Sibonga, JD (reprint author), NASA, Bone & Mineral Lab SK 272, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM Jean.sibonga-1@nasa.gov
OI Orwoll, Eric/0000-0002-8520-7355
FU Human Adaptation and Countermeasures Division at NASA Johnson Space
Center
FX Appreciation is extended to Dr. Angelo A. Licata (Cleveland Clinic,
Center for Space Medicine) and Dr. S. V. Reddy (Medical University of
South Carolina) for their thoughtful review of this manuscript and to
Dr. Jane Krauhs and Dr. Kathleen McMonigal, MD (both of Johnson Space
Center) for their editorial assistance. In addition, authors wish to
acknowledge the contributions of Dr. Scott M. Smith, Dr. Sara R. Zwart,
Dr. Andrea M. Hanson, Dr. Harlan Evans, Ms. Elisabeth R. Spector, and
Ms. Adriana Babiak-Vazquez (all of Johnson Space Center), Dr. Adrian D.
LeBlanc (Universities Space Research Association), Dr. Thomas F. Lang
(University of California at San Francisco), and Dr. Joyce H. Keyak
(University of California at Irvine) for the presentations of astronaut
data in this review. The Bone Summit activity was funded by Human
Adaptation and Countermeasures Division at NASA Johnson Space Center.
NR 38
TC 27
Z9 31
U1 1
U2 36
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0884-0431
J9 J BONE MINER RES
JI J. Bone Miner. Res.
PD JUN
PY 2013
VL 28
IS 6
BP 1243
EP 1255
DI 10.1002/jbmr.1948
PG 13
WC Endocrinology & Metabolism
SC Endocrinology & Metabolism
GA 149VS
UT WOS:000319350100001
PM 23553962
ER
PT J
AU Plante, I
Devroye, L
Cucinotta, FA
AF Plante, Ianik
Devroye, Luc
Cucinotta, Francis A.
TI Random sampling of the Green's Functions for reversible reactions with
an intermediate state
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Computer simulations; Monte-Carlo simulations; Single molecule reaction
kinetics; Biophysical mechanisms of interaction
ID MONTE-CARLO-SIMULATION; ONE-DIMENSION; LIQUID WATER; GEMINATE
RECOMBINATION; BIMOLECULAR REACTIONS; FRICKE DOSIMETER; DIFFUSION;
RADIOLYSIS; RADIATION; KINETICS
AB Exact random variate generators were developed to sample Green's functions used in Brownian Dynamics (BD) algorithms for the simulations of chemical systems. These algorithms, which use less than a kilobyte of memory, provide a useful alternative to the table look-up method that has been used in similar work. The cases that are studied with this approach are (1) diffusion-influenced reactions; (2) reversible diffusion-influenced reactions and (3) reactions with an intermediate state such as enzymatic catalysis. The results are validated by comparison with those obtained by the Independent Reaction Times (IRT) method. This work is part of our effort in developing models to understand the role of radiation chemistry in the radiation effects on human body and may eventually be included in event-based models of space radiation risk. (C) 2013 Elsevier Inc. All rights reserved.
C1 [Plante, Ianik] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA.
[Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Devroye, Luc] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 0E9, Canada.
RP Plante, I (reprint author), NASA, Lyndon B Johnson Space Ctr, Bldg 37,2101 NASA Pkwy, Houston, TX 77058 USA.
EM ianik.plante-1@nasa.gov; lucdevroye@gmail.com;
Francis.A.Cucinotta@nasa.gov
FU NASA Space Radiation Risk Assessment Project
FX This work was supported by the NASA Space Radiation Risk Assessment
Project. We would also like to thank Drs. Noam Agmon and Dr. Soohyung
Park for useful correspondence.
NR 34
TC 4
Z9 4
U1 0
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUN 1
PY 2013
VL 242
BP 531
EP 543
DI 10.1016/j.jcp.2013.02.001
PG 13
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 145WK
UT WOS:000319049800026
ER
PT J
AU Breuner, CW
Sprague, RS
Patterson, SH
Woods, HA
AF Breuner, Creagh W.
Sprague, Rachel S.
Patterson, Stephen H.
Woods, H. Arthur
TI Environment, behavior and physiology: do birds use barometric pressure
to predict storms?
SO JOURNAL OF EXPERIMENTAL BIOLOGY
LA English
DT Article
DE activity; corticosterone; environmental cues; inclement weather;
metabolic rate; stress
ID WHITE-CROWNED SPARROWS; FOOD-INTAKE; CORTICOSTERONE RESPONSES;
ADRENOCORTICAL-RESPONSE; ATMOSPHERIC-PRESSURE; AMBIENT-TEMPERATURE;
PARATYMPANIC ORGAN; PASSERINE BIRDS; SIERRA-NEVADA; WEATHER
AB Severe storms can pose a grave challenge to the temperature and energy homeostasis of small endothermic vertebrates. Storms are accompanied by lower temperatures and wind, increasing metabolic expenditure, and can inhibit foraging, thereby limiting energy intake. To avoid these potential problems, most endotherms have mechanisms for offsetting the energetic risks posed by storms. One possibility is to use cues to predict oncoming storms and to alter physiology and behavior in ways that make survival more likely. Barometric pressure declines predictably before inclement weather, and several lines of evidence indicate that animals alter behavior based on changes in ambient pressure. Here we examined the effects of declining barometric pressure on physiology and behavior in the white-crowned sparrow, Zonotrichia leucophrys. Using field data from a long-term study, we first evaluated the relationship between barometric pressure, storms and stress physiology in free-living white-crowned sparrows. We then manipulated barometric pressure experimentally in the laboratory and determined how it affects activity, food intake, metabolic rates and stress physiology. The field data showed declining barometric pressure in the 12-24 h preceding snowstorms, but we found no relationship between barometric pressure and stress physiology. The laboratory study showed that declining barometric pressure stimulated food intake, but had no effect on metabolic rate or stress physiology. These data suggest that white-crowned sparrows can sense and respond to declining barometric pressure, and we propose that such an ability may be common in wild vertebrates, especially small ones for whom individual storms can be life-threatening events.
C1 [Breuner, Creagh W.; Sprague, Rachel S.] Univ Montana, Wildlife Biol Program, Missoula, MT 59812 USA.
[Breuner, Creagh W.; Patterson, Stephen H.; Woods, H. Arthur] Univ Montana, Missoula, MT 59812 USA.
[Sprague, Rachel S.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Reg Off, Honolulu, HI 96814 USA.
RP Breuner, CW (reprint author), Univ Montana, Wildlife Biol Program, 32 Campus Dr, Missoula, MT 59812 USA.
EM creagh.breuner@umontana.edu
FU National Science Foundation [IBN 0236536, IOS 0747361]
FX This work was supported by the National Science Foundation [IBN 0236536,
IOS 0747361 to C.W.B.].
NR 57
TC 8
Z9 10
U1 3
U2 64
PU COMPANY OF BIOLOGISTS LTD
PI CAMBRIDGE
PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL,
CAMBS, ENGLAND
SN 0022-0949
J9 J EXP BIOL
JI J. Exp. Biol.
PD JUN
PY 2013
VL 216
IS 11
BP 1982
EP 1990
DI 10.1242/jeb.081067
PG 9
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA 146UG
UT WOS:000319117400013
PM 23678098
ER
PT J
AU Wu, K
Choudhury, D
Matsumoto, H
AF Wu, Ke
Choudhury, Debabani
Matsumoto, Hiroshi
TI Wireless Power Transmission, Technology, and Applications
SO PROCEEDINGS OF THE IEEE
LA English
DT Editorial Material
C1 [Wu, Ke] Southeast Univ, Boston, MA USA.
[Wu, Ke] Univ Montreal, Ecole Polytech, Montreal, PQ, Canada.
[Wu, Ke] Nanjing Univ Sci & Technol, Nanjing, Jiangsu, Peoples R China.
[Wu, Ke] Nanjing Univ Post Telecommun, Nanjing, Jiangsu, Peoples R China.
[Wu, Ke] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China.
[Choudhury, Debabani] Millitech Corp, Northampton, MA USA.
[Choudhury, Debabani] NASA, Jet Prop Lab, Washington, DC USA.
[Matsumoto, Hiroshi] Kyoto Univ, Kyoto 6068501, Japan.
[Matsumoto, Hiroshi] Kyoto Univ, Fac Engn, Kyoto 6068501, Japan.
[Matsumoto, Hiroshi] Kyoto Univ, Radio Sci Ctr Space & Atmosphere, Kyoto 6068501, Japan.
RP Wu, K (reprint author), Southeast Univ, Boston, MA USA.
NR 0
TC 20
Z9 22
U1 0
U2 21
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9219
J9 P IEEE
JI Proc. IEEE
PD JUN
PY 2013
VL 101
IS 6
SI SI
BP 1271
EP 1275
DI 10.1109/JPROC.2013.2257590
PG 5
WC Engineering, Electrical & Electronic
SC Engineering
GA 147DY
UT WOS:000319147000002
ER
PT J
AU Xu, TB
Siochi, EJ
Kang, JH
Zuo, L
Zhou, WL
Tang, XD
Jiang, XN
AF Xu, Tian-Bing
Siochi, Emilie J.
Kang, Jin Ho
Zuo, Lei
Zhou, Wanlu
Tang, Xiudong
Jiang, Xiaoning
TI Energy harvesting using a PZT ceramic multilayer stack
SO SMART MATERIALS AND STRUCTURES
LA English
DT Article
ID AIRPLANE FUSELAGE STRUCTURE; VIBRATION MEASUREMENTS; STRESS; CIRCUIT;
CAPACITANCE; TRANSDUCER; EXCITATION; DEPENDENCE; CRYSTALS; CYMBAL
AB In this paper, the interdisciplinary energy harvesting issues on piezoelectric energy harvesting were investigated using a '33' mode (mechanical stress and/or electric field are in parallel to the polarization direction) lead zirconate titanate multilayer piezoelectric stack (PZT-Stack). Key energy harvesting characteristics including the generated electrical energy/power in the PZT-Stack, the mechanical to electrical energy conversion efficiency, the power delivered from the PZT-Stack to a resistive load, the electrical charge/energy transferred from the PZT-Stack to a super-capacitor were systematically addressed. Theoretical models for power generation and delivery to a resistive load were proposed and experimentally affirmed. In a quasi-static regime, 70% generated electrical powers were delivered to matched resistive loads. A 35% mechanical to electrical energy conversion efficiency, which is more than 4 times higher than other reports, for the PZT-Stack had been obtained. The generated electrical power and power density were significantly higher than those from a similar weight and size cantilever-type piezoelectric harvester in both resonance and off-resonance modes. In addition, our study indicated that the capacitance and piezoelectric coefficient of the PZT-Stack were strongly dependent on the dynamic stress.
C1 [Xu, Tian-Bing; Kang, Jin Ho] Natl Inst Aerosp, Hampton, VA 23666 USA.
[Siochi, Emilie J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Zuo, Lei; Zhou, Wanlu; Tang, Xiudong] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA.
[Jiang, Xiaoning] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA.
RP Xu, TB (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA.
EM tbxu@nianet.org
RI Jiang, Xiaoning/E-6619-2011; Zuo, Lei/B-3122-2017
OI Jiang, Xiaoning/0000-0003-3605-3801;
NR 51
TC 27
Z9 27
U1 6
U2 74
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0964-1726
EI 1361-665X
J9 SMART MATER STRUCT
JI Smart Mater. Struct.
PD JUN
PY 2013
VL 22
IS 6
AR 065015
DI 10.1088/0964-1726/22/6/065015
PG 15
WC Instruments & Instrumentation; Materials Science, Multidisciplinary
SC Instruments & Instrumentation; Materials Science
GA 147VH
UT WOS:000319195500016
ER
PT J
AU Yu, LY
Leckey, CAC
Tian, ZH
AF Yu, Lingyu
Leckey, Cara A. C.
Tian, Zhenhua
TI Study on crack scattering in aluminum plates with Lamb wave
frequency-wavenumber analysis
SO SMART MATERIALS AND STRUCTURES
LA English
DT Article
ID FINITE INTEGRATION TECHNIQUE; LASER
AB The multimodal characteristic of Lamb waves makes the interpretation of Lamb wave signals difficult in either the time or frequency domain. In this work, we present our study of Lamb wave propagation characterization and crack scattering using frequency-wavenumber analysis. The aim is to investigate three dimensional (3D) Lamb wave behavior in the presence of crack damage via the application of frequency-wavenumber analysis. The analysis techniques are demonstrated using simulation examples of an aluminum plate with a through-thickness crack. Both in-plane and out-of-plane components are acquired through a 3D elastodynamic finite integration technique (EFIT), while the out-of-plane component is also experimentally obtained using a scanning laser Doppler vibrometer for verification purposes. The time-space wavefield is then transformed to the frequency-wavenumber domain by a two dimensional (2D) Fourier transform and the out-of-plane EFIT results are compared to experimental measurements. The experimental and simulated results are found to be in close agreement. The frequency-wavenumber representation of in-plane and out-of-plane components shows clear distinction among various Lamb wave modes that are present. However, spatial information is lost during this 2D transformation. A short space 2D Fourier transform is therefore adopted to obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation of the signal. The space-frequency-wavenumber analysis has shown its potential for indicating crack presence.
C1 [Yu, Lingyu; Tian, Zhenhua] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
[Leckey, Cara A. C.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA.
RP Yu, LY (reprint author), Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
EM yu3@mailbox.sc.edu
RI Tian, Zhenhua/I-6687-2015
OI Tian, Zhenhua/0000-0002-1903-5604
FU US Nuclear Regulatory Commission [NRC-04-10-155]
FX Part of this work is conducted through the non-reimbursement space act
umbrella agreement SAA1-1181 between South Carolina Research Foundation
(SCRF) and the National Aeronautics and Space Administration (NASA)
Langley research center. Part of this work is supported by the US
Nuclear Regulatory Commission award NRC-04-10-155.
NR 32
TC 22
Z9 23
U1 2
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0964-1726
EI 1361-665X
J9 SMART MATER STRUCT
JI Smart Mater. Struct.
PD JUN
PY 2013
VL 22
IS 6
AR 065019
DI 10.1088/0964-1726/22/6/065019
PG 12
WC Instruments & Instrumentation; Materials Science, Multidisciplinary
SC Instruments & Instrumentation; Materials Science
GA 147VH
UT WOS:000319195500020
ER
PT J
AU Branscomb, E
Russell, MJ
AF Branscomb, Elbert
Russell, Michael J.
TI Turnstiles and bifurcators: The disequilibrium converting engines that
put metabolism on the road (vol 1827, pg 62, 2013)
SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
LA English
DT Correction
C1 [Branscomb, Elbert] UIUC, Inst Genom Biol, Champaign, IL USA.
[Russell, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Branscomb, E (reprint author), UIUC, Inst Genom Biol, Champaign, IL USA.
EM brnscmb@illinois.edu
NR 1
TC 0
Z9 0
U1 1
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0005-2728
J9 BBA-BIOENERGETICS
JI Biochim. Biophys. Acta-Bioenerg.
PD JUN
PY 2013
VL 1827
IS 6
BP 806
EP 806
DI 10.1016/j.bbabio.2013.02.017
PG 1
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 146KG
UT WOS:000319089400014
ER
PT J
AU Casner, SM
Geven, RW
Williams, KT
AF Casner, Stephen M.
Geven, Richard W.
Williams, Kent T.
TI The Effectiveness of Airline Pilot Training for Abnormal Events
SO HUMAN FACTORS
LA English
DT Article
DE abnormal events; generalizability; effectiveness; rote learning;
training; pilots
AB Objective: To evaluate the effectiveness of airline pilot training for abnormal in-flight events.
Background: Numerous accident reports describe situations in which pilots responded to abnormal events in ways that were different from what they had practiced many times before. One explanation for these missteps is that training and testing for these skills have become a highly predictable routine for pilots who arrive to the training environment well aware of what to expect. Under these circumstances, pilots get plentiful practice in responding to abnormal events but may get little practice in recognizing them and deciding which responses to offer.
Method: We presented 18 airline pilots with three abnormal events that are required during periodic training and testing. Pilots were presented with each event under the familiar circumstances used during training and also under less predictable circumstances as they might occur during flight.
Results: When presented in the routine ways seen during training, pilots gave appropriate responses and showed little variability. However, when the abnormal events were presented unexpectedly, pilots' responses were less appropriate and showed great variability from pilot to pilot.
Conclusion: The results suggest that the training and testing practices used in airline training may result in rote-memorized skills that are specific to the training situation and that offer modest generalizability to other situations. We recommend a more complete treatment of abnormal events that allows pilots to practice recognizing the event and choosing and recalling the appropriate response.
Application: The results will aid the improvement of existing airline training practices.
C1 [Casner, Stephen M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Geven, Richard W.; Williams, Kent T.] San Jose State Univ, Res Fdn, San Jose, CA 95192 USA.
RP Casner, SM (reprint author), NASA, Ames Res Ctr, Mail Stop 262-4, Moffett Field, CA 94035 USA.
EM stephen.casner@nasa.gov
NR 23
TC 6
Z9 6
U1 0
U2 12
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA
SN 0018-7208
J9 HUM FACTORS
JI Hum. Factors
PD JUN
PY 2013
VL 55
IS 3
BP 477
EP 485
DI 10.1177/0018720812466893
PG 9
WC Behavioral Sciences; Engineering, Industrial; Ergonomics; Psychology,
Applied; Psychology
SC Behavioral Sciences; Engineering; Psychology
GA 144MF
UT WOS:000318942900001
PM 23829023
ER
PT J
AU Bandler, SR
Adams, JS
Bailey, CN
Busch, SE
Chervenak, JA
Eckart, ME
Ewin, AE
Finkbeiner, FM
Kelley, RL
Kelly, DP
Kilbourne, CA
Porst, JP
Porter, FS
Sadleir, JE
Smith, SJ
Wassell, EJ
AF Bandler, Simon R.
Adams, Joseph S.
Bailey, Catherine N.
Busch, Sarah E.
Chervenak, James A.
Eckart, Megan E.
Ewin, Audrey E.
Finkbeiner, Fred M.
Kelley, Richard L.
Kelly, Daniel P.
Kilbourne, Caroline A.
Porst, Jan-Patrick
Porter, Frederick S.
Sadleir, John E.
Smith, Stephen J.
Wassell, Edward J.
TI Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for
Solar Physics and Astrophysics
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Arrays; low temperature detectors; microcalorimeters; transition-edge
sensors (TES); X-ray spectroscopy
ID TRANSITION-EDGE SENSORS; LINES; RESOLUTION; NOISE
AB We are developing small-pixel transition-edge sensor microcalorimeters for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to have high energy resolution, and also accommodate count-rates of up to a few hundred counts per second per pixel for X-ray photon energies up to similar to 8 keV. We have fabricated kilo-pixel versions that utilize narrow-line planar and stripline wiring. These arrays have a low superconducting transition temperature, which results in a low heat capacity and low thermal conductance to the heat sink. We present measurements of the performance of pixels with single 65-mu m absorbers on a 75-mu m pitch. With individual single pixels of this type, we have achieved a full-width at half-maximum energy resolution of 0.9 eV with 1.5 keV Al K X-rays, to our knowledge the first X-ray microcalorimeter with sub-eV energy resolution. We will discuss the properties of these arrays and their application to new solar and astrophysics mission concepts.
C1 [Bandler, Simon R.; Adams, Joseph S.; Bailey, Catherine N.; Busch, Sarah E.; Chervenak, James A.; Eckart, Megan E.; Ewin, Audrey E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kelly, Daniel P.; Kilbourne, Caroline A.; Porst, Jan-Patrick; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Smith, Stephen J.] Univ Maryland, CRESST, College Pk, MD 20742 USA.
[Porst, Jan-Patrick] Brown Univ, Providence, RI 02912 USA.
[Kelly, Daniel P.; Wassell, Edward J.] MEI Technol Inc, Seabrook, MD 20706 USA.
RP Bandler, SR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM jp.porst@nasa.gov
RI Smith, Stephen/B-1256-2008; Bandler, Simon/A-6258-2010; Porter,
Frederick/D-3501-2012; Bailey, Catherine/C-6107-2009
OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106;
Porter, Frederick/0000-0002-6374-1119;
FU NASA (Office of Space Science from ROSES) [NNX11AB47G]
FX This work was supported by NASA (Office of Space Science, Contract
NNX11AB47G from ROSES 2009).
NR 19
TC 15
Z9 15
U1 2
U2 21
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
EI 1558-2515
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2100705
DI 10.1109/TASC.2013.2238752
PN 1
PG 5
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 143KT
UT WOS:000318867100045
ER
PT J
AU Crowe, EJ
Bennett, CL
Chuss, DT
Denis, KL
Eimer, J
Lourie, N
Marriage, T
Moseley, SH
Rostem, K
Stevenson, TR
Towner, D
U-yen, K
Wollack, EJ
AF Crowe, Erik J.
Bennett, Charles L.
Chuss, David T.
Denis, Kevin L.
Eimer, Joseph
Lourie, Nathan
Marriage, Tobias
Moseley, Samuel H.
Rostem, Karwan
Stevenson, Thomas R.
Towner, Deborah
U-yen, Kongpop
Wollack, Edward J.
TI Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled
Superconducting Detectors
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Deep reactive ion etching; superconducting microstrip; surface
roughness; transition edge sensors; wafer bonding
ID MICROWAVE BACKGROUND POLARIMETRY; TRANSITIONS
AB The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe's history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs, we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04-mm-long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.
C1 [Crowe, Erik J.; Chuss, David T.; Denis, Kevin L.; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.; Towner, Deborah; U-yen, Kongpop; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Crowe, Erik J.; Towner, Deborah] MEI Technol, Greenbelt, MD 20771 USA.
[Bennett, Charles L.; Eimer, Joseph; Marriage, Tobias] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
RP Crowe, EJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM erik.j.crowe@nasa.gov
RI Wollack, Edward/D-4467-2012
OI Wollack, Edward/0000-0002-7567-4451
FU NASA
FX This work was supported in part by a NASA "Research Opportunities in
Space and Earth Sciences" Grant.
NR 15
TC 3
Z9 3
U1 0
U2 14
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
EI 1558-2515
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2500505
DI 10.1109/TASC.2012.2237211
PN 1
PG 5
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 143KT
UT WOS:000318867100072
ER
PT J
AU Porst, JP
Bandler, SR
Adams, JS
Balvin, M
Beyer, J
Busch, SE
Drung, D
Eckart, ME
Kelley, RL
Kilbourne, CA
Porter, FS
Sadleir, JE
Seidel, GM
Smith, SJ
Stevenson, TR
AF Porst, Jan-Patrick
Bandler, Simon R.
Adams, Joseph S.
Balvin, Manuel
Beyer, Joern
Busch, Sarah E.
Drung, Dietmar
Eckart, Megan E.
Kelley, Richard L.
Kilbourne, Caroline A.
Porter, Frederick S.
Sadleir, John E.
Seidel, George M.
Smith, Stephen J.
Stevenson, Thomas R.
TI Time Domain Multiplexed Readout of Magnetically Coupled Calorimeters
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Low-temperature detectors; magnetic calorimeter; SQUID; time domain
multiplexing (TDM); X-ray spectroscopy
ID HIGH-RESOLUTION; MICROCALORIMETERS; PERFORMANCE; CIRCUIT; ARRAYS
AB Magnetically coupled calorimeters (MCC) have extremely high potential for X-ray applications. Although very high energy-resolution has been demonstrated, until now there has been no multiplexed read-out of MCCs. We report on the first realization of a time domain multiplexed read-out of MCCs. Although this has many similarities with time domain multiplexing of transition-edge sensors, for MCCs the energy resolution is limited by the SQUID read-out noise, and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In our approach, each pixel is read out by a single first-stage SQUID that is operated in open loop. The outputs of the SQ1s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present the noise performance and compare to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9 keV and for improved read-out noise achieved an energy resolution Delta E-FWHM < 6 eV for emulated multiplexing. We show that in an optimized setup, it is possible to multiplex 32 detectors without significantly degrading the intrinsic detector resolution.
C1 [Porst, Jan-Patrick; Seidel, George M.] Brown Univ, Providence, RI 02912 USA.
[Porst, Jan-Patrick; Bandler, Simon R.; Adams, Joseph S.; Balvin, Manuel; Busch, Sarah E.; Eckart, Megan E.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Stevenson, Thomas R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.; Smith, Stephen J.] Univ Maryland, CRESST, College Pk, MD 20742 USA.
[Beyer, Joern; Drung, Dietmar] Phys Tech Bundesanstalt, D-10587 Berlin, Germany.
RP Porst, JP (reprint author), Brown Univ, Providence, RI 02912 USA.
EM jp.porst@nasa.gov
RI Smith, Stephen/B-1256-2008; Bandler, Simon/A-6258-2010; Porter,
Frederick/D-3501-2012
OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106;
Porter, Frederick/0000-0002-6374-1119
FU NASA (Office of Space Science) [NNX12AL50G]; NASA Postdoctoral Program
at Goddard Space Flight Center; NASA
FX This work was supported by NASA (Office of Space Science, Contract
NNX12AL50G from ROSES 2011). S. E. Bush was supported in part by a NASA
Postdoctoral Program at Goddard Space Flight Center, administered by Oak
Ridge Associated Universities through a contract with NASA.
NR 19
TC 5
Z9 5
U1 0
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
EI 1558-2515
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2500905
DI 10.1109/TASC.2013.2243792
PN 1
PG 5
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 143KT
UT WOS:000318867100076
ER
PT J
AU Sadleir, JE
Smith, SJ
Bandler, SR
Adams, JS
Busch, SE
Eckart, ME
Chervenak, JA
Kelley, RL
Kilbourne, CA
Porter, FS
Porst, JP
Clem, JR
AF Sadleir, John E.
Smith, Stephen J.
Bandler, Simon R.
Adams, Joseph S.
Busch, Sarah E.
Eckart, Megan E.
Chervenak, James A.
Kelley, Richard L.
Kilbourne, Caroline A.
Porter, Frederick S.
Porst, Jan-Patrick
Clem, John R.
TI Magnetically Tuned Superconducting Transition-Edge Sensors
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Low temperature detectors; micro calorimeter; micro calorimetry;
superconducting transition-edge sensors (TESs); X-ray spectroscopy
AB In this work we present a detector model for superconducting transition-edge sensors (TESs) that includes for the first time the magnetic field dependence of the resistive transition. By writing the resistance R as a function of temperature T current I and magnetic field B we present a general result requiring few assumptions that offers a new strategy to improve TES performance. Application of our TES models that agree with measurements of the critical current on TES sensors predicts that it is possible to design and operate a TES in a new regime by magnetically tuning the resistive transition surface R(T, I, B). We show using all realizable device parameter values that this new magnetically tuned transition surface is predicted to give a sensor with larger signal size, faster speed capability, reduced performance limiting Johnson noise, and improved energy resolution; and do so over the entire pulse trajectory in R(T, I, B) space. We emphasize that our result is robust in that the performance benefits listed do not hinge on a precise functional form of the resistive transition. This magnetic tuning technique can improve performance for TESs governed by a wide range of resistive mechanisms such as weakly coupled to strongly coupled superconductors or nonequilibrium superconductivity.
C1 [Sadleir, John E.; Porst, Jan-Patrick] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Smith, Stephen J.; Bandler, Simon R.; Adams, Joseph S.; Busch, Sarah E.; Eckart, Megan E.; Chervenak, James A.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20742 USA.
[Smith, Stephen J.; Bandler, Simon R.; Adams, Joseph S.; Eckart, Megan E.] Univ Maryland, CRESST, College Pk, MD 20742 USA.
[Porst, Jan-Patrick] Brown Univ, Providence, RI 02906 USA.
[Clem, John R.] Iowa State Univ, Ames, IA 50011 USA.
RP Sadleir, JE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM john.e.sadleir@nasa.gov
RI Smith, Stephen/B-1256-2008; Bandler, Simon/A-6258-2010; Porter,
Frederick/D-3501-2012
OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106;
Porter, Frederick/0000-0002-6374-1119
FU U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; U.S. Department of Energy
[DE-AC02-07CH11358]
FX John R. Clem's research was supported by the U.S. Department of Energy,
Office of Basic Energy Science, Division of Materials Sciences and
Engineering, and was performed at the Ames Laboratory, which is operated
for the U.S. Department of Energy by Iowa State University under
Contract No. DE-AC02-07CH11358.
NR 8
TC 5
Z9 5
U1 1
U2 18
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
EI 1558-2515
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2101405
DI 10.1109/TASC.2013.2251391
PN 1
PG 5
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 143KT
UT WOS:000318867100052
ER
PT J
AU Stevenson, TR
Balvin, MA
Bandler, SR
Busch, SE
Denis, KL
Hsieh, WT
Kelly, DP
Merrell, W
Nagler, PC
Porst, JP
Sadleir, JE
Seidel, GM
Smith, SJ
AF Stevenson, T. R.
Balvin, M. A.
Bandler, S. R.
Busch, S. E.
Denis, K. L.
Hsieh, W. -T.
Kelly, D. P.
Merrell, W.
Nagler, P. C.
Porst, J. -P.
Sadleir, J. E.
Seidel, G. M.
Smith, S. J.
TI Superconducting Effects in Optimization of Magnetic Penetration
Thermometers for X-Ray Microcalorimeters
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Superconducting films; superconducting photodetectors; X-ray detection
ID FIELD DEPENDENCE; GAP
AB We have made high-resolution X-ray microcalorimeters using superconducting MoAu bilayers and Nb meander coils. The temperature sensor is a magnetic penetration thermometer. Operation is similar to metallic magnetic calorimeters, but instead of the magnetic susceptibility of a paramagnetic alloy, we use the diamagnetic response of the superconducting MoAu to sense temperature changes in an X-ray absorber. Flux-temperature responsivity can be large for small sensor heat capacity, with enough dynamic range for applications. We find that models of observed flux-temperature curves require several effects to explain flux penetration or expulsion in the microscopic devices. The superconductor is nonlocal, with large coherence length and weak pinning of flux. At the lowest temperatures, behavior is dominated by screening currents that vary as a result of the temperature dependence of the magnetic penetration depth, modified by the effect of the nonuniformity of the applied field occurring on a scale comparable to the coherence length. In the temperature regime where responsivity is greatest, spatial variations in the order parameter become important: both local variations as flux enters/leaves the film and an intermediate state is formed, and globally as changing stability of the electrical circuit creates a Meissner transition and flux is expelled/penetrates to minimize free energy.
C1 [Stevenson, T. R.; Balvin, M. A.; Denis, K. L.; Hsieh, W. -T.; Sadleir, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bandler, S. R.] Univ Maryland, College Pk, MD 20742 USA.
[Busch, S. E.; Merrell, W.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA.
[Kelly, D. P.] MEI Technol, Seabrook, MD 20706 USA.
[Nagler, P. C.; Porst, J. -P.; Seidel, G. M.] Brown Univ, Providence, RI 02912 USA.
[Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA.
RP Stevenson, TR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM thomas.r.stevenson@nasa.gov; Manuel.A.Balvin@nasa.gov;
simon.r.bandler@nasa.gov; sarah.e.busch@nasa.gov;
Kevin.L.Denis@nasa.gov; wen-ting.hsieh-1@nasa.gov;
daniel.p.kelly@nasa.gov; willie.merrell@gmail.com;
peter.c.nagler@nasa.gov; porst@nasa.gov; john.e.sadleir@nasa.gov;
George_Seidel@brown.edu; stephen.j.smith@nasa.gov
RI Smith, Stephen/B-1256-2008; Bandler, Simon/A-6258-2010
OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106
FU NASA ROSES [NNX12AL50G]; GSFC IRAD; appointments to the NASA
Postdoctoral Program
FX This work was supported by NASA ROSES grant NNX12AL50G, the GSFC IRAD
program, and appointments to the NASA Postdoctoral Program administered
by Oak Ridge Associated Universities.
NR 21
TC 0
Z9 0
U1 1
U2 13
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
EI 1558-2515
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2300605
DI 10.1109/TASC.2013.2239695
PN 1
PG 5
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 143KT
UT WOS:000318867100065
ER
PT J
AU Rai, MM
AF Rai, Man Mohan
TI Flow physics in the turbulent near wake of a flat plate
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
DE turbulence simulation; vortex shedding; wakes
ID DIRECT NUMERICAL-SIMULATION; CIRCULAR-CYLINDER; CHANNEL FLOW; TRANSPORT
AB The symmetric near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated via a direct numerical simulation. The separating plate boundary layers are turbulent and statistically identical. The present study focuses on the vortical structures, the distribution of phase-averaged velocity statistics and vorticity fluctuations in the near wake. Braid and vortex core regions are investigated via contours of instantaneous vorticity and pressure with an emphasis on the three-dimensionality of near-wake structures. Rib vortices are observed in the braids. The vortex cores are populated with both ribs that wrap themselves around the cores and spanwise-elongated regions of spanwise vorticity near the centres of the cores. Production terms in the transport equations for phase-averaged fluctuating vorticity show that stretching of rib vortices via the phase-averaged strain rate produces significantly less turbulent vorticity than turbulent stretching in the braids and cores.
C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Rai, MM (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM man.m.rai@nasa.gov
NR 21
TC 2
Z9 2
U1 1
U2 9
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
J9 J FLUID MECH
JI J. Fluid Mech.
PD JUN
PY 2013
VL 724
BP 704
EP 733
DI 10.1017/jfm.2013.185
PG 30
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA 144DW
UT WOS:000318920800030
ER
PT J
AU Sun, WB
Liu, ZY
Lin, B
Huang, JP
Videen, G
AF Sun, Wenbo
Liu, Zhaoyan
Lin, Bing
Huang, Jianping
Videen, Gorden
TI The 2nd International Symposium on Atmospheric Light Scattering and
Remote Sensing (ISALSaRS'11)
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Editorial Material
C1 [Lin, Bing] NASA, Langley Res Ctr, Washington, DC 20546 USA.
[Huang, Jianping] Lanzhou Univ, Lanzhou 730000, Peoples R China.
[Videen, Gorden] USA, Res Lab, Washington, DC 20546 USA.
EM wenbo.sun-1@nasa.gov
NR 0
TC 1
Z9 1
U1 1
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUN
PY 2013
VL 122
SI SI
BP 1
EP 2
DI 10.1016/j.jqsrt.2012.12.005
PG 2
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 142VN
UT WOS:000318825800001
ER
PT J
AU Kawamoto, K
Suzuki, K
AF Kawamoto, Kazuaki
Suzuki, Kentaroh
TI Comparison of water cloud microphysics over mid-latitude land and ocean
using CloudSat and MODIS observations
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Cloud microphysics; Drizzle; Precipitation; CloudSat; MODIS
ID NUMBER CONCENTRATION; CLIMATE; GROWTH
AB The microphysical properties and processes of water (liquid-phase) clouds in the mid-latitudes were studied using space-borne radar and radiometer data, with a focus on comparisons between continental (over China) and oceanic (over the northwest Pacific) clouds. The probability distribution functions (PDFs) of cloud parameters were examined and found to be both reasonable and consistent with previous observations. The PDFs of oceanic cloud parameters as a function of radar reflectivity were generally better defined than those of land cloud parameters. Precipitation characteristics were categorized into non-precipitating, drizzle, and precipitating, as well as the total-precipitating category, according to the maximum radar reflectivity within the cloud layer. The fractional occurrence of the precipitation categories was analyzed as a function of the liquid water path. The statistics showed general trends that were very similar for both land and oceanic clouds, such as a monotonically decreasing trend for the non-precipitating category, a convex shape for the drizzle category, and a monotonically increasing trend for the precipitating and total-precipitating categories with increasing liquid water path. The fractional occurrence of the precipitation categories was further investigated as a function of multiple cloud parameters to better understand land-ocean contrasts in cloud development stages. The vertical structure of clouds also revealed that oceanic clouds produced heavier precipitation in optically thicker regions, compared to land clouds with fewer cloud droplets. However, the differences between land and oceanic clouds were small when comparisons included only those clouds with a high density of droplets. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Kawamoto, Kazuaki] Nagasaki Univ, Grad Sch Fisheries Sci & Environm Studies, Nagasaki 8528521, Japan.
[Suzuki, Kentaroh] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Kawamoto, K (reprint author), Nagasaki Univ, Grad Sch Fisheries Sci & Environm Studies, 1-14 Bunkyo Machi, Nagasaki 8528521, Japan.
EM kazukawa@nagasaki-u.ac.jp
RI Suzuki, Kentaroh/C-3624-2011
FU Mitsui Co., Ltd.; National Aeronautics and Space Administration
FX K. Kawamoto was supported by the Mitsui & Co., Ltd., Environment Fund,
Grant-in aid for Scientific Research (B) and Grant-in aid for Scientific
Research on Innovative Areas. The CloudSat data products of 2B-GEOPROF
and MODIS-AUX and ECMWF-AUX were provided by the CloudSat Data
Processing Center at CIRA/Colorado State University. Part of the
research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration.
NR 30
TC 5
Z9 6
U1 2
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUN
PY 2013
VL 122
SI SI
BP 13
EP 24
DI 10.1016/j.jqsrt.2012.12.013
PG 12
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 142VN
UT WOS:000318825800003
ER
PT J
AU Wu, D
Tang, JY
Liu, ZY
Hu, YX
AF Wu, Dong
Tang, Jiayuan
Liu, Zhaoyan
Hu, Yongxiang
TI Simulation of coherent Doppler wind lidar measurement from space based
on CALIPSO lidar global aerosol observations
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE CALIPSO lidar; Coherent Doppler wind lidar; Performance simulation;
Aerosol backscatter
ID PERFORMANCE; ESTIMATORS; SYSTEM; RADAR; MIE
AB The performance of a space-based 2.1-mu m coherent Doppler wind lidar (CDWL) measurement at a single laser shot in clear-air conditions is computer simulated, based on the coherent Doppler lidar theory developed in the recent decades, and using the global aerosol distribution derived from one year (March 2007-February 2008) of the CALIPSO lidar measurements. The accuracy of radial wind velocity good estimates and the fraction of good estimates, depending on backscattered signals from aerosols, generally decrease with altitude. A critical altitude is defined as the altitude below which the good estimate fraction of velocity estimates is larger than 90.0%. With a laser pulse energy of 250 mJ at an off-nadir pointing angle of 45 degrees, a telescope of 1 m in diameter and a vertical range resolution of similar to 800 m, this critical altitude can reach an altitude of 4.0-5.0 km between 20 degrees S and 40 degrees N where dust and biomass burning aerosols are ubiquitous. The critical altitude gradually decreases as approaching the two poles and drops to 0.5-1.5 km in the polar regions. When the laser pulse energy is reduced to 100 mJ, the critical altitude is generally decreased by similar to 0.5 km and can still reach an altitude of 3.5-4.5 km in the dust and smoke aerosol enriched tropical and subtropical regions. A laser pulse energy of only a few millijoules can still achieve velocity measurements with an RMS error smaller than 1 m s(-1) and a good estimate fraction better than 90% in the lowest kilometers of the troposphere. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Wu, Dong; Tang, Jiayuan] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China.
[Liu, Zhaoyan] Sci Syst & Applicat Inc, Hampton, VA 23681 USA.
[Hu, Yongxiang] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Wu, D (reprint author), Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China.
EM dongwu@ouc.edu.cn
RI Liu, Zhaoyan/B-1783-2010; Hu, Yongxiang/K-4426-2012
OI Liu, Zhaoyan/0000-0003-4996-5738;
FU National Natural Science Foundations of China [40876017, 41076116,
41228008]
FX This work is supported by the National Natural Science Foundations of
China (Grant nos.40876017, 41076116, and 41228008). The authors
acknowledge the Atmospheric Science Data Center (ASDC) at the NASA
Langley Research Center for providing the CALIPSO data used in this
paper. They sincerely thank Dr. Michael Kavaya at the NASA Langley
Research Center for the useful discussions about the latest progress of
the heterodyne detection theory. They are also grateful to two anonymous
reviewers for their constructive comments.
NR 29
TC 1
Z9 3
U1 1
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUN
PY 2013
VL 122
SI SI
BP 79
EP 86
DI 10.1016/j.jqsrt.2012.11.017
PG 8
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 142VN
UT WOS:000318825800009
ER
PT J
AU Zhang, TP
Stackhouse, PW
Gupta, SK
Cox, SJ
Mikovitz, JC
Hinkelman, LM
AF Zhang, Taiping
Stackhouse, Paul W., Jr.
Gupta, Shashi K.
Cox, Stephen J.
Mikovitz, J. Colleen
Hinkelman, Laura M.
TI The validation of the GEWEX SRB surface shortwave flux data products
using BSRN measurements: A systematic quality control, production and
application approach
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Solar radiation; Satellite; BSRN; GEWEX SRB; Validation
ID RADIATION BUDGET; SOLAR-RADIATION; SATELLITE DATA; ISCCP; ATMOSPHERE;
SCALE
AB The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 1 degrees latitude x 1 degrees longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of ground-based measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3 W degrees m(-2) under all-sky conditions. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Zhang, Taiping; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen] SSA NASA Langley Res Ctr, Hampton, VA 23666 USA.
[Stackhouse, Paul W., Jr.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
[Hinkelman, Laura M.] Univ Washington, JISAO, Seattle, WA 98195 USA.
RP Zhang, TP (reprint author), SSA NASA Langley Res Ctr, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA.
EM Taiping.Zhang@NASA.gov; Paul.W.Stackhouse@NASA.gov
RI Hinkelman, Laura/L-8964-2016
OI Hinkelman, Laura/0000-0001-6477-9648
FU NASA Earth Science Mission, Radiation Science Program; Earth Science
Mission
FX The authors wish to acknowledge the fruitful discussions with Dr.
Ellsworth G. Dutton and Dr. Chuck N. Long that contributed to this work.
We especially want to acknowledge the leadership of Dr. Dutton over the
BSRN program, in the light of his untimely death, without which this
work would have been impossible. This work was funded under the NASA
Earth Science Mission, Radiation Science Program, Dr. Hal Maring,
program manager. Additional funding for data production and archival
came from the Earth Science Mission, Dr. Jack Kaye.
NR 35
TC 18
Z9 18
U1 0
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUN
PY 2013
VL 122
SI SI
BP 127
EP 140
DI 10.1016/j.jqsrt.2012.10.004
PG 14
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 142VN
UT WOS:000318825800014
ER
PT J
AU Yang, YK
Marshak, A
Mao, JP
Lyapustin, A
Herman, J
AF Yang, Yuekui
Marshak, Alexander
Mao, Jianping
Lyapustin, Alexei
Herman, Jay
TI A method of retrieving cloud top height and cloud geometrical thickness
with oxygen A and B bands for the Deep Space Climate Observatory
(DSCOVR) mission: Radiative transfer simulations
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE DSCOVR; L1 Lagrangian point; EPIC; Radiative transfer; Cloud top; Cloud
thickness; O-2 A-band; O-2 B-band
ID A-BAND; SOLAR-RADIATION; PRESSURE; ABSORPTION; SCATTERING; ALGORITHM;
POLDER; MERIS
AB The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) was designed to measure the atmosphere and surface properties over the whole sunlit half of the Earth from the L1 Lagrangian point. It has 10 spectral channels ranging from the UV to the near-IR, including two pairs of oxygen (O-2) A-band (779.5 and 764 nm) and B-band (680 and 687.75 nm) reference and absorption channels selected for the cloud height measurements. This paper presents the radiative transfer analysis pertinent to retrieving cloud top height and cloud geometrical thickness with EPIC A- and B-band observations. Due to photon cloud penetration, retrievals from either O-2 A- or B-band channels alone gives the corresponding cloud centroid height, which is lower than the cloud top. However, we show both the sum and the difference between the retrieved cloud centroid heights in the A and B bands are functions of cloud top height and cloud geometrical thickness. Based on this fact, the paper develops a new method to retrieve cloud top height and cloud geometrical thickness simultaneously for fully cloudy scenes over ocean surface. First, cloud centroid heights are calculated for both A and B bands using the ratios between the reflectances of the absorbing and reference channels; then the cloud top height and the cloud geometrical thickness are retrieved from the two dimensional look up tables that relate the sum and the difference between the retrieved centroid heights for A and B bands to the cloud top height and the cloud geometrical thickness. This method is applicable for clouds thicker than an optical depth of 5. Published by Elsevier Ltd.
C1 [Yang, Yuekui] Univ Space Res Assoc, Columbia, MD USA.
[Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Mao, Jianping] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Herman, Jay] UMBC, Joint Ctr Earth Syst Technol, Baltimore, MD USA.
RP Yang, YK (reprint author), NASA, Goddard Space Flight Ctr, Code 613, Greenbelt, MD 20771 USA.
EM Yuekui.Yang@nasa.gov
RI Marshak, Alexander/D-5671-2012; Lyapustin, Alexei/H-9924-2014; Yang,
Yuekui/B-4326-2015;
OI Lyapustin, Alexei/0000-0003-1105-5739; Herman, Jay/0000-0002-9146-1632
FU NASA DSCOVR
FX We thank two anonymous reviewers for reviewing this manuscript and for
their insightful comments. This study is supported by the NASA DSCOVR
refurbishement project.
NR 30
TC 7
Z9 7
U1 1
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUN
PY 2013
VL 122
SI SI
BP 141
EP 149
DI 10.1016/j.jqsrt.2012.09.017
PG 9
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 142VN
UT WOS:000318825800015
ER
PT J
AU Lin, B
Stackhouse, P
Sun, WB
Hu, YX
Liu, ZY
Fan, TF
AF Lin, Bing
Stackhouse, Paul, Jr.
Sun, Wenbo
Hu, Yongxiang
Liu, Zhaoyan
Fan, Tai-Fang (Alice)
TI Is Oklahoma getting drier?
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Satellite remote sensing; Soil moisture; Surface radiation;
Precipitation; Surface latent and sensible heat; Surface temperature;
In-situ measurement
ID SOIL-MOISTURE VARIABILITY; GLOBAL PRECIPITATION; DYNAMICS; NETWORK;
BUDGET; TOP
AB Land surface hydrology is important to regional climate, ecosystem, agriculture, and even human activities. Changes in soil moisture can produce considerable impacts on socioeconomics. Analysis of assimilation model results, especially those from the Community Land Model, shows that soil moisture over Oklahoma region is continuously reduced from 1980 to 2009. The potential drying trend in the Oklahoma region is evaluated by observations taken during last three decades in this study. Satellite data from Global Precipitation Climatology Project exhibit a clear precipitation decrease in the Oklahoma region during the last decade or so compared with those of two or three decades ago. Accompanying with the precipitation variation, land surface net radiation and temperature over the region are found increases by satellite and/or in-situ measurements. These changes in regional climate conditions also likely result in reduction of regional evaporation and enhancement of sensible heat transport from land surface into the atmosphere as indicated in assimilated data. These observed and modeled evidences of the changes in regional water and energy cycles lead us to conclude that the soil moisture over the Oklahoma region was reduced during the last decade. This soil moisture drop could increase a risk in water shortage for agriculture in the Oklahoma state if the dry period continues. Further investigations on the drying in the Oklahoma State or even entire Southern Great Plains are needed to mitigate potential droughts, reductions in vegetation products, and other socioeconomic impacts. Published by Elsevier Ltd.
C1 [Lin, Bing; Stackhouse, Paul, Jr.; Hu, Yongxiang] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA.
[Sun, Wenbo; Liu, Zhaoyan; Fan, Tai-Fang (Alice)] SSAI, Hampton, VA 23666 USA.
RP Lin, B (reprint author), NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA.
EM bing.lin@nasa.gov
RI Liu, Zhaoyan/B-1783-2010; Hu, Yongxiang/K-4426-2012
OI Liu, Zhaoyan/0000-0003-4996-5738;
FU NASA Energy and Water cycle Studies (NEWS) program; CERES mission
FX The authors would like to express their appreciation to M. Rodell and G.
Huffman for their expertise in assimilated and precipitation data,
respectively. L. Smith, D. Garber, G. Gibson, and N. Loeb provide
invaluable comments. This research was supported by the NASA Energy and
Water cycle Studies (NEWS) program and CERES mission. CERES and SRB
products and land surface data were obtained from the NASA Langley
Atmospheric Sciences Data Center in Hampton, Virginia and Goddard
Distributed Active Archive Center in Greenbelt, Maryland, respectively.
NR 26
TC 0
Z9 0
U1 1
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
EI 1879-1352
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUN
PY 2013
VL 122
SI SI
BP 208
EP 213
DI 10.1016/j.jqsrt.2012.07.024
PG 6
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 142VN
UT WOS:000318825800021
ER
PT J
AU Sun, WB
Liu, ZY
Videen, G
Fu, Q
Muinonen, K
Winker, DM
Lukashin, C
Jin, ZH
Lin, B
Huang, JP
AF Sun, Wenbo
Liu, Zhaoyan
Videen, Gorden
Fu, Qiang
Muinonen, Karri
Winker, David M.
Lukashin, Constantine
Jin, Zhonghai
Lin, Bing
Huang, Jianping
TI For the depolarization of linearly polarized light by smoke particles
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Linearly polarized light; Depolarization ratio; Particle
characterization; Smoke aerosol
ID ABSORBING BOUNDARY-CONDITION; TIME-DOMAIN SOLUTION; SCATTERING; SOOT;
ABSORPTION
AB The CALIPSO satellite mission consistently measures volume (including molecule and particulate) light depolarization ratio of similar to 2% for smoke, compared to similar to 1% for marine aerosols and similar to 15% for dust. The observed similar to 2% smoke depolarization ratio comes primarily from the nonspherical habits of particles in the smoke at certain particle sizes. In this study, the depolarization of linearly polarized light by small sphere aggregates and irregular Gaussian-shaped particles is studied, to reveal the physics between the depolarization of linearly polarized light and smoke aerosol shape and size. It is found that the depolarization ratio curves of Gaussian-deformed spheres are very similar to sphere aggregates in terms of scattering-angle dependence and particle size parameters when particle size parameter is smaller than 1.0 pi. This demonstrates that small randomly oriented nonspherical particles have some common depolarization properties as functions of scattering angle and size parameter. This may be very useful information for characterization and active remote sensing of smoke particles using polarized light. We also show that the depolarization ratio from the CALIPSO measurements could be used to derive smoke aerosol particle size. From the calculation results for light depolarization ratio by Gaussian-shaped smoke particles and the CALIPSO-measured light depolarization ratio of similar to 2% for smoke, the mean particle size of South-African smoke is estimated to be about half of the 532 nm wavelength of the CALIPSO lidar. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Sun, Wenbo; Liu, Zhaoyan; Jin, Zhonghai] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Videen, Gorden] USA, Res Lab, Adelphi, MD 20783 USA.
[Fu, Qiang] Univ Washington, Seattle, WA 98195 USA.
[Muinonen, Karri] Univ Helsinki, FIN-00014 Helsinki, Finland.
[Sun, Wenbo; Winker, David M.; Lukashin, Constantine; Lin, Bing] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Huang, Jianping] Lanzhou Univ, Lanzhou 730000, Peoples R China.
RP Sun, WB (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA.
EM wenbo.sun-1@nasa.gov
RI Liu, Zhaoyan/B-1783-2010; Richards, Amber/K-8203-2015
OI Liu, Zhaoyan/0000-0003-4996-5738;
FU NASA [09-GLORY09-0027]; NASA CLARREO mission
FX This work was supported by NASA Glory fund 09-GLORY09-0027 and partially
by NASA CLARREO mission. The authors thank Michael I. Mishchenko, Hal B.
Maring, Bruce A. Wielicki, and Dave F. Young for their support on this
work.
NR 23
TC 11
Z9 12
U1 2
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD JUN
PY 2013
VL 122
SI SI
BP 233
EP 237
DI 10.1016/j.jqsrt.2012.03.031
PG 5
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 142VN
UT WOS:000318825800023
ER
PT J
AU Moorthy, KK
Beegum, SN
Srivastava, N
Satheesh, SK
Chin, M
Blond, N
Babu, SS
Singh, S
AF Moorthy, K. Krishna
Beegum, S. Naseema
Srivastava, N.
Satheesh, S. K.
Chin, Mian
Blond, Nadege
Babu, S. Suresh
Singh, S.
TI Performance evaluation of chemistry transport models over India
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Aerosols; Black carbon; Chemistry transport models
ID AEROSOL BLACK CARBON; ATMOSPHERIC BOUNDARY-LAYER; TROPICAL COASTAL
STATION; LIGHT-ABSORPTION; GOCART MODEL; AIRBORNE MEASUREMENTS; AIRCRAFT
MEASUREMENTS; OPTICAL-PROPERTIES; URBAN LOCATION; DUST AEROSOLS
AB Using continuous and near-real time measurements of the mass concentrations of black carbon (BC) aerosols near the surface, for a period of 1 year (from January to December 2006) from a network of eight observatories spread over different environments of India, a space-time synthesis is generated. The strong seasonal variations observed, with a winter high and summer low, are attributed to the combined effects of changes in synoptic air mass types, modulated strongly by the atmospheric boundary layer dynamics. Spatial distribution shows much higher BC concentration over the Indo-Gangetic Plain (IGP) than the peninsular Indian stations. These were examined against the simulations using two chemical transport models, GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) and CHIMERE for the first time over Indian region. Both the model simulations significantly deviated from the measurements at all the stations; more so during the winter and pre-monsoon seasons and over mega cities. However, the CHIMERE model simulations show better agreement compared with the measurements. Notwithstanding this, both the models captured the temporal variations; at seasonal and subseasonal timescales and the natural variabilities (intra-seasonal oscillations) fairly well, especially at the off-equatorial stations. It is hypothesized that an improvement in the atmospheric boundary layer (ABL) parameterization scheme for tropical environment might lead to better results with GOCART. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Moorthy, K. Krishna; Beegum, S. Naseema; Babu, S. Suresh] Vikram Sarabhai Space Ctr, Space Phys Lab, Thiruvananthapuram 695022, Kerala, India.
[Beegum, S. Naseema; Singh, S.] CSIR, Natl Phys Lab, Radio & Atmospher Sci Div, New Delhi 110012, India.
[Srivastava, N.; Satheesh, S. K.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India.
[Satheesh, S. K.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India.
[Chin, Mian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Blond, Nadege] Fac Geog & Amenagement, ERL 7230, Lab Image Ville Environm, F-67000 Strasbourg, France.
RP Satheesh, SK (reprint author), Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India.
EM satheesh@caos.iisc.ernet.in
RI Chin, Mian/J-8354-2012; Singh, Sachchidanand/D-1537-2009;
OI Singh, Sachchidanand/0000-0003-0257-4705; Moorthy, K.
Krishna/0000-0002-7234-3868
FU Department of Science and Technology (DST), New Delhi
FX The work is carried out as a part of the ARFI project of ISRO-GBP. The
authors are grateful to the investigators P.C.S Devara (Pune), Biswadip
Khare (Hyderbad), and UC Dumka (Nainital) for supporting the
measurements. One of the authors (SKS) would like to thank Department of
Science and Technology (DST), New Delhi for Swarna Jayanti fellowship.
NR 80
TC 23
Z9 23
U1 2
U2 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
EI 1873-2844
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD JUN
PY 2013
VL 71
BP 210
EP 225
DI 10.1016/j.atmosenv.2013.01.056
PG 16
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 136SY
UT WOS:000318384900025
ER
PT J
AU Siegal, PH
AF Siegal, Peter H.
TI Report on Photonics West Show
SO IEEE MICROWAVE MAGAZINE
LA English
DT Article
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Siegal, PH (reprint author), CALTECH, Jet Prop Lab, MS 168-3264800 Oak Grove Dr, Pasadena, CA 91109 USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1527-3342
J9 IEEE MICROW MAG
JI IEEE Microw. Mag.
PD JUN
PY 2013
VL 14
IS 4
BP 167
EP 167
DI 10.1109/MMM.2013.2248674
PG 1
WC Engineering, Electrical & Electronic; Telecommunications
SC Engineering; Telecommunications
GA 141ZE
UT WOS:000318764400017
ER
PT J
AU Hoonakker, PLT
Carayon, P
McGuire, K
Khunlertkit, A
Wiegmann, DA
Alyousef, B
Xie, AP
Wood, KE
AF Hoonakker, Peter L. T.
Carayon, Pascale
McGuire, Kerry
Khunlertkit, Adjhaporn
Wiegmann, Douglas A.
Alyousef, Bashar
Xie, Anping
Wood, Kenneth E.
TI Motivation and job satisfaction of Tele-ICU nurses
SO JOURNAL OF CRITICAL CARE
LA English
DT Article
DE Intensive Care Unit; Tele-nursing; Organization and administration
ID CARE-UNIT TELEMEDICINE; PARADIGM
AB Introduction: Although the first tele-ICU has been in existence for more than 12 years, little is known about the work of tele-ICU nurses. This study examines sources of motivation and satisfaction of tele-ICU nurses.
Methods: A total of 50 nurses in 5 tele-ICUs were interviewed about reasons for working as a tele-ICU nurse and sources of satisfaction and dissatisfaction in their job.
Results: Nurses have different motivations to work in the tele-ICU, including the challenges and opportunities for new learning that occur while interacting with clinicians in the tele-ICU and the various ICUs being monitored. Tele-ICU nurses also appreciate the opportunities for teamwork with tele-ICU physicians and nurses. The relationship and interactions with the ICUs is sometimes mentioned as a dissatisfier. Some nurses miss being physically at the bedside, as well as interacting with patients and families.
Conclusion: Most tele-ICU nurses are satisfied with their job. They like the challenge in their work and the opportunity to learn. For some nurses, the transition from a bedside caregiver to an information manager can be difficult. Other nurses have found a balance by working part-time in the tele-ICU and part-time in the ICU. (c) 2013 Elsevier Inc. All rights reserved.
C1 [Hoonakker, Peter L. T.; Carayon, Pascale; Wiegmann, Douglas A.; Alyousef, Bashar; Xie, Anping] Univ Wisconsin, CQPI, Madison, WI 53706 USA.
[Carayon, Pascale; Wiegmann, Douglas A.; Alyousef, Bashar; Xie, Anping] Univ Wisconsin, Dept Ind & Syst Engn, Madison, WI 53706 USA.
[McGuire, Kerry] NASA, Johnson Space Ctr, Houston, TX 77052 USA.
[Khunlertkit, Adjhaporn] Johns Hopkins Univ, Sch Med, Dept Anesthesiol & Crit Care Med, Qual & Safety Res Grp, Baltimore, MD USA.
[Wood, Kenneth E.] Geisinger Hlth Syst, Danville, PA 17822 USA.
RP Hoonakker, PLT (reprint author), Univ Wisconsin, CQPI, Madison, WI 53706 USA.
EM phoonakker@cqpi.engr.wisc.edu
RI Carayon, Pascale/M-5375-2013; Xie, Anping/J-4762-2015
OI Carayon, Pascale/0000-0003-4632-6930;
FU National Science Foundation (NSF Grant) [OCI-0838513]
FX This study was made possible with support from the National Science
Foundation (NSF Grant #: OCI-0838513, Carayon: PI; Brown, Hoonakker,
Wiegmann and Wood, co-PIs) and the cooperation from the 5 tele-ICUs, and
their managers and the nurses who work there.
NR 21
TC 1
Z9 1
U1 5
U2 38
PU W B SAUNDERS CO-ELSEVIER INC
PI PHILADELPHIA
PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA
SN 0883-9441
J9 J CRIT CARE
JI J. Crit. Care
PD JUN
PY 2013
VL 28
IS 3
AR 315.e13
DI 10.1016/j.jcrc.2012.10.001
PG 9
WC Critical Care Medicine
SC General & Internal Medicine
GA 138ZW
UT WOS:000318552000020
PM 23159143
ER
PT J
AU Romanou, A
Gregg, WW
Romanski, J
Kelley, M
Bleck, R
Healy, R
Nazarenko, L
Russell, G
Schmidt, GA
Sun, S
Tausnev, N
AF Romanou, A.
Gregg, W. W.
Romanski, J.
Kelley, M.
Bleck, R.
Healy, R.
Nazarenko, L.
Russell, G.
Schmidt, G. A.
Sun, S.
Tausnev, N.
TI Natural air-sea flux of CO2 in simulations of the NASA-GISS climate
model: Sensitivity to the physical ocean model formulation
SO OCEAN MODELLING
LA English
DT Article
DE Carbon cycle; Climate modeling; Ocean modeling
ID ANTHROPOGENIC CO2; CARBON-DIOXIDE; ADVECTION; EXCHANGE; DRIVEN; IRON
AB Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO(2)) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean). (c) 2013 Elsevier Ltd. All rights reserved.
C1 [Romanou, A.; Bleck, R.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA.
[Romanou, A.; Kelley, M.; Bleck, R.; Russell, G.; Schmidt, G. A.] NASA, GISS, New York, NY USA.
[Gregg, W. W.] NASA, GSFC, Greenbelt, MD USA.
[Romanski, J.; Healy, R.; Nazarenko, L.; Schmidt, G. A.; Tausnev, N.] Columbia Univ, Ctr Clim Syst Res, New York, NY 10027 USA.
[Sun, S.] NOAA, ESRL, Boulder, CO USA.
RP Romanou, A (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA.
EM ar2235@columbia.edu
RI Schmidt, Gavin/D-4427-2012; Healy, Richard/J-9214-2015; Sun,
Shan/H-2318-2015
OI Schmidt, Gavin/0000-0002-2258-0486; Healy, Richard/0000-0002-5098-8921;
FU NASA High-End Computing (HEC) Program through the NASA Center for
Climate Simulation (NCCS) at Goddard Space Flight Center; NASA-ROSES
Modeling, Analysis and Prediction [NNH08ZDA001N-MAP]
FX Resources supporting this work were provided by the NASA High-End
Computing (HEC) Program through the NASA Center for Climate Simulation
(NCCS) at Goddard Space Flight Center. Funding was provided by
NASA-ROSES Modeling, Analysis and Prediction 2008 NNH08ZDA001N-MAP. We
would like to thank Reto Ruedy for providing help with model setup and
runs. The lead author would also like to thank John Marshall, John
Dunne, Stephanie Dutkiewicz and Irina Marinov for very helpful and
insightful discussions.
NR 50
TC 8
Z9 8
U1 1
U2 23
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1463-5003
EI 1463-5011
J9 OCEAN MODEL
JI Ocean Model.
PD JUN
PY 2013
VL 66
BP 26
EP 44
DI 10.1016/j.ocemod.2013.01.008
PG 19
WC Meteorology & Atmospheric Sciences; Oceanography
SC Meteorology & Atmospheric Sciences; Oceanography
GA 139TQ
UT WOS:000318607900003
ER
PT J
AU Yu, HB
Zhang, ZB
AF Yu, Hongbin
Zhang, Zhibo
TI New Directions: Emerging satellite observations of above-cloud aerosols
and direct radiative forcing
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Editorial Material
DE Aerosol above clouds; Radiative forcing; Satellite remote sensing
ID ABSORBING AEROSOLS; OPTICAL DEPTH; LAYERS; RETRIEVAL
AB Spaceborne lidar and passive sensors with multi-wavelength, multi-angle and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Yu, Hongbin] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA.
[Yu, Hongbin] NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD 20771 USA.
[Zhang, Zhibo] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA.
[Zhang, Zhibo] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA.
RP Yu, HB (reprint author), NASA, Goddard Space Flight Ctr, Earth Sci Directorate, Greenbelt, MD 20771 USA.
EM Hongbin.Yu@gmail.com; Zhibo.Zhang@umbc.edu
RI Yu, Hongbin/C-6485-2008; Zhang, Zhibo/D-1710-2010
OI Yu, Hongbin/0000-0003-4706-1575; Zhang, Zhibo/0000-0001-9491-1654
NR 25
TC 16
Z9 16
U1 3
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD JUN
PY 2013
VL 72
BP 36
EP 40
DI 10.1016/j.atmosenv.2013.02.017
PG 5
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 135BW
UT WOS:000318262000005
ER
PT J
AU Poulain, X
Kohlman, LW
Binienda, W
Roberts, GD
Goldberg, RK
Benzerga, AA
AF Poulain, X.
Kohlman, L. W.
Binienda, W.
Roberts, G. D.
Goldberg, R. K.
Benzerga, A. A.
TI Determination of the intrinsic behavior of polymers using digital image
correlation combined with video-monitored testing
SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
LA English
DT Article
DE Plastic instability; Large strain behavior; True stress-strain
measurement; Tension-compression asymmetry
ID STRESS-STRAIN CURVES; GLASSY-POLYMERS; EPOXY-RESIN; PLASTIC-DEFORMATION;
SOLID POLYMERS; YIELD BEHAVIOR; TENSILE; LOCALIZATION; COMPRESSION;
POLYCARBONATE
AB Three methods for the determination of the large-strain behavior of ductile polymers are compared in both tension and compression. Each method relies on some (non-contact) measurement of the strain and some approximations in the calculation of stress. The strain measurement techniques include digital image correlation (DIC) and two techniques of video-based extensometry: marker tracking and area variation monitoring. Since the specimens are inevitably subject to structural plastic instabilities (necking in tension, barreling in compression) the strain and stress states are no longer uniform in the gauge section after the peak load. Under such circumstances, it is demonstrated that the three experimental methods can lead to significant differences. It is inferred from the comparative analysis that the method based on vertical marker tracking is not reliable. Validated by DIC, video-based area variation is shown to be a simple alternative way to obtain an excellent estimate of the intrinsic true stress-strain behavior of the polymer. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Poulain, X.; Benzerga, A. A.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA.
[Kohlman, L. W.; Binienda, W.] Univ Akron, Akron, OH 44325 USA.
[Roberts, G. D.; Goldberg, R. K.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Benzerga, A. A.] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA.
RP Benzerga, AA (reprint author), Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA.
EM benzerga@tamu.edu
RI Benzerga, Amine/K-2045-2014
OI Benzerga, Amine/0000-0002-6644-470X
FU NASA Glenn Research Center [NNX07AV39A, NNX07AV60A]
FX The authors acknowledge support from NASA Glenn Research Center under
cooperative agreement NNX07AV39A between Texas Engineering Experiment
Station and GRC, and cooperative agreement NNX07AV60A between the
University of Akron and GRC. The authors would also like to thank Tim
Woodburry from TAMU for his assistance with video-monitored
post-processing of test results.
NR 39
TC 10
Z9 10
U1 1
U2 27
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7683
J9 INT J SOLIDS STRUCT
JI Int. J. Solids Struct.
PD JUN 1
PY 2013
VL 50
IS 11-12
BP 1869
EP 1878
DI 10.1016/j.ijsolstr.2013.01.041
PG 10
WC Mechanics
SC Mechanics
GA 136UY
UT WOS:000318390100002
ER
PT J
AU Severino, G
Straus, T
Oliviero, M
Steffen, M
Fleck, B
AF Severino, G.
Straus, T.
Oliviero, M.
Steffen, M.
Fleck, B.
TI The Intensity-Velocity Phase Spectra of Evanescent Oscillations and
Acoustic Sources
SO SOLAR PHYSICS
LA English
DT Article
DE Helioseismology, direct modeling; Waves, modes; Velocity fields,
photosphere
ID LINE-PROFILES; SOLAR OSCILLATIONS; GRAVITY-WAVES; P-MODES; CONVECTION;
ATMOSPHERE; SCATTERING; AMPLITUDES; DYNAMICS; STARS
AB There are three major issues in modeling solar evanescent oscillations: the variation of the intensity [I]-velocity [V] phase difference of p-modes close to the base of photosphere; the existence of a plateau of negative I-V phase differences below and between the ridges of the low-frequency p-modes; the explanation of the I-V cross-spectra of the evanescent oscillations. We present new interpretations for the first two issues, based on modeling intensity fluctuations taking steep temperature gradients, opacity, and non-adiabatic cooling into account.
We also discuss consequences of our model for the explanation of power spectra and cross-power spectra of p-modes. In particular, we present evidence that the acoustic sources that generate evanescent waves produce a coherent background that explains the plateau-interridge regime of negative I-V phase difference.
C1 [Severino, G.; Straus, T.; Oliviero, M.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy.
[Steffen, M.] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany.
[Fleck, B.] NASA, Goddard Space Flight Ctr, ESA Sci Operat Dept, Greenbelt, MD 20771 USA.
RP Severino, G (reprint author), INAF Osservatorio Astron Capodimonte, Via Moiariello 16, I-80131 Naples, Italy.
EM severino@oacn.inaf.it; straus@oacn.inaf.it; oliviero@oacn.inaf.it;
msteffen@aip.de; bfleck@esa.nascom.nasa.gov
OI Straus, Thomas/0000-0002-6280-806X; oliviero,
maurizio/0000-0001-9939-115X
FU Italian Space Agency (ASI); PRIN-INAF
FX This work is dedicated to F.-L. Deubner, a pioneer of helioseismology
and our master in this field. We thank the anonymous referee for making
a number of very useful comments. One of the authors (GS) acknowledges
financial support from the Italian Space Agency (ASI) and from the
PRIN-INAF 2010 Asteroseismology: looking inside the stars with space-
and ground-based observations. SDO/HMI data courtesy of NASA/SDO and the
HMI science team.
NR 28
TC 1
Z9 1
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-0938
J9 SOL PHYS
JI Sol. Phys.
PD JUN
PY 2013
VL 284
IS 2
BP 297
EP 314
DI 10.1007/s11207-012-0172-9
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 138OK
UT WOS:000318517800002
ER
PT J
AU Wolpert, DH
Benford, G
AF Wolpert, David H.
Benford, Gregory
TI The lesson of Newcomb's paradox
SO SYNTHESE
LA English
DT Article
DE Newcomb's paradox; Game theory; Bayes net; Causality; Determinism
ID RESOLUTION
AB In Newcomb's paradox you can choose to receive either the contents of a particular closed box, or the contents of both that closed box and another one. Before you choose though, an antagonist uses a prediction algorithm to accurately deduce your choice, and uses that deduction to fill the two boxes. The way they do this guarantees that you made the wrong choice. Newcomb's paradox is that game theory's expected utility and dominance principles appear to provide conflicting recommendations for what you should choose. Here we show that the conflicting recommendations assume different probabilistic structures relating your choice and the algorithm's prediction. This resolves the paradox: the reason there appears to be two conflicting recommendations is that the probabilistic structure relating the problem's random variables is open to two, conflicting interpretations. We then show that the accuracy of the prediction algorithm in Newcomb's paradox, the focus of much previous work, is irrelevant. We end by showing that Newcomb's paradox is time-reversal invariant; both the paradox and its resolution are unchanged if the algorithm makes its 'prediction' after you make your choice rather than before.
C1 [Wolpert, David H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Benford, Gregory] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92692 USA.
RP Wolpert, DH (reprint author), NASA, Ames Res Ctr, MS 269-1, Moffett Field, CA 94035 USA.
EM david.h.wolpert@nasa.gov
NR 22
TC 1
Z9 1
U1 2
U2 10
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0039-7857
J9 SYNTHESE
JI Synthese
PD JUN
PY 2013
VL 190
IS 9
BP 1637
EP 1646
DI 10.1007/s11229-011-9899-3
PG 10
WC History & Philosophy Of Science; Philosophy
SC History & Philosophy of Science; Philosophy
GA 138CS
UT WOS:000318486700010
ER
PT J
AU Sibonga, JD
AF Sibonga, Jean D.
TI Spaceflight-induced Bone Loss: Is there an Osteoporosis Risk?
SO CURRENT OSTEOPOROSIS REPORTS
LA English
DT Article
DE Quantitative computed tomography; Finite element modeling; Astronaut
AB Currently, the measurement of areal bone mineral density (aBMD) is used at NASA to evaluate the effects of spaceflight on the skeletal health of astronauts. Notably, there are precipitous declines in aBMD with losses > 10 % detected in the hip and spine in some astronauts following a typical 6-month mission in space. How those percentage changes in aBMD relate to fracture risk in the youngeraged astronaut is unknown. Given the unique set of risk factors that could be contributing to this bone loss (eg, adaptation to weightlessness, suboptimal diet, reduced physical activity, perturbed mineral metabolism), one might not expect skeletal changes due to spaceflight to be similar to skeletal changes due to aging. Consequently, dual-energy Xray absorptiometry (DXA) measurement of aBMD may be too limiting to understand fracture probability in the astronaut during a long-duration mission and the risk for premature osteoporosis after return to Earth. Following a brief review of the current knowledge-base, this paper will discuss some innovative research projects being pursued at NASA to help understand skeletal health in astronauts.
C1 NASA, Johnson Space Ctr, Houston, TX 77058 USA.
RP Sibonga, JD (reprint author), NASA, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM Jean.sibonga-1@NASA.gov
NR 27
TC 20
Z9 24
U1 2
U2 8
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
EI 1544-2241
J9 CURR OSTEOPOROS REP
JI Curr. Osteoporos. Rep.
PD JUN
PY 2013
VL 11
IS 2
BP 92
EP 98
DI 10.1007/s11914-013-0136-5
PG 7
WC Endocrinology & Metabolism
SC Endocrinology & Metabolism
GA V35YX
UT WOS:000209182000004
PM 23564190
ER
PT J
AU Blackwell, WJ
Lim, BH
AF Blackwell, William J.
Lim, Boon H.
TI The IEEE GRSS Working Group on Remote Sensing Instruments and
Technologies for Small Satellites
SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
LA English
DT Editorial Material
C1 [Blackwell, William J.] MIT Lincoln Lab, Lexington, MA 02421 USA.
[Lim, Boon H.] Jet Prop Lab, Pasadena, CA USA.
RP Blackwell, WJ (reprint author), MIT Lincoln Lab, Lexington, MA 02421 USA.
EM WJB@LL.MIT.EDU; bhlim@jpl.nasa.gov
NR 10
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6831
J9 IEEE GEOSC REM SEN M
JI IEEE Geosci. Remote Sens. Mag.
PD JUN
PY 2013
VL 1
IS 2
BP 68
EP 70
DI 10.1109/MGRS.2013.2260912
PG 3
WC Geochemistry & Geophysics; Remote Sensing; Imaging Science &
Photographic Technology
SC Geochemistry & Geophysics; Remote Sensing; Imaging Science &
Photographic Technology
GA V45AS
UT WOS:000209790100006
ER
PT J
AU Silver, KC
Carroll, M
AF Silver, Kirk C.
Carroll, Mark
TI A Comparative Review of North American Tundra Delineations
SO ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION
LA English
DT Review
DE Tundra; ecoregion; North America; classification systems; GIS; review
AB Recent profound changes have been observed in the Arctic environment, including record low sea ice extents and high latitude greening. Studying the Arctic and how it is changing is an important element of climate change science. The Tundra, an ecoregion of the Arctic, is directly related to climate change due to its effects on the snow ice feedback mechanism and greenhouse gas cycling. Like all ecoregions, the Tundra border is shifting, yet studies and policies require clear delineation of boundaries. There are many options for ecoregion classification systems, as well as resources for creating custom maps. To help decision makers identify the best classification system possible, we present a review of North American Tundra ecoregion delineations and further explore the methodologies, purposes, limitations, and physical properties of five common ecoregion classification systems. We quantitatively compare the corresponding maps by area using a geographic information system.
C1 [Silver, Kirk C.] Univ Rhode Isl, Coll Environm & Life Sci, Coastal Inst MESM 106, Kingston, RI 02881 USA.
[Carroll, Mark] NASA Goddard Space Flight Ctr, Sigma Space Corp, Biospher Sci Lab, Greenbelt, MD 20771 USA.
RP Silver, KC (reprint author), Univ Rhode Isl, Coll Environm & Life Sci, Coastal Inst MESM 106, Kingston, RI 02881 USA.
EM kirk.silver@gmail.com; mark.carroll@nasa.gov
NR 89
TC 0
Z9 0
U1 2
U2 3
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2220-9964
J9 ISPRS INT GEO-INF
JI ISPRS Int. Geo-Inf.
PD JUN
PY 2013
VL 2
IS 2
BP 324
EP 348
DI 10.3390/ijgi2020324
PG 25
WC Geography, Physical; Remote Sensing
SC Physical Geography; Remote Sensing
GA V40FY
UT WOS:000209465700004
ER
PT J
AU Steltzner, A
AF Steltzner, Adam
TI Q&A ADAM STELTZNER
SO MECHANICAL ENGINEERING
LA English
DT Editorial Material
C1 [Steltzner, Adam] NASA, Jet Prop Lab, Pasadena, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0025-6501
EI 1943-5649
J9 MECH ENG
JI Mech. Eng.
PD JUN
PY 2013
VL 135
IS 6
BP 20
EP 20
PG 1
WC Engineering, Mechanical
SC Engineering
GA AQ0PH
UT WOS:000342484700013
ER
PT J
AU Srivastava, AN
Chawla, NV
AF Srivastava, Ashok N.
Chawla, Nitesh V.
TI Special Issue on CIDU '11
SO STATISTICAL ANALYSIS AND DATA MINING
LA English
DT Editorial Material
C1 [Srivastava, Ashok N.] NASA, Ames Res Ctr, New York, NY USA.
[Chawla, Nitesh V.] Univ Notre Dame, Notre Dame, IN 46556 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1932-1864
EI 1932-1872
J9 STAT ANAL DATA MIN
JI Stat. Anal. Data Min.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 157
EP 157
DI 10.1002/sam.11194
PG 1
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Statistics & Probability
SC Computer Science; Mathematics
GA V41CW
UT WOS:000209525300001
ER
PT J
AU Thompson, DR
Majid, WA
Reed, CJ
Wagstaff, KL
AF Thompson, David R.
Majid, Walid A.
Reed, Colorado J.
Wagstaff, Kiri L.
TI Semi-Supervised Eigenbasis Novelty Detection
SO STATISTICAL ANALYSIS AND DATA MINING
LA English
DT Article
DE novelty detection; time series analysis; radio astronomy; machine
learning; anomaly detection; radio transients; fast transients;
semi-supervised learning
AB We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses sparse, adaptive eigenbases to combine (1) prior knowledge about uninteresting signals with (2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply Semi-Supervised Eigenbasis Novelty Detection (SSEND) to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both effective detection of interesting rare events and robustness to known false alarm anomalies. (c) 2012 Wiley Periodicals, Inc.
C1 [Thompson, David R.; Majid, Walid A.; Reed, Colorado J.; Wagstaff, Kiri L.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM david.r.thompson@jpl.nasa.gov
OI Wagstaff, Kiri/0000-0003-4401-5506
NR 22
TC 0
Z9 0
U1 0
U2 0
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1932-1864
EI 1932-1872
J9 STAT ANAL DATA MIN
JI Stat. Anal. Data Min.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 195
EP 204
DI 10.1002/sam.11148
PG 10
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Statistics & Probability
SC Computer Science; Mathematics
GA V41CW
UT WOS:000209525300004
ER
PT J
AU Das, K
Srivastava, AN
AF Das, Kamalika
Srivastava, Ashok N.
TI Sparse Inverse Kernel Gaussian Process Regression
SO STATISTICAL ANALYSIS AND DATA MINING
LA English
DT Article
DE sparse regression; Gaussian processes; earth science data; ADMM
AB Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression (GPR) is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply GPR to large data sets since prediction based on the learned model requires inversion of an order n kernel matrix. Approximate solutions for sparse Gaussian Processes have been proposed for sparse problems. However, in almost all cases, these solution techniques are agnostic to the input domain and do not preserve the similarity structure in the data. As a result, although these solutions sometimes provide excellent accuracy, the models do not have interpretability. Such interpretable sparsity patterns are very important for many applications. We propose a new technique for sparse GPR that allows us to compute a parsimonious model while preserving the interpretability of the sparsity structure in the data. We discuss how the inverse kernel matrix used in Gaussian Process prediction gives valuable domain information and then adapt the inverse covariance estimation from Gaussian graphical models to estimate the Gaussian kernel. We solve the optimization problem using the alternating direction method of multipliers that is amenable to parallel computation. We compare the performance of this algorithm to different existing methods for sparse covariance regression in terms of both speed and accuracy. We demonstrate the performance of our method in terms of accuracy, scalability, and interpretability on two different satellite data sets from the climate domain. (c) 2013 Wiley Periodicals, Inc.
C1 [Das, Kamalika] Univ Calif Santa Cruz, UARC, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Srivastava, Ashok N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Das, K (reprint author), Univ Calif Santa Cruz, UARC, NASA, Ames Res Ctr, MS 269-1, Moffett Field, CA 94035 USA.
EM Kamalika.Das@nasa.gov
NR 29
TC 0
Z9 0
U1 1
U2 2
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1932-1864
EI 1932-1872
J9 STAT ANAL DATA MIN
JI Stat. Anal. Data Min.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 205
EP 220
DI 10.1002/sam.11189
PG 16
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Statistics & Probability
SC Computer Science; Mathematics
GA V41CW
UT WOS:000209525300005
ER
PT J
AU El Ghaoui, L
Pham, V
Li, GC
Duong, VA
Srivastava, A
Bhaduri, K
AF El Ghaoui, Laurent
Vu Pham
Li, Guan-Cheng
Viet-An Duong
Srivastava, Ashok
Bhaduri, Kanishka
TI Understanding Large Text Corpora via Sparse Machine Learning
SO STATISTICAL ANALYSIS AND DATA MINING
LA English
DT Article
DE data mining; intelligent text understanding; sparse machine learning;
optimization
AB Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational cost. The approach has been successfully used in many areas, such as signal and image processing. This article posits that these methods can be extremely useful in the analysis of large collections of text documents, without requiring user expertise in machine learning. Our approach relies on three main ingredients: (i) multidocument text summarization; (ii) comparative summarization of two corpora, both using sparse regression or classification; (iii) sparse principal components and sparse graphical models for unsupervised analysis and visualization of large text corpora. We validate our methods using a corpus of Aviation Safety Reporting System (ASRS) reports and demonstrate that the methods can reveal causal and contributing factors in runway incursions. Furthermore, we show that the methods automatically discover four main tasks that pilots perform during flight, which can aid in further understanding the causal and contributing factors to runway incursions and other drivers for aviation safety incidents. We also provide a comparative study involving other commonly used datasets, and report on the competitiveness of sparse machine learning compared to state-of-the-art methods such as latent Dirichlet allocation (LDA). (c) 2013 Wiley Periodicals, Inc.
C1 [El Ghaoui, Laurent; Vu Pham; Li, Guan-Cheng] Univ Calif Berkeley, EECS Dept, Berkeley, CA 94720 USA.
[Viet-An Duong] Ecole Mines Ales, Sch Prod & Syst Engn, Ales, France.
[Srivastava, Ashok] NASA, Syst Wide Safety & Assurance Technol Project, Moffett Field, CA USA.
[Bhaduri, Kanishka] Netflix Inc, Los Gatos, CA USA.
RP El Ghaoui, L (reprint author), Univ Calif Berkeley, EECS Dept, Berkeley, CA 94720 USA.
EM elghaoui@berkeley.edu
NR 55
TC 1
Z9 1
U1 1
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1932-1864
EI 1932-1872
J9 STAT ANAL DATA MIN
JI Stat. Anal. Data Min.
PD JUN
PY 2013
VL 6
IS 3
SI SI
BP 221
EP 242
DI 10.1002/sam.11187
PG 22
WC Computer Science, Artificial Intelligence; Computer Science,
Interdisciplinary Applications; Statistics & Probability
SC Computer Science; Mathematics
GA V41CW
UT WOS:000209525300006
ER
PT J
AU Marshall-Bowman, K
Barratt, MR
Gibson, CR
AF Marshall-Bowman, Karina
Barratt, Michael R.
Gibson, C. Robert
TI Ophthalmic changes and increased intracranial pressure associated with
long duration spaceflight: An emerging understanding
SO ACTA ASTRONAUTICA
LA English
DT Article
DE Vision changes; Microgravity; Long duration spaceflight; Intracranial
pressure; Optic disc edema; Visual acuity; Retinal imaging; Optical
coherence tomography
ID CENTRAL VENOUS-PRESSURE; INTRAOCULAR-PRESSURE; PSEUDOTUMOR CEREBRI;
MOUNTAIN-SICKNESS; CHOROIDAL FOLDS; MICROGRAVITY; HYPERTENSION; SPACE;
AUTOREGULATION; TRANSIENT
AB For many years, there have been anecdotal reports of vision changes by astronauts following short and long-duration spaceflight. Much of this was attributed to hyperopic shifts related to the age of the flying population. However, it has recently been recognized that vision changes are actually quite common in astronauts and are associated with a constellation of findings including elevated intracranial pressure, optic disc edema, globe flattening, optic nerve sheath thickening, hyperopic shifts and retinal changes. With advanced imaging modalities available on the ground along with the fidelity of in-flight diagnostic capabilities previously unavailable, information on this newly recognized syndrome is accumulating. As of this writing, 11 cases of visual impairment experienced by astronauts during missions on-board the International Space Station (ISS) have been documented and studied. Although the exact mechanisms of the vision changes are unknown, it is hypothesized that increased intracranial pressure (ICP) is a contributing factor.
Microgravity is the dominant cause of many physiological changes during spaceflight and is thought to contribute significantly to the observed ophthalmic changes. However, several secondary factors that could contribute to increased ICP and vision changes in spaceflight have been proposed. Possible contributors include microgravity-induced cephalad fluid shift, venous obstruction due to microgravity-induced anatomical shifts, high levels of spacecraft cabin carbon dioxide, heavy resistive exercise, and high sodium diet. Individual susceptibility to visual impairment is not fully understood, though a demographic of affected astronauts is emerging.
This paper describes the current understanding of this newly recognized syndrome, presents data from 11 individual cases, and discusses details of potential contributing factors. The occurrence of visual changes in long duration missions in microgravity is one of the most significant clinical issues to date for the human spaceflight community, and a comprehensive understanding of the issue at whole is critical to ensure safe space exploration in the future. (C) 2013 Published by Elsevier Ltd. on behalf of IAA.
C1 [Marshall-Bowman, Karina; Barratt, Michael R.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Marshall-Bowman, Karina] German Aerosp Ctr DLR, Inst Aerosp Med, D-51147 Cologne, Germany.
[Gibson, C. Robert] Wyle Sci Technol & Engn, Houston, TX USA.
RP Barratt, MR (reprint author), NASA, Lyndon B Johnson Space Ctr, CB, Astronaut Off, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM Karina.Marshall-Bowman@dlr.de; Michael.r.barratt@nasa.gov;
charles.gibson-1@nasa.gov
OI Marshall-Goebel, Karina/0000-0002-5240-7625
NR 43
TC 11
Z9 12
U1 3
U2 21
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0094-5765
J9 ACTA ASTRONAUT
JI Acta Astronaut.
PD JUN-JUL
PY 2013
VL 87
BP 77
EP 87
DI 10.1016/j.actaastro.2013.01.014
PG 11
WC Engineering, Aerospace
SC Engineering
GA 133IE
UT WOS:000318131300008
ER
PT J
AU Grintzalis, K
Zisimopoulos, D
Grune, T
Weber, D
Georgiou, CD
AF Grintzalis, Konstantinos
Zisimopoulos, Dimitrios
Grune, Tilman
Weber, Daniela
Georgiou, Christos D.
TI Method for the simultaneous determination of free/protein
malondialdehyde and lipid/protein hydroperoxides
SO FREE RADICAL BIOLOGY AND MEDICINE
LA English
DT Article
DE Lipid/protein malondialdehyde; Thiobarbituric acid; Lipid/protein
hydroperoxides; Oxidative stress; Xylenol orange; Free radicals
ID LOW-DENSITY-LIPOPROTEIN; XYLENOL ORANGE ASSAY; 4-HYDROXYNONENAL MODIFIED
PROTEINS; LIPID-PEROXIDATION PRODUCTS; FERROUS ION OXIDATION;
THIOBARBITURIC ACID; AMINO-ACID; IMMUNOCHEMICAL DETECTION; BIOLOGICAL
SAMPLES; HYDROGEN-PEROXIDE
AB A simple and sensitive method is presented for the simultaneous quantification (spectrophotometric and spectrofluorimetric) of the main lipid and protein peroxidation products after their initial fractionation: free malondialdehyde (FrMDA), protein-bound malondialdehyde (PrMDA), total hydroperoxides (LOON), and protein hydroperoxides (PrOOH). FrMDA and PrMDA (released from proteins by alkaline hydrolysis) are measured after the reaction of MDA with thiobarbituric acid (TBA) under acidic conditions, by the specific fluorimetric quantification of the resulting MDA-(TBA)(2) adduct chromophore. The measurement of LOOH and PrOOH is based on the reaction of Fe3+ (resulting from the reaction of LOOH and PrOOH with Fe2+) with xylenol orange (XO) and the, photometric quantification of the resulting XO-Fe complex. The sensitivity of the assays for FrMDA/PrMDA and LOOH/PrOOH is 20 and 100 pmol respectively. The method was applied successfully on human plasma and can be used. for the evaluation of oxidative stress in both basic and clinical research. (c) 2012 Elsevier Inc. All rights reserved.
C1 [Grintzalis, Konstantinos; Zisimopoulos, Dimitrios; Georgiou, Christos D.] Univ Patras, Dept Biol, Genet Cell & Dev Biol Sect, Patras 26100, Greece.
[Grune, Tilman; Weber, Daniela] Univ Jena, Dept Nutr Toxicol, Inst Nutr, Jena, Germany.
[Georgiou, Christos D.] NASA, ARC, Space Sci & Astrobiol Div, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Georgiou, CD (reprint author), Univ Patras, Dept Biol, Cell & Dev Biol Sect, Patras 26100, Greece.
EM c.georgiou@upatras.gr
RI Georgiou, Christos/B-8354-2013; Grintzalis, Konstantinos/I-5124-2014;
OI Georgiou, Christos/0000-0001-9707-0109; Grintzalis,
Konstantinos/0000-0002-6276-495X; Grune, Tilman/0000-0003-4775-9973;
Weber, Daniela/0000-0002-2054-6233
FU Greek Ministry of Education, University of Patras, Greece
FX This work was financially supported by the Greek Ministry of Education,
University of Patras, Greece. The authors express their gratitude to Dr.
Janusz (Jan) Gebicki (Department of Biological Sciences, Macquarie
University, Australia) for his very useful suggestions.
NR 60
TC 13
Z9 13
U1 4
U2 44
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0891-5849
J9 FREE RADICAL BIO MED
JI Free Radic. Biol. Med.
PD JUN
PY 2013
VL 59
BP 27
EP 35
DI 10.1016/j.freeradbiomed.2012.09.038
PG 9
WC Biochemistry & Molecular Biology; Endocrinology & Metabolism
SC Biochemistry & Molecular Biology; Endocrinology & Metabolism
GA 134IE
UT WOS:000318202800004
PM 23041350
ER
PT J
AU Konishi, C
Mudawar, I
Hasan, MM
AF Konishi, Christopher
Mudawar, Issam
Hasan, Mohammad M.
TI Investigation of the influence of orientation on critical heat flux for
flow boiling with two-phase inlet
SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
LA English
DT Article
DE Flow boiling; Critical heat flux; Flow orientation
ID RECTANGULAR IMPINGING JET; DIELECTRIC LIQUID; VERTICAL SURFACES; CHF
MECHANISM; SINGLE-PHASE; BODY FORCE; CHANNEL; MODEL; MICROGRAVITY;
DISCRETE
AB This study explores the mechanism of flow boiling critical heat flux (CHF) for FC-72 in a rectangular channel fitted along one side with a heated wall. The flow is supplied as a two-phase mixture and the channel is tested at different orientations relative to Earth's gravity. High-speed video imaging is used to identify the CHF trigger mechanism for different orientations, mass velocities and inlet qualities. It is shown that orientation has a significant influence on CHF for low mass velocities and small inlet qualities, with the orientations surrounding horizontal flow with downward-facing heated wall causing stratification of the vapor towards the heated wall and yielding very small CHF values. High mass velocities cause appreciable diminution in the influence of orientation on CHF, which is evidenced by similar flow patterns and CHF trigger mechanism regardless of orientation. The interfacial lift-off model is shown to predict the influence of orientation on CHF with good accuracy. Overall, this study points to the effectiveness of high mass velocities at combating buoyancy effects and helping produce CHF values insensitive to orientation. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Konishi, Christopher; Mudawar, Issam] Purdue Univ, Sch Mech Engn, BTPFL, W Lafayette, IN 47907 USA.
[Hasan, Mohammad M.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Mudawar, I (reprint author), Purdue Univ, Sch Mech Engn, BTPFL, 585 Purdue Mall, W Lafayette, IN 47907 USA.
EM mudawar@ecn.purdue.edu
FU National Aeronautics and Space Administration (NASA) [NNX12AK14G]
FX The authors are grateful for the support of this project by the National
Aeronautics and Space Administration (NASA) under grant no. NNX12AK14G.
NR 38
TC 12
Z9 13
U1 1
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0017-9310
J9 INT J HEAT MASS TRAN
JI Int. J. Heat Mass Transf.
PD JUN
PY 2013
VL 61
BP 176
EP 190
DI 10.1016/j.ijheatmasstransfer.2013.01.076
PG 15
WC Thermodynamics; Engineering, Mechanical; Mechanics
SC Thermodynamics; Engineering; Mechanics
GA 135BE
UT WOS:000318260200019
ER
PT J
AU Lee, H
Mudawar, I
Hasan, MM
AF Lee, Hyoungsoon
Mudawar, Issam
Hasan, Mohammad M.
TI Experimental and theoretical investigation of annular flow condensation
in microgravity
SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
LA English
DT Article
DE Microgravity; Condensation; Annular flow
ID CRITICAL HEAT-FLUX; FALLING LIQUID-FILMS; TRANSFER COEFFICIENT;
PRESSURE-DROP; BOILING CHF; MOMENTUM TRANSPORT; UNIVERSAL APPROACH;
SINGLE-PHASE; BODY FORCE; TUBES
AB Vehicles for future manned space missions will demand unprecedented increases in power requirements and heat dissipation. Achieving these goals while maintaining acceptable size and weight limits will require replacing present single-phase thermal management components with far more efficient two-phase counterparts. This study discusses the development of an experimental facility for the study of annular condensation of FC-72 in microgravity, which was tested in parabolic flight as a prelude to the development of NASA's Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS). The flow behavior of the condensate film is shown to be sensitive mostly to the mass velocity of FC-72, with low mass velocities yielding laminar flow with a smooth interface, and high mass velocities turbulent flow with appreciable interfacial waviness. A select number of tests repeated in microgravity, Lunar gravity and Martian gravity prove that the influence of gravity is very pronounced at low mass velocities, manifest by circumferential uniformity for microgravity versus appreciable thickening along one side of the condensation tube for Lunar and Martian conditions. However, the thickening is nonexistent for Lunar and Martian conditions at high mass velocities due to increased vapor shear on the film interface, proving high mass velocity is an effective means to negating the influence of gravity in space missions. For microgravity, the condensation heat transfer coefficient is highest near the inlet, where the film is both thin and laminar, and decreases along the condensation length, but increases again downstream for high mass velocities due to turbulence and increased waviness. A model is proposed to predict the condensation heat transfer which accounts for dampening of turbulent fluctuations near the film interface. The model shows good agreement with the heat transfer coefficient data in both trend and magnitude. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Lee, Hyoungsoon; Mudawar, Issam] Purdue Univ, Boiling & Two Phase Flow Lab, Sch Mech Engn, W Lafayette, IN 47907 USA.
[Hasan, Mohammad M.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Mudawar, I (reprint author), Purdue Univ, Boiling & Two Phase Flow Lab, Sch Mech Engn, 585 Purdue Mall, W Lafayette, IN 47907 USA.
EM mudawar@ecn.purdue.edu
FU National Aeronautics and Space Administration (NASA) [NNX13AB01G]
FX The authors are grateful for the support of the National Aeronautics and
Space Administration (NASA) under grant no. NNX13AB01G. The authors
thank Rochelle May, Jeffrey Juergens, James Wagner, Nancy Hall, Henry
Nahra, David Chao, Robert Butcher, Alban Seigneur, Bruce Frankenfield,
Paul Trimarchi, Richard Kelsch, Daniel Gotti, Chip Redding, and Frank
Kmiecik of the NASA Glenn Research Center, and Jeffrey Mackey of Vantage
Partners LLC for their technical assistance.
NR 54
TC 15
Z9 16
U1 6
U2 40
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0017-9310
J9 INT J HEAT MASS TRAN
JI Int. J. Heat Mass Transf.
PD JUN
PY 2013
VL 61
BP 293
EP 309
DI 10.1016/j.ijheatmasstransfer.2013.02.010
PG 17
WC Thermodynamics; Engineering, Mechanical; Mechanics
SC Thermodynamics; Engineering; Mechanics
GA 135BE
UT WOS:000318260200029
ER
PT J
AU Miller, JE
Bohl, WE
Christiansen, EL
Davis, BA
AF Miller, J. E.
Bohl, W. E.
Christiansen, E. L.
Davis, B. A.
TI Ballistic performance of porous-ceramic, thermal protection systems
SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING
LA English
DT Article; Proceedings Paper
CT 12th Hypervelocity Impact Symposium (HVIS)
CY SEP 16-20, 2012
CL Baltimore, MD
DE MMOD; TPS; Tile; Ballistic performance
AB Porous-ceramic, thermal protection systems were used heavily on the Orbiter, and they are currently being used on the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on nominally 8 lb/ft(3) alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/reaction-cured-glass layer (TUFI/RCG). A first principles impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the International Hypervelocity Impact Society. (C) 2012 Elsevier Ltd. All rights reserved.
C1 [Miller, J. E.; Bohl, W. E.] Lockheed Martin Space Syst Co, Denver, CO 80127 USA.
[Christiansen, E. L.; Davis, B. A.] NASA, Johnson Space Ctr, Houston, TX 77058 USA.
RP Miller, JE (reprint author), Lockheed Martin Space Syst Co, Denver, CO 80127 USA.
EM joshua.e.miller@lmco.com
NR 9
TC 6
Z9 6
U1 5
U2 44
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0734-743X
J9 INT J IMPACT ENG
JI Int. J. Impact Eng.
PD JUN
PY 2013
VL 56
SI SI
BP 40
EP 46
DI 10.1016/j.ijimpeng.2012.07.005
PG 7
WC Engineering, Mechanical; Mechanics
SC Engineering; Mechanics
GA 131LG
UT WOS:000317994600008
ER
PT J
AU Semiatin, SL
McClary, KE
Rollett, AD
Roberts, CG
Payton, EJ
Zhang, F
Gabb, TP
AF Semiatin, S. L.
McClary, K. E.
Rollett, A. D.
Roberts, C. G.
Payton, E. J.
Zhang, F.
Gabb, T. P.
TI Plastic Flow and Microstructure Evolution during Thermomechanical
Processing of a PM Nickel-Base Superalloy
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article
ID ISOTHERMAL FORGING CONDITIONS; ABNORMAL GRAIN-GROWTH; DEFORMATION;
COMPRESSION; ALLOYS
AB Plastic flow and microstructure evolution during sub- and supersolvus forging and subsequent supersolvus heat treatment of the powder-metallurgy superalloy LSHR (low-solvus, high-refractory) were investigated to develop an understanding of methods that can be used to obtain a moderately coarse gamma grain size under well-controlled conditions. To this end, isothermal, hot compression tests were conducted over broad ranges of temperature [(1144 K to 1450 K) 871 A degrees C to 1177 A degrees C] and constant true strain rate (0.0005 to 10 s(-1)). At low temperatures, deformation was generally characterized by flow softening and dynamic recrystallization that led to a decrease in grain size. At high subsolvus temperatures and low strain rates, steady-state flow or flow hardening was observed. These latter behaviors were ascribed to superplastic deformation and microstructure evolution characterized by a constant grain size or concomitant dynamic grain growth, respectively. During supersolvus heat treatment following subsolvus deformation, increases in grain size whose magnitude was a function of the prior deformation conditions were noted. A transition in flow behavior from superplastic to nonsuperplastic and the development during forging at a high subsolvus temperature of a wide (possibly bi- or multimodal) gamma-grain-size distribution having some large grains led to a substantially coarser grain size during supersolvus annealing in comparison to that produced under all other forging conditions.
C1 [Semiatin, S. L.] USAF, Res Lab, Mat & Mfg Directorate, AFRL RXCM, Wright Patterson AFB, OH 45433 USA.
[McClary, K. E.] Wright State Univ, Dept Phys, Dayton, OH 45435 USA.
[Rollett, A. D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
[Roberts, C. G.] Vallourec & Mannesmann USA Corp, Youngstown, OH 44510 USA.
[Payton, E. J.] BAM Fed Inst Mat Res & Testing, D-12205 Berlin, Germany.
[Zhang, F.] Computherm LLC, Madison, WI 53719 USA.
[Gabb, T. P.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Semiatin, SL (reprint author), USAF, Res Lab, Mat & Mfg Directorate, AFRL RXCM, Wright Patterson AFB, OH 45433 USA.
EM Lee.Semiatin@wpafb.af.mil
RI Rollett, Anthony/A-4096-2012; SEMIATIN, SHELDON/E-7264-2017;
OI Rollett, Anthony/0000-0003-4445-2191; Payton, Eric/0000-0001-7478-9372
FU Air Force STW-21 Initiative [F33615-01-2-5225]; MRSEC at Carnegie Mellon
University, NSF [DMR-0520425]
FX This work was conducted as part of the in-house research of the Metals
Branch of the Air Force Research Laboratory's Materials and
Manufacturing Directorate. The support and encouragement of the
Laboratory management are gratefully acknowledged. The assistance of
P.N. Fagin and T. M. Brown in conducting the experiments and A. Shively,
A. L. Pilchak, and A. A. Salem in segmenting EBSD/EDS data is greatly
appreciated. Technical discussions with P. L. Martin (AFRL) and J. Gayda
and J. Telesman (NASA GRC) are also much appreciated. Two of the authors
(ADR and CGR) also acknowledge support from the Air Force STW-21
Initiative, Contract F33615-01-2-5225, and the MRSEC at Carnegie Mellon
University, NSF Grant Number DMR-0520425.
NR 34
TC 17
Z9 17
U1 5
U2 38
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUN
PY 2013
VL 44A
IS 6
BP 2778
EP 2798
DI 10.1007/s11661-013-1675-1
PG 21
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 130PI
UT WOS:000317930200032
ER
PT J
AU Calle, CI
Mackey, PJ
Hogue, MD
Johansen, MR
Kelley, JD
Phillips, JR
Clements, JS
AF Calle, C. I.
Mackey, P. J.
Hogue, M. D.
Johansen, M. R.
Kelley, J. D.
Phillips, J. R., III
Clements, J. S.
TI An electrostatic precipitator system for the Martian environment
SO JOURNAL OF ELECTROSTATICS
LA English
DT Article
DE Space applications; Electrostatic precipitator; Particle control;
Particle charging
AB Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Published by Elsevier B.V.
C1 [Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.] NASA, Electrostat & Surface Phys Lab, Kennedy Space Ctr, FL 32899 USA.
[Kelley, J. D.; Phillips, J. R., III; Clements, J. S.] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA.
RP Calle, CI (reprint author), NASA, Electrostat & Surface Phys Lab, Kennedy Space Ctr, FL 32899 USA.
EM carlos.i.calle@nasa.gov
NR 5
TC 1
Z9 1
U1 2
U2 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3886
J9 J ELECTROSTAT
JI J. Electrost.
PD JUN
PY 2013
VL 71
IS 3
BP 254
EP 256
DI 10.1016/j.elstat.2012.10.008
PG 3
WC Engineering, Electrical & Electronic
SC Engineering
GA 128WI
UT WOS:000317800000015
ER
PT J
AU Calle, CI
Mackey, PJ
Hogue, MD
Johansen, MR
Yim, H
Delaune, PB
Clements, JS
AF Calle, C. I.
Mackey, P. J.
Hogue, M. D.
Johansen, M. R.
Yim, H.
Delaune, P. B.
Clements, J. S.
TI Electrodynamic Dust Shields on the International Space Station: Exposure
to the space environment
SO JOURNAL OF ELECTROSTATICS
LA English
DT Article
DE Space applications; Particle control; Particle charging
AB Electrodynamic Dust Shields (EDS) have been in development at NASA as a dust mitigation method for lunar and Martian missions. An active dust mitigation strategy, such as that provided by the EDS, that can remove dust from surfaces, is of crucial importance to the planetary exploration program. We report on the development of a flight experiment to fully expose four EDS panels to the space environment. This flight experiment is part of the Materials International Space Station experiment X (MISSE-X), an external platform on the International Space Station that will expose materials to the space environment. (C) 2012 Published by Elsevier B.V.
C1 [Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.] NASA, Electrostat & Surface Phys Lab, Kennedy Space Ctr, FL 32899 USA.
[Yim, H.; Delaune, P. B.] NASA, Johnson Space Ctr, Houston, TX 77058 USA.
[Clements, J. S.] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA.
RP Calle, CI (reprint author), NASA, Electrostat & Surface Phys Lab, Kennedy Space Ctr, FL 32899 USA.
EM Carlos.I.Calle@nasa.gov
NR 6
TC 0
Z9 0
U1 2
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3886
J9 J ELECTROSTAT
JI J. Electrost.
PD JUN
PY 2013
VL 71
IS 3
BP 257
EP 259
DI 10.1016/j.elstat.2012.10.009
PG 3
WC Engineering, Electrical & Electronic
SC Engineering
GA 128WI
UT WOS:000317800000016
ER
PT J
AU Farley, KA
Hurowitz, JA
Asimow, PD
Jacobson, NS
Cartwright, JA
AF Farley, K. A.
Hurowitz, J. A.
Asimow, P. D.
Jacobson, N. S.
Cartwright, J. A.
TI A double-spike method for K-Ar measurement: A technique for high
precision in situ dating on Mars and other planetary surfaces
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID MASS-SPECTROMETRY; HIGH-TEMPERATURE; CROSS-SECTIONS; AGES; IONIZATION;
CHRONOLOGY; EVOLUTION; HISTORY; ZAGAMI; PB
AB A new method for K-Ar dating using a double isotope dilution technique is proposed and demonstrated. The method is designed to eliminate known difficulties facing in situ dating on planetary surfaces, especially instrument complexity and power availability. It may also have applicability in some terrestrial dating applications. Key to the method is the use of a solid tracer spike enriched in both Ar-39 and K-41. When mixed with lithium borate flux in a Knudsen effusion cell, this tracer spike and a sample to be dated can be successfully fused and degassed of Ar at <1000 degrees C. The evolved Ar-40*/Ar-39 ratio can be measured to high precision using noble gas mass spectrometry. After argon measurement the sample melt is heated to a slightly higher temperature (similar to 1030 degrees C) to volatilize potassium, and the evolved K-39/K-41 ratio measured by Knudsen effusion mass spectrometry. Combined with the known composition of the tracer spike, these two ratios define the K-Ar age using a single sample aliquot and without the need for extreme temperature or a mass determination. In principle the method can be implemented using a single mass spectrometer.
Experiments indicate that quantitative extraction of argon from a basalt sample occurs at a sufficiently low temperature that potassium loss in this step is unimportant. Similarly, potassium isotope ratios measured in the Knudsen apparatus indicate good sample-spike equilibration and acceptably small isotopic fractionation. When applied to a flood basalt from the Viluy Traps, Siberia, a K-Ar age of 351 +/- 19 Ma was obtained, a result within 1% of the independently known age. For practical reasons this measurement was made on two separate mass spectrometers, but a scheme for combining the measurements in a single analytical instrument is described. Because both parent and daughter are determined by isotope dilution, the precision on K-Ar ages obtained by the double isotope dilution method should routinely approach that of a pair of isotope ratio determinations, likely better than +/- 5%. (C) 2013 Elsevier Ltd. All rights reserved.
C1 [Farley, K. A.; Asimow, P. D.; Cartwright, J. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Hurowitz, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Jacobson, N. S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Farley, KA (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
EM farley@gps.caltech.edu
RI Cartwright, Julia/A-8470-2013
FU Keck Institute for Space Studies; National Aeronautics and Space Agency
(JAH)
FX We thank Paul Renne for suggesting and providing the Viluy Traps basalt
sample and Tim Becker for facilitating the irradiation of our spike
glass. We thank Leah Morgan, Pete Burnard, and two anonymous reviewers
for helpful suggestions. This work could not have occurred without the
generous and patient support of the Keck Institute for Space Studies.
This research was carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Agency (JAH).
NR 34
TC 10
Z9 10
U1 2
U2 41
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD JUN 1
PY 2013
VL 110
BP 1
EP 12
DI 10.1016/j.gca.2013.02.010
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 123IH
UT WOS:000317381100001
ER
PT J
AU Vance, S
Brown, JM
AF Vance, Steve
Brown, J. Michael
TI Thermodynamic properties of aqueous MgSO4 to 800 MPa at temperatures
from-20 to 100 degrees C and concentrations to 2.5 mol kg(-1) from sound
speeds, with applications to icy world oceans
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID DIAMOND-ANVIL CELL; LINEAR ISOPIESTIC RELATION; EQUATION-OF-STATE; MAJOR
SEA SALTS; MAGNESIUM-SULFATE; PVT PROPERTIES; INTERNAL STRUCTURE;
SUBSURFACE OCEANS; WATER; APPARENT
AB Thermodynamic properties of aqueous magnesium sulfate solutions (MgSO4 concentrations to 2.5 mol kg(-1)) are reported in a previously unexplored regime of pressure and temperature. Solution densities (to a few hundred parts-per-million), specifics heats (to a few percent), and volumetric mixing parameters were determined to 800 MPa in the temperature range from -20 to 100 degrees C from sound speeds measurements. Equilibrium data extrapolate smoothly to temperatures below which liquids are stable, providing a basis for equilibrium freezing calculations. In more compressed water at high pressure, where electrostrictive effects are smaller, the partial molal volume at infinite dilution is positive and changes less with pressure, while the non-ideal contribution to the apparent molal volume is reduced. Ion-solvent and ion-ion contributions are small under all conditions, while solvent contributions to non-ideality show greater variation with pressure and temperature. In application to Ganymede, Callisto, and Titan, the current results suggest that concentrations of aqueous MgSO4 would be exist that would be denser than overlying ice and thus buoyantly stable at the ice VI-rock interface, or between overlying layers of ice VI-V or V-III. More generally, the current data and analysis provide a comprehensive framework that can guide investigations of other single and multi-component aqueous systems. (C) 2013 Elsevier Ltd. All rights reserved.
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
Univ Washington, Seattle, WA 98195 USA.
RP Vance, S (reprint author), MS 183-401,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM svance@jpl.nasa.gov
FU NASA [NNG06GF81G, NNX08AQ51G, 08-NAI5-0021]; National Science
Foundation's IGERT program [DGE-9870713]
FX This work was partially supported by NASA Outer Planets Research through
grants NNG06GF81G and NNX08AQ51G, by the National Science Foundation's
IGERT program, grant number DGE-9870713, "IGERT: Astrobiology: Life in
and beyond Earth's Solar System," by the Icy Worlds node of NASA's
Astrobiology Institute (08-NAI5-0021) and the NASA and Caltech
postdoctoral programs. Laboratory efforts benefited from substantial
work by Evan Abramson, Nicholas Castle, Steven Domonkos, Kyle Straughn,
and Hoku West-Foyle. Discussions with Evan Abramson are acknowledged and
appreciated. Portions of this research were carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.
Copyright statement must be added until copyright is transferred to
publisher.
NR 63
TC 8
Z9 8
U1 1
U2 36
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD JUN 1
PY 2013
VL 110
BP 176
EP 189
DI 10.1016/j.gca.2013.01.040
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 123IH
UT WOS:000317381100011
ER
PT J
AU Craig, L
Moharreri, A
Schanot, A
Rogers, DC
Anderson, B
Dhaniyala, S
AF Craig, Lucas
Moharreri, Arash
Schanot, Allen
Rogers, David C.
Anderson, Bruce
Dhaniyala, Suresh
TI Characterizations of Cloud Droplet Shatter Artifacts in Two Airborne
Aerosol Inlets
SO AEROSOL SCIENCE AND TECHNOLOGY
LA English
DT Article
ID SINGLE DROP; CONDENSATION NUCLEI; SOLID-SURFACES; IMPACT; DEFORMATION;
BREAKUP; PERFORMANCE; PARTICLES
AB Aircraft-based aerosol sampling in clouds is complicated by the generation of shatter artifact particles from aerodynamic or impaction breakup of cloud droplets and ice particles in and around the aerosol inlet. Aerodynamic breakup occurs when the Weber number of a droplet, which primarily depends on the droplet size and the magnitude of the relative motion of the droplet and the local air mass, exceeds a critical value. Impaction breakup of a droplet occurs when the droplet's impaction breakup parameter, K, which is a combination of Weber and Ohnesorge numbers, exceeds a critical value. Considering these two mechanisms, the critical breakup diameters are estimated for two aerosol inlets of different designsa conventional forward-facing solid diffuser inlet (SDI) and a cross-flow sampling sub-micron aerosol inlet (SMAI). From numerical simulations, it is determined that cloud droplets of all sizes will experience impaction breakup in SDI, while only droplets larger than approximate to 16m will experience impaction breakup in SMAI. The relatively better in-cloud sampling performance of SMAI is because of its cone design that slows the flow just upstream of the sample tube. The slowing upstream flow, however, causes aerodynamic breakup of drops larger than approximate to 100m. The critical breakup diameters determined from analysis of field data largely validate numerical predictions. The cross-flow sampling design of SMAI is seen to ensure that shatter artifacts in the inlet are minimal even when there are a significant number of particles larger that the critical breakup size. The study results, thus, suggest that the SMAI design presents an effective approach to sample interstitial particles from aircraft. Copyright 2013 American Association for Aerosol Research
C1 [Craig, Lucas; Moharreri, Arash; Dhaniyala, Suresh] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA.
[Schanot, Allen; Rogers, David C.] NCAR RAF, Earth Observing Lab, Broomfield, CO USA.
[Anderson, Bruce] NASA LaRC, Chem & Dynam Branch, Langley, VA USA.
RP Dhaniyala, S (reprint author), Clarkson Univ, Dept Mech & Aeronaut Engn, 8 Clarkson Ave, Potsdam, NY 13699 USA.
EM sdhaniyala@clarkson.edu
FU NASA (GSRP) [NNX09AJ08H]; NSF [AGS-1044989, AGS-1121915]
FX The authors acknowledge funding support from NASA's Graduate Student
Research Fellowship (GSRP; Cooperative agreement number: NNX09AJ08H) and
NSF (AGS-1044989 and AGS-1121915). We would also like to thank Antony
Clarke for the SDI data.
NR 43
TC 6
Z9 6
U1 0
U2 14
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA
SN 0278-6826
J9 AEROSOL SCI TECH
JI Aerosol Sci. Technol.
PD JUN 1
PY 2013
VL 47
IS 6
BP 662
EP 671
DI 10.1080/02786826.2013.780648
PG 10
WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences;
Meteorology & Atmospheric Sciences
SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric
Sciences
GA 122BQ
UT WOS:000317290600009
ER
PT J
AU Lourie, NP
Chuss, DT
Henry, RM
Wollack, EJ
AF Lourie, Nathan P.
Chuss, David T.
Henry, Ross M.
Wollack, Edward J.
TI Investigation of truncated waveguides
SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
LA English
DT Article
DE circuit synthesis and modeling; polarization; waveguide components;
eigenvalue calculation
ID WAVELENGTHS
AB The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to submillimeter wavebands. (c) 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:12811285, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27561
C1 [Lourie, Nathan P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Chuss, David T.; Henry, Ross M.; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
RP Chuss, DT (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
EM David.T.Chuss@nasa.gov
RI Wollack, Edward/D-4467-2012
OI Wollack, Edward/0000-0002-7567-4451
NR 24
TC 0
Z9 0
U1 0
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0895-2477
J9 MICROW OPT TECHN LET
JI Microw. Opt. Technol. Lett.
PD JUN
PY 2013
VL 55
IS 6
BP 1281
EP 1285
DI 10.1002/mop.27561
PG 5
WC Engineering, Electrical & Electronic; Optics
SC Engineering; Optics
GA 117PW
UT WOS:000316966600025
ER
PT J
AU Finley, AO
Banerjee, S
Cook, BD
Bradford, JB
AF Finley, Andrew O.
Banerjee, Sudipto
Cook, Bruce D.
Bradford, John B.
TI Hierarchical Bayesian spatial models for predicting multiple forest
variables using waveform LiDAR, hyperspectral imagery, and large
inventory datasets
SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
LA English
DT Article
DE LiDAR; Hyperspectral; Bayesian hierarchical spatial models; Gaussian
Predictive process; Forestry
ID DATA SETS; LIKELIHOOD
AB In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Finley, Andrew O.] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA.
[Finley, Andrew O.] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA.
[Banerjee, Sudipto] Univ Minnesota, Div Biostat, Minneapolis, MN USA.
[Cook, Bruce D.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA.
[Bradford, John B.] US Geol Survey, Southwest Biol Sci Ctr, Flagstaff, AZ 86001 USA.
RP Finley, AO (reprint author), Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA.
EM finleya@msu.edu
RI Bradford, John/E-5545-2011; Cook, Bruce/M-4828-2013; Beckley,
Matthew/D-4547-2013
OI Cook, Bruce/0000-0002-8528-000X;
FU USDA Forest Service; Forest Inventory and Analysis National Program;
Forest Health Technology Enterprise Team; National Science Foundation
(NSF) [EF-1137309]; USDA/NASA grant [10-JV-11242307037]; U.S. Forest
Service; [NSF-DMS-1106609]
FX The work of the first author was supported by the USDA Forest Service,
Forest Inventory and Analysis National Program, Forest Health Technology
Enterprise Team, and National Science Foundation (NSF) grant EF-1137309.
The first and second authors were supported by the grant
NSF-DMS-1106609. The first and fourth authors were supported by
USDA/NASA grant 10-JV-11242307-037.; Data for this study were provided
by a unit of the Northern Research Station, U.S. Forest Service, located
at the Penobscot Experimental Forest in Maine. Significant funding for
collection of these data was provided by the U.S. Forest Service. Any
use of trade, product, or firm names is for descriptive purposes only
and does not imply endorsement by the U.S. Government.
NR 48
TC 6
Z9 6
U1 2
U2 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0303-2434
J9 INT J APPL EARTH OBS
JI Int. J. Appl. Earth Obs. Geoinf.
PD JUN
PY 2013
VL 22
SI SI
BP 147
EP 160
DI 10.1016/j.jag.2012.04.007
PG 14
WC Remote Sensing
SC Remote Sensing
GA 111NU
UT WOS:000316528800015
ER
PT J
AU Akamatsu, H
Gottardi, L
Adams, J
Bailey, C
Bandler, S
Bruijn, M
Chervenak, J
Eckart, M
Finkbeiner, F
den Hartog, R
Hoevers, H
Kelley, R
van der Kuur, J
van den Linden, T
Lindeman, M
Porter, F
Sadleir, J
Smith, S
Beyer, J
Kiviranta, M
AF Akamatsu, H.
Gottardi, L.
Adams, J.
Bailey, C.
Bandler, S.
Bruijn, M.
Chervenak, J.
Eckart, M.
Finkbeiner, F.
den Hartog, R.
Hoevers, H.
Kelley, R.
van der Kuur, J.
van den Linden, T.
Lindeman, M.
Porter, F.
Sadleir, J.
Smith, S.
Beyer, J.
Kiviranta, M.
TI Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC
Bias at MHz Frequencies
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Astrophysics; spectroscopy; X-ray detectors
ID ABSORBER DESIGN; PERFORMANCE; ARRAYS
AB In this paper, we present the progress made at SRON in the read-out of X-ray Transition Edge Sensor (TES) microcalorimeters under AC bias. The experiments reported so far, whose aim was to demonstrate an energy resolution of 2 eV at 6 keV with a TES acting as a modulator, were carried out at frequencies below 700 kHz using a standard flux locked loop SQUID read-out scheme. The TES read-out suffered from the use of suboptimal circuit components, large parasitic inductances, low quality factor resonators, and poor magnetic field shielding. We have developed a novel experimental set-up that allows us to test several read-out schemes in a single cryogenic run. In this set-up, the TES pixels from a GSFC array are coupled via superconducting transformers to 18 high-Q lithographic LC filters with resonant frequencies ranging between 2 and 5 MHz. The signal is amplified by a two-stage SQUID current sensor and baseband feedback is used to overcome the limited SQUID dynamic range. We measured an X-ray energy resolution of 3.6 eV at 1.4 MHz, which is consistent with the measured integrated Noise Equivalent Power.
C1 [Akamatsu, H.; Gottardi, L.; Bruijn, M.; den Hartog, R.; Hoevers, H.; van der Kuur, J.; van den Linden, T.; Lindeman, M.] SRON, Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands.
[Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Porter, F.; Sadleir, J.; Smith, S.] NASA, Goddard Space Flight Ctr 662, Greenbelt, MD USA.
[Beyer, J.] PTB Berlin, Berlin, Germany.
[Kiviranta, M.] VTT, Espoo, Finland.
RP Akamatsu, H (reprint author), SRON, Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands.
EM h.akamatsu@sron.nl
RI Smith, Stephen/B-1256-2008; Bandler, Simon/A-6258-2010; Porter,
Frederick/D-3501-2012
OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106;
Porter, Frederick/0000-0002-6374-1119
NR 12
TC 4
Z9 4
U1 0
U2 27
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2100503
DI 10.1109/TASC.2012.2235509
PN 1
PG 3
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 080ZM
UT WOS:000314283800067
ER
PT J
AU Beyer, AD
Echternach, PM
Kenyon, ME
Runyan, MC
Bumble, B
Bradford, CM
Bock, JJ
Holmes, WA
AF Beyer, Andrew D.
Echternach, Pierre M.
Kenyon, Matthew E.
Runyan, Marcus C.
Bumble, Bruce
Bradford, Charles M.
Bock, James J.
Holmes, Warren A.
TI Effect of Mo/Cu Superconducting Bilayer Geometry on Ultra-Sensitive
Transition-Edge Sensor Performance
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Infrared superconducting detectors; proximity effect; sub-mm
superconducting detectors; transition edge sensors (TESs)
AB We built membrane-isolated transition-edge sensors (TESs) for the background-limited infrared/sub-mm spectrograph using Mo/Cu superconducting bilayer thermistors of varying geometry and found that undesired proximity effects, including the so-called longitudinal proximity effect (LoPE) and the latitudinal inverse proximity effect, affect both the superconducting transition temperature T-C and the sharpness of the transition alpha = d log R/d log T. The LoPE and latitudinal inverse proximity effect arise because of unintentional proximity effects between the bilayer thermistors, the superconducting wiring of the TES circuitry, and normal metal decorations added to mitigate the LoPE. We examined Mo/Cu bilayer films with widths of 120 mu m and lengths of 5, 10, 20, 40, and 120 mu m, and studied the variation of T-C, alpha, and approximate 80% resistance per square (R-0.8) with Ti (T-C similar to 500 mK) and TiN (T-C similar to 3.8 K) wiring to the devices. We found larger a values in general for the Ti wiring, where a was as high as 90 for 20-120 mu m devices and decreased to 20 for 5-mu m-wide devices. We then built arrays of TESs with bilayer thermistor lengths of 10 mu m, Ti contacts, TiN wiring, and Au borders. The devices were expected to demonstrate a noise equivalent power less than or equal to 10(-19) W/Hz(1/2). We report a measured noise equivalent power at 87 mK of (0.95 +/- 0.2) x 10(-19) W/Hz(1/2) and a response time tau of (360 +/- 30)ms on our best device with a thermal conductance G = (15 +/- 5)fW/K, T-C = (120.5 +/- 3.5)mK, and stray power P-D = (135 +/- 85)aW. The thermistor had a value of R-N = 6 m Omega and value of alpha = d log R/d log T between 10 and 60 in the transition. We compare our measured performance with the performance specifications needed for ultrasensitive TESs on the Background-Limited Infrared/Sub-mm Spectrograph (BLISS) and discuss paths forward.
C1 [Beyer, Andrew D.; Echternach, Pierre M.; Kenyon, Matthew E.; Runyan, Marcus C.; Bumble, Bruce; Bradford, Charles M.; Bock, James J.; Holmes, Warren A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Beyer, AD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.
EM Andrew.d.beyer@jpl.nasa.gov; Pierre.M.Echternach@jpl.nasa.gov;
matthew.e.kenyon@jpl.nasa.gov; mcr@caltech.edu;
Bruce.Bumble@jpl.nasa.gov; bradford@submm.caltech.edu;
jjb@astro.caltech.edu; Warren.A.Holmes@jpl.nasa.gov
NR 7
TC 5
Z9 5
U1 3
U2 50
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2100104
DI 10.1109/TASC.2012.2229375
PN 1
PG 4
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 080ZM
UT WOS:000314283800063
ER
PT J
AU Brown, AD
Chervenak, JA
Chuss, D
Mikula, V
Ray, C
Rostem, K
U-yen, K
Wassell, E
Wollack, EJ
AF Brown, Ari-David
Chervenak, James A.
Chuss, David
Mikula, Vilem
Ray, Christopher
Rostem, Karwan
U-yen, Kongpop
Wassell, Edward
Wollack, Edward J.
TI Fabrication of Compact Superconducting Lowpass Filters for
Ultrasensitive Detectors
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Dielectric thin films; metallic thin films; micro-machining; microwave
filters; superconducting filters
AB Optimal performance of background limited thermal detectors requires adequate control over all relevant sources of incident electromagnetic radiation. In addition to the radiant power incident from the scene of interest, undesired or spurious power can potentially couple to the sensor via its bias and readout circuitry employed to operate the device. One means of limiting the contribution of this stray radiation is to filter or block leakage associated with electrical connections in the detector environment. Here we discuss a fabrication methodology for realizing compact planar filters embedded in the wall of the detector enclosure whose tailored response controls the propagation of light through the far infrared. This approach consists of fabricating an array of boxed-stripline transmission line blocking filters to control thermal radiation incident via this path. Topologically, each superconducting center conductor is encased by a silicon dioxide dielectric insulator and surrounded by a metallic shield to form a single mode transmission line structure. We report on achieved attenuation and return loss and find that it replicates simulated data to a high degree.
C1 [Brown, Ari-David; Chervenak, James A.; Chuss, David; U-yen, Kongpop; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Mikula, Vilem] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA.
[Ray, Christopher; Wassell, Edward] MEI Technol Inc, Seabrook, MD 20706 USA.
[Rostem, Karwan] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
RP Brown, AD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM ari.d.brown@nasa.gov; james.a.chervanak@nasa.gov;
david.t.chuss@nasa.gov; vilem.mikula@volny.cz;
christopher.ray-1@nasa.gov; karwan.rostem@nasa.gov;
kongpop.u-yen-1@nasa.gov; edward.wassell@nasa.gov;
edward.j.wollack@nasa.gov
RI Wollack, Edward/D-4467-2012
OI Wollack, Edward/0000-0002-7567-4451
FU NASA; Research Opportunities in Space and Earth Sciences award
[NNH09ZDA001N-APRA]
FX This work was supported by NASA with a Research Opportunities in Space
and Earth Sciences award in response to NNH09ZDA001N-APRA. This work was
also supported by an appointment to the NASA Postdoctoral Program at the
Goddard Space Flight Center, administered by Oak Ridge Associated
Universities through a contract with NASA.
NR 17
TC 2
Z9 2
U1 0
U2 38
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 2300204
DI 10.1109/TASC.2012.2231135
PN 1
PG 4
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 080ZM
UT WOS:000314283800073
ER
PT J
AU Kleinsasser, A
Chui, T
Bumble, B
Ladizinsky, E
AF Kleinsasser, Alan
Chui, Talso
Bumble, Bruce
Ladizinsky, Eric
TI Critical Current Density and Temperature Dependence of Nb-Al Oxide-Nb
Junction Resistance and Implications for Room Temperature
Characterization
SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
LA English
DT Article
DE Josephson junctions; superconducting devices; superconducting integrated
circuits; superconducting thin films
AB Room temperature junction resistance measurements are commonly used for screening Josephson-based circuits because testing is much easier than at cryogenic temperatures and can even be carried out at the wafer level. The value of ambient testing depends on the existence of a strong correspondence between the measured resistance at room temperature and the resistance and critical current obtained at the ultimate operating temperature. We have systematically studied the temperature dependence of junction resistance in order to quantify the emergence, with increasing critical current density, of parasitic contributions from non-uniform currents flowing in the Nb films, which tend to limit the value of room temperature screening. We will describe our measurements and our approach to correcting for these parasitic effects.
C1 [Kleinsasser, Alan; Chui, Talso; Bumble, Bruce] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Ladizinsky, Eric] D Wave Syst Inc, San Jose, CA 95134 USA.
RP Kleinsasser, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM alan.kleinsasser@jpl.nasa.gov; talso.c.chui@jpl.nasa.gov;
bruce.bumble@jpl.nasa.gov; eric@dwavesys.com
FU D-Wave Systems, Inc.; National Aeronautics and Space Administration
FX This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, and was supported in part by D-Wave
Systems, Inc., and by the National Aeronautics and Space Administration.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United States Government,
D-Wave Systems, Inc., or the Jet Propulsion Laboratory, California
Institute of Technology.
NR 12
TC 1
Z9 1
U1 1
U2 11
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1051-8223
J9 IEEE T APPL SUPERCON
JI IEEE Trans. Appl. Supercond.
PD JUN
PY 2013
VL 23
IS 3
AR 1100405
DI 10.1109/TASC.2012.2228731
PN 1
PG 5
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 080ZM
UT WOS:000314283800004
ER
PT J
AU Williams, RME
Grotzinger, JP
Dietrich, WE
Gupta, S
Sumner, DY
Wiens, RC
Mangold, N
Malin, MC
Edgett, KS
Maurice, S
Forni, O
Gasnault, O
Ollila, A
Newsom, HE
Dromart, G
Palucis, MC
Yingst, RA
Anderson, RB
Herkenhoff, KE
Le Mouelic, S
Goetz, W
Madsen, MB
Koefoed, A
Jensen, JK
Bridges, JC
Schwenzer, SP
Lewis, KW
Stack, KM
Rubin, D
Kah, LC
Bell, JF
Farmer, JD
Sullivan, R
Van Beek, T
Blaney, DL
Pariser, O
Deen, RG
AF Williams, R. M. E.
Grotzinger, J. P.
Dietrich, W. E.
Gupta, S.
Sumner, D. Y.
Wiens, R. C.
Mangold, N.
Malin, M. C.
Edgett, K. S.
Maurice, S.
Forni, O.
Gasnault, O.
Ollila, A.
Newsom, H. E.
Dromart, G.
Palucis, M. C.
Yingst, R. A.
Anderson, R. B.
Herkenhoff, K. E.
Le Mouelic, S.
Goetz, W.
Madsen, M. B.
Koefoed, A.
Jensen, J. K.
Bridges, J. C.
Schwenzer, S. P.
Lewis, K. W.
Stack, K. M.
Rubin, D.
Kah, L. C.
Bell, J. F., III
Farmer, J. D.
Sullivan, R.
Van Beek, T.
Blaney, D. L.
Pariser, O.
Deen, R. G.
CA MSL Sci Team
TI Martian Fluvial Conglomerates at Gale Crater
SO SCIENCE
LA English
DT Article
ID CHEMCAM INSTRUMENT SUITE; MERIDIANI-PLANUM; EARLY MARS; ROVER; SEDIMENT;
SYSTEM; WATER; UNIT
AB Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0,9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers,
C1 [Williams, R. M. E.; Yingst, R. A.] Planetary Sci Inst, Tucson, AZ 85719 USA.
[Grotzinger, J. P.; Stack, K. M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Dietrich, W. E.; Palucis, M. C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Gupta, S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England.
[Sumner, D. Y.] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA.
[Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Mangold, N.; Le Mouelic, S.] CNRS, LPGN, UMR6112, F-44322 Nantes, France.
[Mangold, N.; Le Mouelic, S.] Univ Nantes, F-44322 Nantes, France.
[Malin, M. C.; Edgett, K. S.; Van Beek, T.] Malin Space Sci Syst, San Diego, CA 92121 USA.
[Maurice, S.; Forni, O.; Gasnault, O.] Univ Toulouse, CNRS, IRAP, F-31400 Toulouse, France.
[Ollila, A.; Newsom, H. E.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA.
[Dromart, G.] Univ Lyon, Lab Geol Lyon, F-69364 Lyon, France.
[Anderson, R. B.; Herkenhoff, K. E.] US Geol Survey, Flagstaff, AZ 86001 USA.
[Goetz, W.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
[Madsen, M. B.; Koefoed, A.; Jensen, J. K.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England.
[Schwenzer, S. P.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.
[Lewis, K. W.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.
[Rubin, D.] US Geol Survey, Santa Cruz, CA 95060 USA.
[Kah, L. C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
[Bell, J. F., III; Farmer, J. D.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Sullivan, R.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA.
[Blaney, D. L.; Pariser, O.; Deen, R. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Williams, RME (reprint author), Planetary Sci Inst, Tucson, AZ 85719 USA.
EM williams@psi.edu
RI szopa, cyril/C-6865-2015; Harri, Ari-Matti/C-7142-2012; Zorzano,
Maria-Paz/F-2184-2015; Dworkin, Jason/C-9417-2012; Blanco, Juan
Jose/E-3627-2014; Ramos, Miguel/K-2230-2014; Gomez, Felipe/L-7315-2014;
Rodriguez-Manfredi, Jose/L-8001-2014; Hayes, Alexander/P-2024-2014;
Gasnault, Olivier/F-4327-2010; Zorzano, Maria-Paz/C-5784-2015; Madsen,
Morten/D-2082-2011; Gonzalez, Rafael/D-1748-2009; Lemmon,
Mark/E-9983-2010; Balic-Zunic, Tonci/A-6362-2013
OI Schwenzer, Susanne Petra/0000-0002-9608-0759; szopa,
cyril/0000-0002-0090-4056; Harri, Ari-Matti/0000-0001-8541-2802;
Zorzano, Maria-Paz/0000-0002-4492-9650; Dworkin,
Jason/0000-0002-3961-8997; Edgett, Kenneth/0000-0001-7197-5751; Muller,
Jan-Peter/0000-0002-5077-3736; Forni, Olivier/0000-0001-6772-9689;
Blanco, Juan Jose/0000-0002-8666-0696; Ramos,
Miguel/0000-0003-3648-6818; Gomez, Felipe/0000-0001-9977-7060;
Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Hayes,
Alexander/0000-0001-6397-2630; Gasnault, Olivier/0000-0002-6979-9012;
Zorzano, Maria-Paz/0000-0002-4492-9650; Madsen,
Morten/0000-0001-8909-5111; Lemmon, Mark/0000-0002-4504-5136;
Balic-Zunic, Tonci/0000-0003-1687-1233
FU NASA under the Mars Program Office [1449884, 1273887]; Centre National
d'Etudes Spatiales; UK Space Agency; Danish Council for Independent
Research/Natural Sciences (FNU) [12-127126, 11-107019]; TICRA
Foundation; Deutsche Forschungsgemeinschaft [GO 2288/1-1]
FX We thank K. Tanaka and L. Kestay (USGS-Flagstaff) and four anonymous
referees for constructive reviews of this manuscript. This research was
carried out for the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA under the Mars Program Office,
including JPL contracts 1449884 (R.M.E.W.) and 1273887 (Malin Space
Science Systems). Work in France was carried out with funding from the
Centre National d'Etudes Spatiales. Work in the UK was funded by the UK
Space Agency. Work in Denmark was funded by the Danish Council for
Independent Research/Natural Sciences (FNU grants 12-127126 and
11-107019) and the TICRA Foundation. Work in Germany was partly funded
by Deutsche Forschungsgemeinschaft grant GO 2288/1-1. Data in this
manuscript arc available from the NASA Planetary Data System. This is
PSI contribution 603.
NR 35
TC 118
Z9 120
U1 8
U2 114
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD MAY 31
PY 2013
VL 340
IS 6136
BP 1068
EP 1072
DI 10.1126/science.1237317
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 154HJ
UT WOS:000319664500037
PM 23723230
ER
PT J
AU Zeitlin, C
Hassler, DM
Cucinotta, FA
Ehresmann, B
Wimmer-Schweingruber, RF
Brinza, DE
Kang, S
Weigle, G
Bottcher, S
Bohm, E
Burmeister, S
Guo, J
Kohler, J
Martin, C
Posner, A
Rafkin, S
Reitz, G
AF Zeitlin, C.
Hassler, D. M.
Cucinotta, F. A.
Ehresmann, B.
Wimmer-Schweingruber, R. F.
Brinza, D. E.
Kang, S.
Weigle, G.
Boettcher, S.
Boehm, E.
Burmeister, S.
Guo, J.
Koehler, J.
Martin, C.
Posner, A.
Rafkin, S.
Reitz, G.
TI Measurements of Energetic Particle Radiation in Transit to Mars on the
Mars Science Laboratory
SO SCIENCE
LA English
DT Article
ID SPACE EXPLORATION; TRANSPORT; MISSIONS
AB The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-minion-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 +/- 0.12 sievert.
C1 [Zeitlin, C.; Hassler, D. M.; Ehresmann, B.; Rafkin, S.] SW Res Inst, Boulder, CO USA.
[Cucinotta, F. A.; Guo, J.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Wimmer-Schweingruber, R. F.; Boettcher, S.; Boehm, E.; Burmeister, S.; Koehler, J.; Martin, C.] Univ Kiel, Kiel, Germany.
[Brinza, D. E.; Kang, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Weigle, G.] SW Res Inst, San Antonio, TX USA.
[Posner, A.] NASA Headquarters, Washington, DC USA.
[Reitz, G.] German Aerosp Ctr DLR, Cologne, Germany.
RP Zeitlin, C (reprint author), SW Res Inst, Boulder, CO USA.
EM zeitlin@boulder.swri.edu
OI Posner, Arik/0000-0003-1572-8734
FU NASA (Human Exploration and Operations Mission Directorate) under Jet
Propulsion Laboratory (JPL) [1273039]; German Aerospace Center (DLR);
DLR's Space Administration [50QM0501, 50 QM1201]; NASA
FX The RAD is supported by NASA (Human Exploration and Operations Mission
Directorate) under Jet Propulsion Laboratory (JPL) subcontract 1273039
to the Southwest Research Institute and in Germany by the German
Aerospace Center (DLR) and DLR's Space Administration, grant numbers
50QM0501 and 50 QM1201, to the Christian Albrechts University, Kid. Part
of this research was carried out at JPL, California Institute of
Technology, under a contact with NASA. We appreciate discussions with P.
O'Neill and M. Kim at NASA's JSC and with S. Blattnig, F. Badavi, T.
Slaba, and C. Mertens of NASA's Langley Research Center. We extend
thanks to I. Simmonds, I. Grotzinger, I. Crisp, A. Vasvada, H.
Mortensen, and the Operations Product Generation Subsystem team at
NASA-JPL. We also thank M. Meyer, E. Stolper, G. Allen, C. Moore, and V.
Friedensen at NASA headquarters and H. Witte at DLR in Germany for their
support of the RAD over the years. The data used in this paper are
archived in the NASA Planetary Data System's Planetary Plasma
Interactions Node at the University of California, Los Angeles. The
archival volume includes the full binary raw data files, detailed
descriptions of the structures therein, and higher-level data products
in human-readable form. The PPI node is hosted at
http://ppi.pds.nasa.gov/.
NR 31
TC 104
Z9 107
U1 4
U2 41
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD MAY 31
PY 2013
VL 340
IS 6136
BP 1080
EP 1084
DI 10.1126/science.1235989
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 154HJ
UT WOS:000319664500040
PM 23723233
ER
PT J
AU Moretto, P
Zlotea, C
Dolci, F
Amieiro, A
Bobet, JL
Borgschulte, A
Chandra, D
Enoki, H
De Rango, P
Fruchart, D
Jepsen, J
Latroche, M
Jansa, IL
Moser, D
Sartori, S
Wang, SM
Zan, JA
AF Moretto, P.
Zlotea, C.
Dolci, F.
Amieiro, A.
Bobet, J. -L.
Borgschulte, A.
Chandra, D.
Enoki, H.
De Rango, P.
Fruchart, D.
Jepsen, J.
Latroche, M.
Jansa, I. Llamas
Moser, D.
Sartori, S.
Wang, S. M.
Zan, J. A.
TI A Round Robin Test exercise on hydrogen absorption/desorption properties
of a magnesium hydride based material
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Round Robin Test; Magnesium hydride; Kinetics; Thermodynamics; Enthalpy
ID NANOCRYSTALLINE MAGNESIUM; STORAGE PROPERTIES; SYSTEMS
AB A Round Robin Test exercise on magnesium hydride (MgH2) was performed by 14 laboratories with the aim to compare experimental isothermal data such PCI curves, kinetics curves and formation enthalpies together with a basic statistical evaluation of the results.
The full hydrogen capacity was found to vary in the range 5.1-6.4 wt.% at 280 degrees C (553 K) and in the range 5.3-6.6 wt.% at 320 degrees C (593 K) (value for 1 MPa hydrogen pressure). The relative standard deviations of 6.9% and 7.2%, respectively, were measured for absorption. The absorption plateau pressure of magnesium hydride varies between 0.08 and 0.14 MPa with an average of 0.10 MPa and a relative standard deviation of 17.3% at 280 degrees C (553 K). At 320 degrees C (593 K) the absorption plateau pressure results fall in the range 0.26-0.45 MPa, with a relative standard deviation of 17.6%. Kinetics curves were affected by much higher data dispersion than the PCI data. The enthalpy of absorption was -75.7 KJ/moleH(2), with a relative standard deviation of 4.4%. The results highlight the importance of well defined measuring and reporting protocols as a base for future standard procedures. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
C1 [Moretto, P.; Zlotea, C.; Dolci, F.] European Commiss, Joint Res Ctr, Inst Energy & Transport, NL-1755 ZG Petten, Netherlands.
[Amieiro, A.] Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England.
[Bobet, J. -L.] Univ Bordeaux 1, CNRS, ICMCB, F-33608 Pessac, France.
[Borgschulte, A.] EMPA Mat Sci & Technol, Dept Mobil Environm & Energy, Diu Hydrogen & Energy, CH-8600 Dubendorf, Switzerland.
[Chandra, D.] Univ Nevada, Met & Mat Engn Dept MS 388, Reno, NV 89557 USA.
[Enoki, H.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan.
[De Rango, P.; Fruchart, D.] CNRS, Inst NEEL, F-38042 Grenoble, France.
[De Rango, P.; Fruchart, D.] CNRS, GRETA, F-38042 Grenoble, France.
[Jepsen, J.] Helmholtz Zentrum Geesthacht, Dept Nanotechnol, D-21502 Geesthacht, Germany.
[Latroche, M.] CNRS, ICMPE, UMR7182, F-94320 Thiais, France.
[Jansa, I. Llamas] IFW Dresden, Inst Metall Werkstoffe, D-01171 Dresden, Germany.
[Moser, D.] Univ Salford, Mat & Phys Res Ctr, Salford M5 4WT, Lancs, England.
[Sartori, S.] Inst Energy Technol, NO-2027 Kjeller, Norway.
[Wang, S. M.] GRINM Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China.
[Zan, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Moretto, P (reprint author), European Commiss, Joint Res Ctr, Inst Energy & Transport, POB 2, NL-1755 ZG Petten, Netherlands.
EM pietro.moretto@jrc.nl
RI Moser, David/F-4590-2010; LATROCHE, MICHEL/L-6254-2014; Borgschulte,
Andreas/D-5168-2016; Zlotea, Claudia/F-2954-2015
OI Moser, David/0000-0002-4895-8862; LATROCHE, MICHEL/0000-0002-8677-8280;
Borgschulte, Andreas/0000-0001-6250-4667;
FU European Commission DG Research [SES6-2006-518271/NESSHY]
FX This work was conducted under the auspices of NESSHY European project.
Funding by the European Commission DG Research (contract
SES6-2006-518271/NESSHY) is gratefully acknowledged. The authors are
very grateful to D. Baxter (JRC) who thoroughly reviewed the manuscript.
NR 24
TC 10
Z9 10
U1 0
U2 32
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD MAY 30
PY 2013
VL 38
IS 16
BP 6704
EP 6717
DI 10.1016/j.ijhydene.2013.03.118
PG 14
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 158GV
UT WOS:000319958400017
ER
PT J
AU Temkin, A
Shertzer, J
AF Temkin, A.
Shertzer, J.
TI Electron scattering from excited states of hydrogen: Implications for
the ionization threshold law
SO PHYSICAL REVIEW A
LA English
DT Article
ID ATOM IMPACT-IONIZATION; TEMKIN-POET MODEL
AB The elastic scattering wave function for electrons scattered from the Nth excited state of hydrogen is the final state of the matrix element for excitation of that state. This paper deals with the solution of that problem primarily in the context of the Temkin-Poet (TP) model [A. Temkin, Phys. Rev. 126, 130 (1962); R. Poet, J. Phys. B 11, 3081 (1978)], wherein only the radial parts of the interaction are included. The relevant potential for the outer electron is dominated by the Hartree potential, V-N(H)(r). In the first part of the paper, V-N(H)(r) is approximated by a potential W-N(r), for which the scattering equation can be analytically solved. The results allow formal analytical continuation of N into the continuum, so that the ionization threshold law can be deduced. Because the analytic continuation involves going fromN to an imaginary function of the momentum of the inner electron, the threshold law turns out to be an exponentially damped function of the available energy E, in qualitative accord with the result of Macek and Ihra [J. H. Macek and W. Ihra, Phys. Rev. A 55, 2024 (1997)] for the TP model. Thereafter, the scattering equation for the Hartree potential V-N(H)(r) is solved numerically. The numerical aspects of these calculations have proven to be challenging and required several developments for the difficulties to be overcome. The results for V-N(H)(r) show only a simple energy-dependent shift from the approximate potential W-N(r), which therefore does not change the analytic continuation and the form of the threshold law. It is concluded that the relevant optical potential must be included in order to compare directly with the analytic result of Macek and Ihra. The paper concludes with discussions of (a) a quantum mechanical interpretation of the result, and (b) the outlook of this approach for the complete problem.
C1 [Temkin, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Shertzer, J.] Coll Holy Cross, Worcester, MA 01610 USA.
[Shertzer, J.] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA.
RP Temkin, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
NR 25
TC 0
Z9 0
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAY 30
PY 2013
VL 87
IS 5
AR 052718
DI 10.1103/PhysRevA.87.052718
PG 8
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 155EF
UT WOS:000319728500004
ER
PT J
AU Archibald, RF
Kaspi, VM
Ng, CY
Gourgouliatos, KN
Tsang, D
Scholz, P
Beardmore, AP
Gehrels, N
Kennea, JA
AF Archibald, R. F.
Kaspi, V. M.
Ng, C. -Y.
Gourgouliatos, K. N.
Tsang, D.
Scholz, P.
Beardmore, A. P.
Gehrels, N.
Kennea, J. A.
TI An anti-glitch in a magnetar
SO NATURE
LA English
DT Article
ID X-RAY PULSAR; VARIABLE SPIN-DOWN; NEUTRON-STARS; 1E 2259+586; SGR
1900+14; ROTATION; MAGNETOSPHERES; SUPERFLUIDITY; BURSTS
AB Magnetars are neutron stars with X-ray and soft gamma-ray outbursts thought to be powered by intense internal magnetic fields(1). Like conventional neutron stars in the form of radio pulsars, magnetars exhibit 'glitches' during which angular momentum is believed to be transferred between the solid outer crust and the superfluid component of the inner crust(2-4). The several hundred observed glitches in radio pulsars(5,6) and magnetars(7) have involved a sudden spin-up (increase in the angular velocity) of the star, presumably because the interior superfluid was rotating faster than the crust. Here we report X-ray timing observations of the magnetar 1E 2259+586 (ref. 8), which exhibited a clear 'anti-glitch'-a sudden spin-down. We show that this event, like some previous magnetar spin-up glitches(9), was accompanied by multiple X-ray radiative changes and a significant spin-down rate change. Such behaviour is not predicted by models of neutron star spin-down and, if of internal origin, is suggestive of differential rotation in the magnetar, supporting the need for a rethinking of glitch theory for all neutron stars(10,11).
C1 [Archibald, R. F.; Kaspi, V. M.; Ng, C. -Y.; Gourgouliatos, K. N.; Tsang, D.; Scholz, P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Ng, C. -Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Beardmore, A. P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Gehrels, N.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
RP Kaspi, VM (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
EM vkaspi@physics.mcgill.ca
RI Ng, Chi Yung/A-7639-2013;
OI Ng, Chi Yung/0000-0002-5847-2612; Tsang, David/0000-0002-1612-2585;
Gourgouliatos, Konstantinos N./0000-0002-1659-1250
FU Natural Sciences and Engineering Research Council of Canada; Canadian
Institute for Advanced Research; Fonds de Recherche Nature et
Technologies Quebec; Canada Research Chairs Program; Lorne Trottier
Chair in Astrophysics and Cosmology; Centre de Recherche en
Astrophysique du Quebec
FX V.M.K. acknowledges support from the Natural Sciences and Engineering
Research Council of Canada Discovery Grant and the John C. Polanyi
Award, from the Canadian Institute for Advanced Research, from Fonds de
Recherche Nature et Technologies Quebec, from the Canada Research Chairs
Program, and from the Lorne Trottier Chair in Astrophysics and
Cosmology. D.T. was supported by the Lorne Trottier Chair in
Astrophysics and Cosmology and the Canadian Institute for Advanced
Research. K.N.G. was supported by the Centre de Recherche en
Astrophysique du Quebec. We thank H. Medlin and J. Gelfand for help with
the EVLA observation. We thank D. Eichler, B. Link, M. Lyutikov and C.
Thompson for useful discussions. We acknowledge the use of public data
from the Swift data archive.
NR 26
TC 51
Z9 54
U1 0
U2 15
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD MAY 30
PY 2013
VL 497
IS 7451
BP 591
EP 593
DI 10.1038/nature12159
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 152UF
UT WOS:000319556100037
PM 23719460
ER
PT J
AU Kleinbohl, A
Wilson, RJ
Kass, D
Schofield, JT
McCleese, DJ
AF Kleinboehl, Armin
Wilson, R. John
Kass, David
Schofield, John T.
McCleese, Daniel J.
TI The semidiurnal tide in the middle atmosphere of Mars
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Mars atmosphere; tides; semi-diurnal tide; MCS; water ice clouds;
radiative effect
ID GENERAL-CIRCULATION MODEL; DUSTY MARTIAN ATMOSPHERE; WATER ICE CLOUDS;
THERMAL TIDES; DIURNAL TIDE; MGS TES; WAVES; VARIABILITY; ACCELEROMETER;
TEMPERATURES
AB Atmospheric thermal tides are global oscillations in atmospheric fields that are subharmonics of a solar day. While atmospheric tides on Earth are mainly relevant in the upper atmosphere, on Mars, they dominate temperature variations and winds throughout the atmosphere. Observations and model simulations to date have suggested that the migrating diurnal tide is the predominant mode in the Martian atmosphere, and that the semidiurnal tide is only relevant in the tropical middle atmosphere during conditions of high dust loading. New comprehensive observations by the Mars Climate Sounder in a geometry that allows coverage of multiple local times show that the semidiurnal tide is a dominant response of the Martian atmosphere throughout the Martian year. The maximum semidiurnal amplitude of similar to 16 K is found at southern winter high latitudes, which makes it the largest tidal amplitude observed in the Martian middle atmosphere outside of dust storm conditions. The semidiurnal tide can be successfully modeled due to recent advances of Mars General Circulation Models (MGCMs) that include the radiatively active treatment of water ice clouds. Tidal forcing occurs through absorption of radiation by aerosols and points to the vertical structure of dust and clouds and their radiative effects as being essential for our understanding of the thermal structure and the general circulation of the Martian atmosphere. As with terrestrial GCMs trying to quantify mechanisms affecting climate, future Mars modeling efforts will require microphysical schemes to control aerosol distributions, and vertically and temporally resolved measurements of temperature and aerosols will be essential for their validation.
C1 [Kleinboehl, Armin; Kass, David; Schofield, John T.; McCleese, Daniel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Wilson, R. John] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
RP Kleinbohl, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Armin.Kleinboehl@jpl.nasa.gov
FU NASA Planetary Atmospheres Program; National Aeronautics and Space
Administration
FX We are grateful to the MRO spacecraft team for keeping the MRO
spacecraft alive and healthy and to the MCS instrument operations team
for implementing and executing the MCS cross-track measurements. The
contribution of R. J. W. was funded by the NASA Planetary Atmospheres
Program. Work at the Jet Propulsion Laboratory, California Institute of
Technology was performed under a contract with the National Aeronautics
and Space Administration. The Editor thanks Jim Murphy and an anonymous
reviewer for their assistance in evaluating this paper.
NR 48
TC 14
Z9 14
U1 2
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAY 28
PY 2013
VL 40
IS 10
BP 1952
EP 1959
DI 10.1002/grl.50497
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA 277SS
UT WOS:000328840200012
ER
PT J
AU Tian, YD
Huffman, GJ
Adler, RF
Tang, L
Sapiano, M
Maggioni, V
Wu, H
AF Tian, Yudong
Huffman, George J.
Adler, Robert F.
Tang, Ling
Sapiano, Mathew
Maggioni, Viviana
Wu, Huan
TI Modeling errors in daily precipitation measurements: Additive or
multiplicative?
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE uncertainty; precipitation; remote sensing; error modeling
ID RAINFALL
AB The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application. In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as nonconstant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
C1 [Tian, Yudong; Adler, Robert F.; Tang, Ling; Sapiano, Mathew; Maggioni, Viviana; Wu, Huan] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Tian, Yudong; Tang, Ling] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA.
[Huffman, George J.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA.
RP Tian, YD (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 617, Greenbelt, MD 20771 USA.
EM Yudong.Tian@nasa.gov
RI Huffman, George/F-4494-2014; Wu, Huan/K-1003-2013; Measurement,
Global/C-4698-2015
OI Huffman, George/0000-0003-3858-8308; Wu, Huan/0000-0003-2920-8860;
FU NASA Earth System Data Records Uncertainty Analysis Program
[NNH10ZDA001N-ESDRERR]
FX This research was supported by the NASA Earth System Data Records
Uncertainty Analysis Program (Martha E. Maiden) under solicitation
NNH10ZDA001N-ESDRERR. Computing resources were provided by the NASA
Center for Climate Simulation.
NR 27
TC 28
Z9 28
U1 2
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAY 28
PY 2013
VL 40
IS 10
BP 2060
EP 2065
DI 10.1002/grl.50320
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 277SS
UT WOS:000328840200031
ER
PT J
AU Hall, DK
Comiso, JC
DiGirolamo, NE
Shuman, CA
Box, JE
Koenig, LS
AF Hall, Dorothy K.
Comiso, Josefino C.
DiGirolamo, Nicolo E.
Shuman, Christopher A.
Box, Jason E.
Koenig, Lora S.
TI Variability in the surface temperature and melt extent of the Greenland
ice sheet from MODIS
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Greenland melt; Greenland surface temperature; MODIS
ID MASS-LOSS; PART II; SATELLITE; VALIDATION; SUMMIT; CLOUD
AB Satellite-derived moderate-resolution imaging spectroradiometer (MODIS) ice-surface temperature (IST) of the Greenland ice sheet shows a positive trend and two major melt events from 2000 to present. IST increased by 0.550.44 degrees C/decade, with the greatest increase (0.950.44 degrees C/decade) found in northwestern Greenland where coastal temperatures and mass loss are also increasing and outlet glaciers are accelerating. IST shows the highest rates of increase during summer (1.350.47 degrees C/decade) and winter (1.301.53 degrees C/decade), followed by spring (0.60 +/- 0.98 degrees C/decade). In contrast, a decrease in IST was found in the autumn (-1.49 +/- 1.20 degrees C/decade). The IST trends in this work are not statistically significant with the exception of the trend in northwestern Greenland. Major surface melt (covering 80% or more of the ice sheet) occurred during the 2002 and 2012 melt seasons where clear-sky measurements show a maximum melt of 87% and 95% of the ice sheet surface, respectively. In 2002, most of the extraordinary melt was ephemeral, whereas in 2012 the ice sheet not only experienced more total melt, but melt was more persistent, and the 2012 summer was the warmest in the MODIS record (-6.38 +/- 3.98 degrees C). Our data show that major melt events may not be particularly rare during the present period of ice sheet warming.
C1 [Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nicolo E.; Shuman, Christopher A.; Koenig, Lora S.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
[DiGirolamo, Nicolo E.] SSAI, Lanham, MD USA.
[Shuman, Christopher A.] UMBC JCET, Baltimore, MD USA.
[Box, Jason E.] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA.
RP Hall, DK (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
EM Dorothy.k.hall@nasa.gov
RI Box, Jason/H-5770-2013
NR 37
TC 43
Z9 45
U1 0
U2 30
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAY 28
PY 2013
VL 40
IS 10
BP 2114
EP 2120
DI 10.1002/grl.50240
PG 7
WC Geosciences, Multidisciplinary
SC Geology
GA 277SS
UT WOS:000328840200041
ER
PT J
AU Hobbs, WR
Willis, JK
AF Hobbs, William R.
Willis, Joshua K.
TI Detection of an observed 135 year ocean temperature change from limited
data
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE Ocean observation; Climate change; Detection and Attribution; Sea level
rise
ID PART I
AB Recent work comparing historical hydrographic data with modern Argo observations shows a long-term change in the global ocean temperature. The magnitude of this change is greater than estimates of late 20(th) century warming, and implies a century-scale change in the global oceans. Using global coupled climate models from the Coupled Model Intercomparison Project Phase 5 suite of simulations, we assess to what extent this observed temperature difference can be attributed to a genuine long-term warming trend. After accounting for natural variability and sampling errors, we find convincing evidence that there has indeed been a century-scale anthropogenic warming of the global ocean up to the present day, and a strong possibility of anthropogenic warming from 1873 to 1955. The estimated 1873-1955 ocean warming implies a net top-of-atmosphere energy imbalance of 0.10.06 Wm(-2), and a thermosteric global mean sea level rise of 0.500.2 mma(-1).
C1 [Hobbs, William R.] Univ Tasmania, Inst Marine & Antarctic Sci, Hobart, Tas 7001, Australia.
[Willis, Joshua K.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Hobbs, WR (reprint author), Univ Tasmania, Inst Marine & Antarctic Sci, Private Bag 129, Hobart, Tas 7001, Australia.
EM whobbs@utas.edu.au
RI Hobbs, Will/G-5116-2014
OI Hobbs, Will/0000-0002-2061-0899
FU National Aeronautics and Space Administration; Australian Research
Council Centre of Excellence for Climate System Science [CE110001028]
FX The authors wish to thank two anonymous reviewers for their helpful
suggestions on improving this manuscript. This work was carried out in
part at the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautics and Space
Administration, and supported in part by the Australian Research Council
Centre of Excellence for Climate System Science (grant CE110001028).
NR 21
TC 4
Z9 4
U1 1
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAY 28
PY 2013
VL 40
IS 10
BP 2252
EP 2258
DI 10.1002/grl.50370
PG 7
WC Geosciences, Multidisciplinary
SC Geology
GA 277SS
UT WOS:000328840200065
ER
PT J
AU Hall, TM
Sobel, AH
AF Hall, Timothy M.
Sobel, Adam H.
TI On the impact angle of Hurricane Sandy's New Jersey landfall
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE hurricanes; landfall risk
ID CLIMATE-CHANGE; SURGE
AB Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to record-setting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr(-1) (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).
C1 [Hall, Timothy M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Sobel, Adam H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
[Sobel, Adam H.] Columbia Univ, Lamont Doherty Earth Observ, New York, NY USA.
RP Hall, TM (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
EM Timothy.M.Hall@nasa.gov
RI Sobel, Adam/K-4014-2015
OI Sobel, Adam/0000-0003-3602-0567
FU NOAA [NA11OAR4310093]; NSF [AGS 1143959]
FX We thank Kerry Emanuel for comments on the manuscript, as well as
reviewer Chris Fogarty and an anonymous reviewer. This work was
supported in part by NOAA grant NA11OAR4310093 and NSF grant AGS
1143959.
NR 14
TC 30
Z9 30
U1 2
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAY 28
PY 2013
VL 40
IS 10
BP 2312
EP 2315
DI 10.1002/grl.50395
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 277SS
UT WOS:000328840200076
ER
PT J
AU Schwartz, MJ
Read, WG
Santee, ML
Livesey, NJ
Froidevaux, L
Lambert, A
Manney, GL
AF Schwartz, Michael J.
Read, William G.
Santee, Michelle L.
Livesey, Nathaniel J.
Froidevaux, Lucien
Lambert, Alyn
Manney, Gloria L.
TI Convectively injected water vapor in the North American summer lowermost
stratosphere
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
AB Anderson et al. (2012) (A2012) report in situobservations of convectively injected water vapor (H2O) in the North American (NA) summer lowermost stratosphere (LMS), occasionally exceeding 12ppmv. They contend that, in such cold/wet conditions, heterogeneous chemistry on binary watersulfate aerosols can activate chlorine, leading to catalytic ozone destruction. Aura Microwave Limb Sounder 100 hPa and 82.5 hPa H2O measurements show that, indeed, the NA LMS is unusually wet, both in mean values and in outliers reaching 18ppmv. Using A2012's threshold, 4% (0.03%) of 100 hPa (82.5 hPa) NA July-August observations are cold/wet enough for activation. Cold parcels, whether wet or dry, typically have much less HCl to activate and O(3)to destroy than A2012's initial conditions. Slightly lower concentrations of HCl and O-3 in cold/wet parcels are attributable, at least in part, to dilution by tropospheric air. Alarming reductions in NA summer column O(3)suggested by A2012 are not seen in the current climate.
C1 [Schwartz, Michael J.; Read, William G.; Santee, Michelle L.; Livesey, Nathaniel J.; Froidevaux, Lucien; Lambert, Alyn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Manney, Gloria L.] NorthWest Res Associates, Socorro, NM USA.
[Manney, Gloria L.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA.
RP Schwartz, MJ (reprint author), CALTECH, Jet Prop Lab, M-S 183-701, Pasadena, CA 91109 USA.
EM michael.j.schwartz@jpl.nasa.gov
RI Schwartz, Michael/F-5172-2016
OI Schwartz, Michael/0000-0001-6169-5094
NR 10
TC 13
Z9 13
U1 0
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAY 28
PY 2013
VL 40
IS 10
BP 2316
EP 2321
DI 10.1002/grl.50421
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 277SS
UT WOS:000328840200077
ER
PT J
AU von Clarmann, T
Funke, B
Lopez-Puertas, M
Kellmann, S
Linden, A
Stiller, GP
Jackman, CH
Harvey, VL
AF von Clarmann, T.
Funke, B.
Lopez-Puertas, M.
Kellmann, S.
Linden, A.
Stiller, G. P.
Jackman, C. H.
Harvey, V. L.
TI The solar proton events in 2012 as observed by MIPAS
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
DE MIPAS; Solar proton event; stratosphere; mesosphere
ID ATMOSPHERIC SOUNDING MIPAS; MICHELSON INTERFEROMETER; MESOSPHERE;
RETRIEVAL; ENVISAT; N2O; ENHANCEMENTS; TEMPERATURE; NORTHERN; CLONO2
AB During the solar proton events (SPE) on 23-30 January and 7-15 March 2012, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat monitored atmospheric temperature and composition with global coverage. In the Northern Hemisphere, the January SPE started at the end of a polar stratospheric warming period. The SPE effect is superimposed by large-scale subsidence of mesospheric NOx-rich air, which partly masks direct chemical SPE effects. SPE-induced NOx increases by 5, 20, 50, and 100 ppbv at altitudes of 50, 57, 60, and 70 km, respectively, are observed during the January SPE and those by 2, 5, 10, 20, 30, and 35 ppbv at altitudes of 47, 50, 53, 60, 63, and 66 km, respectively, during the March SPE. SPE-related ozone loss is clearly observed in the mesosphere, particularly in the tertiary ozone maximum. A sudden short-term HNO4 increase immediately after the January SPE hints at SPE-triggered HOx chemistry. In the Southern Hemisphere, a large NOx response is observed (increases by 2, 5, 10, 20, and 30 ppbv at 52, 56, 59, 63, and 70 km in January and by 2, 5, 10, 20, 30, and 35 ppbv at 47, 50, 53, 60, 63, and 66 km in March), while the effect on other species seems much less pronounced than in the Northern Hemisphere. SPE-related destruction of mesospheric ozone in the Southern Hemisphere was much more pronounced after the March SPE than the January SPE but in both cases, ozone recovered within about a day.
C1 [von Clarmann, T.; Kellmann, S.; Linden, A.; Stiller, G. P.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany.
[Funke, B.; Lopez-Puertas, M.] CSIC, Inst Astrofis Andalucia, Granada, Spain.
[Jackman, C. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Harvey, V. L.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
RP von Clarmann, T (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, POB 3640, D-76021 Karlsruhe, Germany.
EM Thomas.Clarmann@Kit.Edu
RI Jackman, Charles/D-4699-2012; Funke, Bernd/C-2162-2008; Lopez Puertas,
Manuel/M-8219-2013; Stiller, Gabriele/A-7340-2013
OI Funke, Bernd/0000-0003-0462-4702; Lopez Puertas,
Manuel/0000-0003-2941-7734; Stiller, Gabriele/0000-0003-2883-6873
FU Spanish MCINN [AYA2011-23552]; EC FEDER funds; Deutsche
Forschungsgemeinschaft; Karlsruhe Institute of Technology
FX ESA has provided MIPAS level-1B data. The IAA team was supported by the
Spanish MCINN under grant AYA2011-23552 and EC FEDER funds. We
acknowledge support by Deutsche Forschungsgemeinschaft and Open Access
Publishing Fund of Karlsruhe Institute of Technology.
NR 23
TC 17
Z9 17
U1 1
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD MAY 28
PY 2013
VL 40
IS 10
BP 2339
EP 2343
DI 10.1002/grl.50119
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 277SS
UT WOS:000328840200081
ER
PT J
AU Shi, Y
Yoonessi, M
Weiss, RA
AF Shi, Ying
Yoonessi, Mitra
Weiss, R. A.
TI High Temperature Shape Memory Polymers
SO MACROMOLECULES
LA English
DT Article
ID ETHER KETONE) MEMBRANES; METHANOL FUEL-CELLS; SULFURIC-ACID; IONOMERS;
PEEK; SULFONATION; COMPOSITES; MECHANISM; KINETICS; NETWORK
AB High switching temperature shape memory polymers (SMPs) were developed from metal salts of sulfonated PEEK (M-SPEEK) ionomer and composites of the M-SPEEK ionomers and a fatty acid salt. The neat M-SPEEK ionomers exhibited reasonable shape memory behavior, but the composite SMPs showed very promising shape memory behavior. The composites were prepared from 70 wt % M-SPEEK (M = sodium or zinc) and 30 wt % sodium oleate (NaOl). Ionic nanodomains formed by the interactions of ionic groups provided a permanent physically cross-linked network, and strong dipolar interactions between the ionomer and a dispersed phase of crystalline NaOl provided the temporary network. A temporary shape was achieved and fixed by deforming the material above the melting temperature (T-m) of NaOl and then cooling under stress to below T-m. The permanent shape was recovered by reheating the material above T-m without applying stress. Shape fixing efficiencies of 96% were achieved, and shape recovery reached 100%. Triple shape memory behavior was also achieved for M-SPEEK/NaOl compounds using the glass transition of the ionomer and the melting point of the NaOl as two separate switching temperatures.
C1 [Shi, Ying; Weiss, R. A.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA.
[Yoonessi, Mitra] NASA, Ohio Aerosp Inst, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Weiss, RA (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA.
EM rweiss@uakron.edu
FU Ohio Space Grant Consortium (OSGC)/NASA; Polymer Division of the
National Science Foundation [DMR-0960461]
FX This research was partially supported by Ohio Space Grant Consortium
(OSGC)/NASA and partially supported by a grant from the Polymer Division
of the National Science Foundation (DMR-0960461).
NR 39
TC 37
Z9 37
U1 6
U2 74
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD MAY 28
PY 2013
VL 46
IS 10
BP 4160
EP 4167
DI 10.1021/ma302670p
PG 8
WC Polymer Science
SC Polymer Science
GA 156BQ
UT WOS:000319795800050
ER
PT J
AU Vallisneri, M
Yunes, N
AF Vallisneri, Michele
Yunes, Nicolas
TI Stealth bias in gravitational-wave parameter estimation
SO PHYSICAL REVIEW D
LA English
DT Article
ID INSPIRALLING COMPACT BINARIES; BLACK-HOLE COALESCENCES; GRAVITY; MERGER;
LISA
AB Inspiraling binaries of compact objects are primary targets for current and future gravitational-wave observatories. Waveforms computed in general relativity are used to search for these sources, and will probably be used to extract source parameters from detected signals. However, if a different theory of gravity happens to be correct in the strong-field regime, source-parameter estimation may be affected by a fundamental bias: that is, by systematic errors due to the use of waveforms derived in the incorrect theory. If the deviations from general relativity are not large enough to be detectable on their own and yet these systematic errors remain significant (i.e., larger than the statistical uncertainties in parameter estimation), fundamental bias cannot be corrected in a single observation, and becomes stealth bias. In this article we develop a scheme to determine in which cases stealth bias could be present in gravitational-wave astronomy. For a given observation, the answer depends on the detection signal-to-noise ratio and on the strength of the modified-gravity correction. As an example, we study three representative stellar-mass binary systems that will be detectable with second-generation ground-based observatories. We find that significant systematic bias can occur whether or not modified gravity can be positively detected, for correction strengths that are not currently excluded by any other experiment. Thus, stealth bias may be a generic feature of gravitational-wave detections, and it should be considered and characterized, using expanded models such as the parametrized post-Einstein framework, when interpreting the results of parameter-estimation analyses.
C1 [Vallisneri, Michele] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Yunes, Nicolas] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
RP Vallisneri, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
FU NSF Grant [PHY-1114374]; NASA Grant [NNX11AI49G, 00001944, NNX10AC69G];
National Space and Aeronautics Administration
FX We thank Curt Cutler for useful comments and suggestions, Katerina
Chatziioannou for providing details about the Picard-Lindelof and
Cauchy-Lipschitz uniqueness theorems, Neil Cornish and Laura Sampson for
help in validating our Fisher calculations with Cornish's MCMC code in
certain simplified cases, and the organizers of the 2011 Astro-GR
workshop, where this work was conceived. N. Y. acknowledges support from
NSF Grant No. PHY-1114374 and NASA Grant No. NNX11AI49G, under Subaward
No. 00001944. M.V.'s research was supported by NASA Grant No.
NNX10AC69G, and was performed at the Jet Propulsion Laboratory under
contract with the National Space and Aeronautics Administration.
NR 53
TC 14
Z9 14
U1 1
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD MAY 28
PY 2013
VL 87
IS 10
AR 102002
DI 10.1103/PhysRevD.87.102002
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 154FE
UT WOS:000319656400001
ER
PT J
AU Eyring, V
Arblaster, JM
Cionni, I
Sedlacek, J
Perliwitz, J
Young, PJ
Bekki, S
Bergmann, D
Cameron-Smith, P
Collins, WJ
Faluvegi, G
Gottschaldt, KD
Horowitz, LW
Kinnison, DE
Lamarque, JF
Marsh, DR
Saint-Martin, D
Shindell, DT
Sudo, K
Szopa, S
Watanabe, S
AF Eyring, V.
Arblaster, J. M.
Cionni, I.
Sedlacek, J.
Perliwitz, J.
Young, P. J.
Bekki, S.
Bergmann, D.
Cameron-Smith, P.
Collins, W. J.
Faluvegi, G.
Gottschaldt, K. D.
Horowitz, L. W.
Kinnison, D. E.
Lamarque, J. F.
Marsh, D. R.
Saint-Martin, D.
Shindell, D. T.
Sudo, K.
Szopa, S.
Watanabe, S.
TI Long-term ozone changes and associated climate impacts in CMIP5
simulations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE CMIP5; stratospheric ozone; stratospheric temperature; zonal wind
changes; troposheric ozone; chemistry-climate coupling
ID GENERAL-CIRCULATION MODEL; STRATOSPHERIC TEMPERATURE TRENDS; EARTH
SYSTEM MODEL; TROPOSPHERIC OZONE; ATMOSPHERIC CHEMISTRY; COUPLED MODEL;
GISS MODELE; SEA-ICE; AEROSOLS; GAS
AB Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximate to 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximate to 10 DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
C1 [Eyring, V.; Gottschaldt, K. D.] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atomosphare, Oberpfaffenhofen, Germany.
[Arblaster, J. M.] Bur Meteorol, Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia.
[Arblaster, J. M.; Kinnison, D. E.; Lamarque, J. F.; Marsh, D. R.] Natl Ctr Atmospher Res, Boulder, CO USA.
[Cionni, I.] Energia Sviluppo Econ Sostenibile, Agenzia Nazl Nuove Tecnol, Bologna, Italy.
[Sedlacek, J.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland.
[Perliwitz, J.; Young, P. J.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Perliwitz, J.; Young, P. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA.
[Bekki, S.; Szopa, S.] Inst Pierre Simon Laplace, Paris, France.
[Bergmann, D.; Cameron-Smith, P.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Collins, W. J.] Met Off Hadely Ctr, Exeter, Devon, England.
[Faluvegi, G.; Shindell, D. T.] NASA, Goddard Inst Space Studies, New York, NY USA.
[Horowitz, L. W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Saint-Martin, D.] CNRM GAME, Toulouse, France.
[Sudo, K.] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi, Japan.
[Watanabe, S.] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan.
RP Eyring, V (reprint author), Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atomosphare, Oberpfaffenhofen, Germany.
EM veronika.eyring@dlr.de
RI Eyring, Veronika/O-9999-2016; Watanabe, Shingo/L-9689-2014; Manager, CSD
Publications/B-2789-2015; bekki, slimane/J-7221-2015; Arblaster,
Julie/C-1342-2010; Perlwitz, Judith/B-7201-2008; Sedlacek,
Jan/B-2819-2009; Szopa, Sophie/F-8984-2010; Collins,
William/A-5895-2010; Shindell, Drew/D-4636-2012; Horowitz,
Larry/D-8048-2014; Bergmann, Daniel/F-9801-2011; Young,
Paul/E-8739-2010; Marsh, Daniel/A-8406-2008; Lamarque,
Jean-Francois/L-2313-2014; Cameron-Smith, Philip/E-2468-2011
OI Eyring, Veronika/0000-0002-6887-4885; Watanabe,
Shingo/0000-0002-2228-0088; Gottschaldt, Klaus/0000-0002-2046-6137;
bekki, slimane/0000-0002-5538-0800; Arblaster,
Julie/0000-0002-4287-2363; Perlwitz, Judith/0000-0003-4061-2442;
Sedlacek, Jan/0000-0002-6742-9130; Szopa, Sophie/0000-0002-8641-1737;
Collins, William/0000-0002-7419-0850; Horowitz,
Larry/0000-0002-5886-3314; Bergmann, Daniel/0000-0003-4357-6301; Young,
Paul/0000-0002-5608-8887; Marsh, Daniel/0000-0001-6699-494X; Lamarque,
Jean-Francois/0000-0002-4225-5074; Cameron-Smith,
Philip/0000-0002-8802-8627
NR 182
TC 79
Z9 80
U1 4
U2 59
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 5029
EP 5060
DI 10.1002/jgrd.50316
PG 32
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000081
ER
PT J
AU Burgener, L
Rupper, S
Koenig, L
Forster, R
Christensen, WF
Williams, J
Koutnik, M
Miege, C
Steig, EJ
Tingey, D
Keeler, D
Riley, L
AF Burgener, Landon
Rupper, Summer
Koenig, Lora
Forster, Rick
Christensen, William F.
Williams, Jessica
Koutnik, Michelle
Miege, Clement
Steig, Eric J.
Tingey, David
Keeler, Durban
Riley, Laura
TI An observed negative trend in West Antarctic accumulation rates from
1975 to 2010: Evidence from new observed and simulated records
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE West Antarctica; accumulation rate; Southern Annular Mode; SAM; firn
core
ID SOUTHERN ANNULAR MODE; INTERNATIONAL GEOPHYSICAL YEAR; SURFACE
MASS-BALANCE; GLOBAL CLIMATE MODEL; ICE-SHEET; SEA-ICE; SNOW
ACCUMULATION; VARIABILITY; PRECIPITATION; CIRCULATION
AB Observations of snow accumulation rates from five new firn cores show a negative trend that is statistically significant over the past several decades across the central West Antarctic ice sheet (WAIS). A negative temporal trend in accumulation rates is unexpected in light of rising surface temperatures as well as model simulations predicting higher accumulation rates for the region. Both the magnitude of the mean accumulation rates and the range of interannual variability observed in the new records compare favorably to older records collected from a broad area of the WAIS, suggesting that the new data may serve as a regional proxy for recent temporal trends in West Antarctic accumulation rates. The observed negative trend in accumulation is likely the result of a shift in low-pressure systems over the Amundsen Sea region, dominated by changes in the austral fall season. Regional-scale climate models and reanalysis data do not capture the negative trend in accumulation rate observed in these firn cores. Nevertheless the models and reanalyses agree well in both accumulation-rate means and interannual variability, with no single model or dataset standing out as significantly more skilled at capturing the observed magnitude of and trend in accumulation rates in this region of the WAIS.
C1 [Burgener, Landon; Rupper, Summer; Christensen, William F.; Williams, Jessica; Tingey, David; Keeler, Durban; Riley, Laura] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA.
[Koenig, Lora] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
[Forster, Rick; Miege, Clement] Univ Utah, Dept Geog, Salt Lake City, UT USA.
[Koutnik, Michelle] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen, Denmark.
[Steig, Eric J.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
RP Rupper, S (reprint author), Brigham Young Univ, Dept Geol Sci, S389 ESC, Provo, UT 84602 USA.
EM srupper@byu.edu
RI Steig, Eric/G-9088-2015;
OI Steig, Eric/0000-0002-8191-5549; Rupper, Summer/0000-0001-8655-5282;
Miege, Clement/0000-0002-1894-3723
FU National Science Foundation Office of Polar Programs [094470, 0944653];
NASA's Cryospheric Sciences Program
FX This work was supported by the National Science Foundation Office of
Polar Programs (grant 094470 to SBR and 0944653 to RF) and NASA's
Cryospheric Sciences Program (to LSK). The authors thank David Battisti
and Qinghua Ding for feedback on the methods and science. The authors
also thank three anonymous reviewers for constructive comments and
criticisms that significantly improved the manuscript.
NR 53
TC 9
Z9 9
U1 1
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4205
EP 4216
DI 10.1002/jgrd.50362
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000020
ER
PT J
AU Li, KF
Tian, BJ
Tung, KK
Kuai, L
Worden, JR
Yung, YL
Slawski, BL
AF Li, King-Fai
Tian, Baijun
Tung, Ka-Kit
Kuai, Le
Worden, John R.
Yung, Yuk L.
Slawski, Benjiman L.
TI A link between tropical intraseasonal variability and Arctic
stratospheric ozone
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE Madden-Julian Oscillation; teleconnection; geopotential heights;
barotropic propagation; tropopause motions
ID MADDEN-JULIAN OSCILLATION; TROPOSPHERIC EMISSION SPECTROMETER; MOIST
THERMODYNAMIC STRUCTURE; NORTHERN-HEMISPHERE WINTER; MONITORING
INSTRUMENT; INTERIM REANALYSIS; AURA SATELLITE; KELVIN WAVE; MJO; SYSTEM
AB Previous studies using satellite measurements showed evidence that subtropical upper troposphere/lower stratosphere ozone (O-3) can be modulated by tropical intraseasonal variability, the most dominant form of which is the Madden Julian Oscillation (MJO) with a period of 30-60days. Here we further study the MJO modulation in the upper troposphere/lower stratosphere O-3 over the northern extratropics and the Arctic. Significant MJO-related O-3 signals (13-20 Dobson units) are found over the northern extratropics (north of 30 degrees N). The O-3 anomalies change their magnitude and patterns depending on the phase of the MJO. Over the Arctic, the MJO-related O-3 anomalies are dominated by a wave number 2 structure and are anticorrelated with the geopotential height (GPH) anomalies at 250hPa. The latter is similar to the findings in the previous studies over subtropics and indicates that the Arctic upper troposphere/lower stratosphere O-3 anomalies are associated with dynamical motions near the tropopause. The teleconnection from the tropics to the Arctic is likely through propagation of planetary waves generated by the equatorial heating that affects the tropopause height and O-3 at high latitudes.
C1 [Li, King-Fai; Yung, Yuk L.; Slawski, Benjiman L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Tian, Baijun; Kuai, Le; Worden, John R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tung, Ka-Kit] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA.
RP Li, KF (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
EM kfl@gps.caltech.edu
OI Tian, Baijun/0000-0001-9369-2373; Li, King-Fai/0000-0003-0150-2910
FU National Aeronautics and Space Administration (NASA) [JPL-1429248];
National Science Foundation (NSF) [ATM-0840755, ATM-0934303]
FX K. F. L. is grateful to Prof. Simona Bordoni, Prof. Duane E. Waliser,
and Dr. Xianan Jiang for their thoughtful comments. K. F. L. and Y.L.Y.
were supported by National Aeronautics and Space Administration (NASA)
grant JPL-1429248 to the California Institute of Technology. B.J. was
supported by National Science Foundation (NSF) award ATM-0840755 to the
University of California, Los Angeles. B. L. S. was supported by NSF
grant ATM-0934303. Part of this research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA. The RMM index was obtained from
http://www.cawcr.gov.au/staff/mwheeler/maproom/RMM/RMM1RMM2.74toRealtime
.txt.
NR 71
TC 2
Z9 2
U1 1
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4280
EP 4289
DI 10.1002/jgrd.50391
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000026
ER
PT J
AU Segal-Rosenheimer, M
Russell, PB
Livingston, JM
Ramachandran, S
Redemann, J
Baum, BA
AF Segal-Rosenheimer, Michal
Russell, Philip B.
Livingston, John M.
Ramachandran, S.
Redemann, Jens
Baum, Bryan A.
TI Retrieval of cirrus properties by Sun photometry: A new perspective on
an old issue
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE cirrus microphysical properties; cirrus optical depth; Sun photometers;
cloud optics; aerosols and clouds
ID AEROSOL OPTICAL DEPTH; BULK SCATTERING PROPERTIES; SOLAR
RADIATIVE-TRANSFER; PARTICLE-SIZE; ICE CLOUDS; THICKNESS; DISTRIBUTIONS;
VARIABILITY; ALGORITHMS; ABSORPTION
AB Cirrus clouds are important modulators of the Earth radiation budget and continue to be one of the most uncertain components in weather and climate modeling. Sun photometers are widely accepted as one of the most accurate platforms for measuring clear sky aerosol optical depth (AOD). However, interpretation of their measurements is ambiguous in the presence of cirrus. Derivation of a valid AOD under cirrus conditions was focused previously on correction factors, rather than on derivation of cirrus cloud optical thickness (COT). In the present work, we propose a new approach that uses the total measured irradiance to derive cirrus COT and ice particle effective diameter (D-eff). For this approach, we generate lookup tables (LUTs) of total transmittance for the Sun photometer field of view (FOV) due to the direct and scattered irradiance over the spectral range of 400-2200 nm, for a range of cirrus COT (0-4), and a range of ice cloud effective diameters (10-120 mu m) by using explicit cirrus optical property models for (a) cirrus only and (b) a two-component model including cirrus and aerosols. The new approach is tested on two cases (airborne and ground-based) using measured transmittances from the 14-channel NASA Ames Airborne Tracking Sun photometer. We find that relative uncertainties in COT are much smaller than those for D-eff. This study shows that for optically thin cirrus cases (COT<1.0), the aerosol layer between the instrument and the cloud plays an important role, especially in derivation of D-eff. Additionally, the choice of the cirrus model may introduce large differences in derived D-eff.
C1 [Segal-Rosenheimer, Michal; Russell, Philip B.; Redemann, Jens] NASA Ames Res Ctr, Moffett Field, CA USA.
[Livingston, John M.] SRI Int, Menlo Pk, CA 94025 USA.
[Ramachandran, S.] Phys Res Lab, Ahmadabad 380009, Gujarat, India.
[Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA.
RP Segal-Rosenheimer, M (reprint author), NASA Ames Res Ctr, Moffett Field, CA USA.
EM michal.segalrozenhaimer@nasa.gov
RI Baum, Bryan/B-7670-2011
OI Baum, Bryan/0000-0002-7193-2767
FU ORAU (Oak-Ridge Associated Universities) NPP (NASA Post-doctoral
Program); Weizmann Institute through the Women in Science program;
ORAU-NPP
FX Michal Segal-Rosenheimer would like to thank the ORAU (Oak-Ridge
Associated Universities) NPP (NASA Post-doctoral Program) and the
Weizmann Institute through the Women in Science program for the
financial support for her Post-doctoral fellowship at the NASA Ames
Research Center. S Ramachandran would also like to thank ORAU-NPP for
his support. The ARCTAS measurements were supported by the NASA
Radiation and Science Program. We appreciate the comments of the three
anonymous reviewers, which helped us to improve the manuscript.
NR 37
TC 6
Z9 6
U1 2
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4503
EP 4520
DI 10.1002/jgrd.50185
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000043
ER
PT J
AU Huang, L
Jiang, JH
Tackett, JL
Su, H
Fu, R
AF Huang, Lei
Jiang, Jonathan H.
Tackett, Jason L.
Su, Hui
Fu, Rong
TI Seasonal and diurnal variations of aerosol extinction profile and type
distribution from CALIPSO 5-year observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE CALIPSO; aerosol extinction; aerosol type; aerosol seasonal variation;
aerosol diurnal variation
ID SATELLITE-OBSERVATIONS; UPPER TROPOSPHERE; CLOUDS; MODEL; SMOKE; LIDAR;
TRANSPORT; PRECIPITATION; INHIBITION; ALGORITHM
AB The new Level 3 aerosol profile data derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provide a multiyear global aerosol distribution with high vertical resolution. We analyzed seasonal and diurnal variations of the vertical distributions of aerosol properties represented by 5-year CALIPSO data. Results show that dust, smoke, and polluted dust are the most frequently detected aerosol types during all seasons. Dust is the dominant type, especially in the middle to upper troposphere, over most areas during boreal spring and summer, while smoke and polluted dust tend to dominate during biomass burning seasons. The seasonal variations of dust layer top height and dust contribution to all-aerosol extinction are positively correlated with the seasonal variation of the dust occurrence frequency. The seasonal cycle of aerosol properties over west Australia is similar to that over biomass burning regime areas, despite its desert regime. In general, smoke is detected more frequently from the lower to middle troposphere; clean marine and polluted continental aerosols are detected more frequently, while polluted dust is detected less frequently, in the lower troposphere during nighttime than daytime. The all-aerosol extinction is generally larger, and the aerosol layer top is detected at high altitudes more frequently during nighttime than daytime. The diurnal changes of aerosol properties are similar within the same aerosol regime. Dust extinction shows little diurnal variation except when dust is the dominant aerosol type. The results contribute to an initial global 3-D aerosol climatology which will likely be extended and improved in the future.
C1 [Huang, Lei; Fu, Rong] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX USA.
[Jiang, Jonathan H.; Su, Hui] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tackett, Jason L.] Sci Syst & Applicat Inc, Hampton, VA USA.
RP Huang, L (reprint author), Univ Texas Austin, Dept Geol Sci, Univ Stn C1100, Austin, TX 78712 USA.
EM leih@utexas.edu
RI Huang, Lei/P-1848-2014
FU NASA Aura Science Team program [NNX11AE72G]; Jackson School of
Geosciences at the University of Texas at Austin; JPL Graduate
Fellowship Program; NASA
FX This research was supported by the NASA Aura Science Team program
(NNX11AE72G) and the Jackson School of Geosciences at the University of
Texas at Austin. Most of this study was performed at NASA Jet Propulsion
Laboratory (JPL) at the California Institute of Technology, under
contract with NASA. The first author thanks support from the JPL
Graduate Fellowship Program. The third author would like to thank Ali
Omar and Stuart Young for input on CALIPSO aerosol typing. We also
appreciate the comments from four anonymous reviewers that led to
significant improvements of this paper. The CALIPSO Level 3 data were
obtained from the Atmospheric Science Data Center at NASA Langley
Research Center.
NR 54
TC 11
Z9 12
U1 1
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4572
EP 4596
DI 10.1002/jgrd.50407
PG 25
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000047
ER
PT J
AU Toth, TD
Zhang, JL
Campbell, JR
Reid, JS
Shi, YX
Johnson, RS
Smirnov, A
Vaughan, MA
Winker, DM
AF Toth, Travis D.
Zhang, Jianglong
Campbell, James R.
Reid, Jeffrey S.
Shi, Yingxi
Johnson, Randall S.
Smirnov, Alexander
Vaughan, Mark A.
Winker, David M.
TI Investigating enhanced Aqua MODIS aerosol optical depth retrievals over
the mid-to-high latitude Southern Oceans through intercomparison with
co-located CALIOP, MAN, and AERONET data sets
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE aerosol; sea salt; MODIS; satellite; CALIPSO; MAN
ID CLOUD CONTAMINATION; DATA-ASSIMILATION; SATELLITE DATA; GOCART MODEL;
PART I; CALIPSO; ALGORITHM; PRODUCTS; VALIDATION; THICKNESS
AB A band of enhanced aerosol optical depth (AOD) over the mid-to-high latitude Southern Oceans exists in some passive satellite-based aerosol data sets, including Moderate Resolution Imaging Spectroradiometer (MODIS) products. Past studies suggest several potential causes contributing to this phenomenon, including signal uncertainty, retrieval bias, and cloud contamination. In this paper, quality-assured Aqua MODIS aerosol products in this zonal band are investigated to assess cloud contamination as a cause. Spatially and temporally collocated cloud and aerosol products produced by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) project relative to Aqua MODIS AOD in this region are considered. Maritime Aerosol Network (MAN) and Aerosol Robotic Network (AERONET) AOD data are also collocated with Aqua MODIS retrievals for surface context. The results of this study indicate that the high Aqua MODIS AOD are not seen in the CALIOP aerosol products, cannot be screened using active profiling of collocated observations for cloud presence, and are not detected by ground-based observations such as MAN and AERONET. Enhanced AOD values are attributable primarily to stratocumulus and low broken cumulus cloud contamination, as identified with CALIOP products. But these clouds explain only about 30-40% of the total anomaly. Cirrus cloud contamination is also a factor. However, in contrast to the rest of the globe, they contribute less overall, relative to low-level liquid water clouds, which are considered likely the result of misidentification of relatively warm cloud tops compared with surrounding open seas.
C1 [Toth, Travis D.; Zhang, Jianglong; Shi, Yingxi; Johnson, Randall S.] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA.
[Campbell, James R.; Reid, Jeffrey S.] Naval Res Lab, Marine Meteorol Div, Aerosol & Radiat Sci Sect, Monterey, CA USA.
[Smirnov, Alexander] Sigma Space Corp, Greenbelt, MD USA.
[Vaughan, Mark A.; Winker, David M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Zhang, JL (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave Stop 9006, Grand Forks, ND 58202 USA.
EM jzhang@atmos.und.edu
RI Reid, Jeffrey/B-7633-2014; Campbell, James/C-4884-2012
OI Reid, Jeffrey/0000-0002-5147-7955; Campbell, James/0000-0003-0251-4550
FU Office of Naval Research [32, 35]; NASA Interagency Agreement
[NNG12HG05I]; NASA Earth and Space Science Fellowship (NESSF) Program
FX This research was funded through the support of the Office of Naval
Research Codes 32 and 35. Author JRC acknowledges the support of NASA
Interagency Agreement NNG12HG05I on behalf of the NASA Micropulse Lidar
Network. Author YS acknowledges the support of the NASA Earth and Space
Science Fellowship (NESSF) Program. CALIPSO data were obtained from the
NASA Langley Research Center Atmospheric Science Data Center. MODIS data
were obtained from NASA Goddard Space Flight Center. We acknowledge the
AERONET and MAN programs, their contributing principal investigators and
their staff for coordinating the sites and data used for this
investigation.
NR 53
TC 17
Z9 18
U1 1
U2 13
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4700
EP 4714
DI 10.1002/jgrd.50311
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000056
ER
PT J
AU Omar, AH
Winker, DM
Tackett, JL
Giles, DM
Kar, J
Liu, Z
Vaughan, MA
Powell, KA
Trepte, CR
AF Omar, A. H.
Winker, D. M.
Tackett, J. L.
Giles, D. M.
Kar, J.
Liu, Z.
Vaughan, M. A.
Powell, K. A.
Trepte, C. R.
TI CALIOP and AERONET aerosol optical depth comparisons: One size fits none
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE Aerosol Optical Depth; AERONET; CALIPSO
ID CLOUD CONTAMINATION; MODIS-AQUA; VALIDATION; ALGORITHM; CALIPSO;
RETRIEVAL; PROFILES; PRODUCTS; NETWORK; OCEAN
AB We compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite with coincident Aerosol Robotic Network (AERONET) measurements. Overpass coincidence criteria of 2h and within a 40km radius are satisfied at least once at 149 globally distributed AERONET sites from 2006 to 2010. Most data pairs (>80%) use AERONET measurements acquired 30min of the overpass. We examine the differences in AOD estimates between CALIOP and AERONET for various aerosol, environmental, and geographic conditions. Results show CALIOP AOD are lower than AERONET AOD especially at low optical depths as measured by AERONET (500nm AOD<0.1). Furthermore, the median relative AOD difference between the two measurements is 25% of the AERONET AOD for AOD>0.1. Differences in AOD between CALIOP and AERONET are possibly due to cloud contamination, scene inhomogeneity, instrument view angle differences, CALIOP retrieval errors, and detection limits. Comparison of daytime to nighttime number of 5km x 60m (60m in the vertical) features detected by CALIOP show that there are 20% more aerosol features at night. We find that CALIPSO and AERONET do not agree on the cloudiness of scenes. Of the scenes that meet the above coincidence criteria, CALIPSO finds clouds in more than 45% of the coincident atmospheric columns AERONET classifies as clear.
C1 [Omar, A. H.; Winker, D. M.; Tackett, J. L.; Kar, J.; Liu, Z.; Vaughan, M. A.; Powell, K. A.; Trepte, C. R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Tackett, J. L.; Kar, J.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Giles, D. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Giles, D. M.] Sigma Space Corp, Greenbelt, MD USA.
[Liu, Z.] Natl Inst Aerosp, Hampton, VA USA.
RP Omar, AH (reprint author), NASA, Langley Res Ctr, Sci Directorate, MailStop 475, Hampton, VA 23681 USA.
EM ali.h.omar@nasa.gov
RI Liu, Zhaoyan/B-1783-2010; Omar, Ali/D-7102-2017
OI Liu, Zhaoyan/0000-0003-4996-5738; Omar, Ali/0000-0003-1871-9235
NR 54
TC 35
Z9 37
U1 6
U2 29
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4748
EP 4766
DI 10.1002/jgrd.50330
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000059
ER
PT J
AU Meyer, K
Platnick, S
Oreopoulos, L
Lee, DM
AF Meyer, Kerry
Platnick, Steven
Oreopoulos, Lazaros
Lee, Dongmin
TI Estimating the direct radiative effect of absorbing aerosols overlying
marine boundary layer clouds in the southeast Atlantic using MODIS and
CALIOP
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE clouds; aerosols; radiative forcing; remote sensing
ID CALIPSO LIDAR MEASUREMENTS; OPTICAL-THICKNESS; ALGORITHM; ALBEDO;
RETRIEVALS; SCATTERING; PARTICLES; POLLUTION; RADIUS; DEPTH
AB Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (r(e)) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean r(e) increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(-2)AOD(-1) to 65.1Wm(-2)AOD(-1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.
C1 [Meyer, Kerry; Lee, Dongmin] Univ Space Res Assoc, Goddard Earth Sci Technol & Res GESTAR, Columbia, MD USA.
[Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Meyer, K (reprint author), NASA, Goddard Space Flight Ctr, Code 613-0, Greenbelt, MD 20771 USA.
EM kerry.meyer@nasa.gov
RI Oreopoulos, Lazaros/E-5868-2012; Platnick, Steven/J-9982-2014; Meyer,
Kerry/E-8095-2016
OI Oreopoulos, Lazaros/0000-0001-6061-6905; Platnick,
Steven/0000-0003-3964-3567; Meyer, Kerry/0000-0001-5361-9200
FU NASA Radiation Sciences Program
FX The authors would like to thank Nandana Amarasinghe for his efforts to
construct the cloud retrieval look-up tables and Gala Wind for her
extensive work on the development of the MOD06 Collection 6 algorithm.
In addition, the authors wish to thank Zhibo Zhang for his generous
intellectual support during the course of this work and Rob Levy for his
assistance with the aerosol component. The MODIS data used in this study
were acquired as part of the NASA's Earth-Sun System Division and
archived and distributed by the MODIS Adaptive Processing System
(MODAPS); CALIOP data were obtained from the NASA Langley Research
Center Atmospheric Science Data Center. This research was supported by
the NASA Radiation Sciences Program.
NR 50
TC 23
Z9 23
U1 4
U2 20
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4801
EP 4815
DI 10.1002/jgrd.50449
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000063
ER
PT J
AU Guerlet, S
Butz, A
Schepers, D
Basu, S
Hasekamp, OP
Kuze, A
Yokota, T
Blavier, JF
Deutscher, NM
Griffith, DWT
Hase, F
Kyro, E
Morino, I
Sherlock, V
Sussmann, R
Galli, A
Aben, I
AF Guerlet, S.
Butz, A.
Schepers, D.
Basu, S.
Hasekamp, O. P.
Kuze, A.
Yokota, T.
Blavier, J. -F.
Deutscher, N. M.
Griffith, D. W. T.
Hase, F.
Kyro, E.
Morino, I.
Sherlock, V.
Sussmann, R.
Galli, A.
Aben, I.
TI Impact of aerosol and thin cirrus on retrieving and validating XCO2 from
GOSAT shortwave infrared measurements
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE Remote sensing; Carbon Dioxide; GOSAT; TCCON
ID GASES OBSERVING SATELLITE; REFLECTED SUNLIGHT; ATMOSPHERIC CO2; COLUMN;
ALGORITHM; SPACE; CARBONTRACKER; CALIBRATION; NETWORK; CLOUDS
AB Inadequate treatment of aerosol scattering can be a significant source of error when retrieving column-averaged dry-air mole fractions of CO2 (XCO2) from space-based measurements of backscattered solar shortwave radiation. We have developed a retrieval algorithm, RemoTeC, that retrieves three aerosol parameters (amount, size, and height) simultaneously with XCO2. Here we evaluate the ability of RemoTeC to account for light path modifications by clouds, subvisual cirrus, and aerosols when retrieving XCO2 from Greenhouse Gases Observing Satellite (GOSAT) Thermal and Near-infrared Sensor for carbon Observation (TANSO)-Fourier Transform Spectrometer (FTS) measurements. We first evaluate a cloud filter based on measurements from the Cloud and Aerosol Imager and a cirrus filter that uses radiances measured by TANSO-FTS in the 2micron spectral region, with strong water absorption. For the cloud-screened scenes, we then evaluate errors due to aerosols. We find that RemoTeC is well capable of accounting for scattering by aerosols for values of aerosol optical thickness at 750nm up to 0.25. While no significant correlation of errors is found with albedo, correlations are found with retrieved aerosol parameters. To further improve the XCO2 accuracy, we propose and evaluate a bias correction scheme. Measurements from 12 ground-based stations of the Total Carbon Column Observing Network (TCCON) are used as a reference in this study. We show that spatial colocation criteria may be relaxed using additional constraints based on modeled XCO2 gradients, to increase the size and diversity of validation data and provide a more robust evaluation of GOSAT retrievals. Global-scale validation of satellite data remains challenging and would be improved by increasing TCCON coverage.
C1 [Guerlet, S.; Schepers, D.; Basu, S.; Hasekamp, O. P.; Galli, A.; Aben, I.] SRON Netherlands Inst Space Res, Utrecht, Netherlands.
[Guerlet, S.] UPMC, CNRS, IPSL, Lab Meteorol Dynam, F-75252 Paris, France.
[Butz, A.; Hase, F.] Karlsruhe Inst Technol, IMK ASF, Eggenstein Leopoldshafen, Germany.
[Kuze, A.] Japanese Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki, Japan.
[Yokota, T.; Morino, I.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan.
[Blavier, J. -F.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Deutscher, N. M.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany.
[Deutscher, N. M.; Griffith, D. W. T.] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia.
[Kyro, E.] Finnish Meteorol Inst, Arctic Res Ctr, FIN-00101 Helsinki, Finland.
[Sherlock, V.] Natl Inst Water & Atmospher Res, Wellington, New Zealand.
[Sussmann, R.] Karlsruhe Inst Technol, IMK IFU, Garmisch Partenkirchen, Germany.
RP Guerlet, S (reprint author), UPMC, CNRS, IPSL, Lab Meteorol Dynam, 4 Pl Jussieu, F-75252 Paris, France.
EM sandrine.guerlet@lmd.jussieu.fr
RI Butz, Andre/A-7024-2013; Garmisch-Pa, Ifu/H-9902-2014; Morino,
Isamu/K-1033-2014; Deutscher, Nicholas/E-3683-2015; KUZE,
AKIHIKO/J-2074-2016; Sussmann, Ralf/K-3999-2012
OI Butz, Andre/0000-0003-0593-1608; Morino, Isamu/0000-0003-2720-1569;
Deutscher, Nicholas/0000-0002-2906-2577; KUZE,
AKIHIKO/0000-0001-5415-3377;
FU ESA's Climate Change Initiative on GHGs; European Commission [218793];
Emmy-Noether programme of Deutsche Forschungsgemeinschaft (DFG)
[BU2599/1-1]; Dutch User Support Program [GO-AO/21];
Gebruikersondersteuning ruimteonderzoek program of the Nederlandse
organisatie voor Wetenschappelijk Onderzoek (NWO) [ALW-GO-AO/08-10];
NASA's Terrestrial Ecology Program [NNX11AG01G]; Orbiting Carbon
Observatory Program; Atmospheric CO2 Observations from Space (ACOS)
Program; DOE/ARM Program; National Aeronautics and Space Administration;
OCO project; OCO-2 project; Australian Research Council [LE0668470,
DP0879468, DP110103118, LP0562346]; New Zealand Foundation of Research
Science and Technology [C01X0204, CO1X0406]; ESA; University of Bremen;
EC within the INGOS project; Senate of Bremen
FX Access to GOSAT data was granted through the second GOSAT research
announcement jointly issued by JAXA, NIES, and MOE. SG acknowledges
funding from ESA's Climate Change Initiative on GHGs and the European
Commission's seventh framework program under grant agreement 218793. AB
is supported by the Emmy-Noether programme of Deutsche
Forschungsgemeinschaft (DFG) through grant BU2599/1-1 (RemoTeC). DS is
funded by the Dutch User Support Program under project GO-AO/21. SB was
supported by the Gebruikersondersteuning ruimteonderzoek program of the
Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO) through
project ALW-GO-AO/08-10. We wish to thank Jean-Michel Hartmann and Ha
Tran for providing line-mixing parameters. CarbonTracker 2010 results
were provided by NOAA ESRL, Boulder, Colorado, USA from the website at
http://carbontracker.noaa.gov. TCCON data were obtained from the TCCON
Data Archive, operated by the California Institute of Technology from
the website at http://tccon.ipac.caltech.edu/. U.S. funding for TCCON
comes from NASA's Terrestrial Ecology Program, grant NNX11AG01G, the
Orbiting Carbon Observatory Program, the Atmospheric CO2
Observations from Space (ACOS) Program and the DOE/ARM Program. Some of
the research described in this paper was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The Darwin TCCON site
was built at Caltech with funding from the OCO project and is operated
by the University of Wollongong, with travel funds for maintenance and
equipment costs funded by the OCO-2 project. We acknowledge funding to
support Darwin and Wollongong from the Australian Research Council,
Projects LE0668470, DP0879468, DP110103118, and LP0562346. Lauder TCCON
measurements are funded by New Zealand Foundation of Research Science
and Technology contracts C01X0204 and CO1X0406. The Garmisch TCCON team
acknowledges funding by ESA (GHG-CCI project via subcontract with
University of Bremen) and by the EC within the INGOS project. We
acknowledge financial support of the Bialystok and Orleans TCCON sites
from the Senate of Bremen and EU projects IMECC and Geomon as well as
maintenance and logistical work provided by AeroMeteo Service
(Bialystok) and the RAMCES team at LSCE (Gif-sur-Yvette, France).
NR 33
TC 33
Z9 34
U1 1
U2 24
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4887
EP 4905
DI 10.1002/jgrd.50332
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000069
ER
PT J
AU Guo, YJ
Tian, BJ
Kahn, RA
Kalashnikova, O
Wong, S
Waliser, DE
AF Guo, Yanjuan
Tian, Baijun
Kahn, Ralph A.
Kalashnikova, Olga
Wong, Sun
Waliser, Duane E.
TI Tropical Atlantic dust and smoke aerosol variations related to the
Madden-Julian Oscillation in MODIS and MISR observations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
DE aerosol; dust; smoke; MJO; satellite; Atlantic
ID REMOTE-SENSING OBSERVATIONS; OPTICAL-THICKNESS; IMAGING
SPECTRORADIOMETER; SIZE DISTRIBUTION; OCEAN; SENSITIVITY; RETRIEVALS;
PRODUCTS; REANALYSIS; IDENTIFY
AB In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness ((dust) and (smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. (dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70% of the total aerosol optical thickness (AOT), whereas (smoke) is significantly smaller than (dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the (dus) anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted (dust) anomalies is comparable to or even larger than that of the total , while the (smoke) anomaly represents about 15% compared to the total, which is quite different from their relative magnitudes to the total on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.
C1 [Guo, Yanjuan; Tian, Baijun; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Guo, Yanjuan] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.
[Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Tian, BJ (reprint author), CALTECH, Jet Prop Lab, M-S 233-304,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM baijun.tian@jpl.nasa.gov
RI Tian, Baijun/A-1141-2007; Kahn, Ralph/D-5371-2012
OI Tian, Baijun/0000-0001-9369-2373; Kahn, Ralph/0000-0002-5234-6359
FU National Science Foundation (NSF) University of California, Los Angeles
[ATM-0840755]; NASA's Climate and Radiation Research and Analysis
Program; EOS-MISR project; NASA's Atmospheric Composition Program
FX This research was performed at Jet Propulsion Laboratory (JPL),
California Institute of Technology (Caltech), under a contract with
National Aeronautics and Space Administration (NASA). It was supported
in part by the National Science Foundation (NSF) grant ATM-0840755 at
University of California, Los Angeles. The work of R. Kahn is supported
in part by NASA's Climate and Radiation Research and Analysis Program,
under H. Maring, NASA's Atmospheric Composition Program under R. Eckman,
and the EOS-MISR project. The MODIS/Aqua data used in this study have
been obtained from the NASA LAADS server and ERA-Interim data used in
this study have been obtained from the ECMWF Data Server. (C) 2011. All
rights reserved.
NR 48
TC 11
Z9 11
U1 1
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD MAY 27
PY 2013
VL 118
IS 10
BP 4947
EP 4963
DI 10.1002/jgrd.50409
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 229NB
UT WOS:000325272000073
ER
PT J
AU Toller, G
Xiong, XX
Sun, JQ
Wenny, BN
Geng, X
Kuyper, J
Angal, A
Chen, HD
Madhavan, S
Wua, AS
AF Toller, Gary
Xiong, Xiaoxiong
Sun, Junqiang
Wenny, Brian N.
Geng, Xu
Kuyper, James
Angal, Amit
Chen, Hongda
Madhavan, Sriharsha
Wua, Aisheng
TI Terra and Aqua moderate-resolution imaging spectroradiometer collection
6 level 1B algorithm
SO JOURNAL OF APPLIED REMOTE SENSING
LA English
DT Article
DE moderate-resolution imaging spectroradiometer; Terra; Aqua; remote
sensing; data processing; satellite
ID REFLECTIVE SOLAR BANDS; ON-ORBIT CALIBRATION; MODIS; PERFORMANCE
AB The moderate-resolution imaging spectroradiometer (MODIS) was launched on the Terra spacecraft on Dec. 18, 1999 and on Aquaon May 4, 2002. The data acquired by these instruments have contributed to the long-term climate data record for more than a decade and represent a key component of NASA's Earth observing system. Each MODIS instrument observes nearly the whole Earth each day, enabling the scientific characterization of the land, ocean, and atmosphere. The MODIS Level 1B (L1B) algorithms input uncalibrated geo-located observations and convert instrument response into calibrated reflectance and radiance, which are used to generate science data products. The instrument characterization needed to run the L1B code is currently implemented using time-dependent lookup tables. The MODIS characterization support team, working closely with the MODIS Science Team, has improved the product quality with each data reprocessing. We provide an overview of the new L1B algorithm release, designated collection 6. Recent improvements made as a consequence of on-orbit calibration, onorbit analyses, and operational considerations are described. Instrument performance and the expected impact of L1B changes on the collection 6 L1B products are discussed. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
C1 [Toller, Gary; Sun, Junqiang; Wenny, Brian N.; Geng, Xu; Kuyper, James; Chen, Hongda; Wua, Aisheng] Sigma Space Corp, Lanham, MD 20706 USA.
[Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA.
[Angal, Amit; Madhavan, Sriharsha] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
RP Toller, G (reprint author), Sigma Space Corp, 4801 Forbes Blvd, Lanham, MD 20706 USA.
EM gtoller@sigmaspace.com
NR 29
TC 13
Z9 13
U1 0
U2 15
PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 1931-3195
J9 J APPL REMOTE SENS
JI J. Appl. Remote Sens.
PD MAY 22
PY 2013
VL 7
AR 073557
DI 10.1117/1.JRS.7.073557
PG 17
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA 151YU
UT WOS:000319497100001
ER
PT J
AU Schmidt, R
Tantoyotai, P
Fakra, SC
Marcus, MA
Yang, SI
Pickering, IJ
Banuelos, GS
Hristova, KR
Freeman, JL
AF Schmidt, Radomir
Tantoyotai, Prapakorn
Fakra, Sirine C.
Marcus, Matthew A.
Yang, Soo In
Pickering, Ingrid J.
Banuelos, Gary S.
Hristova, Krassimira R.
Freeman, John L.
TI Selenium Biotransformations in an Engineered Aquatic Ecosystem for
Bioremediation of Agricultural Wastewater via Brine Shrimp Production
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; EPHYDRA-CINEREA JONES; GREAT-SALT-LAKE;
DRAINAGE SEDIMENT; SPECIATION; CALIFORNIA; SELENATE; ACCUMULATION;
ORGANISMS; TOXICITY
AB An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp (Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested.
C1 [Schmidt, Radomir; Tantoyotai, Prapakorn; Hristova, Krassimira R.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA.
[Fakra, Sirine C.; Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Yang, Soo In; Pickering, Ingrid J.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada.
[Banuelos, Gary S.] ARS, USDA, SJVASC, Water Management Res Div, Parlier, CA 93648 USA.
[Hristova, Krassimira R.] Marquette Univ, Dept Sci Biol, Milwaukee, WI 53233 USA.
[Freeman, John L.] Calif State Univ Fresno, Dept Biol, Fresno, CA 93740 USA.
[Freeman, John L.] NASA, Ames Res Ctr, Intrinsyx Technol Corp Inc, Space Biosci Div, Moffett Field, CA 94035 USA.
RP Hristova, KR (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA.
EM krassimira.hristova@marquette.edu; John.L.Freeman@NASA.gov
RI Pickering, Ingrid/A-4547-2013
FU CSU Fresno California Agricultural Research Initiative; Department of
Energy; California Department of Water Resources [08-002104, 07-3];
Office of Science, Office of Basic Energy Sciences, U.S. Department of
Energy [DE-AC02-05CH11231]; DOE, Office of Biological and Environmental
Research; National Institutes of Health, National Center for Research
Resources, Biomedical Technology Program [P41RR001209]; Natural Sciences
and Engineering Research Council of Canada; CIHR-THRUST Fellowship
FX This research was supported by a CSU Fresno California Agricultural
Research Initiative granted to Dr. Gary S. Banuelos and Dr. John L.
Freeman, a Department of Energy Beam Time grant to Dr. Gary S. Banuelos
and Dr. John L Freeman, and by the California Department of Water
Resources under contract number 08-002104, task order 07-3, granted to
Dr. Krassimira R. Hristova. The operations of the Advanced Light Source
at Lawrence Berkeley National Laboratory were supported by the Director,
Office of Science, Office of Basic Energy Sciences, U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. The Stanford Synchrotron
Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator
Laboratory and an Office of Science User Facility is operated for the
U.S. Department of Energy Office of Science by Stanford University. The
SSRL Structural Molecular Biology Program is supported by the DOE,
Office of Biological and Environmental Research, and by the National
Institutes of Health, National Center for Research Resources, Biomedical
Technology Program (P41RR001209). Ingrid J. Pickering is a Canada
Research Chair and Soo In Yang was funded by the Natural Sciences and
Engineering Research Council of Canada (Discovery Grant to IJP) and by a
CIHR-THRUST Fellowship.
NR 59
TC 5
Z9 5
U1 3
U2 60
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD MAY 21
PY 2013
VL 47
IS 10
BP 5057
EP 5065
DI 10.1021/es305001n
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 154WY
UT WOS:000319708600013
PM 23621086
ER
PT J
AU Hosking, SG
Davey, CE
Kaiser, MK
AF Hosking, Simon G.
Davey, Catherine E.
Kaiser, Mary K.
TI Visual cues for manual control of headway
SO FRONTIERS IN BEHAVIORAL NEUROSCIENCE
LA English
DT Article
DE visual perception; manual control; headway regulation; optic cues;
control dynamics
ID TIME-TO-COLLISION; OPTICAL INFORMATION; BRAKING; PERCEPTION; MOTION;
SPEED; TAU; ACCELERATION; CONTACT; JUDGMENTS
AB The ability to maintain appropriate gaps to objects in one's environment is important when navigating through a three-dimensional world. Previous research has shown that the visual angle subtended by a lead/approaching object and its rate of change are important variables for timing interceptions, collision avoidance, continuous regulation of braking, and manual control of headway. However, investigations of headway maintenance have required participants to maintain a fixed distance headway and have not investigated how information about own-speed is taken into account. In the following experiment, we asked participants to use a joystick to follow computer-simulated lead objects. The results showed that ground texture, following speed, and the size of the lead object had significant effects on both mean following distances and following distance variance. Furthermore, models of the participants' joystick responses provided better fits when it was assumed that the desired visual extent of the lead object would vary over time. Taken together, the results indicate that while information about own-speed is used by controllers to set the desired headway to a lead object, the continuous regulation of headway is influenced primarily by the visual angle of the lead object and its rate of change. The reliance on visual angle, its rate of change, and/or own-speed information also varied depending on the control dynamics of the system. Such findings are consistent with an optimal control criterion that reflects a differential weighting on different sources of information depending on the plant dynamics. As in other judgements of motion in depth, the information used for controlling headway to other objects in the environment varies depending on the constraints of the task and different strategies of control.
C1 [Hosking, Simon G.; Davey, Catherine E.] Def Sci & Technol Org, Air Operat Div, Fishermans Bend, Vic 3207, Australia.
[Kaiser, Mary K.] NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA.
RP Hosking, SG (reprint author), Def Sci & Technol Org, Air Operat Div, 506 Lorimer St, Fishermans Bend, Vic 3207, Australia.
EM simon.hosking@dsto.defence.gov.au
OI DAVEY, CATHERINE/0000-0002-5672-7941
NR 37
TC 0
Z9 0
U1 0
U2 7
PU FRONTIERS RESEARCH FOUNDATION
PI LAUSANNE
PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND
SN 1662-5153
J9 FRONT BEHAV NEUROSCI
JI Front. Behav. Neurosci.
PD MAY 21
PY 2013
VL 7
AR 45
DI 10.3389/fnbeh.2013.00045
PG 14
WC Behavioral Sciences; Neurosciences
SC Behavioral Sciences; Neurosciences & Neurology
GA 149MD
UT WOS:000319323100001
PM 23750130
ER
PT J
AU Moscatelli, F
Marisaldi, M
Maccagnani, P
Labanti, C
Fuschino, F
Prest, M
Berra, A
Bolognini, D
Ghioni, M
Rech, I
Gulinatti, A
Giudice, A
Simmerle, G
Candelori, A
Mattiazzo, S
Sun, XL
Cavanaugh, JF
Rubini, D
AF Moscatelli, Francesco
Marisaldi, Martino
Maccagnani, Piera
Labanti, Claudio
Fuschino, Fabio
Prest, Michela
Berra, Alessandro
Bolognini, Davide
Ghioni, Massimo
Rech, Ivan
Gulinatti, Angelo
Giudice, Andrea
Simmerle, Georg
Candelori, Andrea
Mattiazzo, Serena
Sun, Xiaoli
Cavanaugh, John F.
Rubini, Danilo
TI Radiation tests of single photon avalanche diode for space applications
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Single photon detection; Radiation hardness; Space-qualified detectors
ID LEVEL TRANSIENT SPECTROSCOPY; HIGH-RESISTIVITY SILICON; IRRADIATION
FACILITY; NEUTRON-IRRADIATION; PROTON IRRADIATION; DAMAGE; DETECTORS;
PHOTODIODES; DEFECTS; CIRCUIT
AB Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 mu m diameter). Dark counts rate as low as few kHz at -10 degrees C has been obtained for the 500 mu m devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2 x 10(8) (1 MeV eq) n/cm(2) with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degrees C have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10 x 10(7) (1 MeV eq) n/cm(2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics. (c) 2013 Elsevier B.V. All rights reserved.
C1 [Moscatelli, Francesco; Maccagnani, Piera] CNR IMM Bologna, I-40129 Bologna, Italy.
[Marisaldi, Martino; Labanti, Claudio; Fuschino, Fabio] INAF IASF Bologna, I-40129 Bologna, Italy.
[Prest, Michela; Berra, Alessandro; Bolognini, Davide] Univ Insubria, I-22100 Como, Italy.
[Prest, Michela; Berra, Alessandro; Bolognini, Davide] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-22100 Como, Italy.
[Ghioni, Massimo; Rech, Ivan; Gulinatti, Angelo] Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy.
[Giudice, Andrea; Simmerle, Georg] Micro Photon Devices, I-39100 Bolzano, Italy.
[Candelori, Andrea; Mattiazzo, Serena] Univ Padua, Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Candelori, Andrea; Mattiazzo, Serena] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[Sun, Xiaoli; Cavanaugh, John F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Rubini, Danilo] Italian Space Agcy, I-00198 Rome, Italy.
RP Moscatelli, F (reprint author), CNR IMM Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
EM moscatelli@bo.imm.cnr.it
RI Sun, Xiaoli/B-5120-2013; GULINATTI, ANGELO/F-1335-2010; maccagnani,
piera/H-6428-2014; Moscatelli, Francesco/N-6333-2014;
OI GULINATTI, ANGELO/0000-0001-6701-9126; Berra,
Alessandro/0000-0002-9031-4585; Labanti, Claudio/0000-0002-5086-3619;
maccagnani, piera/0000-0003-0288-0219; Moscatelli,
Francesco/0000-0002-7676-3106; Fuschino, Fabio/0000-0003-2139-3299;
PREST, MICHELA/0000-0003-3161-4454; Marisaldi,
Martino/0000-0002-4000-3789; Rech, Ivan/0000-0002-1430-1010
FU Italian Space Agency (ASI) [I/039/09/0]
FX This work was carried out under the Italian Space Agency (ASI) Contract
I/039/09/0. The authors wish to thank the staff of Sant'Anna Hospital,
Como, the staff of PSI of Zurich and INFN Laboratori Nazionali di
Legnaro for their support during the irradiation tests.
NR 36
TC 3
Z9 3
U1 2
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD MAY 21
PY 2013
VL 711
BP 65
EP 72
DI 10.1016/j.nima.2013.01.056
PG 8
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 135WL
UT WOS:000318321300009
ER
PT J
AU Ashby, MLN
Willner, SP
Fazio, GG
Huang, JS
Arendt, R
Barmby, P
Barro, G
Bell, EF
Bouwens, R
Cattaneo, A
Croton, D
Dave, R
Dunlop, JS
Egami, E
Faber, S
Finlator, K
Grogin, NA
Guhathakurta, P
Hernquist, L
Hora, JL
Illingworth, G
Kashlinsky, A
Koekemoer, AM
Koo, DC
Labbe, I
Li, Y
Lin, L
Moseley, H
Nandra, K
Newman, J
Noeske, K
Ouchi, M
Peth, M
Rigopoulou, D
Robertson, B
Sarajedini, V
Simard, L
Smith, HA
Wang, Z
Wechsler, R
Weiner, B
Wilson, G
Wuyts, S
Yamada, T
Yan, H
AF Ashby, M. L. N.
Willner, S. P.
Fazio, G. G.
Huang, J. -S.
Arendt, R.
Barmby, P.
Barro, G.
Bell, E. F.
Bouwens, R.
Cattaneo, A.
Croton, D.
Dave, R.
Dunlop, J. S.
Egami, E.
Faber, S.
Finlator, K.
Grogin, N. A.
Guhathakurta, P.
Hernquist, L.
Hora, J. L.
Illingworth, G.
Kashlinsky, A.
Koekemoer, A. M.
Koo, D. C.
Labbe, I.
Li, Y.
Lin, L.
Moseley, H.
Nandra, K.
Newman, J.
Noeske, K.
Ouchi, M.
Peth, M.
Rigopoulou, D.
Robertson, B.
Sarajedini, V.
Simard, L.
Smith, H. A.
Wang, Z.
Wechsler, R.
Weiner, B.
Wilson, G.
Wuyts, S.
Yamada, T.
Yan, H.
TI SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND
DEEP IRAC SOURCE COUNTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: high-redshift; infrared: galaxies; surveys
ID EXTRAGALACTIC LEGACY SURVEY; LYMAN-BREAK GALAXIES; INFRARED BACKGROUND
FLUCTUATIONS; SPACE-TELESCOPE OBSERVATIONS; UV LUMINOSITY FUNCTIONS;
STAR-FORMATION HISTORY; EXTREMELY RED OBJECTS; CLUSTERING PROPERTIES;
REDSHIFT SURVEY; MU-M
AB The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(2) to a depth of 26 AB mag (3s) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 mu m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six- month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW m(-2) sr(-1) at 3.6 and 4.5 mu m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.
C1 [Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J. -S.; Hernquist, L.; Hora, J. L.; Smith, H. A.; Wang, Z.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Arendt, R.; Kashlinsky, A.; Moseley, H.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
[Arendt, R.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA.
[Barmby, P.] Univ Western Ontario, London, ON N6A 3K7, Canada.
[Barro, G.; Faber, S.; Guhathakurta, P.; Illingworth, G.; Koo, D. C.] Univ Calif Santa Cruz, Lick Observ, Univ Calif Observ, Santa Cruz, CA 95064 USA.
[Barro, G.; Faber, S.; Guhathakurta, P.; Illingworth, G.; Koo, D. C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Bell, E. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Bouwens, R.; Labbe, I.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Cattaneo, A.] Aix Marseille Univ, CNRS, Lab Astrophys Marseille, UMR 7326, F-13388 Marseille, France.
[Croton, D.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia.
[Dave, R.; Robertson, B.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA.
[Dunlop, J. S.] Univ Edinburgh, Royal Observ, Inst Astron, Scottish Univ Phys Alliance, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Egami, E.; Robertson, B.; Weiner, B.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Finlator, K.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark.
[Grogin, N. A.; Koekemoer, A. M.; Noeske, K.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Kashlinsky, A.] SSAI, Lanham, MD 20706 USA.
[Li, Y.] Penn State Univ, Dept Phys & Astron, University Pk, PA 16802 USA.
[Li, Y.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Lin, L.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan.
[Nandra, K.; Wuyts, S.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Newman, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Ouchi, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan.
[Ouchi, M.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan.
[Peth, M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England.
[Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England.
[Sarajedini, V.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Simard, L.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC, Canada.
[Wechsler, R.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[Wechsler, R.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Wilson, G.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[Yamada, T.] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan.
[Yan, H.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RP Ashby, MLN (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM mashby@cfa.harvard.edu
RI Finlator, Kristian/M-4809-2014; Barmby, Pauline/I-7194-2016
OI Finlator, Kristian/0000-0002-0496-1656; Hora,
Joseph/0000-0002-5599-4650; Koekemoer, Anton/0000-0002-6610-2048;
Arendt, Richard/0000-0001-8403-8548; Bell, Eric/0000-0002-5564-9873;
Barmby, Pauline/0000-0003-2767-0090
FU National Aeronautics and Space Administration (NASA); NASA [1367335,
1367411, 1367412]; European Research Council; Royal Society via a
Wolfson Research Merit Award; National Science Foundation
FX The authors are grateful to E. Diolaiti for helpful advice on the
optimal use of StarFinder. This work is based on observations made with
the Spitzer Space Telescope, which is operated by the Jet Propulsion
Laboratory, California Institute of Technology under contract with the
National Aeronautics and Space Administration (NASA). Support for this
work was provided by NASA through contract numbers 1367335, 1367411 and
1367412 issued by JPL/Caltech. J.S.D. acknowledges the support of the
European Research Council via an Advanced Grant, and the support of the
Royal Society via a Wolfson Research Merit Award. IRAF is distributed by
the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA) under
cooperative agreement with the National Science Foundation.
NR 69
TC 83
Z9 83
U1 2
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAY 20
PY 2013
VL 769
IS 1
AR 80
DI 10.1088/0004-637X/769/1/80
PG 27
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 157NL
UT WOS:000319904500080
ER
PT J
AU Cappelluti, N
Kashlinsky, A
Arendt, RG
Comastri, A
Fazio, GG
Finoguenov, A
Hasinger, G
Mather, JC
Miyaji, T
Moseley, SH
AF Cappelluti, N.
Kashlinsky, A.
Arendt, R. G.
Comastri, A.
Fazio, G. G.
Finoguenov, A.
Hasinger, G.
Mather, J. C.
Miyaji, T.
Moseley, S. H.
TI CROSS-CORRELATING COSMIC INFRARED AND X-RAY BACKGROUND FLUCTUATIONS:
EVIDENCE OF SIGNIFICANT BLACK HOLE POPULATIONS AMONG THE CIB SOURCES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; dark ages, reionization, first stars; infrared:
diffuse background; stars: Population III; X-rays: diffuse background
ID ACTIVE GALACTIC NUCLEI; COBE DIRBE MAPS; SPITZER-SPACE-TELESCOPE;
WIDE-FIELD SURVEY; ALL-SKY SURVEY; NUMBER COUNTS; SOURCE CATALOG; POWER
SPECTRUM; GOODS FIELDS; III STARS
AB In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an similar or equal to 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 mu m and 4.5 mu m and the Chandra [0.5-2] keV data has been detected, at angular scales greater than or similar to 20 '', with an overall significance of similar or equal to 3.8 sigma and similar or equal to 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 mu m and 4.5 mu m magnitudes m(AB) greater than or similar to 25-26 and [0.5-2] keV X-ray fluxes << 7 x 10(-17) erg cm(2) s(-1). We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations.
C1 [Cappelluti, N.; Comastri, A.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy.
[Cappelluti, N.; Arendt, R. G.; Finoguenov, A.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA.
[Kashlinsky, A.; Arendt, R. G.; Mather, J. C.; Moseley, S. H.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
[Kashlinsky, A.] SSAI, Lanham, MD 20706 USA.
[Fazio, G. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Finoguenov, A.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland.
[Hasinger, G.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Mather, J. C.; Moseley, S. H.] NASA, Greenbelt, MD 20771 USA.
[Miyaji, T.] Univ Nacl Autonoma Mexico, Inst Astron, Ensenada 22860, BC, Mexico.
RP Cappelluti, N (reprint author), INAF Osservatorio Astron Bologna, Via Ranzani 1, I-40127 Bologna, Italy.
RI Comastri, Andrea/O-9543-2015;
OI Comastri, Andrea/0000-0003-3451-9970; Cappelluti,
Nico/0000-0002-1697-186X; Arendt, Richard/0000-0001-8403-8548
FU NASA Chandra Archival research grant [AR2-13014B]; INAF fellowship
program; Della Riccia foundation; [ASI-INAFI/009/10/0]
FX N.C., A.K., and R.A. acknowledge NASA Chandra Archival research grant
No. AR2-13014B for partial support. N.C. acknowledges the INAF
fellowship program. We acknowledge financial contribution from the
agreement ASI-INAFI/009/10/0. N.C. acknowledges the Della Riccia
foundation for partially funding this project.
NR 57
TC 24
Z9 24
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAY 20
PY 2013
VL 769
IS 1
AR 68
DI 10.1088/0004-637X/769/1/68
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 157NL
UT WOS:000319904500068
ER
PT J
AU Danchi, WC
Lopez, B
AF Danchi, William C.
Lopez, Bruno
TI EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE
PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE circumstellar matter; planetary systems; stars: evolution; stars:
late-type; techniques: high angular resolution
ID KEPLER PLANETARY CANDIDATES; M-CIRCLE-PLUS; RAPID APPEARANCE; METAZOAN
PHYLA; SUPER-EARTHS; RED GIANTS; WIDE-RANGE; EARLY MARS; STARS; MASS
AB During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M-circle dot for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M-circle dot star with near solar metallicity, Z = 0.017, the duration of the habitable zone is > 10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is > 20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and similar to 4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.
C1 [Danchi, William C.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA.
[Lopez, Bruno] Observ Cote Azur, Lab Lagrange UMR 7293, F-06034 Nice 4, France.
RP Danchi, WC (reprint author), NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA.
EM william.c.danchi@nasa.gov; bruno.lopez@oca.eu
NR 58
TC 7
Z9 7
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAY 20
PY 2013
VL 769
IS 1
AR 27
DI 10.1088/0004-637X/769/1/27
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 157NL
UT WOS:000319904500027
ER
PT J
AU Stewart, KR
Brooks, AM
Bullock, JS
Maller, AH
Diemand, J
Wadsley, J
Moustakas, LA
AF Stewart, Kyle R.
Brooks, Alyson M.
Bullock, James S.
Maller, Ariyeh H.
Diemand, Juerg
Wadsley, James
Moustakas, Leonidas A.
TI ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: evolution; galaxies: formation; galaxies: halos; galaxies:
kinematics and dynamics; intergalactic medium; methods: numerical
ID DARK-MATTER HALOES; ACTIVE GALACTIC NUCLEI; TIDAL-TORQUE THEORY; EDGE-ON
GALAXIES; DISK GALAXIES; BLACK-HOLES; COSMOLOGICAL SIMULATIONS;
HIGH-REDSHIFT; COSMIC GAS; COLD FLOWS
AB We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with similar to 70% more specific angular momentum than dark matter averaged over cosmic time ( though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by. lambda similar to 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks." We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.
C1 [Stewart, Kyle R.] Calif Baptist Univ, Dept Nat & Math Sci, Riverside, CA 92504 USA.
[Stewart, Kyle R.; Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Brooks, Alyson M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Bullock, James S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA.
[Bullock, James S.] Univ Calif Irvine, Dept Phys & Astron, Ctr Galaxy Evolut, Irvine, CA 92697 USA.
[Maller, Ariyeh H.] New York City Coll Technol, Dept Phys, Brooklyn, NY 11201 USA.
[Diemand, Juerg] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland.
[Wadsley, James] McMaster Univ, Dept Phys & Astron, Hamilton L85 4M1, ON, Canada.
RP Stewart, KR (reprint author), Calif Baptist Univ, Dept Nat & Math Sci, 8432 Magnolia Ave, Riverside, CA 92504 USA.
RI Diemand, Juerg/G-9448-2011; Bullock, James/K-1928-2015;
OI Bullock, James/0000-0003-4298-5082; Moustakas,
Leonidas/0000-0003-3030-2360
FU NASA [NNX09AG01G]; National Aeronautics and Space Administration;
Grainger Foundation; Swiss National Science Foundation (SNF); NASA ATP
FX Halos 1 and 2 were run on the Cosmos computer cluster at JPL, and the
Greenplanet computer cluster at UC Irvine. Resources supporting this
work were provided by the NASA High-End Computing (HEC) Program through
the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.
K.R.S. was partially supported by an appointment to the NASA
Postdoctoral Program at the Jet Propulsion Laboratory, administered by
Oak Ridge Associated Universities through a contract with NASA. This
research was partially carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. A.B. acknowledges support from The
Grainger Foundation. J.S.B. was partially supported by NASA grant
NNX09AG01G. J.D. has been supported by the Swiss National Science
Foundation (SNF). L.A.M. acknowledges NASA ATP support.
NR 86
TC 50
Z9 50
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD MAY 20
PY 2013
VL 769
IS 1
AR 74
DI 10.1088/0004-637X/769/1/74
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 157NL
UT WOS:000319904500074
ER
PT J
AU Tal, T
van Dokkum, PG
Franx, M
Leja, J
Wake, DA
Whitaker, KE
AF Tal, Tomer
van Dokkum, Pieter G.
Franx, Marijn
Leja, Joel
Wake, David A.
Whitaker, Katherine E.
TI GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON- EVOLVING RADIAL GALAXY
DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE z=1.6
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: elliptical and lenticular, cD; galaxies: groups: general
ID DIGITAL SKY SURVEY; SIMILAR-TO 3; LUMINOUS RED GALAXIES; MEDIUM-BAND
SURVEY; INSIDE-OUT GROWTH; LENS ACS SURVEY; LESS-THAN 2; STELLAR MASS;
STAR-FORMATION; DARK-MATTER
AB We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.
C1 [Tal, Tomer] Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA.
[van Dokkum, Pieter G.; Leja, Joel] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Franx, Marijn] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Wake, David A.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Whitaker, Katherine E.] Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
RP Tal, T (reprint author), Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA.
EM tal@ucolick.org
OI Leja, Joel/0000-0001-6755-1315
FU NSF [AST-1202667, AST-0807974]; CT Space Grant; NASA [NNX11AB08G];
Alfred P. Sloan Foundation; National Science Foundation; U.S. Department
of Energy; National Aeronautics and Space Administration; Japanese
Monbukagakusho; Max Planck Society; Higher Education Funding Council for
England; American Museum of Natural History; Astrophysical Insti