FN Thomson Reuters Web of Science™ VR 1.0 PT S AU Greenhouse, MA Benson, SW Englander, J Falck, RD Fixsen, DJ Gardner, JP Kruk, JW Oleson, SR Thronson, HA AF Greenhouse, Matthew A. Benson, Scott W. Englander, Jacob Falck, Robert D. Fixsen, Dale J. Gardner, Jonathan P. Kruk, Jeffery W. Oleson, Steven R. Thronson, Harley A. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Breakthrough capability for UVOIR space astronomy: Reaching the darkest sky SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE solar electric propulsion; zodiacal light; space astronomy ID COBE AB We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope. C1 [Greenhouse, Matthew A.; Englander, Jacob; Gardner, Jonathan P.; Kruk, Jeffery W.; Thronson, Harley A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Benson, Scott W.; Falck, Robert D.; Oleson, Steven R.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Fixsen, Dale J.] Univ Maryland, College Pk, MD 20742 USA. RP Greenhouse, MA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914317 DI 10.1117/12.2055340 PG 19 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800037 ER PT S AU Greenhouse, MA AF Greenhouse, Matthew A. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI The JWST Science Instrument Payload: Mission Context and Status SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE JWST AB The James Webb Space Telescope (JWST) is the scientific successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 m(2) aperture (6 m class) telescope that will achieve diffraction limited angular resolution at a wavelength of 2 um. The science instrument payload includes four passively cooled near-infrared instruments providing broad-and narrow-band imagery, coronography, as well as multi-object and integral-field spectroscopy over the 0.6 < lambda < 5.0 um spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronography, and integral-field spectroscopy over the 5.0 <. < 29 um spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete. Construction, integration and verification testing is underway in all areas of the program. The JWST is on schedule for launch during 2018. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Greenhouse, MA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM matt.greenhouse@nasa.gov NR 32 TC 1 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914307 DI 10.1117/12.2054777 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800007 ER PT S AU Harness, A Nehrenz, M Sorgenfrei, M AF Harness, Anthony Nehrenz, Matthew Sorgenfrei, Matthew BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Lab demonstrations of a vision-based formation flying sensor for suborbital starshade missions SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Formation Flying; Starshade; External Occulter; Visual Attitude Determination AB We report on laboratory demonstrations of a vision-based sensor to aid in the formation flying of suborbital vehicles. Precision formation flying of such vehicles will allow us to hold a starshade external occulter in the line of sight between a telescope and star at large separations. This will enable us to perform the first astronomical demonstrations of starshades as we attempt high-contrast imaging of the outer planetary systems of nearby stars. In this report, we identify two sensor architectures and detail the equations for a closed loop visual feedback system to be used for precision formation flying. We investigate the sensor's expected performance through a suite of Monte Carlo simulations and system-level demonstrations in the lab. We also report on the development and demonstration of a means for visual attitude and position determination. C1 [Harness, Anthony] Univ Colorado, Boulder, CO 80303 USA. [Nehrenz, Matthew; Sorgenfrei, Matthew] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Harness, A (reprint author), Univ Colorado, Boulder, CO 80303 USA. EM anthony.harness@colorado.edu NR 7 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914333 DI 10.1117/12.2054538 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800096 ER PT S AU Heap, SR Gong, Q Hull, T Purves, L AF Heap, Sara R. Gong, Qian Hull, Tony Purves, Lloyd BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Galaxy Evolution Spectroscopic Explorer (GESE): Science Rationale, Optical Design, and Telescope Architecture SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council AB One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spiral, elliptical, and irregular galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to help address this question by making a large ultraviolet spectroscopic survey of galaxies at a redshift, z similar to 1 (look-back time of similar to 8 billion years). GESE is a 1.5-m space telescope with an near-ultraviolet (NUV) multi-object slit spectrograph covering the spectral range, 0.2-0.4 mu m (0.1-0.2 mu m as emitted by galaxies at a redshift, z similar to 1) at a spectral resolution of Delta lambda=6 angstrom. C1 [Heap, Sara R.; Gong, Qian; Purves, Lloyd] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hull, Tony] Univ New Mexico, Albuquerque, NM 87106 USA. RP Heap, SR (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91433K DI 10.1117/12.2056768 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800108 ER PT S AU Hicks, BA Lyon, RG Bolcar, MR Clampin, M Petrone, P AF Hicks, Brian A. Lyon, Richard G. Bolcar, Matthew R. Clampin, Mark Petrone, Peter BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI High-contrast visible nulling coronagraph for segmented and arbitrary telescope apertures SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Exoplanets; high contrast imaging; visible nulling coronagraph; segmented telescopes; wavefront sensing and control; nulling interferometry; polarization optics ID INTERFEROMETRY AB Exoplanet coronagraphy will be driven by the telescope architectures available and thus the system designer must have available one or more suitable coronagraphic instrument choices that spans the set of telescope apertures, including filled (off-axis), obscured (e.g. with secondary mirror spiders and struts), segmented apertures, such as JWST, and interferometric apertures. In this work we present one such choice of coronagraph, known as the visible nulling coronagraph (VNC), that spans all four types of aperture and also employs differential sensing and control. C1 [Hicks, Brian A.; Lyon, Richard G.; Bolcar, Matthew R.; Clampin, Mark] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Petrone, Peter] Sigma Space Corp, Lanham, MD USA. RP Hicks, BA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM brian.a.hicks@nasa.gov NR 14 TC 3 Z9 3 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91432S DI 10.1117/12.2056296 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800086 ER PT S AU Kaiser, ME Morris, MJ Peacock, GO McCandliss, SR Rauscher, BJ Kimble, RA Kruk, JW Pelton, R Wright, EL Mott, DB Wen, YT Feldman, PD Moos, HW Riess, AG Gardner, JP Benford, DJ Woodgate, BE Bohlin, R Deustua, SE Dixon, WV Sahnow, DJ Kurucz, R Lampton, M Perlmutter, S AF Kaiser, Mary Elizabeth Morris, Matthew J. Peacock, Grant O. McCandliss, Stephan R. Rauscher, Bernard J. Kimble, Randy A. Kruk, Jeffrey W. Pelton, Russell Wright, Edward L. Mott, D. Brent Wen, Yiting Feldman, Paul D. Moos, H. Warren Riess, Adam G. Gardner, Jonathan P. Benford, Dominic J. Woodgate, Bruce E. Bohlin, Ralph Deustua, Susana E. Dixon, W. V. Sahnow, David J. Kurucz, Robert Lampton, Michael Perlmutter, Saul BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI ACCESS: Status and Pre-Flight Performance SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE ACCESS; spectrophotometry; absolute calibration; Vega; Sirius; BD+17 degrees 4708; HD 37725; standard stars; NIST AB Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35-1.7 mu m bandpass. This paper describes the payload status, sub-system testing, and data transfer for the ACCESS instrument. C1 [Kaiser, Mary Elizabeth; Morris, Matthew J.; Peacock, Grant O.; McCandliss, Stephan R.; Pelton, Russell; Feldman, Paul D.; Moos, H. Warren; Riess, Adam G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. Space Dynam Lab, North Logan, UT 84341 USA. Utah State Univ, Logan, UT 84322 USA. [Rauscher, Bernard J.; Kimble, Randy A.; Kruk, Jeffrey W.; Mott, D. Brent; Wen, Yiting; Gardner, Jonathan P.; Benford, Dominic J.; Woodgate, Bruce E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Riess, Adam G.; Bohlin, Ralph; Deustua, Susana E.; Dixon, W. V.; Sahnow, David J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kurucz, Robert] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02139 USA. [Lampton, Michael] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Perlmutter, Saul] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Kaiser, ME (reprint author), Johns Hopkins Univ, 3400 N Charles St, Baltimore, MD 21218 USA. RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 11 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91434Y DI 10.1117/12.2057689 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800153 ER PT S AU Knight, JS Gallagher, B Frazier, D Whitman, TL Feinberg, LD Jhabvala, M Hayden, B AF Knight, J. Scott Gallagher, Ben Frazier, Doug Whitman, Tony L. Feinberg, Lee D. Jhabvala, Murzy Hayden, Bill BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Design of the master optical reference for the James Webb Space Telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE JWST; telescope; test; optical source; intermediate focus; photonics; fiber optics AB The James Webb Space Telescope (JWST) requires testing of the full optical system in a cryogenic vacuum environment before launch. Challenges with the telescope architecture and the test environment lead to placing removable optical test sources at the Cassegrain intermediate focus of the Telescope. The optical test sources are used to establish the system alignment and provide test illumination to the Science Instrument suite. The Aft Optics Subsystem (AOS) Source Plate Assembly (ASPA) comprises sources, control electronics, cryogenic optical fiber and a precision mechanical structure. The system provides point source illumination from visible to mid infrared, narrow and broadband, and with an optical power range of 10 orders of magnitude. The precision metering structure holding the sources is mounted temporarily to the flight hardware to be removed after the system test campaign. C1 [Knight, J. Scott; Gallagher, Ben; Frazier, Doug] Ball Aerosp & Technol, Boulder, CO 80301 USA. [Whitman, Tony L.] Exelis Geospatial Syst, Rochester, NY 14606 USA. [Feinberg, Lee D.; Jhabvala, Murzy; Hayden, Bill] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Knight, JS (reprint author), Ball Aerosp & Technol, Corp1600 Commerce St, Boulder, CO 80301 USA. EM jsknight@ball.com NR 8 TC 0 Z9 0 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914306 DI 10.1117/12.2057622 PG 14 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800006 ER PT S AU Kogut, A Chuss, T Dotson, J Dwek, E Fixsen, DJ Halpern, M Hinshaw, GF Meyer, S Moseley, SH Seiffert, MD Spergel, DN Wollack, EJ AF Kogut, Alan Chuss, T. Dotson, Jessie Dwek, Eli Fixsen, Dale J. Halpern, Mark Hinshaw, Gary F. Meyer, Stephan Moseley, S. Harvey Seiffert, Michael D. Spergel, David N. Wollack, Edward J. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI The Primordial Inflation Explorer (PIXIE) SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE cosmic microwave background; polarization; spectral distortion; blackbody; Fourier transform spectrometer ID MICROWAVE BACKGROUND-RADIATION; SPECTRAL DISTORTIONS; POWER SPECTRUM; EARLY UNIVERSE; ANISOTROPY; POLARIZATION; WAVES; CONSTRAINTS; EVOLUTION; COBE AB The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 mu K per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(-3) at 5 standard deviations. In addition, PIXIE will measure the absolute frequency spectrum to constrain physical processes ranging from inflation to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture with an emphasis on the expected level of systematic error suppression. C1 [Kogut, Alan; Chuss, T.; Dwek, Eli; Fixsen, Dale J.; Moseley, S. Harvey; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dotson, Jessie] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Halpern, Mark; Hinshaw, Gary F.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Meyer, Stephan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Seiffert, Michael D.] Jet Prop Lab, Pasadena, CA 91109 USA. [Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Kogut, A (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Alan.J.Kogut@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 33 TC 6 Z9 6 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91431E DI 10.1117/12.2056840 PG 17 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800042 ER PT S AU Krist, JE AF Krist, John E. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI End-to-end numerical modeling of AFTA coronagraphs SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE AFTA; coronagraph ID PIAA CORONAGRAPHY AB The Astrophysics Focused Telescope Assets (AFTA) is one of a pair of space-qualified 2.4 meter diameter telescopes given to NASA. One plan is to use the telescope for WFIRST with a coronagraph as a secondary instrument for high contrast imaging of exoplanets and disks. Because the system is obscured by a secondary mirror and spiders, it is not the optimal unobscured configuration to which most of current proposed space coronagraphs have been designed. In the later half of 2013 a study was undertaken to evaluate coronagraphs designed specifically for the AFTA telescope. As part of this process, end-to-end numerical modeling was performed with a realistically aberrated system to determine the contrast limits of each technique. Reported here are the simulation procedures and a summary of results for four coronagraphs (hybrid Lyot, shaped pupil, vector vortex, and PIAA complex mask) evaluated for the technology downselect. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Krist, JE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 27 TC 9 Z9 9 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430V DI 10.1117/12.2056759 PG 16 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800025 ER PT S AU Lanz, A Arai, T Battle, J Bock, J Cooray, A Hristov, V Korngut, P Lee, DH Mason, P Matsumoto, T Matsuura, S Morford, T Onishi, Y Shirahata, M Tsumura, K Wada, T Zemcov, M AF Lanz, Alicia Arai, Toshiaki Battle, John Bock, James Cooray, Asantha Hristov, Viktor Korngut, Phillip Lee, Dac Hee Mason, Peter Matsumoto, Toshio Matsuura, Shuji Morford, Tracy Onishi, Yosuke Shirahata, Mai Tsumura, Kohji Wada, Takehiko Zemcov, Michael BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Studying Extragalactic Background Fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2) SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council ID EXPERIMENT SEARCH; LIGHT; STARS AB Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measurements show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extragalactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including detailed designs of the mechanical, cryogenic, and electrical systems. Plans for the future will also be presented. C1 [Lanz, Alicia; Battle, John; Bock, James; Hristov, Viktor; Korngut, Phillip; Mason, Peter; Morford, Tracy; Zemcov, Michael] CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. [Arai, Toshiaki; Matsumoto, Toshio; Matsuura, Shuji; Onishi, Yosuke; Wada, Takehiko] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci, Dept Space Astron & Astrophys, Sagamihara, Kanagawa 2525210, Japan. [Bock, James; Korngut, Phillip; Zemcov, Michael] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Cooray, Asantha] Univ Calif Irvine, Ctr Cosmol, Irvine, CA 92697 USA. [Lee, Dac Hee] Korea Astron & Space Sci Inst KASI, Taejon 305348, South Korea. [Matsumoto, Toshio] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Matsumoto, Toshio] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Shirahata, Mai] Natl Astron Observ Japan, Natl Inst Nat Sci, Tokyo 1818588, Japan. [Tsumura, Kohji] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi 9808578, Japan. RP Lanz, A (reprint author), CALTECH, Dept Phys Math & Astron, Pasadena, CA 91125 USA. EM alicialanz@caltech.edu RI Matsuura, Shuji/B-5658-2016 OI Matsuura, Shuji/0000-0002-5698-9634 NR 28 TC 1 Z9 1 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91433N DI 10.1117/12.2057304 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800109 ER PT S AU Laureijs, R Racca, G Stagnaro, L Salvignol, JC Alvarez, JL Criado, GS Venancio, LG Short, A Strada, P Colombo, C Buenadicha, G Hoar, J Kohley, R Vavrek, R Mellier, Y Berthe, M Amiaux, J Cropper, M Niemi, S Pottinger, S Ealet, A Jahnke, K Maciaszek, T Pasian, F Sauvage, M Wachter, S Israelsson, U Holmes, W Seiffert, M Cazaubiel, V Anselmi, A Musi, P AF Laureijs, R. Racca, G. Stagnaro, L. Salvignol, J. -C. Alvarez, J. Lorenzo Criado, G. Saavedra Venancio, L. Gaspar Short, A. Strada, P. Colombo, C. Buenadicha, G. Hoar, J. Kohley, R. Vavrek, R. Mellier, Y. Berthe, M. Amiaux, J. Cropper, M. Niemi, S. Pottinger, S. Ealet, A. Jahnke, K. Maciaszek, T. Pasian, F. Sauvage, M. Wachter, S. Israelsson, U. Holmes, W. Seiffert, M. Cazaubiel, V. Anselmi, A. Musi, P. CA Euclid Collaboration BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Euclid mission status SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Euclid Mission; cosmology; sky survey; near infrared survey; space telescope AB In June 2012, Euclid, ESA's Cosmology mission was approved for implementation. Afterwards the industrial contracts were signed for the payload module and the spacecraft prime, and the mission requirements consolidated. We present the status of the mission in the light of the design solutions adopted by the contractors. The performances of the spacecraft in its operation, the telescope assembly, the scientific instruments as well as the data-processing have been carefully budgeted to meet the demanding scientific requirements. We give an overview of the system and where necessary the key items for the interfaces between the subsystems. C1 [Laureijs, R.; Racca, G.; Stagnaro, L.; Salvignol, J. -C.; Alvarez, J. Lorenzo; Criado, G. Saavedra; Venancio, L. Gaspar; Short, A.; Strada, P.; Colombo, C.] ESA ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Buenadicha, G.; Hoar, J.; Kohley, R.; Vavrek, R.] ESA ESAC, Madrid 28691, Spain. [Mellier, Y.] IAP, F-75014 Paris, France. [Mellier, Y.; Berthe, M.; Amiaux, J.; Sauvage, M.] CE Saclay, CEA DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cropper, M.; Niemi, S.; Pottinger, S.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Ealet, A.] LAM CPPM, F-13288 Marseille, France. [Jahnke, K.; Wachter, S.] MPIA, D-69117 Heidelberg, Germany. [Maciaszek, T.] Observatoire Astron Marseille Prov, F-13388 Marseille 13, France. [Pasian, F.] OATS INAF, I-34143 Trieste, Italy. [Israelsson, U.; Holmes, W.; Seiffert, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cazaubiel, V.] Airbus Def & Space, F-31400 Toulouse, France. [Anselmi, A.; Musi, P.] Thales Alenia Space, I-10146 Turin, Italy. RP Laureijs, R (reprint author), ESA ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. OI Pasian, Fabio/0000-0002-4869-3227; Jahnke, Knud/0000-0003-3804-2137 NR 6 TC 8 Z9 9 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430H DI 10.1117/12.2054883 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800014 ER PT S AU Lawson, PR Seager, S Stapelfeldt, K Brenner, M Lisman, D Siegler, N Unwin, S Warfield, K AF Lawson, P. R. Seager, S. Stapelfeldt, K. Brenner, M. Lisman, D. Siegler, N. Unwin, S. Warfield, K. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI An analysis of technology gaps and priorities in support of probe-scale coronagraph and starshade missions SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Technology; exoplanets; coronagraphs; occulters; starshades; starlight suppression AB This paper provides a survey of the state-of-the-art in coronagraph and starshade technologies and highlights areas where advances are needed to enable future NASA exoplanet missions. An analysis is provided of the remaining technology gaps and the relative priorities of technology investments leading to a mission that could follow JWST. This work is being conducted in support of NASAs Astrophysics Division and the NASA Exoplanet Exploration Program (ExEP), who are in the process of assessing options for future missions. ExEP has funded Science and Technology Definition Teams to study coronagraphs and starshade mission concepts having a life-cycle cost cap of less than $1B. This paper provides a technology gap analysis for these concepts. C1 [Lawson, P. R.; Brenner, M.; Lisman, D.; Siegler, N.; Unwin, S.; Warfield, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Seager, S.] MIT, Cambridge, MA 02139 USA. [Stapelfeldt, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lawson, PR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Peter.R.Lawson@jpl.nasa.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91432Q DI 10.1117/12.2054939 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800084 ER PT S AU Lightsey, PA Wei, ZY Skelton, DL Bowers, CW Mehalick, KI Thomson, SR Knollenberg, P Arenberg, JW AF Lightsey, Paul A. Wei, Zongying Skelton, Dennis L. Bowers, Charles W. Mehalick, Kimberly I. Thomson, Shaun R. Knollenberg, Perry Arenberg, Jonathan W. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Stray light performance for the James Webb Space Telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE James Webb Space Telescope; JWST; stray light; thermal emissivity; BRDF AB The James Webb Space Telescope (JWST) is a large cryogenic telescope observing over a spectral range from 0.6 mu m to 29 mu m. A large sun shield blocks sunlight and provides thermal isolation for the optics. Analyses characterizing the stray light reaching the instrument focal planes from the galactic sky, zodiacal background, bright objects near the line-of-sight, and earth and moon shine are presented along with the self-generated thermal infrared background from Observatory structures. The latter requires thermal analysis to characterize the Observatory temperatures. Dependencies on the surface properties of BRDF and emittance are discussed for the underlying materials and the effects of contamination C1 [Lightsey, Paul A.; Wei, Zongying] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Skelton, Dennis L.; Bowers, Charles W.; Mehalick, Kimberly I.; Thomson, Shaun R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Knollenberg, Perry; Arenberg, Jonathan W.] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. RP Lightsey, PA (reprint author), Ball Aerosp & Technol Corp, 1600 Commerce St, Boulder, CO 80301 USA. OI Arenberg, Jonathan/0000-0003-1096-5634 NR 3 TC 2 Z9 2 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91433P DI 10.1117/12.2055485 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800111 ER PT S AU Lozi, J Belikov, R Thomas, SJ Pluzhnik, E Bendek, E Guyon, O Schneider, G AF Lozi, Julien Belikov, Ruslan Thomas, Sandrine J. Pluzhnik, Eugene Bendek, Eduardo Guyon, Olivier Schneider, Glenn BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Experimental study of a low-order wavefront sensor for high-contrast coronagraphic imagers: results in air and in vacuum SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Low-order wavefront sensor; PIAA; coronagraph; control; linear quadratic Gaussian controller; high-contrast imaging; EXCEDE AB For the technology development of the mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) - a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 10(-6) at 1.2 lambda/D and 10(-7) above 2 A/D - we developed two test benches simulating its key components, one in air, the other in vacuum. To achieve this level of contrast, one of the main goals is to remove low-order aberrations, using a Low-Order Wave Front Sensor (LOWFS). We tested this key component, together with the coronagraph and the wavefront control, in air at NASA Ames Research Center and in vacuum at Lockheed Martin. The LOWFS, controlling tip/tilt modes in real time at 1 kHz, allowed us to reduce the disturbances in air to 10(-3) lambda/D rms, letting us achieve a contrast of 2.8 x 10(-7) between 1.2 and 2 lambda/D. Tests are currently being performed to achieve the same or a better level of correction in vacuum. With those results, and by comparing them to simulations, we are able to deduce its performances on different coronagraphs - different sizes of telescopes, inner working angles, contrasts, etc. - and therefore study its contribution beyond EXCEDE. C1 [Lozi, Julien; Guyon, Olivier; Schneider, Glenn] Univ Arizona, Tucson, AZ 85721 USA. [Belikov, Ruslan; Thomas, Sandrine J.; Pluzhnik, Eugene; Bendek, Eduardo] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Thomas, Sandrine J.; Pluzhnik, Eugene] UARC NASA Ames, Moffett Field, CA 94035 USA. RP Lozi, J (reprint author), Univ Arizona, 1401 E Univ Blvd, Tucson, AZ 85721 USA. EM jlozi@email.arizona.edu NR 5 TC 1 Z9 1 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914322 DI 10.1117/12.2056735 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800063 ER PT S AU Maciaszek, T Ealet, A Jahnke, K Prieto, E Barbier, R Mellier, Y Costille, A Ducret, F Fabron, C Gimenez, JL Grange, R Martin, L Rossin, C Pamplona, T Vola, P Clemens, JC Smadja, G Amiaux, J Barriere, JC Berthe, M De Rosa, A Franceschi, E Morgante, G Trifoglio, M Valenziano, L Bonoli, C Bortoletto, F D'Alessandro, M Corcione, L Ligori, S Garilli, B Riva, M Grupp, F Vogel, C Hormuth, F Seidel, G Wachter, S Diaz, JJ Granena, F Padilla, C Toledo, R Lilje, PB Solheim, BGB Toulouse-Aastrup, C Andersen, M Holmes, W Israelsson, U Seiffert, M Weber, C Waczynski, A Laureijs, RJ Racca, G Salvignol, JC Strada, P AF Maciaszek, Thierry Ealet, Anne Jahnke, Knud Prieto, Eric Barbier, Remi Mellier, Yannick Costille, Anne Ducret, Franck Fabron, Christophe Gimenez, Jean-Luc Grange, Robert Martin, Laurent Rossin, Christelle Pamplona, Tony Vola, Pascal Clemens, Jean Claude Smadja, Gerard Amiaux, Jerome Barriere, Jean Christophe Berthe, Michel De Rosa, Adriano Franceschi, Enrico Morgante, Gianluca Trifoglio, Massimo Valenziano, Luca Bonoli, Carlotta Bortoletto, Favio D'Alessandro, Maurizio Corcione, Leonardo Ligori, Sebastiano Garilli, Bianca Riva, Marco Grupp, Frank Vogel, Carolin Hormuth, Felix Seidel, Gregor Wachter, Stefanie Javier Diaz, Jose Granena, Ferran Padilla, Cristobal Toledo, Rafael Lilje, Per B. Solheim, Bjarte G. B. Toulouse-Aastrup, Corinne Andersen, Michael Holmes, Warren Israelsson, Ulf Seiffert, Michael Weber, Carissa Waczynski, Augustyn Laureijs, Rene J. Racca, Giuseppe Salvignol, Jean-Christophe Strada, Paolo CA Euclid Consortium BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Euclid Near Infrared Spectro Photometer instrument concept and first test results at the end of phase B SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Euclid; Spectroscopy; Photometry; Infrared; Instrument; Dark Energy; Dark Matter; Baryon Acoustic Oscillation AB The Euclid mission objective is to understand why the expansion of the Universe is accelerating by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020. The NISP (Near Infrared Spectro-Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (0.9-2 mu m) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a SiC structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with Molybdenum and Aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase B (Preliminary Design Review), the expected performance, the technological key challenges and preliminary test results obtained on a detection system demonstration model. C1 [Maciaszek, Thierry] Ctr Natl Etud Spatiales, Toulouse, France. [Maciaszek, Thierry; Prieto, Eric; Costille, Anne; Ducret, Franck; Fabron, Christophe; Gimenez, Jean-Luc; Grange, Robert; Martin, Laurent; Rossin, Christelle; Pamplona, Tony; Vola, Pascal] Observ Astron Marseille Prov, Marseille, France. [Ealet, Anne; Clemens, Jean Claude] Ctr Phys Particules Marseille, Marseille, France. [Jahnke, Knud; Hormuth, Felix; Seidel, Gregor; Wachter, Stefanie] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Barbier, Remi; Smadja, Gerard] Inst Phys Nucl, Lyon, France. [Mellier, Yannick] Inst Astrophys Paris, Paris, France. [Mellier, Yannick; Amiaux, Jerome; Barriere, Jean Christophe; Berthe, Michel] CEA, Paris, France. [De Rosa, Adriano; Franceschi, Enrico; Morgante, Gianluca; Trifoglio, Massimo; Valenziano, Luca] INAF IASF Bologna, Bologna, Italy. [Bonoli, Carlotta; Bortoletto, Favio; D'Alessandro, Maurizio] INAF Osservatorio Astron Padova, Padua, Italy. [Corcione, Leonardo; Ligori, Sebastiano] INAF Osservatorio Astron Torino, Turin, Italy. [Garilli, Bianca; Riva, Marco] INAF IASF Milano, Milan, Italy. [Grupp, Frank; Vogel, Carolin] Max Planck Inst Extraterr Phys, Garching, Germany. [Javier Diaz, Jose] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Granena, Ferran; Padilla, Cristobal] IFAE, Barcelona, Spain. [Toledo, Rafael] Univ Politecn Cartagena, Cartagena, Spain. [Lilje, Per B.] Univ Oslo, N-0316 Oslo, Norway. [Solheim, Bjarte G. B.] PROTOTECH, Bergen, Norway. [Andersen, Michael] DTU, Lyngby, Denmark. [Holmes, Warren; Israelsson, Ulf; Seiffert, Michael; Weber, Carissa; Waczynski, Augustyn] NASA, Washington, DC USA. [Laureijs, Rene J.; Racca, Giuseppe; Salvignol, Jean-Christophe; Strada, Paolo; Euclid Consortium] European Space Agcy ESTEC, Noordwijk, Netherlands. RP Maciaszek, T (reprint author), Ctr Natl Etud Spatiales, Toulouse, France. OI Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; corcione, leonardo/0000-0002-6497-5881; Morgante, Gianluca/0000-0001-9234-7412; d'alessandro, maurizio/0000-0002-8318-0988; Ligori, Sebastiano/0000-0003-4172-4606; Jahnke, Knud/0000-0003-3804-2137; Garilli, Bianca/0000-0001-7455-8750; Lilje, Per/0000-0003-4324-7794 NR 2 TC 8 Z9 8 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430K DI 10.1117/12.2056702 PG 14 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800017 ER PT S AU Malbet, F Crouzier, A Leger, A Shao, M Goullioud, R AF Malbet, Fabien Crouzier, Antoine Leger, Alain Shao, Mike Goullioud, Renaud CA NEAT MicroNEAT Consortium BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI NEAT: ultra-precise differential astrometry to characterize planetary systems with Earth-mass exoplanets in the vicinity of our Sun SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Space mission; astrometry; exoplanets ID HABITABLE ZONES; KEPLER; TERRESTRIAL; STARS AB The nearest solar-type stars are of prime interest for the science of exoplanets because they are the objects most suitable for direct detection and future spectroscopic investigations. Astrometry combined with radial velocity is the technique that can reveal planets with mass as small as the Earth mass in the 1 AU domain. We present in this contribution the result of a 3-year study on a mission capable to perform ultra-precise differential astrometry called NEAT (Nearby Earth Astrometric Telescope) and characterize planetary systems with Earth-mass exoplanets in the vicinity of our Sun. This mission requires exquisite calibration of the focal plane together with innovative approaches to obtain a very stable long focal telescope. This mission will be submitted in 2014 to the ESA M4 Call for Mission. C1 [Malbet, Fabien; Crouzier, Antoine] Univ Grenoble 1, CNRS INSU, Inst Planetol & Astrophys Grenoble, UMR 5274, Grenoble, France. [Leger, Alain] Univ Paris 11, CNRS INSU, Inst Astrophys Spatiale, UMR 8617, Orsay, France. [Shao, Mike; Goullioud, Renaud] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Malbet, F (reprint author), Univ Grenoble 1, CNRS INSU, Inst Planetol & Astrophys Grenoble, UMR 5274, Grenoble, France. EM Fabien.Malbet@obs.ujf-grenoble.fr NR 14 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91432L DI 10.1117/12.2056628 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800079 ER PT S AU Marois, C Bradley, C Pazder, J Nash, R Metchev, S Grandmont, F Maire, AL Belikov, R Macintosh, B Currie, T Galicher, R Marchis, F Mawet, D Serabyn, E Steinbring, E AF Marois, Christian Bradley, Colin Pazder, John Nash, Reston Metchev, Stanimir Grandmont, Frederic Maire, Anne-Lise Belikov, Ruslan Macintosh, Bruce Currie, Thayne Galicher, Raphael Marchis, Franck Mawet, Dimitri Serabyn, Eugene Steinbring, Eric CA MAPLE Sci Team BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI MAPLE: reflected light from exoplanets with a 50-cm diameter stratospheric balloon telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Planetary Systems; Exoplanets; High-Contrast Imaging; Reflected Light; Space Observatory; Wavefront Control; Coronagraph AB Detecting light reflected from exoplanets by direct imaging is the next major milestone in the search for, and characterization of, an Earth twin. Due to the high-risk and cost associated with satellites and limitations imposed by the atmosphere for ground-based instruments, we propose a bottom-up approach to reach that ultimate goal with an endeavor named MAPLE. MAPLE first project is a stratospheric balloon experiment called MAPLE-50. MAPLE-50 consists of a 50 cm diameter off-axis telescope working in the near-UV. The advantages of the near-UV are a small inner working angle and an improved contrast for blue planets. Along with the sophisticated tracking system to mitigate balloon pointing errors, MAPLE-50 will have a deformable mirror, a vortex coronograph, and a self-coherent camera as a focal plane wavefront-sensor which employs an Electron Multiplying CCD (EMCCD) as the science detector. The EMCCD will allow photon counting at kHz rates, thereby closely tracking telescope and instrument-bench-induced aberrations as they evolve with time. In addition, the EMCCD will acquire the science data with almost no read noise penalty. To mitigate risk and lower costs, MAPLE-50 will at first have a single optical channel with a minimum of moving parts. The goal is to reach a few times 10(9) contrast in 25 h worth of flying time, allowing direct detection of Jovians around the nearest stars. Once the 50 cm infrastructure has been validated, the telescope diameter will then be increased to a 1.5 m diameter (MAPLE-150) to reach 10(10) contrast and have the capability to image another Earth. C1 [Marois, Christian; Pazder, John; Steinbring, Eric] Natl Res Council Canada, Victoria, BC V9E 2E7, Canada. [Bradley, Colin; Nash, Reston] Univ Victoria, Victoria, BC V8P 5C2, Canada. [Metchev, Stanimir] Univ Western Ontario, London, ON N6A 3K7, Canada. [Grandmont, Frederic] ABB, Quebec City, PQ, Canada. [Maire, Anne-Lise] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Macintosh, Bruce] Stanford Univ, Stanford, CA USA. [Currie, Thayne] Univ Toronto, Toronto, ON M5S 3H4, Canada. [Galicher, Raphael] Univ Paris 06, Observ Paris, LESIA, CNRS, F-92195 Meudon, France. [Galicher, Raphael] Univ Paris 07, F-92195 Meudon, France. [Marchis, Franck] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Marchis, Franck] Iris AO Inc, Berkeley, CA 94704 USA. [Mawet, Dimitri] European So Observ, Santiago 19, Chile. [Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Marois, C (reprint author), Natl Res Council Canada, 5071 W Saanich Rd, Victoria, BC V9E 2E7, Canada. EM christian.marois@nrc-cnrc.gc.ca NR 24 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91432R DI 10.1117/12.2056747 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800085 ER PT S AU Matthews, G Scorse, T Kennard, S Spina, J Whitman, T Texter, S Atkinson, C Young, G Keski-Kuha, R Marsh, J Lander, J Feinberg, L AF Matthews, Gary Scorse, Thomas Kennard, Scott Spina, John Whitman, Tony Texter, Scott Atkinson, Charles Young, Greg Keski-Kuha, Ritva Marsh, James Lander, Juli Feinberg, Lee BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI JWST Telescope Integration and Test Status SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE JWST; Telescope; Alignment; Integration; Test AB The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. 2014 is an incredible year for the Telescope Alignment, Integration, and Test portion of the program. Long awaited and planned, the two segment Pathfinder telescope will be built and the Optical Ground Support Equipment (OGSE) will be integrated into the large cryo-vacuum chamber at the Johnson Spaceflight Center. The current status of the integration equipment and the demonstrations leading up to the flight-like Pathfinder telescope will be provided as the first step to the final verification of the complex cryo test equipment. The plans and status of bringing the OGSE on-line and ready for a series of risk reduction cryo tests starting in 2015 on the Pathfinder Telescope will also be presented. C1 [Matthews, Gary; Scorse, Thomas; Kennard, Scott; Spina, John; Whitman, Tony] Exelis, Mclean, VA 22102 USA. [Texter, Scott; Atkinson, Charles; Young, Greg] Northrop Grumman Aerosp Syst, Redondo Beach, CA USA. [Keski-Kuha, Ritva; Marsh, James; Lander, Juli; Feinberg, Lee] NASA, Goddard Space Flight Ctr, Washington, DC USA. RP Matthews, G (reprint author), Exelis, Mclean, VA 22102 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914305 DI 10.1117/12.2055286 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800005 ER PT S AU Matthews, GW Egerman, R Maffett, SP Stahl, HP Eng, R Effinger, MR AF Matthews, Gary W. Egerman, Robert Maffett, Steven P. Stahl, H. Philip Eng, Ron Effinger, Michael R. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI The development of stacked core technology for the fabrication of deep lightweight UV-quality space mirrors SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Lightweight Mirrors; Optical Systems; UV Systems AB The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined. C1 [Matthews, Gary W.; Egerman, Robert; Maffett, Steven P.] Exelis, Tysons Corner, VA USA. [Stahl, H. Philip; Eng, Ron; Effinger, Michael R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Matthews, GW (reprint author), Exelis, Tysons Corner, VA USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91431U DI 10.1117/12.2055284 PG 15 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800056 ER PT S AU Mawet, D Shelton, C Wallace, J Bottom, M Kuhn, J Mennesson, B Burruss, R Bartos, R Pueyo, L Carlotti, A Serabyn, E AF Mawet, Dimitri Shelton, Chris Wallace, James Bottom, Michael Kuhn, Jonas Mennesson, Bertrand Burruss, Rick Bartos, Randy Pueyo, Laurent Carlotti, Alexis Serabyn, Eugene BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Demonstration of vortex coronagraph concepts for on-axis telescopes on the Palomar Stellar Double Coronagraph SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE High contrast imaging; vortex coronagraphy; on-axis telescopes; apodization; Extremely Large Telescopes ID PUPIL LYOT CORONAGRAPHS; 1ST LIGHT; BEAMWIDTHS; COMPANION; VLT/NACO; STAR AB Here we present preliminary results of the integration of two recently proposed vortex coronagraph (VC) concepts for on-axis telescopes on the Stellar Double Coronagraph (SDC) bench behind PALM-3000, the extreme adaptive optics system of the 200-inch Hale telescope of Palomar observatory. The multi-stage vortex coronagraph (MSVC) uses the ability of the vortex to move light in and out of apertures through multiple VC in series to restore the nominal attenuation capability of the charge 2 vortex regardless of the aperture obscurations. The ring-apodized vortex coronagraph (RAVC) is a one-stage apodizer exploiting the VC Lyot-plane amplitude distribution in order to perfectly null the diffraction from any central obscuration size, and for any vortex topological charge. The RAVC is thus a simple concept that makes the VC immune to diffraction effects of the secondary mirror. It combines a vortex phase mask in the image plane with a single pupil-based amplitude ring apodizer, tailor-made to exploit the unique convolution properties of the VC at the Lyot-stop plane. The prototype apodizer uses the same microdot technology that was used to manufacture the apodized pupil Lyot coronagraph (APLC) equipping SPHERE, GPI and P1640. C1 [Mawet, Dimitri] European So Observ, Vitacura 19001, Casilla, Chile. [Shelton, Chris; Wallace, James; Kuhn, Jonas; Mennesson, Bertrand; Burruss, Rick; Bartos, Randy; Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bottom, Michael] CALTECH, Pasadena, CA 91106 USA. [Pueyo, Laurent] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Carlotti, Alexis] Univ Grenoble 1, Inst Planetol & Astrophys Grenoble, CNRS, F-38041 Grenoble, France. RP Mawet, D (reprint author), European So Observ, Alonso de Cordova 3107, Vitacura 19001, Casilla, Chile. EM dmawet@eso.org NR 25 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91432T DI 10.1117/12.2057274 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800087 ER PT S AU Murakami, N Nishikawa, J Tamura, M Serabyn, E Traub, WA Liewer, KM Moody, DC Trauger, JT Guyon, O Martinache, F Jovanovic, N Singh, G Oshiyama, F Shoji, H Sakamoto, M Hamaguchi, S Oka, K Baba, N AF Murakami, Naoshi Nishikawa, Jun Tamura, Motohide Serabyn, Eugene Traub, Wesley A. Liewer, Kurt M. Moody, Dwight C. Trauger, John T. Guyon, Olivier Martinache, Frantz Jovanovic, Nemanja Singh, Garima Oshiyama, Fumika Shoji, Hayato Sakamoto, Moritsugu Hamaguchi, Shoki Oka, Kazuhiko Baba, Naoshi BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Recent progress on phase-mask coronagraphy based on photonic-crystal technology SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE high-contrast imaging; phase-mask coronagraph; extrasolar planets; photonic crystal ID LABORATORY DEMONSTRATION; CENTRAL-OBSCURATION; VORTEX CORONAGRAPH; REMOVAL; PLANET AB We have been developing focal-plane phase-mask coronagraphs ultimately aiming at direct detection and characterization of Earth-like extrasolar planets by future space coronagraph missions. By utilizing photonic-crystal technology, we manufactured various coronagraphic phase masks such as eight-octant phase masks (8OPMs), 2nd-order vector vortex masks, and a 4th-order discrete (32-sector) vector vortex mask. Our laboratory experiments show that the 4th-order vortex mask reaches to higher contrast than the 2nd-order one at inner region on a focal plane. These results demonstrate that the higher-order vortex mask is tolerant of low-order phase aberrations such as tip-tilt errors. We also carried out laboratory demonstration of the 2nd-order vector vortex masks in the High-Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory (JPL), and obtained 10(-8)-level contrast owing to an adaptive optics system for creating dark holes. In addition, we manufactured a polarization-filtered 8OPM, which theoretically realizes achromatic performance. We tested the manufactured polarization-filtered 8OPM in the Infrared Coronagraphic Testbed (IRCT) at the JPL. Polychromatic light sources are used for evaluating the achromatic performance. The results suggest that 10(-5)-level peak-to-peak contrasts would be obtained over a wavelength range of 800-900 nm. For installing the focal-plane phase-mask coronagraph into a conventional centrally-obscured telescope with a secondary mirror, pupil-remapping plates have been manufactured for removing the central obscuration to enhance the coronagraphic performance. A result of preliminary laboratory demonstration of the pupil-remapping plates is also reported. In this paper, we present our recent activities of the photonic-crystal phase coronagraphic masks and related techniques for the high-contrast imaging. C1 [Murakami, Naoshi; Oka, Kazuhiko; Baba, Naoshi] Hokkaido Univ, Fac Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan. [Murakami, Naoshi; Serabyn, Eugene; Traub, Wesley A.; Liewer, Kurt M.; Moody, Dwight C.; Trauger, John T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nishikawa, Jun; Tamura, Motohide] Natl Astron Observ Japan, Extrasolar Planet Project Off, Mitaka, Tokyo 1818588, Japan. [Nishikawa, Jun] Grad Univ Adv Studies, Sch Phys Sci, Mitaka, Tokyo 1818588, Japan. [Tamura, Motohide] Univ Tokyo, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Guyon, Olivier; Jovanovic, Nemanja; Singh, Garima] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Guyon, Olivier] Univ Arizona, Tucson, AZ 85721 USA. [Martinache, Frantz] Observ Cote Azur, CNRS, Lab Lagrange, UMR 7293, F-06304 Nice, France. [Oshiyama, Fumika; Shoji, Hayato; Sakamoto, Moritsugu; Hamaguchi, Shoki] Hokkaido Univ, Grad Sch Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan. RP Murakami, N (reprint author), Hokkaido Univ, Fac Engn, Kita Ku, Kita-13,Nishi-8, Sapporo, Hokkaido 0608628, Japan. EM nmurakami@eng.hokudai.ac.jp NR 27 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914334 DI 10.1117/12.2054790 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800097 ER PT S AU N'Diaye, M Choquet, E Egron, S Pueyo, L Leboulleux, L Levecq, O Perrin, MD Elliot, E Wallace, JK Hugot, E Marcos, M Ferrari, M Long, CA Anderson, R DiFelice, A Soummer, R AF N'Diaye, Mamadou Choquet, Elodie Egron, Sylvain Pueyo, Laurent Leboulleux, Lucie Levecq, Olivier Perrin, Marshall D. Elliot, Erin Wallace, J. Kent Hugot, Emmanuel Marcos, Michel Ferrari, Marc Long, Chris A. Anderson, Rachel DiFelice, Audrey Soummer, Remi BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI High-contrast imager for Complex Aperture Telescopes (HiCAT): 2. design overview and first light results SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE high angular resolution; coronagraphy; wavefront sensing; wavefront control ID PUPIL LYOT CORONAGRAPHS; SENSOR; COMPENSATION; ABERRATIONS; DIVERSITY AB We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitudeinduced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results. C1 [N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier] Inst Opt, Grad Sch, Palaiseau, France. [Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier] Inst Opt, Grad Sch, St Etienne, France. [Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier] Inst Opt, Grad Sch, Bordeaux, France. [Pueyo, Laurent] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Wallace, J. Kent] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc] Aix Marseille Univ, CNRS, LAM UMR 7326, F-13388 Marseille, France. RP N'Diaye, M (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM mamadou@stsci.edu NR 24 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914327 DI 10.1117/12.2056694 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800068 ER PT S AU Naylor, DA Baluteau, JP Bendo, GJ Benielli, D Fulton, TR Gom, BG Griffin, MJ Hopwood, R Imhof, P Lim, TL Lu, NY Makiwa, G Marchili, N Orton, GS Papageorgiou, A Pearson, C Polehampton, ET Schulz, B Spencer, LD Swinyard, BM Valtchanov, I van der Wiel, MHD Veenendaal, IT Wu, R AF Naylor, David A. Baluteau, Jean-Paul Bendo, George J. Benielli, Dominique Fulton, Trevor R. Gom, Brad G. Griffin, Matthew J. Hopwood, Rosalind Imhof, Peter Lim, Tanya L. Lu, Nanyao Makiwa, Gibion Marchili, Nicola Orton, Glenn S. Papageorgiou, Andreas Pearson, Chris Polehampton, Edward T. Schulz, Bernhard Spencer, Locke D. Swinyard, Bruce M. Valtchanov, Ivan van der Wiel, Matthijs H. D. Veenendaal, Ian T. Wu, Ronin BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI In-orbit performance of the Herschel/SPIRE imaging Fourier transform spectrometer: lessons learned SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Herschel; SPIRE; imaging Fourier transform spectrometer; performance ID SPECTROSCOPY; INSTRUMENT; MISSION; ESA AB The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments on board the European Space Agency's Herschel Space Observatory which ended its operational phase on 29 April 2013. The low to medium resolution spectroscopic capability of SPIRE is provided by an imaging Fourier transform spectrometer (iFTS) of the Mach-Zehnder configuration. With their high throughput, broad spectral coverage, and variable resolution, coupled with their well-defined instrumental line shape and intrinsic wavelength and intensity calibration, iFTS are becoming increasingly common in far-infrared space astronomy missions. The performance of the SPIRE imaging spectrometer will be reviewed and example results presented. The lessons learned from the measured performance of the spectrometer as they apply to future missions will be discussed. C1 [Naylor, David A.; Fulton, Trevor R.; Imhof, Peter; Makiwa, Gibion; Polehampton, Edward T.; Spencer, Locke D.; van der Wiel, Matthijs H. D.; Veenendaal, Ian T.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Baluteau, Jean-Paul; Benielli, Dominique] Lab Astrophys Marseille, F-13388 Marseille, France. [Bendo, George J.] Univ Manchester, UK ALMA Reg Ctr Node, Manchester M13 9PL, Lancs, England. [Fulton, Trevor R.; Imhof, Peter] Blue Sky Spect Inc, Lethbridge, AB T1J 0N9, Canada. [Griffin, Matthew J.; Papageorgiou, Andreas] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Hopwood, Rosalind] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Lim, Tanya L.; Pearson, Chris; Polehampton, Edward T.; Swinyard, Bruce M.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Lu, Nanyao; Schulz, Bernhard] CALTECH, NHSC IPAC, Pasadena, CA 91125 USA. [Marchili, Nicola] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Orton, Glenn S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pearson, Chris] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Swinyard, Bruce M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Valtchanov, Ivan] ESA, ESAC, Herschel Sci Ctr, E-28691 Villanueva De La Canada, Spain. [Wu, Ronin] CEA Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. RP Naylor, DA (reprint author), Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. EM naylor@uleth.ca NR 32 TC 4 Z9 4 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91432D DI 10.1117/12.2054989 PG 15 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800073 ER PT S AU Nemati, B AF Nemati, Bijan BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Detector Selection for the WFIRST-AFTA Coronagraph Integral Field Spectrograph SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Coronagraph; Exoplanet; Detector; CCD; EMCCD AB The coronagraph instrument in the WFIRST-AFTA mission will allow high contrast imaging of exoplanetary systems with the benefit of a 2.4 meter space telescope. The instrument will feature an integral field spectrograph (IFS) capable of measuring spectra from exoplanets. Since the typical exoplanet target will be dimmer than the host star by a factor of similar to 1e9, and the dispersion of this light into many spectral channels further suppresses the photon rate, the noise requirements on the detector for this instrument will be very tight. From a performance perspective, many parameters are important, including the read noise, the dark current, and the clock induced charge. At the same time, from a functionality perspective, the unique challenges of the space environment, in particular damage from high energy cosmic rays, need to be assessed and mitigated. In this paper we present our recent work in selecting the detector for the WFIRST-AFTA IFS. We also discuss flight operation considerations and risks associated with these detectors as well as their technology readiness level. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nemati, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 321-130, Pasadena, CA 91109 USA. EM bijan.nemati@jpl.nasa.gov NR 4 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430Q DI 10.1117/12.2060321 PG 6 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800023 ER PT S AU Perez, MR Pham, BT Lawson, PR AF Perez, Mario R. Pham, Bruce T. Lawson, Peter R. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Technology maturation process: The NASA strategic astrophysics technology (SAT) program SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Strategic Astrophysics Technology (SAT); Space Technology Maturation; Technology Management AB In 2009 the Astrophysics Division at NASA Headquarters established the Strategic Astrophysics Technology (SAT) solicitation as a new technology maturation program to fill the needed gap for mid-Technology Readiness Level (TRL) levels (3 <= TRL <6). In three full proposal selection cycles since the inception of this program, more than 40 investigations have been selected, many meritorious milestones have been met and advances have been achieved. In this paper, we review the process of establishing technology priorities, the management of technology advancements and milestones, and the incipient success of some of these investigations in light of the need of future space missions. C1 [Perez, Mario R.] NASA Headquarters, Washington, DC 20546 USA. [Pham, Bruce T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lawson, Peter R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Perez, MR (reprint author), NASA Headquarters, Washington, DC 20546 USA. NR 11 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914313 DI 10.1117/12.2057961 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800033 ER PT S AU Poberezhskiy, I Zhao, F An, X Balasubramanian, K Belikov, R Cady, E Demers, R Diaz, R Gong, Q Gordon, B Goullioud, R Greer, F Guyon, O Hoenk, M Kasdin, NJ Kern, B Krist, J Kuhnert, A McElwain, M Mennesson, B Moody, D Muller, R Nemati, B Patterson, K Riggs, AJ Ryan, D Seo, BJ Shaklan, S Sidick, E Shi, F Siegler, N Soummer, R Tang, H Trauger, J Wallace, JK Wang, X White, V Wilson, D Yee, K Zhou, HY Zimmerman, N AF Poberezhskiy, Ilya Zhao, Feng An, Xin Balasubramanian, Kunjithapatham Belikov, Ruslan Cady, Eric Demers, Richard Diaz, Rosemary Gong, Qian Gordon, Brian Goullioud, Renaud Greer, Frank Guyon, Olivier Hoenk, Michael Kasdin, N. Jeremy Kern, Brian Krist, John Kuhnert, Andreas McElwain, Michael Mennesson, Bertrand Moody, Dwight Muller, Richard Nemati, Bijan Patterson, Keith Riggs, A. J. Ryan, Daniel Seo, Byoung-Joon Shaklan, Stuart Sidick, Erkin Shi, Fang Siegler, Nicholas Soummer, Remi Tang, Hong Trauger, John Wallace, J. Kent Wang, Xu White, Victor Wilson, Daniel Yee, Karl Zhou, Hanying Zimmerman, Neil BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Technology Development towards WFIRST-AFTA Coronagraph SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE WFIRST-AFTA; stellar coronagraph; exoplanet direct imaging; exoplanet spectral characterization; shaped pupil coronagraph; hybrid lyot coronagraph; low order wavefront sensor; deformable mirror; integral field spectrograph ID PRINCIPLE AB NASA's WFIRST-AFTA mission concept includes the first high-contrast stellar coronagraph in space. This coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. In this paper we present the plan for maturing coronagraph technology to TRL5 in 2014-2016, and the results achieved in the first 6 months of the technology development work. The specific areas that are discussed include coronagraph testbed demonstrations in static and simulated dynamic environment, design and fabrication of occulting masks and apodizers used for starlight suppression, low-order wavefront sensing and control subsystem, deformable mirrors, ultra-low-noise spectrograph detector, and data post-processing. C1 [Poberezhskiy, Ilya; Zhao, Feng; An, Xin; Balasubramanian, Kunjithapatham; Cady, Eric; Demers, Richard; Diaz, Rosemary; Gordon, Brian; Goullioud, Renaud; Greer, Frank; Hoenk, Michael; Kern, Brian; Krist, John; Kuhnert, Andreas; Mennesson, Bertrand; Moody, Dwight; Muller, Richard; Nemati, Bijan; Patterson, Keith; Ryan, Daniel; Seo, Byoung-Joon; Shaklan, Stuart; Sidick, Erkin; Shi, Fang; Siegler, Nicholas; Tang, Hong; Trauger, John; Wallace, J. Kent; Wang, Xu; White, Victor; Wilson, Daniel; Yee, Karl; Zhou, Hanying] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Belikov, Ruslan] NASA, Ames Res Ctr, Space Sci & Astrobiol, Moffett Field, CA 94035 USA. [Guyon, Olivier] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Kasdin, N. Jeremy; Riggs, A. J.; Zimmerman, Neil] Princeton Univ, MAE, Princeton, NJ 08544 USA. [Gong, Qian; McElwain, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Poberezhskiy, I (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Zimmerman, Neil/0000-0001-5484-1516; Riggs, A J Eldorado/0000-0002-0863-6228 NR 26 TC 9 Z9 9 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430P DI 10.1117/12.2060320 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800022 ER PT S AU Redding, DC Feinberg, L Postman, M Stahl, HP Stahle, C Thronson, H AF Redding, David C. Feinberg, Lee Postman, Marc Stahl, H. Philip Stahle, Carl Thronson, Harley BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Beyond JWST: Performance requirements for a future large UVOIR space telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Space telescopes; segmented apertures; starlight suppression ID COMPLETENESS AB This paper considers requirements for a future large space telescope to follow the James Webb Space Telescope, starting in the next decade. Its ambitious science program includes direct imaging and spectroscopy of Earth-like planets orbiting other stars, resolving individual stars in nearby galaxies, and probing the most distant regions of the observable universe to a visible-light resolution of 100 parsec, while providing high spectral resolution for wavelengths from 100 to 2,500 nm. The top-level optical requirements flowdown is briefly described, with reference to existing and future capabilities. The intent is to identify technology development needed in the last half of this decade, to support the priorities of the 2020 Decadal Survey. C1 [Redding, David C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Feinberg, Lee; Stahle, Carl; Thronson, Harley] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Postman, Marc] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Stahl, H. Philip] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Redding, DC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 14 TC 0 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914312 DI 10.1117/12.2056568 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800032 ER PT S AU Ricker, GR Winn, JN Vanderspek, R Latham, DW Bakos, GA Bean, JL Berta-Thompson, ZK Brown, TM Buchhave, L Butler, NR Butler, RP Chaplin, WJ Charbonneau, D Christensen-Dalsgaard, J Clampin, M Deming, D Doty, J De Lee, N Dressing, C Dunham, EW Endl, M Fressin, F Ge, J Henning, T Holman, MJ Howard, AW Ida, S Jenkins, J Jernigan, G Johnson, JA Kaltenegger, L Kawai, N Kjeldsen, H Laughlin, G Levine, AM Lin, D Lissauer, JJ MacQueen, P Marcy, G McCullough, PR Morton, TD Narita, N Paegert, M Palle, E Pepe, F Pepper, J Quirrenbach, A Rinehart, SA Sasselov, D Sato, B Seager, S Sozzetti, A Stassun, KG Sullivan, P Szentgyorgyi, A Torres, G Udry, S Villasenor, J AF Ricker, George R. Winn, Joshua N. Vanderspek, Roland Latham, David W. Bakos, Gaspar A. Bean, Jacob L. Berta-Thompson, Zachory K. Brown, Timothy M. Buchhave, Lars Butler, Nathaniel R. Butler, R. Paul Chaplin, William J. Charbonneau, David Christensen-Dalsgaard, Jorgen Clampin, Mark Deming, Drake Doty, John De Lee, Nathan Dressing, Courtney Dunham, E. W. Endl, Michael Fressin, Francois Ge, Jian Henning, Thomas Holman, Matthew J. Howard, Andrew W. Ida, Shigeru Jenkins, Jon Jernigan, Garrett Johnson, John Asher Kaltenegger, Lisa Kawai, Nobuyuki Kjeldsen, Hans Laughlin, Gregory Levine, Alan M. Lin, Douglas Lissauer, Jack J. MacQueen, Phillip Marcy, Geoffrey McCullough, P. R. Morton, Timothy D. Narita, Norio Paegert, Martin Palle, Enric Pepe, Francesco Pepper, Joshua Quirrenbach, Andreas Rinehart, S. A. Sasselov, Dimitar Sato, Bun'ei Seager, Sara Sozzetti, Alessandro Stassun, Keivan G. Sullivan, Peter Szentgyorgyi, Andrew Torres, Guillermo Udry, Stephane Villasenor, Joel BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI The Transiting Exoplanet Survey Satellite SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE exoplanet; extrasolar planet; photometry; satellite; transits ID KEPLER; PLANETS; STARS; SYSTEMS AB The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I-C less than or similar to 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations. C1 [Ricker, George R.; Winn, Joshua N.; Vanderspek, Roland; Berta-Thompson, Zachory K.; Levine, Alan M.; Seager, Sara; Sullivan, Peter; Villasenor, Joel] MIT, Cambridge, MA 02139 USA. [Latham, David W.; Buchhave, Lars; Charbonneau, David; Dressing, Courtney; Fressin, Francois; Holman, Matthew J.; Johnson, John Asher; Sasselov, Dimitar; Szentgyorgyi, Andrew; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA USA. [Bakos, Gaspar A.; Morton, Timothy D.] Princeton Univ, Princeton, NJ 08544 USA. [Bean, Jacob L.] Univ Chicago, Chicago, IL 60637 USA. [Brown, Timothy M.] Las Cumbres Observ Global Telescope, Goleta, CA USA. [Buchhave, Lars] Univ Copenhagen, DK-1168 Copenhagen, Denmark. [Butler, Nathaniel R.] Arizona State Univ, Tempe, AZ 85287 USA. [Butler, R. Paul] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC USA. [Chaplin, William J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Chaplin, William J.; Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Clampin, Mark; Rinehart, S. A.] NASA, Goddard Space Flight Ctr, Washington, DC USA. [Deming, Drake] Univ Maryland, College Pk, MD USA. [Doty, John] Noqsi Aerosp Ltd, Pine, CO USA. [Doty, John] No Kentucky Univ, Highland Hts, KY USA. [De Lee, Nathan; Paegert, Martin; Pepper, Joshua; Stassun, Keivan G.] Vanderbilt Univ, Nashville, TN USA. [Dunham, E. W.] Lowell Observ, Flagstaff, AZ USA. [Endl, Michael] McDonald Observ, Ft Davis, TX USA. [Ge, Jian] Univ Florida, Gainesville, FL 32611 USA. [Henning, Thomas; Kaltenegger, Lisa] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Howard, Andrew W.] Univ Hawaii, Honolulu, HI 96822 USA. [Ida, Shigeru; Kawai, Nobuyuki; Sato, Bun'ei] Tokyo Inst Technol, Tokyo, Japan. [Jenkins, Jon; Lissauer, Jack J.] NASA, Ames Res Ctr, Washington, DC USA. [Jernigan, Garrett] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Laughlin, Gregory; Lin, Douglas] UCO Lick Observ, Hamilton, CA USA. [Marcy, Geoffrey] Univ Calif Berkeley, Berkeley, CA 94720 USA. [McCullough, P. R.] Space Telescope Sci Inst, Baltimore, MD USA. [McCullough, P. R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Narita, Norio] Natl Astron Observ Japan, Tokyo, Japan. [Palle, Enric] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Pepe, Francesco; Udry, Stephane] Observ Geneva, Geneva, Switzerland. [Pepper, Joshua] Lehigh Univ, Bethlehem, PA USA. [Quirrenbach, Andreas] Heidelberg Univ, Landessternwarte, Zentrum Astron, D-69115 Heidelberg, Germany. [Sozzetti, Alessandro] Osserv Astron Torino, INAF, Turin, Italy. [Stassun, Keivan G.] Fisk Univ, Nashville, TN USA. RP Ricker, GR (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM grr@space.mit.edu RI Butler, Robert/B-1125-2009; OI Sozzetti, Alessandro/0000-0002-7504-365X; Buchhave, Lars A./0000-0003-1605-5666 NR 32 TC 110 Z9 110 U1 2 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914320 DI 10.1117/12.2063489 PG 15 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800061 ER PT S AU Rizzo, MJ Rinehart, SA Alcorn, JB Barclay, RB Barry, RK Benford, DJ Dhabal, A Fixsen, DJ Gore, AS Johnson-Shapoval, S Leisawitz, DT Maher, SF Mundy, LG Papageorgiou, A Pascale, E Rau, A Silverberg, RF Taraschi, P Veach, TJ Weinreich, S AF Rizzo, Maxime J. Rinehart, S. A. Alcorn, J. B. Barclay, R. B. Barry, R. K. Benford, D. J. Dhabal, A. Fixsen, D. J. Gore, A. S. Johnson-Shapoval, S. Leisawitz, D. T. Maher, S. F. Mundy, L. G. Papageorgiou, A. Pascale, E. Rau, A. Silverberg, R. F. Taraschi, P. Veach, T. J. Weinreich, S. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Building an interferometer at the edge of space: pointing and phase control system for BETTII SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Interferometer; control system; pointing; balloon; Fourier transform spectrometer; spatio-spectral interferometry ID RESOLUTION; TELESCOPE AB We propose an architecture for the control system of BETTII,(1) a far-infrared, balloon-borne interferometer with a baseline of 8 meters. This system involves multiple synchronized control loops for real-time pointing control and precise attitude knowledge. This will enable accurate phase estimation and control, a necessity for successful interferometry. We present the overall control strategy and describe our flight hardware in detail. We also show our current test setup and the first results of our coarse pointing loop. C1 [Rizzo, Maxime J.; Dhabal, A.; Fixsen, D. J.; Johnson-Shapoval, S.; Mundy, L. G.] Univ Maryland, College Pk, MD 20741 USA. [Rizzo, Maxime J.; Rinehart, S. A.; Barclay, R. B.; Barry, R. K.; Benford, D. J.; Dhabal, A.; Leisawitz, D. T.; Maher, S. F.; Silverberg, R. F.; Veach, T. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Alcorn, J. B.] Univ Alabama, Huntsville, AL 35899 USA. [Gore, A. S.] Univ Illinois, Champaign, IL USA. [Papageorgiou, A.; Pascale, E.] Cardiff Univ, Cardiff CF10 3AX, S Glam, Wales. [Rau, A.] Naperville North High Sch, Naperville, IL USA. [Taraschi, P.] Alfred Univ, Alfred, NY 14802 USA. [Weinreich, S.] Brown Univ, Providence, RI 02912 USA. RP Rizzo, MJ (reprint author), Univ Maryland, College Pk, MD 20741 USA. EM mrizzo@astro.umd.edu RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91433H DI 10.1117/12.2055016 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800106 ER PT S AU Saif, B Keski-Kuha, R Feinberg, L Chaney, D Bluth, M Greenfield, P Hack, W Smith, S Sanders, J AF Saif, Babak Keski-Kuha, Ritva Feinberg, Lee Chaney, David Bluth, Marcel Greenfield, Perry Hack, Warren Smith, Scott Sanders, James BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI New method for characterizing the state of optical and optomechanical systems SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE James Webb Space Telescope; JWST; vibration; optical measurement AB James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), a secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to build the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry. C1 [Saif, Babak; Keski-Kuha, Ritva; Feinberg, Lee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chaney, David] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Bluth, Marcel] ATK Space Syst, Magna, UT 84044 USA. [Greenfield, Perry; Hack, Warren] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Smith, Scott] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Sanders, James] GSFC Vantage Syst Inc, Lanham, MD 20706 USA. RP Saif, B (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 7 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430C DI 10.1117/12.2055243 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800011 ER PT S AU Sankar, SR Livas, JC AF Sankar, Shannon R. Livas, Jeffrey C. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Optical Telescope Design for a Space-based Gravitational-wave Mission SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE telescope; stray light; scattered light; gravitational waves; LISA; precision measurement AB Space-based gravitational-wave observatories will systematically study the source-rich band of gravitational waves from 0.0001 Hz to 1 Hz. All current designs require propagation of a laser beam from one spacecraft to another over immense distances. An optical telescope is needed for efficient power delivery and its design is driven by the interferometric displacement sensitivity requirements. Here we describe the design for a catoptric telescope that meets those requirements, emphasizing differences from the usual specifications for high quality image formation, and discuss design trade-offs as well as early results from research into scattered light suppression and modeling that may enable alternative designs. C1 [Sankar, Shannon R.] Univ Florida, Gainesville, FL 32611 USA. [Sankar, Shannon R.; Livas, Jeffrey C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sankar, SR (reprint author), Univ Florida, Gainesville, FL 32611 USA. EM jeffrey.livas-1@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR UNSP 914314 DI 10.1117/12.2056824 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800034 ER PT S AU Sidick, E Shaklan, S Balasubramanian, K Cady, E AF Sidick, Erkin Shaklan, Stuart Balasubramanian, Kunjithapatham Cady, Eric BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI High-Contrast Coronagraph Performance in the Presence of Focal Plane Mask Defects SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Coronagraphy; adaptive optics; high-contrast imaging; space telescopes; exoplanets ID FINDER CORONAGRAPH AB We have carried out a study of the performance of high-contrast coronagraphs in the presence of mask defects. We have considered the effects of opaque and dielectric particles of various dimensions, as well as systematic mask fabrication errors and the limitations of material properties in creating dark holes. We employ sequential deformable mirrors to compensate for phase and amplitude errors, and show the limitations of this approach in the presence of coronagraph image-mask defects. C1 [Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham; Cady, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sidick, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Erkin.Sidick@jpl.nasa.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914336 DI 10.1117/12.2055004 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800099 ER PT S AU Sidick, E Kern, B Belikov, R Kuhnert, A Shaklan, S AF Sidick, Erkin Kern, Brian Belikov, Ruslan Kuhnert, Andreas Shaklan, Stuart BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Simulated Contrast Performance of Phase Induced Amplitude Apodization (PIAA) Coronagraph Testbed SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Coronagraphy; adaptive optics; space telescopes; exoplanets AB We evaluate the broadband contrast performance of a Phase Induced Amplitude Apodization (PIAA) coronagraph configuration through modeling and simulations. Broadband occulter mask design for PIAA-CMC is at an early stage, and a study of the effects of wavefront control on broadband contrast is needed to determine the level of control the occulting mask must achieve, so that the combination of occulter and wavefront control optimization meets contrast targets. The basic optical design of the PIAA coronagraph is the same as NASA's High Contrast Imaging Testbed (HCIT) setup at the Jet Propulsion Laboratory (JPL). Using two deformable mirrors and a broadband wavefront sensing and control algorithm, we create a "dark hole" in the broadband point-spread function (PSF) with an inner working angle (IWA) of 2(f lambda/D)(sky). We evaluate a system using PIAA mirrors to create an apodization but not having any wavefront error at its exit-pupil, and having an obscured pupil and a new, 20-ring PIAACMC occulting mask. We also investigate the effect of Lyot stops of various sizes. For the configuration simulated here with the second-generation PIAA mirrors and early mask designs (which were not yet fully optimized), the best 10% broadband contrast value was similar to 6.1x10(-8). This is a 2x improvement beyond what the coronagraph produces in the absence of wavefront control, which implies that further improvement must come from architecture changes or further mask optimization improvements. C1 [Sidick, Erkin; Kern, Brian; Kuhnert, Andreas; Shaklan, Stuart] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sidick, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Erkin.Sidick@jpl.nasa.gov NR 9 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430W DI 10.1117/12.2055006 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800026 ER PT S AU Soummer, R Lajoie, CP Pueyo, L Hines, DC Isaacs, JC Nelan, EP Clampin, M Perrin, M AF Soummer, Remi Lajoie, Charles-Philippe Pueyo, Laurent Hines, Dean C. Isaacs, John C. Nelan, Edmund P. Clampin, Mark Perrin, Marshall BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Small-Grid Dithering Strategy for Improved Coronagraphic Performance with JWST SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE James Webb Space Telescope; MIRI; NIRCam; Coronagraphy; Exoplanets ID PUPIL LYOT CORONAGRAPHS; HR 8799 B; SPACE-TELESCOPE; BETA-PICTORIS; EXOPLANETS; PLANETS; SPECTROSCOPY; IMAGES; LIGHT; DISK AB Coronagraphic Target Acquisition (TA) is an important factor that contributes to the contrast performance and typically depends on the coronagraph design. In the case of JWST, coronagraphic TAs rely on measuring the centroid of the star's point spread function away from the focal plane mask, and performing a small angle maneuver (SAM), to place the star behind the coronagraphic mask. Therefore, the accuracy of the TA is directly limited by the SAM accuracy. Typically JWST coronagraphic observations will include the subtraction of a reference (either a reference star, or a self-reference after a telescope roll). With such differential measurement, the reproducibility of the TA is a very important factor. We propose a novel coronagraphic observation concept whereby the reference PSF is first acquired using a standard TA, followed by coronagraphic observations of a reference star on a small grid of dithered positions. Sub-pixel dithers (5-10 mas each) provide a small reference PSF library that samples the variations in the PSF as a function of position relative to the mask, thus compensating for errors in the TA process. This library can be used for PSF subtraction with a variety of algorithms (e.g; LOCI or KLIP algorithms, Lafreniere et al. 2007; Soummer, Pueyo & Larkin 2012). These sub-pixel dithers are executed under closed-loop fine guidance, unlike a standard SAM that executes the maneuver in coarse point mode, which can result in a temporary target offset of 1 arcsecond and would bring the star out from behind the coronagraphic mask. We discuss and evaluate the performance gains from this observation scenario compared to the standard TA both for MIRI coronagraphs. C1 [Soummer, Remi; Lajoie, Charles-Philippe; Pueyo, Laurent; Hines, Dean C.; Isaacs, John C.; Nelan, Edmund P.; Perrin, Marshall] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Clampin, Mark] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Soummer, R (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM soununer@stsci.edu NR 35 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91433V DI 10.1117/12.2057190 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800117 ER PT S AU Stahl, HP Postman, M Abplanalp, L Arnold, W Blaurock, C Egerman, R Mosier, G AF Stahl, H. Philip Postman, Marc Abplanalp, Laura Arnold, William Blaurock, Carl Egerman, Robert Mosier, Gary BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Advanced mirror technology development (AMTD) project: 2.5 year status SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Space Telescope Mirrors; Mirror Technology Development AB The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD continues to achieve all of its goals and accomplished all of its milestones to date. We have done this by assembling an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes; by deriving engineering specifications for advanced normal-incidence mirror systems needed to make the required science measurements; and by defining and prioritizing the most important technical problems to be solved. C1 [Stahl, H. Philip] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Postman, Marc] Space Telescope Sci Inst, Baltimore, MD USA. [Abplanalp, Laura; Egerman, Robert] Exelis Inc, Mclean, VA USA. [Mosier, Gary] NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. NR 7 TC 4 Z9 4 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91431S DI 10.1117/12.2054765 PG 6 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800054 ER PT S AU Stahl, HP Postman, M Mosier, G Smith, WS Blaurock, C Ha, K Stark, CC AF Stahl, H. Philip Postman, Marc Mosier, Gary Smith, W. Scott Blaurock, Carl Ha, Kong Stark, Christopher C. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Space Telescope Mirrors; Mirror Technology Development; Systems Engineering AB The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope. C1 [Stahl, H. Philip; Smith, W. Scott] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Postman, Marc] Space Telescope Sci Inst, Baltimore, MD USA. [Mosier, Gary; Ha, Kong; Stark, Christopher C.] NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. NR 8 TC 5 Z9 6 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91431T DI 10.1117/12.2054766 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800055 ER PT S AU Stapelfeldt, KR Brenner, MP Warfield, KR Dekens, FG Belikov, R Brugarolas, PB Bryden, G Cahoy, KL Chakrabarti, S Dubovitsky, S Effinger, RT Hirsch, B Kissil, A Krist, JE Lang, JJ Marley, MS McElwain, MW Meadows, VS Nissen, J Oseas, JM Serabyn, E Sunada, E Trauger, JT Unwin, SC AF Stapelfeldt, Karl R. Brenner, Michael P. Warfield, Keith R. Dekens, Frank G. Belikov, Ruslan Brugarolas, Paul B. Bryden, Geoffrey Cahoy, Kerri L. Chakrabarti, Supriya Dubovitsky, Serge Effinger, Robert T. Hirsch, Brian Kissil, Andrew Krist, John E. Lang, Jared J. Marley, Mark S. McElwain, Michael W. Meadows, Victoria S. Nissen, Joel Oseas, Jeffrey M. Serabyn, Eugene Sunada, Eric Trauger, John T. Unwin, Stephen C. BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Exo-C: A probe-scale space mission to directly image and spectroscopically characterize exoplanetary systems using an internal coronagraph SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Exoplanets; high contrast imaging; optical astronomy; space mission concepts AB "Exo-C" is NASA's first community study of a modest aperture space telescope designed for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discover previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. At the study conclusion in 2015, NASA will evaluate it for potential development at the end of this decade. C1 [Stapelfeldt, Karl R.; McElwain, Michael W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brenner, Michael P.; Warfield, Keith R.; Dekens, Frank G.; Brugarolas, Paul B.; Bryden, Geoffrey; Dubovitsky, Serge; Effinger, Robert T.; Hirsch, Brian; Kissil, Andrew; Krist, John E.; Lang, Jared J.; Nissen, Joel; Oseas, Jeffrey M.; Serabyn, Eugene; Sunada, Eric; Trauger, John T.; Unwin, Stephen C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Belikov, Ruslan; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cahoy, Kerri L.] MIT, Cambridge, MA 02139 USA. [Chakrabarti, Supriya] Univ Massachusetts, Lowell, MA 01854 USA. [Meadows, Victoria S.] Univ Washington, Seattle, WA 98195 USA. RP Stapelfeldt, KR (reprint author), NASA, Goddard Space Flight Ctr, Code 667, Greenbelt, MD 20771 USA. EM karl.r.stapelfeldt@nasa.gov NR 12 TC 2 Z9 2 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91432K DI 10.1117/12.2057115 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800078 ER PT S AU Thomas, SJ Bendek, E Belikov, R AF Thomas, Sandrine J. Bendek, Eduardo Belikov, Ruslan BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Simulation of a method to directly image exoplanets around multiple stars systems. SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Exoplanets detection; MEMS; multiple stars; coronagraphy; wavefront control ID DIFFRACTIVE PUPIL AB Direct imaging of extra-solar planets has now become a reality, especially with the deployment and commissioning of the first generation of specialized ground-based instruments such as the GPI, SPHERE, P1640 and SCExAO. These systems will allow detection of planets 10(7) times fainter than their host star. For space-based missions, such as EXCEDE, EXO-C, EXO-S, WFIRST/AFTA,different teams have shown in laboratories contrasts reaching 10(-10) within a few diffraction limits from the star using a combination of a coronagraph to suppress light coming from the host star and a wavefront control system. These demonstrations use a deformable mirror (DM) to remove residual starlight (speckles) created by the imperfections of telescope. However, all these current and future systems focus on detecting faint planets around a single host star or unresolved binaries/multiples, while several targets or planet candidates are located around nearby binary stars such as our neighbor star Alpha Centauri. Until now, it has been thought that removing the light of a companion star is impossible with current technology, excluding binary star systems from target lists of direct imaging missions. Direct imaging around binaries/multiple systems at a level of contrast allowing Earth-like planet detection is challenging because the region of interest, where a dark zone is essential, is contaminated by the light coming from the hosts star companion. We propose a method to simultaneously correct aberrations and diffraction of light coming from the target star as well as its companion star in order to reveal planets orbiting the target star. This method works even if the companion star is outside the control region of the DM (beyond its half-Nyquist frequency), by taking advantage of aliasing effects. C1 [Thomas, Sandrine J.] UARC, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bendek, Eduardo; Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Thomas, SJ (reprint author), UARC, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM sandrine.j.thomas@nasa.gov NR 8 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 914335 DI 10.1117/12.2054948 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800098 ER PT S AU Traub, WA Belikov, R Guyon, O Kasdin, NJ Krist, J Macintosh, B Mennesson, B Savransky, D Shao, M Serabyn, E Trauger, J AF Traub, Wesley A. Belikov, Ruslan Guyon, Olivier Kasdin, N. Jeremy Krist, John Macintosh, Bruce Mennesson, Bertrand Savransky, Dmitry Shao, Michael Serabyn, Eugene Trauger, John BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Science yield estimation for AFTA coronagraphs SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Exoplanets; coronagraph ID MAGNITUDE AB We describe the algorithms and results of an estimation of the science yield for five candidate coronagraph designs for the WFIRST-AFTA space mission. The targets considered are of three types, known radial-velocity planets, expected but as yet undiscovered exoplanets, and debris disks, all around nearby stars. The results of the original estimation are given, as well as those from subsequently updated designs that take advantage of experience from the initial estimates. C1 [Traub, Wesley A.; Krist, John; Mennesson, Bertrand; Shao, Michael; Serabyn, Eugene; Trauger, John] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guyon, Olivier] Univ Arizona, Tucson, AZ 85721 USA. [Kasdin, N. Jeremy] Princeton Univ, Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Macintosh, Bruce] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. RP Traub, WA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM wtraub@jpl.nasa.gov RI Savransky, Dmitry/M-1298-2014 OI Savransky, Dmitry/0000-0002-8711-7206 NR 9 TC 9 Z9 9 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430N DI 10.1117/12.2054834 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800020 ER PT S AU Whitman, TL Dziak, KJ Huguet, J Knight, JS Reis, C Wilson, E AF Whitman, Tony L. Dziak, K. J. Huguet, Jesse Knight, J. Scott Reis, Carl Wilson, Erin BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI Testing the Equipment for the Cryogenic Optical Test of the James Webb Space Telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE James Webb Space Telescope; OTIS; optical test; test equipment; cryogenic AB After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test. C1 [Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse] Exelis Geospatial Syst, Rochester, NY 14606 USA. [Knight, J. Scott] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Reis, Carl] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Wilson, Erin] Genesis Engn Solut, Lanham, MD 20707 USA. RP Whitman, TL (reprint author), Exelis Geospatial Syst, 400 Initiat Dr,POB 60488, Rochester, NY 14606 USA. NR 5 TC 0 Z9 0 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430F DI 10.1117/12.2057175 PG 16 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800013 ER PT S AU Zhao, F AF Zhao, Feng BE Oschmann, JM Clampin, M Fazio, GG MacEwen, HA TI WFIRST-AFTA Coronagraph Instrument Overview SO SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Optical, Infrared, and Millimeter Wave CY JUN 22-27, 2014 CL Montreal, CANADA SP American Astron Soc, Australian Astron Observatory, Assoc Univ Res Astron, Canadian Astron Soc, Canadian Space Agcy, European Astron Society, European So Observatory, Natl Radio Astron Observatory, Royal Astron Soc, Sci & Technol Facilities Council DE Coronagraph; high contrast imaging; exoplanets; active optics AB The WFIRST-AFTA coronagraph will directly image exoplanets and disks around nearby stars, and obtain spectra. The coronagraph has photometric bands covering about 400-1000 nm, and an integral field spectrometer with a resolution of about 70. The range of sensitivity in angular separation from a star is about 0.1 to 0.6 arc-seconds. The limiting contrast is about 10(-9), and a goal of 10(-10). The engineering development program is focused on low-order wavefront sensing and control, coronagraph masks, coronagraph performance, speckle detection and suppression, post-processing algorithms, an integral field spectrometer, and low-noise detectors. Progress and plans in these areas will be reviewed. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Zhao, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 14 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9611-9 J9 PROC SPIE PY 2014 VL 9143 AR 91430O DI 10.1117/12.2060319 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WK UT WOS:000354526800021 ER PT S AU Chen, PC Rabin, D AF Chen, Peter C. Rabin, Douglas BE Navarro, R Cunningham, CR Barto, AA TI Composite Telescope Technology SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Telescope mirrors; composite mirrors; optical replication; spincast optics; supersmooth optics; smart materials AB We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes. C1 [Chen, Peter C.] Lightweight Telescopes Inc, Columbia, MD 21045 USA. [Chen, Peter C.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Chen, Peter C.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. [Rabin, Douglas] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Chen, PC (reprint author), Lightweight Telescopes Inc, 5469 Hound Hill Court, Columbia, MD 21045 USA. EM peter.c.chen@nasa.gov NR 15 TC 0 Z9 0 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 915130 DI 10.1117/12.2057118 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500090 ER PT S AU de Oliveira, AC de Oliveira, LS de Arruda, MV Marrara, LS dos Santos, LH Ferreira, D dos Santos, JB Rosa, JA Junior, OV Pereira, JM Castilhol, B Gneiding, C Junior, LS de Oliveira, CM Gunn, JE Ueda, A Takato, N Shimono, A Sugai, H Karoji, H Kimura, M Tamura, N Wang, SY Murray, G Le Mignant, D Madec, F Jaquet, M Vives, S Fisher, C Braunm, D Schwochertm, M Reiley, DJ AF de Oliveira, Antonio Cesar de Oliveira, Ligia Souza de Arruda, Marcio V. Marrara, Lucas Souza dos Santos, Leandro H. Ferreira, Decio dos Santos, Jesulino B. Rosa, Josimar A. Junior, Orlando V. Pereira, Jeferson M. Castilhol, Bruno Gneiding, Clemens Junior, Laerte S. de Oliveira, Claudia M. Gunn, James E. Ueda, Akitoshi Takato, Naruhisa Shimono, Atsushi Sugai, Hajime Karoji, Hiroshi Kimura, Masahiko Tamura, Naoyuki Wang, Shiang-Yu Murray, Graham Le Mignant, David Madec, Fabrice Jaquet, Marc Vives, Sebastien Fisher, Charlie Braunm, David Schwochertm, Mark Reiley, Daniel J. BE Navarro, R Cunningham, CR Barto, AA TI Fiber Optical Cable and Connector System (FOCCoS) for PFS/Subaru SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Spectrograph; Optical Fibers; Multi-fibers connector AB FOCCoS, "Fiber Optical Cable and Connector System" has the main function of capturing the direct light from the focal plane of Subaru Telescope using optical fibers, each one with a microlens in its tip, and conducting this light through a route containing connectors to a set of four spectrographs. The optical fiber cable is divided in 3 different segments called Cable A, Cable B and Cable C. Multi-fibers connectors assure precise connection among all optical fibers of the segments, providing flexibility for instrument changes. To assure strong and accurate connection, these sets are arranged inside two types of assemblies: the Tower Connector, for connection between Cable C and Cable B; and the Gang Connector, for connection between Cable B and Cable A. Throughput tests were made to evaluate the efficiency of the connections. A lifetime test connection is in progress. Cable C is installed inside the PFI, Prime Focus Instrument, where each fiber tip with a microlens is bonded to the end of the shaft of a 2-stage piezo-electric rotatory motor positioner; this assembly allows each fiber to be placed anywhere within its patrol region, which is 9.5mm diameter.. Each positioner uses a fiber arm to support the ferrule, the microlens, and the optical fiber. 2400 of these assemblies are arranged on a motor bench plate in a hexagonal-closed-packed disposition. All optical fibers from Cable C, protected by tubes, pass through the motors' bench plate, three modular plates and a strain relief box, terminating at the Tower Connector. Cable B is permanently installed at Subaru Telescope structure, as a link between Cable C and Cable A. This cable B starts at the Tower Connector device, placed on a lateral structure of the telescope, and terminates at the Gang Connector device. Cable B will be routed to minimize the compression, torsion and bending caused by the cable weight and telescope motion. In the spectrograph room, Cable A starts at the Gang Connector, crosses a distribution box and terminates in a slit device. Each slit device receives approximately 600 optical fibers, linearly arrayed in a curve for better orientation of the light to the spectrograph collimator mirror. Four sets of Gang Connectors, distribution boxes and Slit devices complete one Cable A. This paper will review the general design of the FOCCoS subsystem, methods used to manufacture the involved devices, and the needed tests results to evaluate the total efficiency of the set. C1 [de Oliveira, Antonio Cesar; de Arruda, Marcio V.; dos Santos, Leandro H.; Ferreira, Decio; dos Santos, Jesulino B.; Rosa, Josimar A.; Junior, Orlando V.; Pereira, Jeferson M.; Castilhol, Bruno; Gneiding, Clemens] MCT LNA, Itajuba, MG, Brazil. [de Oliveira, Ligia Souza; Marrara, Lucas Souza] OIO Oliveira Instrumentacao Opt Ltda, Sao Paulo, SP, Brazil. [Junior, Laerte S.; de Oliveira, Claudia M.] Univ Sao Paulo, IAG, Inst Astron Geofis & Ciencias Atmosfer, BR-05508 Sao Paulo, SP, Brazil. [Gunn, James E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ueda, Akitoshi; Takato, Naruhisa] Natl Astron Observ Japan, Subaru Telescope, Mitaka, Tokyo, Japan. [Shimono, Atsushi; Sugai, Hajime; Karoji, Hiroshi; Kimura, Masahiko; Tamura, Naoyuki] Univ Tokyo, Kav li Inst Phys & Math Univ WPI, Tokyo 1138654, Japan. [Wang, Shiang-Yu] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Murray, Graham] Univ Durham, Ctr Adv Instrumentat, Durham, England. [Le Mignant, David; Madec, Fabrice; Jaquet, Marc; Vives, Sebastien] Observ Astron Marseille Provence, Lab Astrophys Marseille, Marseille, France. [Fisher, Charlie; Braunm, David; Schwochertm, Mark] Jet Prop Lab, Pasadena, CA USA. [Reiley, Daniel J.] CALTECH, Opt Observ, Pasadena, CA 91125 USA. RP de Oliveira, AC (reprint author), MCT LNA, Itajuba, MG, Brazil. NR 3 TC 4 Z9 4 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91514G DI 10.1117/12.2056888 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500137 ER PT S AU Fisher, C Morantz, C Braun, D Seiffert, M Aghazarian, H Partos, E King, M Hovland, L Schwochert, M Kaluzny, J Capocasale, C Houck, A Gross, J Reiley, D Mao, P Riddle, R Bui, K Henderson, D Haran, T Culhane, R Piazza, D Walkama, E AF Fisher, Charles Morantz, Chaz Braun, David Seiffert, Michael Aghazarian, Hrand Partos, Eamon King, Matthew Hovland, Larry Schwochert, Mark Kaluzny, Joel Capocasale, Christopher Houck, Andrew Gross, Johannes Reiley, Dan Mao, Peter Riddle, Reed Bui, Khanh Henderson, David Haran, Todd Culhane, Rob Piazza, Daniele Walkama, Eric BE Navarro, R Cunningham, CR Barto, AA TI Developing Engineering Model Cobra fiber positioners for the Subaru Telescope's Prime Focus Spectrometer SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Cobra; fiber positioner; PFS; piezo; HSC; SuMIRe; Subaru AB The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5 mu m of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM) version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber positioner. The requirements, design, assembly techniques, development testing, design qualification and performance evaluation of EM Cobra fiber positioners are described here. Also discussed is the use of the EM build and test campaign to validate the plans for full-scale production of 2550 Cobra fiber positioners scheduled to begin in late-2014. C1 [Fisher, Charles; Morantz, Chaz; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Reiley, Dan; Mao, Peter; Riddle, Reed; Bui, Khanh] CALTECH, Opt Observ, Pasadena, CA 91125 USA. [Henderson, David; Haran, Todd; Culhane, Rob; Piazza, Daniele; Walkama, Eric] New Scale Technol Inc, Victor, NY 14564 USA. RP Fisher, C (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM charles.d.fisher@jpl.nasa.gov NR 4 TC 4 Z9 4 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91511Y DI 10.1117/12.2054700 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500060 ER PT S AU Gallagher, B Knight, S Barto, A Thomes, J Ott, M AF Gallagher, Ben Knight, Scott Barto, Allison Thomes, Joe Ott, Melanie BE Navarro, R Cunningham, CR Barto, AA TI JWST ASPA Fiber Optic Development for Testing at 2.12 mu m SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE cryogenic; fiber optics; testing; bend loss; insertion loss; IR Fiber Transmission AB The James Webb Space Telescope (JWST) requires testing of the full optical system in a cryogenic vacuum environment prior to launch. Challenges with the telescope architecture and the test environment led to placing removable optical test sources at the intermediate focus of this off-axis Three Mirror Anastigmat (TMA) to provide test sources in the Science Instruments. Fiber optic cables will route light whose wavelength is between 600 and 2120 nm from photonics external to the cryo-vacuum chamber to intermediate focus locations. These fiber optic cables will be greater than 50 meters in length and transition from ambient (293K) temperatures outside the chamber to cryogenic (30K) temperatures at the intermediate focus. Presented here are results from risk reduction testing conducted to ensure the fiber optic cables selected will 1) transmit 2.12 mu m light over long fiber runs, 2) show strong macro bending performance, and 3) perform at cryogenic temperatures. C1 [Gallagher, Ben; Knight, Scott; Barto, Allison] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Thomes, Joe; Ott, Melanie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gallagher, B (reprint author), Ball Aerosp & Technol Corp, 1600 Commerce St, Boulder, CO 80301 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91515W DI 10.1117/12.2055031 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500183 ER PT S AU Gully-Santiago, MA Jaffe, DT Brooks, CB Wilson, DW Muller, RE AF Gully-Santiago, Michael A. Jaffe, Daniel T. Brooks, Cynthia B. Wilson, Daniel W. Muller, Richard E. BE Navarro, R Cunningham, CR Barto, AA TI High Performance Si Immersion Gratings Patterned with Electron Beam Lithography SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Gratings; Metrology; Electron Beam; Lithography; Optical devices AB Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectrographs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratry Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300F5 e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) Ebeam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 pm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error by a factor of 5. (3) The serial write process for typical gratings yields write times of about 24 hours- this makes prototyping costly. We discuss work with negative e-beam resist to reduce the fill factor of exposure, and therefore limit the exposure time. We also discuss the tradeoffs of long write-time serial write processes like e-beam with UV photomask lithography. We show the results of experiments on small pattern size prototypes on silicon wafers. Current prototypes now exceed 30 dB of suppression on spectral and spatial dimension ghosts compared to monochromatic spectral purity measurements of the backside of Si echelle gratings in reflection at 632 nm. We perform interferometry at 632 nm in reflection with a 25 mm circular beam on a grating with a blaze angle of 71.6. The measured wavefront error is 0.09 waves peak to valley. C1 [Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Wilson, Daniel W.; Muller, Richard E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gully-Santiago, MA (reprint author), Univ Texas Austin, Dept Astron, 2515 Speedway St, Austin, TX 78712 USA. EM gully@astro.as.utexas.edu NR 7 TC 4 Z9 4 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91515K DI 10.1117/12.2056912 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500173 ER PT S AU Newman, K Belikov, R Pluzhnik, E Balasubramanian, K Wilson, D AF Newman, Kevin Belikov, Ruslan Pluzhnik, Eugene Balasubramanian, Kunjithapatham Wilson, Dan BE Navarro, R Cunningham, CR Barto, AA TI Performance of an achromatic focal plane mask for exoplanet imaging coronagraphy SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Focal plane mask; Coronagraph; PIAA AB Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter. C1 [Newman, Kevin] Univ Arizona, Tucson, AZ 85721 USA. [Newman, Kevin; Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan] NASA, Jet Prop Lab, Pasadena, CA USA. RP Newman, K (reprint author), Univ Arizona, Tucson, AZ 85721 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91515O DI 10.1117/12.2055354 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500177 ER PT S AU Phillips, AC Fryauf, DM Kobayashi, NP Bolte, MJ Dupraw, B Ratliff, C Pfister, T Cowley, D AF Phillips, Andrew C. Fryauf, David M. Kobayashi, Nobuhiko P. Bolte, Michael J. Dupraw, Brian Ratliff, Christopher Pfister, Terry Cowley, David BE Navarro, R Cunningham, CR Barto, AA TI Progress and new techniques for protected-silver coatings SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE silver; ALD; mirror coatings; e-beam; ion-assisted deposition; sputtering; atomic layer deposition ID TELESCOPES AB We describe progress in the on-going effort at the University of California Observatories Advanced Coatings Lab to develop efficient, durable silver-based coatings for telescope mirrors. We have continued to improve previously identified recipes produced with e-beam ion-assisted deposition (IAD). We have started exploring nitride adhesion and barrier layers added to or replacing layers in promising recipes. Our coating chamber now has one magnetron installed, and two more will be added shortly so we can perform direct comparisons of e-beam IAD and sputtering processes for the same recipes. We report on recent tests and findings relevant to protected-Ag coatings, including e-beam vs sputter deposited silver; our current work with nitrides; and a comparison of certain fluorides. While focused on telescope mirror coatings, we have also developed and tested two Ag-based coatings suitable for AO and for CCD-range instruments. We also report on field-testing of earlier samples that have been exposed in the dome of the 3-m telescope at Lick Observatory for a period of 2 years. Finally, we describe results of a pilot study using atomic-layer deposition (ALD), a chemical vapor deposition technique, to produce barrier layers over silver. Optical quality ALD films are smooth, conformal and have excellent uniformity and thickness control, and their barrier properties look extremely promising for protecting silver from corrosion. C1 [Phillips, Andrew C.; Bolte, Michael J.; Dupraw, Brian; Ratliff, Christopher; Pfister, Terry; Cowley, David] Univ Calif Santa Cruz, Univ Calif Observ, Santa Cruz, CA 95064 USA. [Fryauf, David M.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Fryauf, David M.; Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, NASA, Ames Res Ctr, Nanostruct Energy Convers Technol & Res NECTAR,Ad, Moffett Field, CA 94035 USA. RP Phillips, AC (reprint author), Univ Calif Santa Cruz, Univ Calif Observ, Santa Cruz, CA 95064 USA. EM phillips@ucolick.org NR 13 TC 6 Z9 6 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91511B DI 10.1117/12.2055706 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500040 ER PT S AU Scowen, PA Miller, A Challa, P Veach, T Groppi, C Mauskopf, P AF Scowen, Paul A. Miller, Alex Challa, Priya Veach, Todd Groppi, Chris Mauskopf, Phil BE Navarro, R Cunningham, CR Barto, AA TI Focal plane actuation to achieve ultra-high resolution on suborbital balloon payloads SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE hexapod; cryogenic; jitter stabilization; vacuum; high resolution imaging; balloon payload AB Over the past few years there has been remarkable success flying imaging telescope systems suspended from suborbital balloon payload systems. These imaging systems have covered optical, ultraviolet, sub-millimeter and infrared passbands (i.e. BLAST, STO, SBI, Fireball and others). In recognition of these advances NASA is now considering ambitious programs to promote planetary imaging from high altitude at a fraction of the cost of similar fully orbital systems. The challenge with imaging from a balloon payload is delivering the full diffraction-limited resolution of the system from a moving payload. Good progress has been made with damping mechanisms and oscillation control to remove most macroscopic movement in the departures of the imaging focal plane from a static configuration, however a jitter component remains that is difficult to remove using external corrections. This paper reports on work to demonstrate in the laboratory the utility and performance of actuating a detector focal plane (of whatever type) to remove the final jitter terms using an agile hexapod design. The input to this demonstration is the jitter signal generated by the pointing system of a previously flown balloon mission (the Stratospheric Terahertz Observatory, STO). Our group has a mature jitter compensation system that thermally isolates the control head from the focal plane itself. This allows the hexapod to remain at ambient temperature in a vacuum environment with the focal plane cooled to cryogenic temperatures. Our lab design mounts the focal plane on the hexapod in a custom cryostat and delivers an active optical stimulus together with the corresponding jitter signal, using the actuation of the hexapod to correct for the departures from a static, stable configuration. We believe this demonstration will make the case for inclusion of this technological solution in future balloon-borne imaging systems requiring ultra-high resolution. C1 [Scowen, Paul A.; Miller, Alex; Challa, Priya; Groppi, Chris; Mauskopf, Phil] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Veach, Todd] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Scowen, PA (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Box 876004, Tempe, AZ 85287 USA. NR 2 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 915115 DI 10.1117/12.2056393 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500035 ER PT S AU Steeves, J Laslandes, M Pellegrino, S Redding, D Bradford, SC Wallace, JK Barbee, T AF Steeves, John Laslandes, Marie Pellegrino, Sergio Redding, David Bradford, Samuel Case Wallace, James Kent Barbee, Troy BE Navarro, R Cunningham, CR Barto, AA TI Design, fabrication and testing of active carbon shell mirrors for space telescope applications SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Active Mirrors; Space Telescopes; CFRP; Nano laminate; Replication; Metrology AB A novel active mirror concept based on carbon fiber reinforced polymer (CFRP) materials is presented. A nanolaminate facesheet, active piezoelectric layer and printed electronics are implemented in order to provide the reflective surface, actuation capabilities and electrical wiring for the mirror. Mirrors of this design are extremely thin (500-850 mu m), lightweight (similar to 2 kg/m(2)) and have large actuation capabilities (100 mu m peak-to-valley deformation per channel). Replication techniques along with simple bonding/transferring processes are implemented eliminating the need for grinding and polishing steps. An outline of the overall design, component materials and fabrication processes is presented. A method to size the active layer for a given mirror design, along with simulation predictions on the correction capabilities of the mirror are also outlined. A custom metrology system used to capture the highly deformable nature of the mirrors is demonstrated along with preliminary prototype measurements. C1 [Steeves, John; Laslandes, Marie; Pellegrino, Sergio] CALTECH, Pasadena, CA 91125 USA. [Redding, David; Bradford, Samuel Case; Wallace, James Kent] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Barbee, Troy] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Steeves, J (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM jsteeves@caltech.edu NR 18 TC 4 Z9 4 U1 1 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 915105 DI 10.1117/12.2056560 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500005 ER PT S AU Wang, X Shi, F Sigrist, N Seo, BJ Tang, H Bikkannavar, S Basinger, S Lay, O AF Wang, Xu Shi, Fang Sigrist, Norbert Seo, Byoung-Joon Tang, Hong Bikkannavar, Siddarayappa Basinger, Scott Lay, Oliver BE Navarro, R Cunningham, CR Barto, AA TI Experimental validation of Advanced Dispersed Fringe Sensing (ADFS) algorithm using Advanced Wavefront sensing and Correction Testbed (AWCT) SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Dispersed Fringe Sensing; DFS; JWST; WFSC; GRISM AB Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST. An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated. C1 [Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wang, X (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xu.wang@jpl.nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91513N DI 10.1117/12.2056554 PG 18 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500109 ER PT S AU Webb, D Kasdin, NJ Lisman, D Shaklan, S Thomson, M Cady, E Marks, GW Lo, A AF Webb, D. Kasdin, N. J. Lisman, D. Shaklan, S. Thomson, M. Cady, E. Marks, G. W. Lo, A. BE Navarro, R Cunningham, CR Barto, AA TI Successful Starshade Petal Deployment Tolerance Verification in Support of NASA's Technology Development for Exoplanet Missions SO ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE External occulters; occulters; Starshades; exoplanets; high-contrast imaging; TDEM AB A Starshade is a sunflower-shaped satellite with a large inner disk structure surrounded by petals. A Starshade flies in formation with a space-borne telescope, creating a deep shadow around the telescope over a broad spectral band to permit nearby exoplanets to be viewed. Removing extraneous starlight before it enters the observatory optics greatly loosens the tolerances on the telescope and instrument that comprise the optical system, but the nature of the Starshade dictates a large deployable structure capable of deploying to a very precise shape. These shape requirements break down into key mechanical requirements which include the rigid-body position and orientation of each of the petals that ring the periphery of the Starshade. To verify our capability to meet these requirements, we modified an existing flight-like Astromesh reflector, provided by Northrup Grumman, as the base ring to which the petals attach. The integrated system, including 4 of the 30 flight-like subscale petals, truss, connecting spokes and central hub, was deployed tens of times in a flight-like manner using a gravity compensation system. After each deployment, discrete points in prescribed locations covering the petals and truss were measured using a highly-accurate laser tracker system. These measurements were then compared against the mechanical requirements, and the as-measured data shows deployment accuracy well within our milestone requirements and resulting in a contrast ratio consistent with exoplanet detection and characterization. C1 [Kasdin, N. J.] Princeton Univ, Princeton, NJ 08544 USA. [Webb, D.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Marks, G. W.; Lo, A.] Northrop Grumman Aerosp Syst, Los Angeles, CA USA. RP Webb, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 10 TC 4 Z9 4 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9619-5 J9 PROC SPIE PY 2014 VL 9151 AR 91511P DI 10.1117/12.2057258 PG 16 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WJ UT WOS:000354525500051 ER PT S AU Ahmad, T Bebis, G Regentova, E Nefian, A Fong, T AF Ahmad, Touqeer Bebis, George Regentova, Emma Nefian, Ara Fong, Terry BE Bebis, G Boyle, R Parvin, B Koracin, D McMahan, R Jerald, J Zhang, H Drucker, SM Kambhamettu, C ElChoubassi, M Deng, Z Carlson, M TI An Experimental Evaluation of Different Features and Nodal Costs for Horizon Line Detection SO ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT 1 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 10th International Symposium on Visual Computing (ISVC) CY DEC 08-10, 2014 CL Las Vegas, NV SP UNR Comp Vis Lab, Desert Res Inst, LBNL, NASA Ames, BAE Syst, Intel, Ford, Hewlett Packard, Mitsubishi Elect Res Labs, Toyota, Gen Elect, Berkeley Lab ID SCALE AB Horizon line detection is a segmentation problem where a boundary between a sky and non-sky region is searched. Conventionally edge detection is performed as the first step followed by dynamic programming to find the shortest path which conforms to the detected horizon line. Recent work has proposed the use of machine learning to reduce the number of non-horizon edges to accurately detect the horizon line. In this paper, we investigate the suitablity of various local texture features and their combinations to reduce the number of false classifications for a recently proposed horizon detection approach. Specifically, we explore SIFT, LBP, HOG and their combinations SIFT-LBP, SIFTHOG, LBP-HOG and SIFT-LBP-HOG as features to train the SVM classifier. We further show that using only edge information as the nodal costs is not enough and propose various nodal costs which can result in enhanced accuracy of the detected horizon line as evidenced by the conducted experiments and results. We compare our proposed formulations with an earlier approach relying only on edges and suffers due to faulty assumptions. We report our comparative results for an image set comprising of mountainous images captured during an outdoor robot exploration of Basalt Hills. C1 [Ahmad, Touqeer; Bebis, George] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA. [Regentova, Emma] Univ Nevada, Dept Elect & Comp Engn, Las Vegas, NV 89154 USA. [Nefian, Ara; Fong, Terry] NASA, Ames Res Ctr, Moffett Field, CA USA. RP Ahmad, T (reprint author), Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA. EM sh.touqeerahmad@gmail.com; bebis@cse.unr.edu; Emma.Regentova@unlv.edu; ara.nefian@nasa.gov; terry.fong@nasa.gov NR 20 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-14249-4; 978-3-319-14248-7 J9 LECT NOTES COMPUT SC PY 2014 VL 8887 BP 193 EP 205 PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods; Imaging Science & Photographic Technology SC Computer Science; Imaging Science & Photographic Technology GA BC6ZR UT WOS:000354694000019 ER PT S AU Benton, SJ Ade, PA Amiri, M Angile, FE Bock, JJ Bond, JR Bryan, SA Chiang, HC Contaldi, CR Crill, BP Devlin, MJ Dober, B Dore, OP Dowell, CD Farhang, M Filippini, JP Fissel, LM Fraisse, AA Fukui, Y Galitzki, N Galmbrel, AE Gandilo, NN Golwala, SR Gudmundsson, JE Halpern, M Hasselfield, M Hilton, GC Holmes, WA Hristov, VV Irwin, KD Jones, WC Kermish, ZD Klein, J Korotkov, AL Kuo, CL MacTavish, CJ Mason, PV Matthews, TG Megerian, KG Moncelsi, L Morford, TA Mroczkowski, TK Nagy, JM Netterfield, CB Novak, G Nutter, D O'Brient, R Ogburn, RV Pascale, E Poidevin, F Rahlin, AS Reintsema, CD Ruhl, JE Runyan, MC Savini, G Scott, D Shariff, JA Soler, JD Thomas, NE Trangsrud, A Truch, MD Tucker, CE Tucker, GS Tucker, RS Turner, AD Ward-Thompson, D Weber, AC Wiebe, DV Young, EY AF Benton, S. J. Ade, P. A. Amiri, M. Angile, F. E. Bock, J. J. Bond, J. R. Bryan, S. A. Chiang, H. C. Contaldi, C. R. Crill, B. P. Devlin, M. J. Dober, B. Dore, O. P. Dowell, C. D. Farhang, M. Filippini, J. P. Fissel, L. M. Fraisse, A. A. Fukui, Y. Galitzki, N. Galmbrel, A. E. Gandilo, N. N. Golwala, S. R. Gudmundsson, J. E. Halpern, M. Hasselfield, Mi. Hilton, G. C. Holmes, W. A. Hristov, V. V. Irwin, K. D. Jones, Wt. C. Kermish, Z. D. Klein, J. Korotkov, A. L. Kuo, C. L. MacTavish, C. J. Mason, P. V. Matthews, T. G. Megerian, K. G. Moncelsi, L. Morford, T. A. Mroczkowski, T. K. Nagy, J. M. Netterfield, C. B. Novak, G. Nutter, D. O'Brient, R. Ogburn, R. V. Pascale, E. Poidevin, F. Rahlin, A. S. Reintsema, C. D. Ruhl, J. E. Runyan, M. C. Savini, G. Scott, D. Shariff, J. A. Soler, J. D. Thomas, N. E. Trangsrud, A. Truch, M. D. Tucker, C. E. Tucker, G. S. Tucker, R. S. Turner, A. D. Ward-Thompson, D. Weber, A. C. Wiebe, D. V. Young, E. Y. BE Stepp, LM Gilmozzi, R Hall, HJ TI BLASTbus electronics: general-purpose readout and control for balloon-borne experiments SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE BLASTbus; SPIDER; BLASTPol; bolometer readout; attitude control; cryogenics; balloon-borne telescope ID SUBMILLIMETER; TELESCOPE; ARRAY AB We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and power systems. For accurate timing control to tie everything together, the system operates in a fully synchronous manner. BLASTbus electronics have been successfully deployed to the South Pole, and flown on stratospheric balloons. C1 [Benton, S. J.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Ade, P. A.; Nutter, D.; Pascale, E.; Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales. [Amiri, M.; Scott, D.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Angile, F. E.; Devlin, M. J.; Dober, B.; Galitzki, N.; Klein, J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bock, J. J.; Dore, O. P.; Filippini, J. P.; Golwala, S. R.; Hristov, V. V.; Mason, P. V.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; O'Brient, R.; Tucker, R. S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Crill, B. P.; Dore, O. P.; Dowell, C. D.; Holmes, W. A.; Megerian, K. G.; O'Brient, R.; Runyan, M. C.; Trangsrud, A.; Turner, A. D.; Weber, A. C.] Jet Prop Lab, Pasadena, CA USA. [Bond, J. R.; Farhang, M.] Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. [Bond, J. R.; Halpern, M.; Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON, Canada. [Bryan, S. A.; Nagy, J. M.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Durban, South Africa. [Contaldi, C. R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Theoret Phys, London, England. [Farhang, M.; Fissel, L. M.; Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Fissel, L. M.; Novak, G.] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys, Evanston, IL USA. [Fraisse, A. A.; Galmbrel, A. E.; Gudmundsson, J. E.; Jones, Wt. C.; Kermish, Z. D.; Rahlin, A. S.; Young, E. Y.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Fukui, Y.] Nagoya Univ, Inst Adv Res, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Hasselfield, Mi.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.] Natl Inst Stand & Technol, Boulder, CO USA. [Irwin, K. D.; Kuo, C. L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Irwin, K. D.; Kuo, C. L.; Ogburn, R. V.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Gandilo, N. N.; Korotkov, A. L.; Shariff, J. A.; Soler, J. D.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [MacTavish, C. J.] Univ Cambridge, Kavli Inst Cosmol, Cambridge, England. [Matthews, T. G.] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Poidevin, F.] Inst Astrofis Canarias, Tenerife, Spain. [Poidevin, F.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Savini, G.] UCL, Dept Phys & Astron, London, England. [Soler, J. D.] CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Soler, J. D.] Univ Paris 11, Orsay, France. [Thomas, N. E.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Ward-Thompson, D.] Univ Cent Lancashire, Jeremiah Horrocks Inst Maths Phys & Astron, Preston PR1 2HE, Lancs, England. RP Benton, SJ (reprint author), Univ Toronto, Dept Phys, Toronto, ON, Canada. EM sbenton@aphysics.utoronto.ca OI Scott, Douglas/0000-0002-6878-9840; Mroczkowski, Tony/0000-0003-3816-5372; Savini, Giorgio/0000-0003-4449-9416 NR 17 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91450V DI 10.1117/12.2056693 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800029 ER PT S AU Gandilo, NN Ade, PAR Amiri, M Angile, FE Benton, SJ Bock, JJ Bond, JR Bryan, SA Chiang, HC Contald, CR Crill, BP Devlin, MJ Dober, B Doree, OP Farhang, M Filippini, JP Fissel, LM Fraisse, AA Fukui, Y Galitzki, N Gambrel, AE Golwala, S Gudmundsson, JE Halpern, M Hasselfield, M Hilton, GC Holmes, WA Hristov, VV Irwin, KD Jones, WC Kermish, ZD Klein, J Korotkov, AL Kuo, CL MacTavish, CJ Masonf, PV Matthews, TG Megerian, KG Moncelsi, L Morford, TA Mroczkowski, TK Nagy, JM Netterfield, CB Novak, G Nutter, D O'Brient, R Pascale, E Poidevin, F Rahlin, AS Reintsema, CD Ruhl, JE Runyan, MC Savini, G Scott, D Shariff, JA Soler, JD Thomas, NE Trangsru, A Truch, MD Tucker, CE Tucker, GS Tucker, RS Turner, AD Ward-Thompson, D Weber, AC Wiebe, DV Young, EY AF Gandilo, N. N. Ade, P. A. R. Amiri, M. Angile, F. E. Benton, S. J. Bock, J. J. Bond, J. R. Bryan, S. A. Chiang, H. C. Contald, C. R. Crill, B. P. Devlin, M. J. Dober, B. Dore, O. P. Farhang, M. Filippini, J. P. Fissel, L. M. Fraisse, A. A. Fukui, Y. Galitzki, N. Gambrel, A. E. Golwala, S. Gudmundsson, J. E. Halpern, M. Hasselfield, M. Hilton, G. C. Holmes, W. A. Hristov, V. V. Irwin, K. D. Jones, W. C. Kermish, Z. D. Klein, J. Korotkov, A. L. Kuo, C. L. MacTavish, C. J. Masonf, P. V. Matthews, T. G. Megerian, K. G. Moncelsi, L. Morford, T. A. Mroczkowski, T. K. Nagy, J. M. Netterfield, C. B. Novak, G. Nutter, D. O'Brient, R. Pascale, E. Poidevin, F. Rahlin, A. S. Reintsema, C. D. Ruhl, J. E. Runyan, M. C. Savini, G. Scott, D. Shariff, J. A. Soler, J. D. Thomas, N. E. Trangsru, A. Truch, M. D. Tucker, C. E. Tucker, G. S. Tucker, R. S. Turner, A. D. Ward-Thompson, D. Weber, A. C. Wiebe, D. V. Young, E. Y. BE Stepp, LM Gilmozzi, R Hall, HJ TI Attitude determination for balloon-borne experiments SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE balloon-borne telescopes; submillimeter; cosmic microwave background; attitude determination; pointing precision; star cameras AB An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of SPIDER, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. In the 2010 and 2012 BLASTPol flights from McMurdo Station, Antarctica, the system demonstrated an accuracy of < 5' rms in-flight, and < 5 '' rms post-flight. C1 [Gandilo, N. N.; Filippini, J. P.; Fissel, L. M.; Netterfield, C. B.; Shariff, J. A.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Ade, P. A. R.; Nutter, D.; Pascale, E.; Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales. [Amiri, M.; Halpern, M.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Angile, F. E.; Devlin, M. J.; Galitzki, N.; Klein, J.; Truch, M. D.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Benton, S. J.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Bock, J. J.; Dore, O. P.; Golwala, S.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; O'Brient, R.; Tucker, R. S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Crill, B. P.; Farhang, M.; Holmes, W. A.; Megerian, K. G.; O'Brient, R.; Runyan, M. C.; Trangsru, A.; Weber, A. C.] Jet Prop Lab, Pasadena, CA USA. [Bond, J. R.; Filippini, J. P.] Canadian Inst Theoret Astrophys, Toronto, ON, Canada. [Bond, J. R.; Halpern, M.] Canadian Inst Adv Res, Toronto, ON, Canada. [Bryan, S. A.; Nagy, J. M.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys Cosmol Res Unit, Durban, South Africa. [Contald, C. R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Theoret Phys, London, England. [Fissel, L. M.] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophy, Evanston, IL USA. [Fraisse, A. A.; Gambrel, A. E.; Gudmundsson, J. E.; Kermish, Z. D.; Young, E. Y.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Fukui, Y.] Nagoya Univ, Inst Adv Res, Chikusa Ku, Nagoya, Aichi, Japan. [Hasselfield, M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.] NIST, Boulder, CO USA. [Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Korotkov, A. L.; Tucker, G. S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [MacTavish, C. J.] Univ Cambridge, Kavli Inst Cosmol, Cambridge, England. [Poidevin, F.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Poidevin, F.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Savini, G.] UCL, Dept Phys & Astron, London, England. [Soler, J. D.] CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Soler, J. D.] Univ Paris 11, Orsay, France. [Thomas, N. E.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Ward-Thompson, D.] Univ Cent Lancashire, Jeremiah Horrocks Inst Maths Phys & Astron, Preston PR1 2HE, Lancs, England. RP Gandilo, NN (reprint author), Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. EM gandilo@astro.utoronto.ca OI Scott, Douglas/0000-0002-6878-9840; Mroczkowski, Tony/0000-0003-3816-5372; Savini, Giorgio/0000-0003-4449-9416 NR 10 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91452U DI 10.1117/12.2055156 PG 16 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800094 ER PT S AU Karcher, HJ Kunz, N Temi, P Krabbe, A Wagner, J Suss, M AF Kaercher, Hans J. Kunz, Nans Temi, Pasquale Krabbe, Alfred Wagner, Joerg Suess, Martin BE Stepp, LM Gilmozzi, R Hall, HJ TI SOFIA Pointing History SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE Telescope; infrared; air-borne; astronomy; SOFIA; pointing ID GREAT AB The original pointing accuracy requirement of the Stratospheric Observatory for Infrared Astronomy SOFIA was defined at the beginning of the program in the late 1980s as very challenging 0.2 arcsec rms. The early science flights of the observatory started in December 2010 and the observatory has reached in the mean time nearly 0.7 arcsec rms, which is sufficient for most of the SOFIA science instruments. NASA and DLR, the owners of SOFIA, are planning now a future 4 year program to bring the pointing down to the ultimate 0.2 arcsec rms. This may be the right time to recall the history of the pointing requirement and its verification and the possibility of its achievement via early computer models and wind tunnel tests, later computer aided end-to-end simulations up to the first commissioning flights some years ago. The paper recollects the tools used in the different project phases for the verification of the pointing performance, explains the achievements and may give hints for the planning of the upcoming final pointing improvement phase. C1 [Kaercher, Hans J.; Suess, Martin] MT Mechatron, D-55130 Mainz, Germany. [Krabbe, Alfred; Wagner, Joerg] Univ Stuttgart, Inst Raumfahrtsyst, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Kunz, Nans; Temi, Pasquale] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Karcher, HJ (reprint author), MT Mechatron, Weberstr 21, D-55130 Mainz, Germany. EM hans.kaercher@mt-mechatronics.de RI Wagner, Joerg/B-7913-2015 OI Wagner, Joerg/0000-0002-8536-4668 NR 27 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91450S DI 10.1117/12.2055463 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800026 ER PT S AU Kuhn, JR Berdyugina, SV Langlois, M Moretto, G Thiebaut, E Harlingten, C Halliday, D AF Kuhn, J. R. Berdyugina, S. V. Langlois, M. Moretto, G. Thiebaut, E. Harlingten, C. Halliday, D. BE Stepp, LM Gilmozzi, R Hall, HJ TI Looking Beyond 30m-class Telescopes: The Colossus Project SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE large telescopes; thin mirrors; redundant-baseline interferometry; phased array telescope; exoplanets AB The exponential growth in exoplanet studies is a powerful reason for developing very large optical systems optimized for narrow-field science. Concepts which cross the boundary between fixed aperture telescopes and interferometers, combined with technologies that decrease the system moving mass, can violate the cost and mass scaling laws that make conventional large-aperture telescopes relatively expensive. Here we describe a concept which breaks this scaling relation in a large optical/IR system called "Colossus"(1). C1 [Kuhn, J. R.] Univ Hawaii, Inst Astron, Maui, HI 96790 USA. [Berdyugina, S. V.] Kiepenheuer Inst Sonnenphys, Freiburg, Germany. [Berdyugina, S. V.] Univ Hawaii, NASA, Astrobiol Inst, Honolulu, HI 96722 USA. [Langlois, M.; Moretto, G.; Thiebaut, E.] Observ Lyon, Ecole Normale Super Lyon, CRAL CNRS, F-69561 St Genis Laval, France. [Harlingten, C.; Halliday, D.] Innovat Opt Ltd, Vancouver, BC, Canada. RP Kuhn, JR (reprint author), Univ Hawaii, Inst Astron, 34 Ohia Ku, Maui, HI 96790 USA. NR 7 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91451G DI 10.1117/12.2056594 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800048 ER PT S AU Lachennanna, M Wolfa, J Strecker, R Weckenrnann, B Trirnpe, F Hall, HJ AF Lachennanna, Michael Wolfa, Juergen Strecker, Rainer Weckenrnann, Benedikt Trirnpe, Fritz Hall, Helen J. BE Stepp, LM Gilmozzi, R Hall, HJ TI Environmental Testing for new SOFIA Flight Hardware SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE Stratospheric Observatory for Infrared Astronomy; SOFIA; environmental testing AB New flight hardware for the Stratospheric Observatory for Infrared Astronomy (SOFIA) has to be tested to prove its safety and functionality and to measure its performance under flight conditions. Although it is not expected to experience critical issues inside the pressurized cabin with close-to-normal conditions, all equipment has to be tested for safety margins in case of a decompression event and/or for unusual high temperatures, e.g. inside an electronic unit caused by a malfunction as well as unusual high ambient temperatures inside the cabin, when the aircraft is parked in a desert. For equipment mounted on the cavity side of the telescope, stratospheric conditions apply, i.e., temperatures from -40 degrees C to -60 degrees C and an air pressure of about 0.1 bar. Besides safety aspects as not to endanger personnel or equipment, new hardware inside the cavity has to function and to perform to specifications under such conditions. To perform these tests, an environmental test laboratory was set up at the SOFIA Science Center at the NASA Ames Research Center, including a thermal vacuum chamber, temperature measurement equipment, and a control and data logging workstation. This paper gives an overview of the test and measurement equipment, shows results from the commissioning and characterization of the thermal vacuum chamber, and presents examples of the component tests that were performed so far. To test the focus position stability of optics when cooling them to stratospheric temperatures, an auto-collimation device has been developed. We will present its design and results from measurements on commercial off-the-shelf optics as candidates for the new Wide Field Imager for SOFIA as an example. C1 [Lachennanna, Michael; Wolfa, Juergen; Strecker, Rainer; Weckenrnann, Benedikt; Trirnpe, Fritz] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Lachennanna, Michael; Wolfa, Juergen; Weckenrnann, Benedikt; Trirnpe, Fritz] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Strecker, Rainer] NASA, Neil Armstrong Flight Res Ctr, Palmdale, CA 93550 USA. [Hall, Helen J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. RP Lachennanna, M (reprint author), Univ Stuttgart, Deutsch SOFIA Inst, Pfaffenwaldring 29, D-70569 Stuttgart, Germany. EM lachenmann@dsi.uni-stuttgart.de NR 3 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91452V DI 10.1117/12.2056976 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800095 ER PT S AU Moretto, G Kuhn, JR Thiebaut, E Langlois, M Berdyugina, SV Harlingten, C Halliday, D AF Moretto, Gil Kuhn, Jeff R. Thiebaut, Eric Langlois, Maud Berdyugina, Svetlana V. Harlingten, Caisey Halliday, David BE Stepp, LM Gilmozzi, R Hall, HJ TI New strategies for an extremely large telescope dedicated to extremely high contrast: The Colossus Project SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE large off-axis telescopes; phase-diversity; cophasing; redundant-baseline interferometry ID PHASE-DIVERSITY AB Detecting an exoplanetary life signal is extremely challenging with current technology because it requires a sensitive telescope and instrument that can measure the planet's reflected optical and infrared light, while distinguishing this from the star's scattered light and the terrestrial thermal noise background. This requires highly accurate adaptive optics, a coronagraph system, and a specially designed and aligned giant telescope. We present here new strategies for building such a telescope with large circular segments using adaptive optics correction independently for each of these segments prior to cophasing the segments. The foreseen cophasing technique uses focal plane images that allow piston measurements and correction between all the segments. In this context we propose to derive the segment phase error using the inverse approach knowing the segment positions and the single aperture Airy function. C1 [Moretto, Gil; Thiebaut, Eric; Langlois, Maud] Observ Lyon, Ecole Normale Super Lyon, CNRS, CRAL, F-69561 St Genis Laval, France. [Kuhn, Jeff R.] Univ Hawaii, Inst Astron, Maui, HI 96790 USA. [Berdyugina, Svetlana V.] Kiepenheuer Inst Sonnenphys, Freiburg, Germany. [Berdyugina, Svetlana V.] Univ Hawaii, NASA, Astrobiol Inst, Honolulu, HI 96722 USA. [Harlingten, Caisey; Halliday, David] Innovat Opt Ltd, Vancouver, BC, Canada. RP Moretto, G (reprint author), Observ Lyon, Ecole Normale Super Lyon, CNRS, CRAL, F-69561 St Genis Laval, France. EM Gil.Moretto@lpn.in2p3.fr NR 10 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91451L DI 10.1117/12.2055797 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800053 ER PT S AU Schindler, K Wolf, J Krabbe, A AF Schindler, Karsten Wolf, Juergen Krabbe, Alfred BE Stepp, LM Gilmozzi, R Hall, HJ TI Characterization of InGaAs-based cameras for astronomical applications using a new VIS-NIR-SWIR detector test bench SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE detector and camera characterization; test bench; InGaAs; infrared astronomy; photometry; near-infrared; telescope tracking; SOFIA ID CONVERSION GAIN; RESPONSIVITY; PHOTODIODES; PHOTOMETRY AB A new test bench for detector and camera characterization in the visible and near-infrared spectral range between 350 2500 nm has been setup at the Max Planck Institute for Solar System Research (MPS). The detector under study is illuminated by an integrating sphere that is fed by a Czerny-Turner monochromator with quasi-monochromatic light. A quartz tungsten halogen lamp is used as a light source for the monochromator. Si-and InGaAs-based photodiodes have been calibrated against secondary reference standards at PTB (Germany), NPL (UK) and NRC (Canada) for precise spectral flux measurements. The test bench allows measurements of fundamental detector properties such as linearity of response, conversion gain, full well capacity, quantum efficiency (QE), fixed pattern noise and pixel response non-uniformity. The article will focus on the commissioning of the test bench and subsequent performance evaluation and characterization of a commercial camera system with a 640 x 480 InGaAs-detector, sensitive between 900 to 1650 nm. The study aimed at the potential use of InGaAs cameras in ground-based and airborne astronomical observations or as target acquisition and tracking cameras in the NIR supporting infrared observations at longer wavelengths, e.g. on SOFIA. An intended future application of the test bench in combination with an appropriate test dewar is the characterization of focal plane assemblies for imaging spectrometers on spacecraft missions, such as the VIS-SWIR channel of MAJIS, the Moons and Jupiter Imaging Spectrometer aboard JUICE (Jupiter Icy Moons Explorer). C1 [Schindler, Karsten] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Schindler, Karsten; Wolf, Juergen] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Schindler, Karsten; Wolf, Juergen; Krabbe, Alfred] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. RP Schindler, K (reprint author), Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany. EM kschindler@sofia.usra.edu; jwolf@sofia.usra.edu; krabbe@dsi.uni-stuttgart.de RI Schindler, Karsten/D-9950-2016 OI Schindler, Karsten/0000-0001-7337-2452 NR 25 TC 1 Z9 1 U1 3 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91450X DI 10.1117/12.2057052 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800031 ER PT S AU Shariff, JA Ade, PAR Amiri, M Benton, SJ Bock, JJ Bond, JR Bryan, SA Chiang, HC Contaldi, CR Crill, BP Dore, OP Farhang, M Filippini, JP Fissel, LM Fraisse, AA Gambrel, AE Gandilo, NN Golwala, SR Gudmundsson, JE Halpern, M Hasselfield, M Hilton, GC Holmes, WA Hristov, VV Irwin, KD Jones, WC Kermish, ZD Kuo, CL MacTavish, CJ Mason, PV Megerian, KG Moncelsi, L Morford, TA Nagy, JM Netterfield, CB O'Brient, R Rahlin, AS Reintsema, CD Ruhl, JE Runyan, MC Soler, JD Trangsrud, A Tucker, CE Tucker, RS Turner, AD Weber, AC Wiebe, DV Young, EY AF Shariff, J. A. Ade, P. A. R. Amiri, M. Benton, S. J. Bock, J. J. Bond, J. R. Bryan, S. A. Chiang, H. C. Contaldi, C. R. Crill, B. P. Dore, O. P. Farhang, M. Filippini, J. P. Fissel, L. M. Fraisse, A. A. Gambrel, A. E. Gandilo, N. N. Golwala, S. R. Gudmundsson, J. E. Halpern, M. Hasselfield, M. Hilton, G. C. Holmes, W. A. Hristov, V. V. Irwin, K. D. Jones, W. C. Kermish, Z. D. Kuo, C. L. MacTavish, C. J. Mason, P. V. Megerian, K. G. Moncelsi, L. Morford, T. A. Nagy, J. M. Netterfield, C. B. O'Brient, R. Rahlin, A. S. Reintsema, C. D. Ruhl, J. E. Runyan, M. C. Soler, J. D. Trangsrud, A. Tucker, C. E. Tucker, R. S. Turner, A. D. Weber, A. C. Wiebe, D. V. Young, E. Y. BE Stepp, LM Gilmozzi, R Hall, HJ TI Pointing control for the SPIDER balloon-borne telescope SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE SPIDER; cosmic microwave background; balloon-borne telescopes; control systems; actuation AB We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s(2), and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy. C1 [Shariff, J. A.; Farhang, M.; Fissel, L. M.; Gandilo, N. N.; Netterfield, C. B.; Soler, J. D.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Ade, P. A. R.; Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales. [Amiri, M.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Benton, S. J.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Bock, J. J.; Crill, B. P.; Dore, O. P.; Filippini, J. P.; Golwala, S. R.; Halpern, M.; Hristov, V. V.; Mason, P. V.; Moncelsi, L.; Morford, T. A.; O'Brient, R.; Tucker, R. S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Crill, B. P.; Dore, O. P.; Holmes, W. A.; Megerian, K. G.; O'Brient, R.; Runyan, M. C.; Trangsrud, A.; Turner, A. D.; Weber, A. C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bond, J. R.; Farhang, M.] Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. [Bond, J. R.; Halpern, M.; Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON, Canada. [Bryan, S. A.; Nagy, J. M.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa. [Contaldi, C. R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Theoret Phys, London, England. [Fissel, L. M.] Northwestern Univ, CIERA, Evanston, IL USA. [Fraisse, A. A.; Gambrel, A. E.; Gudmundsson, J. E.; Jones, W. C.; Kermish, Z. D.; Rahlin, A. S.; Young, E. Y.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Hasselfield, M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.] NIST, Boulder, CO USA. [Irwin, K. D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Irwin, K. D.; Kuo, C. L.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [MacTavish, C. J.] Univ Cambridge, Kavli Inst Cosmol, Cambridge, England. [Soler, J. D.] CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Soler, J. D.] Univ Paris 11, Orsay, France. RP Shariff, JA (reprint author), Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. EM shariff@astro.utoronto.ca NR 13 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91450U DI 10.1117/12.2055166 PG 20 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800028 ER PT S AU Troy, M Chanan, G Roberts, J AF Troy, Mitchell Chanan, Gary Roberts, Jenny BE Stepp, LM Gilmozzi, R Hall, HJ TI On-Sky Measurement Accuracy of Keck Telescope Segment Surface Errors SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE Segmented Mirrors; Telescopes; Optical Alignment; Image Quality AB We quantify the accuracy of the Keck telescope segment surface figure measurements made on sky by the Phasing Camera System (PCS), a Shack-Hartmann wavefront sensor that uses long integration times to average over the effects of atmospheric turbulence. These measurements are used to determine the settings for warping harnesses that significantly reduce the segment surface errors. When a series of six measurements is performed on the same segment in rapid succession, the Root Mean Square (RMS) segment surface, as reconstructed by 2nd through 4th order Zernike polynomials, is determined with an accuracy of 6.0 +/- 3.2 nm (error on the mean). However, when we compare measurements on the same segment separated by several hours the inferred surface RMS accuracy is 9.0 +/- 5.0 nm, or 50% larger. This suggests that there are systematic errors on the order of 7 nm that vary throughout the night. In this paper we investigate and quantify the potential causes of these systematic errors, which together with statistical errors, constitute a fundamental limit for the performance of segment warping harnesses. Such measurements are currently the baseline warping harness inputs for the Thirty Meter Telescope and the European Extremely Large Telescope. C1 [Troy, Mitchell; Roberts, Jenny] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chanan, Gary] Univ Calif Irvine, Irvine, CA 92697 USA. RP Troy, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mtroy@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91451Q DI 10.1117/12.2057094 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800057 ER PT S AU Wolf, J Wiedemann, M Pfuller, E Lachenmann, M Hall, HJ Roser, HP AF Wolf, Juergen Wiedemann, Manuel Pfueller, Enrico Lachenmann, Michael Hall, Helen J. Roeser, Hans-Peter BE Stepp, LM Gilmozzi, R Hall, HJ TI Upgrade of the SOFIA target acquisition and tracking cameras SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE Stratospheric Observatory for Infrared Astronomy; SOFIA; EM-CCD; Tracking Camera; Environmental Testing AB The Stratospheric Observatory for Infrared Astronomy (SOFIA) uses three visible range CCD cameras with different optics for target acquisition and tracking. The Wide Field Imager (WFI with 68mm f/2.0 optics) and the Fine Field Imager (FFI with 254mm f/2.8 optics) are mounted on the telescope front ring and are therefore exposed to stratospheric conditions in flight. The Focal Plane Imager (FPI) receives visible light from the 2.5m Cassegrain/Nasmyth telescope via a dichroic tertiary mirror and is mounted inside the pressurized aircraft cabin at typically +20 degrees C. An upgrade of these three imagers is currently in progress. The new FPI was integrated in February 2013 and is operating as SOFIA's main tracking camera since then. The new FFI and WFI are planned to be integrated in summer of 2015. Andor iXon(EM+) DU-888 cameras will be used in all three imagers to significantly increase the sensitivity compared to the previous CCD sensors. This will allow for tracking on fainter stars, e.g. the new FPI can track on a 16(mag) star with an integration time of 2 sec. While the FPI uses a commercial off the shelf camera, the cameras for FFI and WFI are extensively modified to withstand the harsh stratospheric environment. The two front ring imagers will also receive new optics to improve the image quality and to provide a stable focus position throughout the temperature range that SOFIA operates in. In this paper we will report on the results of the new FPI and the status of the FFI/WFI upgrade work. This includes the selection and design of the new optics and the design and testing of a prototype camera for the stratosphere. We will also report on preparations to make the new FPI available for scientific measurements. C1 [Wolf, Juergen; Wiedemann, Manuel; Pfueller, Enrico; Lachenmann, Michael; Roeser, Hans-Peter] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Wolf, Juergen; Wiedemann, Manuel; Pfueller, Enrico; Lachenmann, Michael] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Hall, Helen J.] NASA, Ames Res Ctr, Univ Space Res Assoc, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. RP Wolf, J (reprint author), Univ Stuttgart, Deutsch SOFIA Inst, Pfaffenwaldring 29, D-70569 Stuttgart, Germany. EM jwolf@sofia.usra.edu NR 3 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91450W DI 10.1117/12.2057000 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800030 ER PT S AU Young, ET Andersson, BG Becklin, EE Reach, WT Sankrit, R Zinnecker, H Krabbe, A AF Young, Erick T. Andersson, B-G Becklin, Eric E. Reach, William T. Sankrit, Ravi Zinnecker, Hans Krabbe, Alfred BE Stepp, LM Gilmozzi, R Hall, HJ TI SOFIA General Investigator Science Program SO GROUND-BASED AND AIRBORNE TELESCOPES V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ground-Based and Airborne Telescopes V CY JUN 22-27, 2014 CL Montreal, CANADA SP SPIE DE SOFIA; airborne astronomy; infrared AB SOFIA is a joint project between NASA and DLR, the German Aerospace Center, to provide the worldwide astronomical community with an observatory that offers unique capabilities from visible to far-infrared wavelengths. SOFIA consists of a 2.7-m telescope mounted in a highly modified Boeing 747-SP aircraft, a suite of instruments, and the scientific and operational infrastructure to support the observing program. This paper describes the current status of the observatory and details the General Investigator program. The observatory has recently completed major development activities, and it has transitioned into full operational status. Under the General Investigator program, astronomers submit proposals that are peer reviewed for observation on the facility. We describe the results from the first two cycles of the General Investigator program. We also describe some of the new observational capabilities that will be available for Cycle 3, which will begin in 2015. C1 [Young, Erick T.; Andersson, B-G; Becklin, Eric E.; Reach, William T.; Sankrit, Ravi; Zinnecker, Hans] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Zinnecker, Hans; Krabbe, Alfred] Univ Stuttgart, Deutsches SOFIA Inst, D-70569 Stuttgart, Germany. RP Young, ET (reprint author), NASA, Ames Res Ctr, SOFIA Sci Ctr, MS232-12, Moffett Field, CA 94035 USA. EM eyoung@sofia.usra.edu OI Andersson, B-G/0000-0001-6717-0686; Reach, William/0000-0001-8362-4094 NR 7 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9613-3 J9 PROC SPIE PY 2014 VL 9145 AR 91450Q DI 10.1117/12.2057410 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6QE UT WOS:000354375800024 ER PT S AU Clampin, M Pham, T AF Clampin, Mark Pham, Thai BE Holland, AD Beletic, JW TI NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy VI CY JUN 22-25, 2014 CL Montreal, CANADA SP SPIE DE NASA; astronomy; astrophysics; technology; cosmic; origins; universe; stars; Hubble; galaxies; SAT AB NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability. C1 [Clampin, Mark; Pham, Thai] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Clampin, M (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM bruce.t.pham@nasa.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9622-5 J9 PROC SPIE PY 2014 VL 9154 AR 91542N DI 10.1117/12.2060582 PG 8 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6WM UT WOS:000354528900077 ER PT S AU Girard, JJ Forrest, WJ McMurtry, CW Pipher, JL Dorn, M Mainzer, A AF Girard, Julian J. Forrest, William J. McMurtry, Craig W. Pipher, Judith L. Dorn, Meghan Mainzer, Amy BE Holland, AD Beletic, JW TI Cosmic Ray Response of Megapixel LWIR Arrays from TIS SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy VI CY JUN 22-25, 2014 CL Montreal, CANADA SP SPIE DE infrared; detector array; long-wave; HgCdTe; dark current; noise; ionizing radiation; galactic cosmic ray; muon AB We have investigated the response of 10 micron cutoff HgCdTe 1024 X 1024 pixel arrays, grown by Teledyne Imaging Sensors (TIS) on CdZnTe substrates, to ionizing radiation in the form of galactic cosmic ray secondaries near sea level, primarily muons, and natural radiation. The arrays are optimized for use in space observatories, such as the proposed NEOCam mission, so response to ubiquitous cosmic rays is crucially important. We analyzed 2000 6-second integration samples, for each pixel in each array, to characterize their response to ionizing radiation. Muons and other ionizing radiation leave 'footprints' in the data, visible as a sudden 'jump' in signal in the time series, which affects a cluster of pixels simultaneously. We investigated 4 key properties of these radiation hits: the number of pixels affected in each cluster, the charge generated by the event, the detector noise directly after the hit, and the responsivity of the pixel before and after each hit. The responsivity (plus dark current), given by the slope of the time series, was unaffected by the radiation hits. Likewise the correlated-double-sampling read noise was unaffected by the hits. The total charge generated was in reasonable agreement with that expected from 2-4 GeV muon hits. 8-12 pixels were typically affected by single hits, irrespective of the thickness of the CdZnTe substrate (800, 48 and zero microns). This cluster size was significantly larger than that observed in a 2.5 micron cutoff array from TIS, but similar to that shown by a 5 micron cutoff device from TIS tested for response to energetic protons for the JWST mission. C1 [Girard, Julian J.; Forrest, William J.; McMurtry, Craig W.; Pipher, Judith L.; Dorn, Meghan] Univ Rochester, Rochester, NY 14627 USA. [Girard, Julian J.] Siena Coll, Loudonville, NY USA. [Mainzer, Amy] NASA, JPL, Pasadena, CA USA. RP Forrest, WJ (reprint author), Univ Rochester, Rochester, NY 14627 USA. EM william.forrest@rochester.edu NR 6 TC 2 Z9 2 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9622-5 J9 PROC SPIE PY 2014 VL 9154 AR 91542A DI 10.1117/12.2056715 PG 10 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6WM UT WOS:000354528900068 ER PT S AU Hoenk, ME Nikzad, S Carver, AG Jones, TJ Hennessy, J Jewell, AD Sgro, J Tsur, S McClish, M Farrell, R AF Hoenk, Michael E. Nikzad, Shouleh Carver, Alexander G. Jones, Todd J. Hennessy, John Jewell, April D. Sgro, Joseph Tsur, Shraga McClish, Mickel Farrell, Richard BE Holland, AD Beletic, JW TI Superlattice-doped silicon detectors: progress and prospects SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy VI CY JUN 22-25, 2014 CL Montreal, CANADA SP SPIE DE Superlattice doping; silicon detectors; MBE; ALD; CCD; CMOS; APD; back illumination ID QUANTUM EFFICIENCY; ULTRAVIOLET; PHOTODIODES AB In this paper we review the physics and performance of silicon detectors passivated with wafer-scale molecular beam epitaxy (MBE) and atomic layer deposition (ALD). MBE growth of a two-dimensional (2D) doping superlattice on backside-illuminated (BSI) detectors provides nearly perfect protection from interface traps, even at trap densities in excess of 10(14) cm(-2). Superlattice-doped, BSI CMOS imaging detectors show no measurable degradation of quantum efficiency or dark current from long-term exposure to pulsed DUV lasers. Wafer-scale superlattice-doping has been used to passivate CMOS and CCD imaging arrays, fully-depleted CCDs and photodiodes, and large-area avalanche photodiodes. Superlattice-doped CCDs with ALD-grown antireflection coatings achieved world record quantum efficiency at deep and far ultraviolet wavelengths (100-300nm). Recently we have demonstrated solar-blind, superlattice doped avalanche photodiodes using integrated metal-dielectric coatings to achieve selective detection of ultraviolet light in the 200-250 nm spectral range with high out-of-band rejection. C1 [Hoenk, Michael E.; Nikzad, Shouleh; Carver, Alexander G.; Jones, Todd J.; Hennessy, John; Jewell, April D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sgro, Joseph] Alacron Inc, Nashua, NH 03060 USA. [Tsur, Shraga] Appl Mat Inc, Proc Diagnost & Control, IL-76075 Rehovot, Israel. [McClish, Mickel; Farrell, Richard] Radiat Monitoring Devices Inc, Watertown, MA 02472 USA. RP Hoenk, ME (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Michael.E.Hoenk@jpl.nasa.gov NR 32 TC 5 Z9 5 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9622-5 J9 PROC SPIE PY 2014 VL 9154 AR 915413 DI 10.1117/12.2057678 PG 13 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6WM UT WOS:000354528900030 ER PT S AU Tutt, JH McEntaffer, RL DeRoo, C Schultz, T Miles, DM Zhang, W Murray, NJ Holland, AD Cash, W Rogers, T O'Dell, S Gaskin, J Kolodziejczak, J Evagora, AM Holland, K Colebrook, D AF Tutt, James H. McEntaffer, Randall L. DeRoo, Casey Schultz, Ted Miles, Drew M. Zhang, William Murray, Neil J. Holland, Andrew D. Cash, Webster Rogers, Thomas O'Dell, Steve Gaskin, Jessica Kolodziejczak, Jeff Evagora, Anthony M. Holland, Karen Colebrook, David BE Holland, AD Beletic, JW TI Developments in the EM-CCD camera for OGRE SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy VI CY JUN 22-25, 2014 CL Montreal, CANADA SP SPIE DE OGRE; EM-CCD; Soft X-ray; Sounding Rocket; Suborbital Rocket AB The Off-plane Grating Rocket Experiment (OGRE) is a sub-orbital rocket payload designed to advance the development of several emerging technologies for use on space missions. The payload consists of a high resolution soft X-ray spectrometer based around an optic made from precision cut and ground, single crystal silicon mirrors, a module of off-plane gratings and a camera array based around Electron Multiplying CCD (EM-CCD) technology. This paper gives an overview of OGRE with emphasis on the detector array; specifically this paper will address the reasons that EM-CCDs are the detector of choice and the advantages and disadvantages that this technology offers. C1 [Tutt, James H.; McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Miles, Drew M.] Univ Iowa, Iowa City, IA 52242 USA. [Zhang, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Murray, Neil J.; Holland, Andrew D.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Cash, Webster; Rogers, Thomas] Univ Colorado, Boulder, CO 80309 USA. [O'Dell, Steve; Gaskin, Jessica; Kolodziejczak, Jeff] Marshall Space Flight Ctr, Huntsville, AL USA. [Evagora, Anthony M.; Holland, Karen; Colebrook, David] XCAM Ltd, Northampton, England. RP Tutt, JH (reprint author), Univ Iowa, Van Allen Hall, Iowa City, IA 52242 USA. EM james-tutt@uiowa.edu NR 17 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9622-5 J9 PROC SPIE PY 2014 VL 9154 AR 91540E DI 10.1117/12.2054872 PG 7 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6WM UT WOS:000354528900012 ER PT S AU Wilkins, AN McElwain, MW Norton, TJ Rauscher, BJ Rothe, JF Malatesta, M Hilton, GM Bubeck, JR Grady, CA Lindler, DJ AF Wilkins, Ashlee N. McElwain, Michael W. Norton, Timothy J. Rauscher, Bernard J. Rothe, Johannes F. Malatesta, Michael Hilton, George M. Bubeck, James R. Grady, Carol A. Lindler, Don J. BE Holland, AD Beletic, JW TI Characterization of a photon counting EMCCD for space-based high contrast imaging spectroscopy of extrasolar planets SO HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Energy, Optical, and Infrared Detectors for Astronomy VI CY JUN 22-25, 2014 CL Montreal, CANADA SP SPIE DE photon counting detector; electron multiplying CCD high contrast; exoplanets; direct imaging; integral field spectroscopy; clock induced charge; cameras; clocks; exoplanet spectroscopy ID NOISE AB We present the progress of characterization of a low-noise, photon counting Electron Multiplying Charged Coupled Device (EMCCD) operating in optical wavelengths and demonstrate possible solutions to the problems of Clock-Induced Charge (CIC) and other trapped charge through sub-bandgap illumination. Such a detector will be vital to the feasibility of future space-based direct imaging and spectroscopy missions for exoplanet characterization, and is scheduled to fly on-board the AFTA-WFIRST mission. The 512 x 512 EMCCD is an e2v detector housed and clocked by a Nuvu Cameras controller. Through a multiplication gain register, this detector produces as many as 5000 electrons for a single, incident-photon-induced photoelectron produced in the detector, enabling single photon counting operation with read noise and dark current orders of magnitude below that of standard CCDs. With the extremely high contrasts (Earth-to-Sun flux ratio is similar to 10(-10)) and extremely faint targets (an Earth analog would measure 28th - 30th magnitude or fainter), a photon-counting EMCCD is absolutely necessary to measure the signatures of habitability on an Earth-like exoplanet within the timescale of a mission's lifetime, and we discuss the concept of operations for an EMCCD making such measurements. C1 [Wilkins, Ashlee N.; Hilton, George M.] Univ Maryland, College Pk, MD 20742 USA. [McElwain, Michael W.; Norton, Timothy J.; Rauscher, Bernard J.; Hilton, George M.; Bubeck, James R.; Grady, Carol A.; Lindler, Don J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Norton, Timothy J.] Univ Maryland, Baltimore, MD 21201 USA. [Rothe, Johannes F.] Univ Space Res Assoc, Columbia, MD USA. [Malatesta, Michael] Univ Oklahoma, Norman, OK 73019 USA. [Bubeck, James R.] Adnet Syst, Rockville, MD USA. [Grady, Carol A.] Eureka Sci, Eureka, CA USA. RP Wilkins, AN (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM ashlee.n.wilkins@nasa.gov NR 18 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9622-5 J9 PROC SPIE PY 2014 VL 9154 AR 91540C DI 10.1117/12.2055346 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6WM UT WOS:000354528900010 ER PT S AU Ahmed, Z Amiri, M Benton, SJ Bock, JJ Bowens-Rubin, R Buder, I Bullock, E Connors, J Filippini, JP Grayson, JA Halpern, M Hilton, GC Hristov, VV Hui, H Irwin, KD Kang, J Karkare, KS Karpel, E Kovac, JM Kuo, CL Netterfield, CB Nguyen, HT O'Brient, R Ogburn, RW Pryke, C Reintsema, CD Richter, S Thompson, KL Turner, AD Vieregg, AG Wu, WLK Yoon, KW AF Ahmed, Z. Amiri, M. Benton, S. J. Bock, J. J. Bowens-Rubin, R. Buder, I. Bullock, E. Connors, J. Filippini, J. P. Grayson, J. A. Halpern, M. Hilton, G. C. Hristov, V. V. Hui, H. Irwin, K. D. Kang, J. Karkare, K. S. Karpel, E. Kovac, J. M. Kuo, C. L. Netterfield, C. B. Nguyen, H. T. O'Brient, R. Ogburn, R. W. Pryke, C. Reintsema, C. D. Richter, S. Thompson, K. L. Turner, A. D. Vieregg, A. G. Wu, W. L. K. Yoon, K. W. BE Holland, WS Zmuidzinas, J TI BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Inflation; Gravitational Waves; Cosmic Microwave Background; Polarization; BICEP; Keck Array ID INFLATIONARY UNIVERSE; GRAVITY-WAVES; ANISOTROPY; FLATNESS; HORIZON; PROBE AB BICEP3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of BICEP1, BICEP2 and the Keck Array experiments it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, BICEP3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5x larger than a BICEP2/Keck Array receiver and faster optics (f/1.6 vs. f/2.4). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, BICEP3 will have survey speed comparable to Keck Array 150 GHz (2013), and will significantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the BICEP2 observation patch. C1 [Ahmed, Z.; Grayson, J. A.; Irwin, K. D.; Karpel, E.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Wu, W. L. K.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ahmed, Z.; Grayson, J. A.; Irwin, K. D.; Kang, J.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Wu, W. L. K.; Yoon, K. W.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Amiri, M.; Halpern, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Benton, S. J.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Bock, J. J.; Filippini, J. P.; Hristov, V. V.; Hui, H.; O'Brient, R.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Nguyen, H. T.; Turner, A. D.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bowens-Rubin, R.; Buder, I.; Connors, J.; Karkare, K. S.; Kovac, J. M.; Richter, S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bullock, E.; Pryke, C.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Hilton, G. C.; Reintsema, C. D.] NIST, Boulder, CO 80305 USA. [Vieregg, A. G.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Ahmed, Z (reprint author), 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM zeesh@stanford.edu OI Karkare, Kirit/0000-0002-5215-6993 NR 26 TC 13 Z9 13 U1 1 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531N DI 10.1117/12.2057224 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400042 ER PT S AU Appel, JW Ali, A Amiri, M Araujo, D Bennett, CL Boone, F Chan, MW Cho, HM Chuss, DT Colazo, F Crowe, E Denis, K Dunner, R Eimer, J Essinger-Hileman, T Gothe, D Halpern, M Harrington, K Hilton, G Hinshaw, GF Huang, C Irwin, K Jones, G Karakla, J Kogut, AJ Larson, D Limon, M Lowry, L Marriage, T Mehrle, N Miller, AD Miller, N Moseley, SH Novak, G Reintsema, C Rostem, K Stevenson, T Towner, D U-Yen, K Wagner, E Watts, D Wollack, E Xu, ZL Zeng, LZ AF Appel, John W. Ali, Aamir Amiri, Mandana Araujo, Derek Bennett, Charles L. Boone, Fletcher Chan, Manwei Cho, Hsiao-Mei Chuss, David T. Colazo, Felipe Crowe, Erik Denis, Kevin Duenner, Rolando Eimer, Joseph Essinger-Hileman, Thomas Gothe, Dominik Halpern, Mark Harrington, Kathleen Hilton, Gene Hinshaw, Gary F. Huang, Caroline Irwin, Kent Jones, Glenn Karakla, John Kogut, Alan J. Larson, David Limon, Michele Lowry, Lindsay Marriage, Tobias Mehrle, Nicholas Miller, Amber D. Miller, Nathan Moseley, Samuel H. Novak, Giles Reintsema, Carl Rostem, Karwan Stevenson, Thomas Towner, Deborah U-Yen, Kongpop Wagner, Emily Watts, Duncan Wollack, Edward Xu, Zhilei Zeng, Lingzhen BE Holland, WS Zmuidzinas, J TI The Cosmology Large Angular Scale Surveyor (CLASS): 38-GHz detector array of bolometric polarimeters SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE CMB; Polarimeter; Bolometer; TES ID MICROWAVE BACKGROUND POLARIZATION; TRANSITION-EDGE SENSORS; PROBE WMAP OBSERVATIONS; INFLATIONARY UNIVERSE; POWER SPECTRA; MULTIPLEXERS; PERFORMANCE; INSTRUMENT; FLATNESS; HORIZON AB The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array. C1 [Appel, John W.; Ali, Aamir; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Harrington, Kathleen; Huang, Caroline; Karakla, John; Larson, David; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Wagner, Emily; Watts, Duncan; Xu, Zhilei] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Duenner, Rolando] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago, Chile. [Cho, Hsiao-Mei; Hilton, Gene; Reintsema, Carl] NIST, Boulder, CO 80305 USA. [Amiri, Mandana; Halpern, Mark; Hinshaw, Gary F.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Araujo, Derek; Jones, Glenn; Limon, Michele; Miller, Amber D.] Columbia Univ, Dept Phys, New York, NY USA. [Irwin, Kent] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Novak, Giles] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Zeng, Lingzhen] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Appel, JW (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. EM jappel3@jhu.edu RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Watts, Duncan/0000-0002-5437-6121; Limon, Michele/0000-0002-5900-2698 NR 54 TC 1 Z9 1 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531J DI 10.1117/12.2056530 PG 15 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400040 ER PT S AU Araujo, DC Ade, PAR Bond, JR Bradford, KJ Chapman, D Che, G Day, PK Didier, J Doyle, S Eriksen, HK Flanigan, D Groppi, CE Hillbrand, SN Johnson, BR Jones, G Limon, M Miller, AD Mauskopf, P McCarrick, H Mroczkowski, T Reichborn-Kjennerud, B Smiley, B Sobrin, J Wehus, IK Zmuidzinas, J AF Araujo, D. C. Ade, P. A. R. Bond, J. R. Bradford, K. J. Chapman, D. Che, G. Day, P. K. Didier, J. Doyle, S. Eriksen, H. K. Flanigan, D. Groppi, C. E. Hillbrand, S. N. Johnson, B. R. Jones, G. Limon, M. Miller, A. D. Mauskopf, P. McCarrick, H. Mroczkowski, T. Reichborn-Kjennerud, B. Smiley, B. Sobrin, J. Wehus, I. K. Zmuidzinas, J. BE Holland, WS Zmuidzinas, J TI A LEKID-based CMB instrument design for large-scale observations in Greenland SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE LEKIDs; lumped-element kinetic inductance detectors; cosmology; CMB; cosmic microwave background polarization; polarimetry; half-wave plate; superconducting magnetic bearing ID POWER SPECTRUM; POLARIZATION; GHZ; MILLIMETER; HORN AB We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to < 4 K by a closed-cycle He-4 refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150 GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267 GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15 arcmin at 150 GHz) makes the instrument sensitive to 5 < l < 1000 in the angular power spectra. C1 [Araujo, D. C.; Chapman, D.; Didier, J.; Flanigan, D.; Hillbrand, S. N.; Johnson, B. R.; Jones, G.; Limon, M.; Miller, A. D.; McCarrick, H.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Ade, P. A. R.; Doyle, S.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales. [Bond, J. R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. [Bradford, K. J.; Che, G.; Groppi, C. E.; Mauskopf, P.] Arizona State Univ, Dept Phys, Phoenix, AZ USA. [Day, P. K.; Zmuidzinas, J.] Jet Prop Lab, Pasadena, CA USA. [Eriksen, H. K.; Wehus, I. K.] Univ Oslo, Inst Theoret Phys, N-0316 Oslo, Norway. [Hillbrand, S. N.] Calif State Univ Sacramento, Dept Phys & Astron, Sacramento, CA 95819 USA. [Mroczkowski, T.] US Naval Res Lab, Washington, DC USA. [Zmuidzinas, J.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. RP Araujo, DC (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM derek@phys.columbia.edu OI Limon, Michele/0000-0002-5900-2698; Mroczkowski, Tony/0000-0003-3816-5372 NR 45 TC 2 Z9 2 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91530W DI 10.1117/12.2056828 PG 15 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400023 ER PT S AU Arnold, K Stebor, N Ade, PAR Akiba, Y Anthony, AE Atlas, M Barron, D Bender, A Boettger, D Borrill, J Chapman, S Chinone, Y Cukierman, A Dobbs, M Elleflot, T Errard, J Fabbian, G Feng, C Gilbert, A Goeckner-Wald, N Halverson, NW Hasegawa, M Hattori, K Hazumi, M Holzapfel, WL Hori, Y Inoue, Y Jaehnig, GC Jaffe, AH Katayama, N Keating, B Kermish, Z Keskitalo, R Kisner, T Le Jeune, M Lee, AT Leitch, EM Linder, E Matsuda, F Matsumura, T Meng, X Miller, NJ Morii, H Myers, MJ Navaroli, M Nishino, H Okamura, T Paar, H Peloton, J Poletti, D Raum, C Rebeiz, G Reichardt, CL Richards, PL Ross, C Rotermund, KM Schenck, DE Sherwin, BD Shirley, I Sholl, M Siritanasak, P Smecher, G Steinbach, B Stompor, R Suzuki, A Suzuki, J Takada, S Takakura, S Tomaru, T Wilson, B Yadav, A Zahn, O AF Arnold, K. Stebor, N. Ade, P. A. R. Akiba, Y. Anthony, A. E. Atlas, M. Barron, D. Bender, A. Boettger, D. Borrill, J. Chapman, S. Chinone, Y. Cukierman, A. Dobbs, M. Elleflot, T. Errard, J. Fabbian, G. Feng, C. Gilbert, A. Goeckner-Wald, N. Halverson, N. W. Hasegawa, M. Hattori, K. Hazumi, M. Holzapfel, W. L. Hori, Y. Inoue, Y. Jaehnig, G. C. Jaffe, A. H. Katayama, N. Keating, B. Kermish, Z. Keskitalo, R. Kisner, T. Le Jeune, M. Lee, A. T. Leitch, E. M. Linder, E. Matsuda, F. Matsumura, T. Meng, X. Miller, N. J. Morii, H. Myers, M. J. Navaroli, M. Nishino, H. Okamura, T. Paar, H. Peloton, J. Poletti, D. Raum, C. Rebeiz, G. Reichardt, C. L. Richards, P. L. Ross, C. Rotermund, K. M. Schenck, D. E. Sherwin, B. D. Shirley, I. Sholl, M. Siritanasak, P. Smecher, G. Steinbach, B. Stompor, R. Suzuki, A. Suzuki, J. Takada, S. Takakura, S. Tomaru, T. Wilson, B. Yadav, A. Zahn, O. BE Holland, WS Zmuidzinas, J TI The Simons Array: expanding POLARBEAR to three multi-chroic telescopes SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE cosmic background radiation; polarimeters; inflation; dark matter; neutrinos; dark energy AB The Simons Array is an expansion of the POLARBEAR cosmic microwave background (CMB) polarization experiment currently observing from the Atacama Desert in Northern Chile. This expansion will create an array of three 3.5 m telescopes each coupled to a multichroic bolometric receiver. The Simons Array will have the sensitivity to produce a > 5 sigma detection of inflationary gravitational waves with a tensor-to-scalar ratio r > 0.01, detect the known minimum 58 meV sum of the neutrino masses with 3 sigma confidence when combined with a next-generation baryon acoustic oscillation measurement, and make a lensing map of large-scale structure over the 80% of the sky available from its Chilean site. These goals require high sensitivity and the ability to extract the CMB signal from contaminating astrophysical foregrounds; these requirements are met by coupling the three high-throughput telescopes to novel multichroic lenslet-coupled pixels each measuring CMB photons in both linear polarization states over multiple spectral bands. We present the status of this instrument already under construction, and an analysis of its capabilities. C1 [Fabbian, G.; Le Jeune, M.; Peloton, J.; Poletti, D.; Stompor, R.] Univ Paris Diderot, AstroParticule & Cosmol, CNRS IN2P3, CEA Irfu,Obs Paris,Sorbonne Paris Cite, Paris, France. [Anthony, A. E.; Halverson, N. W.; Jaehnig, G. C.; Schenck, D. E.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Borrill, J.; Errard, J.; Keskitalo, R.; Kisner, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Leitch, E. M.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Anthony, A. E.; Halverson, N. W.; Schenck, D. E.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Rebeiz, G.] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92093 USA. [Chapman, S.; Rotermund, K. M.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. [Jaffe, A. H.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Kermish, Z.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Chinone, Y.; Cukierman, A.; Goeckner-Wald, N.; Holzapfel, W. L.; Lee, A. T.; Meng, X.; Myers, M. J.; Raum, C.; Richards, P. L.; Sherwin, B. D.; Shirley, I.; Steinbach, B.; Suzuki, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Arnold, K.; Stebor, N.; Atlas, M.; Barron, D.; Boettger, D.; Elleflot, T.; Feng, C.; Keating, B.; Matsuda, F.; Navaroli, M.; Paar, H.; Siritanasak, P.; Wilson, B.; Yadav, A.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. [Halverson, N. W.; Jaehnig, G. C.; Miller, N. J.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Chinone, Y.; Hasegawa, M.; Hazumi, M.; Hori, Y.; Morii, H.; Okamura, T.; Suzuki, A.; Takakura, S.; Tomaru, T.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Matsumura, T.] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Fabbian, G.] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy. [Leitch, E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Hazumi, M.; Katayama, N.; Nishino, H.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Sherwin, B. D.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Takada, S.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Takakura, S.] Osaka Univ, Toyonaka, Osaka 5600043, Japan. [Bender, A.; Dobbs, M.; Gilbert, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada. [Lee, A. T.; Linder, E.; Sholl, M.; Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Ade, P. A. R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, S Glam, Wales. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Borrill, J.; Errard, J.; Kisner, T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Akiba, Y.; Hasegawa, M.; Hazumi, M.; Inoue, Y.] Grad Univ Adv Studies, Hayama, Kanagawa 2400115, Japan. [Smecher, G.] Three Speed Log Inc, Vancouver, BC V6A 2J8, Canada. RP Arnold, K (reprint author), Univ Paris Diderot, AstroParticule & Cosmol, CNRS IN2P3, CEA Irfu,Obs Paris,Sorbonne Paris Cite, Paris, France. EM arnold@ucsd.edu RI Holzapfel, William/I-4836-2015; OI Fabbian, Giulio/0000-0002-3255-4695; Reichardt, Christian/0000-0003-2226-9169 NR 14 TC 9 Z9 9 U1 2 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531F DI 10.1117/12.2057332 PG 8 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400037 ER PT S AU Bradford, CM Hailey-Dunsheath, S Shirokoff, E Hollister, M McKenney, CM Leduc, HG Reck, T Chapman, SC Tikhomirov, A Nikola, T Zmuidzinas, J AF Bradford, C. M. Hailey-Dunsheath, S. Shirokoff, E. Hollister, M. McKenney, C. M. LeDuc, H. G. Reck, T. Chapman, S. C. Tikhomirov, A. Nikola, T. Zmuidzinas, J. BE Holland, WS Zmuidzinas, J TI X-Spec, A Multi-Object, Trans-Millimeter-Wave Spectrometer for CCAT SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE CCAT; Submillimeter Spectroscopy; Multi-Object Spectroscopy; [CII] Tomography; Filterbank; Kinetic Inductance Detector ID LUMINOSITY FUNCTIONS; MOLECULAR GAS; HIGH-REDSHIFT; GALAXIES; REIONIZATION; LINE AB We present the result of a design study for X-Spec, a multi-beam, R=400-700 survey spectrometer covering 190-520 GHz under development for CCAT. It is designed to measure the bright atomic fine-structure and molecular rotational transitions that cool galaxies' interstellar gas, in particular, the 158 pm rest-frame [CII] transition, in thousands to tens of thousands of galaxies ranging from z=9 to z=3.5. With the wide bandwidth and multi-object capability, X-Spec / CCAT will be more powerful than ALMA for redshift-blind galaxy surveys and tomographic intensity mapping. X-Spec uses SuperSpec filterbank spectrometer technology with TiN KIDs described by Hailey-Dunsheath et al. in this conference. Because the density of sources is small, galaxy follow-up will be most efficient with a front-end steering unit which we have prototyped, also described in a separate paper (Chapman et al. in this conference). Our baseline instrument concept has 84 steered beams arrayed over the 1 degree CCAT field, each beam couples to 4 chips (2 bands x 2 polarizations) each chip with approximately 500 detectors, making a total of similar to 170,000 KIDs in the full instrument. A direct imaging spectrometer (integral-field spectrometer) with a comparably-sized backend is also considered. C1 [Bradford, C. M.; LeDuc, H. G.; Reck, T.] Jet Prop Lab, Pasadena, CA 91109 USA. [Hailey-Dunsheath, S.; Shirokoff, E.; Hollister, M.; McKenney, C. M.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Shirokoff, E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Chapman, S. C.; Tikhomirov, A.] Dalhousie Univ, Halifax, NS, Canada. [Nikola, T.] Cornell Univ, Ithaca, NY USA. RP Bradford, CM (reprint author), Jet Prop Lab, Pasadena, CA 91109 USA. EM bradford@caltech.edu NR 27 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531Y DI 10.1117/12.2056750 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400049 ER PT S AU Buder, I Ade, PAR Ahmed, Z Aikin, RW Alexander, KD Amiri, M Barkats, D Benton, SJ Bischoff, CA Bock, JJ Bonetti, JA Brevik, JA Bullock, E Burger, B Crill, BP Davis, G Dowell, CD Duband, L Filippini, JP Fliescher, S Golwala, SR Gordon, MS Halpern, M Hasselfield, M Hildebrandt, SR Hilton, GC Hristov, VV Hui, H Irwin, KD Karkare, KS Kaufman, JP Keating, BG Kefeli, S Kernasovskiy, SA Kovac, JM Kuo, CL Leitch, EM Lueker, M Mason, P Megerian, KG Netterfield, CB Nguyen, HT O'Brient, R Ogburn, RW Orlando, A Pryke, C Reintsema, CD Richter, S Schwarz, R Sheehy, CD Staniszewski, ZK Sudiwala, RV Teply, GP Thompson, KL Tolan, JE Turner, AD Vieregg, AG Weber, AC Wiebe, DV Wilson, P Wong, CL Yoon, KW AF Buder, I. Ade, P. A. R. Ahmed, Z. Aikin, R. W. Alexander, K. D. Amiri, M. Barkats, D. Benton, S. J. Bischoff, C. A. Bock, J. J. Bonetti, J. A. Brevik, J. A. Bullock, E. Burger, B. Crill, B. P. Davis, G. Dowell, C. D. Duband, L. Filippini, J. P. Fliescher, S. Golwala, S. R. Gordon, M. S. Halpern, M. Hasselfield, M. Hildebrandt, S. R. Hilton, G. C. Hristov, V. V. Hui, H. Irwin, K. D. Karkare, K. S. Kaufman, J. P. Keating, B. G. Kefeli, S. Kernasovskiy, S. A. Kovac, J. M. Kuo, C. L. Leitch, E. M. Lueker, M. Mason, P. Megerian, K. G. Netterfield, C. B. Nguyen, H. T. O'Brient, R. Ogburn, R. W. Orlando, A. Pryke, C. Reintsema, C. D. Richter, S. Schwarz, R. Sheehy, C. D. Staniszewski, Z. K. Sudiwala, R. V. Teply, G. P. Thompson, K. L. Tolan, J. E. Turner, A. D. Vieregg, A. G. Weber, A. C. Wiebe, D. V. Wilson, P. Wong, C. L. Yoon, K. W. BE Holland, WS Zmuidzinas, J TI BICEP2 and Keck Array: upgrades and improved beam characterization SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Inflation; Gravitational waves; Cosmic microwave background; polarization; BICEP2; Keck Array AB Searching for evidence of inflation by measuring B-modes in the cosmic microwave background (CMB) polarization at degree angular scales remains one of the most compelling experimental challenges in cosmology. BICEP2 and the Keck Array are part of a program of experiments at the South Pole whose main goal is to achieve the sensitivity and systematic control necessary for measurements of the tensor-to-scalar ratio at sigma(r) less than or similar to 0.01. Beam imperfections that are not sufficiently accounted for are a potential source of spurious polarization that could interfere with that goal. The strategy of BICEP2 and the Keck Array is to completely characterize their telescopes' polarized beam response with a combination of in-lab, pre-deployment, and on-site calibrations. We report the status of these experiments, focusing on continued improved understanding of their beams. Far-field measurements of the BICEP2 beam with a chopped thermal source, combined with analysis improvements, show that the level of residual beam-induced systematic errors is acceptable for the goal of sigma(r) similar to 0.01 measurements. Beam measurements of the Keck Array side lobes helped identify a way to reduce optical loading with interior cold baffles, which we installed in late 2013. These baffles reduced total optical loading, leading to a similar to 10% increase in mapping speed for the 2014 observing season. The sensitivity of the Keck A r r ay continues to improve: for the 2013 season it was 9.5 mu K root s noise equivalent temperature (NET). In 2014 we converted two of the 150-GHz cameras to 100 GHz for foreground separation capability. We have shown that the BICEP2 and the Keck Array telescope technology is sufficient for the goal of sigma(r) similar to 0.01 measurements. Furthermore, the program is continuing with BICEP3, a 100-GHz telescope with 2560 detectors. C1 [Buder, I.; Alexander, K. D.; Bischoff, C. A.; Gordon, M. S.; Karkare, K. S.; Kovac, J. M.; Richter, S.; Vieregg, A. G.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ade, P. A. R.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Ahmed, Z.; Crill, B. P.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ahmed, Z.; Irwin, K. D.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Yoon, K. W.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Hristov, V. V.; Hui, H.; Kefeli, S.; Lueker, M.; Mason, P.; Staniszewski, Z. K.; Teply, G. P.; Weber, A. C.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Amiri, M.; Burger, B.; Davis, G.; Halpern, M.; Hasselfield, M.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Barkats, D.] Joint ALMA Observ, Santiago, Chile. [Benton, S. J.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bock, J. J.; Crill, B. P.; Dowell, C. D.; Hildebrandt, S. R.; Megerian, K. G.; Nguyen, H. T.; O'Brient, R.; Staniszewski, Z. K.; Weber, A. C.; Wilson, P.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bullock, E.; Pryke, C.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Duband, L.] CEA Grenoble, Serv Basses Temp, F-38054 Grenoble, France. [Fliescher, S.; Pryke, C.; Schwarz, R.; Sheehy, C. D.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.] NIST, Boulder, CO 80305 USA. [Kaufman, J. P.; Keating, B. G.; Orlando, A.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Leitch, E. M.; Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Chicago, IL 60637 USA. [Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Buder, I (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St MS 42, Cambridge, MA 02138 USA. EM ibuder@cfa.harvard.edu OI Alexander, Kate/0000-0002-8297-2473; Gordon, Michael/0000-0002-1913-2682; Orlando, Angiola/0000-0001-8004-5054; Karkare, Kirit/0000-0002-5215-6993; Barkats, Denis/0000-0002-8971-1954 NR 21 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915312 DI 10.1117/12.2055713 PG 10 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400027 ER PT S AU Crites, AT Bock, JJ Bradford, CM Chang, TC Cooray, AR Duband, L Gong, Y Hailey-Dunsheath, S Hunacek, J Koch, PM Li, CT O'Brient, RC Prouve, T Shirokoff, E Silva, MB Staniszewski, Z Uzgil, B Zemcov, M AF Crites, A. T. Bock, J. J. Bradford, C. M. Chang, T. C. Cooray, A. R. Duband, L. Gong, Y. Hailey-Dunsheath, S. Hunacek, J. Koch, P. M. Li, C. T. O'Brient, R. C. Prouve, T. Shirokoff, E. Silva, M. B. Staniszewski, Z. Uzgil, B. Zemcov, M. BE Holland, WS Zmuidzinas, J TI The TIME-Pilot Intensity Mapping Experiment SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE reionization; mm-wavelenghts; spectrometers ID 158 MU-M; HIGH-REDSHIFT GALAXIES; C-II LINE; STAR-FORMATION; SPECTROSCOPY; INDICATOR; EMISSION; GAS AB TIME-Pilot is designed to make measurements from the Epoch of Reionization (EoR), when the first stars and galaxies formed and ionized the intergalactic medium. This will be done via measurements of the redshifted 157.7 um line of singly ionized carbon ([CII]). In particular, TIME-Pilot will produce the first detection of [CII] clustering fluctuations, a signal proportional to the integrated [CII] intensity, summed over all EoR galaxies. TIME-Pilot is thus sensitive to the emission from dwarf galaxies, thought to be responsible for the balance of ionizing UV photons, that will be difficult to detect individually with JWST and ALMA. A detection of [CII] clustering fluctuations would validate current theoretical estimates of the [CII] line as a new cosmological observable, opening the door for a new generation of instruments with advanced technology spectroscopic array focal planes that will map [CII] fluctuations to probe the EoR history of star formation, bubble size, and ionization state. Additionally, TIME-Pilot will produce high signal-to-noise measurements of CO clustering fluctuations, which trace the role of molecular gas in star-forming galaxies at redshifts 0 < z < 2. With its unique atmospheric noise mitigation, TIME-Pilot also significantly improves sensitivity for measuring the kinetic Sunyaev-Zel'dovich (kSZ) effect in galaxy clusters. TIME-Pilot will employ a linear array of spectrometers, each consisting of a parallel-plate diffraction grating. The spectrometer bandwidth covers 185-323 GHz to both probe the entire redshift range of interest and to include channels at the edges of the band for atmospheric noise mitigation. We illuminate the telescope with f/3 horns, which balances the desire to both couple to the sky with the best efficiency per beam, and to pack a large number of horns into the fixed field of view. Feedhorns couple radiation to the waveguide spectrometer gratings. Each spectrometer grating has 190 facets and provides resolving power above 100. At this resolution, the longest dimension of the grating is 31 cm, which allows us to stack gratings in two blocks (one for each polarization) of 16 within a single cryostat, providing a 1x16 array of beams in a 14 arcminute field of view. Direct absorber TES sensors sit at the output of the grating on six linear facets over the output arc, allowing us to package and read out the detectors as arrays in a modular manner. The 1840 detectors will be read out with the NIST time-domain-multiplexing (TDM) scheme and cooled to a base temperature of 250 mK with a 3He sorption refrigerator. We present preliminary designs for the TIME-Pilot cryogenics, spectrometers, bolometers, and optics. C1 [Crites, A. T.; Bock, J. J.; Hailey-Dunsheath, S.; Hunacek, J.; O'Brient, R. C.; Staniszewski, Z.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Shirokoff, E.] Univ Chicago, Chicago, IL 60637 USA. [Chang, T. C.; Koch, P. M.; Li, C. T.] Inst Astron & Astrophys, Taipei, Taiwan. [Bradford, C. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cooray, A. R.; Gong, Y.] Univ Calif Irvine, Irvine, CA 92607 USA. [Duband, L.; Prouve, T.] CEA Grenoble, F-38054 Grenoble, France. [Silva, M. B.; Uzgil, B.] CENTRA, Lisbon, Portugal. [Silva, M. B.; Uzgil, B.] Univ Penn, Philadelphia, PA 19104 USA. RP Crites, AT (reprint author), CALTECH, Pasadena, CA 91125 USA. EM acrites@caltech.edu NR 20 TC 9 Z9 9 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531W DI 10.1117/12.2057207 PG 9 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400048 ER PT S AU Cunnane, D Kawamura, J Karasik, BS Wolak, MA Xi, XX AF Cunnane, Daniel Kawamura, Jonathan Karasik, Boris S. Wolak, Mattheus A. Xi, X. X. BE Holland, WS Zmuidzinas, J TI Development of hot-electron THz bolometric mixers using MgB2 thin films SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Hot Electron Bolometer; Superconducting devices; MgB2; Terahertz detectors ID TEMPERATURE AB Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (similar to 3-5 nm) films of NbN with critical temperature similar to 9-11 K. Such mixers have been deployed on a number of ground-based, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth similar to 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature similar to 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth similar to 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the antenna. Measurements have been carried out on these devices in the DC, Microwave, and THz regimes. The devices are capable of mixing signals above 20 K indicating that operation may be possible using a cryogen-free cooling system. We will report the results of all measurements taken to indicate the local oscillator power requirements and the IF bandwidth of MgB2 HEB mixers. C1 [Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wolak, Mattheus A.; Xi, X. X.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. RP Cunnane, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 16 TC 2 Z9 2 U1 0 U2 12 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531Q DI 10.1117/12.2054607 PG 10 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400044 ER PT S AU Essinger-Hileman, T Ali, A Amiri, M Appel, JW Araujo, D Bennett, CL Boone, F Chan, MW Cho, HM Chuss, DT Colazo, F Crowe, E Denis, K Dunner, R Eimer, J Gothe, D Halpern, M Harrington, K Hilton, G Hinshaw, GF Huang, C Irwin, K Jones, G Karakla, J Kogut, AJ Larson, D Limon, M Lowry, L Marriage, T Mehrle, N Miller, AD Miller, N Moseley, SH Novak, G Reintsema, C Rostem, K Stevenson, T Towner, D U-Yen, K Wagner, E Watts, D Wollack, E Xu, ZL Zeng, LZ AF Essinger-Hileman, Thomas Ali, Aamir Amiri, Mandana Appel, John W. Araujo, Derek Bennett, Charles L. Boone, Fletcher Chan, Manwei Cho, Hsiao-Mei Chuss, David T. Colazo, Felipe Crowe, Erik Denis, Kevin Duenner, Rolando Eimer, Joseph Gothe, Dominik Halpern, Mark Harrington, Kathleen Hilton, Gene Hinshaw, Gary F. Huang, Caroline Irwin, Kent Jones, Glenn Karakla, John Kogut, Alan J. Larson, David Limon, Michele Lowry, Lindsay Marriage, Tobias Mehrle, Nicholas Miller, Amber D. Miller, Nathan Moseley, Samuel H. Novak, Giles Reintsema, Carl Rostem, Karwan Stevenson, Thomas Towner, Deborah U-Yen, Kongpop Wagner, Emily Watts, Duncan Wollack, Edward Xu, Zhilei Zeng, Lingzhen BE Holland, WS Zmuidzinas, J TI CLASS: The cosmology Large Angular Scale Surveyor SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE ID MICROWAVE BACKGROUND POLARIZATION; PROBE WMAP OBSERVATIONS; POWER SPECTRA; SOUTH-POLE; MILLIMETER; POLARIMETRY; TELESCOPE; FLUCTUATIONS; BOLOMETERS; BANDWIDTH AB The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low l. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0.01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. C1 [Essinger-Hileman, Thomas; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Eimer, Joseph; Gothe, Dominik; Harrington, Kathleen; Huang, Caroline; Karakla, John; Larson, David; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Wagner, Emily; Watts, Duncan; Xu, Zhilei] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Amiri, Mandana; Halpern, Mark; Hinshaw, Gary F.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Araujo, Derek; Limon, Michele; Miller, Amber D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Cho, Hsiao-Mei; Hilton, Gene; Reintsema, Carl] NIST, Boulder, CO 80305 USA. [Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Kogut, Alan J.; Miller, Amber D.; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Duenner, Rolando] Pontificia Univ Catlica Chile, Inst Astrofis, Santiago, Chile. [Irwin, Kent] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Novak, Giles] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Zeng, Lingzhen] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Essinger-Hileman, T (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Watts, Duncan/0000-0002-5437-6121; Limon, Michele/0000-0002-5900-2698 NR 57 TC 10 Z9 10 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531I DI 10.1117/12.2056701 PG 23 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400039 ER PT S AU Grace, E Beall, J Bond, JR Cho, HM Datta, R Devlin, MJ Dunner, R Fox, AE Gallardo, P Hasselfield, M Henderson, S Hilton, GC Hincks, AD Hlozek, R Hubmayr, J Irwin, K Klein, J Koopman, B Li, D Lungu, M Newburgh, L Nibarger, JP Niemack, MD Maurin, L McMahon, J Naess, S Page, LA Pappas, C Schmitt, BL Sievers, J Staggs, ST Thornton, R Van Lanen, J Wollack, EJ AF Grace, E. Beall, J. Bond, J. R. Cho, H. M. Datta, R. Devlin, M. J. Duenner, R. Fox, A. E. Gallardo, P. Hasselfield, M. Henderson, S. Hilton, G. C. Hincks, A. D. Hlozek, R. Hubmayr, J. Irwin, K. Klein, J. Koopman, B. Li, D. Lungu, M. Newburgh, L. Nibarger, J. P. Niemack, M. D. Maurin, L. McMahon, J. Naess, S. Page, L. A. Pappas, C. Schmitt, B. L. Sievers, J. Staggs, S. T. Thornton, R. Van Lanen, J. Wollack, E. J. BE Holland, WS Zmuidzinas, J TI ACTPol: on-sky performance and characterization SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Cosmology; Cosmic Microwave Background; Polarimetry; Transition Edge Sensor; Bolometer AB ACTPol is the polarization-sensitive receiver on the Atacama Cosmology Telescope. ACTPol enables sensitive millimeter wavelength measurements of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB) at arcminute angular scales. These measurements are designed to explore the process of cosmic structure formation, constrain or determine the sum of the neutrino masses, probe dark energy, and provide a foundation for a host of other cosmological tests. We present an overview of the first season of ACTPol observations focusing on the optimization and calibration of the first detector array as well as detailing the on-sky performance. C1 [Grace, E.; Newburgh, L.; Page, L. A.; Pappas, C.; Staggs, S. T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Beall, J.; Cho, H. M.; Fox, A. E.; Hilton, G. C.; Hubmayr, J.; Li, D.; Nibarger, J. P.; Van Lanen, J.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Bond, J. R.; Sievers, J.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Devlin, M. J.; Klein, J.; Lungu, M.; Schmitt, B. L.; Thornton, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Duenner, R.; Gallardo, P.; Maurin, L.] Pontificia Univ Catolica, Dept Astron & Astrofis, Santiago 22, Chile. [Gallardo, P.; Henderson, S.; Koopman, B.; Niemack, M. D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Hasselfield, M.; Hlozek, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hasselfield, M.; Hincks, A. D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Irwin, K.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Datta, R.; McMahon, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Naess, S.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Sievers, J.] Univ KwaZulu Natal, Sch Chem & Phys, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Thornton, R.; Wollack, E. J.] West Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Grace, E (reprint author), Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. EM egrace@princeton.edu RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074 NR 21 TC 4 Z9 4 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915310 DI 10.1117/12.2057243 PG 13 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400025 ER PT S AU Hailey-Dunsheath, S Shirokoff, E Barry, PS Bradford, CM Chattopadhyay, G Day, P Doyle, S Hollister, M Kovacs, A LeDuc, HG Mauskopf, P McKenney, CM Monroe, R O'Brient, R Padin, S Reck, T Swenson, L Tucker, CE Zmuidzinas, J AF Hailey-Dunsheath, S. Shirokoff, E. Barry, P. S. Bradford, C. M. Chattopadhyay, G. Day, P. Doyle, S. Hollister, M. Kovacs, A. LeDuc, H. G. Mauskopf, P. McKenney, C. M. Monroe, R. O'Brient, R. Padin, S. Reck, T. Swenson, L. Tucker, C. E. Zmuidzinas, J. BE Holland, WS Zmuidzinas, J TI Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Kinetic Inductance Detector; Millimeter-Wave; Spectroscopy; Titanium Nitride ID HIGH-REDSHIFT GALAXIES; EARLY UNIVERSE; FIELD; LINE AB SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (similar to 1.65: 1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100 - 200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R = 282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-limited R = 100 filter bank, appropriate for a line intensity mapping experiment targeting the [CII] 158 mu m transition during the Epoch of Reionization. C1 [Hailey-Dunsheath, S.; Hollister, M.; McKenney, C. M.; Monroe, R.; O'Brient, R.; Padin, S.; Swenson, L.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Shirokoff, E.] Univ Chicago, Chicago, IL 60637 USA. [Barry, P. S.; Doyle, S.; Mauskopf, P.; Tucker, C. E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales. [Bradford, C. M.; Chattopadhyay, G.; Day, P.; LeDuc, H. G.; Reck, T.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kovacs, A.] Univ Minnesota, St Paul, MN USA. Delft Univ Technol, Delft, Netherlands. [Mauskopf, P.] Arizona State Univ, Tempe, AZ USA. RP Hailey-Dunsheath, S (reprint author), CALTECH, Pasadena, CA 91125 USA. EM haileyds@caltech.edu RI Kovacs, Attila/C-1171-2010 OI Kovacs, Attila/0000-0001-8991-9088 NR 27 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91530M DI 10.1117/12.2057229 PG 16 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400015 ER PT S AU Jhabvala, CA Benford, DJ Brekosky, RP Chang, MP Costen, NP Datesman, AM Hilton, GC Irwin, KD Kogut, AJ Lazear, J Leong, ES Maher, SF Miller, TM Moseley, SH Sharp, EH Staguhn, JG Wollack, EJ AF Jhabvala, Christine A. Benford, Dominic J. Brekosky, Regis P. Chang, Meng-Ping Costen, Nicholas P. Datesman, Aaron M. Hilton, Gene C. Irwin, Kent D. Kogut, Alan J. Lazear, Justin Leong, Edward S. Maher, Stephen F. Miller, Timothy M. Moseley, S. Harvey Sharp, Elmer H. Staguhn, Johannes G. Wollack, Edward J. BE Holland, WS Zmuidzinas, J TI Kilopixel Backshort-Under-Grid arrays for the Primordial Inflation Polarization Explorer SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Backshort-Under-Grid; infrared bolometer; PIPER; through-wafer-via; transition edge sensor; indium bump bonding; atomic layer deposition ID FAR-INFRARED ASTRONOMY AB We have demonstrated a kilopixel, filled, infrared bolometer array for the balloon-borne Primordial Inflation Polarization Explorer (PIPER). The array consists of three individual components assembled into a single working unit: 1) a transition-edge-sensor bolometer array with background-limited sensitivity, 2) a quarter-wavelength backshort grid, and 3) an integrated Superconducting Quantum Interference Device (SQUID) multiplexer (MUX) readout. The detector array is a filled, square-grid of suspended, one-micron thick silicon bolometers with superconducting sensors. The Backshort-Under-Grid (BUG) is a separately fabricated component serving as a backshort to each pixel in the array. The backshorts are positioned in the cavities created behind each detector by the back-etched well. The spacing of the backshort beneath the detector grid can be set from similar to 30-300 microns by independently adjusting process parameters during fabrication. Kilopixel arrays are directly indium-bump-bonded to a 32x40 SQUID multiplexer circuit. The array architecture is suitable for a wide range of wavelengths and applications. Detector design specific to the PIPER instrument, fabrication overview, and assembly technologies will be discussed. C1 [Jhabvala, Christine A.; Benford, Dominic J.; Brekosky, Regis P.; Chang, Meng-Ping; Costen, Nicholas P.; Datesman, Aaron M.; Kogut, Alan J.; Lazear, Justin; Leong, Edward S.; Maher, Stephen F.; Miller, Timothy M.; Moseley, S. Harvey; Sharp, Elmer H.; Staguhn, Johannes G.; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Brekosky, Regis P.; Chang, Meng-Ping; Costen, Nicholas P.; Datesman, Aaron M.; Leong, Edward S.] Stinger Ghaffarian Technol Inc, Seabrook, MD 20706 USA. [Hilton, Gene C.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Irwin, Kent D.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Sharp, Elmer H.] Global Sci & Technol Inc, Greenbelt, MD 20770 USA. [Lazear, Justin; Sharp, Elmer H.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Maher, Stephen F.] Sci Syst & Applicat Inc, Greenbelt, MD 20770 USA. RP Jhabvala, CA (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM christine.a.jhabvala@nasa.gov RI Wollack, Edward/D-4467-2012; Benford, Dominic/D-4760-2012 OI Wollack, Edward/0000-0002-7567-4451; Benford, Dominic/0000-0002-9884-4206 NR 8 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91533C DI 10.1117/12.2056995 PG 11 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400092 ER PT S AU Ji, C Beyer, A Golwala, S Sayers, J AF Ji, C. Beyer, A. Golwala, S. Sayers, J. BE Holland, WS Zmuidzinas, J TI Design of antenna-coupled lumped-element titanium nitride KIDs for long-wavelength multi-band continuum imaging SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE sensors; low-temperature detectors; bolometers; submillimeter-wave and millimeter-wave receivers and detectors; kinetic inductance detectors; radio telescopes and instrumentation AB Many applications in cosmology and astrophysics at millimeter wavelengths - CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect, studies of star formation at high redshift and in our local universe and our galaxy-require large-format arrays of millimeter-wave detectors. Feedhorn, lens-coupled twinslot antenna, and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics and for simultaneous coverage of both polarizations and/or multiple spectral bands. Simultaneously, kinetic inductance detectors using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because their high responsivity can render two-level-system noise subdominant to photon and recombination noise. However, coupling the two is a challenge because of the impedance mismatch between the microstrip exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption in the KID is also a challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel-plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable two-level-system noise. We show that an optimized design can yield expected sensitivities very close to the fundamental limit from photon and recombination noises for two relevant examples: single spectral band designs appropriate for 90 and 150 GHz for CMB polarization and a multi-spectral-band design that covers 90 GHz to 405 GHz in six bands for SZ effect studies. C1 [Ji, C.; Golwala, S.; Sayers, J.] CALTECH, Pasadena, CA 91125 USA. [Beyer, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ji, C (reprint author), CALTECH, Pasadena, CA 91125 USA. EM cji@caltech.edu NR 38 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915321 DI 10.1117/12.2056777 PG 15 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400052 ER PT S AU Karasik, BS McKitterick, CB Prober, DE AF Karasik, Boris S. McKitterick, Christopher B. Prober, Daniel E. BE Holland, WS Zmuidzinas, J TI Monolayer graphene bolometer as a sensitive far-IR detector SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE graphene; hot-electron bolometer; noise thermometry; far-infrared astrophysics ID PHOTON DETECTION; NOISE; NANOBOLOMETERS; SPECTROSCOPY AB In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few mu m(2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature similar to 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at about 10 GHz where the Johnson noise emitted in equilibrium is substantially reduced. Beside the high sensitivity (NEP < 10(-20) W/Hz(1/2)), this bolometer does not have any hard saturation limit and thus can be used for far-IR sky imaging with arbitrary contrast. By changing the operating temperature of the bolometer the sensitivity can be fine tuned to accommodate the background photon flux in a particular application. By using a broadband low-noise kinetic inductance parametric amplifier, similar to 100s of graphene HEBs can be read simultaneously without saturation of the system output. C1 [Karasik, Boris S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McKitterick, Christopher B.; Prober, Daniel E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [McKitterick, Christopher B.; Prober, Daniel E.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. RP Karasik, BS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM boris.s.karasik@jpl.nasa.gov NR 32 TC 3 Z9 3 U1 2 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915309 DI 10.1117/12.2055317 PG 9 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400006 ER PT S AU Karkare, KS Ade, PAR Ahmed, Z Aikin, RW Alexander, KD Amiri, M Barkats, D Benton, SJ Bischoff, CA Bock, JJ Bonetti, JA Brevik, JA Buder, I Bullock, EW Burger, B Connors, J Crille, BP Davis, G Dowell, CD Duband, L Filippini, JP Fliescher, ST Golwala, SR Gordon, MS Grayson, JA Halpern, M Hasselfield, M Hildebrandt, SR Hilton, GC Hristov, VV Hin, H Irwin, KD Kang, JH Karpel, E Kefeli, S Kernasovskiy, SA Kovac, JM Kuo, CL Leitch, EM Lueker, M Mason, P Megerian, KG Netterfield, CB Nguyen, HT O'Brient, R Ogburn, RW Pryke, C Reintsema, CD Richter, S Schwarz, R Sheehy, CD Staniszewski, ZK Sudiwala, RV Teply, GP Thompson, KL Tolan, JE Turner, AD Vieregg, AG Weber, A Wong, CL Wu, WLK Yoon, KW AF Karkare, K. S. Ade, P. A. R. Ahmed, Z. Aikin, R. W. Alexander, K. D. Amiri, M. Barkats, D. Benton, S. J. Bischoff, C. A. Bock, J. J. Bonetti, J. A. Brevik, J. A. Buder, I. Bullock, E. W. Burger, B. Connors, J. Crille, B. P. Davis, G. Dowell, C. D. Duband, L. Filippini, J. P. Fliescher, S. T. Golwala, S. R. Gordon, M. S. Grayson, J. A. Halpern, M. Hasselfield, M. Hildebrandt, S. R. Hilton, G. C. Hristov, V. V. Hin, H. Irwin, K. D. Kang, J. H. Karpel, E. Kefeli, S. Kernasovskiy, S. A. Kovac, J. M. Kuo, C. L. Leitch, E. M. Lueker, M. Mason, P. Megerian, K. G. Netterfield, C. B. Nguyen, H. T. O'Brient, R. Ogburn, R. W. Pryke, C. Reintsema, C. D. Richter, S. Schwarz, R. Sheehy, C. D. Staniszewski, Z. K. Sudiwala, R. V. Teply, G. P. Thompson, K. L. Tolan, J. E. Turner, A. D. Vieregg, A. G. Weber, A. Wong, C. L. Wu, W. L. K. Yoon, K. W. BE Holland, WS Zmuidzinas, J TI Keck Array and BICEP3: Spectral Characterization of 5000+Detectors SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Inflation; Gravitational waves; Cosmic microwave background; Polarization; BICEP; Keck Array AB The inflationary paradigm of the early universe predicts a stochastic background of gravitational waves which would generate a B-mode polarization pattern in the cosmic microwave background (CMB) at degree angular scales. Precise measurement of B-modes is one of the most compelling observational goals in modern cosmology. Since 2011, the Keck Array has deployed over 2500 transition edge sensor (TES) bolometer detectors at 100 and 150 GHz to the South Pole in pursuit of degree-scale B-modes, and BicEP3 will follow in 2015 with 2500 more at 100 GHz. Characterizing the spectral response of these detectors is important for controlling systematic effects that could lead to leakage from the temperature to polarization signal, and for understanding potential coupling to atmospheric and astrophysical emission lines. We present complete spectral characterization of the Keck Array detectors, made with a Martin-Puplett Fourier Transform Spectrometer at the South Pole, and preliminary spectra of BicEP3 detectors taken in lab. We show band centers and effective bandwidths for both Keck Array bands, and use models of the atmosphere at the South Pole to cross check our absolute calibration. Our procedure for obtaining interferograms in the field with automated 4-axis coupling to the focal plane represents an important step towards efficient and complete spectral characterization of next-generation instruments more than 10000 detectors. C1 [Karkare, K. S.; Alexander, K. D.; Bischoff, C. A.; Buder, I.; Connors, J.; Gordon, M. S.; Kovac, J. M.; Richter, S.; Vieregg, A. G.; Wong, C. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ade, P. A. R.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Ahmed, Z.; Grayson, J. A.; Irwin, K. D.; Kang, J. H.; Karpel, E.; Kernasovskiy, S. A.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Tolan, J. E.; Wu, W. L. K.; Yoon, K. W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ahmed, Z.; Irwin, K. D.; Kuo, C. L.; Ogburn, R. W.; Thompson, K. L.; Yoon, K. W.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Crille, B. P.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Hristov, V. V.; Hin, H.; Kefeli, S.; Lueker, M.; Mason, P.; Staniszewski, Z. K.; Teply, G. P.; Weber, A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Amiri, M.; Burger, B.; Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Barkats, D.] Joint ALMA Observ, Santiago, Chile. [Benton, S. J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Bock, J. J.; Bonetti, J. A.; Crille, B. P.; Hildebrandt, S. R.; Megerian, K. G.; Nguyen, H. T.; O'Brient, R.; Staniszewski, Z. K.; Turner, A. D.; Weber, A.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bullock, E. W.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Duband, L.] Commisariat Energie Atom, Serv Basses Temperatures, F-38054 Grenoble, France. [Fliescher, S. T.; Schwarz, R.; Sheehy, C. D.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Irwin, K. D.; Reintsema, C. D.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Leitch, E. M.; Sheehy, C. D.; Vieregg, A. G.] Univ Chicago, Chicago, IL 60637 USA. [Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Karkare, KS (reprint author), 60 Garden St,MS 42, Cambridge, MA 02138 USA. EM kkarkare@cfa.harvard.edu OI Alexander, Kate/0000-0002-8297-2473; Gordon, Michael/0000-0002-1913-2682; Karkare, Kirit/0000-0002-5215-6993; Barkats, Denis/0000-0002-8971-1954 NR 16 TC 1 Z9 1 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91533B DI 10.1117/12.2056779 PG 11 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400091 ER PT S AU Kogut, A Fixsen, DJ Hill, RS Mirel, P AF Kogut, Alan Fixsen, Dale J. Hill, Robert S. Mirel, Paul BE Holland, WS Zmuidzinas, J TI Polarization properties of a multi-moded feed horn for the Primordial Inflation Explorer mission SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE feed horn; beam pattern; polarization; muti-moded optics; cosmic microwave background ID ANISOTROPY; RADIATION; WAVES AB The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to characterize the cosmic microwave background (CMB). PIXIE will map linear polarization on degree angular scales and larger to search for the gravity-wave signature of primordial inflation, and measure distortions from the blackbody spectrum to constrain energy-releasing processes in the early universe. PIXIE uses multi-moded optics to achieve sensitivity comparable to a kilo-pixel focal plane of diffraction-limited detectors, but using only 4 semiconductor bolometers illuminated by a non-imaging feed horn. PIXIE's frequency coverage extends from 30 GHz to 6 THz. Although the co- and cross-polar response of the feed horn and coupling optics is easily evaluated in the short-wavelength (geometric optics) limit, the response at longer wavelengths is more difficult to model analytically. We have built a coupled feed horn/reflector optical system based on the PIXIE design and measured the co- and cross-polar response at several wavelengths spanning the transition from the few-mode limit at long wavelengths to the geometric optics limit at short wavelengths. We compare the measured co- and cross-polar beam patterns to model predictions and discuss the implications for the PIXIE mission and similar missions using multi-moded optics. C1 [Kogut, Alan; Fixsen, Dale J.; Hill, Robert S.; Mirel, Paul] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kogut, A (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Alan.J.Kogut@nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915318 DI 10.1117/12.2056873 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400032 ER PT S AU Lazear, J Ade, PAR Benford, D Bennett, CL Chuss, DT Dotson, JL Eimer, JR Fixsen, DJ Halpern, M Hilton, G Hinderks, J Hinshaw, GF Irwin, K Jhabvala, C Johnson, B Kogut, A Lowe, L McMahon, JJ Miller, TM Mirel, P Moseley, SH Rodriguez, S Sharp, E Staguhn, JG Switzer, ER Tucker, CE Weston, A Wollack, EJ AF Lazear, Justin Ade, Peter A. R. Benford, Dominic Bennett, Charles L. Chuss, David T. Dotson, Jessie L. Eimer, Joseph R. Fixsen, Dale J. Halpern, Mark Hilton, Gene Hinderks, James Hinshaw, Gary F. Irwin, Kent Jhabvala, Christine Johnson, Bradley Kogut, Alan Lowe, Luke McMahon, Jeff J. Miller, Timothy M. Mirel, Paul Moseley, S. Harvey Rodriguez, Samelys Sharp, Elmer Staguhn, Johannes G. Switzer, Eric R. Tucker, Carole E. Weston, Amy Wollack, Edward J. BE Holland, WS Zmuidzinas, J TI The Primordial Inflation Polarization Explorer (PIPER) SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE polarimeter; cosmic microwave background; bolometer ID MULTIPLEXER; MILLIMETER AB The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BicEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on similar to 2 degree scales. If the BicEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BicEP2 results by measuring the B-mode power spectrum on angular scales 0 =similar to 0.6 degrees to 90 degrees, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight. C1 [Lazear, Justin; Bennett, Charles L.; Eimer, Joseph R.; Staguhn, Johannes G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Ade, Peter A. R.; Tucker, Carole E.] Cardiff Univ, Cardiff CF10 3AX, S Glam, Wales. [Benford, Dominic; Chuss, David T.; Fixsen, Dale J.; Hinderks, James; Jhabvala, Christine; Kogut, Alan; Lowe, Luke; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rodriguez, Samelys; Sharp, Elmer; Staguhn, Johannes G.; Switzer, Eric R.; Weston, Amy; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dotson, Jessie L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Halpern, Mark; Hinshaw, Gary F.] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada. [Hilton, Gene] NIST, Boulder, CO USA. [Irwin, Kent] Stanford Univ, Stanford, CA 94305 USA. [Johnson, Bradley] Columbia Univ, New York, NY USA. [Hinderks, James; McMahon, Jeff J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Rodriguez, Samelys; Weston, Amy] ADNET Syst Inc, Bethesda, MD USA. [Lowe, Luke; Mirel, Paul] Wyle STE, Houston, TX USA. RP Lazear, J (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA. EM jlazear@pha.jhu.edu RI Wollack, Edward/D-4467-2012; Benford, Dominic/D-4760-2012 OI Wollack, Edward/0000-0002-7567-4451; Benford, Dominic/0000-0002-9884-4206 NR 23 TC 12 Z9 12 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91531L DI 10.1117/12.2056806 PG 11 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400041 ER PT S AU Lowitz, AE Brown, AD Stevenson, TR Timbie, PT Wollack, EJ AF Lowitz, Amy E. Brown, Ari-David Stevenson, Thomas R. Timbie, Peter T. Wollack, Edward J. BE Holland, WS Zmuidzinas, J TI Design, fabrication, and testing of lumped element kinetic inductance detectors for 3 mm CMB Observations SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE kinetic inductance detectors; cosmic microwave background; CMB; KID; Molybdenum ID 2-BAND SUPERCONDUCTIVITY AB Kinetic inductance detectors (KIDs) are a promising technology for low-noise, highly-multiplexible mm- and submm-wave detection. KIDs have a number of advantages over other detector technologies, which make them an appealing option in the cosmic microwave background B-mode anisotropy search, including passive frequency domain multiplexing and relatively simple fabrication, but have suffered from challenges associated with noise control. Here we describe design and fabrication of a 20-pixel prototype array of lumped element molybdenum KIDs. We show Q, frequency and temperature measurements from the array under dark conditions. We also present evidence for a double superconducting gap in molybdenum. C1 [Lowitz, Amy E.; Timbie, Peter T.] Univ Wisconsin, Madison, WI 53706 USA. [Brown, Ari-David; Stevenson, Thomas R.; Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lowitz, AE (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM lowitz@wisc.edu RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 9 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR UNSP 91532R DI 10.1117/12.2057102 PG 7 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400077 ER PT S AU Naylor, D Gom, B Leclerc, M Legros, M Padin, S Serabyn, E AF Naylor, David Gom, Brad Leclerc, Melanie Legros, Mathieu Padin, Stephen Serabyn, Eugene BE Holland, WS Zmuidzinas, J TI Preliminary design of the wavefront sensor for CCAT SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE CCAT; submillimeter; telescope; wave front sensor ID TELESCOPES AB CCAT1 is a planned submillimeter telescope currently under development that will be located at an altitude of 5600 meters in the Andes mountains of northern Chile. The atmospheric transmission at this site will allow CCAT to achieve high sensitivity over a wide field of view and a broad wavelength range to provide an unprecedented capability for deep, large area multicolor submillimeter surveys. In order to achieve high aperture efficiencies out to frequencies of similar to 1 THz, the 162 individual panels that form the 25 meter aperture of CCAT must be aligned to a tolerance of a few microns rms. The design of a wavefront sensor to achieve this goal is presented. C1 [Naylor, David] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Gom, Brad] Blue Sky Spect Inc, Lethbridge, AB T1J 0N9, Canada. [Leclerc, Melanie; Legros, Mathieu] INO, Quebec City, PQ G1P 4S4, Canada. [Padin, Stephen] CALTECH, Pasadena, CA 91125 USA. [Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Naylor, D (reprint author), Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. EM naylor@uleth.ca NR 8 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915326 DI 10.1117/12.2055372 PG 7 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400057 ER PT S AU O'Brient, R Bock, JJ Bradford, CM Crites, A Duan, R Hailey-Dunsheath, S Hunacek, J LeDuc, R Shirokoff, E Staniszewski, Z Turner, A Zemcov, M AF O'Brient, R. Bock, J. J. Bradford, C. M. Crites, A. Duan, R. Hailey-Dunsheath, S. Hunacek, J. LeDuc, R. Shirokoff, E. Staniszewski, Z. Turner, A. Zemcov, M. BE Holland, WS Zmuidzinas, J TI Lithographed spectrometers for tomographic line mapping of the Epoch of Reionization SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Epoch of Reionization; spectrometer AB The Tomographic Ionized carbon Mapping Experiment (TIME) is a multi-phased experiment that will topographically map [CII] emission from the Epoch of Reionization. We are developing lithographed spectrometers that couple to TES bolometers in anticipation of the second generation instrument. Our design intentionally mirrors many features of the parallel SuperSpec project, inductively coupling power from a trunk-line microstrip onto half-wave resonators. The resonators couple to a rat-race hybrids that feeds TES bolometers. Our 25 channel prototype shows spectrally positioned lines roughly matching design with a receiver optical efficiency of 15-20%, a level that is dominated by loss in components outside the spectrometer. C1 [O'Brient, R.; Bock, J. J.; Crites, A.; Duan, R.; Hailey-Dunsheath, S.; Hunacek, J.; Staniszewski, Z.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [O'Brient, R.; Bock, J. J.; Bradford, C. M.; Crites, A.; LeDuc, R.; Staniszewski, Z.; Turner, A.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Shirokoff, E.] Univ Chicago, Dept Astron, Chicago, IL 60637 USA. RP O'Brient, R (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM rogero@caltech.edu NR 20 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91530F DI 10.1117/12.2057319 PG 11 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400010 ER PT S AU Parshley, SC Adams, J Nikola, T Stacey, GJ AF Parshley, Stephen C. Adams, Joseph Nikola, Thomas Stacey, Gordon J. BE Holland, WS Zmuidzinas, J TI The Opto-Cryo-Mechanical Design of the Short Wavelength Camera for the CCAT Observatory SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE submillimeter; optical design; lens mount; cryogenic design; facilities: CCAT; instruments: SWCam AB The CCAT observatory is a 25-m class Gregorian telescope designed for submillimeter observations that will be deployed at Cerro Chajnantor (similar to 5600 m) in the high Atacama Desert region of Chile. The Short Wavelength Camera (SWCam) for CCAT is an integral part of the observatory, enabling the study of star formation at high and low redshifts. SWCam will be a facility instrument, available at first light and operating in the telluric windows at wavelengths of 350, 450 and 850 mu m, and 2 mm. In order to trace the large curvature of the CCAT focal plane, and to suit the available instrument space, SWCam is divided into seven sub-cameras, each configured to a particular telluric window. A fully refractive optical design in each sub-camera will produce diffraction-limited images. The material of choice for the optical elements is silicon, due to its excellent transmission in the submillimeter and its high index of refraction, enabling thin lenses of a given power. The cryostat's vacuum windows double as the sub-cameras' field lenses and are similar to 30 cm in diameter. The other lenses are mounted at 4 K. The sub-cameras will share a single cryostat providing thermal intercepts at 80, 15, 4, 1 and 0.1 K, with cooling provided by pulse tube cryocoolers and a dilution refrigerator. The use of the intermediate temperature stage at 15 K minimizes the load at 4 K and reduces operating costs. We discuss our design requirements, specifications, key elements and expected performance of the optical, thermal and mechanical design for the short wavelength camera for CCAT. C1 [Parshley, Stephen C.; Adams, Joseph; Nikola, Thomas] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Adams, Joseph] NASA, Armstrong Flight Res Ctr, SOFIA USRA, Sci & Aircraft Integrat Facil, Palmdale, CA 93550 USA. [Stacey, Gordon J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Parshley, SC (reprint author), Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. EM scp8@cornell.edu NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91532A DI 10.1117/12.2056984 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400061 ER PT S AU Rahlin, AS Ade, PAR Amiri, M Benton, SJ Bock, JJ Bond, JR Bryan, SA Chiang, HC Contaldi, CR Crill, BP Dore, O Farhang, M Filippini, JP Fissel, LM Fraisse, AA Gambrel, AE Gandilo, NN Golwala, S Gudmundsson, JE Halpern, M Hasselfield, MF Hilton, G Holmes, WA Hristov, VV Irwin, KD Jones, WC Kermish, ZD Kuo, CL MacTavish, CJ Mason, PV Megerian, K Moncelsi, L Morford, TA Nagy, JM Netterfield, CB O'Brient, R Reintsema, C Ruhl, JE Runyan, MC Shariff, JA Soler, JD Trangsrud, A Tucker, C Tucker, RS Turner, AD Weber, AC Wiebe, DV Young, EY AF Rahlin, A. S. Ade, P. A. R. Amiri, M. Benton, S. J. Bock, J. J. Bond, J. R. Bryan, S. A. Chiang, H. C. Contaldi, C. R. Crill, B. P. Dore, O. Farhang, M. Filippini, J. P. Fissel, L. M. Fraisse, A. A. Gambrel, A. E. Gandilo, N. N. Golwala, S. Gudmundsson, J. E. Halpern, M. Hasselfield, M. F. Hilton, G. Holmes, W. A. Hristov, V. V. Irwin, K. D. Jones, W. C. Kermish, Z. D. Kuo, C. L. MacTavish, C. J. Mason, P. V. Megerian, K. Moncelsi, L. Morford, T. A. Nagy, J. M. Netterfield, C. B. O'Brient, R. Reintsema, C. Ruhl, J. E. Runyan, M. C. Shariff, J. A. Soler, J. D. Trangsrud, A. Tucker, C. Tucker, R. S. Turner, A. D. Weber, A. C. Wiebe, D. V. Young, E. Y. BE Holland, WS Zmuidzinas, J TI Pre-flight integration and characterization of the SPIDER balloon-borne telescope SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE SPIDER; cosmic microwave background; polarization; inflation; transition-edge sensor; scientific ballooning; millimeter wave instrumentation; cosmology ID MICROWAVE BACKGROUND POLARIMETRY AB We present the results of integration and characterization of the Spider instrument after the 2013 pre-flight campaign. SPIDER is a balloon-borne polarimeter designed to probe the primordial gravitational wave signal in the degree-scale B-mode polarization of the cosmic microwave background. With six independent telescopes housing over 2000 detectors in the 94 GHz and 150 GHz frequency bands, SPIDER will map 7.5% of the sky with a depth of 11 to 14 mu K.arcmin at each frequency, which is a factor of similar to 5 improvement over Planck. We discuss the integration of the pointing, cryogenic, electronics, and power sub-systems, as well as pre-flight characterization of the detectors and optical systems. SPIDER is well prepared for a December 2014 flight from Antarctica, and is expected to be limited by astrophysical foreground emission, and not instrumental sensitivity, over the survey region. C1 [Rahlin, A. S.; Fraisse, A. A.; Gambrel, A. E.; Gudmundsson, J. E.; Jones, W. C.; Kermish, Z. D.; Young, E. Y.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Ade, P. A. R.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3AX, S Glam, Wales. [Amiri, M.; Golwala, S.; Halpern, M.; Hasselfield, M. F.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Benton, S. J.; Farhang, M.; Fissel, L. M.; Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Bock, J. J.; Crill, B. P.; Dore, O.; Filippini, J. P.; Hristov, V. V.; Mason, P. V.; Moncelsi, L.; Morford, T. A.; O'Brient, R.; Tucker, R. S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Bock, J. J.; Crill, B. P.; Dore, O.; Holmes, W. A.; Megerian, K.; O'Brient, R.; Runyan, M. C.; Trangsrud, A.; Turner, A. D.; Weber, A. C.] Jet Prop Lab, Pasadena, CA USA. [Bond, J. R.; Farhang, M.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. [Bond, J. R.; Halpern, M.; Netterfield, C. B.] Canadian Inst Adv Res, Toronto, ON, Canada. [Bryan, S. A.; Nagy, J. M.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa. [Contaldi, C. R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Theoret Phys, London, England. [Fissel, L. M.] Northwestern Univ, CIERA, Evanston, IL USA. [Gandilo, N. N.; Netterfield, C. B.; Shariff, J. A.; Soler, J. D.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Hasselfield, M. F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hilton, G.; Irwin, K. D.; Reintsema, C.] NIST, Boulder, CO USA. [Irwin, K. D.; Kuo, C. L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Irwin, K. D.; Kuo, C. L.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [MacTavish, C. J.] Univ Cambridge, Kavli Inst Cosmol, Cambridge, England. [Soler, J. D.] Inst Astrophys Spatiale, Orsay, France. RP Rahlin, AS (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. EM arahlin@princeton.edu NR 50 TC 6 Z9 6 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915313 DI 10.1117/12.2055683 PG 25 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400028 ER PT S AU Rostem, K Ali, A Appel, JW Bennett, CL Chuss, DT Colazo, FA Crowe, E Denis, KL Essinger-Hileman, T Marriage, TA Moseley, SH Stevenson, TR Towner, DW U-Yen, K Wollack, EJ AF Rostem, Karwan Ali, Aamir Appel, John W. Bennett, Charles L. Chuss, David T. Colazo, Felipe A. Crowe, Erik Denis, Kevin L. Essinger-Hileman, Tom Marriage, Tobias A. Moseley, Samuel H. Stevenson, Thomas R. Towner, Deborah W. U-Yen, Kongpop Wollack, Edward J. BE Holland, WS Zmuidzinas, J TI Scalable background-limited polarization-sensitive detectors for mm-wave applications SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE Millimeter-Wave Detectors; Polarimeters; Transition-Edge Sensor; CMB Instruments AB We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors. C1 [Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Essinger-Hileman, Tom; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Rostem, Karwan; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Moseley, Samuel H.; Stevenson, Thomas R.; Towner, Deborah W.; U-Yen, Kongpop; Wollack, Edward J.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rostem, K (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. EM karwan.rostem@nasa.gov RI Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 23 TC 1 Z9 1 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91530B DI 10.1117/12.2057266 PG 7 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400008 ER PT S AU Sayers, J Bockstiegel, C Brugger, S Czakon, NG Day, PK Downes, TP Duan, RP Gao, JS Gill, AK Glenn, J Golwala, SR Hollister, MI Lam, A Leduc, HG Maloney, PR Mazin, BA McHugh, SG Miller, DA Mroczkowski, AK Noroozian, O Nguyen, HT Schlaerth, JA Siegel, SR Vayonakis, A Wilson, PR Zmuidzinas, J AF Sayers, Jack Bockstiegel, Clint Brugger, Spencer Czakon, Nicole G. Day, Peter K. Downes, Thomas P. Duan, Ran P. Gao, Jiansong Gill, Amandeep K. Glenn, Jason Golwala, Sunil R. Hollister, Matt I. Lam, Albert LeDuc, Henry G. Maloney, Philip R. Mazin, Benjamin A. McHugh, Sean G. Miller, David A. Mroczkowski, Anthony K. Noroozian, Omid Nguyen, Hien T. Schlaerth, James A. Siegel, Seth R. Vayonakis, Anastasios Wilson, Philip R. Zmuidzinas, Jonas BE Holland, WS Zmuidzinas, J TI The Status of MUSIC: The Multiwavelength Sub/millimeter Inductance Camera SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE kinetic inductance detectors; millimeter-wave instrumentation; submillimeter instrumentation; low-temperature detectors ID GALAXY CLUSTERS; BOLOCAM; SAMPLE AB The Multiwavelength Sub/millimeter Inductance Camera (MUSIC) is a four-band photometric imaging camera operating from the Caltech Submillimeter Observatory (CSO). MUSIC is designed to utilize 2304 microwave kinetic inductance detectors (MKIDs), with 576 MKIDs for each observing band centered on 150, 230, 290, and 350 GHz. MUSIC's field of view (FOV) is 14' square, and the point-spread functions (PSFs) in the four observing bands have 45 '', 31 '', 25 '', and 22 '' full-widths at half maximum (FWHM). The camera was installed in April 2012 with 25% of its nominal detector count in each band, and has subsequently completed three short sets of engineering observations and one longer duration set of early science observations. Recent results from on-sky characterization of the instrument during these observing runs are presented, including achieved map-based sensitivities from deep integrations, along with results from lab-based measurements made during the same period. In addition, recent upgrades to MUSIC, which are expected to significantly improve the sensitivity of the camera, are described. C1 [Sayers, Jack; Duan, Ran P.; Golwala, Sunil R.; Hollister, Matt I.; Lam, Albert; Miller, David A.; Schlaerth, James A.; Siegel, Seth R.; Vayonakis, Anastasios; Zmuidzinas, Jonas] CALTECH, Pasadena, CA 91125 USA. [Bockstiegel, Clint; Gao, Jiansong] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Brugger, Spencer; Gill, Amandeep K.; Glenn, Jason; Maloney, Philip R.] Univ Colorado, Boulder, CO 80309 USA. [Czakon, Nicole G.] Acad Sinica, Taipei 10617, Taiwan. [Day, Peter K.; LeDuc, Henry G.; Nguyen, Hien T.; Wilson, Philip R.; Zmuidzinas, Jonas] Jet Prop Lab, Pasadena, CA 91109 USA. [Downes, Thomas P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Mazin, Benjamin A.; McHugh, Sean G.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Mroczkowski, Anthony K.] US Navy, Res Lab, Washington, DC 20375 USA. [Noroozian, Omid] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sayers, J (reprint author), CALTECH, Pasadena, CA 91125 USA. EM jack@caltech.edu.edu RI Mazin, Ben/B-8704-2011; OI Mazin, Ben/0000-0003-0526-1114; Mroczkowski, Tony/0000-0003-3816-5372 NR 35 TC 3 Z9 3 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 915304 DI 10.1117/12.2055444 PG 18 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400003 ER PT S AU Sieth, M Devaraj, K Voll, P Church, S Gawande, R Cleary, K Readhead, ACS Kangaslahti, P Samoska, L Gaier, T Goldsmith, PF Harris, AI Gundersen, JO Frayerg, D White, S Egan, D Reeves, R AF Sieth, Matthew Devaraj, Kiruthika Voll, Patricia Church, Sarah Gawande, Rohit Cleary, Kieran Readhead, Anthony C. S. Kangaslahti, Pekka Samoska, Lorene Gaier, Todd Goldsmith, Paul F. Harris, Andrew I. Gundersen, Joshua O. Frayerg, David White, Steve Egan, Dennis Reeves, Rodrigo BE Holland, WS Zmuidzinas, J TI Argus: A 16-pixel Millimeter-Wave Spectrometer for the Green Bank Telescope SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE millimeter-wave; spectrometer; cryogenic focal plane array; W-band; InP MMIC low-noise amplifiers; multi-chip modules; star formation ID W-BAND AB We report on the development of Argus, a 16-pixel spectrometer, which will enable fast astronomical imaging over the 85-116 GHz band. Each pixel includes a compact heterodyne receiver module, which integrates two InP MMIC low-noise amplifiers, a coupled-line bandpass filter and a sub-harmonic Schottky diode mixer. The receiver signals are routed to and from the multi-chip MMIC modules with multilayer high frequency printed circuit boards, which includes LO splitters and IF amplifiers. Microstrip lines on flexible circuitry are used to transport signals between temperature stages. The spectrometer frontend is designed to be scalable, so that the array design can be reconfigured for future instruments with hundreds of pixels. Argus is scheduled to be commissioned at the Robert C. Byrd Green Bank Telescope in late 2014. Preliminary data for the first Argus pixels are presented. C1 [Sieth, Matthew; Devaraj, Kiruthika; Voll, Patricia; Church, Sarah] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Sieth, Matthew; Devaraj, Kiruthika; Voll, Patricia; Church, Sarah] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Gawande, Rohit; Cleary, Kieran; Readhead, Anthony C. S.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Kangaslahti, Pekka; Samoska, Lorene; Gaier, Todd; Goldsmith, Paul F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Harris, Andrew I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gundersen, Joshua O.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Frayerg, David; White, Steve; Egan, Dennis] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Reeves, Rodrigo] Univ Concepcion, Dept Astron, CePIA, Concepcion, Chile. RP Sieth, M (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM mmsieth@stanford.edu NR 16 TC 1 Z9 1 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91530P DI 10.1117/12.2055655 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400018 ER PT S AU Stacey, GJ Parshley, S Nikola, T Cortes-Medellin, G Schoenwald, J Rajagopalan, G Niemack, MD Jenness, T Gallardo, P Koopman, B Dowell, CD Day, PK Hollister, MI Kovacs, A LeDuc, HG McKenney, CM Monro, RM Yoshida, H Zmuidzinas, J Swenson, LJ Radford, SJ Nguyen, HT Mroczkowski, AK Glenn, J Wheeler, J Maloney, P Brugger, S Adams, JD Bertoldi, F Schaaf, R Halpern, M Scott, D Marsden, G Sayers, J Chapman, S Vieira, JD AF Stacey, Gordon J. Parshley, Stephen Nikola, Thomas Cortes-Medellin, German Schoenwald, Justin Rajagopalan, Ganesan Niemack, Michael D. Jenness, Tim Gallardo, Patricio Koopman, Brian Dowell, Charles D. Day, Peter K. Hollister, Matthew I. Kovacs, Attila LeDuc, Henry G. McKenney, Christopher M. Monro, Ryan M. Yoshida, Hiroshige Zmuidzinas, Jonas Swenson, Loren J. Radford, Simon J. Hien Trong Nguyen Mroczkowski, Anthony K. Glenn, Jason Wheeler, Jordan Maloney, Phil Brugger, Spencer Adams, Joseph D. Bertoldi, Frank Schaaf, Reinhold Halpern, Mark Scott, Douglas Marsden, Gaelen Sayers, Jack Chapman, Scott Vieira, Joaquin D. BE Holland, WS Zmuidzinas, J TI SWCam: the short wavelength camera for the CCAT observatory SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE CCAT telescope; submillimeter cameras; LEKID detectors; submillimeter galaxies; high redshift universe AB We describe the Short Wavelength Camera (SWCam) for the CCAT observatory including the primary science drivers, the coupling of the science drivers to the instrument requirements, the resulting implementation of the design, and its performance expectations at first light. CCAT is a 25 m submillimeter telescope planned to operate at 5600 meters, near the summit of Cerro Chajnantor in the Atacama Desert in northern Chile. CCAT is designed to give a total wave front error of 12.5 mu m rms, so that combined with its high and exceptionally dry site, the facility will provide unsurpassed point source sensitivity deep into the short submillimeter bands to wavelengths as short as the 200 mu m telluric window. The SWCam system consists of 7 sub-cameras that address 4 different telluric windows: 4 subcameras at 350 mu m, 1 at 450 mu m, 1 at 850 mu m, and 1 at 2 mm wavelength. Each sub-camera has a 6' diameter field of view, so that the total instantaneous field of view for SWCam is equivalent to a 16' diameter circle. Each focal plane is populated with near unit filling factor arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) with pixels scaled to subtend an solid angle of (lambda/D)(2) on the sky. The total pixel count is 57,160. We expect background limited performance at each wavelength, and to be able to map > 35((0) 2) of sky to 5 sigma on the confusion noise at each wavelength per year with this first light instrument. Our primary science goal is to resolve the Cosmic Far-IR Background (CIRB) in our four colors so that we may explore the star and galaxy formation history of the Universe extending to within 500 million years of the Big Bang. CCAT's large and high-accuracy aperture, its fast slewing speed, use of instruments with large format arrays, and being located at a superb site enables mapping speeds of up to three orders of magnitude larger than contemporary or near future facilities and makes it uniquely sensitive, especially in the short submm bands. C1 [Stacey, Gordon J.; Parshley, Stephen; Nikola, Thomas; Cortes-Medellin, German; Schoenwald, Justin; Rajagopalan, Ganesan; Niemack, Michael D.; Jenness, Tim; Gallardo, Patricio; Koopman, Brian] Cornell Univ, Ithaca, NY 14853 USA. [Dowell, Charles D.; Hollister, Matthew I.; Kovacs, Attila; McKenney, Christopher M.; Yoshida, Hiroshige; Zmuidzinas, Jonas; Swenson, Loren J.; Radford, Simon J.; Mroczkowski, Anthony K.; Sayers, Jack; Vieira, Joaquin D.] CALTECH, Pasadena, CA 91125 USA. [Day, Peter K.; LeDuc, Henry G.; Hien Trong Nguyen] Jet Prop Lab, Pasadena, CA USA. [Kovacs, Attila] Univ Minnesota, Minneapolis, MN 55455 USA. [Glenn, Jason; Wheeler, Jordan; Maloney, Phil; Brugger, Spencer] Univ Colorado, Boulder, CO 80309 USA. [Adams, Joseph D.] NASA, Armstrong Flight Res Ctr, Sci & Aircraft Integrat Facil, SOFIA USRA, Palmdale, CA 93550 USA. [Bertoldi, Frank; Schaaf, Reinhold] Univ Bonn, Bonn, Germany. [Halpern, Mark; Scott, Douglas; Marsden, Gaelen] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada. [Chapman, Scott] Dalhousie Univ, Halifax, NS B3H 3J5, Canada. RP Stacey, GJ (reprint author), Cornell Univ, Ithaca, NY 14853 USA. EM gjs12@cornell.edu RI Kovacs, Attila/C-1171-2010; OI Kovacs, Attila/0000-0001-8991-9088; Scott, Douglas/0000-0002-6878-9840; Mroczkowski, Tony/0000-0003-3816-5372; Jenness, Tim/0000-0001-5982-167X NR 12 TC 3 Z9 3 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91530L DI 10.1117/12.2057101 PG 16 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400014 ER PT S AU Wheeler, CH Groppi, CE Mani, H McGarey, P Kuenzi, L Weinreb, S Russell, DS Kooi, JW Lichtenberger, AW Walker, CK Kulesa, C AF Wheeler, Caleb H. Groppi, Christopher E. Mani, Hamdi McGarey, Patrick Kuenzi, Linda Weinreb, Sander Russell, Damon S. Kooi, Jacob W. Lichtenberger, Arthur W. Walker, Christopher K. Kulesa, Craig BE Holland, WS Zmuidzinas, J TI The Kilopixel Array Pathfinder Project (KAPPa), a 16-pixel integrated heterodyne focal plane array - Characterization of the Single Pixel Prototype SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE THz imaging; array receivers; SIS receivers; astrophysics AB We report on the laboratory testing of KAPPa, a 16-pixel proof-of-concept array to enable the creation THz imaging spectrometer with similar to 1000 pixels. Creating an array an order of magnitude larger than the existing state of the art of 64 pixels requires a simple and robust design as well as improvements to mixer selection, testing, and assembly. Our testing employs a single pixel test bench where a novel 2D array architecture is tested. The minimum size of the footprint is dictated by the diameter of the drilled feedhorn aperture. In the adjoining detector block, a 6mm x 6mm footprint houses the SIS mixer, LNA, matching and bias networks, and permanent magnet. We present an initial characterization of the single pixel prototype using a computer controlled test bench to determine Y-factors for a parameter space of LO power, LO frequency, IF bandwidth, magnet field strength, and SIS bias voltage. To reduce the need to replace poorly preforming pixels that are already mounted in a large format array, we show techniques to improve SIS mixer selection prior to mounting in the detector block. The 2D integrated 16-pixel array design has been evolved as we investigate the properties of the single pixel prototype. Carful design of the prototype has allowed for rapid translation of single pixel design improvements to be easily incorporated into the 16-pixel model. C1 [Wheeler, Caleb H.; Groppi, Christopher E.; Mani, Hamdi; Kuenzi, Linda] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Wheeler, Caleb H.; Groppi, Christopher E.; Mani, Hamdi; Kuenzi, Linda] Univ Toronto, Inst Aerosp Studies, Autonomous Space Robot Lab, Toronto, ON, Canada. [Weinreb, Sander; Kooi, Jacob W.] CALTECH, Pasadena, CA 91125 USA. [Russell, Damon S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lichtenberger, Arthur W.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Walker, Christopher K.; Kulesa, Craig] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Wheeler, CH (reprint author), Arizona State Univ, Sch Earth & Space Explorat, POB 876004, Tempe, AZ 85287 USA. EM chw3k5@gmail.com NR 10 TC 3 Z9 3 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91530K DI 10.1117/12.2056606 PG 8 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400013 ER PT S AU Wheeler, JD Koopman, B Gallardo, P Maloney, PR Brugger, S Cortes-Medellin, G Datta, R Dowell, CD Glenn, J Golwala, S McKenney, C McMahon, JJ Munson, CD Niemack, M Parshley, S Stacey, G AF Wheeler, Jordan D. Koopman, Brian Gallardo, Patricio Maloney, Philip R. Brugger, Spencer Cortes-Medellin, German Datta, Rahul Dowell, C. Darren Glenn, Jason Golwala, Sunil McKenney, Chris McMahon, Jeffrey J. Munson, Charles D. Niemack, Mike Parshley, Steven Stacey, Gordon BE Holland, WS Zmuidzinas, J TI Anti-reflection coatings for submillimeter silicon lenses SO MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII CY JUN 24-27, 2014 CL Montreal, CANADA SP SPIE DE submillimeter; artificial dielectric meta-materials; anti-reflection; Facilities: CCAT; terahertz; Parylene; SWCam; silicon; lenses AB Low-loss lenses are required for submillimeter astronomical applications, such as instrumentation for CCAT, a 25 m diameter telescope to be built at an elevation of 18,400 ft in Chile. Silicon is a leading candidate for dielectric lenses due to its low transmission loss and high index of refraction; however, the latter can lead to large reflection losses. Additionally, large diameter lenses (up to 40 cm), with substantial curvature present a challenge for fabrication of antireflection coatings. Three anti-reflection coatings are considered: a deposited dielectric coating of Parylene C, fine mesh structures cut with a dicing saw, and thin etched silicon layers (fabricated with deep reactive ion etching) for bonding to lenses. Modeling, laboratory measurements, and practicalities of fabrication for the three coatings are presented and compared. Measurements of the Parylene C anti-reflection coating were found to be consistent with previous studies and can be expected to result in a 6% transmission loss for each interface from 0.787 to 0.908 THz. The thin etched silicon layers and fine mesh structure anti-reflection coatings were designed and fabricated on test silicon wafers and found to have reflection losses less than 1% at each interface from 0.787 to 0.908 THz. The thin etched silicon layers are our preferred method because of high transmission efficiency while having an intrinsically faster fabrication time than fine structures cut with dicing saws, though much work remains to adapt the etched approach to curved surfaces and optics > 4" in diameter unlike the diced coatings. C1 [Wheeler, Jordan D.; Maloney, Philip R.; Brugger, Spencer; Glenn, Jason] Univ Colorado, CASA, Boulder, CO 80309 USA. [Koopman, Brian; Gallardo, Patricio; Niemack, Mike] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Cortes-Medellin, German; Parshley, Steven] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Datta, Rahul; McMahon, Jeffrey J.; Munson, Charles D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Dowell, C. Darren; McKenney, Chris] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Golwala, Sunil] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Stacey, Gordon] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Wheeler, JD (reprint author), Univ Colorado, CASA, UCB 593, Boulder, CO 80309 USA. EM Wheeler1711@gmail.com NR 20 TC 1 Z9 1 U1 2 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9621-8 J9 PROC SPIE PY 2014 VL 9153 AR 91532Z DI 10.1117/12.2057011 PG 11 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BC6QG UT WOS:000354387400083 ER PT S AU Rocha, C Meseguer, J Munoz, C AF Rocha, Camilo Meseguer, Jose Munoz, Cesar BE Escobar, S TI Rewriting Modulo SMT and Open System Analysis SO REWRITING LOGIC AND ITS APPLICATIONS, WRLA 2014 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 10th International Workshop on Rewriting Logic and its Applications (WRLA) CY APR 05-06, 2014 CL Grenoble, FRANCE ID BOUNDED MODEL CHECKING; LOGIC; UNIFICATION; ALGEBRA; SOLVERS; SAT AB This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism, which is proper to the system, and external non-determinism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of a real-time system that is beyond the scope of timed-automata methods. C1 [Rocha, Camilo] Escuela Colombiana Ingn, Bogota, Colombia. [Meseguer, Jose] Univ Illinois, Urbana, IL USA. [Munoz, Cesar] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Rocha, C (reprint author), Escuela Colombiana Ingn, Bogota, Colombia. EM camilo.rocha@escuelaing.edu.co NR 39 TC 13 Z9 13 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-12904-4; 978-3-319-12903-7 J9 LECT NOTES COMPUT SC PY 2014 VL 8663 BP 247 EP 262 DI 10.1007/978-3-319-12904-4_14 PG 16 WC Computer Science, Software Engineering; Computer Science, Theory & Methods; Logic SC Computer Science; Science & Technology - Other Topics GA BC7JO UT WOS:000354950300014 ER PT S AU An, HJ Madsen, KK Westergaard, NJ Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Stern, DK Zhang, WW AF An, Hongjun Madsen, Kristin K. Westergaard, Niels J. Boggs, Steven E. Christensen, Finn E. Craig, William W. Hailey, Charles J. Harrison, Fiona A. Stern, Daniel K. Zhang, William W. BE Takahashi, T DenHerder, JWA Bautz, M TI In-flight PSF calibration of the NuSTAR hard X-ray optics SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE NuSTAR; X-ray optics; Point Spread Function (PSF); Half Power Diameter (HPD); Calibration ID TELESCOPE AB We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuS TAR). iniiuediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is less than or similar to 3 for extraction apertures of R greater than or similar to 60" with no significant energy dependence. We also show that the PSF of the NubSTAR optics has been stable over a period of similar to 300 days during its in-orbit operation. C1 [An, Hongjun] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Madsen, Kristin K.; Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Westergaard, Niels J.; Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Stern, Daniel K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP An, HJ (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. EM hjan@physics.mcgill.ca OI Madsen, Kristin/0000-0003-1252-4891 NR 15 TC 3 Z9 3 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91441Q DI 10.1117/12.2055481 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100051 ER PT S AU Arenberg, J Matthews, G Atkinson, C Cohen, L Golisano, C Havey, K Hefner, K Jones, C Kegley, J Knollenberg, P Lavoie, T Oliver, J Plucinsky, P Tananbaum, H Texter, S Weisskopf, MC AF Arenberg, Jonathan Matthews, Gary Atkinson, C. Cohen, L. Golisano, C. Havey, K. Hefner, K. Jones, C. Kegley, J. Knollenberg, P. Lavoie, T. Oliver, J. Plucinsky, P. Tananbaum, H. Texter, S. Weisskopf, M. C. BE Takahashi, T DenHerder, JWA Bautz, M TI Lessons We Learned Designing and Building the Chandra Telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE AXAF; Chandra; x-ray telescope; space missions; lessons learned AB 2014 marks the crystal (15th) anniversary of the launch of the Chandra X-ray Observatory, which began its existence as the Advanced X-ray Astrophysics Facility (AXAF). This paper offers some of the major lessons learned by some of the key members of the Chandra Telescope team. We offer some of the lessons gleaned from our experiences developing, designing, building and testing the telescope and its subsystems, with 15 years of hindsight. Among the topics to be discussed are the early developmental tests, known as VETA-I and VETA-II, requirements derivation, the impact of late requirements and reflection on the conservatism in the design process. C1 [Arenberg, Jonathan; Atkinson, C.; Knollenberg, P.; Texter, S.] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. [Matthews, Gary; Golisano, C.; Havey, K.] Exelis, Rochester, NY 14606 USA. [Hefner, K.; Kegley, J.; Lavoie, T.; Oliver, J.; Weisskopf, M. C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35816 USA. [Cohen, L.; Jones, C.; Plucinsky, P.; Tananbaum, H.] Smithsonian Astrophys Observ, Ctr Astrophys, Cambridge, MA USA. RP Arenberg, J (reprint author), Northrop Grumman Aerosp Syst, One Space Pk, Redondo Beach, CA 90278 USA. OI Arenberg, Jonathan/0000-0003-1096-5634 NR 12 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91440Q DI 10.1117/12.2055515 PG 17 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100022 ER PT S AU Arzoumanian, Z Gendreau, KC Baker, CL Cazeau, T Hestnes, P Kellogg, JW Kenyon, SJ Kozon, RP Liu, KC Manthripragada, SS Markwardt, CB Mitchell, AL Mitchell, JW Monroe, CA Okajima, T Pollard, SE Powers, DF Savadkin, BJ Winternitz, LB Chen, PT Wright, MR Foster, R Prigozhin, G Remillard, R Doty, J AF Arzoumanian, Z. Gendreau, K. C. Baker, C. L. Cazeau, T. Hestnes, P. Kellogg, J. W. Kenyon, S. J. Kozon, R. P. Liu, K. -C. Manthripragada, S. S. Markwardt, C. B. Mitchell, A. L. Mitchell, J. W. Monroe, C. A. Okajima, T. Pollard, S. E. Powers, D. F. Savadkin, B. J. Winternitz, L. B. Chen, P. T. Wright, M. R. Foster, R. Prigozhin, G. Remillard, R. Doty, J. BE Takahashi, T DenHerder, JWA Bautz, M TI The Neutron star Interior Composition Explorer (NICER): mission definition SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray; neutron star; pulsar; timing; SEXTANT; XNAV; navigation; International Space Station AB Over a 10-month period during 2013 and early 2014, development of the Neutron star Interior Composition Explorer (NICER) mission [1] proceeded through Phase B, Mission Definition. An external attached payload on the International Space Station (ISS), NICER is scheduled to launch in 2016 for an 18-month baseline mission. Its prime scientific focus is an in-depth investigation of neutron stars-objects that compress up to two Solar masses into a volume the size of a city-accomplished through observations in 0.2-12 keV X-rays, the electromagnetic band into which the stars radiate significant fractions of their thermal, magnetic, and rotational energy stores. Additionally, NICER enables the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) demonstration of spacecraft navigation using pulsars as beacons. During Phase B, substantive refinements were made to the mission-level requirements, concept of operations, and payload and instrument design. Fabrication and testing of engineering-model components improved the fidelity of the anticipated scientific performance of NICER's X-ray Timing Instrument (XTI), as well as of the payload's pointing system, which enables tracking of science targets from the ISS platform. We briefly summarize advances in the mission's formulation that, together with strong programmatic performance in project management, culminated in NICER's confirmation by NASA into Phase C, Design and Development, in March 2014. C1 [Arzoumanian, Z.; Gendreau, K. C.; Baker, C. L.; Cazeau, T.; Hestnes, P.; Kellogg, J. W.; Kenyon, S. J.; Kozon, R. P.; Liu, K. -C.; Manthripragada, S. S.; Markwardt, C. B.; Mitchell, A. L.; Mitchell, J. W.; Monroe, C. A.; Okajima, T.; Pollard, S. E.; Powers, D. F.; Savadkin, B. J.; Winternitz, L. B.; Chen, P. T.; Wright, M. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Arzoumanian, Z.] CRESST USRA, Columbia, MD 21046 USA. [Foster, R.; Prigozhin, G.; Remillard, R.] MIT, Kavli Inst, Cambridge, MA 02139 USA. [Doty, J.] Noqsi Aerosp, Pine, CO 80470 USA. RP Arzoumanian, Z (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM zaven.arzoumanian@nasa.gov NR 4 TC 10 Z9 10 U1 1 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914420 DI 10.1117/12.2056811 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100060 ER PT S AU Awaki, H Kunieda, H Furuzawa, A Haba, Y Hayashi, T Iizuka, R Ishibashi, K Ishida, M Itoh, M Kosaka, T Maeda, Y Matsumoto, H Miyazawa, T Mori, H Nagano, H Namba, Y Ogasaka, Y Ogi, K Okajima, T Sugita, S Suzuki, Y Tamura, K Tawara, Y Uesugi, K Yamashita, K Yamauchi, S AF Awaki, Hisamitsu Kunieda, Hideyo Furuzawa, Akihiro Haba, Yoshito Hayashi, Takayuki Iizuka, Ryo Ishibashi, Kazunori Ishida, Manabu Itoh, Masayuki Kosaka, Tatsuro Maeda, Yoshitomo Matsumoto, Hironori Miyazawa, Takuya Mori, Hideyuki Nagano, Hosei Namba, Yoshiharu Ogasaka, Yasushi Ogi, Keiji Okajima, Takashi Sugita, Satoshi Suzuki, Yoshio Tamura, Keisuke Tawara, Yuzuru Uesugi, Kentato Yamashita, Koujun Yamauchi, Shigeo BE Takahashi, T DenHerder, JWA Bautz, M TI ASTRO-H Hard X-ray Telescope (HXT) SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Hard X-rays; hard X-ray telescope; multilayer; depth-graded multilayer; ASTRO-H; HXT AB The new Japanese X-ray Astronomy satellite, ASTRO-H will carry two identical hard X-ray telescopes (HXTs), which cover 5 to 80 keV, in order to provide new insights into frontier of X-ray astronomy. The HXT mirror surfaces are coated with Pt/C depth-graded multilayers to enhance hard X-ray effective area by means of Bragg reflection, and 213 mirror reflectors with a thickness of 0.22 mm are tightly nested confocally in a telescope. The production of FM HXT-1 and HXT-2 were completed in 2012 and 2013, respectively. The X-ray performance of HXTs were measured at the synchrotron radiation facility SPring-8/BL20B2 Japan. The total effective area of two HXTs is about 350 cm(2) at 30 keV and the angular resolution of HXT is about 1.'9 in half power diameter at 30 keV. The HXTs are in the clean room at ISAS for waiting the final integration test. C1 [Awaki, Hisamitsu; Ogi, Keiji; Sugita, Satoshi] Ehime Univ, Matsuyama, Ehime 7908577, Japan. [Kunieda, Hideyo; Furuzawa, Akihiro; Haba, Yoshito; Ishibashi, Kazunori; Matsumoto, Hironori; Miyazawa, Takuya; Nagano, Hosei; Tamura, Keisuke; Tawara, Yuzuru] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Hayashi, Takayuki; Ishida, Manabu; Maeda, Yoshitomo; Mori, Hideyuki] ISAS JAXA, Sagamihara, Kanagawa 2298510, Japan. [Iizuka, Ryo] Chuo Univ, Bunkyo Ku, Tokyo 1128551, Japan. [Itoh, Masayuki] Kobe Univ, Nada Ku, Kobe, Hyogo 6578501, Japan. [Kosaka, Tatsuro] Kochi Univ Technol, Kochi 7828502, Japan. [Namba, Yoshiharu] Chubu Univ, Kasugai, Aichi 4878501, Japan. [Ogasaka, Yasushi; Yamashita, Koujun] Japan Sci & Technol Agcy, Chiyoda Ku, Tokyo 1020076, Japan. [Okajima, Takashi] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Suzuki, Yoshio; Uesugi, Kentato] JASRI SPring 8, Sayo, Hyogo 6795198, Japan. [Yamauchi, Shigeo] Nara Womens Univ, Nara, Nara 6308506, Japan. RP Awaki, H (reprint author), Ehime Univ, Bunkyo Cho, Matsuyama, Ehime 7908577, Japan. EM awaki@astro.phys.sci.ehime-u.ac.jp NR 20 TC 3 Z9 3 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914426 DI 10.1117/12.2054633 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100066 ER PT S AU Betancourt-Martinez, GL Adams, J Bandler, S Beiersdorfer, P Brown, G Chervenak, J Doriese, R Eckart, M Irwin, K Kelley, R Kilbourne, C Leutenegger, M Porter, FS Reintsema, C Smith, S Ullon, J AF Betancourt-Martinez, Gabriele L. Adams, Joseph Bandler, Simon Beiersdorfer, Peter Brown, Gregory Chervenak, James Doriese, Randy Eckart, Megan Irwin, Kent Kelley, Richard Kilbourne, Caroline Leutenegger, Maurice Porter, F. Scott Reintsema, Carl Smith, Stephen Ullon, Joel BE Takahashi, T DenHerder, JWA Bautz, M TI The transition-edge EBIT microcalorimeter spectrometer SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Microcalorimeter; Transition-Edge Sensor; Laboratory Astrophysics ID X-RAY-EMISSION; BEAM ION-TRAP; CHARGE-EXCHANGE; CROSS-SECTIONS; SINGLE AB The Transition-edge EBIT Microcalorimeter Spectrometer (TEMS) is a 1000-pixel array instrument to be delivered to the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory (LLNL) in 2015. It will be the first fully operational array of its kind. The TEMS will utilize the unique capabilities of the EBIT to verify and benchmark atomic theory that is critical for the analysis of high-resolution data from microcalorimeter spectrometers aboard the next generation of x-ray observatories. We present spectra from the present instrumentation at EBIT, as well as our latest results with time-division multiplexing using the current iteration of the TEMS focal plane assembly in our test platform at NASA/GSFC. C1 [Betancourt-Martinez, Gabriele L.; Adams, Joseph; Bandler, Simon; Chervenak, James; Eckart, Megan; Kelley, Richard; Kilbourne, Caroline; Leutenegger, Maurice; Porter, F. Scott; Smith, Stephen] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Betancourt-Martinez, Gabriele L.; Bandler, Simon] Univ Maryland, College Pk, MD 20742 USA. [Adams, Joseph; Leutenegger, Maurice; Smith, Stephen] Univ Maryland Baltimore Cty, Catonsville, MD USA. [Beiersdorfer, Peter; Brown, Gregory] Lawrence Livermore Natl Lab, Livermore, CA USA. [Doriese, Randy; Reintsema, Carl; Ullon, Joel] Natl Inst Stand & Technol, Boulder, CO USA. [Irwin, Kent] Stanford Univ, Palo Alto, CA 94304 USA. RP Betancourt-Martinez, GL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM gabriele@astro.umd.edu RI Smith, Stephen/B-1256-2008 OI Smith, Stephen/0000-0003-4096-4675 NR 22 TC 0 Z9 0 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91443U DI 10.1117/12.2055568 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100115 ER PT S AU Biskach, MP Chan, KW Mazzarella, JR McClelland, RS Saha, TT Schofield, MJ Zhang, WW AF Biskach, Michael P. Chan, Kai-Wing Mazzarella, James R. McClelland, Ryan S. Saha, Timo T. Schofield, Mark J. Zhang, William W. BE Takahashi, T DenHerder, JWA Bautz, M TI Alignment and integration of thin, lightweight x-ray optics into modules SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray optics; segmented optics; optical alignment; permanent mounting; co-alignment; X-ray measurement AB Future X-ray telescopes with high angular resolution and high throughput optics will help enable new high energy observations. X-ray optics in development at NASA Goddard Space Flight Center by the Next Generation X-ray Optics (NGXO) group utilizes a Flight Mirror Assembly (FMA) comprised of dozens of mirror modules populated with mirror segments aligned to a common focus. Mirror segments are currently aligned and permanently fixed into a module one at a time with emphasis on preventing degradation of the overall module performance. To meet cost and schedule requirements, parallelization and automation of the module integration process must be implemented. Identification of critical mirror segment alignment factors in addition to the progress towards a robust and automated module integration process is presented. There is a fundamental need for a reliable mirror segment alignment and bonding process that will be performed on hundreds or thousands of mirror segments. Results from module X-ray performance verification tests are presented to confirm module performance meets requirements. C1 [Biskach, Michael P.; Mazzarella, James R.; McClelland, Ryan S.; Schofield, Mark J.] SGT Inc, Greenbelt, MD 20770 USA. [Chan, Kai-Wing] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Chan, Kai-Wing; Zhang, William W.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Saha, Timo T.] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. RP Biskach, MP (reprint author), SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. EM michael.biskach@nasa.gov NR 7 TC 4 Z9 4 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914446 DI 10.1117/12.2056966 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100125 ER PT S AU Bloser, PF McConnell, ML Legere, JS Ertley, CD Hill, JE Kippen, RM Ryan, JM AF Bloser, Peter F. McConnell, Mark L. Legere, Jason S. Ertley, Camden D. Hill, Joanne E. Kippen, R. Marc Ryan, James M. BE Takahashi, T DenHerder, JWA Bautz, M TI A High-Energy Compton Polarimeter for the POET SMEX Mission SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Gamma-ray Bursts; Polarimetry; Scintillators; Gamma-rays ID GAMMA-RAY ASTRONOMY; HARD X-RAY AB The primary science goal of the Polarimeters for Energetic Transients (POET) mission is to measure the polarization of gamma-ray bursts over a wide energy range, from X rays to soft gamma rays. The higher-energy portion of this band (50 - 500 keV) will be covered by the High Energy Polarimeter (HEP) instrument, a non-imaging, wide field of view Compton polarimeter. Incident high-energy photons will Compton scatter in low-Z, plastic scintillator detector elements and be subsequently absorbed in high-Z, CsI(Tl) scintillator elements; polarization is detected by measuring an asymmetry in the azimuthal scatter angle distribution. The HEP design is based on our considerable experience with the development and flight of the Gamma-Ray Polarimeter Experiment (GRAPE) balloon payload. We present the design of the POET HEP instrument, which incorporates lessons learned from the GRAPE balloon design and previous work on Explorer proposal efforts, and its expected performance on a two-year SMEX mission. C1 [Bloser, Peter F.; McConnell, Mark L.; Legere, Jason S.; Ertley, Camden D.; Ryan, James M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Hill, Joanne E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kippen, R. Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bloser, PF (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM Peter.Bloser@unh.edu NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91441I DI 10.1117/12.2056868 PG 6 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100043 ER PT S AU Champey, P Kobayashi, K Winebarger, A Cirtain, J Hyde, D Robertson, B Beabout, D Beabout, B Stewart, M AF Champey, P. Kobayashi, K. Winebarger, A. Cirtain, J. Hyde, D. Robertson, B. Beabout, D. Beabout, B. Stewart, M. BE Takahashi, T DenHerder, JWA Bautz, M TI Performance characterization of UV science cameras developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Characterization; Camera; CCD; UV; Sounding Rocket ID CHARGE DIFFUSION AB The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. The CLASP cameras were designed to operate with <= 10 e(-)/pixel/second dark current, <= 25 e(-) read noise, a gain of 2.0 +- 0.5 and <= 1.0% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity. C1 [Champey, P.; Stewart, M.] Univ Alabama, Huntsville, AL 35899 USA. [Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. RP Champey, P (reprint author), Univ Alabama, Huntsville, AL 35899 USA. EM patrick.r.champey@nasa.gov; ken.kobayashi-1@nasa.gov NR 8 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914439 DI 10.1117/12.2057321 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100098 ER PT S AU Chan, KW Zhang, WW Sharpe, MV Mazzarella, JR McClelland, RS Biskach, MP Saha, TT Kolos, LD Hong, ML AF Chan, Kai-Wing Zhang, William W. Sharpe, Marton V. Mazzarella, James R. McClelland, Ryan S. Biskach, Michael P. Saha, Timo T. Kolos, Linette D. Hong, Mao-Ling BE Takahashi, T DenHerder, JWA Bautz, M TI Preserving Accurate Figures in Coating and Bonding Mirrors for Lightweight X-ray Telescopes SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Coating stress; bonding stress; x-ray optics; lightweight mirrors; segmented mirrors ID MISSIONS AB Lightweight, high-resolution, high throughput optics for x-ray astronomy requires fabrication and integration of thin mirrors segments with arc-second precision. In this paper, we present results on our effort leading to the most recent two test modules achieving the intermediate goal of 10 arc-second resolution. We will address issues of coating and bonding thin glass mirrors with negligible distortion. Annealing of sputtered high-density metallic films was found to be sufficiently accurate. We will present result from tests of bonding mirrors onto experimental strongbacks, as well as the sensitivity on bonding procedure, bond parameters and environment. C1 [Chan, Kai-Wing] Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Chan, Kai-Wing] Univ Maryland, Baltimore, MD 21250 USA. [Sharpe, Marton V.; Mazzarella, James R.; McClelland, Ryan S.; Biskach, Michael P.; Hong, Mao-Ling] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. [Chan, Kai-Wing; Zhang, William W.; Sharpe, Marton V.; Mazzarella, James R.; McClelland, Ryan S.; Saha, Timo T.; Kolos, Linette D.; Hong, Mao-Ling] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chan, KW (reprint author), Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. EM Kat-Wing.Chan-1@nasa.gov NR 23 TC 3 Z9 3 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914440 DI 10.1117/12.2055874 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100120 ER PT S AU Enoto, T Black, JK Kitaguchi, T Hayato, A Hill, JE Jahoda, K Tamagawa, T Kanako, K Takeuchi, Y Yoshikawa, A Marlowe, H Griffiths, S Kaaret, P Kenward, D Khalid, S AF Enoto, Teruaki Black, J. Kevin Kitaguchi, Takao Hayato, Asami Hill, Joanne E. Jahoda, Keith Tamagawa, Toru Kanako, Kenta Takeuchi, Yoko Yoshikawa, Akifumi Marlowe, Hannah Griffiths, Scott Kaaret, Philip Kenward, David Khalid, Syed BE Takahashi, T DenHerder, JWA Bautz, M TI Performance Verification of the Gravity and Extreme Magnetism Small explorer (GEMS) X-ray Polarimeter SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray Polarization; Gravity and Extreme Magnetism Small Explorer (GEMS); Time Projection Chamber (TPC); Gas Electron Multiplier (GEM) ID LASER ETCHING TECHNIQUE; OPTICAL POLARIZATION; CRAB-NEBULA; PULSAR; EMISSION AB Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >= 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, similar to 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR). C1 [Enoto, Teruaki; Black, J. Kevin; Hill, Joanne E.; Jahoda, Keith; Kenward, David] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Enoto, Teruaki; Kitaguchi, Takao; Hayato, Asami; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi] RIKEN, Nishina Ctr, High Energy Astrophys Lab, Wako, Saitama 3510198, Japan. [Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi] Tokyo Univ Sci, Dept Phys, Shinjyuku Ku, Tokyo 1628601, Japan. [Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Khalid, Syed] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Enoto, T (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 662, Greenbelt, MD 20771 USA. EM teruaki.enoto@nasa.gov; joe.hill@nasa.gov; keith.m.jahoda@nasa.gov NR 24 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91444M DI 10.1117/12.2056841 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100141 ER PT S AU Feroci, M den Herder, JW Bozzo, E Barret, D Brandt, S Hernanz, M van der Klis, M Pohl, M Santangelo, A Stella, L Watts, A Wilms, J Zane, S Ahangarianabhari, M Albertus, C Alford, M Alpar, A Altamirano, D Alvarez, L Amati, L Amoros, C Andersson, N Antonelli, A Argan, A Artigue, R Artigues, B Atteia, JL Azzarello, P Bakala, P Baldazzi, G Balman, S Barbera, M van Baren, C Bhattacharyya, S Baykal, A Belloni, T Bernardini, F Bertuccio, G Bianchi, S Bianchini, A Binko, P Blay, P Bocchino, F Bodin, P Bombaci, I Bidaud, JMB Boutloukos, S Bradley, L Braga, J Brown, E Bucciantini, N Burderi, L Burgay, M Bursa, M Budtz-Jorgensen, C Cackett, E Cadoux, FR Cais, P Caliandro, GA Campana, R Campana, S Capitanio, F Casares, J Casella, P Castro-Tirado, AJ Cavazzuti, E Cerda-Duran, P Chakrabarty, D Chateau, F Chenevez, J Coker, J Cole, R Collura, A Cornelisse, R Courvoisier, T Cros, A Cumming, A Cusumano, G D'Ai, A D'Elia, V Del Monte, E De Luca, A De Martino, D Dercksen, JPC De Pasquale, M De Rosa, A Del Santo, M Di Cosimo, S Diebold, S Di Salvo, T Donnarumma, I Drago, A Durant, M Emmanoulopoulos, D Erkut, MH Esposito, P Evangelista, Y Fabian, A Falanga, M Favre, Y Feldman, C Ferrari, V Ferrigno, C Finger, M Finger, MH Fraser, GW Frericks, M Fuschino, F Gabler, M Galloway, DK Sanchez, JLG Garcia-Berro, E Gendrel, B Gezari, S Giles, AB Gilfanov, M Giommi, P Giovannini, G Giroletti, M Gogus, E Goldwurm, A Goluchova, K Gotz, D Gouiffes, C Grassi, M Groot, P Gschwender, M Gualtieri, L Guidorzi, C Guy, L Haas, D Haense, P Hailey, M Hansen, F Hartmann, DH Haswell, CA Hebeler, K Heger, A Hermsen, W Homan, J Hornstrup, A Hudec, R Huovelin, J Ingram, A in't Zand, JJM Israel, G Iwasawa, K Izzo, L Jacobs, HM Jetter, F Johannsen, T Jacobs, HM Jonker, P Jose, J Kaaret, P Kanbach, G Karas, V Karelin, D Kataria, D Keek, L Kennedy, T Klochkov, D Kluzniak, W Kokkotas, K Korpela, S Kouveliotou, C Kreykenbohm, I Kuiper, LM Kuvvetli, I Labanti, C Lai, D Lamb, FK Laubert, PP Lebrun, F Lin, D Linder, D Lodato, G Longo, F Lund, N Maccarone, TJ Macera, D Maestre, S Mahmoodifar, S Maier, D Malcovati, P Mandel, I Mangano, V Manousakis, A Marisaldi, M Markowitz, A Martindale, A Matt, G McHardy, IM Melatos, A Mendez, M Mereghetti, S Michalska, M Migliari, S Mignani, R Miller, MC Miller, JM Mineo, T Miniutti, G Morsink, S Motch, C Motta, S Mouchet, M Mouret, G Mulacova, J Muleri, F Munoz-Darias, T Negueruela, I Neilsen, J Norton, AJ Nowak, M O'Brien, P Olsen, PEH Orientil, M Orio, M Orlandini, M Orleanski, P Osborne, JP Osten, R Ozel, F Pacciani, L Paolillo, M Papitto, A Paredes, JM Patruno, A Paul, B Perinati, E Pellizzoni, A Penacchioni, AV Perez, MA Petracek, V Pittori, C Pons, J Portell, J Possenti, A Poutanen, J Prakash, M Le Provost, P Psaltis, D Rambaud, D Ramon, P Ramsay, G Rapisarda, M Rachevski, A Rashevskaya, I Ray, PS Rea, N Reddy, S Reig, P Aranda, MR Remillard, R Reynolds, C Rezzolla, L Ribo, M de la Rie, R Riggio, A Rios, A Rodriguez-Gil, P Rodriguez, J Rohlfs, R Romano, P Rossi, EMR Rozanska, A Rousseau, A Ryde, F Sabau-Graziati, L Sala, G Salvaterra, R Sanna, A Sandberg, J Scaringi, S Schanne, S Schee, J Schmid, C Shore, S Schneider, R Schwenk, A Schwope, AD Seyler, JY Shearer, A Smith, A Smith, DM Smith, PJ Sochora, V Soffitta, P Soleri, P Spencer, A Stappers, B Steiner, AW Stergioulas, N Stratta, G Strohmayer, TE Stuchlik, Z Suchy, S Sulemainov, V Takahashi, T Tamburini, F Tauris, T Tenzer, C Tolos, L Tombesi, F Tomsick, J Torok, G Torrejon, JM Torres, DF Tramacere, A Trois, A Turolla, R Turriziani, S Uter, P Uttley, P Vacchi, A Varniere, P Vaughan, S Vercellone, S Vrba, V Walton, D Watanabe, S Wawrzaszek, R Webb, N Weinberg, N Wende, H Wheatley, P Wijers, R Wijnands, R Wie, M Wilson-Hodge, CA Winter, B Wood, K Zampa, G Zampa, N Zampieri, L Zdunik, L Zdziarski, A Zhang, B Zwart, F Ayre, M Boenke, T van Damme, CC Kuulkers, E Lumb, D AF Feroci, M. den Herder, J. W. Bozzo, E. Barret, D. Brandt, S. Hernanz, M. van der Klis, M. Pohl, M. Santangelo, A. Stella, L. Watts, A. Wilms, J. Zane, S. Ahangarianabhari, M. Albertus, C. Alford, M. Alpar, A. Altamirano, D. Alvarez, L. Amati, L. Amoros, C. Andersson, N. Antonelli, A. Argan, A. Artigue, R. Artigues, B. Atteia, J. -L. Azzarello, P. Bakala, P. Baldazzi, G. Balman, S. Barbera, M. van Baren, C. Bhattacharyya, S. Baykal, A. Belloni, T. Bernardini, F. Bertuccio, G. Bianchi, S. Bianchini, A. Binko, P. Blay, P. Bocchino, F. Bodin, P. Bombaci, I. Bidaud, J. -M. Bonnet Boutloukos, S. Bradley, L. Braga, J. Brown, E. Bucciantini, N. Burderi, L. Burgay, M. Bursa, M. Budtz-Jorgensen, C. Cackett, E. Cadoux, F. R. Cais, P. Caliandro, G. A. Campana, R. Campana, S. Capitanio, F. Casares, J. Casella, P. Castro-Tirado, A. J. Cavazzuti, E. Cerda-Duran, P. Chakrabarty, D. Chateau, F. Chenevez, J. Coker, J. Cole, R. Collura, A. Cornelisse, R. Courvoisier, T. Cros, A. Cumming, A. Cusumano, G. D'Ai, A. D'Elia, V. Del Monte, E. De Luca, A. De Martino, D. Dercksen, J. P. C. De Pasquale, M. De Rosa, A. Del Santo, M. Di Cosimo, S. Diebold, S. Di Salvo, T. Donnarumma, I. Drago, A. Durant, M. Emmanoulopoulos, D. Erkut, M. H. Esposito, P. Evangelista, Y. Fabian, A. Falanga, M. Favre, Y. Feldman, C. Ferrari, V. Ferrigno, C. Finger, M. Finger, M. H. Fraser, G. W. Frericks, M. Fuschino, F. Gabler, M. Galloway, D. K. Sanchez, J. L. Galvez Garcia-Berro, E. Gendrel, B. Gezari, S. Giles, A. B. Gilfanov, M. Giommi, P. Giovannini, G. Giroletti, M. Gogus, E. Goldwurm, A. Goluchova, K. Goetz, D. Gouiffes, C. Grassi, M. Groot, P. Gschwender, M. Gualtieri, L. Guidorzi, C. Guy, L. Haas, D. Haense, P. Hailey, M. Hansen, F. Hartmann, D. H. Haswell, C. A. Hebeler, K. Heger, A. Hermsen, W. Homan, J. Hornstrup, A. Hudec, R. Huovelin, J. Ingram, A. in't Zand, J. J. M. Israel, G. Iwasawa, K. Izzo, L. Jacobs, H. M. Jetter, F. Johannsen, T. Jacobs, H. M. Jonker, P. Jose, J. Kaaret, P. Kanbach, G. Karas, V. Karelin, D. Kataria, D. Keek, L. Kennedy, T. Klochkov, D. Kluzniak, W. Kokkotas, K. Korpela, S. Kouveliotou, C. Kreykenbohm, I. Kuiper, L. M. Kuvvetli, I. Labanti, C. Lai, D. Lamb, F. K. Laubert, P. P. Lebrun, F. Lin, D. Linder, D. Lodato, G. Longo, F. Lund, N. Maccarone, T. J. Macera, D. Maestre, S. Mahmoodifar, S. Maier, D. Malcovati, P. Mandel, I. Mangano, V. Manousakis, A. Marisaldi, M. Markowitz, A. Martindale, A. Matt, G. McHardy, I. M. Melatos, A. Mendez, M. Mereghetti, S. Michalska, M. Migliari, S. Mignani, R. Miller, M. C. Miller, J. M. Mineo, T. Miniutti, G. Morsink, S. Motch, C. Motta, S. Mouchet, M. Mouret, G. Mulacova, J. Muleri, F. Munoz-Darias, T. Negueruela, I. Neilsen, J. Norton, A. J. Nowak, M. O'Brien, P. Olsen, P. E. H. Orientil, M. Orio, M. Orlandini, M. Orleanski, P. Osborne, J. P. Osten, R. Ozel, F. Pacciani, L. Paolillo, M. Papitto, A. Paredes, J. M. Patruno, A. Paul, B. Perinati, E. Pellizzoni, A. Penacchioni, A. V. Perez, M. A. Petracek, V. Pittori, C. Pons, J. Portell, J. Possenti, A. Poutanen, J. Prakash, M. Le Provost, P. Psaltis, D. Rambaud, D. Ramon, P. Ramsay, G. Rapisarda, M. Rachevski, A. Rashevskaya, I. Ray, P. S. Rea, N. Reddy, S. Reig, P. Aranda, M. Reina Remillard, R. Reynolds, C. Rezzolla, L. Ribo, M. de la Rie, R. Riggio, A. Rios, A. Rodriguez-Gil, P. Rodriguez, J. Rohlfs, R. Romano, P. Rossi, E. M. R. Rozanska, A. Rousseau, A. Ryde, F. Sabau-Graziati, L. Sala, G. Salvaterra, R. Sanna, A. Sandberg, J. Scaringi, S. Schanne, S. Schee, J. Schmid, C. Shore, S. Schneider, R. Schwenk, A. Schwope, A. D. Seyler, J. -Y. Shearer, A. Smith, A. Smith, D. M. Smith, P. J. Sochora, V. Soffitta, P. Soleri, P. Spencer, A. Stappers, B. Steiner, A. W. Stergioulas, N. Stratta, G. Strohmayer, T. E. Stuchlik, Z. Suchy, S. Sulemainov, V. Takahashi, T. Tamburini, F. Tauris, T. Tenzer, C. Tolos, L. Tombesi, F. Tomsick, J. Torok, G. Torrejon, J. M. Torres, D. F. Tramacere, A. Trois, A. Turolla, R. Turriziani, S. Uter, P. Uttley, P. Vacchi, A. Varniere, P. Vaughan, S. Vercellone, S. Vrba, V. Walton, D. Watanabe, S. Wawrzaszek, R. Webb, N. Weinberg, N. Wende, H. Wheatley, P. Wijers, R. Wijnands, R. Wie, M. Wilson-Hodge, C. A. Winter, B. Wood, K. Zampa, G. Zampa, N. Zampieri, L. Zdunik, L. Zdziarski, A. Zhang, B. Zwart, F. Ayre, M. Boenke, T. van Damme, C. Corral Kuulkers, E. Lumb, D. BE Takahashi, T DenHerder, JWA Bautz, M TI The Large Observatory For x-ray Timing SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray timing; X-ray spectroscopy; X-ray imaging; compact objects; X-ray detectors; microchannel plates ID PROPORTIONAL COUNTER ARRAY; CALIBRATION; DETECTOR AB The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m(2) effective area, 2-30 keV, 240 eV spectral resolution, 1 degrees collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study. C1 [Feroci, M.; Argan, A.; Campana, R.; Capitanio, F.; Del Monte, E.; De Rosa, A.; Del Santo, M.; Di Cosimo, S.; Donnarumma, I.; Evangelista, Y.; Mulacova, J.; Pacciani, L.; Rapisarda, M.; Soffitta, P.; Trois, A.] IAPS INAF, I-00133 Rome, Italy. [Feroci, M.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [den Herder, J. W.; van Baren, C.; Dercksen, J. P. C.; Frericks, M.; Haas, D.; Hermsen, W.; in't Zand, J. J. M.; Jacobs, H. M.; Jonker, P.; Kuiper, L. M.; Laubert, P. P.; de la Rie, R.; Zwart, F.] SRON, NL-3584 CA Utrecht, Netherlands. [Bozzo, E.; Azzarello, P.; Binko, P.; Courvoisier, T.; Ferrigno, C.; Guy, L.; Rohlfs, R.; Tramacere, A.] Univ Geneva, ISDC, CH-1290 Versoix, Switzerland. [Alpar, A.; Gogus, E.] Sabanci Univ, TR-34956 Istanbul, Turkey. [van der Klis, M.; Watts, A.; Altamirano, D.; Ingram, A.; Wijers, R.; Wijnands, R.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Hernanz, M.; Alvarez, L.; Artigues, B.; Caliandro, G. A.; Sanchez, J. L. Galvez; Garcia-Berro, E.; Karelin, D.; Papitto, A.; Portell, J.; Rea, N.; Sala, G.; Tolos, L.] IEEC CSIC UPC UB, Barcelona 08034, Spain. [Amati, L.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Orlandini, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Barret, D.; Amoros, C.; Artigues, B.; Atteia, J. -L.; Cros, A.; Lin, D.; Maestre, S.; Mouret, G.; Rambaud, D.; Ramon, P.; Webb, N.] IRAP, F-44346 Toulouse, France. [Andersson, N.] Univ Southampton, Fac Phys & Appl Sci, Southampton SO17 1BJ, Hants, England. [Antonelli, A.; Cavazzuti, E.; D'Elia, V.; Gendrel, B.; Giommi, P.; Pittori, C.; Stratta, G.] ASDC, I-00133 Rome, Italy. [Balman, S.; Baykal, A.] Middle E Tech Univ, TR-06800 Cankaya, Turkey. [Barbera, M.; D'Ai, A.; Di Salvo, T.] Univ Palermo, Dipartimento Chim & Fis, I-90123 Palermo, Italy. [Belloni, T.; Campana, S.; Motta, S.] INAF OA Brera, I-23807 Merate, LC, Italy. [Ahangarianabhari, M.; Bertuccio, G.; Macera, D.] Politecn Milan, I-20133 Milan, Italy. [Tamburini, F.; Turolla, R.] Univ Padua, Dept Phys & Astron, I-35122 Padua, Italy. [Bidaud, J. -M. Bonnet; Chateau, F.; Goetz, D.; Gouiffes, C.; Le Provost, P.; Rodriguez, J.; Schanne, S.] CEA Saclay, DSM IRFU SAp, F-91191 Gif Sur Yvette, France. [Santangelo, A.; Boutloukos, S.; Diebold, S.; Gschwender, M.; Jetter, F.; Klochkov, D.; Kokkotas, K.; Maier, D.; Perinati, E.; Suchy, S.; Sulemainov, V.; Tenzer, C.; Uter, P.; Wende, H.] Univ Tubingen, IAAT, D-72076 Tubingen, Germany. [Braga, J.] INPE, BR-12227010 Sao Jose Dos Campos, Brazil. [Brandt, S.; Budtz-Jorgensen, C.; Chenevez, J.; Hansen, F.; Hornstrup, A.; Kuvvetli, I.; Lund, N.; Mulacova, J.; Olsen, P. E. H.] Tech Univ Denmark, Natl Space Inst, DK-2800 Lyngby, Denmark. [Iwasawa, K.; Migliari, S.; Paredes, J. M.; Ribo, M.] Univ Barcelona IEEC UB, DAM, E-08028 Barcelona, Spain. [Iwasawa, K.; Migliari, S.; Paredes, J. M.; Ribo, M.] Univ Barcelona IEEC UB, ICC UB, E-08028 Barcelona, Spain. [Bucciantini, N.] Arcetri Observ, INAF, I-50125 Florence, Italy. [Burderi, L.] Univ Cagliari, I-09042 Monserrato, Italy. [Bursa, M.; Hudec, R.; Karas, V.; Sochora, V.] Acad Sci Czech Republic, Astron Inst, CZ-25165 Ondrejov, Czech Republic. [Fabian, A.] Univ Cambridge, Cambridge CB2 1TN, England. [Pohl, M.; Cadoux, F. R.; Favre, Y.] Univ Geneva, DPNC, CH-1205 Geneva, Switzerland. [Cais, P.] Lab Astrophys Bordeaux, F-33270 Floirac, France. [Stella, L.; Casella, P.; Israel, G.; Schneider, R.] INAF OA Roma, I-00040 Monte Porzio Catone, Italy. [Chakrabarty, D.; Homan, J.; Neilsen, J.; Nowak, M.; Remillard, R.; Weinberg, N.] MIT, Cambridge, MA 02139 USA. [Zane, S.; Bradley, L.; Coker, J.; Cole, R.; De Pasquale, M.; Hailey, M.; Kataria, D.; Kennedy, T.; Linder, D.; Rousseau, A.; Smith, A.; Smith, P. J.; Spencer, A.; Walton, D.; Winter, B.] MSSL, Dorking RH5 6NT, Surrey, England. McGill Univ, Montreal, PQ H3A 0G4, Canada. [Cumming, A.; De Martino, D.] INAF OA Capodimonte, I-80131 Naples, Italy. [Drago, A.; Guidorzi, C.] Univ Ferrara, I-44122 Ferrara, Italy. [Durant, M.] Univ Toronto, Dept Med Biophys, Toronto, ON M4N 3M5, Canada. [Falanga, M.] ISSI Bern, CH-3012 Bern, Switzerland. [Feldman, C.; Fraser, G. W.; Martindale, A.; Osborne, J. P.; Vaughan, S.] Univ Leicester, Leicester LE1 7RH, Leics, England. [Finger, M. H.] Univ Space Res Assoc, Huntsville, AL 35806 USA. [Galloway, D. K.; Heger, A.] Monash Univ, Sch Phys, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Galloway, D. K.; Heger, A.] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia. Johns Hopkins Univ, Baltimore, MD USA. [Giles, A. B.] Univ Tasmania, Hobart, Tas 7001, Australia. [Gilfanov, M.] MPA Garching, D-85741 Garching, Germany. Radboud Univ Nijmegen, NL-6500 GL Nijmegen, Netherlands. [Groot, P.; Hartmann, D. H.] Clemson Univ, Clemson, SC 29634 USA. [Haswell, C. A.; Norton, A. J.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Wilson-Hodge, C. A.] NASA, George C Marshall Space Flight Ctr, Astrophys Off, ZP12, Huntsville, AL 35812 USA. [Huovelin, J.; Korpela, S.] Univ Helsinki, Div Geophys & Astron, Dept Phys, FIN-00014 Helsinki, Finland. Univ Durham, Durham DH1 3UP, England. [Ferrari, V.; Gualtieri, L.; Izzo, L.; Penacchioni, A. V.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Izzo, L.; Penacchioni, A. V.] ICRA, I-00185 Rome, Italy. Univ Iowa, Iowa City, IA 52242 USA. [Brown, E.; Kaaret, P.; Keek, L.; Miller, J. M.] Michigan State Univ, E Lansing, MI 48824 USA. [Haense, P.; Kluzniak, W.; Manousakis, A.; Rozanska, A.; Zdunik, L.; Zdziarski, A.] Copernicus Astron Ctr, Warsaw, Poland. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Sci & Technol Off, ZP12, Huntsville, AL 35812 USA. [Lai, D.] Cornell Univ, Ithaca, NY 14853 USA. [Lamb, F. K.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Lodato, G.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Longo, F.] Univ Trieste, I-34128 Trieste, Italy. [Grassi, M.; Malcovati, P.] Univ Pavia, I-27100 Pavia, Italy. [Cusumano, G.; Mineo, T.; Romano, P.; Vercellone, S.] INAF IFC, I-90146 Palermo, Italy. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Bianchi, S.; Matt, G.] Univ Roma Tre, I-00146 Rome, Italy. [Melatos, A.] Univ Melbourne, Parkville, Vic 3052, Australia. [Mendez, M.; Sanna, A.; Soleri, P.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AB Groningen, Netherlands. [Gezari, S.; Mahmoodifar, S.; Miller, M. C.; Reynolds, C.; Tombesi, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Aranda, M. Reina; Sabau-Graziati, L.] Natl Inst Aerosp Technol INTA, Torrejon De Ardoz 28850, Spain. [Morsink, S.] Univ Alberta, Edmonton, AB T6G 2R3, Canada. [Motch, C.] Observ Astron, F-67000 Strasbourg, France. [Mouchet, M.] Univ Paris Diderot, F-75205 Paris 13, France. INAF OA Torino, I-10025 Pino Torinese, Italy. [Michalska, M.; Orleanski, P.; Wawrzaszek, R.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Osten, R.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Ozel, F.; Psaltis, D.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Paul, B.] Raman Res Inst, Sadashivanagar 560080, India. [Hudec, R.; Petracek, V.] Czech Tech Univ, CZ-16636 Prague 6, Czech Republic. [Poutanen, J.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Ramsay, G.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Rachevski, A.; Rashevskaya, I.; Vacchi, A.; Zampa, G.; Zampa, N.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Ray, P. S.; Wood, K.] Naval Res Lab, Washington, DC 20375 USA. [Reddy, S.; Steiner, A. W.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Reig, P.] Univ Crete, Dept Phys, Iraklion GR-71003, Greece. [Casares, J.; Cornelisse, R.; Rodriguez-Gil, P.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Spain. [Patruno, A.; Rossi, E. M. R.] Leiden Observ, NL-2333 CA Leiden, Netherlands. [Ryde, F.] KTH Royal Inst Technol, S-10044 Stockholm, Sweden. [De Luca, A.; Esposito, P.; Mereghetti, S.; Mignani, R.; Salvaterra, R.] INAF IASF Milano, I-20133 Milan, Italy. [Bakala, P.; Goluchova, K.; Schee, J.; Stuchlik, Z.; Torok, G.] Silesian Univ, Opava 74601, Czech Republic. [Wilms, J.; Kreykenbohm, I.; Schmid, C.] Univ Erlangen Nurnberg, D-91054 Erlangen, Germany. [Hebeler, K.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Hebeler, K.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Schwope, A. D.] Leibniz Inst Astrophys Potsdam, D-14482 Potsdam, Germany. [Shearer, A.] Natl Univ Ireland Univ Coll Galway, Galway, Ireland. [Stappers, B.] Univ Manchester, Manchester M15 6PB, Lancs, England. [Stergioulas, N.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Strohmayer, T. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Takahashi, T.; Watanabe, S.] ISAS, Chuo Ku, Kanagawa 2525210, Japan. [Negueruela, I.; Pons, J.; Torrejon, J. M.] Univ Alicante, St Vicent Raspeig 03690, Spain. [Torres, D. F.] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain. [Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Wheatley, P.] Univ Warwick, Coventry CV4 7AL, W Midlands, England. [Bocchino, F.; Orio, M.; Zampieri, L.] INAF OA Padova, Padua, Italy. [Zhang, B.] Univ Nevada, Reno, NV 89012 USA. [Turriziani, S.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Giovannini, G.; Giroletti, M.; Orientil, M.] INAF IRA Bologna, I-40129 Bologna, Italy. [Baldazzi, G.] Univ Bologna, Dept Phys, I-40127 Bologna, Italy. [Baldazzi, G.] Ist Nazl Fis Nucl, Sect Bologna, I-40127 Bologna, Italy. [Rodriguez-Gil, P.] Univ La Laguna, Dept Astrofis, E-38206 Santa Cruz De Tenerife, Spain. [Goldwurm, A.; Lebrun, F.; Varniere, P.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,AstroParticule & Cosmol,UMR 7164 CNRS N2P3,CE, F-75205 Paris, France. [Barbera, M.; Collura, A.] Osservatorio Astronomico Palermo, INAF, I-90134 Palermo, Italy. [Emmanoulopoulos, D.; McHardy, I. M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Mignani, R.] Univ Zielona Gora, Kepler Inst Astron, PL-65265 Lubuska, Zielona Gora, Poland. [Markowitz, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Orio, M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Bernardini, F.; Cackett, E.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. [Miniutti, G.] CSIC INTA, Ctr Astrobiol, E-28691 Madrid, Spain. [Reig, P.] Fdn Res & Technol Hellas, GR-71110 Iraklion, Greece. [Bodin, P.; Seyler, J. -Y.] CNES, F-31400 Toulouse, France. [Burgay, M.; Pellizzoni, A.; Possenti, A.; Riggio, A.] INAF OA Cagliari, I-09012 Capoterra, Italy. [Castro-Tirado, A. J.] CSIC, IAAC, Inst Astrofis Andalucia, Glorieta Astron, E-18008 Granada, Spain. [Bombaci, I.; Shore, S.] Univ Pisa, I-56127 Pisa, Italy. [Johannsen, T.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Paolillo, M.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Mandel, I.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Tomsick, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Prakash, M.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Kanbach, G.] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany. [Rezzolla, L.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Blay, P.; Cerda-Duran, P.; Gabler, M.] Univ Valencia, Valencia 46010, Spain. [Jose, J.] Tech Univ Catalonia, Barcelona 08034, Spain. [Johannsen, T.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Tauris, T.] Argelander Inst Astron, D-53121 Bonn, Germany. [Scaringi, S.] Katholieke Univ Leuven, Inst Astron, B-3001 Heverlee, Belgium. [Maccarone, T. J.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Bhattacharyya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Finger, M.] Charles Univ Prague, Fac Math & Phys, CZ-18000 Prague, Czech Republic. [Sandberg, J.] Jorgen Sandberg Consulting, Copenhagen, Denmark. [Erkut, M. H.] Istanbul Kultur Univ, Fac Sci & Letters, TR-34156 Istanbul, Turkey. [Perez, M. A.] Univ Salamanca, Fac Ciencias Trilingue, Fundamental Phys Dept, E-37008 Salamanca, Spain. [Albertus, C.] Univ Granada, Fac Ciencias, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Rios, A.] Univ Surrey, Guildford GU2 7XH, Surrey, England. [Alford, M.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Munoz-Darias, T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Patruno, A.] Netherlands Inst Radio Astron, ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Ayre, M.; Boenke, T.; van Damme, C. Corral; Lumb, D.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kuulkers, E.] European Space Astron Ctr, SRE O, Madrid, Spain. [Mangano, V.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Feroci, M (reprint author), IAPS INAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM marco.feroci@inaf.it RI Di Salvo, Tiziana/F-3973-2012; Paul, Biswajit/D-4807-2012; Torres, Diego/O-9422-2016; Rios Huguet, Arnau/E-9984-2010; Tamburini, Fabrizio/R-3247-2016; Malcovati, Piero/S-2458-2016; Miniutti, Giovanni/L-2721-2014; PONS, JOSE/D-4687-2012; Stratta, Maria Giuliana/L-3045-2016; Groot, Paul/K-4391-2016; Hernanz, Margarita/K-1770-2014; Amati, Lorenzo/N-5586-2015; Orlandini, Mauro/H-3114-2014; Goluchova, Katerina/C-6422-2016; Pittori, Carlotta/C-7710-2016; M, Manjunath/N-4000-2014; Tolos, Laura/F-2515-2016; Torrejon, Jose /K-6395-2014; Poutanen, Juri/H-6651-2016; Paolillo, Maurizio/J-1733-2012; Baldazzi, Giuseppe/B-4112-2011; Riggio, Alessandro/D-3174-2012; Vacchi, Andrea/C-1291-2010; OI Di Salvo, Tiziana/0000-0002-3220-6375; Torres, Diego/0000-0002-1522-9065; Rios Huguet, Arnau/0000-0002-8759-3202; Tamburini, Fabrizio/0000-0003-2941-1922; Malcovati, Piero/0000-0001-6514-9672; Miniutti, Giovanni/0000-0003-0707-4531; Capitanio, Fiamma/0000-0002-6384-3027; Bocchino, Fabrizio/0000-0002-2321-5616; Zampieri, Luca/0000-0002-6516-1329; Pellizzoni, Alberto Paolo/0000-0002-4590-0040; Wijers, Ralph/0000-0002-3101-1808; Campana, Sergio/0000-0001-6278-1576; PONS, JOSE/0000-0003-1018-8126; Stratta, Maria Giuliana/0000-0003-1055-7980; Groot, Paul/0000-0002-4488-726X; Hernanz, Margarita/0000-0002-8651-7910; Amati, Lorenzo/0000-0001-5355-7388; Orlandini, Mauro/0000-0003-0946-3151; Goluchova, Katerina/0000-0002-0930-0961; Pittori, Carlotta/0000-0001-6661-9779; M, Manjunath/0000-0001-8710-0730; Tolos, Laura/0000-0003-2304-7496; Torrejon, Jose /0000-0002-5967-5163; Poutanen, Juri/0000-0002-0983-0049; Paolillo, Maurizio/0000-0003-4210-7693; Bucciantini, Niccolo'/0000-0002-8848-1392; collura, alfonso/0000-0001-9534-1235; Gualtieri, Leonardo/0000-0002-1097-3266; Del Santo, Melania/0000-0002-1793-1050; giommi, paolo/0000-0002-2265-5003; Mineo, Teresa/0000-0002-4931-8445; Labanti, Claudio/0000-0002-5086-3619; Baldazzi, Giuseppe/0000-0002-6657-1645; D'Elia, Valerio/0000-0002-7320-5862; Soffitta, Paolo/0000-0002-7781-4104; Vercellone, Stefano/0000-0003-1163-1396; Fuschino, Fabio/0000-0003-2139-3299; Castro-Tirado, A. J./0000-0003-2999-3563; Cerda-Duran, Pablo/0000-0003-4293-340X; Israel, GianLuca/0000-0001-5480-6438; Barbera, Marco/0000-0002-3188-7420; Donnarumma, Immacolata/0000-0002-4700-4549; Campana, Riccardo/0000-0002-4794-5453; Riggio, Alessandro/0000-0002-6145-9224; Vacchi, Andrea/0000-0003-3855-5856; Galloway, Duncan/0000-0002-6558-5121; Sanna, Andrea/0000-0002-0118-2649; Marisaldi, Martino/0000-0002-4000-3789; Huovelin, Juhani/0000-0002-6276-5776; Gendre, Bruce/0000-0002-9077-2025; MEREGHETTI, SANDRO/0000-0003-3259-7801; orienti, monica/0000-0003-4470-7094; Scaringi, Simone/0000-0001-5387-7189; De Luca, Andrea/0000-0001-6739-687X; de Martino, Domitilla/0000-0002-5069-4202; Esposito, Paolo/0000-0003-4849-5092; De Rosa, Alessandra/0000-0001-5668-6863; Tramacere, Andrea/0000-0002-8186-3793; Wheatley, Peter/0000-0003-1452-2240; Rea, Nanda/0000-0003-2177-6388; Ray, Paul/0000-0002-5297-5278; Negueruela, Ignacio/0000-0003-1952-3680; Pacciani, Luigi/0000-0001-6897-5996; trois, alessio/0000-0002-3180-6002; Feroci, Marco/0000-0002-7617-3421; Cusumano, Giancarlo/0000-0002-8151-1990; Burgay, Marta/0000-0002-8265-4344; Brown, Edward/0000-0003-3806-5339; Casella, Piergiorgio/0000-0002-0752-3301; Giroletti, Marcello/0000-0002-8657-8852; Salvaterra, Ruben/0000-0002-9393-8078 NR 13 TC 21 Z9 21 U1 4 U2 24 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91442T DI 10.1117/12.2055913 PG 20 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100085 ER PT S AU Gaskin, JA Christe, SD Elsner, RF Kilaru, K Ramsey, BD Seller, P Shih, AY Stuchlik, DW Swartz, DA Tennant, AF Weddendorff, B Wilson, MD Wilson-Hodge, CA AF Gaskin, Jessica A. Christe, Steven D. Elsner, Ronald F. Kilaru, Kiranmayee Ramsey, Brian D. Seller, Paul Shih, Albert Y. Stuchlik, David W. Swartz, Douglas A. Tennant, Allyn F. Weddendorff, Bruce Wilson, Matthew D. Wilson-Hodge, Colleen A. BE Takahashi, T DenHerder, JWA Bautz, M TI SuperHERO: the next generation hard x-ray HEROES telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE hard x-ray telescope; x-ray optics; fine pixel solid state detectors; scientific balloon payload; x-ray astronomy; x-ray heliophysics ID OPTICS AB SuperHERO is a new high-resolution, Long Duration Balloon-capable, hard-x-ray (20-75 keV) focusing telescope for making novel astrophysics and heliophysics observations. The SuperHERO payload, currently in its proposal phase, is being developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center and the Solar Physics Laboratory and the Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently flew from Fort Sumner, NM in September of 2013, and will utilize many of the same features. Significant enhancements to the HEROES payload will be made, including the addition of optics, novel solid-state multi-pixel CdTe detectors, integration of the Wallops Arc-Second Pointer and a significantly lighter gondola suitable for Long Duration Flights. C1 [Gaskin, Jessica A.; Elsner, Ronald F.; Ramsey, Brian D.; Tennant, Allyn F.; Wilson-Hodge, Colleen A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA. [Christe, Steven D.; Shih, Albert Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kilaru, Kiranmayee; Swartz, Douglas A.; Wilson, Matthew D.] Univ Space Res Assoc, Inst Sci & Technol, Huntsville, AL 35805 USA. [Seller, Paul] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Stuchlik, David W.] NASA, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Weddendorff, Bruce] Weddendorf Design Inc, Huntsville, AL 35803 USA. RP Gaskin, JA (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35811 USA. EM Jessica.Gaskin@nasa.gov OI Christe, Steven/0000-0001-6127-795X NR 39 TC 3 Z9 3 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91443Z DI 10.1117/12.2058713 PG 14 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100119 ER PT S AU Gubarev, M Ramsey, B Kolodziejczak, JJ O'Dell, SL Elsner, R Zaylin, V Swartz, D Paylinsky, M Tkachenko, A Lapshov, I AF Gubarev, M. Ramsey, B. Kolodziejczak, J. J. O'Dell, S. L. Elsner, R. Zaylin, V. Swartz, D. Paylinsky, M. Tkachenko, A. Lapshov, I. BE Takahashi, T DenHerder, JWA Bautz, M TI The Calibration of Flight Mirror Modules for the ART-XC Instrument on board the SRG Mission SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Spectrum-Rontgen-Gamma; Astronomical Roentgen Telescope - X-ray Concentrator; x-ray telescope calibration; x-ray telescopes; x-ray optics AB MSFC is fabricating x-ray optics for the Astronomical Roentgen Telescope - X-Ray Concentrator (ART-XC or ART for short) instrument under agreements with the Russian Space Research Institute (IKI). ART-XC is one of two instruments that will be launched on the Russian-German Spectrum-Roentgen-Gamma (SRG) Mission to be launched in 2016(1). Delivery of the flight optics for ART-XC (7 mirror modules) is currently scheduled for summer/fall of 2014(2). MSFC has to date completed assembly of four modules and has performed extensive calibration on two of these. These calibrations show that the modules meet effective area requirements and greatly exceed the angular resolution requirements. Details of the calibration procedure and an overview of the results obtained to date are presented here. C1 [Gubarev, M.; Ramsey, B.; Kolodziejczak, J. J.; O'Dell, S. L.; Elsner, R.] NASA, Marshall Space Flight Ctr, Washington, DC 20546 USA. [Zaylin, V.; Swartz, D.] Univ Space Res Assoc, Columbia, MD USA. [Paylinsky, M.; Tkachenko, A.; Lapshov, I.] Space Res Inst, Moscow, Russia. RP Gubarev, M (reprint author), NASA, Marshall Space Flight Ctr, Washington, DC 20546 USA. EM Mikhail.V.Gubarev@nasa.gov OI O'Dell, Stephen/0000-0002-1868-8056 NR 2 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91444U DI 10.1117/12.2056595 PG 6 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100149 ER PT S AU Gubarev, M Ramsey, B Elsner, R O'Dell, S Kolodziejczak, J McCracken, J Zavlin, V Swartz, D Kilaru, K Atkins, C Pavlinskiy, M Tkachenko, A Lapshov, I AF Gubarev, M. Ramsey, B. Elsner, R. O'Dell, S. Kolodziejczak, J. McCracken, J. Zavlin, V. Swartz, D. Kilaru, K. Atkins, C. Pavlinskiy, M. Tkachenko, A. Lapshov, I. BE Takahashi, T DenHerder, JWA Bautz, M TI ART-XC/SRG: Status of the x-ray optics development SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Spectrum-Rontgen-Gamma; Astronomical Roentgen Telescope - X-ray Concentrator; x-ray optics; electroform nickel optics AB The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has similar to 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented. C1 [Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Zavlin, V.; Swartz, D.; Kilaru, K.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. [Atkins, C.] Univ Alabama, Huntsville, AL 35899 USA. [Pavlinskiy, M.; Tkachenko, A.; Lapshov, I.] Space Res Inst, Moscow, Russia. RP Gubarev, M (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM Mikhail.V.Gubarev@nasa.gov OI O'Dell, Stephen/0000-0002-1868-8056 NR 6 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91441V DI 10.1117/12.2056813 PG 6 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100056 ER PT S AU Hamden, ET Jewell, AD Gordon, S Hennessy, J Hoenk, ME Nikzad, S Schiminovich, D Martin, DC AF Hamden, Erika T. Jewell, April D. Gordon, Samuel Hennessy, John Hoenk, Michael E. Nikzad, Shouleh Schiminovich, David Martin, D. Christopher BE Takahashi, T DenHerder, JWA Bautz, M TI High efficiency CCD detectors at UV wavelengths SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Thin Films; Red Blocking; Anti-Reflection Coatings; Ultraviolet; delta doping ID ATOMIC LAYER DEPOSITION; ULTRAVIOLET RADIATION; QUANTUM EFFICIENCY; GALAXIES; HALOS; TUBE; GAS AB The Faint Intergalactic Redshifted Emission Balloon (FIREBall) is a NASA/CNES balloon-borne ultraviolet multi-object spectrograph designed to observe the diffuse gas around galaxies (the circumgalactic medium) via line emission redshifted to similar to 205 nm. FIREBall uses a ultraviolet-optimized delta doped e2v CCD201 with a custom designed high efficiency five layer anti-reflection coating. This combination achieves very high quantum efficiency (QE) and photon-counting capability, a first for a CCD detector in this wavelength range. We also present new work on red blocking mirror coatings to reduce red leak. C1 [Hamden, Erika T.; Gordon, Samuel; Schiminovich, David] Columbia Univ, New York, NY 10027 USA. [Jewell, April D.; Hennessy, John; Hoenk, Michael E.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Martin, D. Christopher] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Hamden, ET (reprint author), Columbia Univ, 550 W 120th St,Pupin Hall, New York, NY 10027 USA. EM hamden@astro.columbia.edu NR 32 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91442X DI 10.1117/12.2056204 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100088 ER PT S AU Hertz, PL AF Hertz, Paul L. BE Takahashi, T DenHerder, JWA Bautz, M TI Space astronomy and astrophysics program by NASA SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE NASA; Astrophysics AB The National Aeronautics and Space Administration recently released the NASA Strategic Plan 2014(1), and the NASA Science Mission Directorate released the NASA 2014 Science Plan(3). These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics(2) to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan(4). With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions(5), to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions. C1 Natl Aeronaut & Space Adm, Washington, DC 20546 USA. RP Hertz, PL (reprint author), Natl Aeronaut & Space Adm, 300 E St SW, Washington, DC 20546 USA. EM paul.hertz@nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91440U DI 10.1117/12.2062201 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100025 ER PT S AU Hill, JE Black, JK Emmett, TJ Enoto, T Jahoda, KM Kaaret, P Nolan, DS Tamagawa, T AF Hill, Joanne E. Black, J. Kevin Emmett, Thomas J. Enoto, Teruaki Jahoda, Keith M. Kaaret, Philip Nolan, David S. Tamagawa, Tom BE Takahashi, T DenHerder, JWA Bautz, M TI Design improvements and X-ray performance of a time projection chamber polarimeter for persistent astronomical sources. SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray Polarimetry; Gas Electron Multiplier; Gravity and Extreme Magnetism Small explorer; GEMS AB The design of the Time-Projection Chamber (TPC) Polarimeter for the Gravity and Extreme Magnetism Small Explorer (GEMS) was demonstrated to Technology Readiness Level 6 (TRL-6)(3) and the flight detectors fabricated, assembled and performance tested. A single flight detector was characterized at the Brookhaven National Laboratory Synchrotron Light Source with polarized X-rays at 10 energies from 2.3-8.0 keV at five detector positions. The detector met all of the GEMS performance requirements. Lifetime measurements have shown that the existing flight design has 23 years of lifetime(4), opening up the possibility of relaxing material requirements, in particular the consideration of the use of epoxy, to reduce risk elsewhere. We report on design improvements to the GEMS detector to enable a narrower transfer gap that, when operated with a lower transfer field, reduces asymmetries in the detector response. In addition, the new design reduces cost and risk by simplifying the assembly and reducing production time. Finally, we report on the performance of the narrow-gap detector in response to polarized and unpolarized X-rays. C1 [Hill, Joanne E.; Black, J. Kevin; Emmett, Thomas J.; Enoto, Teruaki; Jahoda, Keith M.; Nolan, David S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Black, J. Kevin] Rock Creek Sci, Silver Spring, MD 20910 USA. [Enoto, Teruaki; Nolan, David S.; Tamagawa, Tom] RIKEN, Wako, Saitama 3510198, Japan. [Kaaret, Philip] Univ Iowa, Iowa City, IA 52242 USA. SGT Inc, Lanham, MD 20706 USA. RP Hill, JE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM joanne.e.hill@nasa.gov NR 9 TC 3 Z9 3 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91441N DI 10.1117/12.2057259 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100048 ER PT S AU Iizuka, R Hayashi, T Maeda, Y Ishida, M Tomikawa, K Sato, T Kikuchi, N Okajima, T Soong, Y Serlemitosos, PJ Mori, H Izumiya, T Minami, S AF Iizuka, Ryo Hayashi, Takayuki Maeda, Yoshitomo Ishida, Manabu Tomikawa, Kazuki Sato, Toshiki Kikuchi, Naomichi Okajima, Takashi Soong, Yang Serlemitosos, Peter J. Mori, Hideyuki Izumiya, Takanori Minami, Sari BE Takahashi, T DenHerder, JWA Bautz, M TI Ground-based X-ray calibration of the Astro-H soft X-ray telescopes SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Astro-H; soft X-ray telescope; SXT; Wolter Type-I optics; conical approximation; raster scan AB The X-ray astronomy satellite Astro-H, planed to be launched in 2015, will have several instruments for covering a wide energy band from a few hundreds eV to 600 keV. There are four X-ray telescopes, and two of them are soft X-ray telescopes (SXTs) covering up to about 15 keV. One is for an X-ray micro-calorimeter detector (SXS) and the other is for an X-ray CCD detector (SXI). The design of the SXTs is a conical approximation of the Wolter Type-I optics, which is also adopted for the telescopes on the previous mission Suzaku launched in 2005. It consists 203 thin-foil reflectors coated with gold monolayer (2000 angstrom) on the aluminum substrate (101.6 mm length) with the thickness of 0.15, 0.23 and 0.31 mm. These are nested confocally within the radius of 58 to 225 mm. The focal length of SXTs is 5.6 m. The weight is as light as similar to 43 kg per telescope. We present the current status of the calibration activity of two SXTs (SXT-1 and SXT-2). The developments of two SXTs were completed by NASA's Goddard Space Flight Center (GSFC). First X-ray measurements with a diverging beam at the GSFC 100m beamline found an angular resolution at 8.0 keV to be 1.1 and 1.0 arcmin (HPD) for SXT-1 and SXT-2, respectively. The full characterization of the X-ray performance has been now continuously calibrated with the 30m X-ray beamline facility at the Institute of Space and Astronautical Science (ISAS) of Japan Aerospace eXploration Agency (JAXA) in Japan. We adopted a raster scan method with a narrow X-ray pencil beam with the divergence of similar to 15". X-ray characterization of the two SXTs has been measured from May and December 2013, respectively. In the case of SXT-1, the on-axis effective area was approximately 580, 445, 370, 270, 185 and 90 cm(2) at energies of 1.5, 4.5, 8.0, 9.4, 11.1 and 12.9 keV respectively. The effective area of SXT-2 is 2% larger than that of SXT-1 irrespective to X-ray energy. The on-axis angular resolution of SXT-1 was evaluated as 1.3 - 1.5 arcmin (HPD) in the 1.5 13 keV band. The resolution was slightly got worse at higher energies by similar to 0.3 arcmin. Otherwise, the resolution of SXT-2 is 1.2 arcmin, almost irrespective to X-ray energy. The field of view (FOV) was similar to 16 arcmin at 1.5 keV, decreasing with increasing X-ray energy, and became 8 arcmin at 13 keV. The FOV is defined here as the full-width at half-maximum (FWHM) of the vignetting curve. The X-ray performance of SXT-1 and SXT-2 meets the system requirements. Because all the parameters of the SXT-2 is slightly better that of SXT-1, we adopted the SXT-2 telescope for the SXS detector of the Astro-H primary instrument with the narrow FOV. C1 [Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi] ISAS JAXA, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi] Tokyo Metropolitan Univ, Hachioji, Tokyo 1920397, Japan. [Okajima, Takashi; Soong, Yang; Serlemitosos, Peter J.] NASA, GSFC, Greenbelt, MD 20711 USA. [Mori, Hideyuki] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Izumiya, Takanori] Chuo Univ, Tokyo 1128551, Japan. [Minami, Sari] Nara Womens Univ, Nara, Nara 6308506, Japan. RP Iizuka, R (reprint author), ISAS JAXA, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan. EM iizuka@astro.isas.jaxa.jp NR 12 TC 3 Z9 3 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914458 DI 10.1117/12.2054626 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100160 ER PT S AU Jahoda, KM Black, JK Hill, JE Kallman, TR Kaaret, P Markwardt, CB Okajima, T Petre, R Soong, Y Strohmayer, TE Tamagawa, T Tawara, Y AF Jahoda, Keith M. Black, J. Kevin Hill, Joanne E. Kallman, Timothy R. Kaaret, Philip Markwardt, Craig B. Okajima, Takashi Petre, Robert Soong, Yang Strohmayer, Tod E. Tamagawa, Tom Tawara, Yuzuru BE Takahashi, T DenHerder, JWA Bautz, M TI X-ray Polarization Capabilities of a Small Explorer Mission SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray Polarimetry; Gravity and Extreme Magnetism Small explorer; GEMS ID ACCRETING BLACK-HOLES; CRAB-NEBULA; EMISSION; SEARCH; PULSAR; POLARIMETRY AB X-ray polarization measurements hold great promise for studying the geometry and emission mechanisms in the strong gravitational and magnetic fields that surround black holes and neutron stars. In spite of this, the observational situation remains very limited; the last instrument dedicated to X-ray polarimetry flew decades ago on OSO-8, and the few recent measurements have been made by instruments optimized for other purposes. However, the technical capabilities to greatly advance the observational situation are in hand. Recent developments in micro-pattern gas detectors allow use of the polarization sensitivity of the photo-electric effect, which is the dominant interaction in the band above 2 keV. We present the scientific and technical requirements for an X-ray polarization observatory consistent with the scope of a NASA Small Explorer (SMEX) mission, along with a representative catalog of what the observational capabilities and expected sensitivities for the first year of operation could be. The mission is based on the technically robust design of the Gravity and Extreme Magnetism SMEX (GEMS) which completed a Phase B study and Preliminary Design Review in 2012. The GEMS mission is enabled by time projection detectors sensitive to the photo-electric effect. Prototype detectors have been designed, and provide engineering and performance data which support the mission design. The detectors are further characterized by low background, modest spectral resolution, and sub-millisecond timing resolution. The mission also incorporates high efficiency grazing incidence X-ray mirrors, design features that reduce systematic errors (identical telescopes at different azimuthal angles with respect to the look axis, and mounted on a rotating spacecraft platform), and a moderate capability to perform Target of Opportunity observations. The mission operates autonomously in a low earth, low inclination orbit with one to ten downlinks per day and one or more uplinks per week. Data and calibration products will be made available through the High Energy Astrophysics Science and Archival Research Center (HEASARC). C1 [Jahoda, Keith M.; Black, J. Kevin; Hill, Joanne E.; Kallman, Timothy R.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Soong, Yang; Strohmayer, Tod E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Black, J. Kevin] Rock Creek Sci, Silver Spring, MD 20910 USA. [Kaaret, Philip] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Soong, Yang] CRESST USRA, Wako, Saitama 3510198, Japan. [Tamagawa, Tom] RIKEN, Wako, Saitama 3510198, Japan. [Tawara, Yuzuru] Nagoya Univ, Dept Phys Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. RP Jahoda, KM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM keith.m.jahoda@nasa.gov NR 45 TC 4 Z9 4 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91440N DI 10.1117/12.2056719 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100019 ER PT S AU Kitaguchi, T Tamagawa, T Hayato, A Enoto, T Yoshikawa, A Kaneko, K Takeuchi, Y Black, K Hill, J Jahoda, K Krizmanic, J Sturner, S Griffiths, S Kaaret, P Marlowe, H AF Kitaguchi, Takao Tamagawa, Toru Hayato, Asami Enoto, Teruaki Yoshikawa, Akifumi Kaneko, Kenta Takeuchi, Yoko Black, Kevin Hill, Joanne Jahoda, Keith Krizmanic, John Sturner, Steve Griffiths, Scott Kaaret, Philip Marlowe, Hannah CA GEMS Team BE Takahashi, T DenHerder, JWA Bautz, M TI Monte-Carlo estimation of the inflight performance of the GEMS satellite X-ray polarimeter SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray; polarimetry; Monte-Carlo simulation; GEM; TPC ID LASER ETCHING TECHNIQUE; COUNTING GASES; ENERGY; SIMULATION; ASTRONOMY; DETECTOR AB We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit. C1 [Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Enoto, Teruaki; Black, Kevin; Hill, Joanne; Jahoda, Keith; Krizmanic, John; Sturner, Steve] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko] Tokyo Univ Sci, Dept Phys, Shinjyuku Ku, Tokyo 1628601, Japan. [Griffiths, Scott; Kaaret, Philip; Marlowe, Hannah] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Kitaguchi, T (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM kitaguti@crab.riken.jp NR 19 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91444L DI 10.1117/12.2057334 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100140 ER PT S AU Madsen, KK Harrison, FA An, H Boggs, SE Christensen, FE Cook, R Craig, WW Forster, K Fuerst, F Grefenstette, B Hailey, CJ Kitaguchi, T Markwardt, C Mao, P Miyasaka, H Rana, V Stern, DK Zhang, WW Zoglauer, A Walton, D Westergaard, NJ AF Madsen, Kristin K. Harrison, Fiona A. An, Hongjun Boggs, Steven E. Christensen, Finn E. Cook, Rick Craig, William W. Forster, Karl Fuerst, Felix Grefenstette, Brian Hailey, Charles J. Kitaguchi, Takao Markwardt, Craig Mao, Peter Miyasaka, Hiromasa Rana, Vikram Stern, Daniel K. Zhang, William W. Zoglauer, Andreas Walton, Dominic Westergaard, Niels J. BE Takahashi, T DenHerder, JWA Bautz, M TI The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-ray Mission SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE NuSTAR; X-ray optics; CZT ID SUPERMASSIVE BLACK-HOLE; CYGNUS X-1; CASSIOPEIA; ACCRETION; MAGNETAR; SPIN; MASS; CONSTRAINTS; VARIABILITY; REFLECTION AB The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above similar to 10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers, and combined with a focal length of 10.14 meters this enables operation from 3 79 keV. The optics focus onto two focal plane arrays, each consisting of 4 CdZnTe pixel detectors, for a field of view of 12.5 arcminutes. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity, and with an effective point spread function FWHM of 18 arcseconds (HPD similar to 1), NuSTAR provides a leap of improvement in resolution over the collimated or coded mask instruments that have operated in this bandpass. We present in-orbit performance details of the observatory and highlight important science results from the first two years of the mission. C1 [Madsen, Kristin K.; Harrison, Fiona A.; Cook, Rick; Forster, Karl; Fuerst, Felix; Grefenstette, Brian; Mao, Peter; Miyasaka, Hiromasa; Rana, Vikram; Walton, Dominic] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [An, Hongjun] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Christensen, Finn E.; Westergaard, Niels J.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kitaguchi, Takao] RIKEN, Nishina Ctr, Tokyo, Japan. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Stern, Daniel K.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Madsen, KK (reprint author), CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. EM kristin@srl.caltech.edu OI Madsen, Kristin/0000-0003-1252-4891 NR 53 TC 1 Z9 1 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91441P DI 10.1117/12.2056643 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100050 ER PT S AU McClelland, RS Biskach, MP Chan, KW Espina, RA Hohl, BR Saha, TT Zhang, WW AF McClelland, Ryan S. Biskach, Michael P. Chan, Kai-Wing Espina, Rebecca A. Hohl, Bruce R. Saha, Timo T. Zhang, William W. BE Takahashi, T DenHerder, JWA Bautz, M TI Process of constructing a lightweight flight mirror assembly SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE slumped glass mirrors; module; Flight Mirror Assembly; FMA; x-ray optics; kinematic mount; vertical beam line AB Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. NASA's Next Generation X-ray Optics (NGXO) project has made significant progress towards building such optics, both in terms of maturing the technology for spaceflight readiness and improving the angular resolution. Technology Development Modules (TDMs) holding three pairs of mirrors have been regularly and repeatedly integrated and tested both for optical performance and mechanical strength. X-ray test results have been improved over the past year from 10.3 arc-seconds Half Power Diameter (HPD) to 8.3 arc-seconds HPD. A vibration test has been completed to NASA standard verification levels showing the optics can survive launch and pointing towards improvements in strengthening the modules through redundant bonds. A Finite Element Analysis (FEA) study was completed which shows the mirror distortion caused by bonding is insensitive to the number of bonds. Next generation TDMs, which will demonstrate a lightweight structure and mount additional pairs of mirrors, have been designed and fabricated. The light weight of the module structure is achieved through the use of E-60 Beryllium Oxide metal matrix composite material. As the angular resolution of the development modules has improved, gravity distortion during horizontal x-ray testing has become a limiting factor. To address this issue, a facility capable of testing in the vertical orientation has been designed and planned. Test boring at the construction site suggest standard caisson construction methods can be utilized to install a subterranean vertical vacuum pipe. This facility will also allow for the testing of kinematically mounted mirror segments, which greatly reduces the effect of bonding displacements. A development platform demonstrating the feasibility of kinematically mounting mirror segments has been designed, fabricated, and successfully tested. C1 [McClelland, Ryan S.; Biskach, Michael P.; Espina, Rebecca A.; Hohl, Bruce R.] SGT Inc, Greenbelt, MD 20770 USA. [Chan, Kai-Wing] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Saha, Timo T.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McClelland, RS (reprint author), SGT Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA. EM ryan.s.mcclelland@nasa.gov NR 6 TC 3 Z9 3 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914441 DI 10.1117/12.2056820 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100121 ER PT S AU McConnell, ML Baring, MG Bloser, P Dwyer, JR Emslie, AG Ertley, CD Greiner, J Harding, AK Hartmann, DH Hille, JE Kaaret, P Kippen, RM Mattingly, D McBreen, S Pearcek, M Produit, N Ryan, JM Ryde, F Sakamoto, T Toma, K Vestrand, WT Zhang, B AF McConnell, Mark L. Baring, Matthew G. Bloser, Peter Dwyer, Joseph R. Emslie, A. Gordon Ertley, Camden D. Greiner, Jochen Harding, Alice K. Hartmann, Dieter H. Hille, Joanne E. Kaaret, Philip Kippen, R. Marc Mattingly, David McBreen, Sheila Pearcek, Mark Produit, Nicolas Ryan, James M. Ryde, Felix Sakamoto, Takanori Toma, Kenji Vestrand, W. Thomas Zhang, Bing BE Takahashi, T DenHerder, JWA Bautz, M TI POET: a SMEX mission for gamma-ray burst polarimetry SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray; Gamma-ray; Gamma-ray Burst; polarimeter; satellite ID PROMPT EMISSION; GRB 041219A; POLARIZATION; REANALYSIS; GRB-021206; ASTRONOMY AB Polarimeters for Energetic Transients (POET) is a mission concept designed to fit within the envelope of a NASA Small Explorer (SMEX) mission. POET will use X-ray and gamma-ray polarimetry to uncover the energy release mechanism associated with the formation of stellar-mass black holes and investigate the physics of extreme magnetic fields in the vicinity of compact objects. Two wide-FoV, non-imaging polarimeters will provide polarization measurements over the broad energy range from about 2 keV up to about 500 keV. A Compton scatter polarimeter, using an array of independent scintillation detector elements, will be used to collect data from 50 keV up to 500 keV. At low energies (2-15 keV), data will be provided by a photoelectric polarimeter based on the use of a Time Projection Chamber for photoelectron tracking. During a two-year baseline mission, POET will be able to collect data that will allow us to distinguish between three basic models for the inner jet of gamma-ray bursts. C1 [McConnell, Mark L.; Bloser, Peter; Dwyer, Joseph R.; Ertley, Camden D.; Ryan, James M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [McConnell, Mark L.; Bloser, Peter; Dwyer, Joseph R.; Ertley, Camden D.; Ryan, James M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Baring, Matthew G.] Rice Univ, Dept Phys & Astron, Houston, TX USA. [Emslie, A. Gordon] Western Kentucky Univ, Dept Phys & Astron, Bowling Green, KY 42101 USA. [Greiner, Jochen] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Harding, Alice K.; Hille, Joanne E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hartmann, Dieter H.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Kaaret, Philip] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kippen, R. Marc; Vestrand, W. Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. [Mattingly, David] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [McBreen, Sheila] Univ Coll Dublin, Sch Phys, Dublin 2, Ireland. [Pearcek, Mark; Ryde, Felix] KTH Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Produit, Nicolas] ISDC, Data Ctr Astrophys, Versoix, Switzerland. [Sakamoto, Takanori] Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa, Japan. [Toma, Kenji] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan. [Zhang, Bing] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP McConnell, ML (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM mark.mcconnell@unh.edu NR 25 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91440O DI 10.1117/12.2056905 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100020 ER PT S AU Mitsuda, K Kelley, RL Akamatsu, H Bialas, T Boyce, KR Brown, GV Canavan, E Chiao, M Costantini, E den Herder, JW de Vries, C DiPirro, MJ Eckart, ME Ezoe, Y Fujimoto, R Haas, D Hoshino, A Ishikawa, K Ishisaki, Y Iyomoto, N Kilbourne, CA Kimball, M Kitamoto, S Konami, S Leutenegger, MA McCammon, D Miko, J Mitsuishi, I Murakami, H Murakami, M Noda, H Ogawa, M Ohashi, T Okamoto, A Ota, N Paltani, S Porter, FS Sato, K Sato, Y Sawada, M Seta, H Shinozaki, K Shirron, PJ Sneiderman, GA Sugita, H Szymkowiak, A Takei, Y Tamagawa, T Tashiro, MS Terada, Y Tsujimoto, M Yamada, S Yamasaki, NY AF Mitsuda, Kazuhisa Kelley, Richard L. Akamatsu, Hiroki Bialas, Thomas Boyce, Kevin R. Brown, Gregory V. Canavan, Edgar Chiao, Meng Costantini, Elisa den Herder, Jan-Willem de Vries, Cor DiPirro, Michael J. Eckart, Megan E. Ezoe, Yuichiro Fujimoto, Ryuichi Haas, Daniel Hoshino, Akio Ishikawa, Kumi Ishisaki, Yoshitaka Iyomoto, Naoko Kilbourne, Caroline A. Kimball, Mark Kitamoto, Shunji Konami, Saori Leutenegger, Maurice A. McCammon, Dan Miko, Joseph Mitsuishi, Ikuyuki Murakami, Hiroshi Murakami, Masahide Noda, Hirofumi Ogawa, Mina Ohashi, Takaya Okamoto, Atsushi Ota, Naomi Paltani, Stephane Porter, F. Scott Sato, Kosuke Sato, Yoichi Sawada, Makoto Seta, Hitomi Shinozaki, Keisuke Shirron, Peter J. Sneiderman, Gary A. Sugita, Hiroyuki Szymkowiak, Andrew Takei, Yoh Tamagawa, Toru Tashiro, Makoto S. Terada, Yukikatsu Tsujimoto, Masahiro Yamada, Shinya Yamasaki, Noriko Y. BE Takahashi, T DenHerder, JWA Bautz, M TI Soft x-ray spectrometer (SXS): the high-resolution cryogenic spectrometer onboard ASTRO-H SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray astronomy; Soft X-ray; High resolution X-ray Spectroscopy AB We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 - 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat. C1 [Mitsuda, Kazuhisa; Ogawa, Mina; Takei, Yoh; Tsujimoto, Masahiro; Yamasaki, Noriko Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Okamoto, Atsushi; Sato, Yoichi; Shinozaki, Keisuke; Sugita, Hiroyuki] JAXA, Aerosp Res & Dev Directorate, Tsukuba, Ibaraki, Japan. [Ezoe, Yuichiro; Ishisaki, Yoshitaka; Konami, Saori; Ohashi, Takaya; Yamada, Shinya] Tokyo Metropolitan Univ, Hachioji, Tokyo, Japan. [Fujimoto, Ryuichi; Hoshino, Akio] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Murakami, Masahide] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Seta, Hitomi; Tashiro, Makoto S.; Terada, Yukikatsu] Saitama Univ, Saitama 3388570, Japan. [Kitamoto, Shunji] Rikkyo Univ, Tokyo 171, Japan. [Ishikawa, Kumi; Noda, Hirofumi; Tamagawa, Toru] RIKEN, Wako, Saitama, Japan. [Kelley, Richard L.; Bialas, Thomas; Boyce, Kevin R.; DiPirro, Michael J.; Kilbourne, Caroline A.; Kimball, Mark; Porter, F. Scott; Shirron, Peter J.; Sneiderman, Gary A.] NASA Goddard, Greenbelt, MD USA. [McCammon, Dan] Univ Wisconsin, Madison, WI USA. [Szymkowiak, Andrew] Yale Univ, New Haven, CT USA. [Brown, Gregory V.; Canavan, Edgar; Chiao, Meng; Eckart, Megan E.; Leutenegger, Maurice A.; Miko, Joseph] Lawrence Livermore Natl Lab, Livermore, CA USA. [Akamatsu, Hiroki; Costantini, Elisa; den Herder, Jan-Willem; de Vries, Cor; Haas, Daniel] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Paltani, Stephane] Univ Geneva, Geneva, Switzerland. [Iyomoto, Naoko] Kyushu Univ, Fukuoka 812, Japan. [Mitsuishi, Ikuyuki] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Ota, Naomi] Nara Womens Univ, Nara, Japan. [Sato, Kosuke] Tokyo Univ Sci, Tokyo 162, Japan. [Sawada, Makoto] Aoyama Gakuin Univ, Tokyo 150, Japan. [Murakami, Hiroshi] Tohoku Gakuin Univ, Sendai, Miyagi 980, Japan. RP Mitsuda, K (reprint author), JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. EM mitsuda@astro.isas.jaxa.jp NR 4 TC 14 Z9 14 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91442A DI 10.1117/12.2057199 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100070 ER PT S AU Moore, CS Hennessy, J Jewell, AD Nikzad, S France, K AF Moore, Christopher Samuel Hennessy, John Jewell, April D. Nikzad, Shouleh France, Kevin BE Takahashi, T DenHerder, JWA Bautz, M TI Recent developments and results of new ultraviolet reflective mirror coatings SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Ultraviolet; mirror coatings; atomic layer deposition; thin films; magnesium fluoride; aluminum fluoride; Lyman Ultraviolet; Far Ultraviolet; high-reflectivity ID ALF3 THIN-FILMS; WAVELENGTH REGION; MGF2; ALUMINUM AB Astronomical observations in the Lyman-ultraviolet (91 - 122 nm) are limited in part by the performance of reflective coatings. Currently, the best reflective mirror options for the UV wavelength range of 90 - 122 nm are LiF+Al (R similar to 60% from 102 - 200 nm) and SiC (R similar to 30 % from 90 - 200 nm). Higher reflectivity coatings in the 90 - 122 nm range will improve sensitivity and allow for more complex instrumentation. We are working to develop, laboratory test and eventually space test new reflective UV coatings (R > 70% from 90 - 115 nm) that also preserve high-reflectivity performance (R > 80% from 115 - 800 nm) throughout the longer-wavelength vacuum ultraviolet and visible spectral bands. We present a progress report on our work with new protective thin film deposition techniques of metal fluorides (MgF2 and AlF3) on high intrinsic broadband reflective metal (aluminum) surfaces. We present first test results from both traditional and atomic layer deposition processes. In this paper, we discuss the current status of the deposition process, coating substrates, reflectivity measurements for optical through far-ultraviolet wavelengths as well as environmental storage sensitivities. C1 [Moore, Christopher Samuel; France, Kevin] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Moore, Christopher Samuel] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Moore, Christopher Samuel; France, Kevin] Univ Colorado, Astrophys & Planetary Sci Dept, Boulder, CO 80309 USA. [Hennessy, John; Jewell, April D.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Moore, CS (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. EM Christopher.Moore-1@Colorado.edu NR 19 TC 5 Z9 5 U1 1 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91444H DI 10.1117/12.2057272 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100136 ER PT S AU Nakazawa, K Takahashi, T Watanabe, S Ichinohe, Y Takeda, S Enoto, T Fukazawa, Y Kamae, T Kokubun, M Makishima, K Mitani, T Mizuno, T Nomachi, M Tajima, H Takashima, T Tamagawa, T Terada, Y Tashiro, M Uchiyama, Y Yoshimitsu, T AF Nakazawa, Kazuhiro Takahashi, Tadayuki Watanabe, Shin Ichinohe, Yuto Takeda, Shin'ichiro Enoto, Teruaki Fukazawa, Yasushi Kamae, Tuneyoshi Kokubun, Motohide Makishima, Kazuo Mitani, Takefumi Mizuno, Tsunefumi Nomachi, Masaharu Tajima, Hiroyasu Takashima, Takeshi Tamagawa, Toru Terada, Yukikatsu Tashiro, Makoto Uchiyama, Yasunobu Yoshimitsu, Tetsuo BE Takahashi, T DenHerder, JWA Bautz, M TI Sub-MeV all sky survey with a compact Si/CdTe Compton telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Manuscript format; template; SPIE Proceedings; LaTeX ID HARD X-RAY; LARGE-AREA TELESCOPE; CDTE DIODE; CRAB-NEBULA; DETECTORS; CAMERA; VARIABILITY; CYGNUS-X-1; EMISSION; MISSION AB Recent progress in wide field of view or all-sky observations such as Swift/BAT hard X-ray monitor and Fermi GeV gamma-ray observatory has opened up a new era of time-domain high energy astro-physics addressing new insight in, e.g., particle acceleration in the universe. MeV coverage with comparable sensitivity, i.e. 1 similar to 10 mCrab is missing and a new MeV all-sky observatory is needed. These new MeV mission tend to be large, power-consuming and hence expensive, and its realization is yet to come. A compact sub-MeV (0.2-2 MeV) all-sky mission is proposed as a path finder for such mission. It is based on a Si/CdTe semiconductor Compton telescope technology employed in the soft gamma-ray detector onboard ASTRO-H, to be launched in to orbit on late 2015. The mission is kept as small as 0.5 x 0.5 x 0.4 m(3), 150 kg in weight and 200 W in power in place of the band coverage above a few MeV, in favor of early realization as a sub-payload to other large platforms, such as the international space station. C1 [Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Kamae, Tuneyoshi; Makishima, Kazuo] Univ Tokyo, Grad Sch Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Takahashi, Tadayuki; Watanabe, Shin; Ichinohe, Yuto; Takeda, Shin'ichiro; Kokubun, Motohide; Mitani, Takefumi; Takashima, Takeshi; Yoshimitsu, Tetsuo] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2515210, Japan. [Enoto, Teruaki; Tamagawa, Toru] RIKEN, Nishina Ctr, High Energy Astrophys Lab, Wako, Saitama 3510198, Japan. [Enoto, Teruaki] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fukazawa, Yasushi] Hiroshima Univ, Grad Sch Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Mizuno, Tsunefumi] Hiroshima Univ, Ctr Space Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nomachi, Masaharu] Osaka Univ, Nucl Phys Res Ctr, Toyonaka, Osaka 5600043, Japan. [Tajima, Hiroyasu] Nagoya Univ, STEL Iab, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Terada, Yukikatsu; Tashiro, Makoto] Saitama Univ, Dept Phys, Sakura Ku, Saitama, Saitama 3388570, Japan. [Uchiyama, Yasunobu] Rikkyo Univ, Toshima Ku, Tokyo 1718501, Japan. RP Nakazawa, K (reprint author), Univ Tokyo, Grad Sch Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM nakazawa@juno.phys.s.u-tokyo.ac.jp NR 48 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91440J DI 10.1117/12.2055422 PG 13 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100015 ER PT S AU Pavlinsky, M Akimov, V Levin, V Lapshov, I Tkachenko, A Semena, N Buntov, M Glushenko, A Arefiev, V Yaskovich, A Sunyaev, R Churazov, E Gilfanov, M Grebenev, S Sazonov, S Revnivtsev, M Lutovinov, A Molkov, S Kudelin, M Drozdova, T Garanin, S Grigorovich, S Litvin, D Lazarchuk, V Roiz, I Garin, M Babyshkin, V Lomakin, I Menderov, A Moskvinov, D Gubarev, M Ramsey, B Kilaru, K O'Dell, SL Kolodziejczak, J Elsner, R AF Pavlinsky, M. Akimov, V. Levin, V. Lapshov, I. Tkachenko, A. Semena, N. Buntov, M. Glushenko, A. Arefiev, V. Yaskovich, A. Sunyaev, R. Churazov, E. Gilfanov, M. Grebenev, S. Sazonov, S. Revnivtsev, M. Lutovinov, A. Molkov, S. Kudelin, M. Drozdova, T. Garanin, S. Grigorovich, S. Litvin, D. Lazarchuk, V. Roiz, I. Garin, M. Babyshkin, V. Lomakin, I. Menderov, A. Moskvinov, D. Gubarev, M. Ramsey, B. Kilaru, K. O'Dell, S. L. Kolodziejczak, J. Elsner, R. BE Takahashi, T DenHerder, JWA Bautz, M TI Status of ART-XC/SRG instrument SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE AB Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in March 2016 from Baikonur, by a Zenit rocket with a Fregat booster and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescopes - a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules. The NASA Marshall Space Flight Center (MSFC) is fabricating the flight mirror modules for the ART-XC/SRG. Each mirror module will be aligned with a focal plane CdTe double-sided strip detector which will operate over the energy range of 6-30 keV, with an angular resolution of <1', a field of view of similar to 34' and an expected energy resolution of about 10% at 14 keV. C1 [Pavlinsky, M.; Akimov, V.; Levin, V.; Lapshov, I.; Tkachenko, A.; Semena, N.; Buntov, M.; Glushenko, A.; Arefiev, V.; Yaskovich, A.; Sunyaev, R.; Churazov, E.; Gilfanov, M.; Grebenev, S.; Sazonov, S.; Revnivtsev, M.; Lutovinov, A.; Molkov, S.; Kudelin, M.; Drozdova, T.] Space Res Inst, Moscow, Russia. [Garanin, S.; Grigorovich, S.; Litvin, D.; Lazarchuk, V.; Roiz, I.; Garin, M.] VNIIEF, All Russian Sci Res Inst Expt Phys, Sarov, Russia. [Babyshkin, V.; Lomakin, I.; Menderov, A.; Moskvinov, D.] Lavochkin Assoc, Chimki, Russia. [Sunyaev, R.; Churazov, E.] MPI Astrophys, Garching, Germany. [Gubarev, M.; Ramsey, B.; Kilaru, K.; O'Dell, S. L.; Kolodziejczak, J.; Elsner, R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Pavlinsky, M (reprint author), Space Res Inst, Moscow, Russia. RI Churazov, Eugene/A-7783-2013; OI O'Dell, Stephen/0000-0002-1868-8056 NR 2 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91441U DI 10.1117/12.2055147 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100055 ER PT S AU Quijada, MA del Hoyo, J Rice, S AF Quijada, Manuel A. del Hoyo, Javier Rice, Stephen BE Takahashi, T DenHerder, JWA Bautz, M TI Enhanced Far-Ultraviolet Reflectance of MgF2 and LiF Over-coated Al Mirrors SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE far-UV; coatings; reflectance; aluminum; MgF2; LiF ID VACUUM ULTRAVIOLET; COATINGS; REGION AB This paper presents and discuss data obtained on a distribution of Al+MgF2 and Al+LiF witness coupons that show substantial gains in reflectance in the far-ultraviolet (FUV) part of the optical spectrum (90-180 nm). These samples, which have dimensions of 2x2 inches, were coated at various locations inside a 2-me diameter coating chamber at the Goddard Space Flight Center in Greenbelt, MD (USA). These experiments were done to demonstrate a scale-up process for coating up to a 1-m diameter optic, and hence realize the gain in throughput that could be obtained for a telescope system that would employ such mirror coatings. These coatings have been optimized for Lyman-alpha (121.6 nm) or lower wavelengths and they are prepared with the deposition of the MgF2 or LiF layers done at elevated (similar to 250 degrees C) temperature. These results will be compared to ambient or "cold" depositions. We will also present optical characterization of little-studied rare-earth fluorides, such as GdF3 and LuF3, that exhibit low absorption over a broad wavelength range and could therefore be used as high-index materials to produce dielectric coatings at FUV wavelengths. C1 [Quijada, Manuel A.; del Hoyo, Javier; Rice, Stephen] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. RP Quijada, MA (reprint author), NASA, Goddard Space Flight Ctr, Opt Branch, Code 551,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM manuel.a.quijada@nasa.gov NR 12 TC 5 Z9 5 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91444G DI 10.1117/12.2057438 PG 10 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100135 ER PT S AU Riveros, RE Bly, VT Kolos, LD McKeon, KP Mazzarella, JR Miller, TM Zhang, WW AF Riveros, Raul E. Bly, Vincent T. Kolos, Linette D. McKeon, Kevin P. Mazzarella, James R. Miller, Timothy M. Zhang, William W. BE Takahashi, T DenHerder, JWA Bautz, M TI Fabrication of single crystal silicon mirror substrates for X-ray astronomical missions SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray optics; X-ray mirrors; silicon; polishing AB The advancement of X-ray astronomy largely depends on technological advances in the manufacturing of X-ray optics. Future X-ray astronomy missions will require thousands of nearly perfect mirror segments to produce an X-ray optical assembly with < 5 arcsecond resolving capability. Present-day optical manufacturing technologies are not capable of producing thousands of such mirrors within typical mission time and budget allotments. Therefore, efforts towards the establishment of a process capable of producing sufficiently precise X-ray mirrors in a time-efficient and cost-effective manner are needed. Single-crystal silicon is preferred as a mirror substrate material over glass since it is stronger and free of internal stress, allowing it to retain its precision when cut into very thin mirror substrates. This paper details our early pursuits of suitable fabrication technologies for the mass production of sub-arcsecond angular resolution single-crystal silicon mirror substrates for X-ray telescopes. C1 [Riveros, Raul E.; Bly, Vincent T.; Kolos, Linette D.; Miller, Timothy M.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McKeon, Kevin P.; Mazzarella, James R.] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. RP Riveros, RE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 13 TC 2 Z9 2 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914445 DI 10.1117/12.2056889 PG 6 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100124 ER PT S AU Roche, JM Gubarev, MV Smith, WS O'Dell, SL Kolodziejczak, JJ Weisskopf, MC Ramsey, BD Elsner, RF AF Roche, Jacqueline M. Gubarev, Mikhail V. Smith, W. Scott O'Dell, Stephen L. Kolodziejczak, Jeffrey J. Weisskopf, Martin C. Ramsey, Brian D. Elsner, Ronald F. BE Takahashi, T DenHerder, JWA Bautz, M TI Mounting for fabrication, metrology, and assembly of full-shell grazing-incidence optics SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Mounting; grazing-incidence optics; opto-mechanical analysis ID PERFORMANCE AB Future x-ray telescopes will likely require lightweight mirrors to attain the large collecting areas needed to accomplish the science objectives. Understanding and demonstrating processes now is critical to achieving sub-arcsecond performance in the future. Consequently, designs not only of the mirrors but of fixtures for supporting them during fabrication, metrology, handling, assembly, and testing must be adequately modeled and verified. To this end, MSFC is using finite-element modeling to study the effects of mounting on thin, full-shell grazing-incidence mirrors, during all processes leading to flight mirror assemblies. Here we report initial results of this study. C1 [Roche, Jacqueline M.; Gubarev, Mikhail V.; Smith, W. Scott; O'Dell, Stephen L.; Kolodziejczak, Jeffrey J.; Weisskopf, Martin C.; Ramsey, Brian D.; Elsner, Ronald F.] NASA, Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Roche, JM (reprint author), NASA, Marshall Space Flight Ctr, Space Sci Off, MSFC ZP12, Huntsville, AL 35812 USA. OI O'Dell, Stephen/0000-0002-1868-8056 NR 16 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914443 DI 10.1117/12.2057046 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100123 ER PT S AU Saha, TT Zhang, WW McClelland, RS AF Saha, Timo T. Zhang, William W. McClelland, Ryan S. BE Takahashi, T DenHerder, JWA Bautz, M TI Optical design for a survey x-ray telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Optical design; x-ray optics; x-ray mirrors; wide-field x-ray telescopes ID GRAZING-INCIDENCE OPTICS; ABERRATIONS AB Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-ofview. C1 [Saha, Timo T.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McClelland, Ryan S.] SGT Inc, Greenbelt, MD 20770 USA. RP Saha, TT (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914418 DI 10.1117/12.2055478 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100035 ER PT S AU Sato, T Iizuka, R Hayashi, T Maeda, Y Ishida, M Tomikawa, K Kikuchi, N Okajima, T Soong, Y Serlemitosos, PJ Mori, H Izumiya, T Minami, S AF Sato, T. Iizuka, R. Hayashi, T. Maeda, Y. Ishida, M. Tomikawa, K. Kikuchi, N. Okajima, T. Soong, Y. Serlemitosos, P. J. Mori, H. Izumiya, T. Minami, S. BE Takahashi, T DenHerder, JWA Bautz, M TI Revealing a detailed performance of the Soft X-ray Telescopes of the ASTRO-H mission SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE ASTRO-H; Soft X-ray Telescope; X-ray Optics AB The international X-ray observatory, ASTRO-H is currently planed as launched in 2015. The ASTRO-H mission covers a wide energy range from a few hundreds eV to 600 keV. The two Soft X-ray Telescopes (SXT1 and SXT-2) play a role to image the soft X-ray sky up to similar to 12 keV in that range. Each of them focuses an image on the focal plane detectors of the CCD camera (SXI) and the calorimeter (SXS-XCS), respectively. In this paper, we present spot scan measurements of the two SXTs. The spot scan fully illuminates the telescope by mapping with the 8 mm by 8 mm beam and creates the "maps" of the half power diameter (HPD) and the focal location of the focused image. We found variations of performance at local area of the telescope. Each of the spot images has different focal-location and different HPD. Moreover, we found that the map of the HPD is very similar from quadrant to quadrant, but the map of the focal location is different from quadrant to quadrant, from radius to radius, and from azimuthal angle to angle. C1 [Sato, T.; Iizuka, R.; Hayashi, T.; Maeda, Y.; Ishida, M.; Tomikawa, K.; Kikuchi, N.] Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Sato, T.; Tomikawa, K.; Kikuchi, N.] Tokyo Metropolitan Univ, Hachioji, Tokyo 1920397, Japan. [Okajima, T.; Soong, Y.; Serlemitosos, P. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mori, H.] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Izumiya, T.] Chuo Univ, Bunkyo Ku, Tokyo 1128551, Japan. [Minami, S.] Nara Womens Univ, Nara 6308506, Japan. RP Sato, T (reprint author), Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM toshiki@astro.isas.jaxa.jp OI Mori, Hajime/0000-0001-9219-6140 NR 5 TC 2 Z9 2 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914459 DI 10.1117/12.2055622 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100161 ER PT S AU Smith, RK Ackermann, M Allured, R Bautz, MW Bregman, J Bookbinder, J Burrows, D Brenneman, L Brickhouse, N Cheimets, P Carrier, A Freeman, M Kaastra, J McEntaffer, R Miller, J Ptak, A Petre, R Vacanti, G AF Smith, R. K. Ackermann, M. Allured, R. Bautz, M. W. Bregman, J. Bookbinder, J. Burrows, D. Brenneman, L. Brickhouse, N. Cheimets, Peter Carrier, A. Freeman, M. Kaastra, J. McEntaffer, R. Miller, J. Ptak, A. Petre, R. Vacanti, G. CA Arcus Team BE Takahashi, T DenHerder, JWA Bautz, M TI Arcus: an ISS-attached high-resolution X-ray grating spectrometer SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE gratings; ISS; instrumentation; X-rays: spectroscopy ID INTERGALACTIC MEDIUM; ABSORPTION AB We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be deployed on the International Space Station. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. The mission requirements will be R>2500 and >600 cm(2) of effective area at the crucial O VII and O VIII lines, values similar to the goals of the IXO X-ray Grating Spectrometer. The full bandpass will range from 8-52 angstrom (0.25-1.5 keV), with an overall minimum resolution of 1300 and effective area >150 cm(2). We will use the silicon pore optics developed at cosine Research and proposed for ESA's Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs. This mission achieves key science goals of the New Worlds, New Horizons Decadal survey while making effective use of the International Space Station (ISS). C1 [Smith, R. K.; Allured, R.; Bookbinder, J.; Brenneman, L.; Brickhouse, N.; Cheimets, Peter; Freeman, M.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Ackermann, M.; Vacanti, G.] Cosine Res, Leiden, Netherlands. [Bautz, M. W.] MIT, Cambridge, MA 02139 USA. [Bregman, J.; Miller, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Burrows, D.] Penn State Univ, University Pk, PA 16802 USA. [Carrier, A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA. [Kaastra, J.] SRON, Utrecht, Netherlands. [McEntaffer, R.] Univ Iowa, Iowa City, IA 52242 USA. [Ptak, A.; Petre, R.] NASA, Goddard Space Flight Ctr, Washington, DC USA. RP Smith, RK (reprint author), Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. NR 25 TC 6 Z9 6 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91444Y DI 10.1117/12.2062671 PG 12 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100153 ER PT S AU Soong, Y Okajima, T Serlemitsos, PJ Odell, SL Ramsey, BD Gubarev, MV Ishida, M Maeda, Y Iizuka, R Hayashi, T Tawara, Y Furuzawa, A Mori, H Miyazawa, T Kunieda, H Awaki, H Sugita, S Tamura, K Ishibashi, K Izumiya, T Minami, S Sato, T Tomikawa, K Kikuchi, N Iwase, T AF Soong, Yang Okajima, Takashi Serlemitsos, Peter J. Odell, Stephen L. Ramsey, Brian D. Gubarev, Mikhail V. Ishida, Manabu Maeda, Yoshitomo Iizuka, Ryo Hayashi, Takayuki Tawara, Yuzuru Furuzawa, Akihiro Mori, Hideyuki Miyazawa, Takuya Kunieda, Hideyo Awaki, Hisamitsu Sugita, Satoshi Tamura, Keisuke Ishibashi, Kazunori Izumiya, Takanori Minami, Sari Sato, Toshiki Tomikawa, Kazuki Kikuchi, Naomichi Iwase, Toshihiro BE Takahashi, T DenHerder, JWA Bautz, M TI ASTRO-H Soft X-ray Telescope (SXT) SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-rays; X-ray Optics; soft X-rays; X-ray Telescope; X-ray Astrophysical Instrument; ASTRO-H; SXT AB ASTRO-H is an astrophysics satellite dedicated for non-dispersive X-ray spectroscopic study on selective celestial X-ray sources. Among the onboard instruments there are four Wolter-I X-ray mirrors of their reflectors' figure in conical approximation. Two of the four are soft X-ray mirrors(1), of which the energy range is from a few hundred eV to 15 keV within the effective aperture being defined by the nested reflectors' radius ranging between 5.8 cm to 22.5 cm. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The mirrors were in quadrant configuration with photons being reflected consecutively in the primary and secondary stage before converging on the focal plane of 5.6 m away from the interface between the two stages. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 mu m, 229 mu m, and 305 mu m of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 mu m nominal and surface gold layer of 0.2 mu m. Improvements on angular response over its predecessors, e.g. Astro-E1/Suzaku mirrors, come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. Each soft x-ray telescope (SXT), SXT-1 or SXT-2, were integrated from four independent quadrants of mirrors. The stray-light baffles, in quadrant configuration, were mounted onto the integrated mirror. Thermal control units were attached to the perimeter of the integrated mirror to keep the mirror within operating temperature in space. The completed instrument went through a series of optical alignment, thus made the quadrant images confocal and their optical axes in parallel to achieve highest throughput possible. Environmental tests were carried out, and optical quality of the telescopes has been confirmed. SXT-1 and -2 were tested with the broad but slightly divergent beam, up to 8 arc-minutes, at Goddard. The full characterization were carried out in Japan which includes: angular resolution, effective area in the energy range of similar to 0.4 - 12keV, off-axis response at various energies, etc. We report the calibration results of the SXT-1 and -2 that were obtained at NASA/Goddard and JAXA/ISAS. The detailed calibration are reported in the two papers in this conference: 9144-206, "Ground-based x-ray calibration of the ASTRO-H soft x-ray telescopes" by R. Iizuka et al. and 9144-207, "Revealing a detailed performance of the soft x-ray telescopes of the ASTRO-H mission" by T. Sato, et al. Some small but significant discrepancies existed between ISAS and Goddard measurements that were attributed to the difference of the X-ray beams - pencil beam vs divergent beam. C1 [Soong, Yang; Okajima, Takashi; Serlemitsos, Peter J.] NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA. [Odell, Stephen L.; Ramsey, Brian D.; Gubarev, Mikhail V.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Ishida, Manabu; Maeda, Yoshitomo; Iizuka, Ryo; Hayashi, Takayuki; Sato, Toshiki] Inst Space & Astronaut Sci, Kanagawa, Japan. [Tawara, Yuzuru; Furuzawa, Akihiro; Mori, Hideyuki; Miyazawa, Takuya; Kunieda, Hideyo; Tamura, Keisuke; Ishibashi, Kazunori; Iwase, Toshihiro] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Awaki, Hisamitsu; Sugita, Satoshi] Ehime Univ, Matsuyama, Ehime 790, Japan. [Izumiya, Takanori] Chuo Univ, Hachioji, Tokyo, Japan. [Minami, Sari] Nara Womens Univ, Nara, Japan. [Tomikawa, Kazuki; Kikuchi, Naomichi] Tokyo Metropolitan Univ, Tokyo, Japan. RP Soong, Y (reprint author), NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA. NR 6 TC 13 Z9 13 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914428 DI 10.1117/12.2056804 PG 14 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100068 ER PT S AU Takahashi, T Mitsuda, K Kelley, R Aharonian, F Akamatsu, H Akimoto, F Allen, S Anabuki, N Angelini, L Arnaud, K Asai, M Audard, M Awaki, H Azzarello, P Baluta, C Bamba, A Bando, N Bautz, M Bialas, T Blandford, R Boyce, K Brenneman, L Brown, G Cackett, E Canavan, E Chernyakova, M Chiao, M Coppi, P Costantini, E de Plaa, J den Herder, JW DiPirro, M Done, C Dotani, T Doty, J Ebisawa, K Enotor, T Ezoe, Y Fabian, A Ferrigno, C Foster, A Fujimoto, R Fukazawa, Y Funk, S Furuzawa, A Galeazzi, M Gallo, L Gandhi, P Gilmore, K Guainazzi, M Haas, D Haba, Y Hamaguchi, K Harayama, A Hatsukade, I Hayashi, K Hayashi, T Hayashida, K Hiraga, J Hirose, K Hornschemeier, A Hoshino, A Hughes, J Hwang, U Iizuka, R Inoue, Y Ishibashi, K Ishida, M Ishikawa, K Ishimura, K Ishisaki, Y Itoh, M Iwata, N Iyomoto, N Jewell, C Kaastra, J Kallman, T Kamae, T Kataoka, J Katsuda, S Katsuta, J Kawaharada, M Kawai, N Kawano, T Kawasaki, S Khangaluyan, D Kilbourne, C Kimball, M Kimura, M Kitamoto, S Kitayama, T Kohmura, T Kokubun, M Konami, S Kosaka, T Koujelev, A Koyama, K Krimm, H Kubota, A Kunieda, H LaMassa, S Laurent, P Lebrun, F Leutenegger, M Limousin, O Loewenstein, M Long, K Lumb, D Madejski, G Maeda, Y Makishima, K Markevitch, M Masters, C Matsumoto, H Matsushita, K McCammon, D McGuinness, D McNamara, B Miko, J Miller, J Miller, E Mineshige, S Minesugi, K Mitsuishi, I Miyazawa, T Mizuno, T Mori, K Mori, H Moroso, F Muench, T Mukai, K Murakami, H Murakami, T Mushotzky, R Nagano, H Nagino, R Nakagawa, T Nakajima, H Nakamori, T Nakashima, S Nakazawa, K Namba, Y Natsukari, C Nishioka, Y Nobukawa, M Noda, H Nomachi, M Dell, SO Odaka, H Ogawa, H Ogawa, M Ogi, K Ohashi, T Ohno, M Ohta, M Okajima, T Okazaki, T Ota, N Ozaki, M Paerels, F Paltani, S Parmar, A Petre, R Pinto, C Pohl, M Pontius, J Porter, FS Pottschmidt, K Ramsey, B Reis, R Reynolds, C Ricci, C Russell, H Safi-Harb, S Saito, S Sakai, S Sameshima, H Sato, K Sato, R Sato, G Sawada, M Serlemitsos, P Seta, H Shibano, Y Shida, M Shimada, T Shirron, P Simionescu, A Simmons, C Smith, R Sneiderman, G Soong, Y Stawarz, L Sugawara, Y Sugita, S Szymkowiak, A Tajima, H Takahashi, H Takahashi, H Takeda, S Takei, Y Tamagawa, T Tamura, K Tamura, T Tanaka, T Tanaka, Y Tanaka, Y Tashiro, M Tawara, Y Terada, Y Terashima, Y Tombesi, F Tomida, H Tsuboi, Y Tsujimoto, M Tsunemi, H Tsuru, T Uchida, H Uchiyama, H Uchiyama, Y Ueda, Y Uedag, S Ueno, S Uno, S Urry, M Ursino, E de Vries, C Wada, A Watanabe, S Watanabe, T Werner, N White, N Wilkins, D Yamada, S Yamada, T Yamaguchi, H Yamaoka, K Yamasaki, N Yamauchi, M Yamauchi, S Yadoob, T Yatsu, Y Yonetoku, D Yoshida, A Yuasa, T Zhuravleva, I Zoghbi, A ZuHone, J AF Takahashi, Tadayuki Mitsuda, Kazuhisa Kelley, Richard Aharonian, Felix Akamatsu, Hiroki Akimoto, Fumie Allen, Steve Anabuki, Naohisa Angelini, Lorella Arnaud, Keith Asai, Makoto Audard, Marc Awaki, Hisamitsu Azzarello, Philipp Baluta, Chris Bamba, Aya Bando, Nobutaka Bautz, Marshall Bialas, Thomas Blandford, Roger Boyce, Kevin Brenneman, Laura Brown, Greg Cackett, Edward Canavan, Edgar Chernyakova, Maria Chiao, Meng Coppi, Paolo Costantini, Elisa de Plaa, Jelle den Herder, Jan-Willem DiPirro, Michael Done, Chris Dotani, Tadayasu Doty, John Ebisawa, Ken Enotor, Teruaki Ezoe, Yuichiro Fabian, Andrew Ferrigno, Carlo Foster, Adam Fujimoto, Ryuichi Fukazawa, Yasushi Funk, Stefan Furuzawa, Akihiro Galeazzi, Massimiliano Gallo, Luigi Gandhi, Poshak Gilmore, Kirk Guainazzi, Matteo Haas, Daniel Haba, Yoshito Hamaguchi, Kenji Harayama, Atsushi Hatsukade, Isamu Hayashi, Katsuhiro Hayashi, Takayuki Hayashida, Kiyoshi Hiraga, Junko Hirose, Kazuyuki Hornschemeier, Ann Hoshino, Akio Hughes, John Hwang, Una Iizuka, Ryo Inoue, Yoshiyuki Ishibashi, Kazunori Ishida, Manabu Ishikawa, Kumi Ishimura, Kosei Ishisaki, Yoshitaka Itoh, Masayuki Iwata, Naoko Iyomoto, Naoko Jewell, Chris Kaastra, Jelle Kallman, Timothy Kamae, Tuneyoshi Kataoka, Jun Katsuda, Satoru Katsuta, Junichiro Kawaharada, Madoka Kawai, Nobuyuki Kawano, Taro Kawasaki, Shigeo Khangaluyan, Dmitry Kilbourne, Caroline Kimball, Mark Kimura, Masashi Kitamoto, Shunji Kitayama, Tetsu Kohmura, Takayoshi Kokubun, Motohide Konami, Saori Kosaka, Tatsuro Koujelev, Alexander Koyama, Katsuji Krimm, Hans Kubota, Aya Kunieda, Hideyo LaMassa, Stephanie Laurent, Philippe Lebrun, Francois Leutenegger, Maurice Limousin, Olivier Loewenstein, Michael Long, Knox Lumb, David Madejski, Grzegorz Maeda, Yoshitomo Makishima, Kazuo Markevitch, Maxim Masters, Candace Matsumoto, Hironori Matsushita, Kyoko McCammon, Dan McGuinness, Daniel McNamara, Brian Miko, Joseph Miller, Jon Miller, Eric Mineshige, Shin Minesugi, Kenji Mitsuishi, Ikuyuki Miyazawa, Takuya Mizuno, Tsunefumi Mori, Koji Mori, Hideyuki Moroso, Franco Muench, Theodore Mukai, Koji Murakami, Hiroshi Murakami, Toshio Mushotzky, Richard Nagano, Housei Nagino, Ryo Nakagawa, Takao Nakajima, Hiroshi Nakamori, Takeshi Nakashima, Shinya Nakazawa, Kazuhiro Namba, Yoshiharu Natsukari, Chikara Nishioka, Yusuke Nobukawa, Masayoshi Noda, Hirofumi Nomachi, Masaharu Dell, Steve O' Odaka, Hirokazu Ogawa, Hiroyuki Ogawa, Mina Ogi, Keiji Ohashi, Takaya Ohno, Masanori Ohta, Masayuki Okajima, Takashi Okazaki, Tsuyoshi Ota, Naomi Ozaki, Masanobu Paerels, Frits Paltani, Stephane Parmar, Arvind Petre, Robert Pinto, Ciro Pohl, Martin Pontius, James Porter, F. Scott Pottschmidt, Katja Ramsey, Brian Reis, Rubens Reynolds, Christopher Ricci, Claudio Russell, Helen Safi-Harb, Samar Saito, Shinya Sakai, Shin-ichiro Sameshima, Hiroaki Sato, Kosuke Sato, Rie Sato, Goro Sawada, Makoto Serlemitsos, Peter Seta, Hiromi Shibano, Yasuko Shida, Maki Shimada, Takanobu Shirron, Peter Simionescu, Aurora Simmons, Cynthia Smith, Randall Sneiderman, Gary Soong, Yang Stawarz, Lukasz Sugawara, Yasuharu Sugita, Satoshi Szymkowiak, Andrew Tajima, Hiroyasu Takahashi, Hiroaki Takahashi, Hiromitsu Takeda, Shin-ichiro Takei, Yoh Tamagawa, Toru Tamura, Keisuke Tamura, Takayuki Tanaka, Takaaki Tanaka, Yasuyuki Tanaka, Yasuo Tashiro, Makoto Tawara, Yuzuru Terada, Yukikatsu Terashima, Yuichi Tombesi, Francesco Tomida, Hiroshi Tsuboi, Yoko Tsujimoto, Masahiro Tsunemi, Hiroshi Tsuru, Takeshi Uchida, Hiroyuki Uchiyama, Hideki Uchiyama, Yasunobu Ueda, Yoshihiro Uedag, Shutaro Ueno, Shiro Uno, Shinichiro Urry, Meg Ursino, Eugenio de Vries, Cor Wada, Atsushi Watanabe, Shin Watanabe, Tomomi Werner, Norbert White, Nicholas Wilkins, Dan Yamada, Shinya Yamada, Takahiro Yamaguchi, Hiroya Yamaoka, Kazutaka Yamasaki, Noriko Yamauchi, Makoto Yamauchi, Shigeo Yadoob, Tahir Yatsu, Yoichi Yonetoku, Daisuke Yoshida, Atsumasa Yuasa, Takayuki Zhuravleva, Irina Zoghbi, Abderahmen ZuHone, John BE Takahashi, T DenHerder, JWA Bautz, M TI The ASTRO-H X-ray Astronomy Satellite SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray; Hard X-ray; Gamma-ray; X-ray Astronomy; Gamma-ray Astronomy; micro-calorimeter ID TELESCOPE; DETECTORS; MISSION AB The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E <= 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts. C1 [Takahashi, Tadayuki; Mitsuda, Kazuhisa; Baluta, Chris; Bando, Nobutaka; Dotani, Tadayasu; Ebisawa, Ken; Harayama, Atsushi; Hayashi, Katsuhiro; Hayashi, Takayuki; Hirose, Kazuyuki; Iizuka, Ryo; Inoue, Yoshiyuki; Ishida, Manabu; Ishimura, Kosei; Iwata, Naoko; Katsuda, Satoru; Kawaharada, Madoka; Kawano, Taro; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kokubun, Motohide; Maeda, Yoshitomo; Minesugi, Kenji; Nakagawa, Takao; Nakashima, Shinya; Natsukari, Chikara; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ohta, Masayuki; Okazaki, Tsuyoshi; Ozaki, Masanobu; Saito, Shinya; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sato, Rie; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Simionescu, Aurora; Stawarz, Lukasz; Takeda, Shin-ichiro; Takei, Yoh; Tamura, Takayuki; Tanaka, Yasuo; Tsujimoto, Masahiro; Wada, Atsushi; Watanabe, Shin; Yamada, Takahiro; Yamasaki, Noriko] JAXA, Inst Space & Astronaut Sci, Kanagawa 2525210, Japan. [Kelley, Richard; Angelini, Lorella; Boyce, Kevin; Brenneman, Laura; Canavan, Edgar; Chiao, Meng; DiPirro, Michael; Hornschemeier, Ann; Kallman, Timothy; Kilbourne, Caroline; Kimball, Mark; Krimm, Hans; Leutenegger, Maurice; Loewenstein, Michael; Markevitch, Maxim; Masters, Candace; McGuinness, Daniel; Miko, Joseph; Muench, Theodore; Mukai, Koji; Okajima, Takashi; Petre, Robert; Pontius, James; Porter, F. Scott; Pottschmidt, Katja; Serlemitsos, Peter; Shirron, Peter; Simmons, Cynthia; Sneiderman, Gary; Soong, Yang; Tombesi, Francesco; Watanabe, Tomomi; White, Nicholas; Yamaguchi, Hiroya; Yadoob, Tahir; ZuHone, John] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Aharonian, Felix; Chernyakova, Maria] Dublin Inst Adv Studies, Astron & Astrophys Sect, Dublin 2, Ireland. [Akamatsu, Hiroki; Bialas, Thomas; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; Haas, Daniel; Kaastra, Jelle; de Vries, Cor] SRON Netherlands Inst Space Res, Utrecht, Netherlands. [Akimoto, Fumie; Furuzawa, Akihiro; Ishibashi, Kazunori; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mori, Hideyuki; Nagano, Housei; Tajima, Hiroyasu; Tamura, Keisuke; Tawara, Yuzuru; Yamaoka, Kazutaka] Nagoya Univ, Dept Phys, Nagoya, Aichi 3388570, Japan. [Allen, Steve; Asai, Makoto; Blandford, Roger; Funk, Stefan; Gilmore, Kirk; Kamae, Tuneyoshi; Madejski, Grzegorz; Werner, Norbert; Zhuravleva, Irina] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Kavli Inst, Stanford, CA 94305 USA. [Anabuki, Naohisa; Hayashida, Kiyoshi; Nagino, Ryo; Nakajima, Hiroshi; Takahashi, Hiroaki; Tsunemi, Hiroshi; Uedag, Shutaro] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Arnaud, Keith; Hamaguchi, Kenji] Univ Maryland, Dept Phys, College Pk, MD 21250 USA. [Audard, Marc; Azzarello, Philipp; Ferrigno, Carlo; Paltani, Stephane; Pohl, Martin] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Awaki, Hisamitsu; Ogi, Keiji; Sugita, Satoshi; Terashima, Yuichi] Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, Japan. [Bamba, Aya; Sawada, Makoto; Yoshida, Atsumasa] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. [Bautz, Marshall; Miller, Eric] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Brown, Greg] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Brown, Greg; Cackett, Edward; Fabian, Andrew; Pinto, Ciro; Russell, Helen] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Coppi, Paolo; LaMassa, Stephanie; Szymkowiak, Andrew; Urry, Meg] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Coppi, Paolo; LaMassa, Stephanie; Szymkowiak, Andrew; Urry, Meg] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Done, Chris; Gandhi, Poshak] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Enotor, Teruaki; Ishikawa, Kumi; Noda, Hirofumi; Tamagawa, Toru; Yuasa, Takayuki] RIKEN, Wako, Saitama 3510198, Japan. [Ezoe, Yuichiro; Ishisaki, Yoshitaka; Konami, Saori; Ohashi, Takaya; Yamada, Shinya] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Foster, Adam; Smith, Randall] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fujimoto, Ryuichi; Murakami, Toshio; Yonetoku, Daisuke] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan. [Fukazawa, Yasushi; Katsuta, Junichiro; Mizuno, Tsunefumi; Ohno, Masanori; Takahashi, Hiromitsu; Tanaka, Yasuyuki] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Galeazzi, Massimiliano; Ursino, Eugenio] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Gallo, Luigi; Wilkins, Dan] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Guainazzi, Matteo; Jewell, Chris; Lumb, David] Estec, NL-2200 AG Noordwijk, Netherlands. [Haba, Yoshito] Aichi Univ Educ, Dept Phys & Astron, Kariya, Aichi 4488543, Japan. [Hatsukade, Isamu; Mori, Koji; Nishioka, Yusuke; Yamauchi, Makoto] Miyazaki Univ, Dept Appl Phys, Miyazaki 8892192, Japan. [Hiraga, Junko; Makishima, Kazuo; Nakazawa, Kazuhiro] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Hoshino, Akio; Kitamoto, Shunji; Uchiyama, Yasunobu] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Hughes, John] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Hwang, Una] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Itoh, Masayuki] Kobe Univ, Fac Human Dev, Kobe, Hyogo 6578501, Japan. [Kataoka, Jun; Sato, Goro] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kawai, Nobuyuki; Yatsu, Yoichi] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kimura, Masashi; Tomida, Hiroshi; Ueno, Shiro] Tsukuba Space Ctr TKSC, Tsukuba, Ibaraki 3058505, Japan. [Kitayama, Tetsu] Toho Univ, Dept Phys, Chiba 2748510, Japan. [Kohmura, Takayoshi; Matsushita, Kyoko; McNamara, Brian; Sato, Kosuke] Tokyo Univ Sci, Dept Phys, Tokyo 1628601, Japan. [Kosaka, Tatsuro] Kochi Univ Technol, Sch Syst Engn, Kochi 7828502, Japan. [Koujelev, Alexander; Moroso, Franco] Canadian Space Agcy John H Chapman Space Ctr, Space Explorat Dev Space Explorat, St Hubert, PQ J3Y 8Y9, Canada. [Koyama, Katsuji; Nobukawa, Masayoshi; Tanaka, Takaaki; Tsuru, Takeshi; Uchida, Hiroyuki] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Kubota, Aya] Shibaura Inst Technol, Dept Elect Informat Syst, Saitama 3378570, Japan. [Laurent, Philippe; Lebrun, Francois; Limousin, Olivier] CEA Saclay, Serv Astrophys, IRFU, F-91191 Gif Sur Yvette, France. [Long, Knox] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [McCammon, Dan] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Miller, Jon; Reis, Rubens] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Mineshige, Shin; Ricci, Claudio; Ueda, Yoshihiro] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. [Murakami, Hiroshi] Tohoku Gakuin Univ, Fac Liberal Arts, Dept Informat Sci, Sendai, Miyagi 9813193, Japan. [Mushotzky, Richard; Reynolds, Christopher; Zoghbi, Abderahmen] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nakamori, Takeshi] Yamagata Univ, Fac Sci, Dept Phys, Yamagata 9908560, Japan. [Namba, Yoshiharu] Chubu Univ, Dept Mech Engn, Kasugai, Aichi 4878501, Japan. [Nomachi, Masaharu] Osaka Univ, Nucl Studies Lab, Osaka 5600043, Japan. [Dell, Steve O'; Ramsey, Brian] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Ota, Naomi; Yamauchi, Shigeo] Nara Womens Univ, Fac Sci, Dept Phys, Nara, Nara 6308506, Japan. [Paerels, Frits] Columbia Univ, Columbia Astrophys Lab, Dept Astron, New York, NY 10027 USA. [Parmar, Arvind] European Space Agcy, European Space Astron Ctr, E-28691 Madrid, Spain. [Safi-Harb, Samar] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Seta, Hiromi; Tashiro, Makoto; Terada, Yukikatsu] Saitama Univ, Dept Phys, Saitama 3388570, Japan. [Sugawara, Yasuharu; Tsuboi, Yoko] Chuo Univ, Dept Phys, Tokyo 1128551, Japan. [Uchiyama, Hideki] Shizuoka Univ, Fac Educ, Sci Educ, Suruga Ku, Shizuoka 4228529, Japan. [Uno, Shinichiro] Nihon Fukushi Univ, Fac Social & Informat Sci, Aichi 4750012, Japan. RP Takahashi, T (reprint author), JAXA, Inst Space & Astronaut Sci, Kanagawa 2525210, Japan. RI done, chris/D-4605-2016; Zoghbi, Abderahmen/A-8445-2017; OI done, chris/0000-0002-1065-7239; Zoghbi, Abderahmen/0000-0002-0572-9613; Parmar, Arvind/0000-0002-3307-6517; Limousin, Olivier/0000-0002-8794-5853; Inoue, Yoshiyuki/0000-0002-7272-1136; Urry, Meg/0000-0002-0745-9792; Funk, Stefan/0000-0002-2012-0080 NR 62 TC 45 Z9 45 U1 1 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914425 DI 10.1117/12.2055681 PG 24 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100065 ER PT S AU Takeuchi, Y Kitaguchi, T Hayato, A Tamagawa, T Iwakiri, W Asami, F Yoshikawa, A Kaneko, K Enoto, T Black, K Hill, JE Jahoda, K AF Takeuchi, Yoko Kitaguchi, Takao Hayato, Asami Tamagawa, Toru Iwakiri, Wataru Asami, Fumi Yoshikawa, Akifumi Kaneko, Kenta Enoto, Teruaki Black, Kevin Hill, Joanne E. Jahoda, Keith BE Takahashi, T DenHerder, JWA Bautz, M TI Properties of the flight model gas electron multiplier for the GEMS mission SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE gas electron multiplier (GEM); X-ray polarimeter; GEMS mission ID LASER ETCHING TECHNIQUE AB We present the gain properties of the gas electron multiplier (GEM) foil in pure dimethyl ether (DME) at 190 Torr. The GEM is one of the micro pattern gas detectors and it is adopted as a key part of the X-ray polarimeter for the GEMS mission. The X-ray polarimeter is a time projection chamber operating in pure DME gas at 190 Torr. We describe experimental results of (1) the maximum gain the GEM can achieve without any discharges, (2) the linearity of the energy scale for the GEM operation, and (3) the two-dimensional gain variation of the active area. First, our experiment with 6.4 keV X-ray irradiation of the whole GEM area demonstrates that the maximum effective gain is 2 x 10(4) with the applied voltage of 580 V. Second, the measured energy scale is linear among three energies of 4.5, 6.4, and 8.0 keV. Third, the two-dimensional gain mapping test derives the standard deviation of the gain variability of 7% across the active area. C1 [Takeuchi, Yoko; Kitaguchi, Takao; Hayato, Asami; Tamagawa, Toru; Iwakiri, Wataru; Asami, Fumi; Yoshikawa, Akifumi; Kaneko, Kenta; Enoto, Teruaki] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Takeuchi, Yoko; Yoshikawa, Akifumi; Kaneko, Kenta] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, Tokyo 1628601, Japan. [Enoto, Teruaki; Black, Kevin; Hill, Joanne E.; Jahoda, Keith] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Takeuchi, Y (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM takeuchi@crab.riken.jp NR 9 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91444N DI 10.1117/12.2057159 PG 8 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100142 ER PT S AU Weisskopf, MC Tananbaum, H Tucker, W Wilkes, B Baggett, R Brissenden, R Edmonds, P Mattison, E AF Weisskopf, Martin C. Tananbaum, Harvey Tucker, Wallace Wilkes, Belinda Baggett, Randy Brissenden, Roger Edmonds, Peter Mattison, Edward BE Takahashi, T DenHerder, JWA Bautz, M TI Fifteen years of Chandra operation: scientific highlights and lessons learned SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray Astronomy; Chandra X-ray Observatory; High-energy astrophysics AB NASA's Chandra X-Ray Observatory, designed for three years of operation with a goal of five years, is now entering its 15-th year of operation. Thanks to its superb angular resolution, the Observatory continues to yield new and exciting results, many of which were totally unanticipated prior to launch. We discuss the current technical status, review some recent scientific highlights, indicate a few future directions, and present what we are the most important lessons learned from our experience of building and operating this great observatory. C1 [Weisskopf, Martin C.; Baggett, Randy] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35801 USA. [Tananbaum, Harvey; Tucker, Wallace; Wilkes, Belinda; Brissenden, Roger; Edmonds, Peter; Mattison, Edward] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. RP Weisskopf, MC (reprint author), NASA, George C Marshall Space Flight Ctr, ZP12,320 Sparkman Dr, Huntsville, AL 35801 USA. EM martin.c.weisskopf@nasa.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 91440P DI 10.1117/12.2056509 PG 7 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100021 ER PT S AU Zhang, WW Biskach, MP Bly, VT Carter, JM Chan, KW Gaskin, JA Hong, M Hohl, BR Jones, WD Kolodziejczak, JJ Kolos, LD Mazzarella, JR McClelland, RS McKeon, KP Miller, TM O'Dell, SL Riveros, RE Saha, TT Schofield, MJ Sharpe, MV Smith, HC AF Zhang, W. W. Biskach, M. P. Bly, V. T. Carter, J. M. Chan, K. W. Gaskin, J. A. Hong, M. Hohl, B. R. Jones, W. D. Kolodziejczak, J. J. Kolos, L. D. Mazzarella, J. R. McClelland, R. S. McKeon, K. P. Miller, T. M. O'Dell, S. L. Riveros, R. E. Saha, T. T. Schofield, M. J. Sharpe, M. V. Smith, H. C. BE Takahashi, T DenHerder, JWA Bautz, M TI Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions SO SPACE TELESCOPES AND INSTRUMENTATION 2014: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation - Ultraviolet to Gamma Ray CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE X-ray optics; lightweight optics; glass slumping; silicon mirror; mirror alignment; mirror bonding ID GENERATION-X; TELESCOPE AB Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major xray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies. C1 [Zhang, W. W.; Bly, V. T.; Kolos, L. D.; Miller, T. M.; Saha, T. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Biskach, M. P.; Hong, M.; Hohl, B. R.; Mazzarella, J. R.; McClelland, R. S.; McKeon, K. P.; Schofield, M. J.; Sharpe, M. V.; Smith, H. C.] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20771 USA. [Carter, J. M.; Gaskin, J. A.; Kolodziejczak, J. J.; O'Dell, S. L.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Chan, K. W.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Riveros, R. E.] NASA, Washington, DC USA. RP Zhang, WW (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. OI O'Dell, Stephen/0000-0002-1868-8056 NR 27 TC 11 Z9 11 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9612-6 J9 PROC SPIE PY 2014 VL 9144 AR 914415 DI 10.1117/12.2055339 PG 9 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BC6WN UT WOS:000354529100033 ER PT S AU Krause, FC Hwang, C Ratnakumar, BV Smart, MC McOwen, DW Henderson, WA AF Krause, F. C. Hwang, C. Ratnakumar, B. V. Smart, M. C. McOwen, D. W. Henderson, W. A. BE Andrews, DL Nunzi, JM Ostendorf, A TI The Use of Methyl Butyrate-Based Electrolytes with Additives to Enable the Operation of Li-Ion Cells with High Voltage Cathodes over a Wide Temperature Range SO NANOPHOTONICS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nanophotonics V CY APR 13-17, 2014 CL Brussels, BELGIUM SP SPIE, Brussels Photon Team, Fonds Wetenschappelijk Onderzoek ID BATTERIES; SALTS; PERFORMANCE AB In the present work, a number of wide operating temperature range electrolyte formulations that contain methyl butyrate (MB) and various additives have been investigated in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li1.2Ni0.15Co0.10Mn0.55O2 cathodes. In an attempt to improve the nature of the solid electrolyte interphase (SET) and/or cathode electrolyte interface (CEI) of these systems, a number of electrolyte additives were investigated, including lithium bis(oxalato)borate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), 4,5-dicyano-2-(trifluoromethyl) imidazole (LiTDI), lithium tetrafluoroborate (LiBF4), and di-t-butyl pyrocarbonate (DBPC). In summary, improved performance of the low temperature power capability was observed for many of the methyl butyrate formulations, with the most dramatic improvement being observed for 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiDFOB. In addition, all of the methyl butyrate-based electrolytes studied resulted in improved rate capability compared to cells with the all carbonate-based baseline formulation at low temperature. It was also determined that at low temperatures the cathode kinetics govern the rate capability, being the rate determining electrode. C1 [Krause, F. C.; Hwang, C.; Ratnakumar, B. V.; Smart, M. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Krause, FC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 0 TC 0 Z9 0 U1 6 U2 14 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-074-7 J9 PROC SPIE PY 2014 VL 9126 BP 97 EP 107 DI 10.1149/05848.0097ecst PG 11 WC Optics; Physics, Applied SC Optics; Physics GA BA9EN UT WOS:000339318700009 ER PT S AU Scola, SJ Osmundsen, JF Murchison, LS Davis, WT Fody, JM Boyer, CM Cook, AL Hostetler, CA Seaman, ST Miller, IJ Welch, WC Kosmer, AR AF Scola, Salvatore J. Osmundsen, James F. Murchison, Luke S. Davis, Warren T. Fody, Joshua M. Boyer, Charles M. Cook, Anthony L. Hostetler, Chris A. Seaman, Shane T. Miller, Ian J. Welch, Wayne C. Kosmer, Adam R. BE Gregory, GG Davis, AJ TI Structural-Thermal-Optical-Performance (STOP) Model Development and Analysis of a Field-widened Michelson Interferometer SO NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XVII SE Proceedings of SPIE LA English DT Proceedings Paper CT 17th Conference of Novel Optical Systems Design and Optimization CY AUG 17-19, 2014 CL San Diego, CA SP SPIE DE STOP analysis; structural thermal optical performance model; Michelson interferometer; Comet software; HSRL; NASA Langley ID SPECTRAL-RESOLUTION LIDAR AB An integrated Structural-Thermal-Optical-Performance (STOP) model was developed for a field-widened Michelson interferometer which is being built and tested for the High Spectral Resolution Lidar (HSRL) project at NASA Langley Research Center (LaRC). The performance of the interferometer is highly sensitive to thermal expansion, changes in refractive index with temperature, temperature gradients, and deformation due to mounting stresses. Hand calculations can only predict system performance for uniform temperature changes, under the assumption that coefficient of thermal expansion (CTE) mismatch effects are negligible. An integrated STOP model was developed to investigate the effects of design modifications on the performance of the interferometer in detail, including CTE mismatch, and other three-dimensional effects. The model will be used to improve the design for a future spaceflight version of the interferometer. The STOP model was developed using the Comet SimApp (TM) Authoring Workspace which performs automated integration between Pro-Engineer (R), Thermal Desktop (R), MSC Nastran (TM), SigFit (TM), Code V (TM), and MATLAB (R). This is the first flight project for which LaRC has utilized Comet, and it allows a larger trade space to be studied in a shorter time than would be possible in a traditional STOP analysis. This paper describes the development of the STOP model, presents a comparison of STOP results for simple cases with hand calculations, and presents results of the correlation effort to bench-top testing of the interferometer. A trade study conducted with the STOP model which demonstrates a few simple design changes that can improve the performance seen in the lab is also presented. C1 [Scola, Salvatore J.; Osmundsen, James F.; Murchison, Luke S.; Davis, Warren T.; Fody, Joshua M.; Boyer, Charles M.; Cook, Anthony L.; Hostetler, Chris A.; Seaman, Shane T.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Miller, Ian J.] LightMachinery, Nepean, ON K2E 7L2, Canada. [Welch, Wayne C.; Kosmer, Adam R.] Welch Mech Designs, Belcamp, MD 21017 USA. RP Scola, SJ (reprint author), NASA, Langley Res Ctr, 100 NASA Dr, Hampton, VA 23681 USA. NR 4 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-220-8 J9 PROC SPIE PY 2014 VL 9193 AR 91930I DI 10.1117/12.2061041 PG 15 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC6PX UT WOS:000354367700013 ER PT S AU Danchi, W Bailey, V Bryden, G Defrere, D Haniff, C Hinz, P Kennedy, G Mennesson, B Millan-Gabet, R Rieke, G Roberge, A Serabyn, E Skemer, A Stapelfeldt, K Weinberger, A Wyatt, M AF Danchi, W. Bailey, V. Bryden, G. Defrere, D. Haniff, C. Hinz, P. Kennedy, G. Mennesson, B. Millan-Gabet, R. Rieke, G. Roberge, A. Serabyn, E. Skemer, A. Stapelfeldt, K. Weinberger, A. Wyatt, M. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI The LBTI Hunt for Observable Signatures of Terrestrial Systems (HOSTS) Survey: A key NASA science program on the road to exoplanet imaging missions SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE debris disks; exozodiacal dust; stellar interferometry; nulling interferometry; exoplanet detection; infrared astronomy ID KECK INTERFEROMETER NULLER; MAIN-SEQUENCE STARS; SOLAR-TYPE STARS; DEBRIS DISKS; SPITZER MIPS; DUST; SEARCH AB The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) program on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Emission and/or scattered light from the exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of terrestrial planets (exo-Earths) around nearby stars. About 20% of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013, A&A, 555, A11; Siercho et al. 2014, ApJ, 785, 33). Much less is known about exozodi; current detection limits for individual stars are at best similar to 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3 sigma). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We will describe the motivation for the survey and progress on target selection, not only the actual stars likely to be observed by such a mission but also those whose observation will enable sensible extrapolations for stars that will not be observed with LBTI. We briefly describe the detection of the debris disk around eta Crv, which is the first scientific result from the LBTI coming from the commissioning of the instrument in December 2013, shortly after the first time the fringes were stabilized. C1 [Danchi, W.; Roberge, A.; Stapelfeldt, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bailey, V.; Defrere, D.; Hinz, P.; Rieke, G.; Skemer, A.] Univ Arizona, Tucson, AZ USA. [Bryden, G.; Mennesson, B.; Serabyn, E.] Jet Prop Lab, Pasadena, CA USA. [Haniff, C.; Kennedy, G.; Wyatt, M.] Univ Cambridge, Cambridge, England. [Millan-Gabet, R.] CALTECH, Pasadena, CA 91125 USA. [Weinberger, A.] Carnegie Inst, Washington, DC USA. RP Danchi, W (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM william.c.danchi@nasa.gov OI Skemer, Andrew/0000-0001-6098-3924; Kennedy, Grant/0000-0001-6831-7547 NR 30 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 914607 DI 10.1117/12.2056681 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200007 ER PT S AU Defrere, D Hinz, P Downey, E Ashby, D Bailey, V Brusa, G Christou, J Danchi, WC Grenz, P Hill, JM Hoffmann, WF Leisenring, J Lozi, J McMahon, T Mennesson, B Millan-Gabet, R Montoya, M Powell, K Skemer, A Vaitheeswaran, V Vaz, A Veillet, C AF Defrere, D. Hinz, P. Downey, E. Ashby, D. Bailey, V. Brusa, G. Christou, J. Danchi, W. C. Grenz, P. Hill, J. M. Hoffmann, W. F. Leisenring, J. Lozi, J. McMahon, T. Mennesson, B. Millan-Gabet, R. Montoya, M. Powell, K. Skemer, A. Vaitheeswaran, V. Vaz, A. Veillet, C. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI Co-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE LBT; ELT; Fizeau imaging; Infrared interferometry; Nulling interferometry; Fringe tracking AB The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 mu m). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT). C1 [Defrere, D.; Hinz, P.; Downey, E.; Bailey, V.; Brusa, G.; Grenz, P.; Hoffmann, W. F.; Leisenring, J.; Lozi, J.; McMahon, T.; Montoya, M.; Powell, K.; Skemer, A.; Vaitheeswaran, V.; Vaz, A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Ashby, D.; Christou, J.; Hill, J. M.; Veillet, C.] Univ Arizona, Large Binocular Telescope Observ, Tucson, AZ 85721 USA. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Mennesson, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Millan-Gabet, R.] NASA, Exoplanet Sci Ctr NExSci, CALTECH, Pasadena, CA 91125 USA. RP Defrere, D (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM ddefrere@email.arizona.edu OI Skemer, Andrew/0000-0001-6098-3924; Bailey, Vanessa/0000-0002-5407-2806 NR 13 TC 5 Z9 5 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 914609 DI 10.1117/12.2057178 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200009 ER PT S AU Kuhn, J Mennesson, B Liewer, K Martin, S Loya, F Millan-Gabet, R Serabyn, E AF Kuehn, Jonas Mennesson, Bertrand Liewer, Kurt Martin, Stefan Loya, Frank Millan-Gabet, Rafael Serabyn, Eugene BE Rajagopal, JK CreechEakman, MJ Malbet, F TI Exploring 5-40 AU scales around AB Aurigae with an upgraded Palomar Fiber Nuller SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Nulling interferometer; Interferometry; AB Aurigae; Herbig star; Planet formation; Protoplanetary disk ID NEAR-INFRARED EMISSION; DISK; DUST AB With a null precision of a few 10-4 at all azimuth angles inside a field-of-view extending from 35 to 275 mas, the Palomar Fiber Nuller (PFN) is able to explore angular scales intermediate between those accessed by coronagraphic imaging and by long baseline interferometry. We first briefly summarize the recent performance improvements of the PFN (sensitivity, azimuthal coverage, duty cycle efficiency on-sky) over the 2011-2014 time period. Then we report on recent K-band observations of the young pre-main sequence star AB Aurigae obtained with the PFN. It is shown that a mean astrophysical null of 1.52% was detected around AB Aur at all probed azimuthal angles, and this inside a field-of-view corresponding to projected separations between 5 and 40 AU. In addition, we also report a slight +/- 0.2% modulation in addition to this average null level. The isotropic astrophysical null is indicative of circumstellar emission dominated by an azimuthally extended source, possibly a halo or one or more rings of dust. The modest azimuthal variation may be explained by some skewness or anisotropy of the spatially-extended source, e.g. with an elliptical or spiral geometry, or clumping, but it could also be due to the presence of a point-source located at a separation of similar to 120 mas (17AU) and carrying similar to 6*10-3 of the stellar flux. C1 [Kuehn, Jonas; Mennesson, Bertrand; Liewer, Kurt; Martin, Stefan; Loya, Frank; Serabyn, Eugene] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Serabyn, Eugene] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. RP Kuhn, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jonas.g.kuhn@jpl.nasa.gov RI Kuhn, Jonas/H-2338-2011 OI Kuhn, Jonas/0000-0002-6344-4835 NR 17 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 914606 DI 10.1117/12.2056798 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200006 ER PT S AU Labadie, L Matter, A Kreplin, A Lopez, B Wolf, S Weigelt, G Ertel, S Berger, JP Pott, JU Danchi, WC AF Labadie, Lucas Matter, Alexis Kreplin, Alexander Lopez, Bruno Wolf, Sebastian Weigelt, Gerd Ertel, Steve Berger, Jean-Philippe Pott, Jorg-Uwe Danchi, William C. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI HD139614: the interferometric case for a group-Ib pre-transitional young disk SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Astrophysics; YSO; Circumstellar Disks; Stellar Interferometry; Infrared; High Angular Resolution ID HERBIG-AE/BE STARS; SELF-SHADOWED DISKS; PROTOPLANETARY DISKS; CIRCUMSTELLAR DISKS; HD 139614; AE-STARS; VLTI; INSTRUMENT; DUST; MIDI AB The Herbig Ae star HD139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid-and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI. C1 [Labadie, Lucas] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Matter, Alexis] UJFGrenoble 1, CNRS INSU, IPAG, UMR 5274, Grenoble, France. [Kreplin, Alexander; Weigelt, Gerd] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Lopez, Bruno] Observ Cote Azur, UNS, Lab Lagrange, CNRS UMR 7293, F-06304 Nice 4, France. [Wolf, Sebastian] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. [Ertel, Steve; Berger, Jean-Philippe] European So Observ, Munich, Germany. [Pott, Jorg-Uwe] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Danchi, William C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Labadie, L (reprint author), Univ Cologne, Inst Phys 1, Zulpicher Str 77, D-50937 Cologne, Germany. EM labadie@ph1.uni-koeln.de NR 27 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 91462T DI 10.1117/12.2055353 PG 11 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200084 ER PT S AU Lopez, B Lagarde, S Jaffe, W Petrov, R Scholler, M Antonelli, P Beckman, U Berio, P Bettonvil, F Graser, U Millour, F Robbe-Dubois, S Venema, L Wolf, S Bristow, P Glindemann, A Gonzalez, JC Lanz, T Henning, T Weigelt, G Agocs, T Augereau, JC Avila, G Bailet, C Behrend, J Berger, JP von Boekel, R Bonhomme, S Bourget, P Brast, R Bresson, Y Clausse, JM Chesneau, O Csepany, G Connot, C Crida, A Danchy, WC Delbo, M Delplancke, F Dominik, C Duguee, M Elswijk, E Fantei, Y Finger, G Gabasch, A Girard, P Girault, V Gitton, P Glazenborg, A Gonte, F Guitton, F Guniat, S De Haan, M Haguenauer, P Hanenburg, H Heininger, M Hofmann, KH Hogerheijde, M ter Horst, R Hron, J Hugues, Y Ives, D Jakob, G Jasko, A Jolley, P Kragt, J Kohler, R Kroener, T Kroes, G Labadie, L Laun, W Lehmitz, M Leinert, C Lizon, JL Lucuix, C Marcotto, A Martinache, F Matter, A Martinot-Lagarde, G Mauclert, N Mehrgan, L Meilland, A Mellein, M Menardi, S Menut, JL Meisenheimer, K Morel, S Mosoni, L Navarro, R Neumann, U Nussbaum, E Ottogalli, S Palsa, R Panduro, J Pantin, E Percheron, I Duc, TP Pott, JU Pozna, E Przygodda, F Richichi, A Rigal, F Rupprecht, G Schertl, D Stegmeier, J Thiam, L Tromp, N Vannier, M Vakili, F van Belle, G Wagner, K Woillez, J AF Lopez, B. Lagarde, S. Jaffe, W. Petrov, R. Schoeller, M. Antonelli, P. Beckman, U. Berio, Ph. Bettonvil, F. Graser, U. Millour, F. Robbe-Dubois, S. Venema, L. Wolf, S. Bristow, P. Glindemann, A. Gonzalez, J. -C. Lanz, Th. Henning, T. Weigelt, G. Agocs, T. Augereau, J. -C. Avila, G. Bailet, C. Behrend, J. Berger, J. -P. von Boekel, R. Bonhomme, S. Bourget, P. Brast, R. Bresson, Y. Clausse, J. M. Chesneau, O. Csepany, G. Connot, C. Crida, A. Danchy, W. C. Delbo, M. Delplancke, F. Dominik, C. Dugue, M. Elswijk, E. Fantei, Y. Finger, G. Gabasch, A. Girard, P. Girault, V. Gitton, P. Glazenborg, A. Gonte, F. Guitton, F. Guniat, S. De Haan, M. Haguenauer, P. Hanenburg, H. Heininger, M. Hofmann, K. -H. Hogerheijde, M. ter Horst, R. Hron, J. Hugues, Y. Ives, D. Jakob, G. Jasko, A. Jolley, P. Kragt, J. Koehler, R. Kroener, T. Kroes, G. Labadie, L. Laun, W. Lehmitz, M. Leinert, Ch. Lizon, J. L. Lucuix, Ch. Marcotto, A. Martinache, F. Matter, A. Martinot-Lagarde, G. Mauclert, N. Mehrgan, L. Meilland, A. Mellein, M. Menardi, S. Menut, J. L. Meisenheimer, K. Morel, S. Mosoni, L. Navarro, R. Neumann, U. Nussbaum, E. Ottogalli, S. Palsa, R. Panduro, J. Pantin, E. Percheron, I. Phan Duc, T. Pott, J. -U. Pozna, E. Przygodda, F. Richichi, A. Rigal, F. Rupprecht, G. Schertl, D. Stegmeier, J. Thiam, L. Tromp, N. Vannier, M. Vakili, F. van Belle, G. Wagner, K. Woillez, J. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI MATISSE status report and science forecast SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE eInterferometry; Spectroscopy; Mid-Infrared; VLTI ID CIRCINUS GALAXY; ACTIVE NUCLEUS; DUSTY TORUS; PARSEC; PLANETS; FUNNEL; STARS; DISKS; VLTI; MIDI AB MATISSE is the mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This second generation interferometry instrument will open new avenues in the exploration of our Universe. Mid-infrared interferometry with MATISSE will allow significant advances in various fundamental research fields: studies of disks around young stellar objects where planets form and evolve, surface structures and mass loss of stars in late evolutionary stages, and the environments of black holes in active galactic nuclei. MATISSE is a unique instrument. As a first breakthrough it will enlarge the spectral domain used by optical interferometry by offering the L & M bands in addition to the N band, opening a wide wavelength domain, ranging from 2.8 to 13 mu m on angular scales of 3 mas (L/M band) / 10 mas (N band). As a second breakthrough, it will allow mid-infrared imaging - closure-phase aperture-synthesis imaging with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. MATISSE will offer various ranges of spectral resolution between R similar to 30 to similar to 5000. In this article, we present some of the main science objectives that have driven the instrument design. We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performance and discuss the project status. The operations concept will be detailed in a more specific future article, illustrating the observing templates operating the instrument, the data reduction and analysis, and the image reconstruction software. C1 [Lopez, B.; Lagarde, S.; Petrov, R.; Antonelli, P.; Berio, Ph.; Millour, F.; Robbe-Dubois, S.; Lanz, Th.; Bailet, C.; Bonhomme, S.; Bresson, Y.; Clausse, J. M.; Chesneau, O.; Crida, A.; Delbo, M.; Dugue, M.; Fantei, Y.; Girard, P.; Girault, V.; Guitton, F.; Hugues, Y.; Marcotto, A.; Martinache, F.; Martinot-Lagarde, G.; Mauclert, N.; Meilland, A.; Menut, J. L.; Ottogalli, S.; Thiam, L.; Vannier, M.; Vakili, F.] Univ Nice Sophia Antipolis, UMR7293, Lab Lagrange, CNRS,Observ Cote dAzur, F-06304 Nice, France. [Graser, U.; Henning, T.; von Boekel, R.; Koehler, R.; Laun, W.; Lehmitz, M.; Leinert, Ch.; Meisenheimer, K.; Neumann, U.; Panduro, J.; Pott, J. -U.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Jaffe, W.; Dominik, C.; Hogerheijde, M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bettonvil, F.; Venema, L.; Agocs, T.; Elswijk, E.; Hanenburg, H.; ter Horst, R.; Navarro, R.; Rigal, F.; Tromp, N.] NOVA Opt IR Instrument Grp ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Beckman, U.; Weigelt, G.; Behrend, J.; Connot, C.; Heininger, M.; Hofmann, K. -H.; Kroener, T.; Nussbaum, E.; Schertl, D.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Wolf, S.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24118 Kiel, Germany. [Hron, J.] Univ Vienna, Inst Astrophys, A-1180 Vienna, Austria. [Schoeller, M.; Bristow, P.; Glindemann, A.; Gonzalez, J. -C.; Avila, G.; Berger, J. -P.; Bourget, P.; Brast, R.; Delplancke, F.; Finger, G.; Gabasch, A.; Gitton, P.; Gonte, F.; Guniat, S.; Haguenauer, P.; Ives, D.; Jakob, G.; Jolley, P.; Lizon, J. L.; Lucuix, Ch.; Mehrgan, L.; Menardi, S.; Morel, S.; Palsa, R.; Percheron, I.; Phan Duc, T.; Pozna, E.; Rupprecht, G.; Stegmeier, J.; Woillez, J.] European So Observ, D-85748 Garching, Germany. [Csepany, G.; Jasko, A.; Mosoni, L.] MTA Res Ctr Astron & Earth Sci, Konkoly Thege Miklos Astron Inst, H-1525 Budapest, Hungary. [Labadie, L.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Matter, A.] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France. [Glazenborg, A.] Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. [Pantin, E.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Przygodda, F.] Deutsch Thomson OHG, D-78048 Villingen Schweninger, Germany. [Richichi, A.] Natl Astron Res Inst Thailand, Chiang Mai 50200, Thailand. [van Belle, G.] Lowell Observ, Flagstaff, AZ 86001 USA. [Danchy, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lopez, B (reprint author), Univ Nice Sophia Antipolis, UMR7293, Lab Lagrange, CNRS,Observ Cote dAzur, Bd Observ, F-06304 Nice, France. NR 18 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 91460M DI 10.1117/12.2056419 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200021 ER PT S AU Rinehart, S Carpenter, K van Belle, G Unwin, S AF Rinehart, S. Carpenter, K. van Belle, G. Unwin, S. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI Interferometer Evolution: Imaging Terras After Building "Little" Experiments (INEVITABLE) SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Interferometry; Exoplanets; Roadmap ID MISSION; SPACE; MAXIM AB Perhaps one of the most ambitious long-term goals of the astronomical community is to map distant exoplanets. This will require instruments that provide sufficient angular resolution to place multiple pixels across an image of an exoplanet. Many other science programs also require orders of magnitude improvement in angular resolution, and for all of these, single aperture telescopes are impractical. In fact, the array of scientific goals that require high angular resolution makes interferometry inevitable. Here, we discuss some of the long-term science needs, and the implications for future interferometers, and then talk about some possible paths towards these future missions. C1 [Rinehart, S.; Carpenter, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [van Belle, G.] Lowell Observ, Flagstaff, AZ 86001 USA. [Unwin, S.] NASA, Jet Prop Lab, Greenbelt, MD USA. RP Rinehart, S (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Stephen.A.Rinehart@nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 914617 DI 10.1117/12.2056611 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200036 ER PT S AU Rinehart, S Rizzo, M Fixsen, D Ade, P Barclay, R Barry, R Benford, D Dhabal, A Juanola-Parramon, R Klemencic, G Griffin, M Leisawitz, D Maher, S Mentzell, J Mundy, L Pascale, E Savini, G Silverberg, R Staguhn, J Veach, T AF Rinehart, S. Rizzo, M. Fixsen, D. Ade, P. Barclay, R. Barry, R. Benford, D. Dhabal, A. Juanola-Parramon, R. Klemencic, G. Griffin, M. Leisawitz, D. Maher, S. Mentzell, J. Mundy, L. Pascale, E. Savini, G. Silverberg, R. Staguhn, J. Veach, T. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Interferometry at the Edge of the Atmosphere SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Interferometry; Balloons; Infrared AB The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. This program started in 2011, and is now in the process of building and testing components of the mission, aiming for first flight in fall of 2015. This paper will provide an overview of the BETTII experiment, with a discussion of current progress and of future plans. C1 [Rinehart, S.; Rizzo, M.; Fixsen, D.; Barclay, R.; Barry, R.; Benford, D.; Dhabal, A.; Leisawitz, D.; Maher, S.; Mentzell, J.; Silverberg, R.; Staguhn, J.; Veach, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rizzo, M.; Fixsen, D.; Dhabal, A.; Mundy, L.] Univ Maryland, College Pk, MD 20742 USA. [Ade, P.] Cardiff Univ, Cardiff CF10 3AX, S Glam, Wales. [Juanola-Parramon, R.; Savini, G.] UCL, London, England. [Klemencic, G.; Griffin, M.; Maher, S.; Pascale, E.] Sci Syst & Applicat Inc, Washington, DC USA. [Staguhn, J.] Johns Hopkins Univ, Baltimore, MD USA. [Veach, T.] NASA, Postdoctoral Program Fellow, Greenbelt, MD USA. RP Rinehart, S (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Stephen.A.Rinehart@nasa.gov RI Benford, Dominic/D-4760-2012; OI Benford, Dominic/0000-0002-9884-4206; Savini, Giorgio/0000-0003-4449-9416 NR 12 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 914602 DI 10.1117/12.2055602 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200002 ER PT S AU Scott, NJ Lhome, E ten Brummelaar, TA du Foresto, VC Millan-Gabet, R Sturmann, J Sturmann, L AF Scott, N. J. Lhome, E. ten Brummelaar, T. A. du Foresto, V. Coude Millan-Gabet, R. Sturmann, J. Sturmann, L. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI JouFLU: upgrades to the Fiber Linked Unit for Optical Recombination (FLUOR) interferometric beam combiner SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Instrumentation: interferometers; techniques: high angular resolution; techniques: interferometric ID CHARA/FLUOR; STARS AB The Fiber Linked Unit for Optical Recombination (FLUOR) is a precision interferometric beam combiner operating at the CHARA Array on Mt. Wilson, CA. It has recently been upgraded as part of a mission known as "Jouvence of FLUOR" or JouFLU. As part of this program JouFLU has new mechanic stages and optical payloads, new alignment systems, and new command/control software. Furthermore, new capabilities have been implemented such as a Fourier Transform Spectrograph (FTS) mode and spectral dispersion mode. These upgrades provide new capabilities to JouFLU as well as improving statistical precision and increasing observing efficiency. With these new systems, measurements of interferometric visibility to the level of 0.1% precision are expected on targets as faint as 6th magnitude in the K band. Here we detail the upgrades of JouFLU and report on its current status. C1 [Scott, N. J.; ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.] Georgia State Univ, CHARA Array, Mt Wilson Observ, Mt Wilson, CA 91023 USA. [Millan-Gabet, R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Lhome, E.; du Foresto, V. Coude] Observ Paris, LESIA CNRS, F-92192 Meudon, France. [du Foresto, V. Coude] Univ Bern, Ctr Space & Habitabil, CH-3012 Bern, Switzerland. RP Scott, NJ (reprint author), Georgia State Univ, CHARA Array, Mt Wilson Observ, Mt Wilson, CA 91023 USA. EM nic@chara-array.org NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 91461A DI 10.1117/12.2057129 PG 13 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200038 ER PT S AU Veach, TJ Rinehart, SA Mentzell, JE Silverberg, RF Fixen, DJ Rizzo, MJ Dhabal, A Gibbons, CE Benford, DJ AF Veach, Todd J. Rinehart, Stephen A. Mentzell, John E. Silverberg, Robert F. Fixen, Dale J. Rizzo, Maxime J. Dhabal, Arnab Gibbons, Caitlin E. Benford, Dominic J. BE Rajagopal, JK CreechEakman, MJ Malbet, F TI The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Optical Design SO OPTICAL AND INFRARED INTERFEROMETRY IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optical and Infrared Interferometry IV CY JUN 23-27, 2014 CL Montreal, CANADA SP SPIE DE Interferometry; Balloon; Infrared; Optics AB Here we present the optical and limited cryogenic design for The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an 8-meter far-infrared interferometer designed to fly on a high-altitude scientific balloon. The optical design is separated into warm and cold optics with the cold optics further separated into the far-infrared (FIR) (30-90 microns) and near-infrared (NIR) (1-3 microns). The warm optics are comprised of the twin siderostats, twin telescopes, K-mirror, and warm delay line. The cold optics are comprised of the cold delay line and the transfer optics to the FIR science detector array and the NIR steering array. The field of view of the interferometer is 2', with a wavelength range of 30-90 microns, 0.5 '' spectral resolution at 40 microns, R similar to 200 spectral resolution, and 1.5 '' pointing stability. We also present the design of the cryogenic system necessary for operation of the NIR and FIR detectors. The cryogenic system consists of a 'Buffered He-7' type cryogenic cooler providing a cold stage base temperature of < 280mK and 10 micro-Watts of heat lift and a custom in-house designed dewar that nominally provides sufficient hold time for the duration of the BETTII flight (24 hours). C1 [Veach, Todd J.; Rinehart, Stephen A.; Mentzell, John E.; Silverberg, Robert F.; Benford, Dominic J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fixen, Dale J.; Rizzo, Maxime J.; Dhabal, Arnab] Univ Maryland, College Pk, MD 20742 USA. [Gibbons, Caitlin E.] Penn State Univ, State Coll, PA 16801 USA. RP Veach, TJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Benford, Dominic/D-4760-2012 OI Benford, Dominic/0000-0002-9884-4206 NR 8 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9614-0 J9 PROC SPIE PY 2014 VL 9146 AR 91462H DI 10.1117/12.2055659 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BC6QF UT WOS:000354379200075 ER PT S AU Coulter, P Beaton, A Gum, JS Hadjimichael, TJ Hayden, JE Hummel, S Hylan, JE Lee, D Madison, TJ Maszkiewicz, M Mclean, KF McMann, J Melf, M Miner, L Ohl, RG Redman, K Roedel, A Schweiger, P Plate, MT Wells, M Wenzel, GW Williams, PK Young, J AF Coulter, Phillip Beaton, Alexander Gum, Jeffery S. Hadjimichael, Theodore J. Hayden, Joseph E. Hummel, Susann Hylan, Jason E. Lee, David Madison, Timothy J. Maszkiewicz, Michael Mclean, Kyle F. McMann, Joseph Melf, Markus Miner, Linda Ohl, Raymond G. Redman, Kevin Roedel, Andreas Schweiger, Paul Plate, Maurice Te Wells, Martyn Wenzel, Greg W. Williams, Patrick K. Young, Jerrod BE Sasian, J Youngworth, RN TI Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments aboard the James Webb Space Telescope SO OPTICAL SYSTEM ALIGNMENT, TOLERANCING, AND VERIFICATION VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT 8th Conference on Optical System Alignment, Tolerancing, and Verification CY AUG 17-18, 2014 CL San Diego, CA SP SPIE DE JWST; ISIM; NIRSpec; NIRCam; FGS; MIRI; metrology AB The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed. C1 [Coulter, Phillip; Gum, Jeffery S.; Hadjimichael, Theodore J.; Hylan, Jason E.; Madison, Timothy J.; Miner, Linda; Ohl, Raymond G.; Young, Jerrod] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Maszkiewicz, Michael] Canadian Space Agcy, Star City, Russia. [Beaton, Alexander] Comdev Int, Toronto, ON, Canada. [Hummel, Susann; Melf, Markus; Roedel, Andreas] EADS Astrium Gmbh, Munich, Germany. [Plate, Maurice Te] European Space Agcy, F-75738 Paris 15, France. [Schweiger, Paul] Lockheed Martin Corp, Bethesda, MD 20817 USA. [Mclean, Kyle F.; McMann, Joseph; Redman, Kevin; Wenzel, Greg W.] Qinetiq North Amer, Panama City, FL USA. [Hayden, Joseph E.] Sigma Space Corp, Lanham, MD 20706 USA. [Williams, Patrick K.] SGT Inc, Hampton, VA USA. [Lee, David; Wells, Martyn] UK Astron Technol Ctr, Edinburgh, Midlothian, Scotland. RP Coulter, P (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 10 TC 1 Z9 1 U1 2 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-222-2 J9 PROC SPIE PY 2014 VL 9195 AR 91950G DI 10.1117/12.2065017 PG 15 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC6PY UT WOS:000354368200014 ER PT J AU Laguna, AA Lani, A Mansour, NN Kosovichev, A Poedts, S AF Laguna, A. Alvarez Lani, A. Mansour, N. N. Kosovichev, A. Poedts, S. BE Onate, E Oliver, X Huerta, A TI A TWO-FLUID COMPUTATIONAL MODEL TO STUDY MAGNETIC RECONNECTION IN REACTIVE PLASMAS UNDER CHROMOSPHERIC CONDITIONS SO 11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV LA English DT Proceedings Paper CT 11th World Congress on Computational Mechanics (WCCM) / 5th European Conference on Computational Mechanics (ECCM) / 6th European Conference on Computational Fluid Dynamics (ECFD) CY JUL 20-25, 2014 CL Barcelona, SPAIN SP Spanish Assoc Numer Methods Engn, Cambridge Univ Press, CIMNE Technologia, CRC Press, Taylor & Francis Grp, ELSEVIER, ECCOMAS, GID, iacm, John Wiley & Sons ltd, Korea Soc Computat Mech, Portable Multimedia Solutions Inflatable Struct, Springer, Collegi Enginyers Camins Canals Ports Catalunya DE Plasma; Solar Physics; Finite Volume Method; Magnetohydrodynamics (MHD); Multi-fluid; Magnetic reconnection ID EQUATIONS AB We use a two-fluid (plasma + neutrals) model to simulate the magnetic reconnection in chromospheric conditions. Improved models for characterizing collisional and reactive magnetized partially ionized plasma in the presence of electromagnetic fields are essential to understand the phenomena taking place in astrophysical and laboratory plasmas. Particularly, scenarios where dissipative processes and thermo-chemical non-equilibrium play an important role are beyond the classical single-fluid MHD representation. The governing equations of the multi-fluid model used include two loosely-coupled systems: the reactive two-fluid equations and the full Maxwell equations complemented with two additional divergence cleaning equations for enforcing numerically the two Gauss's laws. A second-order cell-centered Finite Volume method for unstructured grids is used to discretize both systems. In particular, a variant of the AUSM(+)-up scheme is used to tackle the two-fluid equations, while Steger-Warming scheme is chosen for treating Maxwell equations. The unsteady simulation is advanced in time with an implicit three-point Backward Euler scheme. Results of the reconnection process are presented showing clear differences in the velocities and path of the neutrals compared to the ions that respond to the effect of the electromagnetic fields. Also shown are the different evolutions of the density of neutrals and ions that interact through chemical reactions. C1 [Laguna, A. Alvarez; Lani, A.] Von Karman Inst Fluid Dynam, B-1640 Rhode St Genese, Belgium. [Mansour, N. N.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kosovichev, A.] Big Bear Solar Observ, Big Bear City, CA 92314 USA. [Poedts, S.] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, B-3001 Heverlee, Belgium. RP Laguna, AA (reprint author), Von Karman Inst Fluid Dynam, Waterloosesteenweg 72, B-1640 Rhode St Genese, Belgium. EM alejandro.alvarez.laguna@vki.ac.be; lani@vki.ac.be; Nagi.N.Mansour@nasa.gov; sasha@bbso.njit.edu; Stefaan.Poedts@wis.kuleuven.be RI Poedts, Stefaan/C-9775-2012; OI Poedts, Stefaan/0000-0002-1743-0651; Lani, Andrea/0000-0003-4017-215X NR 26 TC 0 Z9 0 U1 0 U2 0 PU INT CENTER NUMERICAL METHODS ENGINEERING PI 08034 BARCELONA PA GRAN CAPITAN, S-N, CAMPUS NORTE UPC, MODULO C1, 08034 BARCELONA, SPAIN BN 978-84-942844-7-2 PY 2014 BP 2268 EP 2279 PG 12 WC Mathematics, Applied; Mechanics SC Mathematics; Mechanics GA BC5XR UT WOS:000353626503012 ER PT B AU Quattrochi, DA Luvall, JC AF Quattrochi, Dale A. Luvall, Jeffrey C. BE Weng, Q TI THERMAL INFRARED REMOTE SENSING FOR ANALYSIS OF LANDSCAPE ECOLOGICAL PROCESSES: CURRENT INSIGHTS AND TRENDS SO SCALE ISSUES IN REMOTE SENSING LA English DT Article; Book Chapter ID LAND-SURFACE TEMPERATURE; ISRAEL-EGYPT BORDER; ENERGY FLUXES; REGIONAL EVAPOTRANSPIRATION; SOIL-MOISTURE; SENSED DATA; MODIS DATA; FOREST; ECOSYSTEM; SATELLITE C1 [Quattrochi, Dale A.; Luvall, Jeffrey C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Quattrochi, DA (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. NR 86 TC 0 Z9 0 U1 3 U2 4 PU BLACKWELL SCIENCE PUBL PI OXFORD PA OSNEY MEAD, OXFORD OX2 0EL, ENGLAND BN 978-1-118-80155-0; 978-1-118-30504-1 PY 2014 BP 34 EP 60 D2 10.1002/9781118801628 PG 27 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC3FF UT WOS:000351598900003 ER PT J AU Shankar, A Lin, CM Angadi, C Bhattaeharya, S Broad, N Senesky, DG AF Shankar, Ashwin Lin, Chill-Ming Angadi, Chelan Bhattaeharya, Sharmila Broad, Nicholas Senesky, Debbie G. GP IEEE TI Impact of Gamma Irradiation on GaN/Sapphire Surface Acoustic Wave Resonators SO 2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) LA English DT Proceedings Paper CT IEEE International Ultrasonics Symposium (IUS) CY SEP 03-06, 2014 CL Chicago, IL SP IEEE ID ELECTRON-MOBILITY TRANSISTORS; ALUMINUM NITRIDE; GALLIUM NITRIDE; SAPPHIRE; RAY AB Space environments contain harsh conditions such as extreme temperature variations, high levels of radiation, and mechanical shocks. Resonator components made from quartz are susceptible to such environmental conditions so that complex packaging and shielding are typically required. As alternative to quartz, wide bandgap material platforms, such as gallium nitride (GaN), are being investigated due to their tolerance to harsh environments and high acoustic velocities. This paper presents the characterization of GaN/sapphire surface acoustic wave (SAW) resonators upon gamma irradiation. Microfabricated resonators were exposed to prolonged gamma ray radiation with (up to 850 krad) and the reflection characteristics (S-11) were obtained before irradiation, after irradiation, and after thermal annealing at 100 degrees C. The measured frequency response of the irradiated GaN/sapphire structures showed negligible shift in the resonance frequency (229 MHz). However, a decrease in the resonance peak intensity with increasing irradiation levels is observed. The state of the crystalline structure before and after irradiation (100 krad) is examined using rocking curve X-ray diffraction (XRD) analysis. C1 [Shankar, Ashwin; Broad, Nicholas] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Lin, Chill-Ming] Silicon Labs Inc, Sunnyvale, CA 94085 USA. [Angadi, Chelan; Bhattaeharya, Sharmila] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Senesky, Debbie G.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. RP Shankar, A (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM ashanka@stanford.edu; cmlin@alum.berkeley.edu; chetan.angadi@nasa.gov; sharmila.bhattacharya@nasa.gov; nbroad@stanford.edu; dsenesky@stanford.edu NR 30 TC 0 Z9 0 U1 1 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-7049-0 PY 2014 BP 2560 EP 2563 DI 10.1109/ULTSYM.2014.0639 PG 4 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA BC4NN UT WOS:000352792500637 ER PT J AU Hamkins, J AF Hamkins, Jon GP IEEE TI On a Problem of Massey SO 2014 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA) LA English DT Proceedings Paper CT Information Theory and Applications Workshop (ITA) CY FEB 09-14, 2014 CL San Diego, CA SP Univ Calif AB In 1976, Massey introduced a method to compute the confidence interval for the frame error rate of a coded communications system based on the simulation of just a few frame errors [1]. He commented that his approach did not apply to bit error rate confidence intervals, because bit errors are not independent in a coded system. In this paper, we show how to overcome the limitation Massey recognized, and present a method to compute a confidence interval of the bit error rate of a coded communications system from a simulation of bit and frame error events. The proposed interval may be easily computed from the first and second sample moments of the number of bits errors per frame. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hamkins, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jon.Hamkins@jpl.nasa.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA PY 2014 BP 338 EP 342 PG 5 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BC3PH UT WOS:000351836500050 ER PT J AU Casey, KA Fudge, TJ Neumann, TA Steig, EJ Cavitte, MGP Blankenship, DD AF Casey, K. A. Fudge, T. J. Neumann, T. A. Steig, E. J. Cavitte, M. G. P. Blankenship, D. D. TI The 1500 m South Pole ice core: recovering a 40 ka environmental record SO ANNALS OF GLACIOLOGY LA English DT Article DE Antarctic glaciology; glaciological instruments and methods; ice core; ice coring ID DIGITAL ELEVATION MODEL; WEST ANTARCTICA; CLIMATE VARIABILITY; SNOW ACCUMULATION; SIPLE DOME; LASER DATA; SHEET; SURFACE; FLOW; AIR AB Supported by the US National Science Foundation, a new 1500 m, similar to 40 ka old ice core will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US intermediate-depth drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of ice chemistry and trace atmospheric gases. The South Pole ice core will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic ice sheet. The ice at South Pole flows at similar to 10 m a(-1) and the South Pole ice-core site is a significant distance from an ice divide. Therefore, ice recovered at depth originated progressively farther upstream of the coring site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past similar to 50 years or upper 15 m. Depth-age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500 m near the ice-core drill site. C1 [Casey, K. A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Fudge, T. J.; Steig, E. J.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. [Steig, E. J.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Steig, E. J.] Univ Washington, Quatemary Res Ctr, Seattle, WA 98195 USA. [Cavitte, M. G. P.; Blankenship, D. D.] Univ Texas Austin, Inst Geophys, Austin, TX 78712 USA. RP Casey, KA (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM kimberly.a.casey@nasa.gov RI Steig, Eric/G-9088-2015; Casey, Kimberly/A-4478-2013 OI Steig, Eric/0000-0002-8191-5549; Casey, Kimberly/0000-0002-6115-7525 FU US National Science Foundation (NSF) [1141839]; NASA Cryospheric Sciences Program FX This work was supported by US National Science Foundation (NSF) grants 1141839 to E.J.S. and the NASA Cryospheric Sciences Program. We acknowledge the Antarctic Support Associates for collecting the November 2013 GPR data, and Zoe Courville of the US Army Cold Regions Research and Engineering Laboratory for GPR data processing. This is UTIG contribution No. 2789. NR 73 TC 2 Z9 2 U1 4 U2 9 PU INT GLACIOL SOC PI CAMBRIDGE PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND SN 0260-3055 EI 1727-5644 J9 ANN GLACIOL JI Ann. Glaciol. PY 2014 VL 55 IS 68 BP 137 EP 146 DI 10.3189/2014AoG68A016 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CE5QB UT WOS:000351889600019 ER PT J AU Spinei, E Cede, A Swartz, WH Herman, J Mount, GH AF Spinei, E. Cede, A. Swartz, W. H. Herman, J. Mount, G. H. TI The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric-tropospheric column partitioning from visible direct-sun DOAS measurements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID DIFFERENTIAL OPTICAL-ABSORPTION; ROTATIONAL RAMAN-SCATTERING; MAX-DOAS; NITROGEN-DIOXIDE; LIMB MEASUREMENTS; TRANSPORT MODEL; SOUTHERN CHINA; GMI CHEMISTRY; RETRIEVAL; SPECTROSCOPY AB This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, sigma(T), regression model (Vandaele et al., 2003). Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km +/- 3 K, and tropospheric effective temperature is equal to surface temperature within 3-5 K. These assumptions were derived from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS) measurements at four midlatitude locations with low and moderate NO2 anthropogenic emissions: (1) the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF), CA, USA (34.38 degrees N/117.68 degrees W); (2) Pullman, WA, USA (46.73 degrees N/117.17 degrees W); (3) Greenbelt, MD, USA (38.99 degrees N/76.84 degrees W); and (4) Cabauw, the Netherlands (51.97 degrees N/4.93 degrees E) during July 2007, June-July 2009, July-August and October 2011, November 2012-May 2013, respectively. NO2 T and total, stratospheric, and tropospheric NO2 vertical columns were determined over each site. C1 [Spinei, E.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cede, A.] Univ Space Res Assoc, Greenbelt, MD USA. [Swartz, W. H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Herman, J.] Univ Maryland Baltimore Cty, Catonsville, MD USA. [Mount, G. H.] Washington State Univ, Lab Atmospher Res, Pullman, WA 99164 USA. RP Spinei, E (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA. EM espinei@wsu.edu RI Swartz, William/A-1965-2010; OI Swartz, William/0000-0002-9172-7189; Herman, Jay/0000-0002-9146-1632 FU National Aeronautics and Space Administration [NNX09AJ28G, NNG05GR56G]; JPL Table Mountain Facility; GSFC; Cabauw; WSU FX The development and deployment of MFDOAS were supported by the National Aeronautics and Space Administration grants to Washington State University (NNX09AJ28G and NNG05GR56G). We are grateful for the institutional support from JPL Table Mountain Facility (Stanley Sander and co-workers), GSFC (Kent McCullough, Nader Abuhassan), Cabauw (CINDI organizers at KNMI), and WSU (Kurt Hutchinson and Gary Held), where the field measurements were taken. NR 54 TC 1 Z9 1 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 12 BP 4299 EP 4316 DI 10.5194/amt-7-4299-2014 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF1GA UT WOS:000352290900005 ER PT J AU Rogers, RR Vaughan, MA Hostetler, CA Burton, SP Ferrare, RA Young, SA Hair, JW Obland, MD Harper, DB Cook, AL Winker, DM AF Rogers, R. R. Vaughan, M. A. Hostetler, C. A. Burton, S. P. Ferrare, R. A. Young, S. A. Hair, J. W. Obland, M. D. Harper, D. B. Cook, A. L. Winker, D. M. TI Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID MULTIWAVELENGTH RAMAN LIDAR; GROUND-BASED LIDAR; SAHARAN DUST; TROPOSPHERIC AEROSOLS; AERONET MEASUREMENTS; MODIS-AQUA; CLOUD; CALIOP; SPACE; EXTINCTION AB The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) spacecraft has provided over 8 yr of nearly continuous vertical profiling of Earth's atmosphere. In this paper we investigate the V3.01 and V3.02 CALIOP 532 nm aerosol layer optical depth (AOD) product (i. e the AOD of individual layers) and the column AOD product (i. e., the sum AOD of the complete column) using an extensive database of coincident measurements. The CALIOP AOD measurements and AOD uncertainty estimates are compared with collocated AOD measurements collected with the NASA High Spectral Resolution Lidar (HSRL) in the North American and Caribbean regions. In addition, the CALIOP aerosol lidar ratios are investigated using the HSRL measurements. In general, compared with the HSRL values, the CALIOP layer AOD are biased high by less than 50% for AOD < 0.3 with higher errors for higher AOD. Less than 60% of the HSRL AOD measurements are encompassed within the CALIOP layer 1 SD uncertainty range (around the CALIOP layer AOD), so an error estimate is created to encompass 68% of the HSRL data. Using this new metric, the CALIOP layer AOD error is estimated using the HSRL layer AOD as +/- 0.035 +/- 0.05 +/- (HSRL layer AOD) at night and +/- 0.05 +/- 0.05 +/- (HSRL layer AOD) during the daytime. Furthermore, the CALIOP layer AOD error is found to correlate with aerosol loading as well as aerosol subtype, with the AODs in marine and dust layers agreeing most closely with the HSRL values. The lidar ratios used by CALIOP for polluted dust, polluted continental, and biomass burning layers are larger than the values measured by the HSRL in the CALIOP layers, and therefore the AODs for these types retrieved by CALIOP were generally too large. We estimated the CALIOP column AOD error can be expressed as +/- 0.05 +/- 0.07 +/- (HSRL column AOD) at night and +/- 0.08 +/- 0.1 +/- (HSRL column AOD) during the daytime. Multiple sources of error contribute to both positive and negative errors in the CALIOP column AOD, including multiple layers in the column of different aerosol types, lidar ratio errors, cloud misclassification, and undetected aerosol layers. The undetected layers were further investigated and we found that the layer detection algorithm works well at night, although undetected aerosols in the free troposphere introduce a mean underestimate of 0.02 in the column AOD in the data set examined. The decreased signal-to-noise ratio (SNR) during the daytime led to poorer performance of the layer detection. This caused the daytime CALIOP column AOD to be less accurate than during the nighttime, because CALIOP frequently does not detect optically thin aerosol layers with AOD < 0.1. Given that the median vertical extent of aerosol detected within any column was 1.6 km during the nighttime and 1.5 km during the daytime, we can estimate the minimum extinction detection threshold to be 0.012 km(-1) at night and 0.067 km(-1) during the daytime in a layer median sense. This extensive validation of level 2 CALIOP AOD products extends previous validation studies to nighttime lighting conditions and provides independent measurements of the lidar ratio; thus, allowing the assessment of the effect on the CALIOP AOD of using inappropriate lidar ratio values in the extinction retrieval. C1 [Rogers, R. R.; Vaughan, M. A.; Hostetler, C. A.; Burton, S. P.; Ferrare, R. A.; Hair, J. W.; Obland, M. D.; Harper, D. B.; Cook, A. L.; Winker, D. M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Young, S. A.] CSIRO Marine & Atmospher Res, Aspendale, Vic 3195, Australia. RP Rogers, RR (reprint author), NASA, Langley Res Ctr, 21 Langley Blvd,MS 401, Hampton, VA 23681 USA. EM rrogers@lfcc.edu FU NASA HQ Science Mission Directorate Radiation Sciences Program; NASA CALIPSO; US Department of Energy's Atmospheric System Research Program, an Office of Science, Office of Biological and Environmental Research program [DE-AI02-05ER63985] FX The authors would like to thank the NASA Langley B200 King Air flight crew for their dedicated work in support of HSRL measurements and the engineering team for building and maintaining state of the art HSRL instruments. Funding for this research came from the NASA HQ Science Mission Directorate Radiation Sciences Program; the NASA CALIPSO project; and the US Department of Energy's Atmospheric System Research Program, an Office of Science, Office of Biological and Environmental Research program, under grant no. DE-AI02-05ER63985. NR 77 TC 9 Z9 9 U1 4 U2 17 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 12 BP 4317 EP 4340 DI 10.5194/amt-7-4317-2014 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF1GA UT WOS:000352290900006 ER PT J AU Lyapustin, A Wang, Y Xiong, X Meister, G Platnick, S Levy, R Franz, B Korkin, S Hilker, T Tucker, J Hall, F Sellers, P Wu, A Angal, A AF Lyapustin, A. Wang, Y. Xiong, X. Meister, G. Platnick, S. Levy, R. Franz, B. Korkin, S. Hilker, T. Tucker, J. Hall, F. Sellers, P. Wu, A. Angal, A. TI Scientific impact of MODIS C5 calibration degradation and C6+improvements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID RESOLUTION IMAGING SPECTRORADIOMETER; ATMOSPHERIC CORRECTION; POLARIZATION-SENSITIVITY; AEROSOL PRODUCTS; CARBON SINK; OCEAN; VEGETATION; FORESTS; TERRA; BANDS AB The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Angstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra Delta NDVI similar to 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements. C1 [Lyapustin, A.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Tucker, J.; Sellers, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wang, Y.; Hall, F.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Korkin, S.] Univ Space Res Assoc GESTAR, Columbia, MD USA. [Hilker, T.] Oregon State Univ, Corvallis, OR 97331 USA. [Wu, A.] Sigma Space Corp, Lanham, MD USA. [Angal, A.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Lyapustin, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM alexei.i.lyapustin@nasa.gov RI Franz, Bryan/D-6284-2012; Platnick, Steven/J-9982-2014; Levy, Robert/M-7764-2013 OI Franz, Bryan/0000-0003-0293-2082; Platnick, Steven/0000-0003-3964-3567; Levy, Robert/0000-0002-8933-5303 FU NASA's Science of Terra and Aqua Program FX This work would not have been possible without support from NASA's Science of Terra and Aqua Program to A. Lyapustin, Y. Wang, S. Platnick and R. Levy. We are grateful to MODAPS for providing MODIS subsets and to the NASA Center for Climate Simulation (NCCS) for computational support and access to their high-performance cluster. NR 38 TC 31 Z9 31 U1 2 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 12 BP 4353 EP 4365 DI 10.5194/amt-7-4353-2014 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF1GA UT WOS:000352290900008 ER PT S AU Abraham, JBS Williams, GA Penanen, K AF Abraham, John B. S. Williams, Gary A. Penanen, Konstantin BE Calzetta, E TI Non-universal Casimir effect in saturated superfluid He-4 films at T-lambda SO 27TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT27), PTS 1-5 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 27th International Conference on Low Temperature Physics (LT) CY AUG 06-13, 2014 CL Buenos Aires, ARGENTINA SP Int Un Pure & Appl Phys, Centro Latinoamericano Fsica, Int Ctr Theoret Phys, Univ Buenos Aires, Consejo Nacl Investigaciones Cientcas Tecnicas, Ministerio Ciencia Tecnologa Innovac Productiva, Agencia Nacl Promoc Cientca Tecnologica, Attocube, CamCool Res Ltd, Cryogen Ltd, Cryomech Inc, Innovat Cryogen Engn Oxford, IOP Publishing, Janis Res, Lake Shore Cryotron, Leiden Cryogen BV, Oxford Instruments, Instituto Fsica Buenos Aires, AGENCIA, Quantum Design Int, Buenos Aires Ciudad, Asociac Argentina Para Progreso Ciencias, Academia Nacl Ciencias Exactas Fisicas Naturales, Univ Buenos Aires, Departmento Fisica, Juan Jose Giambiagi ID FLUCTUATION-INDUCED FORCES; CRITICAL DYNAMICS; LIQUID-HELIUM; 3RD SOUND; TRANSITION; SIZE; ATTENUATION; VELOCITY; FLUIDS AB Measurements of Casimir effects in He-4 films in the vicinity of the bulk superfluid transition temperature T-lambda have been carried out, where changes in the film thickness and the superfluid density are both monitored as a function of temperature. The Kosterlitz-Thouless superfluid onset temperature in the film is found to occur just as the Casimir dip in the film thickness from critical fluctuations becomes evident. Additionally, a new film-thickening effect is observed precisely at T-lambda when the temperature is swept extremely slowly. We propose that this is a non-universal Casimir effect arising from the viscous suppression of second sound modes in the film. C1 [Abraham, John B. S.; Williams, Gary A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Penanen, Konstantin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Abraham, JBS (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM gaw@ucla.edu NR 34 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2014 VL 568 AR 012025 DI 10.1088/1742-6596/568/1/012025 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA BC2XK UT WOS:000351433700025 ER PT S AU Allen, PA Wells, DN AF Allen, Phillip A. Wells, Douglas N. BE McKeighan, PC Braun, AA TI Application of Automation Methods for Nonlinear Fracture Test Analysis SO APPLICATION OF AUTOMATION TECHNOLOGY IN FATIGUE AND FRACTURE TESTING AND ANALYSIS SE American Society for Testing and Materials Special Technical Publications LA English DT Proceedings Paper CT Symposium on Application of Automation Technology in Fatigue and Fracture Testing and Analysis CY MAY 23, 2013 CL Indianapolis, IN SP ASTM Int Comm E08 Fatigue & Fracture, ASTM Int Subcommittee E08.03 Adv Apparat & Tech DE nonlinear analysis; analysis automation; elastic-plastic; surface crack; J-integral; nonlinear fracture; test standard AB As fracture mechanics material testing evolves, the governing test standards continue to be refined to better reflect the latest understanding of the physics of the fracture processes involved. The traditional format of ASTM fracture testing standards, utilizing equations expressed directly in the text of the standard to assess the experimental result, is self-limiting in the complexity that can be reasonably captured. The use of automated analysis techniques to draw upon a rich, detailed solution database for assessing fracture mechanics tests provides a foundation for a new approach to testing standards that enables routine users to obtain highly reliable assessments of tests involving complex, non-linear fracture behavior. Herein, the case for automating the analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example of how such a database can be generated and implemented for use in the ASTM standards framework. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation. C1 [Allen, Phillip A.; Wells, Douglas N.] NASA, George C Marshall Space Flight Ctr, Mat & Proc Lab, Huntsville, AL 35812 USA. RP Allen, PA (reprint author), NASA, George C Marshall Space Flight Ctr, Mat & Proc Lab, Huntsville, AL 35812 USA. NR 18 TC 0 Z9 0 U1 0 U2 1 PU ASTM INTERNATIONAL PI WEST CONSHOHOCKEN PA 100 BARR HARBOR DRIVE, PO BOX C700, WEST CONSHOHOCKEN, PA 19428-2959 USA SN 0066-0558 BN 978-0-8031-7587-7 J9 AM SOC TEST MATER PY 2014 VL 1571 BP 31 EP 49 DI 10.1520/STP157120130062 PG 19 WC Automation & Control Systems; Materials Science, Characterization & Testing SC Automation & Control Systems; Materials Science GA BC2OK UT WOS:000351133700003 ER PT B AU Halbig, MC Singh, M Smith, CE AF Halbig, Michael C. Singh, Mrityunjay Smith, Craig E. BE Singh, D Zhu, D Kriven, WM Mathur, S TI JOINING OF SiC/SiC CERAMIC MATRIX COMPOSITES USING REABOND TECHNOLOGY SO DESIGN, DEVELOPMENT, AND APPLICATIONS OF STRUCTURAL CERAMICS, COMPOSITES, AND NANOMATERIALS: CERAMIC TRANSACTIONS, VOL 244 LA English DT Proceedings Paper CT 10th Pacific Rim Conference on Ceramic and Glass Technology CY JUN 02-06, 2013 CL Coronado, CA ID MICROSTRUCTURE; ALLOYS; LINERS; JOINTS AB Advanced ceramic joining technologies are critically needed to build-up complex shaped ceramic matrix composite (CMC) components from simpler shaped CMC parts. A high temperature joining approach, referred as Refractory Eutectic Assisted Bonding (REABOND), was successfully utilized to bond melt infiltrated SiC/SiC composites fabricated using HiNicalon fibers and BN/SiC interface. This approach uses a flexible green tape that offers the ability to form bonds without high applied pressures and therefore parts are not restricted to flat shapes with very smooth matching surfaces. Initially, powders of the eutectic phases Si-8.5Hf, Si-16Ti, and Si-18Cr, were used in paste form to investigate their ability to join CMCs. The Si-8.5Hf eutectic alloy was down selected and powders were used to prepare the tapes for bonding. Microstructural analysis of the resulting joints was conducted using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) to evaluate bond quality and determine the composition of the reaction formed phases. Relatively thick interlayers were needed to completely densify the gap between the two matching CMC substrates due to roughness in the fiber woven architecture at the substrate surfaces. Analysis of the joints showed that the bonds were uniform, dense, and crack-free. Mechanical tests were conducted to evaluate the effective shear strength at room temperature and at 750 degrees C. Full evaluation of the joint strength was partially limited by the low interlaminar strength of the CMC that was used. C1 [Halbig, Michael C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Singh, Mrityunjay; Smith, Craig E.] Ohio Aerosp Inst, Cleveland, OH USA. RP Halbig, MC (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 15 TC 0 Z9 0 U1 1 U2 7 PU BLACKWELL SCIENCE PUBL PI OXFORD PA OSNEY MEAD, OXFORD OX2 0EL, ENGLAND BN 978-1-118-88970-1; 978-1-118-77094-8 PY 2014 BP 39 EP 51 PG 13 WC Materials Science, Ceramics SC Materials Science GA BC2FC UT WOS:000350822300004 ER PT S AU Ferri, E Day, P Falferi, P Faverzani, M Giachero, A Giordano, C Leduc, HG Marghesin, B Mattedi, F Mezzena, R Nizzolo, R Nucciotti, A AF Ferri, E. Day, P. Falferi, P. Faverzani, M. Giachero, A. Giordano, C. LeDuc, H. G. Marghesin, B. Mattedi, F. Mezzena, R. Nizzolo, R. Nucciotti, A. BE Farinon, S Pallecchi, I Malagoli, A Lamura, G TI Superconducting Microresonator Detectors for Neutrino Physics in Milano SO 11TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS2013), PTS 1-4 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 11th European Conference on Applied Superconductivity (EUCAS) CY SEP 15-19, 2013 CL Genoa, ITALY ID FILMS AB Superconducting microwave microresonators are low temperature detectors compatible with large-scale multiplexed frequency domain readout. Our aim is to adapt and further advance the technology of microresonator detectors to develop new devices applied to the problem of measuring the neutrino mass. More specifically, we aim to develop detector arrays which can be applied to the calorimetric measurement of the energy spectra of Ho-163 EC decay (Q similar to 2-3 keV) for a direct measurement of the neutrino mass. In order to achieve this goal, a study aimed to the selection of the best design and material for the detectors is required. A recent advance in microwave microresonator technology was the discovery that some metal nitrides, such as TiN, possess properties consistent with very high detector sensitivity. In this contribution, our progress on the design and test of Ti/TiN multilayer films is presented. We report measurements made on stoichiometric TiN, sub-stoichiometric TiN and multilayer Ti/TiN films including the critical temperature, the gap parameter and the quasi-particle recombination time extrapolated from similar to keV X-ray pulses. \ C1 [Ferri, E.; Faverzani, M.; Giachero, A.; Nizzolo, R.; Nucciotti, A.] Univ Milano Bicocca, Milan, Italy. [Ferri, E.; Faverzani, M.; Giachero, A.; Nizzolo, R.; Nucciotti, A.] INFN Milano Bicocca, Milan, Italy. [Day, P.; LeDuc, H. G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Falferi, P.] Fdn Bruno Kessler, CNR, Ist Foton & Nanotecnol, Trento, Italy. [Giordano, C.; Marghesin, B.; Mattedi, F.] Fdn Bruno Kessler, Trento, Italy. [Mezzena, R.] Univ Trento, Dipartimento Fis, Trento, Italy. RP Ferri, E (reprint author), Univ Milano Bicocca, Milan, Italy. EM elena.ferri@mib.infn.it RI Giachero, Andrea/I-1081-2013; Nucciotti, Angelo/I-8888-2012; Ferri, Elena/L-8531-2014; Falferi, Paolo/C-3439-2015; Mezzena, Renato/K-1802-2015; Faverzani, Marco/K-3865-2016 OI Giachero, Andrea/0000-0003-0493-695X; Nucciotti, Angelo/0000-0002-8458-1556; Ferri, Elena/0000-0003-1425-3669; Falferi, Paolo/0000-0002-1929-4710; Mezzena, Renato/0000-0001-9891-0472; Faverzani, Marco/0000-0001-8119-2953 NR 10 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2014 VL 507 AR 042010 DI 10.1088/1742-6596/507/4/042010 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BC2EY UT WOS:000350818300178 ER PT S AU Xiong, X Angal, A Madhavan, S Link, D Geng, X Wenny, B Wu, A Chen, H Salomonson, V AF Xiong, X. Angal, A. Madhavan, S. Link, D. Geng, X. Wenny, B. Wu, A. Chen, H. Salomonson, V. GP IEEE TI MODIS INSTRUMENT OPERATION AND CALIBRATION IMPROVEMENTS SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE MODIS; Terra; Aqua; Calibration AB Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed. C1 [Xiong, X.] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Xiong, X (reprint author), NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. NR 7 TC 2 Z9 2 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 1385 EP 1388 DI 10.1109/IGARSS.2014.6946693 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688102032 ER PT S AU Xiong, X Butler, J Chiang, K Efremova, B Fulbright, J Lei, N McIntire, J Wang, Z AF Xiong, X. Butler, J. Chiang, K. Efremova, B. Fulbright, J. Lei, N. McIntire, J. Wang, Z. GP IEEE TI VIIRS ON-ORBIT CALIBRATION AND PERFORMANCE UPDATE SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE VIIRS; S-NPP; SDR; Calibration; VCST AB The S-NPP VIIRS was launched on October 28, 2011 and activated on November 8, and then went through a series of intensive functional tests in order to establish the sensor's baseline characteristics and initial on-orbit performance. With the exception of large optical degradation in the NIR and SWIR spectral regions that is due to pre-launch mirror coating contamination, both the VIIRS instrument and its on-board calibrators continue to operate and function normally With continuous dedicated effort, it is expected that most of the sensor calibration parameters will continue to meet their design requirements and that high quality data products will be continuously generated and used by the operational as well as research community. C1 [Xiong, X.; Butler, J.] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Xiong, X (reprint author), NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 1389 EP 1392 DI 10.1109/IGARSS.2014.6946694 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688102033 ER PT S AU Pahlevan, N Wei, JW Schaaf, CB Schott, JR AF Pahlevan, Nima Wei, Jianwei Schaaf, Crystal B. Schott, John R. GP IEEE TI EVALUATING RADIOMETRIC SENSITIVITY OF LANDSAT 8 OVER COASTAL/INLAND WATERS SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE OLI; Landsat 8; radiometric; sensitivity; water constituents; water quality AB The operational Land Imager (OLI) aboard Landsat 8 was launched in February 2013 to continue the Landsat's mission of monitoring earth resources at relatively high spatial resolution. Compared to Landsat heritage sensors, OLI has an additional 443-nm band (termed coastal/aerosol (CA) band), which extends Landsat's potential for mapping/monitoring water quality in coastal/inland waters. In addition, OLI's pushbroom design allows for longer integration time and, as a result, higher signal-to-noise ratio (SNR). Using a series of radiative transfer simulations, we provide insights into the radiometric sensitivity of OLI when studying coastal/inland waters. This will address how the changes in water constituents manifest at the sensor level and whether the changes are resolvable (focal plane) relative to OLI's overall noise. C1 [Pahlevan, Nima] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pahlevan, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM nima.pahlevan@nasa.gov; Jianwei.wei@umb.edu; schaaf@umb.edu; schott@cis.rit.edu OI Pahlevan, Nima/0000-0002-5454-5212 NR 5 TC 0 Z9 0 U1 1 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 1393 EP 1396 DI 10.1109/IGARSS.2014.6946695 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688102034 ER PT S AU Yanovsky, I Davis, AB Jovanovic, VM AF Yanovsky, Igor Davis, Anthony B. Jovanovic, Veljko M. GP IEEE TI SEPARATION OF CLOUD LAYERS IN MULTISPECTRAL IMAGER DATA SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Cloud layer separation; scale separation; image decomposition; total variation minimization; multispectral image analysis; passive atmospheric tomography ID ACTIVE CONTOURS; RECONSTRUCTION; MINIMIZATION; ALGORITHM; FILTERS; NOISE; NORM AB In this paper, we introduce methodology for multispectral layer separation. Efficient alternating minimization and fast operator-splitting methods are used to solve minimization problems. Specifically, we apply our methodology to separate strongly stratified and optically thin upper (cirrus) clouds from optically thick lower convective (cumulus) clouds in atmospheric imagery approximated as additive contributions to the observed signal. After setting up synthetic "truth" scenarios, we evaluate the accuracy of the two-layer separation results while varying the effective opaqueness of each of two types of cloud. We show that multispectral cloud layer separation is consistently more accurate than channel-by-channel cloud layer separation. C1 [Yanovsky, Igor; Davis, Anthony B.; Jovanovic, Veljko M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Yanovsky, I (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 15 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 1627 EP 1630 DI 10.1109/IGARSS.2014.6946759 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688102091 ER PT S AU Burgin, M Moghaddam, M AF Burgin, Mariko Moghaddam, Mahta GP IEEE TI MITIGATION OF FARADAY ROTATION EFFECT FOR LONG-WAVELENGTH SYNTHETIC SPACEBORNE RADAR DATA SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Faraday rotation; synthetic aperture radar (SAR); polarimetry; calibration AB The focus for geophysical parameter retrieval from space, such as soil moisture, is shifting towards lower frequencies allowing better penetration through vegetation (rendering it less visible) and into the soil (allowing soil moisture sensing into depth). But the ionosphere becomes increasingly opaque at lower frequencies, which intensifies the need for mitigation of ionospheric effects to allow the use of spaceborne radar signals. This work focuses on a radar-only method to predict and mitigate the Faraday rotation effect, which is considered to be the remaining dominant effect. A novel method to retrieve the Faraday rotation angle by using three different optimization techniques in the presence of other system distortion terms with no external targets is presented. The retrieval performance with synthetic spaceborne radar data is very promising; it allows a successful retrieval of the Faraday rotation angle if it is initiated within 25 of the ground truth. C1 [Burgin, Mariko] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Burgin, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 7 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 2340 EP 2342 DI 10.1109/IGARSS.2014.6946940 PG 3 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688103084 ER PT S AU O'Neill, P Joseph, A Srivastava, P Cosh, M Lang, R AF O'Neill, P. Joseph, A. Srivastava, P. Cosh, M. Lang, R. GP IEEE TI SEASONAL PARAMETERIZATIONS OF THE TAU-OMEGA MODEL USING THE COMRAD GROUND-BASED SMAP SIMULATOR SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE soil moisture; microwave; tau-omega model; ComRAD; SMAP; seasonal parameterization AB NASA's Soil Moisture Active Passive (SMAP) mission is scheduled for launch in November 2014. In the prelaunch time frame, the SMAP team has focused on improving retrieval algorithms for the various SMAP baseline data products. The SMAP passive-only soil moisture product depends on accurate parameterization of the tau-omega model to achieve the required accuracy in soil moisture retrieval. During a field experiment (APEX12) conducted in the summer of 2012 under dry conditions in Maryland, the ComRAD truck-based SMAP simulator collected active/passive microwave time series data at the SMAP incident angle of 40 over corn and soybeans throughout the crop growth cycle. A similar experiment was conducted only over corn in 2002 under normal moist conditions. Data from these two experiments will be analyzed and compared to evaluate how changes in vegetation conditions throughout the growing season in both a drought and normal year can affect parameterizations in the tau-omega model for more accurate soil moisture retrieval. C1 [O'Neill, P.; Joseph, A.; Srivastava, P.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. RP O'Neill, P (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Code 617, Greenbelt, MD 20771 USA. EM Peggy.E.ONeill@nasa.gov OI Cosh, Michael/0000-0003-4776-1918 NR 7 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 2423 EP 2426 DI 10.1109/IGARSS.2014.6946961 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688103105 ER PT S AU Le Moigne, J Sazama, P Swanson, S Ly, V Mandl, D AF Le Moigne, Jacqueline Sazama, Patricia Swanson, Stephen Vuong Ly Mandl, Daniel GP IEEE TI GEOREGISTRATION OF EARTH OBSERVING-1 (EO-1) DATA USING GLOBAL LAND SURVEY (GLS) MAPS SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Georegistration; Earth Observing-1; Global Land Survey (GLS); wavelet features ID REGISTRATION AB The method presented in this paper utilizes Global Land Survey (GLS) maps to register Earth Observing-1 (EO-1) data, either using entire scenes or utilizing chips extracted from the GLS maps. The automated registration algorithm is based on the optimization of wavelet or wavelet-like features extracted from both reference and input image data. After testing the method on several ALT scenes, results and conclusions are presented. C1 [Le Moigne, Jacqueline; Vuong Ly; Mandl, Daniel] NASA, Goddard Space Flight Ctr, Software Engn Div, Greenbelt, MD 20771 USA. RP Le Moigne, J (reprint author), NASA, Goddard Space Flight Ctr, Software Engn Div, Greenbelt, MD 20771 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 2518 EP 2521 DI 10.1109/IGARSS.2014.6946985 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688103128 ER PT S AU Roman, MO Justice, C Csiszar, I AF Roman, Miguel O. Justice, Chris Csiszar, Ivan GP IEEE TI LAND, CRYOSPHERE, AND NIGHTTIME ENVIROMENTAL PRODUCTS FROM SUOMI NPP VIIRS: OVERVIEW AND STATUS SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Remote Sensing; Land Cover; Land Use; Cryosphere; Nighttime Environmental Products ID LIGHT AB The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-orbiting Partnership (S-NPP: http://npp.gsfc.nasa.gov/). VIIRS was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provide observation continuity with NASA's Earth Observing System's (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA and NOAA funded scientists have been working to evaluate the instrument performance and derived products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the former National Polarorbiting Environmental Satellite System (NPOESS). The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs and providing MODIS data product continuity. This paper will present to-date findings of the NASA Science Team's evaluation of the VIIRS Land and Cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization (http://viirsland.gsfc.nasa.gov/index.html). The paper will also discuss new capabilities being developed at NASA's Land Product Evaluation and Test Element (http://landweb.nascom.nasa.gov/NPP_QA/); including downstream data and products derived from the VIIRS Day/Night Band (DNB). C1 [Roman, Miguel O.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Roman, MO (reprint author), NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Roman, Miguel/D-4764-2012; Csiszar, Ivan/D-2396-2010 OI Roman, Miguel/0000-0003-3953-319X; NR 12 TC 0 Z9 0 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 3530 EP 3533 DI 10.1109/IGARSS.2014.6947244 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688105025 ER PT S AU Ghaemi, H Shaffer, S Hensley, S AF Ghaemi, Hirad Shaffer, Scott Hensley, Scott GP IEEE TI ONBOARD DIGITAL BEAMFORMING: ALGORITHM AND RESULTS SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Beam forming; DBF; SAR; SNR AB A one-dimensional digital beam-forming (DBF) algorithm that is suitable for onboard real-time implementation is described in this article. A couple of techniques for generating a set of DBF coefficients will be also proposed to improve radar system performance such as signal-to-noise ratio (SNR) and/or range ambiguity (as a part of multiplicative noise ratio, MNR), and range impulse response parameters including compression gain, range resolution, etc. Results from simulations demonstrate improvement obtained by these techniques at the output of digital beamforming process. Finally, via the proposed onboard DBF algorithm, a processed synthetic aperture radar (SAR) image generated from data of airborne SweepSAR experiment [1] is exhibited. C1 [Ghaemi, Hirad; Shaffer, Scott; Hensley, Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Ghaemi, H (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 5 TC 1 Z9 1 U1 1 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 3838 EP 3841 DI 10.1109/IGARSS.2014.6947321 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688105102 ER PT S AU Tilton, JC Pasolli, E AF Tilton, James C. Pasolli, Edoardo GP IEEE TI INCORPORATING EDGE INFORMATION INTO BEST MERGE REGION-GROWING SEGMENTATION SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Image processing; image analysis; image segmentation; image edge detection AB We have previously developed a best merge region-growing approach that integrates nonadjacent region object aggregation with the neighboring region merge process usually employed in region growing segmentation approaches. This approach has been named HSeg, because it provides a hierarchical set of image segmentation results. Up to this point, HSeg considered only global region feature information in the region growing decision process. We present here three new versions of HSeg that include local edge information into the region growing decision process at different levels of rigor. We then compare the effectiveness and processing times of these new versions HSeg with each other and with the original version of HSeg. C1 [Tilton, James C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Tilton, JC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. OI Pasolli, Edoardo/0000-0003-0799-3490 NR 6 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 4891 EP 4894 DI 10.1109/IGARSS.2014.6947591 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688107008 ER PT S AU Yang, YM Komjathy, A Meng, X Garrison, JL AF Yang, Yu-Ming Komjathy, Attila Meng, Xing Garrison, James L. GP IEEE TI GNSS-BASED ATMOSPHERE SOUNDING ON THE EARTHQUAKE AND TSUNAMI INDUCED ATMOSPHERE-IONOSPHERE PERTURBATIONS SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE GPS; ionospheric disturbance; remote sensing; acoustic and gravity waves ID SURFACE-WAVES; DISTURBANCES AB Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves (AGWs) in the neutral atmosphere are observable in trans-ionospheric radio signals such as Global Navigation Satellite System (GNSS) signals. In this research, we designed a wavelet-based method to enhance the detection and estimation for sounding the presence of atmosphere-wave-induced TIDs using measurements collected from GNSS networks near the epicenter of the March 11, 2011 Tohoku-Oki earthquake and the resulting tsunami. A comparison of GNSS/GPS based observations, global ionosphere-thermosphere model (GITM simulations, JPL's tsunami model simulations and ground motions are analyzed to understand the atmosphere-ionosphere responses in this tsunami/earthquake event. Through use of the wavelet coherence analysis, we are able to identify major wave trains presented in the data collected from networks (such as Japan GEONET and U.S. PBO), with different dominant frequency bands and characteristics. They are mostly due to the infrasound signals and gravity waves originated from the epicenter, Rayleigh waves from the ground surface motions, and tsunami propagation. C1 [Yang, Yu-Ming] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Yang, YM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 20 TC 0 Z9 0 U1 1 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 4990 EP 4993 DI 10.1109/IGARSS.2014.6947616 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688107032 ER PT S AU Burgin, M Khankhoje, UK Duan, XY Moghaddam, M AF Burgin, Mariko Khankhoje, Uday K. Duan, Xueyang Moghaddam, Mahta GP IEEE TI GENERALIZED RADAR SCATTERING MODEL INCLUDING TERRAIN TOPOGRAPHY SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Electromagnetic modeling; surface topography; radar remote sensing; vegetation ID VEGETATION AB Terrain topography is of great importance for vegetated areas given that even small slopes impact and alter the radar wave interactions between the ground and the overlying vegetation. Current missions generally exclude pixels with large topographic slopes or disregard the terrain topography entirely, potentially accumulating substantial modeling errors and therefore impacting the retrieval performance over such sloped pixels. A flexible and modular radar scattering model has been developed: it describes multispecies vegetation over an N-layered soil with rough interfaces and considers a two-dimensional slope. Simulation results show the impact of a two-dimensional slope for a range of tilt angles: a 3 degree tilt in the plane of incidence translates to a change of up to 6 dB in HH, 2 dB in VV and 1 dB in HV for the total radar backscatter. The terrain topography is shown to be crucial for accurate forward modeling, especially over forested areas. C1 [Burgin, Mariko; Duan, Xueyang] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Burgin, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 5037 EP 5039 PG 3 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688107043 ER PT S AU Mattmann, CA Painter, T Ramirez, PM Goodale, C Hart, AF Zimdars, P Boustani, M Khudikyan, S Verma, R Caprez, FS Deems, J Trangsrud, A Boardman, J AF Mattmann, Chris A. Painter, Thomas Ramirez, Paul M. Goodale, Cameron Hart, Andrew F. Zimdars, Paul Boustani, Maziyar Khudikyan, Shakeh Verma, Rishi Caprez, Felix Seidel Deems, Jeff Trangsrud, Amy Boardman, Joseph GP IEEE TI 24 HOUR NEAR REAL TIME PROCESSING AND COMPUTATION FOR THE JPL AIRBORNE SNOW OBSERVATORY SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE JPL; ASO; OODT; Big Data AB JPL's Airborne Snow Observatory is an integrated imaging spectrometer and scanning LIDAR for measuring mountain snow albedo, snow depth/snow water equivalent, and ice height (once exposed). This paper describes the first year of the project's "Snow On" campaign where over a course of 3 months, ASO flew the Tuolumne River Basin, Sierra Nevada, California above the O'Shaughnessy Dam of the Hetch Hetchy reservoir; focusing initial on the Tuolumne, and then moved to weekly flights over the Uncompahgre Basin, Colorado. To meet the needs of its customers including Water Resource managers who are keenly interested in Snow melt, the ASO team had to develop and end to end 24 hour latency capability for processing spectrometer and LIDAR data from Level 0 to Level 4 products. This paper describes the Big data processing architecture and data system for ASO. C1 [Mattmann, Chris A.; Painter, Thomas; Ramirez, Paul M.; Goodale, Cameron; Hart, Andrew F.; Zimdars, Paul; Boustani, Maziyar; Khudikyan, Shakeh; Verma, Rishi; Caprez, Felix Seidel; Trangsrud, Amy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mattmann, CA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mattmann@jpl.nasa.gov; deems@nsidc.org; boardman@aigllc.com RI Deems, Jeffrey/E-6484-2016 OI Deems, Jeffrey/0000-0002-3265-8670 NR 4 TC 2 Z9 2 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 BP 5222 EP 5225 DI 10.1109/IGARSS.2014.6947676 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688107091 ER PT S AU Corcoran, J Simard, M Fatoyinbo, L Rosenberg, M AF Corcoran, Jennifer Simard, Marc Fatoyinbo, Lola Rosenberg, Melanie GP IEEE TI WATERSHED SCALE ANALYSES OF LAND COVER CHANGE IN THE CONTRIBUTING UPLAND AREA OF MANGROVE ECOSYSTEMS SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE Mangroves; land cover classification; land cover change; remote sensing; watershed scale AB Mangrove Ecosystems thrive in the tropical transition zones between the land and the sea. These marine ecosystems contribute to the biodiversity of land and ocean habitats at various scales, acting as direct link to biogeochemical cycles of both upland and coastal regions. All of the positive and negative drivers of change of both natural and anthropogenic, within watershed and political boundaries play a role in the health and function of mangroves. As a result, they are among the most rapidly changing landscapes in the Americas; yet, the landscape scale dynamics are not well understood, difficult to measure in cloudy regions, and not operationally monitored at the global scale. This research presents a watershed scale monitoring approach of mangrove ecosystems using datasets that are freely available and techniques that are robust for application at the global scale. C1 [Corcoran, Jennifer; Simard, Marc] NASA, Jet Prop Lab, La Canada Flintridge, CA 91011 USA. RP Corcoran, J (reprint author), NASA, Jet Prop Lab, 4800 Oak Grove Dr, La Canada Flintridge, CA 91011 USA. RI Fatoyinbo, Temilola/G-6104-2012; OI Fatoyinbo, Temilola/0000-0002-1130-6748; Simard, Marc/0000-0002-9442-4562 NR 7 TC 0 Z9 0 U1 2 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 DI 10.1109/IGARSS.2014.6947543 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688106141 ER PT S AU Lee, SK Fatoyinbo, T Osmanoglu, B Sun, GQ AF Lee, Seung-Kuk Fatoyinbo, Temilola Osmanoglu, Batuhan Sun, Guoqing GP IEEE TI POLARIMETRIC SAR INTERFEROMETRY EVALUATION IN MANGROVES SO 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) SE IEEE International Symposium on Geoscience and Remote Sensing IGARSS LA English DT Proceedings Paper CT IEEE Joint International Geoscience and Remote Sensing Symposium (IGARSS) / 35th Canadian Symposium on Remote Sensing CY JUL 13-18, 2014 CL Quebec City, CANADA SP IEEE, Inst Elect & Elect Engineers, Geoscience & Remote Sensing Soc, Canadian Remote Sensing Soc DE TanDEM; X(TDX); Mangrove; Pol-InSAR AB TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol-InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data). C1 [Lee, Seung-Kuk; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Sun, Guoqing] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. RP Lee, SK (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. RI Fatoyinbo, Temilola/G-6104-2012 OI Fatoyinbo, Temilola/0000-0002-1130-6748 NR 6 TC 0 Z9 0 U1 1 U2 11 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-6996 BN 978-1-4799-5775-0 J9 INT GEOSCI REMOTE SE PY 2014 DI 10.1109/IGARSS.2014.6947513 PG 4 WC Engineering, Electrical & Electronic; Geosciences, Multidisciplinary; Remote Sensing SC Engineering; Geology; Remote Sensing GA BC0WG UT WOS:000349688106111 ER PT S AU Iscen, A Agogino, A SunSpiral, V Tumer, K AF Iscen, Atil Agogino, Adrian SunSpiral, Vytas Tumer, Kagan GP IEEE TI Flop and Roll: Learning Robust Goal-Directed Locomotion for a Tensegrity Robot SO 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014) SE IEEE International Conference on Intelligent Robots and Systems LA English DT Proceedings Paper CT IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) CY SEP 14-18, 2014 CL Chicago, IL SP IEEE, Robot Soc Japan, RA, SICE, IES, New Technol Fdn ID DYNAMIC-ANALYSIS; DESIGN; FRAMEWORKS AB Tensegrity robots are composed of compression elements (rods) that are connected via a network of tension elements (cables). Tensegrity robots provide many advantages over standard robots, such as compliance, robustness, and flexibility. Moreover, sphere-shaped tensegrity robots can provide non-traditional modes of locomotion, such as rolling. While they have advantageous physical properties, tensegrity robots are hard to control because of their nonlinear dynamics and oscillatory nature. In this paper, we present a robust, distributed, and directional rolling algorithm, "flop and roll". The algorithm uses coevolution and exploits the distributed nature and symmetry of the tensegrity structure. We validate this algorithm using the NASA Tensegrity Robotics Toolkit (NTRT) simulator, as well as the highly accurate model of the physical SUPERBall being developped under the NASA Innovative and Advanced Concepts (NIAC) program. Flop and roll improves upon previous approaches in that it provides rolling to a desired location. It is also robust to both unexpected external forces and partial hardware failures. Additionally, it handles variable terrain (hills up to 33% grade). Finally, results are compatible with the hardware since the algorithm relies on realistic sensing and actuation capabilities of the SUPERBall. C1 [Iscen, Atil] Oregon State Univ, Elect Engn & Comp Sci Dept, Corvallis, OR 97331 USA. [Agogino, Adrian] UC Santa Cruz, Moffett Field, CA 94035 USA. [Agogino, Adrian; SunSpiral, Vytas] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [SunSpiral, Vytas] SGT Inc, Moffett Field, CA 94035 USA. [Tumer, Kagan] Oregon State Univ, Dept Mech Engn, Corvallis, OR 97331 USA. RP Iscen, A (reprint author), Oregon State Univ, Elect Engn & Comp Sci Dept, Corvallis, OR 97331 USA. EM iscena@onid.oregonstate.edu; adrian.k.agogino@nasa.gov; vytas.sunspiral@nasa.gov; kagan.tumer@oregonstate.edu NR 23 TC 3 Z9 3 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-0858 BN 978-1-4799-6934-0 J9 IEEE INT C INT ROBOT PY 2014 BP 2236 EP 2243 PG 8 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Robotics SC Computer Science; Engineering; Robotics GA BC0YL UT WOS:000349834602053 ER PT S AU Kalouche, S Wiltsie, N Su, HJ Parness, A AF Kalouche, Simon Wiltsie, Nick Su, Hai-Jun Parness, Aaron GP IEEE TI Inchworm Style Gecko Adhesive Climbing Robot SO 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014) SE IEEE International Conference on Intelligent Robots and Systems LA English DT Proceedings Paper CT IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) CY SEP 14-18, 2014 CL Chicago, IL SP IEEE, Robot Soc Japan, RA, SICE, IES, New Technol Fdn AB We present a gecko-adhesive enabled robot that can climb surfaces in any gravitational orientation or operate in full zero gravity. The robot is a prototype for inspection applications aboard the International Space Station (ISS) both inside and outside the station. A specific area of interest for this paper is a narrow gap, approximately 1.5 inches wide, behind internal equipment racks. The prototype robot uses oppositional pairs of gecko adhesive pads that turn the van der Waals adhesion ON and OFF using an applied shear load. The robot is currently teleoperated and utilizes an inchworm style gait. The robot can turn in a tight circle, fits within a 1.5 inch gap, and can transition between orthogonal surfaces. The gecko adhesives leave no residue, are highly reusable, and create strong adhesion in vacuum and across a wide temperature range. The robot design and initial experimental results are presented including climbing vertical walls in Earth's gravity. C1 [Kalouche, Simon; Su, Hai-Jun] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. [Kalouche, Simon; Wiltsie, Nick; Parness, Aaron] NASA JPL, Extreme Environm Robots Grp, Pasadena, CA 91109 USA. RP Kalouche, S (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. EM kalouche.2@osu.edu; Aaron.Parness@jpl.nasa.gov RI Su, Haijun/B-8145-2012 OI Su, Haijun/0000-0002-3132-0213 NR 19 TC 3 Z9 3 U1 2 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-0858 BN 978-1-4799-6934-0 J9 IEEE INT C INT ROBOT PY 2014 BP 2319 EP 2324 PG 6 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Robotics SC Computer Science; Engineering; Robotics GA BC0YL UT WOS:000349834602065 ER PT S AU Helmick, D Douillard, B Bajracharya, M AF Helmick, Daniel Douillard, Bertrand Bajracharya, Max GP IEEE TI Small Body Surface Mobility with a Limbed Robot SO 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014) SE IEEE International Conference on Intelligent Robots and Systems LA English DT Proceedings Paper CT IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) CY SEP 14-18, 2014 CL Chicago, IL SP IEEE, Robot Soc Japan, RA, SICE, IES, New Technol Fdn AB This paper describes the development of hardware, software, and algorithms for a prototype limbed robot capable of surface mobility on small bodies (asteroids and comets). It also describes the development of a laboratory testbed capable of simulating the micro-gravity and terrain of small bodies. A path following algorithm that uses visual odometry, robot body kinematics, and a variety of specialized gaits was used to demonstrate micro-gravity mobility with as few as 12 actuators. A mapping algorithm is also demonstrated that will enable path planning, limb trajectory planning, mobile grasping, and foot placement in future work. The results of this paper demonstrate that robust, stable, and precise small body mobility is feasible with a limbed robot. C1 [Helmick, Daniel; Douillard, Bertrand; Bajracharya, Max] CALTECH, Jet Prop Lab, Robot & Mobil Sect, Pasadena, CA 91109 USA. RP Helmick, D (reprint author), CALTECH, Jet Prop Lab, Robot & Mobil Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dhelmick@jpl.nasa.gov NR 29 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-0858 BN 978-1-4799-6934-0 J9 IEEE INT C INT ROBOT PY 2014 BP 2341 EP 2348 PG 8 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Robotics SC Computer Science; Engineering; Robotics GA BC0YL UT WOS:000349834602068 ER PT S AU Wettels, N Parness, A AF Wettels, Nicholas Parness, Aaron GP IEEE TI Advances in Fibrillar On-Off Polymer Adhesive: Sensing and Engagement Speed SO 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014) SE IEEE International Conference on Intelligent Robots and Systems LA English DT Proceedings Paper CT IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) CY SEP 14-18, 2014 CL Chicago, IL SP IEEE, Robot Soc Japan, RA, SICE, IES, New Technol Fdn AB ON-OFF adhesives can benefit manufacturing and space applications by providing the capability to selectively anchor two surfaces together repeatedly and releasably without significant preload. Two key areas of concern are speed of engagement and sensing the quality of that engagement. Here we describe a dual-purpose proximity and tactile sensor for the contact surfaces of robotic systems. Using infrared emitters and combinations of wide and narrow angle detectors, this device combines proximity and force sensing to seamlessly transition from a pre-contact to contact state. As an inherently low-power device, it is amenable to mobile robotic applications. We also present results showing this engagement can occur very rapidly, making it useful in high-throughput manufacturing and dexterous manipulation tasks. C1 [Wettels, Nicholas; Parness, Aaron] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wettels, N (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA. EM wettels@jpl.nasa.gov; aaron.parness@jpl.nasa.gov NR 16 TC 3 Z9 3 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-0858 BN 978-1-4799-6934-0 J9 IEEE INT C INT ROBOT PY 2014 BP 4266 EP 4271 PG 6 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Robotics SC Computer Science; Engineering; Robotics GA BC0YL UT WOS:000349834604056 ER PT S AU Dille, M Grocholsky, B Singh, S AF Dille, Michael Grocholsky, Ben Singh, Sanjiv GP IEEE TI Guaranteed Road Network Search with Small Unmanned Aircraft SO 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014) SE IEEE International Conference on Intelligent Robots and Systems LA English DT Proceedings Paper CT IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) CY SEP 14-18, 2014 CL Chicago, IL SP IEEE, Robot Soc Japan, RA, SICE, IES, New Technol Fdn ID GRAPH AB The use of teams of small unmanned aircraft in real-world rapid-response missions is fast becoming a reality. One such application is search and detection of an evader in urban areas. This paper draws on results in graph-based pursuit-evasion, developing mappings from these abstractions to primitive motions that may be performed by aircraft, to produce search strategies providing guaranteed capture of roadbound targets. The first such strategy is applicable to evaders of arbitrary speed and agility, offering a conservative solution that is insensitive to motion constraints pursuers may possess. This is built upon to generate two strategies for capture of targets having a known speed bound that require searcher teams of much smaller size. The efficacy of these algorithms is demonstrated by evaluation in extensive simulation using realistic vehicle models across a spectrum of environment classes. C1 [Dille, Michael] NASA, Ames Res Ctr, SGT Inc, Washington, DC 20546 USA. RP Dille, M (reprint author), NASA, Ames Res Ctr, SGT Inc, Washington, DC 20546 USA. OI Singh, Sanjiv/0000-0001-5412-2888 NR 24 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2153-0858 BN 978-1-4799-6934-0 J9 IEEE INT C INT ROBOT PY 2014 BP 4789 EP 4796 PG 8 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Robotics SC Computer Science; Engineering; Robotics GA BC0YL UT WOS:000349834604134 ER PT J AU Malone, JB Tourre, YM Faruque, F Luvall, JC Bergquist, R AF Malone, John B. Tourre, Yves M. Faruque, Fazlay Luvall, Jeffrey C. Bergquist, Robert TI Towards establishment of GeoHealth, an open-data portal for health mapping and modelling based on Earth observations by remote sensing SO GEOSPATIAL HEALTH LA English DT Editorial Material C1 [Malone, John B.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Tourre, Yves M.] Columbia Univ, LDEO, Palisades, NY USA. [Tourre, Yves M.] Observ Midi Pyrenees, Lab Aerol, Toulouse, France. [Luvall, Jeffrey C.] NASA Marshall Space Flight Ctr, Huntsville, AL USA. [Bergquist, Robert] Ingerod 407, Brastad, Sweden. RP Malone, JB (reprint author), Louisiana State Univ, Baton Rouge, LA 70803 USA. EM malone@vetmed.lsu.edu RI Trivedi, Kruti/E-7558-2015 NR 14 TC 0 Z9 0 U1 1 U2 4 PU UNIV NAPLES FEDERICO II PI NAPLES PA FAC VET MED, DEP PATHOLOGY & ANIMAL HEALTH, VET PARASITOLOGY, VIA DELLA VETERINARIA 1, NAPLES, 80137, ITALY SN 1827-1987 EI 1970-7096 J9 GEOSPATIAL HEALTH JI Geospatial Health PY 2014 VL 8 IS 3 BP S599 EP S602 PG 4 WC Health Care Sciences & Services; Public, Environmental & Occupational Health SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA CC5OL UT WOS:000350407800001 PM 25599633 ER PT B AU Hartney, C Agasid, E Hovsepian, S AF Hartney, Christopher Agasid, Elwood Hovsepian, Sarah GP ASME TI ` MULTI-PURPOSE AVIONICS CORE ELEMENT: USING DIGITAL MATERIALS AND ADVANCED MANUFACTURING TO RAPIDLY DEVELOP CUBE SATELLITE SUBSYSTEMS AND COMPONENTS SO PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES, AND INTELLIGENT SYSTEMS - 2013, VOL 1 LA English DT Proceedings Paper CT ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems CY SEP 16-18, 2013 CL Snowbird, UT SP ASME, Aerospace Div, Gen Motors, Dynalloy Inc, Parker Hannifin, Teledyne Sci & Imag, IOP Publish, Sage Publish, NextGen Aeronaut, Natl Sci Fdn, Boeing, GE Global Res AB The NASA Ames Research Center (NASA Ames) Center Chief Technologist (CCT) Office sponsors the Advanced Digital Materials and Manufacturing for Space (ADMMS) Initiative, which focuses on advanced manufacturing technologies for space, including identifying several target products, areas and applications, approaches for advanced manufacturing, mechanisms for collaboration, and complementary facilities. The pilot project for this initiative is the Multi-Purpose Avionics Core Element (M-PACE). The primary goal of M-PACE is to demonstrate advanced manufacturing techniques, such as additive manufacturing and Digital Materials, to minimize the cost of cube satellites and increase their modularity. M-PACE will be designed and built at the NASA Ames' SpaceShop, which is a state-of-the-art advanced manufacturing facility built for NASA researchers to formulate ideas for projects. The final products of M-PACE are several completed side panels of a one-unit (1U) (10 cm cube) cube satellite prototype built using commercial off-the-shelf (COTS) components, which will show the basic functionality of the internal payload by connecting it to the side panels for power and other subsystem capabilities. Within the structure, we are investigating the use of Digital Materials, which are universal building materials with the ability to increase precision and ease of assembly and disassembly of three dimensional (3D) objects. M-PACE will use COTS power systems and open-source hardware and software to distribute data through Ethernet through the use of snap-fit card connectors. Similar to Peripheral Component Interconnect (PCI) Express cards, we envision the spacecraft subsystems and payloads to be on a PC104-like board that will slide into the side panel connectors to enable distribution of power and data. This design has the potential to greatly reduce the cost of Cube Satellite testing and integration due to the absence of wires and ease of access to internal boards for any necessary modifications. C1 [Hartney, Christopher] NASA, Ames Res Ctr, Jacobs Technol, Moffett Field, CA 94035 USA. [Agasid, Elwood] NASA, Ames Res Ctr, Moffett Field, CA USA. [Hovsepian, Sarah] NASA, ASRC Res & Technol Solut, Ames Res Ctr, Moffett Field, CA USA. RP Hartney, C (reprint author), NASA, Ames Res Ctr, Jacobs Technol, Moffett Field, CA 94035 USA. FU NASA Ames CCT; Engineering Directorate's Mission Design Division; Space Shop FX Several university partners were influential in the development of this project. The authors of this paper would like to thank Cornell University for electrical expertise and help, and San Jose State University for design and testing throughout. Portions of this research were also supported by the NASA Ames CCT, the Engineering Directorate's Mission Design Division, and Space Shop. NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5603-1 PY 2014 AR UNSP V001T04A007 PG 5 WC Automation & Control Systems; Materials Science, Multidisciplinary SC Automation & Control Systems; Materials Science GA BC1BE UT WOS:000349927900084 ER PT B AU Nicolas, MJ Sullivan, RW Richards, WL AF Nicolas, Matthew J. Sullivan, Rani W. Richards, W. Lance GP ASME TI FIBER BRAGG GRATING STRAINS TO OBTAIN STRUCTURAL RESPONSE OF A CARBON COMPOSITE WING SO PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS - 2013, VOL 2 LA English DT Proceedings Paper CT ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems CY SEP 16-18, 2013 CL Snowbird, UT SP ASME, Aerospace Div, Gen Motors, Dynalloy Inc, Parker Hannifin, Teledyne Sci & Imag, IOP Publish, Sage Publish, NextGen Aeronaut, Natl Sci Fdn, Boeing, GE Global Res AB The objective of this study was to determine the deflected wing shape and the out-of-plane loads of a large-scale carbon-composite wing of an ultralight aerial vehicle using Fiber Bragg Grating (FBG) technology. The composite wing, subjected to concentrated and distributed loads, was instrumented with an optical fiber on its top and bottom surfaces positioned over the main spar, resulting in approximately 780 strain sensors bonded to the wings. The in-plane strains from the FBG sensors were used to obtain the out-of-plane loads as well as the wing shape at various load levels using NASA-developed real-time load and displacement algorithms. The calculated out-of-plane displacements and loads were generally within 4% of the measured data. C1 [Nicolas, Matthew J.; Sullivan, Rani W.] Mississippi State Univ, Dept Aerosp Engn, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. [Richards, W. Lance] NASA, Dryden Flight Res Ctr, Edwardsville, IL USA. RP Nicolas, MJ (reprint author), Mississippi State Univ, Dept Aerosp Engn, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5604-8 PY 2014 AR UNSP V002T05A012 PG 8 WC Automation & Control Systems; Materials Science, Multidisciplinary SC Automation & Control Systems; Materials Science GA BC1BH UT WOS:000349928200036 ER PT B AU Scholten, W Hartl, D Turner, T AF Scholten, William Hartl, Darren Turner, Travis GP ASME TI ANALYSIS-DRIVEN DESIGN OPTIMIZATION OF A SMA-BASED SLAT-COVE FILLER FOR AEROACOUSTIC NOISE REDUCTION SO PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS - 2013, VOL 2 LA English DT Proceedings Paper CT ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems CY SEP 16-18, 2013 CL Snowbird, UT SP ASME, Aerospace Div, Gen Motors, Dynalloy Inc, Parker Hannifin, Teledyne Sci & Imag, IOP Publish, Sage Publish, NextGen Aeronaut, Natl Sci Fdn, Boeing, GE Global Res ID SHAPE-MEMORY ALLOYS; NUMERICAL SIMULATIONS; SUPERELASTIC BEHAVIOR AB Airframe noise is a significant component of environmental noise in the vicinity of airports. The noise associated with the leading-edge slat of typical transport aircraft is a prominent source of airframe noise. Previous work suggests that a slat-cove filler (SCF) may be an effective noise treatment. Hence, development and optimization of a practical slat-cove-filler structure is a priority. The objectives of this work are to optimize the design of a functioning SCF that incorporates superelastic shape memory alloy (SMA) materials as flexures that permit the deformations involved in the configuration change. The goal of the optimization is to minimize the actuation force needed to retract the slat-SCF assembly while satisfying constraints on the maximum SMA stress and on the SCF deflection under static aerodynamic pressure loads, while also satisfying the condition that the SCF self-deploy during slat extension. A finite element analysis model based on a physical bench-top model is created in Abaqus such that automated iterative analysis of the design could be performed. In order to achieve an optimized design, several design variables associated with the current SCF configuration are considered, such as the thicknesses of SMA flexures and the dimensions of various components, SMA and conventional. Design of experiment (DOE) studies are performed to investigate structural response to an aerodynamic pressure load and to slat retraction and deployment. DOE results are then used to inform the optimization process, which determines a design minimizing actuator forces while satisfying the required constraints. C1 [Scholten, William; Hartl, Darren] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. [Turner, Travis] NASA Langley Res Ctr Hampton, Struct Acoust Branch, Hampton, VA 23681 USA. RP Scholten, W (reprint author), Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. NR 15 TC 0 Z9 0 U1 3 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5604-8 PY 2014 AR UNSP V002T02A006 PG 10 WC Automation & Control Systems; Materials Science, Multidisciplinary SC Automation & Control Systems; Materials Science GA BC1BH UT WOS:000349928200006 ER PT B AU Tian, ZH Leckey, C Yu, LY AF Tian, Zhenhua Leckey, Cara Yu, Lingyu GP ASME TI DAMAGE DETECTION IN COMPOSITE STRUCTURES WITH WAVENUMBER ARRAY DATA PROCESSING SO PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS - 2013, VOL 2 LA English DT Proceedings Paper CT ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems CY SEP 16-18, 2013 CL Snowbird, UT SP ASME, Aerospace Div, Gen Motors, Dynalloy Inc, Parker Hannifin, Teledyne Sci & Imag, IOP Publish, Sage Publish, NextGen Aeronaut, Natl Sci Fdn, Boeing, GE Global Res ID LAMB WAVES AB Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study. C1 [Tian, Zhenhua; Yu, Lingyu] Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Leckey, Cara] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA USA. RP Tian, ZH (reprint author), Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA. EM tianz@email.sc.edu; cara.ac.leckey@nasa.gov; yu3@cec.sc.edu RI Tian, Zhenhua/I-6687-2015 OI Tian, Zhenhua/0000-0002-1903-5604 NR 22 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5604-8 PY 2014 AR UNSP V002T05A015 PG 8 WC Automation & Control Systems; Materials Science, Multidisciplinary SC Automation & Control Systems; Materials Science GA BC1BH UT WOS:000349928200039 ER PT B AU Turner, TL Kidd, RT Hartl, DJ Scholten, WD AF Turner, Travis L. Kidd, Reggie T. Hartl, Darren J. Scholten, William D. GP ASME TI DEVELOPMENT OF A SMA-BASED, SLAT-COVE FILLER FOR REDUCTION OF AEROACOUSTIC NOISE ASSOCIATED WITH TRANSPORT-CLASS AIRCRAFT, WINGS SO PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS - 2013, VOL 2 LA English DT Proceedings Paper CT ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems CY SEP 16-18, 2013 CL Snowbird, UT SP ASME, Aerospace Div, Gen Motors, Dynalloy Inc, Parker Hannifin, Teledyne Sci & Imag, IOP Publish, Sage Publish, NextGen Aeronaut, Natl Sci Fdn, Boeing, GE Global Res ID TRAILING-EDGE; FLOW AB Airframe noise is a significant part of the overall noise produced by typical, transport-class aircraft during the approach and landing phases of flight. Leading-edge slat noise is a prominent source of airframe noise. The concept of a slat-cove filler was proposed in previous work as an effective means of mitigating slat noise. Bench-top models were developed at 75% scale to study the feasibility of producing a functioning slat-cove filler. Initial results from several concepts led to a more-focused effort investigating a deformable structure based upon pseudoelastic SMA materials. The structure stows in the cavity between the slat and main wing during cruise and deploys simultaneously with the slat to guide the aerodynamic flow suitably for low noise. A qualitative parametric study of SMA-enabled, slat-cove filler designs was performed on the bench-top. Computational models were developed and analyses were performed to assess the displacement response under representative aerodynamic load. The bench-top and computational results provide significant insight into design trades and an optimal design. C1 [Turner, Travis L.] NASA, Struct Acoust Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Kidd, Reggie T.] Aeronaut Syst Engn Branch, Analyt Mech Associates, Hampton, VA 23681 USA. [Hartl, Darren J.; Scholten, William D.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. RP Turner, TL (reprint author), NASA, Struct Acoust Branch, Langley Res Ctr, Hampton, VA 23681 USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5604-8 PY 2014 AR UNSP V002T02A005 PG 11 WC Automation & Control Systems; Materials Science, Multidisciplinary SC Automation & Control Systems; Materials Science GA BC1BH UT WOS:000349928200005 ER PT S AU Ono, M Quadrelli, M Huntsberger, TL AF Ono, Masahiro Quadrelli, Marco Huntsberger, Terrance L. GP IEEE TI Safe Maritime Autonomous Path Planning in a High Sea State SO 2014 AMERICAN CONTROL CONFERENCE (ACC) SE Proceedings of the American Control Conference LA English DT Proceedings Paper CT American Control Conference CY DEC 04-06, 2014 CL Portland, OR SP American Automat Control Council, Boeing, GE Global Res, Honeywell, MathWorks, Mitsubishi Elect Res Lab, National Instruments, Bosch Grp, dSPACE, Eaton, Elsevier, Inst Engn Technol, Maplesoft Engn Solut, Quanser, Soc Ind Appl Math, Springer, Taylor & Francis Grp, Journal Franklin Inst, Visual Solut, Wiley, Swiss Fed Inst Technol Zurich, Dept Mech & Proc Engn ID NAVIGATION AB This paper presents a path planning method for sea surface vehicles that prevents capsizing and bow-diving in a high sea-state. A key idea is to use response amplitude operators (RAOs) or, in control terminology, the transfer functions from a sea state to a vessel's motion, in order to find a set of speeds and headings that results in excessive pitch and roll oscillations. This information is translated to arithmetic constraints on the ship's velocity, which are passed to a model predictive control (MPC)-based path planner to find a safe and optimal path that achieves specified goals. An obstacle avoidance capability is also added to the path planner. The proposed method is demonstrated by simulations. C1 [Ono, Masahiro; Quadrelli, Marco; Huntsberger, Terrance L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ono, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM ono@jpl.nasa.gov; marco.b.quadrelli@jpl.nasa.gov; terry.huntsberger@jpl.nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0743-1619 BN 978-1-4799-3274-0 J9 P AMER CONTR CONF PY 2014 BP 4727 EP 4734 PG 8 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA BB8EX UT WOS:000346492605051 ER PT S AU Wilson, WC Juarez, PD AF Wilson, William C. Juarez, Peter D. BE Shakshuki, EM TI Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles SO 5TH INTERNATIONAL CONFERENCE ON EMERGING UBIQUITOUS SYSTEMS AND PERVASIVE NETWORKS / THE 4TH INTERNATIONAL CONFERENCE ON CURRENT AND FUTURE TRENDS OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN HEALTHCARE / AFFILIATED WORKSHOPS SE Procedia Computer Science LA English DT Proceedings Paper CT 5th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN) CY SEP 22-25, 2014 CL Halifax, CANADA DE Passive; Wireless; Sensor Network; Aerospace ID POWER AB NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications. (C) 2014 The Authors. Published Published by Elsevier B.V. C1 [Wilson, William C.; Juarez, Peter D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Wilson, WC (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM William.C.Wilson@nasa.gov NR 34 TC 1 Z9 1 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0509 J9 PROCEDIA COMPUT SCI PY 2014 VL 37 BP 101 EP 108 DI 10.1016/j.procs.2014.08.018 PG 8 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA BC1CR UT WOS:000349985800012 ER PT S AU Balas, MJ Frost, SA AF Balas, Mark J. Frost, Susan A. BE Dagli, CH TI Direct Adaptive Control for Infinite-Dimensional Symmetric Hyperbolic Systems SO COMPLEX ADAPTIVE SYSTEMS SE Procedia Computer Science LA English DT Proceedings Paper CT Conference on Conquering Complexity - Challenges and Opportunities CY NOV 03-05, 2014 CL Philadelphia, PA SP Missouri Univ Sci & Technol DE Infinite dimensional system; adaptive control; disturbance accommodation AB Given a linear continuous-time infinite-dimensional plant on a Hilbert space and disturbances of known and unknown waveform, we show that there exists a stabilizing direct model reference adaptive control law with certain disturbance rejection and robustness properties. The closed loop system is shown to be exponentially convergent to a neighborhood with radius proportional to bounds on the size of the disturbance. The plant is described by a closed densely defined linear operator that generates a continuous semigroup of bounded operators on the Hilbert space of states. Symmetric Hyperbolic Systems of partial differential equations describe many physical phenomena such as wave behavior, electromagnetic fields, and quantum fields. To illustrate the utility of the adaptive control law, we apply the results to control of symmetric hyperbolic systems with coercive boundary conditions. (C) 2014 Published by Elsevier B.V. C1 [Balas, Mark J.] Embry Riddle Aeronuat Univ, 600 S Clyde Morris Blvd, Daytona Beach, FL 32114 USA. [Frost, Susan A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Balas, MJ (reprint author), Embry Riddle Aeronuat Univ, 600 S Clyde Morris Blvd, Daytona Beach, FL 32114 USA. EM balsam@erau.edu NR 21 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0509 J9 PROCEDIA COMPUT SCI PY 2014 VL 36 BP 549 EP + DI 10.1016/j.procs.2014.09.053 PG 3 WC Computer Science, Theory & Methods SC Computer Science GA BC1CI UT WOS:000349978000072 ER PT J AU Langseth, BJ Purcell, KM Craig, JK Schueller, AM Smith, JW Shertzer, KW Creekmore, S Rose, KA Fennel, K AF Langseth, Brian J. Purcell, Kevin M. Craig, J. Kevin Schueller, Amy M. Smith, Joseph W. Shertzer, Kyle W. Creekmore, Sean Rose, Kenneth A. Fennel, Katja TI Effect of Changes in Dissolved Oxygen Concentrations on the Spatial Dynamics of the Gulf Menhaden Fishery in the Northern Gulf of Mexico SO MARINE AND COASTAL FISHERIES LA English DT Article ID ESTUARY-DEPENDENT FISHES; BROWN SHRIMP; HYPOXIC ZONE; ATLANTIC CROAKER; LOUISIANA SHELF; TEXAS; POPULATION; MODEL; VARIABILITY; SENSITIVITY AB Declines in dissolved oxygen (DO) concentrations in aquatic environments can lead to conditions of hypoxia (DO 2mg/L), which can directly and indirectly affect aquatic organisms. Direct effects include changes in growth and mortality; indirect effects include changes in distribution, movement, and interactions with other species. For mobile species, such as the pelagic filter-feeding Gulf Menhaden Brevoortia patronus, indirect effects are more prevalent than direct effects. The northern Gulf of Mexico experiences one of the largest areas of seasonal hypoxia in the world; this area overlaps spatially and temporally with the Gulf Menhaden commercial purse-seine fishery, which is among the largest fisheries by weight in the United States. Harvest records from the Gulf Menhaden fishery in 2006-2009 and fine-scale spatial and temporal predictions from a physical-biogeochemical model were used with spatially varying regression models to examine the effects of bottom DO concentration, spatial location, depth, week, and year on four response variables: probability of fishing, total Gulf Menhaden catch, total fishery effort, and CPUE. We found nearshore shifts in the probability of fishing as DO concentration declined, and we detected a general westward shift in all response variables. We also found increases in CPUE as DO concentration declined in the Louisiana Bight, an area that experiences chronic, severe hypoxia. The overall effects of environmental conditions on fishing response variables appeared to be moderate. Nevertheless, movement of either Gulf Menhaden or the purse-seine fishery in response to environmental conditions could potentially affect the susceptibility of Gulf Menhaden to harvest and could therefore influence assessment of the stock and associated stock status indicators.Received March 4, 2014; accepted June 26, 2014 C1 [Langseth, Brian J.; Purcell, Kevin M.; Craig, J. Kevin; Schueller, Amy M.; Smith, Joseph W.; Shertzer, Kyle W.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort Lab, Beaufort, NC 28516 USA. [Creekmore, Sean; Rose, Kenneth A.] Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA. [Fennel, Katja] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada. RP Langseth, BJ (reprint author), NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Inouye Reg Ctr, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA. EM brian.langseth@noaa.gov RI Fennel, Katja/A-7470-2009 OI Fennel, Katja/0000-0003-3170-2331 FU National Oceanic and Atmospheric Administration (NOAA); NOAA Center for Sponsored Coastal Ocean Research FX We thank N. Bacheler, R. Leaf, and two anonymous reviewers for contributions to previous drafts of the manuscript. This work was supported by a grant from the Fisheries and the Environment Program of the National Oceanic and Atmospheric Administration (NOAA). K.M.P. was supported by a grant from the NOAA Center for Sponsored Coastal Ocean Research to J.K.C. The views expressed herein are those of the authors and do not necessarily reflect the view of NOAA or any of its subagencies. B.J.L. designed and performed the analysis with support from K.M.P., J.K.C., A.M.S., J.W.S., and K.W.S.; A.M.S., J.K.C., K.W.S., and J.W.S. obtained funding for the research; S.C., K.A.R., and K.F. designed the physical-biogeochemical model simulations and generated and processed the DO values; and all co-authors contributed to the final version of the manuscript. NR 49 TC 5 Z9 5 U1 2 U2 25 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1942-5120 J9 MAR COAST FISH JI Mar. Coast. Fish. PY 2014 VL 6 IS 1 BP 223 EP 234 DI 10.1080/19425120.2014.949017 PG 12 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA CC1TL UT WOS:000350126700001 ER PT J AU Campbell, MD Pollack, AG Driggers, WB Hoffmayer, ER AF Campbell, Matthew D. Pollack, Adam G. Driggers, William B. Hoffmayer, Eric R. TI Estimation of Hook Selectivity of Red Snapper and Vermilion Snapper from Fishery-Independent Surveys of Natural Reefs in the Northern Gulf of Mexico SO MARINE AND COASTAL FISHERIES LA English DT Article ID ESTIMATING GILLNET SELECTIVITY; ALGARVE SOUTHERN PORTUGAL; SPOTTED SEA-TROUT; SIZE-SELECTIVITY; FUNCTIONAL FORM; CATCH; NETS; POPULATIONS; MANAGEMENT; NEBULOSUS AB Implementation of circle hook regulations in the Gulf of Mexico will impact the length structure and age structure of the snapper-grouper fishery catch as well as demographic data for stock assessments; therefore, an understanding of circle hook selectivity patterns is critical. Indirect selectivity analysis of the vertical-line catch of Red Snapper Lutjanus campechanus and Vermilion Snapper Rhomboplites aurorubens showed that for both species, there were significant differences in mean FL among hook sizes, broad length frequency distributions, and wide selectivity curves. Although the results suggest that hook size regulations could be a useful management strategy for targeting desired size-classes of these snappers, the broadly overlapping length distributions indicate that undersized catch would not be eliminated. Selectivity curves generated from the different families of distributions produced equally good fit to the data and provided a basis for evaluating various selectivity curves when the size structure of the sampled population is unknown. If the size structure of the population is known, then the use of direct selectivity methods is recommended. Right-skewed distributions generally fit the data best, suggesting that hook regulations are likely to be more effective if the desired goal is to reduce the amount of undersized catch by eliminating small hook sizes. Conversely, elimination of large hooks appears to be less likely to reduce the catch of larger size-classes because mouth gape is likely the primary limiting factor and small hooks can catch large fish. Catch rates were significantly different among hook sizes; thus, regulations based on hook size could impact fishing effort and change the dynamics of how the snapper-grouper fishery is prosecuted. Tradeoffs between moderate improvements in size-class targeting, changes in effort, and various components of fishing mortality (i.e., catch and regulatory discards) will require further investigation through simulation modeling or field experimentation.Received April 23, 2014; accepted September 16, 2014 C1 [Campbell, Matthew D.; Driggers, William B.; Hoffmayer, Eric R.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39567 USA. [Pollack, Adam G.] NOAA, Riverside Technol Inc, Southeast Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39567 USA. RP Campbell, MD (reprint author), Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, 3209 Frederic St, Pascagoula, MS 39567 USA. EM matthew.d.campbell@noaa.gov OI Campbell, Matthew/0000-0002-0087-5291 NR 42 TC 1 Z9 1 U1 0 U2 10 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1942-5120 J9 MAR COAST FISH JI Mar. Coast. Fish. PY 2014 VL 6 IS 1 BP 260 EP 273 DI 10.1080/19425120.2014.968302 PG 14 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA CC1TL UT WOS:000350126700004 ER PT S AU Larar, AM Zhou, DK Liu, X Smith, WL AF Larar, Allen M. Zhou, Daniel K. Liu, Xu Smith, William L. BE Larar, AM Suzuki, M Wang, J TI Infrared radiance analysis from the SNPP airborne field campaign SO MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V CY OCT 14-16, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE infrared spectral radiance; satellite sensor validation; airborne FTS; Cross-track Infrared Sounder (CrIS) ID INTERFEROMETER NAST-I; SOUNDER; VALIDATION AB Experimental field campaigns, including satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the satellite measurement system validation task aimed at improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. The Suomi NPP (SNPP) airborne field campaign was conducted during the 6 31 May, 2013 timeframe based out of Palmdale, CA, and focused on under-flights of the SNPP satellite with the NASA ER-2 aircraft in order to perform cal/val of the satellite instruments and their corresponding data products. Aircraft flight profiles were designed to under-fly multiple satellites within a single sortie, when feasible, to address satellite sensor validation and cross-validation; specifically, in addition to under-flying SNPP, flight profiles were defined to also obtain data coincident with the NASA A-train (i.e. AQUA), MetOP-A, and MetOP-B satellites to enable intercomparisons with instruments aboard those platforms (i.e. AIRS, IASI, and CrIS). This presentation focuses on radiance analysis from the SNPP airborne field campaign with a particular emphasis on NAST-I intercomparisons with the Crosstrack Infrared Sounder (CrIS). C1 [Larar, Allen M.; Zhou, Daniel K.; Liu, Xu] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Smith, William L.] SSAI LaRC, Hampton, VA 23605 USA. [Smith, William L.] Univ Wisconsin, Madison, WI 53562 USA. RP Larar, AM (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM Allen.M.Larar@nasa.gov NR 14 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-330-4 J9 PROC SPIE PY 2014 VL 9263 AR UNSP 92630X DI 10.1117/12.2069446 PG 9 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BC1AH UT WOS:000349892800018 ER PT S AU Smith, W Larar, A Goldberg, M Liu, X Revercomb, H Weisz, E Yesalusky, M Zhou, D AF Smith, William, Sr. Larar, A. Goldberg, M. Liu, X. Revercomb, H. Weisz, E. Yesalusky, M. Zhou, D. BE Larar, AM Suzuki, M Wang, J TI The May 2013 SNPP Cal/Val Campaign - Validation of Satellite Soundings SO MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V CY OCT 14-16, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE Ultra-spectral; hyper-spectral; satellites; meteorology; sounding; remote sensing ID EMITTED RADIANCE INTERFEROMETER; RETRIEVAL AB The NAST-I and SHIS ultra spectral interferometer sounders flew on the NASA ER-2 aircraft during the May 2013 SNPP Calibration/Validation Campaign. The ER-2 under flew the Metop-A and -B, Aqua, and SNPP satellites, which carry the IASI, AIRS, and CrIS ultra spectral sounding instruments, respectively. Special ground truth radiosonde and surface based upward viewing ultra spectral radiance Planetary Boundary Layer (PBL) sounding observations (i.e., from the AERI and the ASSIST interferometer spectrometers) were obtained at the DOE Southern Great Plains (SOP) ARM CART-site and from a mobile ground site located in Yuma, Arizona. A common physical/statistical sounding retrieval algorithm and statistical database have been applied to the aircraft, ground-based interferometer, and satellite ultra spectral radiance data in order to use the higher spatial resolution aircraft data and higher vertical resolution surface-based interferometer PBL soundings, and radiosonde profiles, to validate the satellite sounding products. Differences between the satellite and the surface/airborne ground "truth" measurements are discussed. In particular, the comparisons between the satellite retrieved profiles and the ground truth observations revealed that improvements in the specification of surface emissivity spectra were needed in order to retrieve accurate atmospheric structure in the Planetary Boundary Layer (PBL). As a result a physical simultaneous surface skin/surface emissivity determination algorithm was implemented which improved the accuracy of atmospheric profiles retrieved throughput the lower troposphere. Here, special emphasis is given to validating the satellite atmospheric stability and time tendency observations made prior to the development of the devastating Moore, OK tornado on May 20, 2013. C1 [Smith, William, Sr.; Revercomb, H.; Weisz, E.] Univ Wisconsin, Madison, WI 53718 USA. [Smith, William, Sr.] BSSAI Langley Res Ctr, Hampton, VA 23605 USA. [Larar, A.; Liu, X.; Yesalusky, M.; Zhou, D.] NASA Langley Res Ctr, Hampton, VA 23605 USA. [Goldberg, M.] DNOAA Nesdis, College Pk, MD 20740 USA. RP Smith, W (reprint author), Univ Wisconsin, Madison, WI 53718 USA. FU NASA; NOAA; DOE FX The authors acknowledge the financial support of NASA and NOAA, and the DOE for their support of this research. The support of Michael Howard (NSTech) for providing the ASSIST instrument for the Yuma ground validation site is gratefully acknowledged. NR 18 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-330-4 J9 PROC SPIE PY 2014 VL 9263 AR UNSP 92630W DI 10.1117/12.2069500 PG 10 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BC1AH UT WOS:000349892800017 ER PT S AU Brockers, R Humenberger, M Weiss, S Matthies, L AF Brockers, Roland Humenberger, Martin Weiss, Stephan Matthies, Larry GP IEEE TI Towards autonomous navigation of miniature UAV SO 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW) SE IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops LA English DT Proceedings Paper CT 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) CY JUN 23-28, 2014 CL Columbus, OH SP Comp Vis Fdn, IEEE, IEEE Comp Soc ID PLANETARY EXPLORATION; VISION AB Micro air vehicles such as miniature rotorcrafts require high-precision and fast localization updates for their control, but cannot carry large payloads. Therefore, only small and light-weight sensors and processing units can be deployed on such platforms, favoring vision-based solutions that use light weight cameras and run on small embedded computing platforms. In this paper, we propose a navigation framework to provide a small quadrotor UAV with accurate state estimation for high speed control including 6DoF pose and sensor self-calibration. Our method allows very fast deployment without prior calibration procedures literally rendering the vehicle a throw-and-go platform. Additionally, we demonstrate hazard-avoiding autonomous landing to showcase a high-level navigation capability that relies on the low-level pose estimation results and is executed on the same embedded platform. We explain our hardware-specific implementation on a 12g processing unit and show real-world end-to-end results. C1 [Brockers, Roland; Weiss, Stephan; Matthies, Larry] Jet Prop Lab, Pasadena, CA 91109 USA. [Humenberger, Martin] Austrian Inst Technol, Vienna, Austria. RP Brockers, R (reprint author), Jet Prop Lab, Pasadena, CA 91109 USA. EM brockers@jpl.nasa.gov; martin.humenberger@ait.ac.at; Stephan.Weiss@ieee.org; lhm@jpl.nasa.gov NR 20 TC 8 Z9 8 U1 2 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2160-7508 BN 978-1-4799-4309-8 J9 IEEE COMPUT SOC CONF PY 2014 BP 645 EP + DI 10.1109/CVPRW.2014.98 PG 2 WC Computer Science, Artificial Intelligence SC Computer Science GA BC0TW UT WOS:000349552300098 ER PT S AU Kabanov, DM Beresnev, SA Gorda, SY Holben, BN Kornienko, GI Nikolashkin, SV Sakerin, SM Smirnov, A Taschilin, MA AF Kabanov, Dmitry M. Beresnev, Sergey A. Gorda, Stanislav Yu Holben, Brent N. Kornienko, Gennady I. Nikolashkin, Semen V. Sakerin, Sergey M. Smirnov, Alexander Taschilin, Mikhail A. BE Matvienko, GG Romanovski, OA TI Annual behavior of the aerosol optical depth in some regions of Asian part of Russia SO 20TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS SE Proceedings of SPIE LA English DT Proceedings Paper CT 20th International Symposium on Atmospheric and Ocean Optics - Atmospheric Physics CY JUN 23-27, 2014 CL Novosibirsk, RUSSIA SP V E Zuev Inst Atmospher Opt, V V Voevodsky Inst Chem Kinet & Combust, Inst Solar Terrestrial Phys, Russian Fdn Basic Res, Russian Acad Sci, Siberian Branch DE aerosol optical depth; annual behavior AB The annual behaviors of the aerosol optical depth (AOD) in some regions from Ural to Russian Far East are compared on the basis of monthly and decadal averages in two data samples: "all data" and "without fire smokes". It is shown that when the smoke events are excluded, the average AOD values vary more smoothly during the year. Parameterization of the annual behavior of the spectral dependence of AOD is presented by the example of results obtained in Tomsk. C1 [Kabanov, Dmitry M.; Sakerin, Sergey M.] SB RAS, VE Zuev Inst Atmospher Opt, 1 Acad Zuev Sq, Tomsk 634021, Russia. [Beresnev, Sergey A.; Gorda, Stanislav Yu] Ural Fed Univ, Ekaterinburg 620083, Russia. [Holben, Brent N.; Smirnov, Alexander] NASA Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. [Kornienko, Gennady I.] RAS, Far Eastern Branch, Ussuriysk Astrophys Observ, Gornotaezhnoe 629533, Russia. [Nikolashkin, Semen V.] SB RAS, Inst Cosmophys Res & Aeron IG Shafer, Yakutsk 677980, Russia. [Taschilin, Mikhail A.] SB RAS, Inst Solar Terr Phys, Irkutsk 664033, Russia. RP Kabanov, DM (reprint author), SB RAS, VE Zuev Inst Atmospher Opt, 1 Acad Zuev Sq, Tomsk 634021, Russia. EM dkab@iao.ru RI Smirnov, Alexander/C-2121-2009 OI Smirnov, Alexander/0000-0002-8208-1304 FU Siberian Branch, Russian Academy of Sciences [25] FX This work was supported by the project of partnership basic research no. 25, Siberian Branch, Russian Academy of Sciences. NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-376-2 J9 PROC SPIE PY 2014 VL 9292 AR UNSP 929241 DI 10.1117/12.2074887 PG 6 WC Meteorology & Atmospheric Sciences; Oceanography; Optics; Physics, Applied SC Meteorology & Atmospheric Sciences; Oceanography; Optics; Physics GA BC0QY UT WOS:000349379600145 ER PT S AU Kabanov, DM Gulev, SK Holben, BN Radionov, VF Sakerin, SM Smirnov, A AF Kabanov, Dmitry M. Gulev, Sergey K. Holben, Brent N. Radionov, Vladimir F. Sakerin, Sergey M. Smirnov, Alexander BE Matvienko, GG Romanovski, OA TI Latitudinal distribution of the aerosol optical depth over oceans in southern hemisphere SO 20TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS SE Proceedings of SPIE LA English DT Proceedings Paper CT 20th International Symposium on Atmospheric and Ocean Optics - Atmospheric Physics CY JUN 23-27, 2014 CL Novosibirsk, RUSSIA SP V E Zuev Inst Atmospher Opt, V V Voevodsky Inst Chem Kinet & Combust, Inst Solar Terrestrial Phys, Russian Fdn Basic Res, Russian Acad Sci, Siberian Branch DE aerosol optical depth; latitudinal dependence; ocean; southern hemisphere AB Latitudinal distribution of the aerosol optical depth (AOD) of the atmosphere over ocean in southern hemisphere is considered on the basis of data of long-term measurements (AERONET MAN). It is shown that the aerosol turbidity of the atmosphere decreases with increasing latitude in Atlantic, Indian, and Pacific oceans. Simple linear relationships are proposed to describe the latitudinal distribution of AOD. C1 [Kabanov, Dmitry M.; Sakerin, Sergey M.] SB RAS, VE Zuev Inst Atmospher Opt, 1 Acad Zuev Sq, Tomsk 634021, Russia. [Gulev, Sergey K.] RAS, PP Shirshov Inst Oceanol, Moscow, Russia. [Holben, Brent N.; Smirnov, Alexander] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Radionov, Vladimir F.] Arct & Antarct Reserch Inst, St Petersburg 199397, Russia. RP Kabanov, DM (reprint author), SB RAS, VE Zuev Inst Atmospher Opt, 1 Acad Zuev Sq, Tomsk 634021, Russia. EM dkab@iao.ru RI Smirnov, Alexander/C-2121-2009 OI Smirnov, Alexander/0000-0002-8208-1304 FU Presidium of Russian Academy of Sciences [23.1.1] FX This work was supported by the program of basic research of Presidium of Russian Academy of Sciences no. 23.1.1. The authors thank all participants of the AERONET project "Maritime Aerosol Network", the data of which were used in this work. NR 5 TC 0 Z9 1 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-376-2 J9 PROC SPIE PY 2014 VL 9292 AR UNSP 929240 DI 10.1117/12.2074564 PG 7 WC Meteorology & Atmospheric Sciences; Oceanography; Optics; Physics, Applied SC Meteorology & Atmospheric Sciences; Oceanography; Optics; Physics GA BC0QY UT WOS:000349379600144 ER PT S AU Bhatt, US Walker, DA Walsh, JE Carmack, EC Frey, KE Meier, WN Moore, SE Parmentier, FJW Post, E Romanovsky, VE Simpson, WR AF Bhatt, Uma S. Walker, Donald A. Walsh, John E. Carmack, Eddy C. Frey, Karen E. Meier, Walter N. Moore, Sue E. Parmentier, Frans-Jan W. Post, Eric Romanovsky, Vladimir E. Simpson, William R. BE Gadgil, A Liverman, DM TI Implications of Arctic Sea Ice Decline for the Earth System SO ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 39 SE Annual Review of Environment and Resources LA English DT Review; Book Chapter DE sea ice impacts; tundra vegetation; polar chemistry; polar greenhouse gas exchanges; Arctic marine mammals; Arctic Ocean primary productivity ID INTERNATIONAL POLAR YEAR; WESTERN HUDSON-BAY; CLIMATE-CHANGE; OCEAN ACIDIFICATION; OZONE DEPLETION; THERMAL STATE; PERMAFROST TEMPERATURES; BROMINE MONOXIDE; NORTHERN ALASKA; METHANE RELEASE AB Arctic sea ice decline has led to an amplification of surface warming and is projected to continue to decline from anthropogenic forcing, although the exact timing of ice-free summers is uncertain owing to large natural variability. Sea ice reductions affect surface heating patterns and the atmospheric pressure distribution, which may alter midlatitude extreme weather patterns. Increased light penetration and nutrient availability during spring from earlier ice breakup enhances primary production in the Arctic Ocean and its adjacent shelf seas. Ice-obligate marine mammals may be losers, whereas seasonally migrant species may be winners from rapid sea ice decline. Tundra greening is occurring across most of the Arctic, driven primarily by warming temperatures, and is displaying complex spatial patterns that are likely tied to other factors. Sea ice changes are affecting greenhouse gas exchanges as well as halogen chemistry in the Arctic. This review highlights the heterogeneous nature of Arctic change, which is vital for researchers to better understand. C1 [Bhatt, Uma S.] Univ Alaska, Dept Atmospher Sci, Fairbanks, AK 99775 USA. [Bhatt, Uma S.; Walker, Donald A.; Romanovsky, Vladimir E.; Simpson, William R.] Univ Alaska, Coll Nat Sci & Math, Fairbanks, AK 99775 USA. [Bhatt, Uma S.; Romanovsky, Vladimir E.; Simpson, William R.] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA. [Walker, Donald A.] Univ Alaska, Dept Biol & Wildlife, Fairbanks, AK 99775 USA. [Walker, Donald A.] Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA. [Walsh, John E.] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. [Romanovsky, Vladimir E.] Univ Alaska, Dept Geol & Geophys, Fairbanks, AK 99775 USA. [Simpson, William R.] Univ Alaska, Dept Chem & Biochem, Fairbanks, AK 99775 USA. [Carmack, Eddy C.] Fisheries & Oceans Canada, Inst Ocean Sci, Sidney, BC V8L 4B2, Canada. [Frey, Karen E.] Clark Univ, Grad Sch Geog, Worcester, MA 01610 USA. [Meier, Walter N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Moore, Sue E.] NOAA, Fisheries Off Sci & Technol, Seattle, WA 98105 USA. [Parmentier, Frans-Jan W.] Lund Univ, Dept Phys Geog & Ecosyst Sci, S-22362 Lund, Sweden. [Parmentier, Frans-Jan W.] Aarhus Univ, Arctic Res Ctr, DK-8000 Aarhus, Denmark. [Post, Eric] Penn State Univ, Polar Ctr, University Pk, PA 16802 USA. [Post, Eric] Penn State Univ, Dept Biol, University Pk, PA 16802 USA. RP Bhatt, US (reprint author), Univ Alaska, Dept Atmospher Sci, Fairbanks, AK 99775 USA. EM usbhatt@alaska.edu; dawalker@alaska.edu; jwalsh@iarc.uaf.edu; Eddy.Carmack@dfo-mpo.gc.ca; kfrey@clarku.edu; walt.meier@nasa.gov; sue.moore@noaa.gov; frans-jan.parmentier@nateko.lu.se; esp10@psu.edu; veromanovsky@alaska.edu; wrsimpson@alaska.edu RI Parmentier, Frans-Jan/D-9022-2013; Simpson, William/I-2859-2014 OI Meier, Walter/0000-0003-2857-0550; Parmentier, Frans-Jan/0000-0003-2952-7706; Simpson, William/0000-0002-8596-7290 NR 143 TC 17 Z9 17 U1 14 U2 75 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 1543-5938 BN 978-0-8243-2339-4 J9 ANNU REV ENV RESOUR JI Annu. Rev. Environ. Resour PY 2014 VL 39 BP 57 EP + DI 10.1146/annurev-environ-122012-094357 PG 36 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA BB9LO UT WOS:000348446900004 ER PT S AU Fisher, JB Huntzinger, DN Schwalm, CR Sitch, S AF Fisher, Joshua B. Huntzinger, Deborah N. Schwalm, Christopher R. Sitch, Stephen BE Gadgil, A Liverman, DM TI Modeling the Terrestrial Biosphere SO ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 39 SE Annual Review of Environment and Resources LA English DT Review; Book Chapter DE biogeochemical; carbon; cycle; ecosystem; land surface; model; nutrients; plant; terrestrial biosphere; vegetation; water ID GLOBAL VEGETATION MODEL; LAND-SURFACE PROCESSES; PLANT FUNCTIONAL TYPES; NET PRIMARY PRODUCTIVITY; CARBON-CYCLE FEEDBACKS; CLIMATE-CHANGE; SOIL RESPIRATION; ATMOSPHERIC CO2; STOMATAL CONDUCTANCE; GAP MODELS AB The land surface comprises the smallest areal fraction of the Earth system's major components (e.g., versus atmosphere or ocean with cryosphere). As such, how is it that some of the largest sources of uncertainty in future climate projections are found in the terrestrial biosphere? This uncertainty stems from how the terrestrial biosphere is modeled with respect to the myriad of biogeochemical, physical, and dynamic processes represented (or not) in numerous models that contribute to projections of Earth's future. Here, we provide an overview of the processes included in terrestrial biosphere models (TBMs), including various approaches to representing any one given process, as well as the processes that are missing and/or uncertain. We complement this with a comprehensive review of individual TBMs, marking the differences, uniqueness, and recent and planned developments. To conclude, we summarize the latest results in benchmarking activities, particularly as linked to recent model intercomparison projects, and outline a path forward to reducing uncertainty in the contribution of the terrestrial biosphere to global atmospheric change. C1 [Fisher, Joshua B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Huntzinger, Deborah N.; Schwalm, Christopher R.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. [Huntzinger, Deborah N.] No Arizona Univ, Dept Civil Engn Construct Management & Environm E, Flagstaff, AZ 86011 USA. [Sitch, Stephen] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England. RP Fisher, JB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jbfisher@jpl.nasa.gov RI Sitch, Stephen/F-8034-2015; OI Sitch, Stephen/0000-0003-1821-8561; Fisher, Joshua/0000-0003-4734-9085 NR 218 TC 25 Z9 25 U1 12 U2 59 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 1543-5938 BN 978-0-8243-2339-4 J9 ANNU REV ENV RESOUR JI Annu. Rev. Environ. Resour PY 2014 VL 39 BP 91 EP + DI 10.1146/annurev-environ-012913-093456 PG 41 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA BB9LO UT WOS:000348446900005 ER PT S AU Serra, YL Jiang, XA Tian, BJ Amador-Astua, J Maloney, ED Kiladis, GN AF Serra, Yolande L. Jiang, Xianan Tian, Baijun Amador-Astua, Jorge Maloney, Eric D. Kiladis, George N. BE Gadgil, A Liverman, DM TI Tropical Intraseasonal Modes of the Atmosphere SO ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 39 SE Annual Review of Environment and Resources LA English DT Review; Book Chapter DE multiscale variability; Madden-Julian oscillation; convectively coupled equatorial waves; tropical convection; convective organization; atmospheric transport ID MADDEN-JULIAN OSCILLATION; SYNOPTIC-SCALE DISTURBANCES; COUPLED KELVIN WAVES; WEST-AFRICAN MONSOON; INTERTROPICAL CONVERGENCE ZONE; EASTERN NORTH PACIFIC; STATIC ENERGY BUDGET; SOUTH CHINA SEA; BOUNDARY-LAYER CLOUDS; INTRA-AMERICA SEA AB Tropical intraseasonal variability (TISV) of the atmosphere describes the coherent variability in basic state variables, including pressure, wind, temperature, and humidity, as well as in the physical phenomena associated with the covariability of these parameters, such as rainfall and cloudiness, over synoptic (similar to 1,000 km, similar to 1-10 days) to planetary (similar to 10,000 km, similar to 10-100 days) scales. In the past, the characteristics of individual TISV modes were studied separately, and much has been learned from this approach. More recent studies have increasingly focused on the multiscale nature of these modes, leading to exciting new developments in our understanding of tropical meteorology. This article reviews the most recent observations of TISV and its associated impacts on regional weather, short-term climate patterns, and atmospheric chemical transports, as well as the ability of numerical models to capture these interacting modes of variability. We also suggest where the field might focus its efforts in the future. C1 [Serra, Yolande L.] Univ Arizona, Dept Atmospher Sci, Tucson, AZ 85721 USA. [Jiang, Xianan] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Jiang, Xianan; Tian, Baijun] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Amador-Astua, Jorge] Univ Costa Rica, Sch Phys, San Jose 115012060, Costa Rica. [Amador-Astua, Jorge] Univ Costa Rica, Ctr Geophys Res, San Jose 115012060, Costa Rica. [Maloney, Eric D.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Kiladis, George N.] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. RP Serra, YL (reprint author), Univ Arizona, Dept Atmospher Sci, Tucson, AZ 85721 USA. EM serra@email.arizona.edu; xianan@jifresse.ucla.edu; baijun.tian@jpl.nasa.gov; jorge.amador@ucr.ac.cr; emaloney@atmos.colostate.edu; george.n.kiladis@noaa.gov RI Tian, Baijun/A-1141-2007; Maloney, Eric/A-9327-2008; Serra, Yolande/I-3457-2015 OI Tian, Baijun/0000-0001-9369-2373; Maloney, Eric/0000-0002-2660-2611; Serra, Yolande/0000-0003-3542-1158 NR 218 TC 5 Z9 5 U1 2 U2 14 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 1543-5938 BN 978-0-8243-2339-4 J9 ANNU REV ENV RESOUR JI Annu. Rev. Environ. Resour PY 2014 VL 39 BP 189 EP 215 DI 10.1146/annurev-environ-020413-134219 PG 27 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA BB9LO UT WOS:000348446900008 ER PT S AU McGuire, JP AF McGuire, James P., Jr. BE Figueiro, M Lerner, S Muschaweck, J Rogers, J TI A Fast, Wide Field of View, Catadioptric Telescope for Whipple SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT International Optical Design Conference (IODC) CY JUN 23-26, 2014 CL HI SP Opt Soc, SPIE, Amer Elements Corp, Edmund Opt Inc, Optimax Syst Inc, Rochester Precis Opt LLC, Synopsys Inc AB We describe the optical design of a spaceborne f/1.3 catadioptric telescope with a 9 degree field and 77 cm aperture that is being proposed to study objects in the Kuiper belt, Sedna Region, and Oort cloud. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP McGuire, JP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM James.P.McGuire@JPL.NASA.GOV NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-378-6 J9 PROC SPIE PY 2014 VL 9293 AR 929309 DI 10.1117/12.2180155 PG 9 WC Optics SC Optics GA BC0RM UT WOS:000349402800008 ER PT S AU Pasquale, B Content, D Kruk, J Vaughnn, D Gong, Q Howard, J Jurling, A Seals, L Mentzell, E Armani, N Kuan, G AF Pasquale, Bert Content, David Kruk, Jeffrey Vaughnn, David Gong, Qian Howard, Joseph Jurling, Alden Seals, Len Mentzell, Eric Armani, Nerses Kuan, Gary BE Figueiro, M Lerner, S Muschaweck, J Rogers, J TI Optical Design of the WFIRST-AFTA Wide-Field Instrument SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT International Optical Design Conference (IODC) CY JUN 23-26, 2014 CL HI SP Opt Soc, SPIE, Amer Elements Corp, Edmund Opt Inc, Optimax Syst Inc, Rochester Precis Opt LLC, Synopsys Inc AB The WFIRST-AFTA Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq degrees FOV Wide Field Channel at 0.11" pixel scale, operating at wavelengths between 0.76-2.0 mu m, including a spectrograph mode (1.35-1.95 mu m.) An Integral Field Channel provides a discrete 3"x3.15" field at 0.15" sampling. C1 [Pasquale, Bert; Content, David; Kruk, Jeffrey; Vaughnn, David; Gong, Qian; Howard, Joseph; Jurling, Alden; Seals, Len; Mentzell, Eric; Armani, Nerses] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kuan, Gary] Jet Prop Lab, Pasadena, CA 91109 USA. RP Pasquale, B (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Bert.Pasquale@nasa.gov FU National Aeronautics and Space Administration (NASA.) FX We sincerely acknowledge that this study is the product of a well-coordinated team. This includes the WFIRSTAFTA SDT (and the April 30, 2014 Interim Report), team co-members of many disciplines, contractors, and project leadership and support staff. This work was funded by the National Aeronautics and Space Administration (NASA.) NR 5 TC 5 Z9 5 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-378-6 J9 PROC SPIE PY 2014 VL 9293 AR UNSP 929305 DI 10.1117/12.2177847 PG 8 WC Optics SC Optics GA BC0RM UT WOS:000349402800004 ER PT S AU Sabatke, D Sullivan, J Rohrbach, S Kubalak, D AF Sabatke, Derek Sullivan, Joseph Rohrbach, Scott Kubalak, David BE Figueiro, M Lerner, S Muschaweck, J Rogers, J TI Ray-tracing for coordinate knowledge in the JWST Integrated Science Instrument Module SO INTERNATIONAL OPTICAL DESIGN CONFERENCE 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT International Optical Design Conference (IODC) CY JUN 23-26, 2014 CL HI SP Opt Soc, SPIE, Amer Elements Corp, Edmund Opt Inc, Optimax Syst Inc, Rochester Precis Opt LLC, Synopsys Inc AB Optical alignment and testing of the Integrated Science Instrument Module of the James Webb Space Telescope is underway. We describe the Optical Telescope Element Simulator used to feed the science instruments with point images of precisely known location and chief ray pointing, at appropriate wavelengths and flux levels, in vacuum and at operating temperature. The simulator's capabilities include a number of devices for in situ monitoring of source flux, wavefront error, pupil illumination, image position and chief ray angle. Taken together, these functions become a fascinating example of how the first order properties and constructs of an optical design (coordinate systems, image surface and pupil location) acquire measurable meaning in a real system. We illustrate these functions with experimental data, and describe the ray tracing system used to provide both pointing control during operation and analysis support subsequently. Prescription management takes the form of optimization and fitting. Our core tools employ a matrix/vector ray tracing model which proves broadly useful in optical engineering problems. We spell out its mathematical basis, and illustrate its use in ray tracing plane mirror systems relevant to optical metrology such as a pentaprism and corner cube. C1 [Sabatke, Derek; Sullivan, Joseph] Ball Aerosp & Technol Corp, POB 1062, Boulder, CO 80306 USA. [Rohrbach, Scott; Kubalak, David] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sabatke, D (reprint author), Ball Aerosp & Technol Corp, POB 1062, Boulder, CO 80306 USA. EM dsabatke@ball.com NR 15 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-378-6 J9 PROC SPIE PY 2014 VL 9293 AR UNSP 929306 DI 10.1117/12.2074373 PG 27 WC Optics SC Optics GA BC0RM UT WOS:000349402800005 ER PT S AU Lu, XM Hu, YX AF Lu, Xiaomei Hu, Yongxiang BE Frouin, RJ Pan, D Murakami, H Son, YB TI Estimation of Particulate Organic Carbon in the ocean from space-based polarization lidar measurements SO OCEAN REMOTE SENSING AND MONITORING FROM SPACE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Remote Sensing and Monitoring from Space CY OCT 15-16, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE Particulate organic carbon; CALIOP lidar; depolarization ratio; MODIS ID SATELLITE DATA; IN-SITU; SURFACE; VARIABILITY; ATLANTIC; SUBSURFACE; SEAWIFS AB A relationship between depolarization ratio and surface concentration of particulate organic carbon (POC) is developed from the NASA SeaWiFS Bio-optical Archive and Storage System (SeaBASS) in situ measurements and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) active lidar measurements. This relationship provides an algorithm for estimating global POC from satellite or airborne polarization lidar measurements. Application of this relationship to CALIOP data indicates that the estimates of POC ranges from about 3.3 mg/m(3) within the South Pacific Subtropical Gyre to 1.2x10(3) mg/m(3) in the area near land are in good agreement with Moderate Resolution Imaging spectroradiometer (MODIS) POC products. Our results present depolarization ratio as a valuable tool for evaluating global POC predictions in ocean ecosystem. The application of the algorithm to a 7-year of CALIOP depolarization ratio mean values revealed patters of seasonal and interannual variability of POC. By comparing the results averaged over the entire study region and entire season for each year separately, we found that the lowest POC occurred in 2013 and the highest POC occurred in 2008. C1 [Lu, Xiaomei] NASA, Langley Res Ctr, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. [Hu, Yongxiang] NASA Langley res Ctr, Climate Sci Branch, Hampton, VA 23681 USA. RP Lu, XM (reprint author), NASA, Langley Res Ctr, 1 Enterprise Pkwy,Suite 200, Hampton, VA 23666 USA. EM yongxiang.hu-1@nasa.gov RI Hu, Yongxiang/K-4426-2012 NR 18 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-328-1 J9 PROC SPIE PY 2014 VL 9261 AR UNSP 92610Z DI 10.1117/12.2076612 PG 8 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9ZW UT WOS:000348837900024 ER PT S AU Latini, D Del Frate, F Jones, CE AF Latini, Daniele Del Frate, Fabio Jones, Cathleen E. BE Notarnicola, C Paloscia, S Pierdicca, N TI Oil spill analysis by means of full polarimetric UAVSAR (L-band) and Radarsat-2 (C-band) products acquired during Deepwater Horizon Disaster SO SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on SAR Image Analysis, Modeling, and Techniques XIV CY SEP 24-25, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE SAR; oil spill monitoring; polarimetric decomposition; multi-frequency analysis; UAVSAR; L-band; Radarsat-2; C-band; DeepWater Horizon ID SAR AB SAR instruments with polarimetric capabilities, high resolution and short revisit time can provide powerful support in oil spill monitoring and different techniques of analysis have been developed for this purpose [1][2]. An oil film on the sea surface results in darker areas in SAR images, but careful interpretation is required because dark spots can also be caused by natural phenomena. In view of the very low backscatter from slicks, the Noise Equivalent Sigma Zero (NESZ) is a primary sensor parameter to be considered when using a sensor for slick analysis. Among the existing full polarimetric sensors, the high resolution and very low NESZ values of UAVSAR (L-band) and RADARSAT-2 (C-band) make them preferable for oil spill analysis compared to the last generation SAR instruments. The Deepwater Horizon disaster that occurred in the Gulf of Mexico in 2010 represents a unique and extensive test site where large amounts of SAR imagery and ground validation data are available. By applying the Cloude-Pottier decomposition method to full polarimetric UAVSAR (L-band) and RADARSAT-2 (C-band), it is possible to extract parameters that describe the scattering mechanism of the target. By comparing quasi-simultaneous acquisitions and exploiting the different penetration capabilities of the sensors, we investigate the potential of full polarimetric SAR to discriminate oil on the sea surface from look-alike phenomena covering the full range of backscattering values down to those at the instrument noise floor. C1 [Latini, Daniele; Del Frate, Fabio] Univ Roma Tor Vergata, Earth Observat Lab, Rome, Italy. [Jones, Cathleen E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Latini, D (reprint author), Univ Roma Tor Vergata, Earth Observat Lab, Rome, Italy. NR 12 TC 1 Z9 1 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-306-9 J9 PROC SPIE PY 2014 VL 9243 AR UNSP 92430S DI 10.1117/12.2066651 PG 8 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA BC0QT UT WOS:000349373200023 ER PT J AU Davis, AB Xu, F AF Davis, Anthony B. Xu, Feng TI A Generalized Linear Transport Model for Spatially Correlated Stochastic Media SO TRANSPORT THEORY AND STATISTICAL PHYSICS LA English DT Article DE linear transport theory; radiative transfer; stochastic optical media; turbulence; clouds; multiple scattering; Markov chain formalism; Monte Carlo; propagation kernel; angular reciprocity; non-exponential extinction laws ID MARKOV-CHAIN FORMALISM; BOUNDARY-LAYER CLOUDS; LIQUID WATER DISTRIBUTIONS; VECTOR RADIATIVE-TRANSFER; AVERAGED SOLAR FLUXES; OXYGEN A-BAND; MARINE STRATOCUMULUS; SCALE-INVARIANCE; JOINT STATISTICS; OPTICAL MEDIA AB We formulate a new model for transport in stochastic media with long-range spatial correlations where exponential attenuation (controlling the propagation part of the transport) becomes power law. Direct transmission over optical distance tau(s), for fixed physical distance s, thus becomes (1 + tau(s)/a)(-a), with standard exponential decay recovered when a -> infinity. Atmospheric turbulence phenomenology for fluctuating optical properties rationalizes this switch. Foundational equations for this generalized transport model are stated in integral form for d = 1, 2, 3 spatial dimensions. A deterministic numerical solution is developed in d = 1 using Markov Chain formalism, verified with Monte Carlo, and used to investigate internal radiation fields. Standard two-stream theory, where diffusion is exact, is recovered when a = infinity. Differential diffusion equations are not presently known when a < infinity, nor is the integro-differential form of the generalized transport equation. Monte Carlo simulations are performed in d = 2, as a model for transport on random surfaces, to explore scaling behavior of transmittance T when transport optical thickness tau(t) >> 1. Random walk theory correctly predicts T proportional to tau(-min{1, a/2})(t) t in the absence of absorption. Finally, single scattering theory in d = 3 highlights the model's violation of angular reciprocity when a < infinity, a desirable property at least in atmospheric applications. This violation is traced back to a key trait of generalized transport theory, namely, that we must distinguish more carefully between two kinds of propagation: one that ends in a virtual or actual detection and the other in a transition from one position to another in the medium. C1 [Davis, Anthony B.; Xu, Feng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Davis, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 233-200, Pasadena, CA 91109 USA. EM anthony.b.davis@jpl.nasa.gov RI Xu, Feng/G-3673-2013 FU NASA; National Aeronautics and Space Administration FX The authors are thankful for sustained support from NASA's Radiation Sciences Programs managed by Hal Maring and Lucia Tsaoussi. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 65 TC 1 Z9 1 U1 1 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0041-1450 EI 1532-2424 J9 TRANSPORT THEOR STAT JI Transport. Theor. Statist. Phys. PY 2014 VL 43 IS 1-7 SI SI BP 474 EP 514 DI 10.1080/23324309.2014.978083 PG 41 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA CB5AZ UT WOS:000349641200025 ER PT J AU Tang, A Chang, MCF Chattopadhyay, G Chen, Z Reck, T Schone, H Zhao, Y Du, L Murphy, D Chahat, N Decrossas, E Mehdi, I AF Tang, Adrian Chang, M. -C. Frank Chattopadhyay, G. Chen, Z. Reck, T. Schone, H. Zhao, Y. Du, L. Murphy, D. Chahat, N. Decrossas, E. Mehdi, I. GP IEEE TI CMOS (Sub)-mm-Wave System-on-Chip for Exploration of Deep Space and Outer Planetary Systems (Invited Paper) SO 2014 IEEE PROCEEDINGS OF THE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC) SE IEEE Custom Integrated Circuits Conference LA English DT Proceedings Paper CT 36th Annual IEEE Custom Integrated Circuits Conference (CICC) - The Showcase for Integrated Circuit Design in the Heart of Silicon Valley CY SEP 15-17, 2014 CL San Jose, CA SP Inst Elect & Elect Engineers, IEEE Solid State Circuits Soc, Electron Devices Soc DE Self-Healing; Frequency Synthesizer; Total Ionizing Dose; Radiation; Cryogenics; PISSARRO AB this paper discusses the applicability of CMOS (sub)-mm-Wave System-on-Chips in space explorations of the solar system, especially planetary missions. Specifically assessed are issues related to high levels of radiation encountered in deep space. To exemplify the type of technology infusion that is possible, we specifically feature the incorporation of a previously developed "self-healing" 12/48 GHz CMOS frequency synthesizer into a current planetary sub-mm-wave (or Terahertz) heterodyne receiver instrument (PISSARRO) for the substantial benefit of payload size, area and weight reduction. C1 [Tang, Adrian; Chattopadhyay, G.; Reck, T.; Schone, H.; Chahat, N.; Decrossas, E.; Mehdi, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Tang, Adrian; Chang, M. -C. Frank; Chen, Z.; Zhao, Y.; Du, L.; Murphy, D.] Univ Calif Los Angeles, Los Angeles, CA USA. RP Tang, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. FU TSMC FX The authors are grateful to TSMC for 65nm foundry support. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 8 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-3286-3 J9 IEEE CUST INTEGR CIR PY 2014 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BC0JM UT WOS:000349122300071 ER PT S AU Babbush, R Perdomo-Ortiz, A O'Gorman, B Macready, W Aspuru-Guzik, A AF Babbush, Ryan Perdomo-Ortiz, Alejandro O'Gorman, Bryan Macready, William Aspuru-Guzik, Alan BE Rice, SA Dinner, AR TI CONSTRUCTION OF ENERGY FUNCTIONS FOR LATTICE HETEROPOLYMER MODELS: EFFICIENT ENCODINGS FOR CONSTRAINT SATISFACTION PROGRAMMING AND QUANTUM ANNEALING SO ADVANCES IN CHEMICAL PHYSICS, VOL 155 SE Advances in Chemical Physics LA English DT Review; Book Chapter ID MAXIMUM SATISFIABILITY PROBLEM; PROTEIN-FOLDING PROBLEM; STRUCTURE PREDICTION; ADIABATIC EVOLUTION; LOCAL SEARCH; OPTIMIZATION; FRUSTRATION; POTENTIALS; ALGORITHMS; SIMPLICITY C1 [Babbush, Ryan; Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Aspuru-Guzik, Alan] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Perdomo-Ortiz, Alejandro] NASA, Ames Res Ctr, Ames Quantum Lab, Moffett Field, CA 94035 USA. [Macready, William] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada. RP Babbush, R (reprint author), Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA. NR 68 TC 5 Z9 5 U1 1 U2 6 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0065-2385 BN 978-1-118-75581-5; 978-1-118-75577-8 J9 ADV CHEM PHYS JI Adv. Chem. Phys. PY 2014 VL 155 BP 201 EP 243 PG 43 WC Physics, Atomic, Molecular & Chemical SC Physics GA BB9TS UT WOS:000348649200006 ER PT S AU Ehlmann, BL Edwards, CS AF Ehlmann, Bethany L. Edwards, Christopher S. BE Jeanloz, R TI Mineralogy of the Martian Surface SO ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 42 SE Annual Review of Earth and Planetary Sciences LA English DT Review; Book Chapter DE Mars; composition; mineralogy; infrared spectroscopy; igneous processes; aqueous alteration ID THERMAL EMISSION SPECTROMETER; MERIDIANI-PLANUM; OMEGA/MARS EXPRESS; SPECTRAL EVIDENCE; MOSSBAUER SPECTROMETER; MARS IMPLICATIONS; VALLES MARINERIS; BURNS FORMATION; CLAY-MINERALS; GLOBAL VIEW AB The past fifteen years of orbital infrared spectroscopy and in situ exploration have led to a new understanding of the composition and history of Mars. Globally, Mars has a basaltic upper crust with regionally variable quantities of plagioclase, pyroxene, and olivine associated with distinctive terrains. Enrichments in olivine (>20%) are found around the largest basins and within late Noachian-early Hesperian lavas. Alkali volcanics are also locally present, pointing to regional differences in igneous processes. Many materials from ancient Mars bear the mineralogic fingerprints of interaction with water. Clay minerals, found in exposures of Noachian crust across the globe, preserve widespread evidence for early weathering, hydrothermal, and diagenetic aqueous environments. Noachian and Hesperian sediments include paleolake deposits with clays, carbonates, sulfates, and chlorides that are more localized in extent. The late Hesperian to Amazonian mineralogic record of water is sparser, though sulfates and silica in some locations indicate local availability of ground and surface waters even in the most recent geologic epoch. C1 [Ehlmann, Bethany L.; Edwards, Christopher S.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ehlmann, BL (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM ehlmann@caltech.edu; cedwards@caltech.edu NR 149 TC 45 Z9 46 U1 13 U2 49 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 0084-6597 BN 978-0-8243-2042-3 J9 ANNU REV EARTH PL SC JI Annu. Rev. Earth Planet. Sci. PY 2014 VL 42 BP 291 EP 315 DI 10.1146/annurev-earth-060313-055024 PG 25 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geology GA BB9LJ UT WOS:000348436700015 ER PT S AU Smith, SM Abrams, SA Davis-Street, JE Heer, M O'Brien, KO Wastney, ME Zwart, SR AF Smith, S. M. Abrams, S. A. Davis-Street, J. E. Heer, M. O'Brien, K. O. Wastney, M. E. Zwart, S. R. BE Cousins, RJ TI Fifty Years of Human Space Travel: Implications for Bone and Calcium Research SO ANNUAL REVIEW OF NUTRITION, VOL 34 SE Annual Review of Nutrition LA English DT Review; Book Chapter DE acid-base balance; bed rest; bone mineral density; exercise; microgravity; vitamin D ID RENAL STONE RISK; N-3 FATTY-ACIDS; LONG-DURATION SPACEFLIGHT; BODY NEGATIVE-PRESSURE; RESISTIVE VIBRATION EXERCISE; PREVENT DISUSE OSTEOPOROSIS; PROLONGED BED REST; SPINAL-CORD-INJURY; RED-BLOOD-CELL; POSTMENOPAUSAL WOMEN AB Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and bone mineral during space flight, which alters the endocrine regulation of calcium metabolism. Physical, pharmacologic, and nutritional means have been used to counteract these changes. In 2012, heavy resistance exercise plus good nutritional and vitamin D status were demonstrated to reduce loss of bone mineral density on long-duration International Space Station missions. Uncertainty continues to exist, however, as to whether the bone is as strong after flight as it was before flight and whether nutritional and exercise prescriptions can be optimized during space flight. Findings from these studies not only will help future space explorers but also will broaden our understanding of the regulation of bone and calcium homeostasis on Earth. C1 [Smith, S. M.] NASA, Lyndon B Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX 77058 USA. [Abrams, S. A.] Baylor Coll Med, USDA ARS, Childrens Nutr Res Ctr, Dept Pediat, Houston, TX 77030 USA. [Davis-Street, J. E.] Chevron Serv Co, Corp Hlth & Med, Houston, TX 77002 USA. [Heer, M.] Profil, D-41460 Neuss, Germany. [Heer, M.] Univ Bonn, Dept Nutr & Food Sci, D-53115 Bonn, Germany. [O'Brien, K. O.] Cornell Univ, Div Nutr Sci, Ithaca, NY 14853 USA. [Wastney, M. E.] Metab Modeling Serv, W Lafayette, IN 47906 USA. [Zwart, S. R.] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. RP Smith, SM (reprint author), NASA, Lyndon B Johnson Space Ctr, Biomed Res & Environm Sci Div, Houston, TX 77058 USA. EM scott.m.smith@nasa.gov; sabrams@bcm.tmc.edu; jdstreet@chevron.com; martina.heer@profil.com; koo4@cornell.edu; wastneym@metabolic-modeling-services.com; sara.zwart-1@nasa.gov OI Abrams, Steven/0000-0003-4972-9233 NR 174 TC 13 Z9 15 U1 3 U2 12 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 0199-9885 BN 978-0-8243-2834-4 J9 ANNU REV NUTR JI Annu. Rev. Nutr. PY 2014 VL 34 BP 377 EP 400 DI 10.1146/annurev-nutr-071813-105440 PG 24 WC Nutrition & Dietetics SC Nutrition & Dietetics GA BB9MA UT WOS:000348455800016 PM 24995691 ER PT J AU Samset, BH Myhre, G Herber, A Kondo, Y Li, SM Moteki, N Koike, M Oshima, N Schwarz, JP Balkanski, Y Bauer, SE Bellouin, N Berntsen, TK Bian, H Chin, M Diehl, T Easter, RC Ghan, SJ Iversen, T Kirkevag, A Lamarque, JF Lin, G Liu, X Penner, JE Schulz, M Seland, O Skeie, RB Stier, P Takemura, T Tsigaridis, K Zhang, K AF Samset, B. H. Myhre, G. Herber, A. Kondo, Y. Li, S-M. Moteki, N. Koike, M. Oshima, N. Schwarz, J. P. Balkanski, Y. Bauer, S. E. Bellouin, N. Berntsen, T. K. Bian, H. Chin, M. Diehl, T. Easter, R. C. Ghan, S. J. Iversen, T. Kirkevag, A. Lamarque, J-F. Lin, G. Liu, X. Penner, J. E. Schulz, M. Seland, O. Skeie, R. B. Stier, P. Takemura, T. Tsigaridis, K. Zhang, K. TI Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VERTICAL PROFILES; CLIMATE MODELS; AEROSOL DIRECT; EMISSIONS; UNCERTAINTY; SENSITIVITY; PACIFIC; BUDGET AB Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy. C1 [Samset, B. H.; Myhre, G.; Berntsen, T. K.; Skeie, R. B.] CICERO, Oslo, Norway. [Herber, A.] Alfred Wegener Inst Polar & Marine Res Helmholtz, D-27568 Bremerhaven, Germany. [Kondo, Y.; Moteki, N.; Koike, M.] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Tokyo 113, Japan. [Li, S-M.] Environm Canada, Air Qual Res Div, Sci & Technol Branch, Toronto, ON M3H 5T4, Canada. [Oshima, N.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. [Schwarz, J. P.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Balkanski, Y.] CEA, CNRS, UVSQ, Lab Sci Climat & Environm, F-91198 Gif Sur Yvette, France. [Bauer, S. E.; Tsigaridis, K.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bauer, S. E.; Tsigaridis, K.] Columbia Earth Inst, New York, NY USA. [Bellouin, N.] Met Off Hadley Ctr, Exeter, Devon, England. [Bian, H.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Chin, M.; Diehl, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Easter, R. C.; Ghan, S. J.; Zhang, K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Iversen, T.; Kirkevag, A.; Schulz, M.; Seland, O.] Norwegian Meteorol Inst, Oslo, Norway. [Lamarque, J-F.] Natl Ctr Atmospher Res, NCAR Earth Syst Lab, Boulder, CO 80307 USA. [Lin, G.; Penner, J. E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Liu, X.] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Stier, P.] Univ Oxford, Dept Phys, Oxford, England. [Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka 812, Japan. [Schwarz, J. P.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Diehl, T.] Univ Space Res Assoc, Columbia, MD USA. [Iversen, T.] Univ Oslo, Dept Geosci, Oslo, Norway. [Iversen, T.] ECMWF, Reading RG2 9AX, Berks, England. [Bellouin, N.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Diehl, T.] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. RP Samset, BH (reprint author), CICERO, Oslo, Norway. EM b.h.samset@cicero.oslo.no RI Ghan, Steven/H-4301-2011; Liu, Xiaohong/E-9304-2011; schwarz, joshua/G-4556-2013; Takemura, Toshihiko/C-2822-2009; Penner, Joyce/J-1719-2012; Kyushu, RIAM/F-4018-2015; Oshima, Naga/E-4708-2012; Myhre, Gunnar/A-3598-2008; Skeie, Ragnhild/K-1173-2015; Samset, Bjorn H./B-9248-2012; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Balkanski, Yves/A-6616-2011; Stier, Philip/B-2258-2008; Zhang, Kai/F-8415-2010; Chin, Mian/J-8354-2012; Manager, CSD Publications/B-2789-2015 OI Ghan, Steven/0000-0001-8355-8699; Liu, Xiaohong/0000-0002-3994-5955; schwarz, joshua/0000-0002-9123-2223; Takemura, Toshihiko/0000-0002-2859-6067; Myhre, Gunnar/0000-0002-4309-476X; Skeie, Ragnhild/0000-0003-1246-4446; Samset, Bjorn H./0000-0001-8013-1833; Schulz, Michael/0000-0003-4493-4158; Balkanski, Yves/0000-0001-8241-2858; Stier, Philip/0000-0002-1191-0128; Zhang, Kai/0000-0003-0457-6368; FU Research Council of Norway; EC [FP7-ENV-2011-282688]; Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; DOE [DE-AC06-76RLO 1830]; European Research Council under the European Union [FP7-280025]; UK NERC [NE/J022624/1]; NASA MAP [NN-H-04-Z-YS-008-N, NN-H-08-Z-DA-001-N]; Research Council of Norway through the EarthClim [207711/E10]; NOTUR/NorStore; Norwegian Space Center through the PM-VRAE project; National Science Foundation; Joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; Ministry of the Environment, Japan [A-0803, A-1101, 2-1403]; Japan Society for the Promotion of Science (JSPS) KAKENHI [23221001, 26701004] FX B. H. Samset, G. Myhre and M. Schulz were supported by the Research Council of Norway, through the grants SLAC, AEROCOM-P3 and EarthClim, and the EC Seventh Framework Programme under grant agreement FP7-ENV-2011-282688 (ECLIPSE). R. C. Easter, S. J. Ghan, X. Liu and K. Zhang were supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. P. Stier's research has been supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. FP7-280025 and by the UK NERC project GASSP (NE/J022624/1). S. E. Bauer was supported by the NASA MAP program (NN-H-04-Z-YS-008-N and NN-H-08-Z-DA-001-N). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS). T. Iversen, A. Kirkevag and O. Seland were supported by the Research Council of Norway through the EarthClim (207711/E10) and NOTUR/NorStore projects, CRAICC, and through the EU projects PEGASOS and ACCESS. A. Kirkevag also received funding from the Norwegian Space Center through the PM-VRAE project. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. N. Bellouin was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). Y. Kondo, N. Moteki, M. Koike, and N. Oshima were supported by the Global Environment Research Fund of the Ministry of the Environment, Japan (A-0803, A-1101, and 2-1403) and the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 23221001 and 26701004. NR 43 TC 41 Z9 41 U1 3 U2 28 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 22 BP 12465 EP 12477 DI 10.5194/acp-14-12465-2014 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ9LR UT WOS:000348536700006 ER PT S AU Angal, A Wu, AS Xiong, XX Geng, X Link, DO Chen, HD AF Angal, Amit Wu, Aisheng Xiong, Xiaoxiong (Jack) Geng, Xu Link, Daniel O. Chen, Hongda BE Xiong, X Shimoda, H TI On-orbit performance of the MODIS SWIR bands SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization III CY OCT 13-15, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci ID REFLECTIVE SOLAR BANDS AB The 36 MODIS spectral bands, with wavelengths ranging from 0.41 mu m to 14.2 mu m, are distributed on four focal plane assemblies: visible (VIS), near-infrared (NIR), short-and mid-wave infrared (SMIR), and long-wave infrared (LWIR). The MODIS reflective solar bands (RSB) are calibrated on-orbit using a solar diffuser (SD), with its reflectance degradation monitored using a solar diffuser stability monitor (SDSM). The Terra MODIS SD degradation at 0.936 mu m, as measured by the SDSM, is 2.4% after 14 years on-orbit. The Aqua MODIS SD degradation at 0.936 mu m is 0.6% after 12 years on-orbit. The SWIR bands with spectral wavelengths centered at 1.24 mu m (band 5), 1.37 mu m (band 26), 1.64 mu m (band 6), and 2.13 mu m (band 7), are beyond the SDSM wavelength coverage (0.412 mu m to 0.936 mu m). Consequently, the gain of the SWIR bands is computed without factoring in the possible degradation of the SD. A technique to monitor the long-term stability of the MODIS SWIR bands is developed using pseudo-invariant desert targets. Results indicate a long-term drift of up to 1.5% of band 5 of Terra MODIS. The long-term stability of other Terra MODIS SWIR bands is seen to be within 0.5%. Similar results for Aqua MODIS indicate no observable drift, with changes within 0.5%. An implementation strategy to account for this correction in the MODIS Level 1 B (L1B) is also discussed. C1 [Angal, Amit] Sci Syst Applicat & Inc, 10210 Greenbelt Rd, Lanham, MD 20706 USA. [Wu, Aisheng; Geng, Xu; Link, Daniel O.; Chen, Hongda] Sigma Space Corp, Lanham, MD 20706 USA. [Xiong, Xiaoxiong (Jack)] Sci & Explorat Directorate, NASA GSFC, Greenbelt, MD 20771 USA. RP Angal, A (reprint author), Sci Syst Applicat & Inc, 10210 Greenbelt Rd, Lanham, MD 20706 USA. NR 7 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-331-1 J9 PROC SPIE PY 2014 VL 9264 AR UNSP 92641Q DI 10.1117/12.2069308 PG 10 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BC0QN UT WOS:000349361500043 ER PT S AU Cao, CY Blonski, S Wang, WH Shao, X Choi, T Bai, Y Xiong, XX AF Cao, Changyong Blonski, Slawomir Wang, Wenhui Shao, Xi Choi, Tayoung Bai, Yan Xiong, Xiaoxiong BE Xiong, X Shimoda, H TI Overview of Suomi NPP VIIRS Performance in the last 2.5 years SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization III CY OCT 13-15, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci ID BANDS AB Since the successful launch of the Suomi NPP on October 28, 2011, the VIIRS instrument has performed well in general. This paper provides an overview of the evolution of the VIIRS instrument performance, major events experienced in the nearly three years since launch, and the ground processing system changes to account for various effects and discrepancies. The mirror degradation in the near-infrared bands due to prelaunch mirror contamination has been gradually leveling off, although the degradation in the solar diffuser continues. In the ground processing, many changes have been implemented in the operational code. This includes the stray-light correction for the Day/Night band, the automatic calibration for the reflective solar band, and corrections for several errors in the code, and resolving various discrepancies in the calibration equations and coefficients. The scientific community is generally satisfied with the quality of the VIIRS SDR data. However, there are remaining issues to be resolved through further research and development. These issues include meeting the more stringent requirement and desire for ocean color applications, better understanding of the polarization effects especially off-nadir, understanding and resolving inconsistencies between solar and lunar calibration. The Suomi NPP VIIRS SDR has been used for generating a variety of products with great success by worldwide users. Together with the follow-on instruments J1 and J2, VIIRS will be the primary data source for moderate resolution satellite observations in the next decades. C1 [Cao, Changyong] NOAA, NESDIS, STAR, Washington, DC 20230 USA. [Blonski, Slawomir; Bai, Yan] Univ Maryland, College Pk, MD USA. [Wang, Wenhui; Choi, Tayoung] ERT, Philadelphia, PA USA. [Xiong, Xiaoxiong] NASA GSFC, Greenbelt, MD USA. RP Cao, CY (reprint author), NOAA, NESDIS, STAR, Washington, DC 20230 USA. RI Cao, Changyong/F-5578-2010; Shao, Xi/H-9452-2016 FU JPSS program office FX The authors would like to thank the entire VIIRS SDR team for their dedicated support to the VIIRS postlaunch cal/val. This work is partially funded by the JPSS program office. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. government. NR 10 TC 0 Z9 0 U1 2 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-331-1 J9 PROC SPIE PY 2014 VL 9264 AR UNSP 926402 DI 10.1117/12.2068991 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BC0QN UT WOS:000349361500001 ER PT S AU Fulbright, J Anderson, S Lei, N Efremova, B Wang, ZP McIntire, J Chiang, KF Xiong, XX AF Fulbright, Jon Anderson, Samuel Lei, Ning Efremova, Boryana Wang, Zhipeng McIntire, Jeff Chiang, Kwofu Xiong, Xiaoxiong BE Xiong, X Shimoda, H TI The Solar Vector Error within the SNPP Common GEO Code, the Correction, and the Effects on the VIIRS SDR RSB Calibration SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization III CY OCT 13-15, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE VIIRS; reflective solar bands; calibration; solar vector; orbital parameters AB Due to a software error, the solar and lunar vectors reported in the on-board calibrator intermediate product (OBC-IP) files for SNPP VIIRS are incorrect. The magnitude of the error is about 0.2 degree, and the magnitude is increasing by about 0.01 degree per year. This error, although small, has an effect on the radiometric calibration of the reflective solar bands (RSB) because accurate solar angles are required for calculating the screen transmission functions and for calculating the illumination of the Solar Diffuser panel. In this paper, we describe the error in the Common GEO code, and how it may be fixed. We present evidence for the error from within the OBC-IP data. We also describe the effects of the solar vector error on the RSB calibration and the Sensor Data Record (SDR). In order to perform this evaluation, we have reanalyzed the yaw-maneuver data to compute the vignetting functions required for the on-orbit SD RSB radiometric calibration. After the reanalysis, we find effect of up to 0.5% on the short-wave infrared (SWIR) RSB calibration. C1 [Fulbright, Jon; Anderson, Samuel; Lei, Ning; Efremova, Boryana; Wang, Zhipeng; McIntire, Jeff; Chiang, Kwofu] Sigma Space Corp, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] Sci & Explorat Directorate, NASA GSFC, Greenbelt, MD 20771 USA. RP Fulbright, J (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. OI Wang, Zhipeng/0000-0002-9108-9009 NR 12 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-331-1 J9 PROC SPIE PY 2014 VL 9264 AR UNSP 92641T DI 10.1117/12.2074598 PG 10 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BC0QN UT WOS:000349361500046 ER PT S AU Sun, JQ Madhavan, S Xiong, XX Wang, MH AF Sun, Junqiang Madhavan, Sriharsha Xiong, Xiaoxiong Wang, Menghua BE Xiong, X Shimoda, H TI Electronic Crosstalk Correction for Terra Long Wave Infrared Photovoltaic Bands SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization III CY OCT 13-15, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE Terra; MODIS; TEB; LWIR PV; Crosstalk; Moon; Striping; Long-term Drifts; Radiometric Improvements ID REFLECTIVE SOLAR BANDS; MODIS; CALIBRATION AB The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. MODIS has 36 bands, among which 27-30 are Long Wave Infrared (LWIR) PhotoVoltaic (PV) bands covering a wavelength range from 6.72 mu m to 9.73 mu m. It has been found that there is severe contamination in Terra band 27 from other three bands due to crosstalk of signals among them. The crosstalk effect induces strong striping in the Earth View (EV) images and causes large long-term drift in the EV Brightness Temperature (BT) in the band. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect for band 27. It was demonstrated that the crosstalk correction can substantially reduce the striping in the EV images and significantly remove the long-term drift in the EV BT. In this paper, it is shown that other three LWIR PV bands are also contaminated by the crosstalk of signals among themselves. The effect induces strong striping artifacts and large long-term drifts in these bands as similarly observed in band 27. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and removes long-term drifts in the EV BT in bands 28-30 as was done similarly for band 27. The crosstalk correction algorithm can thus substantially improve both the image quality and radiometric accuracy of the LWIR PV bands Level 1B (L1B) products. The algorithm can be applied to other MODIS bands and/or other remote sensors that exhibit an electronic crosstalk effect. C1 [Sun, Junqiang; Wang, Menghua] NOAA, NESDIS Ctr Satellite Applicat & Res, E RA3,5830 Univ Res Ct, College Pk, MD 20740 USA. [Sun, Junqiang] Global Sci & Technol, Suite, MD 200 USA. [Madhavan, Sriharsha] Sci & Syst Applicat Inc, Greenbelt, MD 10210 USA. [Xiong, Xiaoxiong] Sci & Explorat Directorate, NASA GSFC, Greenbelt, MD 20771 USA. RP Sun, JQ (reprint author), NOAA, NESDIS Ctr Satellite Applicat & Res, E RA3,5830 Univ Res Ct, College Pk, MD 20740 USA. RI Wang, Menghua/F-5631-2010 OI Wang, Menghua/0000-0001-7019-3125 NR 11 TC 5 Z9 5 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-331-1 J9 PROC SPIE PY 2014 VL 9264 AR UNSP 926412 DI 10.1117/12.2069028 PG 10 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BC0QN UT WOS:000349361500027 ER PT S AU Wu, AS Wang, ZP Li, YH Madhavan, S Wenny, BN Chen, N Xiong, XX AF Wu, Aisheng Wang, Zhipeng (Ben) Li, Yonghong Madhavan, Sriharsha Wenny, Brian N. Chen, Na Xiong, Xiaoxiong (Jack) BE Xiong, X Shimoda, H TI Adjusting Aqua MODIS TEB nonlinear calibration coefficients using iterative solution SO EARTH OBSERVING MISSIONS AND SENSORS: DEVELOPMENT, IMPLEMENTATION, AND CHARACTERIZATION III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Missions and Sensors - Development, Implementation, and Characterization III CY OCT 13-15, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE MODIS; calibration; blackbody; nonlinearity AB Radiometric calibration is important for continuity and reliability of any optical sensor data. The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA EOS (Earth Observing System) Aqua satellite has been nominally operating since its launch on May 4, 2002. The MODIS thermal emissive bands (TEB) are calibrated using a quadratic calibration algorithm and the dominant gain term is determined every scan by reference to a temperature-controlled blackbody (BB) with known emissivity. On a quarterly basis, a BB warm-up and cool-down (WUCD) process is scheduled to provide measurements to determine the offset and nonlinear coefficients used in the TEB calibration algorithm. For Aqua MODIS, the offset and nonlinear terms are based on the results from prelaunch thermal vacuum tests. However, on-orbit trending results show that they have small but noticeable drifts. To maintain data quality and consistency, an iterative approach is applied to adjust the prelaunch based nonlinear terms, which are currently used to produce Aqua MODIS Collection-6 L1B. This paper provides details on how to use an iterative solution to determine these calibration coefficients based on BB WUCD measurements. Validation is performed using simultaneous nadir overpasses (SNO) of Aqua MODIS and the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Metop-A satellite and near surface temperature measurements at Dome C on the Antarctic Plateau. C1 [Wu, Aisheng; Wang, Zhipeng (Ben); Li, Yonghong; Wenny, Brian N.; Chen, Na] Sigma Space Corp, 4801 Forbes Blvd, Lanham, MD 20706 USA. [Madhavan, Sriharsha] Sci & Syst Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong (Jack)] NASA GSFC, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Wu, AS (reprint author), Sigma Space Corp, 4801 Forbes Blvd, Lanham, MD 20706 USA. OI Wang, Zhipeng/0000-0002-9108-9009 NR 10 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-331-1 J9 PROC SPIE PY 2014 VL 9264 AR UNSP 92640R DI 10.1117/12.2069246 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BC0QN UT WOS:000349361500018 ER PT S AU Koshti, AM AF Koshti, Ajay M. BE Wu, HF Yu, TY Gyekenyesi, AL Shull, PJ TI Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies SO NONDESTRUCTIVE CHARACTERIZATION FOR COMPOSITE MATERIALS, AEROSPACE ENGINEERING, CIVIL INFRASTRUCTURE, AND HOMELAND SECURITY 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE X-ray; flaw size parameter AB Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation. C1 NASA Johnson Space Ctr, Houston, TX 77058 USA. RP Koshti, AM (reprint author), NASA Johnson Space Ctr, Houston, TX 77058 USA. NR 9 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9989-9 J9 PROC SPIE PY 2014 VL 9063 DI 10.1117/12.2044677 PG 15 WC Optics SC Optics GA BC0PC UT WOS:000349294800031 ER PT S AU Lee, HJ Bar-Cohen, Y Lih, SS Badescu, M Dingizian, A Takano, N Blosiu, JO AF Lee, Hyeong Jae Bar-Cohen, Yoseph Lih, Shyh-Shiuh Badescu, Mircea Dingizian, Arsham Takano, Nobuyuki Blosiu, Julian O. BE Wu, HF Yu, TY Gyekenyesi, AL Shull, PJ TI Wireless Monitoring of the Height of Condensed Water in Steam Pipes SO NONDESTRUCTIVE CHARACTERIZATION FOR COMPOSITE MATERIALS, AEROSPACE ENGINEERING, CIVIL INFRASTRUCTURE, AND HOMELAND SECURITY 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE High temperatures; piezoelectric transducers; health monitoring; steam condensation; sensors AB A wireless health monitoring system has been developed for determining the height of water condensation in steam pipes. The data acquisition in this system is done remotely using a wireless network system. The developed system is designed to operate in the harsh manhole environment and the pipe temperature of over 200 degrees C. The test method is an ultrasonic pulse-echo and the hardware that includes a pulser, receiver, a data processor and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of the condensed water height under high noise conditions and other environmental factors. C1 [Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lee, HJ (reprint author), CALTECH, Jet Prop Lab, MS 67-119,4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 12 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9989-9 J9 PROC SPIE PY 2014 VL 9063 AR 90631I DI 10.1117/12.2044644 PG 10 WC Optics SC Optics GA BC0PC UT WOS:000349294800036 ER PT S AU Steward, JL Haddad, ZS Hristova-Veleva, S Vukicevic, T AF Steward, Jeffrey L. Haddad, Ziad S. Hristova-Veleva, Svetla Vukicevic, Tomislava BE Krishnamurti, TN Liu, G TI Assimilating scatterometer observations of tropical cyclones into an Ensemble Kalman Filter system with a robust observation operator based on canonical-correlation analysis SO REMOTE SENSING AND MODELING OF THE ATMOSPHERE, OCEANS, AND INTERACTIONS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions V CY OCT 15-16, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE Scatterometer; data assimilation; canonical correlation analysis; satellite data; hurricane ID OCEAN; RADAR; WINDS AB Satellite-based scatterometers, for historical reasons, have been used mainly to derive the wind forcing term for oceanography applications in the form of the near-surface wind field. However, the scatterometer is sensitive to the surface roughness, which is related to the wind stress field, which is in turn related to the wind field at the bottom of the troposphere but not just at 10 meters above the surface - indeed, in organized systems such as tropical cyclones, the surface roughness is highly correlated with the wind at altitudes much higher than 10 meters. We show how to assimilate this data as a function of the vertical principal components of the wind rather than the oversimplified alternative. We derive the empirical correlations between simulated scatterometer observations and underlying columns of wind produced by a numerical weather prediction model and derive an observation operator based on these correlations. We then present the results of the subsequent assimilation. C1 [Steward, Jeffrey L.; Haddad, Ziad S.; Hristova-Veleva, Svetla] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Vukicevic, Tomislava] Cent Euro Mediterraneo Sui Cambiamenti Climatici, Lecce, Italy. RP Steward, JL (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM steward@jpl.nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-332-8 J9 PROC SPIE PY 2014 VL 9265 AR UNSP 926507 DI 10.1117/12.2069343 PG 6 WC Meteorology & Atmospheric Sciences; Remote Sensing; Optics SC Meteorology & Atmospheric Sciences; Remote Sensing; Optics GA BC0PZ UT WOS:000349329500003 ER PT S AU Kulkarni, CS Gorospe, G Daigle, M Goebel, K AF Kulkarni, Chetan S. Gorospe, George Daigle, Matthew Goebel, Kai GP IEEE TI A Testbed for Implementing Prognostic Methodologies on Cryogenic Propellant Loading Systems SO 2014 IEEE AUTOTESTCON SE IEEE Autotestcon LA English DT Proceedings Paper CT 50th Anniversary of IEEE AUTOTEST Conference CY SEP 15-18, 2014 CL St Louis, MO SP IEEE, IEEE Aerosp & Elect Syst Soc, IEEE Instrumentat & Measurement Soc AB Prognostics technologies determine the health state of a system and predict its remaining useful life. With this information, operators are able to make maintenance-related decisions, thus effectively streamlining operational and mission-level activities. Experimentation on testbeds representative of critical systems is very useful for the maturation of prognostics technology; precise emulation of actual fault conditions on such a testbed further validates these technologies. In this paper we present the development of a pneumatic valve testbed, initial experimental results and progress towards the maturation and validation of component-level prognostic methods in the context of cryogenic refueling operations. The pneumatic valve testbed allows for the injection of time-varying leaks with specified damage progression profiles in order to emulate common valve faults. The pneumatic valve testbed also contains a battery used to power some pneumatic components, enabling the study of the effects of battery degradation on the operation of the valves. C1 [Kulkarni, Chetan S.; Gorospe, George] NASA, Ames Res Ctr, SGT Inc, Moffett Field, CA 94035 USA. [Daigle, Matthew; Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kulkarni, CS (reprint author), NASA, Ames Res Ctr, SGT Inc, Moffett Field, CA 94035 USA. EM chetan.s.kulkarni@nasa.gov; george.gorospe@nasa.gov; matthew.j.daigle@nasa.gov; kai.goebel@nasa.gov FU Advanced Ground Systems Maintenance (AGSM) under the Ground Systems Development and Operations program FX This work was funded by the Advanced Ground Systems Maintenance (AGSM) Project under the Ground Systems Development and Operations program. NR 17 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1088-7725 BN 978-1-4799-3005-0 J9 IEEE AUTOTESTCON PY 2014 PG 10 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA BB9WL UT WOS:000348736600042 ER PT J AU Parker, ET Cleaves, JH Burton, AS Glavin, DP Dworkin, JP Zhou, MS Bada, JL Fernandez, FM AF Parker, Eric T. Cleaves, James H. Burton, Aaron S. Glavin, Daniel P. Dworkin, Jason P. Zhou, Manshui Bada, Jeffrey L. Fernandez, Facundo M. TI Conducting Miller-Urey Experiments SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 83; Geosciences (General); Exobiology; Miller-Urey; Prebiotic chemistry; amino acids; spark discharge ID SPARK DISCHARGE EXPERIMENT; PROTEIN AMINO-ACIDS; LIQUID-CHROMATOGRAPHY; PREBIOTIC SYNTHESIS; ORGANIC-COMPOUNDS; PRIMITIVE EARTH; ATMOSPHERES; IRRADIATION AB In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H-2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments. C1 [Parker, Eric T.; Zhou, Manshui; Fernandez, Facundo M.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Cleaves, James H.] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo, Japan. [Burton, Aaron S.] NASA, Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX USA. [Glavin, Daniel P.; Dworkin, Jason P.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Houston, TX USA. [Bada, Jeffrey L.] Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA. RP Bada, JL (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA. EM jbada@ucsd.edu; facundo.fernandez@chemistry.gatech.edu RI Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012 OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 FU NSF [CHE-1004570]; NASA Astrobiology Program, under the NSF Center for Chemical Evolution [CHE-1004570]; Goddard Center for Astrobiology; NASA Planetary Biology Internship Program FX This work was jointly supported by the NSF and NASA Astrobiology Program, under the NSF Center for Chemical Evolution, CHE-1004570, and the Goddard Center for Astrobiology. E.T.P. would like to acknowledge additional funding provided by the NASA Planetary Biology Internship Program. The authors also want to thank Dr. Asiri Galhena for invaluable help in setting up the initial laboratory facilities. NR 23 TC 1 Z9 1 U1 13 U2 39 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD JAN PY 2014 IS 83 AR e51039 DI 10.3791/51039 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AZ9DZ UT WOS:000348513500035 PM 24473135 ER PT J AU Thomson, SRD Perron, JK Kimball, MO Mehta, S Gasparini, FM AF Thomson, Stephen R. D. Perron, Justin K. Kimball, Mark O. Mehta, Sarabjit Gasparini, Francis M. TI Fabrication of Uniform Nanoscale Cavities via Silicon Direct Wafer Bonding SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Physics; Issue 83; silicon direct wafer bonding; nanoscale; bonded wafers; silicon wafer; confined liquids; lithographic techniques ID SUPERFLUID TRANSITION; SI-WAFERS; HE-4; SEPARATION AB Measurements of the heat capacity and superfluid fraction of confined He-4 have been performed near the lambda transition using lithographically patterned and bonded silicon wafers. Unlike confinements in porous materials often used for these types of experiments(3), bonded wafers provide predesigned uniform spaces for confinement. The geometry of each cell is well known, which removes a large source of ambiguity in the interpretation of data. Exceptionally flat, 5 cm diameter, 375 mu m thick Si wafers with about 1 mu m variation over the entire wafer can be obtained commercially (from Semiconductor Processing Company, for example). Thermal oxide is grown on the wafers to define the confinement dimension in the z-direction. A pattern is then etched in the oxide using lithographic techniques so as to create a desired enclosure upon bonding. A hole is drilled in one of the wafers (the top) to allow for the introduction of the liquid to be measured. The wafers are cleaned(2) in RCA solutions and then put in a microclean chamber where they are rinsed with deionized water(4). The wafers are bonded at RT and then annealed at similar to 1,100 degrees C. This forms a strong and permanent bond. This process can be used to make uniform enclosures for measuring thermal and hydrodynamic properties of confined liquids from the nanometer to the micrometer scale. C1 [Thomson, Stephen R. D.; Gasparini, Francis M.] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Perron, Justin K.] Univ Maryland, Joint Quantum Inst, Baltimore, MD USA. [Perron, Justin K.] NIST, Washington, DC USA. [Kimball, Mark O.] NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, Washington, DC USA. [Mehta, Sarabjit] HRL Labs, Malibu, CA USA. RP Gasparini, FM (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. EM fmg@buffalo.edu FU NSF [DMR-0605716, DMR-1101189]; Moti Lal Rustgi Professorship FX This work was funded by NSF grants DMR-0605716 and DMR-1101189. Also, the Cornell NanoScale Science and Technology Center was used to grow and pattern the oxides. We thank them for their assistance. One of us FMG is grateful for the support of the Moti Lal Rustgi Professorship. NR 20 TC 0 Z9 0 U1 2 U2 6 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD JAN PY 2014 IS 83 AR e51179 DI 10.3791/51179 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AZ9DZ UT WOS:000348513500057 PM 24457563 ER PT S AU Havelund, K AF Havelund, Klaus BE Margaria, T Steffen, B TI Mastering Change @ Runtime SO Leveraging Applications of Formal Methods, Verification and Validation: Technologies for Mastering Change, Pt I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 6th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA) CY OCT 08-11, 2014 CL Imperial, GREECE C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Havelund, K (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-662-45234-9; 978-3-662-45233-2 J9 LECT NOTES COMPUT SC PY 2014 VL 8802 BP 533 EP 534 PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BC0GO UT WOS:000349021200041 ER PT J AU Rakow, G Kisin, A AF Rakow, Glenn Kisin, Alexander BE Parkes, S Carrie, C TI Manchester Coding Option for SpaceWire: providing choices for system level design SpaceWire Standardization, Short Paper SO PROCEEDINGS OF THE 2014 6TH INTERNATIONAL SPACEWIRE CONFERENCE (SPACEWIRE) LA English DT Proceedings Paper CT 6th International SpaceWire Conference (SpaceWire) CY SEP 22-26, 2014 CL Athens, GREECE DE SpaceWire; Signal level; Line encoding; Manchester encoding AB This paper proposes an optional coding scheme for SpaceWire in lieu of the current Data Strobe scheme for three reasons. Firstly, to provide a straightforward method for electrical isolation of the interface; secondly, to provide ability to reduce the mass and bend radius of the SpaceWire cable; and thirdly, to provide a means for a common physical layer over which multiple spacecraft onboard data link protocols could operate for a wide range of data rates. The intent is to accomplish these goals without significant change to existing SpaceWire design investments. The ability to optionally use Manchester coding in place of the current Data Strobe coding provides the ability to DC balance signal transitions, unlike the SpaceWire Data Strobe coding; and therefore the ability to electrically isolate the interface without additional concerns. Additionally, because the Manchester coding scheme encodes the clock and data on the same signal, the number of wires in the existing SpaceWire cable could be reduced by 50%. This reduction could be an important consideration for many users of SpaceWire as indicated by the effort currently underway by the SpaceWire working group to reduce the cable mass and bend radius by elimination of shields. Reducing the signal count by half would provide even greater gains. It is proposed to restrict the data rate for the optional Manchester coding to a fixed data rate of 10 Megabits per second (Mbps) in order to simplify the necessary changes and still able to operate in existing radiation tolerant Field Programmable Gate Arrays (FPGAs). Even with this constraint, 10 Mbps will satisfy many applications where SpaceWire is used. These include command and control applications and instrumentation applications with moderate data rate requirements. For most NASA flight implementations, SpaceWire designs are implemented using rad-tolerant FPGAs and the desire to preserve the heritage design investment is important for cost and risk considerations. The Manchester coding option can be accommodated in existing designs with only changes to the FPGA. C1 [Rakow, Glenn] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kisin, Alexander] NASA Goddard Space Flight Ctr, AS&D, Greenbelt, MD USA. RP Rakow, G (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Glenn.P.Rakow@nasa.gov; Alexander.B.Kisin@nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-9557196-5-3 PY 2014 PG 4 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA BB9WG UT WOS:000348724300053 ER PT S AU Sun, WB Baize, RR Videen, G AF Sun, Wenbo Baize, Rosemary R. Videen, Gorden BE Im, E Yang, S Zhang, P TI A Review of the Super-thin Clouds Detection Algorithm SO REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Remote Sensing of the Atmosphere, Clouds, and Precipitation V CY OCT 13-15, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci DE Super-thin clouds; detection; polarized sunlight; retrieval of optical thickness ID CLEAR-SKY; CIRRUS; MODIS AB In this work, the super-thin cloud detection algorithm [1], that uses the polarization angle of the backscattered solar radiation to find the super-thin clouds, is briefly reviewed and the retrieval of the optical thickness of these clouds is proposed. We found that at the neighborhood angles of the backscattering direction, these clouds can be reliably detected. The polarized components of the reflected light may be used to retrieve the optical thickness of these clouds. C1 [Sun, Wenbo] Sci Syst & Applications Inc, Hampton, VA 23666 USA. [Sun, Wenbo; Baize, Rosemary R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Videen, Gorden] Space Sci Inst, Boulder, CO 80301 USA. [Videen, Gorden] US Army, Res Lab, Adelphi, MD 20783 USA. RP Sun, WB (reprint author), Sci Syst & Applications Inc, Hampton, VA 23666 USA. FU NASA Glory fund [09-GLORY09-0027] FX This work was supported by NASA Glory fund 09-GLORY09-0027. The authors thank Hal B. Maring for this support. NR 17 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-326-7 J9 PROC SPIE PY 2014 VL 9259 DI 10.1117/12.2067779 PG 4 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Optics SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Optics GA BB9ZL UT WOS:000348833900009 ER PT S AU Yang, YK Palm, SP Marshak, A AF Yang, Yuekui Palm, Stephen P. Marshak, Alexander BE Im, E Yang, S Zhang, P TI Properties and Potential Radiative Impacts of Antarctic Blowing Snow SO REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Remote Sensing of the Atmosphere, Clouds, and Precipitation V CY OCT 13-15, 2014 CL Beijing, PEOPLES R CHINA SP SPIE, State Key Lab Remote Sensing Sci, Natl Aeronaut & Space Adm, Minist Earth Sci AB Blowing snow plays an important role in the studies of the Earth's cryosphere. Not only can it affects the ice sheet mass balance and hydrological processes through redistributing surface mass and driving spatial and temporal variations in snow accumulation, it also has a significant impact on the long wave radiation budget both at the surface and at the top of the atmosphere. In this article, we show that blowing snow has substantial impact on the Antarctic Outgoing Longwave Radiation (OLR). Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign and magnitude depending on season and time of the day. C1 [Yang, Yuekui] Univ Space Res Assoc, Columbia, MD 98118 USA. [Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Palm, Stephen P.] Sci Syst & Applications Inc, Lanham, MD USA. RP Yang, YK (reprint author), Univ Space Res Assoc, Columbia, MD 98118 USA. RI Marshak, Alexander/D-5671-2012; Yang, Yuekui/B-4326-2015 FU NASA's CLIPSO/CloudSat Program; Cryosphere Science Program FX This work is supported by NASA's CLIPSO/CloudSat Program and the Cryosphere Science Program. Data used in this study are from the Level 1 and Atmosphere Archive and Distribution System (LAADS) at the NASA Goddard Space Flight Center and the Atmospheric Science Data Center (ASDC) at the NASA Langley Research Center NR 11 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-326-7 J9 PROC SPIE PY 2014 VL 9259 AR UNSP 925912 DI 10.1117/12.2068038 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Optics SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Optics GA BB9ZL UT WOS:000348833900017 ER PT B AU Launius, RD AF Launius, Roger D. BE Turchetti, S Roberts, P TI Space Technology and the Rise of the US Surveillance State SO SURVEILLANCE IMPERATIVE: GEOSCIENCES DURING THE COLD WAR AND BEYOND SE Palgrave Studies in the History of Science and Technology LA English DT Article; Book Chapter C1 [Launius, Roger D.] Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA. [Launius, Roger D.] NASA, Washington, DC USA. [Launius, Roger D.] US Air Force, San Diego, CA USA. RP Launius, RD (reprint author), Smithsonian Inst, Natl Air & Space Museum, Washington, DC 20560 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU PALGRAVE PI BASINGSTOKE PA HOUNDMILLS, BASINGSTOKE RG21 6XS, ENGLAND BN 978-1-137-43874-4; 978-1-137-43872-0 J9 PALGR STUD HIST SCI PY 2014 BP 147 EP 170 D2 10.1057/9781137438744 PG 24 WC History & Philosophy Of Science SC History & Philosophy of Science GA BB8YH UT WOS:000347841700008 ER PT J AU Damadeo, RP Zawodny, JM Thomason, LW AF Damadeo, R. P. Zawodny, J. M. Thomason, L. W. TI Reevaluation of stratospheric ozone trends from SAGE II data using a simultaneous temporal and spatial analysis SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MIDDLE; QBO AB This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data are prepared for use with traditional methods, can be as high as 10 %. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization. C1 [Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Damadeo, RP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM robert.damadeo@nasa.gov OI Thomason, Larry/0000-0002-1902-0840 NR 24 TC 8 Z9 8 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 24 BP 13455 EP 13470 DI 10.5194/acp-14-13455-2014 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0TI UT WOS:000347957100002 ER PT J AU Liu, C Yang, P Minnis, P Loeb, N Kato, S Heymsfield, A Schmitt, C AF Liu, C. Yang, P. Minnis, P. Loeb, N. Kato, S. Heymsfield, A. Schmitt, C. TI A two-habit model for the microphysical and optical properties of ice clouds SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SINGLE-SCATTERING PROPERTIES; MULTIDIRECTIONAL POLARIZATION MEASUREMENTS; RADIATIVE-TRANSFER MODEL; IN-SITU OBSERVATIONS; TIME-DOMAIN METHOD; CIRRUS CLOUDS; LIGHT-SCATTERING; PHASE FUNCTION; MIDLATITUDE CIRRUS; CLIMATE MODELS AB To provide a better representation of natural ice clouds, a novel ice cloud model is developed by assuming an ice cloud to consist of an ensemble of hexagonal columns and 20-element aggregates with specific habit fractions at each particle size bin. The microphysical and optical properties of this two-habit model (THM) are compared with both laboratory and in situ measurements, and its performance in downstream satellite remote sensing applications is assessed. The ice water contents and median mass diameters calculated based on the THM closely agree with in situ measurements made during 11 field campaigns. In this study, the scattering, absorption, and polarization properties of ice crystals are calculated with a combination of the invariant imbedding T matrix, pseudo-spectral time domain, and improved geometric-optics methods over an entire practical range of particle sizes. The phase functions, calculated based on the THM, show close agreement with counterparts from laboratory and in situ measurements and from satellite-based retrievals. When the THM is applied to the retrievals of cloud microphysical and optical properties from MODIS (the Moderate Resolution Imaging Spectroradiometer) observations, excellent spectral consistency is achieved; specifically, the retrieved cloud optical thicknesses based on the visible/near infrared bands and the thermal infrared bands agree quite well. Furthermore, a comparison between the polarized reflectivities observed by the PARASOL satellite and from theoretical simulations illustrates that the THM can be used to represent ice cloud polarization properties. C1 [Liu, C.; Yang, P.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Minnis, P.; Loeb, N.; Kato, S.] NASA, Sci Directorate, Langley Res Ctr, Hampton, VA USA. [Heymsfield, A.; Schmitt, C.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@tamu.edu RI Yang, Ping/B-4590-2011; Liu, Chao/J-9551-2013; OI Schmitt, Carl/0000-0003-3829-6970 FU NASA [NNX13AQ57G]; NASA Clouds and the Earth's Radiant Energy System Project; David Bullock Harris Chair in Geosciences at the College of Geosciences, Texas AM University FX This research was supported by NASA Grant NNX13AQ57G, the NASA Clouds and the Earth's Radiant Energy System Project, and partly by the endowment funds associated with the David Bullock Harris Chair in Geosciences at the College of Geosciences, Texas A&M University. All computations were carried out at the Texas A&M University Supercomputing Facility EOS, and we gratefully acknowledge the assistance of facility staff in porting our codes. The authors thank G. Febvre for the use of the phase function data from the in situ measurements. NR 112 TC 11 Z9 11 U1 1 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 24 BP 13719 EP 13737 DI 10.5194/acp-14-13719-2014 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0TI UT WOS:000347957100016 ER PT S AU Aumann, HH Manning, EM AF Aumann, Hartmut H. Manning, Evan M. BE Butler, JJ Xiong, X Gu, X TI Evaluation of the AIRS and CrIS relative radiometric calibration under cloudy conditions. SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE radiometric calibration; clouds; grating; Fourier transform spectrometer; grating array spectrometer; EOS Aqua AB The validation of the radiometric calibration of virtually all infrared radiometers has previously been carried out under carefully selected, generally spatially uniform conditions, with the assumption that the radiometric accuracy of the data may be dependent on scene brightness temperature, but is independent of other scene unique conditions, such as scene spatial uniformity. The availability of AIRS and CrIS observations from polar orbits with the identical ascending node presents an opportunity to evaluate the validity of this assumption. For each day between May 2012 and January 2014 we collected 22,000 Random Nadir Spectra (RNS). We then analyzed the time series of the daily differences between AIRS and CrIS Probability Density Function in the 900 cm(-1) atmospheric window channel. Under polar conditions the PDF differences between AIRS and CrIS are typically less than 50 mK for the 10% tile, the mean and the 90% tiles values of the PDF. Under area representative global conditions day and night CrIS is about 0.2K colder than AIRS at the 10% tile and mean values. These differences are well within the limits of the instrument requirements specification. However, the difference between AIRS and CrIS have a complicated zonal distribution, particular for the tropical zone. For day tropical land CrIS is 0.3 K warmer in the mean, 1K warmer in the 10% tile value (cold tails of the PDF) than AIRS. The reasons for these differences are still under investigation. A number of modifications to the CrIS radiometric calibration algorithms have been proposed. C1 [Aumann, Hartmut H.; Manning, Evan M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Aumann, HH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180F DI 10.1117/12.2061145 PG 6 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500011 ER PT S AU Bruegge, CJ Val, S Diner, DJ Jovanovic, V Gray, E Di Girolamo, L Zhao, GY AF Bruegge, Carol J. Val, Sebastian Diner, David J. Jovanovic, Veljko Gray, Ellyn Di Girolamo, Larry Zhao, Guangyu BE Butler, JJ Xiong, X Gu, X TI Radiometric stability of the Multi-angle Imaging SpectroRadiometer (MISR) following 15 years on-orbit SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE MISR; Spectralon; vicarious calibration; Sahara desert PIC; On-Board Calibrator ID CALIBRATION; SENSORS; SPECTRALON; MODIS AB The Multi-angle Imaging SpectroRadiometer (MISR) has successfully operated on the EOS/Terra spacecraft since 1999. It consists of nine cameras pointing from nadir to 70.5 degrees view angle with four spectral channels per camera. Specifications call for a radiometric uncertainty of 3% absolute and 1% relative to the other cameras. To accomplish this, MISR utilizes an on-board calibrator (OBC) to measure camera response changes. Once every two months the two Spectralon panels are deployed to direct solar-light into the cameras. Six photodiode sets measure the illumination level that are compared to MISR raw digital numbers, thus determining the radiometric gain coefficients used in Level 1 data processing. Although panel stability is not required, there has been little detectable change in panel reflectance, attributed to careful preflight handling techniques. The cameras themselves have degraded in radiometric response by 10% since launch, but calibration updates using the detector-based scheme has compensated for these drifts and allowed the radiance products to meet accuracy requirements. Validation using Sahara desert observations show that there has been a drift of similar to 1% in the reported nadir-view radiance over a decade, common to all spectral bands. C1 [Bruegge, Carol J.; Val, Sebastian; Diner, David J.; Jovanovic, Veljko; Gray, Ellyn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bruegge, CJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Carol.J.Bruegge@Jpl.Nasa.Gov OI Gray, Ellyn/0000-0002-3388-9577 NR 16 TC 4 Z9 4 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180N DI 10.1117/12.2062319 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500017 ER PT S AU Elliott, DA Aumann, HH AF Elliott, Denis A. Aumann, Hartmut H. BE Butler, JJ Xiong, X Gu, X TI Comparison of AIRS, IASI, and CrIS radiances and trends at Dome C SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE radiance trends; grating; Fourier transform spectrometer; EOS Aqua; AIRS; IASI; CrIS; Dome C; heat island effect AB This paper describes observations of radiances and radiance trends at DomeC in Antarctica made by three sensors-the Infrared Atmospheric Sounding Interferometer (IASI), the Cross-track Infrared Sounder (CrIS), and the Atmospheric Infrared Sounder (AIRS). It includes comparisons with independently measured surface temperatures. AIRS and IASI have been in simultaneous routine operations since May 2007. All three instruments have been producing operational data simultaneously since April 2012. DomeC is on a high plateau and provides a source of nearly uniform dry scenes with a temperature range from about 190 K to about 250 K. Located on this plateau is an operational automated weather station that provides ground truth, including temperature measurements two meters above the surface every ten minutes. Calibration of infrared radiometers at cold scene temperatures is very difficult. But high accuracy even at cold temperatures is critical for establishing a climate-quality data record. Since CrIS is presently planned to serve as a follow-on to AIRS, it is important to understand any differences in their observed radiances. We will compare AIRS, IASI, and CrIS brightness temperatures in the window channel at 900 cm(-1). C1 [Elliott, Denis A.; Aumann, Hartmut H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Elliott, DA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM denis.a.elliott@jpl.nasa.gov NR 6 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180D DI 10.1117/12.2061079 PG 8 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500009 ER PT S AU Kelly, A Moyer, E Mantziaras, D Case, W AF Kelly, Angelita Moyer, Eric Mantziaras, Dimitrios Case, Warren BE Butler, JJ Xiong, X Gu, X TI Terra mission operations: Launch to the present (and beyond) SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE Terra; EOS; AM1; Spacecraft Operations; Flight Operations; Mission Operations; safety; instruments; cooperation AB The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations. C1 [Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios] NASA, GSFC, Greenbelt, MD 20771 USA. RP Kelly, A (reprint author), NASA, GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM angelita.c.kelly@nasa.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180M DI 10.1117/12.2061253 PG 12 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500016 ER PT S AU Lei, N Chena, XX Xiong, XX AF Lei, Ning Chena, Xuexia Xiong, Xiaoxiong BE Butler, JJ Xiong, X Gu, X TI Determination of the SNPP VIIRS SDSM screen transmittance from both yaw maneuver and regular on-orbit data SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE SNPP VIIRS; radiometric calibration; solar diffuser; BRDF degradation; screen transmittance; yaw maneuver; reflective solar bands ID REFLECTIVE SOLAR BANDS; CALIBRATION AB The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite carries out radiometric calibration of its reflective solar bands primarily through observing a sunlit onboard solar diffuser (SD). The SD bidirectional reflectance distribution function (BRDF) degrades over time. The degradation factor is determined by an onboard solar diffuser stability monitor (SDSM) which observes the Sun through a pinhole screen and the sunlit SD. The transmittance of the SDSM pinhole screen over a range of solar angles was determined prelaunch and used initially to determine the BRDF degradation factor. The degradation factor versus time curves were found to have a number of very large unphysical undulations likely due to the inaccuracies in the prelaunch determined SDSM screen transmittance. To validate and if necessary to refine both the SD and the SDSM screen transmittances, satellite yaw maneuvers were carried out. With the yaw maneuver data determined SDSM screen transmittance, the computed BRDF degradation factor curves still have large unphysical ripples, indicating that the projected solar horizontal angular step size in the yaw maneuver data is too large to resolve the transmittance at a fine angular scale. We develop a methodology to use both the yaw maneuver and regular on-orbit data to determine the SDSM screen transmittance at a fine angular scale with a relative error standard deviation from 0.00029 (672 nm; detector 5) to 0.00074 (926 nm; detector 8). With the newly determined SDSM screen transmittance, the computed BRDF degradation factor behaves much more smoothly over time. C1 [Lei, Ning; Chena, Xuexia] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Lei, N (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. NR 11 TC 6 Z9 6 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR UNSP 921803 DI 10.1117/12.2062303 PG 12 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500002 ER PT S AU Levy, R Barsi, J Markham, B Dabney, P Scaramuzza, P Micijevic, E Pesta, F AF Levy, Raviv Barsi, Julia Markham, Brian Dabney, Philip Scaramuzza, Pat Micijevic, Esad Pesta, Frank BE Butler, JJ Xiong, X Gu, X TI Landsat 8 Operational Land Imager (OLI) detector-to-detector uniformity challenge and performance SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE Uniformity; Landsat Data Continuity Mission (LDCM); Solar Diffuser; Operational Land Imager (OLI); Landsat 8; Side Slither; Integrating Sphere; BRDF; Non-Linearity AB The Operational Land Imager (OLI) aboard the LDCM satellite was rigorously radiometrically characterized prior to launch to assure absolute calibration that is NIST traceable. On orbit additional dedicated calibration collects are being made to continue monitoring and characterizing the OLI radiometric performance. In this paper we report on the OLI on-orbit uniformity performance, which is a natural extension of the absolute radiometric accuracy. Such performance characteristic in remote sensing instruments is assuring that the radiometric accuracy in low contrast images is preserved while avoiding non-uniformity artifacts in the produced radiometric product. The LDCM project science team working with the instrument teams developed a performance metric to monitor the uniformity performance. We will describe the uniformity performance metric and discuss associated error sources in obtaining the radiometric calibration parameters that impact the uniformity correction. We will compare the uniformity performance between solar diffuser observation and earth data. C1 [Levy, Raviv; Barsi, Julia] Sci Syst & Applicat Inc, NASA, GSFC, Greenbelt, MD 20771 USA. RP Levy, R (reprint author), Sci Syst & Applicat Inc, NASA, GSFC, Code 618, Greenbelt, MD 20771 USA. EM raviv.levy@nasa.com NR 8 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 921818 DI 10.1117/12.2063164 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500035 ER PT S AU Manning, EM Aumann, HH Behrangi, A AF Manning, Evan M. Aumann, Hartmut H. Behrangi, Ali BE Butler, JJ Xiong, X Gu, X TI AIRS Level-1C and applications to cross-calibration with MODIS and CrIS SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE AIRS; climate quality; principal component reconstruction; calibration; climate trends AB We introduce and illustrate applications of the AIRS Level-1C (L1C) data product. While each spectrum in the Level-1B (L1B) calibrated radiances is represented by 2378 channels, each spectrum in the L1C product is represented by 2645 channels, with monotonically increasing frequency. Typically 2000 of the 2378 L1B channels are copied unchanged into the 2645 channel array used in L1C. The dead or noisy channels in the L1B and new channels in the spectral gaps of L1B are filled using a Principal Component technique. We illustrate two applications of AIRS L1C: 1) to integrate over the band of broadband instruments such as MODIS and 2) resampling to emulate other hyperspectral instruments such as CrIS. The L1C data product will greatly facilitate the use of AIRS data for cross-calibration with other instruments. C1 [Manning, Evan M.; Aumann, Hartmut H.; Behrangi, Ali] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Manning, EM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Evan.M.Manning@jpl.nasa.gov NR 3 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180E DI 10.1117/12.2061967 PG 12 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500010 ER PT S AU Markham, BL Barsi, JA Kaita, E Ong, L Haque, MO Mishra, N Czapla-Myers, J Pahlevan, N Helder, D AF Markham, Brian L. Barsi, Julia A. Kaita, Edward Ong, Lawrence Haque, Md Obaidul Mishra, Nischal Czapla-Myers, Jeffrey Pahlevan, Nima Helder, Dennis BE Butler, JJ Xiong, X Gu, X TI Landsat-8 Operational Land Imager on-orbit radiometric calibration and stability SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE Landsat-8; Radiometry; Calibration; OLI ID SITE AB The Operational Land Imager (OLI) on Landsat-8 has been collecting imagery on orbit for 17 months. The radiometric performance of the OLI is monitored using on-board systems (lamps and solar diffusers) as well as by reference to lunar and ground measurements and other satellite systems. Over this nearly 1 1/2 years of operation the OLI has been extremely radiometrically stable in all of its 9 spectral bands. Only the shortest wavelength band, centered at 443 nm, which has degraded about 0.8%, has changed by more than the variability among the measurements (similar to 0.2%). This consistency between the lamps, diffusers, moon, and ground measurements lends high confidence to these statements, which is unusual for a system so early in its lifetime. Comparisons to other satellite systems and ground measurements show that the OLI is calibrated to within requirements and generally better than 3% in both radiance and reflectance. C1 [Markham, Brian L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Markham, BL (reprint author), NASA, Goddard Space Flight Ctr, Code 618, Greenbelt, MD 20771 USA. EM Brian.L.Markham@nasa.gov OI Czapla-Myers, Jeffrey/0000-0003-4804-5358; Pahlevan, Nima/0000-0002-5454-5212 NR 5 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 921815 DI 10.1117/12.2063159 PG 7 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500032 ER PT S AU McCorkel, J AF McCorkel, J. BE Butler, JJ Xiong, X Gu, X TI Cross-calibration of Earth Observing System Terra satellite sensors MODIS and ASTER SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE MODIS; ASTER; intercomparison; intercalibration; cross-calibration; atmospheric correction; Hyperion; PICS; prelaunch characterization AB The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McCorkel, J (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI McCorkel, Joel/D-4454-2012 OI McCorkel, Joel/0000-0003-2853-2036 NR 6 TC 0 Z9 0 U1 11 U2 18 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180X DI 10.1117/12.2062498 PG 9 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500026 ER PT S AU Meister, G Eplee, RE Franz, BA AF Meister, Gerhard Eplee, Robert E. Franz, Bryan A. BE Butler, JJ Xiong, X Gu, X TI Corrections to MODIS Terra calibration and polarization trending derived from ocean color products SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE remote sensing; scanners; on-orbit calibration; polarization ID RESOLUTION IMAGING SPECTRORADIOMETER; REFLECTIVE SOLAR BANDS; SENSITIVITY AB Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the Sea WiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only). C1 [Meister, Gerhard; Franz, Bryan A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Meister, G (reprint author), NASA, Goddard Space Flight Ctr, Code 616, Greenbelt, MD 20771 USA. EM Gerhard.Meister@nasa.gov RI Franz, Bryan/D-6284-2012 OI Franz, Bryan/0000-0003-0293-2082 NR 17 TC 1 Z9 1 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180V DI 10.1117/12.2062714 PG 14 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500024 ER PT S AU Montanaro, M Barsi, J Lunsford, A Rohrbach, S Markham, B AF Montanaro, Matthew Barsi, Julia Lunsford, Allen Rohrbach, Scott Markham, Brian BE Butler, JJ Xiong, X Gu, X TI Performance of the Thermal Infrared Sensor on-board Landsat 8 over the First Year On-Orbit SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE Landsat; LDCM; TIRS; Radiometric Calibration; Noise; Stability; Stray Light AB The Thermal Infrared Sensor (TIRS) has completed over one year in Earth orbit following its launch on-board Landsat 8 in February 2013. During that time, TIRS has undergone initial on-orbit checkout and commissioning and has transitioned to an operational Landsat payload obtaining 500+ Earth scenes a day. The instrument was radiometrically calibrated during pre-flight characterization testing in order to convert raw sensor signal into accurate at-aperture radiance. The pre-launch calibration was adjusted during the on-orbit checkout of the instrument to account for relative pixel-to-pixel artifacts such as striping. The accuracy of the relative and absolute radiometric calibration depends in part on the stability of the instrument response over time. To monitor stability, TIRS routinely views its onboard calibration sources, which include a variable temperature blackbody and a port that allows the instrument to view deep space. The onboard calibration is validated by in-situ measurements of large water bodies by instrumented buoys. In addition, the spacecraft is periodically slewed to image the moon across the field-of-view of TIRS. The moon provides a high contrast source which allows for studies of stray light and ghosting to be performed. These on-orbit methods provide the means to characterize the TIRS instrument performance post-launch. Analyses of these datasets over the first year on orbit indicate that, while the instrument itself is internally stable to within requirements, both bands were miscalibrated by at least 2 K (@300 K) and had higher than expected variability in the in-situ validation data. This has been traced to a stray light issue which is also causing banding in Earth scenes. An initial bias correction was made in February 2014 and various approaches are being explored to correct the ghosting issues associated with the stray light. C1 [Montanaro, Matthew] Sigma Space Corp, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20706 USA. RP Montanaro, M (reprint author), Sigma Space Corp, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20706 USA. EM matthew.montanaro@nasa.gov NR 6 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 921817 DI 10.1117/12.2063457 PG 14 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500034 ER PT S AU Xiong, X Wenny, B Wu, A Angal, A Geng, X Chen, H Dodd, J Link, D Madhavan, S Chen, N Li, Y Iacangelo, S Barnes, W Salomonson, V AF Xiong, X. Wenny, B. Wu, A. Angal, A. Geng, X. Chen, H. Dodd, J. Link, D. Madhavan, S. Chen, N. Li, Y. Iacangelo, S. Barnes, W. Salomonson, V. BE Butler, JJ Xiong, X Gu, X TI Status of Terra MODIS Operation, Calibration, and Performance SO EARTH OBSERVING SYSTEMS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Observing Systems XIX CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE Terra; MODIS; calibration; on-board calibrators; solar diffuser; blackbody ID REFLECTIVE SOLAR BANDS; ON-ORBIT CALIBRATION AB Since launch in December 1999, Terra MODIS has successfully operated for nearly 15 years, making continuous observations. Data products derived from MODIS observations have significantly contributed to a wide range of studies of key geophysical parameters of the earth's eco-system of land, ocean, and atmosphere, and their changes over time. The quality of MODIS data products relies on the dedicated effort to monitor and sustain instrument health and operation, to calibrate and update sensor parameters and properties, and to improve calibration algorithms. MODIS observations are made in 36 spectral bands, covering wavelengths from visible to long-wave infrared. The reflective solar bands (1-19 and 26) are primarily calibrated by a solar diffuser (SD) panel and regularly scheduled lunar observations. The thermal emissive bands (20-25 and 2736) calibration is referenced to an on-board blackbody (BB) source. On-orbit changes in the sensor spectral and spatial characteristics are monitored by a spectroradiometric calibration assembly (SRCA). This paper provides an overview of Terra MODIS on-orbit operation and calibration activities and implementation strategies. It presents and summarizes sensor on-orbit performance using nearly 15 years of data from its telemetry, on-board calibrators, and lunar observations. Also discussed in this paper are changes in sensor characteristics, corrections applied to maintain MODIS level 1B (L1B) data quality, and efforts for future improvements. C1 [Xiong, X.] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Xiong, X (reprint author), NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. NR 15 TC 1 Z9 1 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-245-1 J9 PROC SPIE PY 2014 VL 9218 AR 92180O DI 10.1117/12.2062645 PG 12 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HP UT WOS:000348319500018 ER PT S AU Huddleston, LL Roeder, WP Morabito, DD D'Addario, L Morgan, JG Barbre, RE Decker, RK Geldzahler, B Seibert, MA Miller, MJ AF Huddleston, Lisa L. Roeder, William P. Morabito, David D. D'Addario, Larry Morgan, Jennifer G. Barbre, Robert E., Jr. Decker, Ryan K. Geldzahler, Barry Seibert, Marc A. Miller, Michael J. BE Michel, U Schulz, K Ehlers, M Nikolakopoulos, KG Civco, DL TI Remote sensing at the NASA Kennedy Space Center and the Eastern Range: a perspective from the ground up SO EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Earth Resources and Environmental Remote Sensing/GIS Applications V CY SEP 23-25, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Remote sensing; Eastern Range (ER); Kennedy Space Center (KSC); Cape Canaveral Air Force Station (CCAFS) weather; radar; lightning sensors; Doppler Radar Wind Profilers (DRWPs); antenna arrays; atmospheric fluctuations; coherent uplink; phased arrays; adaptive optics; site test interferometers (STIs) AB This paper provides an overview of ground based operational remote sensing activities that enable a broad range of missions at the Eastern Range (ER), which includes the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) and U.S. Air Force Cape Canaveral Air Force Station (CCAFS). Many types of sensors are in use by KSC and across the ER. We examine remote sensors for winds, lightning and electric fields, precipitation and storm hazards. These sensors provide data that are used in real-time to evaluate launch commit criteria during space launches, major ground processing operations in preparation for space launches, issuing weather warnings/watches/advisories to protect over 25,000 people and facilities worth over $20 billion, and routine weather forecasts. The data from these sensors are archived to focus NASA launch vehicle design studies, to develop forecast techniques, and for incident investigation. The wind sensors include the 50-MHz and 915-MHz Doppler Radar Wind Profilers (DRWP) and the Doppler capability of the weather surveillance radars. The atmospheric electricity sensors include lightning aloft detectors, cloud-to-ground lightning detectors, and surface electric field mills. The precipitation and storm hazards sensors include weather surveillance radars. Next, we discuss a new type of remote sensor that may lead to better tracking of near-Earth asteroids versus current capabilities. The Ka Band Objects Observation and Monitoring (KaBOOM) is a phased array of three 12 meter (m) antennas being built as a technology demonstration for a future radar system that could be used to track deep-space objects such as asteroids. Transmissions in the Ka band allow for wider bandwidth than at lower frequencies, but the signals are also far more susceptible to de-correlation from turbulence in the troposphere, as well as attenuation due to water vapor, which is plentiful in the Central Florida atmosphere. If successful, KaBOOM will have served as the pathfinder for a larger and more capable instrument that will enable tracking 15 m asteroids up to 72 million kilometers (km) away, about half the distance to the Sun and five times further than we can track today. Finally, we explore the use of Site Test Interferometers (STI) as atmospheric sensors. The STI antennas continually observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. STIs are usually located near existing or candidate antenna array sites to statistically characterize atmospheric phase delay fluctuation effects for the site. An STI measures the fluctuations in the difference of atmospheric delay from an extraterrestrial source to two or more points on the Earth. There is a three-element STI located at the KaBOOM site at KSC. C1 [Huddleston, Lisa L.; Morgan, Jennifer G.; Seibert, Marc A.; Miller, Michael J.] NASA, Kennedy Space Ctr, FL 32815 USA. [Roeder, William P.] US Air Force, Patrick AFB, FL USA. [Morabito, David D.; D'Addario, Larry] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. [Barbre, Robert E., Jr.] Marshall Space Flight Ctr, NASA, Pasadena, CA USA. [Decker, Ryan K.] Marshall Space Flight Ctr, NASA, Huntsville, AL USA. [Geldzahler, Barry] NASA, Washington, DC USA. RP Huddleston, LL (reprint author), NASA, Kennedy Space Ctr, FL 32815 USA. EM lisa.l.huddleston@nasa.gov NR 33 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-308-3 J9 PROC SPIE PY 2014 VL 9245 AR UNSP 924102 DI 10.1117/12.2085784 PG 16 WC Geosciences, Multidisciplinary; Remote Sensing; Optics SC Geology; Remote Sensing; Optics GA BB9HM UT WOS:000348318200001 ER PT S AU Beck, BS AF Beck, Benjamin S. BE Kundu, T TI Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner SO HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Health Monitoring of Structural and Biological Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE Acoustic liners; acoustic metamaterials; grazing incidence; transmission loss; absorption AB To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound. C1 NASA, Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23665 USA. RP Beck, BS (reprint author), NASA, Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23665 USA. NR 12 TC 0 Z9 0 U1 1 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9990-5 J9 PROC SPIE PY 2014 VL 9064 AR 906421 DI 10.1117/12.2059834 PG 10 WC Engineering, Biomedical; Engineering, Civil; Optics SC Engineering; Optics GA BB9AW UT WOS:000348027200053 ER PT S AU Mesnil, O Leckey, CAC Ruzzene, M AF Mesnil, Olivier Leckey, Cara A. C. Ruzzene, Massimo BE Kundu, T TI Instantaneous wavenumber estimation for damage quantification in layered plate structures SO HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Health Monitoring of Structural and Biological Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE Structural health monitoring; Damage detection in composites plates; Wave propagation ID COMPOSITES AB Guided wavefield detection is at the basis of a number of promising techniques for the identification and the characterization of damage in plate structures. Among the processing techniques proposed, the estimation of instantaneous and local wavenumbers can lead to effective metrics that quantify the extent of delaminations in composite plates. This paper illustrates the application of instantaneous and local wavenumber damage quantification techniques for high frequency guided wave interrogation. The proposed methodologies can be considered as first steps towards a hybrid structural health monitoring/nondestructive evaluation approach for damage assessment in composites. C1 [Mesnil, Olivier; Ruzzene, Massimo] Georgia Inst Technol, D Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Ruzzene, Massimo] Georgia Inst Technol, G W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Leckey, Cara A. C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Mesnil, O (reprint author), Georgia Inst Technol, D Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. EM omesnil3@gatech.edu FU NASA LaRC [NRA NNH11ZEA001N-VSST1]; Georgia Tech [NRA NNH11ZEA001N-VSST1] FX The work is funded by a collaborative agreement (NRA NNH11ZEA001N-VSST1) between NASA LaRC and Georgia Tech. The NASA support for this effort is acknowledged NR 6 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9990-5 J9 PROC SPIE PY 2014 VL 9064 AR UNSP 90640D DI 10.1117/12.2044670 PG 9 WC Engineering, Biomedical; Engineering, Civil; Optics SC Engineering; Optics GA BB9AW UT WOS:000348027200010 ER PT S AU Huddleston, LL Roeder, WP Morabito, DD D'Addario, L Morgan, JG Barbre, RE Deckere, RK Geldzahler, B Seibert, MA Miller, MJ AF Huddleston, Lisa L. Roeder, William P. Morabito, David D. D'Addario, Larry Morgan, Jennifer G. Barbre, Robert E. Deckere, Ryan K. Geldzahler, Barry Seibert, Marc A. Miller, Michael J. BE Huang, B Lopez, S Wu, Z TI Remote sensing at the NASA Kennedy Space Center and the Eastern Range: a perspective from the ground up SO HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High-Performance Computing in Remote Sensing IV CY SEP 22-23, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Remote sensing; Eastern Range (ER); Kennedy Space Center (KSC); Cape Canaveral Air Force Station (CCAFS) weather; radar; lightning sensors; Doppler Radar Wind Profilers (DRWPs); antenna arrays; atmospheric fluctuations; coherent uplink; phased arrays; adaptive optics; site test interferometers (STIs) AB This paper provides an overview of ground based operational remote sensing activities that enable a broad range of missions at the Eastern Range (ER), which includes the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) and U.S. Air Force Cape Canaveral Air Force Station (CCAFS). Many types of sensors are in use by KSC and across the ER. We examine remote sensors for winds, lightning and electric fields, precipitation and storm hazards. These sensors provide data that are used in real-time to evaluate launch commit criteria during space launches, major ground processing operations in preparation for space launches, issuing weather warnings/watches/advisories to protect over 25,000 people and facilities worth over $20 billion, and routine weather forecasts. The data from these sensors are archived to focus NASA launch vehicle design studies, to develop forecast techniques, and for incident investigation. The wind sensors include the 50-MHz and 915-MHz Doppler Radar Wind Profilers (DRWP) and the Doppler capability of the weather surveillance radars. The atmospheric electricity sensors include lightning aloft detectors, cloud-to-ground lightning detectors, and surface electric field mills. The precipitation and storm hazards sensors include weather surveillance radars. Next, we discuss a new type of remote sensor that may lead to better tracking of near-Earth asteroids versus current capabilities. The Ka Band Objects Observation and Monitoring (KaBOOM) is a phased array of three 12 meter (m) antennas being built as a technology demonstration for a future radar system that could be used to track deep-space objects such as asteroids. Transmissions in the Ka band allow for wider bandwidth than at lower frequencies, but the signals are also far more susceptible to de-correlation from turbulence in the troposphere, as well as attenuation due to water vapor, which is plentiful in the Central Florida atmosphere. If successful, KaBOOM will have served as the pathfinder for a larger and more capable instrument that will enable tracking 15 m asteroids up to 72 million kilometers (km) away, about half the distance to the Sun and five times further than we can track today. Finally, we explore the use of Site Test Interferometers (STI) as atmospheric sensors. The STI antennas continually observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. STIs are usually located near existing or candidate antenna array sites to statistically characterize atmospheric phase delay fluctuation effects for the site. An STI measures the fluctuations in the difference of atmospheric delay from an extraterrestrial source to two or more points on the Earth. There is a three-element STI located at the KaBOOM site at KSC. C1 [Huddleston, Lisa L.; Morgan, Jennifer G.; Seibert, Marc A.; Miller, Michael J.] NASA, Kennedy Space Ctr, Orlando, FL 32815 USA. [Roeder, William P.] United States Air Force, Patrick Air Force Base, Orlando, FL USA. [Morabito, David D.; D'Addario, Larry] CALTECH, Natl Aeronaut & Space Adm, Jet Prop Lab, Pasadena, CA USA. [Barbre, Robert E.; Deckere, Ryan K.] Natl Aeronaut & Space Adm, Marshall Space Flight Ctr, Washington, DC USA. [Seibert, Marc A.] Natl Aeronaut & Space Adm, Washington, DC USA. RP Huddleston, LL (reprint author), NASA, Kennedy Space Ctr, Orlando, FL 32815 USA. EM lisa.l.huddleston@nasa.gov NR 34 TC 0 Z9 0 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-310-6 J9 PROC SPIE PY 2014 VL 9247 AR UNSP 924102 DI 10.1117/12.2085784 PG 16 WC Engineering, Electrical & Electronic; Remote Sensing; Optics SC Engineering; Remote Sensing; Optics GA BB9CA UT WOS:000348127200001 ER PT S AU Huddleston, LL Roeder, WP Morabito, DD D'Addario, L Morgan, JG Barbre, RE Decker, RK Geldzahler, B Seibert, MA Miller, MJ AF Huddleston, Lisa L. Roeder, William P. Morabito, David D. D'Addario, Larry Morgan, Jennifer G. Barbre, Robert E., Jr. Decker, Ryan K. Geldzahler, Barry Seibert, Marc A. Miller, Michael J. BE Bruzzone, L Benediktsson, JA Bovolo, F TI Remote sensing at the NASA Kennedy Space Center and the Eastern Range: a perspective from the ground up SO IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Image and Signal Processing for Remote Sensing XX CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Remote sensing; Eastern Range (ER); Kennedy Space Center (KSC); Cape Canaveral Air Force Station (CCAFS) weather; radar; lightning sensors; Doppler Radar Wind Profilers (DRWPs); antenna arrays; atmospheric fluctuations; coherent uplink; phased arrays; adaptive optics; site test interferometers (STIs) AB This paper provides an overview of ground based operational remote sensing activities that enable a broad range of missions at the Eastern Range (ER), which includes the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) and U.S. Air Force Cape Canaveral Air Force Station (CCAFS). Many types of sensors are in use by KSC and across the ER. We examine remote sensors for winds, lightning and electric fields, precipitation and storm hazards. These sensors provide data that are used in real-time to evaluate launch commit criteria during space launches, major ground processing operations in preparation for space launches, issuing weather warnings/watches/advisories to protect over 25,000 people and facilities worth over $20 billion, and routine weather forecasts. The data from these sensors are archived to focus NASA launch vehicle design studies, to develop forecast techniques, and for incident investigation. The wind sensors include the 50-MHz and 915-MHz Doppler Radar Wind Profilers (DRWP) and the Doppler capability of the weather surveillance radars. The atmospheric electricity sensors include lightning aloft detectors, cloud-to-ground lightning detectors, and surface electric field mills. The precipitation and storm hazards sensors include weather surveillance radars. Next, we discuss a new type of remote sensor that may lead to better tracking of near-Earth asteroids versus current capabilities. The Ka Band Objects Observation and Monitoring (KaBOOM) is a phased array of three 12 meter (m) antennas being built as a technology demonstration for a future radar system that could be used to track deep-space objects such as asteroids. Transmissions in the Ka band allow for wider bandwidth than at lower frequencies, but the signals are also far more susceptible to de-correlation from turbulence in the troposphere, as well as attenuation due to water vapor, which is plentiful in the Central Florida atmosphere. If successful, KaBOOM will have served as the pathfinder for a larger and more capable instrument that will enable tracking 15 m asteroids up to 72 million kilometers (km) away, about half the distance to the Sun and five times further than we can track today. Finally, we explore the use of Site Test Interferometers (STI) as atmospheric sensors. The STI antennas continually observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. STIs are usually located near existing or candidate antenna array sites to statistically characterize atmospheric phase delay fluctuation effects for the site. An STI measures the fluctuations in the difference of atmospheric delay from an extraterrestrial source to two or more points on the Earth. There is a three-element STI located at the KaBOOM site at KSC. C1 [Huddleston, Lisa L.; Morgan, Jennifer G.; Seibert, Marc A.; Miller, Michael J.] NASA, Kennedy Space Ctr, FL 32815 USA. [Roeder, William P.] United States Air Force, Patrick Air Force Base, Washington, DC USA. [Morabito, David D.; D'Addario, Larry] CALTECH, Natl Aeronaut & Space Adm, Jet Prop Lab, Pasadena, CA USA. [Barbre, Robert E., Jr.; Decker, Ryan K.] Natl Aeronaut & Space Adm, Marshall Space Flight Ctr, Washington, DC USA. [Geldzahler, Barry] Natl Aeronaut & Space Adm, Washington, DC USA. RP Huddleston, LL (reprint author), NASA, Kennedy Space Ctr, FL 32815 USA. EM lisa.l.huddleston@nasa.gov NR 34 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-307-6 J9 PROC SPIE PY 2014 VL 9244 AR UNSP 924102 DI 10.1117/12.2085784 PG 16 WC Engineering, Electrical & Electronic; Remote Sensing; Optics SC Engineering; Remote Sensing; Optics GA BB9CB UT WOS:000348128500001 ER PT S AU Smith, GL Manalo-Smith, N Priestley, K AF Smith, G. Louis Manalo-Smith, Natividad Priestley, Kory BE Bruzzone, L Benediktsson, JA Bovolo, F TI Spatial Sampling Considerations of the CERES (Clouds and Earth Radiant Energy System) Instrument SO IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Image and Signal Processing for Remote Sensing XX CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE CERES; image analysis; spatial sampling; blurring; aliasing; Terra; Aqua; Suomi/NPP AB The CERES (Clouds and Earth Radiant Energy System) instrument is a scanning radiometer with three channels for measuring Earth radiation budget. At present CERES models are operating aboard the Terra, Aqua and Suomi/NPP spacecraft and flights of CERES instruments are planned for the JPSS-1 spacecraft and its successors. CERES scans from one limb of the Earth to the other and back. The footprint size grows with distance from nadir simply due to geometry so that the size of the smallest features which can be resolved from the data increases and spatial sampling errors increase with nadir angle. This paper presents an analysis of the effect of nadir angle on spatial sampling errors of the CERES instrument. The analysis performed in the Fourier domain. Spatial sampling errors are created by smoothing of features which are the size of the footprint and smaller, or blurring, and inadequate sampling, that causes aliasing errors. These spatial sampling errors are computed in terms of the system transfer function, which is the Fourier transform of the point response function, the spacing of data points and the spatial spectrum of the radiance field. C1 [Smith, G. Louis] NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. [Manalo-Smith, Natividad; Priestley, Kory] Sci Syst Applicat Inc, Hampton, VA USA. RP Smith, GL (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM George.l.smith@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-307-6 J9 PROC SPIE PY 2014 VL 9244 AR UNSP 92441O DI 10.1117/12.2065735 PG 8 WC Engineering, Electrical & Electronic; Remote Sensing; Optics SC Engineering; Remote Sensing; Optics GA BB9CB UT WOS:000348128500048 ER PT J AU Chang, CC Yang, SC Keppenne, C AF Chang, Chih-Chien Yang, Shu-Chih Keppenne, Christian TI Applications of the Mean Recentering Scheme to Improve Typhoon Track Prediction: A Case Study of Typhoon Nanmadol (2011) SO JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN LA English DT Article DE EnKF; ensemble forecast; typhoon prediction ID TROPICAL CYCLONE TRACK; ENSEMBLE KALMAN FILTER; POTENTIAL VORTICITY DIAGNOSIS; WESTERN NORTH PACIFIC; DATA ASSIMILATION; SURFACE-TEMPERATURE; GLOBAL ENSEMBLE; FORECASTS; MODEL; CIRCULATION AB Under strong nonlinear dynamics, the assumption of a Gaussian distribution for an ensemble may be strongly violated, and thus the mean of the ensemble cannot be the best estimate for the atmosphere. A mean recentering (MRC) scheme is proposed to handle a track ensemble that has a strong non-Gaussian distribution when the track prediction is conducted under a highly uncertain condition. The validity of the MRC scheme is confirmed using a case study of Typhoon Nanmadol in 2011, which moves northward initially but turns westward sharply at 0000UTC 24 August. Factors contributing to Nanmadol's movement prediction include the saddle field between typhoons Nanmadol and Talas, the development of the subtropical high on the north side of both typhoons, and Nanmadol's own circulation. The MRC scheme successfully improves the typhoon track prediction with a regional ensemble prediction system based on the Weather and Research Forecasting (WRF) model. The corrections from the MRC scheme allow the ensemble to capture the realistic behavior when the original ensemble track prediction is poor. Such ensemble adjustment can provide positive feedback to the background error covariance used in the ensemble-based data assimilation system. Results from the WRF-local ensemble transform Kalman filter (WRF-LETKF) system incorporated with the MRC scheme show that the ensemble track prediction can be significantly improved during the WRF-LETKF's spin-up period when Nanmadol movement is highly uncertain. By dynamically adjusting the MRC scheme, the ensemble avoids suffering from the non-Gaussian and over-dispersive issues observed in the original ensemble prediction. C1 [Chang, Chih-Chien; Yang, Shu-Chih] Natl Cent Univ, Dept Atmospher Sci, Jhongli, Taiwan. [Yang, Shu-Chih] RIKEN, Adv Inst Computat Sci, Wako, Saitama, Japan. [Keppenne, Christian] NASA GSFC, Global Modeling & Assimilat Off, Greenbelt, MD USA. RP Yang, SC (reprint author), Sicence Bldg II,300 Jhong Rd, Jhongli, Taiwan. EM shuchih.yang@atm.ncu.edu.tw FU National Science Council [NSC-102-2111-M-008-020-MY3]; National Space Organization [NSPO-S-102032] FX The authors greatly appreciate their valuable discussions with Prof. Chun-Chien Wu from National Taiwan University, Profs. Ching-Yung Huang and Yu-Ching Liou from National Central University, Dr. Takemasa Miyoshi from RIKEN, and Dr. Chris Snyder from UCAR. The authors are also very grateful for all the comments and suggestions from three anonymous reviewers, which have greatly improved this manuscript. S.-C. Yang and C.-C. Chang are sponsored by the National Science Council grant NSC-102-2111-M-008-020-MY3 and National Space Organization grant NSPO-S-102032. This research was supported by computational resource from the Center for Computational Geophysics of NCU, CCG Contribution Number: NCU-CCG102-00005. NR 58 TC 4 Z9 4 U1 2 U2 7 PU METEOROLOGICAL SOC JAPAN PI TOKYO PA C/O JAPAN METEOROLOGICAL AGENCY 1-3-4 OTE-MACHI, CHIYODA-KU, TOKYO, 100-0004, JAPAN SN 0026-1165 EI 2186-9057 J9 J METEOROL SOC JPN JI J. Meteorol. Soc. Jpn. PY 2014 VL 92 IS 6 BP 559 EP 584 DI 10.2151/jmsj.2014-604 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA0EN UT WOS:000348588700005 ER PT S AU De Young, R Carrion, W Pliutau, D AF De Young, Russell Carrion, William Pliutau, Denis BE Singh, UN Pappalardo, G TI A compact mobile ozone Lidar for atmospheric ozone and aerosol profiling SO LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE ozone; lidar; air quality; boundary layer AB A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consists of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented. C1 [De Young, Russell] NASA, Langley Res Ctr, MS401A, Hampton, VA 23681 USA. [Carrion, William] Coherent Applicat, Hampton, VA USA. [Pliutau, Denis] Syst & Applicat Inc, Hampton, VA USA. RP De Young, R (reprint author), NASA, Langley Res Ctr, MS401A, Hampton, VA 23681 USA. EM Russell.j.deyoung@nasa.gov FU NASA HQ FX The authors wish to thanks the funding support of Jack Kaye and Jay Al-Saadi, NASA HQ and the very helpful direction from Mike Newchurch, TOLNet PI. NR 3 TC 0 Z9 0 U1 0 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-309-0 J9 PROC SPIE PY 2014 VL 9246 AR UNSP 924608 DI 10.1117/12.2067240 PG 8 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HH UT WOS:000348314400004 ER PT S AU Lolli, S Welton, EJ Campbell, JR Eloranta, E Holben, BN Chew, BN Salinas, SV AF Lolli, Simone Welton, Ellsworth J. Campbell, James R. Eloranta, Edwin Holben, Brent N. Chew, Boon Ning Salinas, Santo V. BE Singh, UN Pappalardo, G TI High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison during the 2012 7-SEAS Field Campaign at Singapore SO LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE MPLNET; HSRL; MPL; lidar; aerosol transport ID NETWORK AB From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime. C1 [Lolli, Simone] GSFC, NASA, JCET, 1000 Hilltop Circle, Baltimore, MD 20771 USA. [Welton, Ellsworth J.; Holben, Brent N.] NASA GSFC, Greenbelt, MD USA. [Campbell, James R.; Chew, Boon Ning; Salinas, Santo V.] Natl Univ Singapore, CRISP, Singapore, Singapore. RP Lolli, S (reprint author), GSFC, NASA, JCET, 1000 Hilltop Circle, Baltimore, MD 20771 USA. NR 13 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-309-0 J9 PROC SPIE PY 2014 VL 9246 AR UNSP 92460C DI 10.1117/12.2067812 PG 6 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HH UT WOS:000348314400008 ER PT S AU Petros, M Singh, UN Yu, J Kavaya, MJ Koch, G AF Petros, Mulugeta Singh, U. N. Yu, J. Kavaya, M. J. Koch, G. BE Singh, UN Pappalardo, G TI 2-micron Coherent Doppler Lidar Instrument Advancements for Tropospheric Wind Measurement SO LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Solid State Lasers; Coherent Doppler lidar AB Knowledge derived from global tropospheric wind measurement is an important constituent of our overall understanding of climate behavior [1]. Accurate weather prediction saves lives and protects properties from destructions. High-energy 2-micron laser is the transmitter of choice for coherent Doppler wind detection. In addition to the eye-safety, the wavelength of the transmitter suitably matches the aerosol size in the lower troposphere. Although the technology of the 2-micron laser has been maturing steadily, lidar derived wind data is still a void in the global weather database. In the last decade, researchers at NASA Langley Research Center (LaRC) have been engaged in this endeavor, contributing to the scientific database of 2-micron lidar transmitters. As part of this effort, an in depth analysis of the physics involved in the workings of the Ho: Tm laser systems have been published. In the last few years, we have demonstrated lidar transmitter with over1Joule output energy. In addition, a large body of work has been done in characterizing new laser materials and unique crystal configurations to enhance the efficiency and output energy of the 2-micron laser systems. At present 2-micron lidar systems are measuring wind from both ground and airborne platforms. This paper will provide an overview of the advancements made in recent years and the technology maturity levels attained. C1 [Petros, Mulugeta; Singh, U. N.; Yu, J.; Kavaya, M. J.; Koch, G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Petros, M (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM mulugeta.petros-1@nasa.gov NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-309-0 J9 PROC SPIE PY 2014 VL 9246 AR 92460A DI 10.1117/12.2067676 PG 6 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HH UT WOS:000348314400006 ER PT S AU Pitts, MC Poole, LR AF Pitts, Michael C. Poole, Lamont R. BE Singh, UN Pappalardo, G TI A Synopsis of CALIPSO Polar Stratospheric Cloud Observations from 2006-2014 SO LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE CALIPSO; polar stratospheric cloud; CALIOP; PSC; ozone ID LIDAR; SEASON AB Polar stratospheric clouds (PSCs) are known to play key roles in the springtime chemical depletion of ozone at high latitudes. PSC particles provide sites for heterogeneous chemical reactions that transform stable chlorine and bromine reservoir species into highly reactive ozone-destructive forms. Furthermore, large nitric acid trihydrate (NAT) PSC particles can irreversibly redistribute odd nitrogen through gravitational sedimentation, which prolongs the ozone depletion process by slowing the reformation of the stable chlorine reservoirs. Spaceborne observations from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite are providing a rich new dataset for studying PSCs. CALIOP began data collection in mid-June 2006 and has since acquired, on average, over 300,000 backscatter profiles daily at latitudes between 55 degrees and 82 degrees in both hemispheres. PSCs are detected in the CALIOP backscatter profiles as enhancements above the background aerosol in either 532-nm scattering ratio (the ratio of total-to-molecular backscatter) or 532-nm perpendicular-polarized backscatter. CALIOP PSCs are separated into composition classes based on the ensemble 532-nm scattering ratio and 532-nm particulate depolarization ratio (which is sensitive to the presence of non-spherical, i.e. NAT and ice particles). In this paper, we provide an overview of the CALIOP PSC measurements and then examine the vertical and spatial distribution of PSCs in the Arctic and Antarctic on vortex-wide scales for entire PSC seasons over the more than eight-year data record. C1 [Pitts, Michael C.] NASA, Langley Res Ctr, 23A Langley Blvd, Hampton, VA 23681 USA. [Poole, Lamont R.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. RP Pitts, MC (reprint author), NASA, Langley Res Ctr, 23A Langley Blvd, Hampton, VA 23681 USA. NR 10 TC 0 Z9 0 U1 1 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-309-0 J9 PROC SPIE PY 2014 VL 9246 AR UNSP 92460B DI 10.1117/12.2068236 PG 10 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HH UT WOS:000348314400007 ER PT S AU Refaat, TF Petros, M Remus, R Yu, J Singh, UN AF Refaat, Tamer F. Petros, Mulugeta Remus, Ruben Yu, Jirong Singh, Upendra N. BE Singh, UN Pappalardo, G TI Laser Energy Monitor for Double-Pulsed 2-mu m IPDA Lidar Application SO LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Laser energy monitor; Double-pulsed laser; IPDA lidar; Integrated-path differential absorption lidar; Carbon dioxide; Pulse detection ID SENSITIVITY AB Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-mu m double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 mu s), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-mu m double-pulse laser energy monitor is presented. The design is based on a highspeed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed. C1 [Refaat, Tamer F.] Old Domin Univ, Appl Res Ctr, 12050 Jefferson Ave, Newport News, VA 23606 USA. [Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Refaat, TF (reprint author), Old Domin Univ, Appl Res Ctr, 12050 Jefferson Ave, Newport News, VA 23606 USA. FU NASA Earth Science Technology Office FX The authors would like to acknowledge NASA Earth Science Technology Office for the support of this work through funding the 2-mu m double-pulse CO2 IPDA lidar program. NR 9 TC 5 Z9 5 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-309-0 J9 PROC SPIE PY 2014 VL 9246 AR UNSP 924606 DI 10.1117/12.2070998 PG 8 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HH UT WOS:000348314400003 ER PT S AU Singh, UN Yu, JR Petros, M Refaat, TF Remus, RG Fay, JJ Reithmaier, K AF Singh, Upendra N. Yu, Jirong Petros, Mulugeta Refaat, Tamer F. Remus, Ruben G. Fay, James J. Reithmaier, Karl BE Singh, UN Pappalardo, G TI Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement SO LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X CY SEP 22-24, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Double-pulsed laser; IPDA lidar; Integrated-path differential absorption lidar; Carbon dioxide; DIAL ID ATMOSPHERIC CARBON-DIOXIDE; LASER AB Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 mu s and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-mu m direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-mu m IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity. C1 [Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben G.; Fay, James J.] NASA, Langley Res Ctr, 11 Langley Blvd, Hampton, VA 23681 USA. [Refaat, Tamer F.] Appl Res Ctr, Newport News, VA 23606 USA. [Reithmaier, Karl] Sci Syst Applicat Inc, Hampton, VA 23666 USA. RP Singh, UN (reprint author), NASA, Langley Res Ctr, 11 Langley Blvd, Hampton, VA 23681 USA. NR 25 TC 9 Z9 9 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-309-0 J9 PROC SPIE PY 2014 VL 9246 AR UNSP 924602 DI 10.1117/12.2069670 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HH UT WOS:000348314400001 ER PT J AU Bergmann, C Driggers, WB Hoffmayer, ER Campbell, MD Pellegrin, G AF Bergmann, Charles Driggers, William B., III Hoffmayer, Eric R. Campbell, Matthew D. Pellegrin, Gilmore TI Effects of Appendaged Circle Hook Use on Catch Rates and Deep Hooking of Black Sea Bass in a Recreational Fishery SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Editorial Material ID NORTH-CAROLINA; REEF FISHES; MORTALITY; SNAPPER; GROUPER; PERSPECTIVES; PERFORMANCE; INJURY; SIZE AB Previous studies have demonstrated that circle hooks modified with an appendage can reduce the occurrence of deep hooking in some fishes. To determine whether this modification affects total catch and deep-hooking rate of Black Sea Bass Centropristis striata in a recreational fishery off the coast of Florida, anglers were provided with standardized gear that included one appendaged and one nonappendaged hook. Both hook types were fished equally, and a greater number of Black Sea Bass were caught on appendaged hooks (n = D 301) than on nonappendaged hooks (n = 221). There was no significant difference in the mean TL (P = 0.80) of jaw-or deep-hooked fish during the study. Logistic regression was applied to the data using anatomical hooking location as the dependent variable and angler, hook position, and hook type as categorical factors. Hook type was the only significant variable in the final model (P = 0.03) in which fewer fish were deep hooked on appendaged hooks (0.96%) than on nonappendaged hooks (2.11%). Our findings indicate appendaged hooks are capable of reducing deep hooking of Black Sea Bass without reducing catch rates or altering size composition of the catch. C1 [Bergmann, Charles; Driggers, William B., III; Hoffmayer, Eric R.; Campbell, Matthew D.; Pellegrin, Gilmore] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39567 USA. RP Driggers, WB (reprint author), Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Mississippi Labs, PO Drawer 1207, Pascagoula, MS 39567 USA. EM william.driggers@noaa.gov OI Campbell, Matthew/0000-0002-0087-5291 NR 18 TC 0 Z9 0 U1 0 U2 1 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0275-5947 EI 1548-8675 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PY 2014 VL 34 IS 6 BP 1199 EP 1203 DI 10.1080/02755947.2014.956160 PG 5 WC Fisheries SC Fisheries GA AZ7IB UT WOS:000348391600015 ER PT S AU Daniels, J Smith, GL Priestley, KJ Thomas, S AF Daniels, Janet Smith, G. Louis Priestley, Kory J. Thomas, Susan BE Comeron, A Kassianov, EI Schafer, K Picard, RH Stein, K Gonglewski, JD TI Using lunar observations to validate pointing accuracy and geolocation, detector sensitivity stability and static point response of the CERES instruments SO REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XIX AND OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS XVII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Remote Sensing of Clouds and the Atmosphere XIX and Optics in Atmospheric Propagation and Adaptive Systems XVII CY SEP 22-25, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Aqua; calibration; CERES; Earth Radiation Budget; EOS; Moon; radiometry; remote sensing; Terra; validation AB Validation of in-orbit instrument performance is a function of stability in both instrument and calibration source. This paper describes a method using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. The Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, these in-orbit observations have become standardized and compiled for the Flight Models -1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance measurements studied are detector sensitivity stability, pointing accuracy and static detector point response function. This validation method also shows trends per CERES data channel of 0.8% per decade or less for Flight Models 1-4. Using instrument gimbal data and computed lunar position, the pointing error of each detector telescope, the accuracy and consistency of the alignment between the detectors can be determined. The maximum pointing error was 0.2 degrees in azimuth and 0.17 degrees in elevation which corresponds to an error in geolocation near nadir of 2.09 km. With the exception of one detector, all instruments were found to have consistent detector alignment from 2006 to present. All alignment error was within 0.1 degrees with most detector telescopes showing a consistent alignment offset of less than 0.02 degrees. C1 [Daniels, Janet; Smith, G. Louis; Thomas, Susan] Sci Syst & Applicat Inc, 1 Enterprise Pkwy, Hampton, VA 23666 USA. [Priestley, Kory J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Daniels, J (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy, Hampton, VA 23666 USA. NR 10 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-305-2 J9 PROC SPIE PY 2014 VL 9242 AR UNSP 92420X DI 10.1117/12.2065256 PG 12 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HJ UT WOS:000348316100027 ER PT S AU Xu, PQ Bhartia, PK Jaross, GR DeLand, MT Larsen, JC Fleig, A Kahn, D Zhu, T Chen, Z Gorkavyi, N Warner, J Linda, M Chen, H Kowitt, M Haken, M Hall, P AF Xu, Philippe Q. Bhartia, Pawan K. Jaross, Glen R. DeLand, Matthew T. Larsen, Jack C. Fleig, Albert Kahn, Daniel Zhu, Tong Chen, Zhong Gorkavyi, Nick Warner, Jeremy Linda, Mike Chen, Hong Kowitt, Mark Haken, Michael Hall, Peter BE Comeron, A Kassianov, EI Schafer, K Picard, RH Stein, K Gonglewski, JD TI Release 2 data products from the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler SO REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XIX AND OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS XVII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Remote Sensing of Clouds and the Atmosphere XIX and Optics in Atmospheric Propagation and Adaptive Systems XVII CY SEP 22-25, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Remote Sensing; Limb Scatter; Ozone Vertical Profiling; Hyperspectral; Retrieval Algorithm; Data Products ID PERFORMANCE; INSTRUMENT; MISSION; RECORD AB The OMPS Limb Profiler (LP) was launched on board the NASA Suomi National Polar-orbiting Partnership (SNPP) satellite in October 2011. OMPS-LP is a limb-scattering hyperspectral sensor that provides ozone profiling capability at 1.8 km vertical resolution from cloud top to 60 km altitude. The use of three parallel slits allows global coverage in approximately four days. We have recently completed a full reprocessing of all LP data products, designated as Release 2, that improves the accuracy and quality of these products. Level 1 gridded radiance (L1G) changes include intra-orbit and seasonal correction of variations in wavelength registration, revised static and intra-orbit tangent height adjustments, and simplified pixel selection from multiple images. Ozone profile retrieval changes include removal of the explicit aerosol correction, exclusion of channels contaminated by stratospheric OH emission, a revised instrument noise characterization, improved synthetic solar spectrum, improved pressure and temperature ancillary data, and a revised ozone climatology. Release 2 data products also include aerosol extinction coefficient profiles derived with the prelaunch retrieval algorithm. Our evaluation of OMPS LP Release 2 data quality is good. Zonal average ozone profile comparisons with Aura MLS data typically show good agreement, within 5-10% over the altitude range 20-50 km between 60 degrees S and 60 degrees N. The aerosol profiles agree well with concurrent satellite measurements such as CALIPSO and OSIRIS, and clearly detect exceptional events such as volcanic eruptions and the Chelyabinsk bolide in February 2013. C1 [Xu, Philippe Q.] Sci Applicat Intl Corp SAIC, Beltsville, MD 20705 USA. [Xu, Philippe Q.; Bhartia, Pawan K.; Jaross, Glen R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DeLand, Matthew T.; Larsen, Jack C.; Kahn, Daniel; Zhu, Tong; Chen, Zhong; Gorkavyi, Nick; Warner, Jeremy; Linda, Mike; Chen, Hong; Kowitt, Mark; Haken, Michael; Hall, Peter] SSAI, Lanham, MD 20706 USA. [Fleig, Albert] PITA Analyt Sci, Bethesda, MD 20817 USA. RP Xu, PQ (reprint author), Sci Applicat Intl Corp SAIC, Beltsville, MD 20705 USA. FU NASA Earth Science Division [NNG12HP08C] FX The authors wish to thank Rob Loughman, Didier Rault, Ghassan Taha, and many other people whose valuable contributions make the success of this project possible. OMPS LP data products and documentation are available at the web site http://ozoneaq. gsfc. nasa. gov/omps. The OMPS LP team is supported by the NASA Earth Science Division through contract NNG12HP08C. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-305-2 J9 PROC SPIE PY 2014 VL 9242 AR UNSP 92420K DI 10.1117/12.2067320 PG 7 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB9HJ UT WOS:000348316100015 ER PT S AU Hashmi, AJ Eftekhar, AA Adibi, A Amoozegar, F AF Hashmi, Ali J. Eftekhar, Ali A. Adibi, Ali Amoozegar, Farid BE Carapezza, EM Datskos, PG Tsamis, C TI Lower Bound on Number and Sizes of Telescopes in an Optical Array Receiver for Deep Space Optical Communication SO UNMANNED/UNATTENDED SENSORS AND SENSOR NETWORKS X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Unmanned/Unattended Sensors and Sensor Networks X CY SEP 24-25, 2014 CL Amsterdam, NETHERLANDS SP SPIE DE Deep-Space Optical Communication; Telescope Array Receiver; Atmospheric turbulence AB Free-Space optical communication is expected to revolutionize the deep-space communication by providing the high bandwidth data support for future solar and planetary exploration missions. Due to the cost and up-gradation constraints, an earth-based receiver seems to be a viable option. A large telescope acting as an optical antenna is required at the receiver end to support the reasonable data rates (at least in 10s of Mbps range). An array of smaller telescopes connected to fabricate a larger photon-collecting aperture is an attractive architecture. In this research, performance analyses of different array architectures are evaluated for a deep-space interplanetary optical communication link between Mars and Earth with an objective to find a lower bound on the number and sizes of individual telescopes in the array receiver. The achievable data rates are calculated for opposition and conjunction phases of Mars-Earth orbit. Various deleterious factors, such as background noise and atmospheric turbulence are also modeled in the simulations. Total aperture size of various array architectures are kept at 10 m. The comparison of results for different array architectures show that the performance of a receiver employing an array comprising of 135 telescopes with 0.86 m aperture diameter each is almost equivalent to a single telescope with 10 m aperture diameter. Further, if the diameter is reduced below this limit, the performance degradation is substantial. C1 [Hashmi, Ali J.] Natl Univ Sci & Technol, H-12, Islamabad, Pakistan. [Eftekhar, Ali A.; Adibi, Ali] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Amoozegar, Farid] CALTECH, Jet Prop Lab NASA, Pasadena, CA 91109 USA. RP Hashmi, AJ (reprint author), Natl Univ Sci & Technol, H-12, Islamabad, Pakistan. NR 8 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-311-3 J9 PROC SPIE PY 2014 VL 9248 AR UNSP 92480W DI 10.1117/12.2067004 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB9BY UT WOS:000348126000023 ER PT S AU Frost, SA Wright, CHG Streeter, RW Khan, MA Barrett, SF AF Frost, Susan A. Wright, Cameron H. G. Streeter, Robert W. Khan, Md. Arif Barrett, Steven F. BE Lakhtakia, A MartinPalma, RJ TI Bio-mimetic optical sensor for structural deflection measurement SO BIOINSPIRATION, BIOMIMETICS, AND BIOREPLICATION 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Bioinspiration, Biomimetics, and Bioreplication CY MAR 10-12, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers, Opt Soc So Calif DE optical sensor; bio-mimetic; target tracking; fly-eye sensor; deflection measurement AB Reducing the environmental impact of aviation is a primary goal of NASA aeronautics research. One approach to achieve this goal is to build lighter weight aircraft, which presents complex challenges due to a corresponding increase in structural flexibility. Wing flexibility can adversely affect aircraft performance from the perspective of aerodynamic efficiency and safety. Knowledge of the wing position during flight can aid active control methods designed to mitigate problems due to increased wing flexibility. Current approaches to measuring wing deflection, including strain measurement devices, accelerometers, or GPS solutions, and new technologies such as fiber optic strain sensors, have limitations for their practical application to flexible aircraft control. Hence, it was proposed to use a bio-mimetic optical sensor based on the fly-eye to track wing deflection in real-time. The fly-eye sensor has several advantages over conventional sensors used for this application, including light weight, low power requirements, fast computation, and a small form factor. This paper reports on the fly-eye sensor development and its application to real-time wing deflection measurement. C1 [Frost, Susan A.] NASA, Ames Res Ctr, POB 1,M-S 269-3, Moffett Field, CA 94035 USA. [Wright, Cameron H. G.; Streeter, Robert W.; Khan, Md. Arif; Barrett, Steven F.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82071 USA. RP Frost, SA (reprint author), NASA, Ames Res Ctr, POB 1,M-S 269-3, Moffett Field, CA 94035 USA. EM susan.frost@nasa.gov FU NASA Aeronautics Research Institute (NARI); NASA Ames Research Center; [NNX12AP80A] FX This work was supported in part by the NASA Aeronautics Research Institute (NARI) and by grant number NNX12AP80A from NASA Ames Research Center. NR 20 TC 0 Z9 0 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9981-3 J9 PROC SPIE PY 2014 VL 9055 AR UNSP 90550A DI 10.1117/12.2044975 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials; Robotics; Optics SC Engineering; Materials Science; Robotics; Optics GA BB9AX UT WOS:000348029000006 ER PT J AU Dow, CF Kulessa, B Rutt, IC Doyle, SH Hubbard, A AF Dow, C. F. Kulessa, B. Rutt, I. C. Doyle, S. H. Hubbard, A. TI Upper bounds on subglacial channel development for interior regions of the Greenland ice sheet SO JOURNAL OF GLACIOLOGY LA English DT Article DE Arctic glaciology; glacier hydrology; glacier modelling; ice-sheet modelling; subglacial processes ID FREE-SURFACE FLOW; DRAINAGE SYSTEM; SUPRAGLACIAL LAKE; GLACIER FLOW; WEST GREENLAND; OUTLET GLACIER; ACCELERATION; EVOLUTION; MODEL; MELT AB We use a simple numerical model to test whether surface water influx to the bed of the interior Greenland ice sheet has the potential to cause significant subglacial channel growth similar to that observed near the ice-sheet margin and at alpine glaciers. We examine the effects on channel growth from (1) rapid supraglacial lake drainage events and (2) sustained water input into moulins. By assuming that all drainage occurs through subglacial channels and by prescribing favorable pressure conditions at the domain inlet, the model can provide upper bounds on channel growth. Our results indicate that R-channels do not grow significantly within the limited period of high pressure associated with lake drainage events. Subsequent channel growth only occurs with sustained pressures above overburden. Rapid closure of channels at low pressures suggests channels in the interior are unlikely to draw significant quantities of water from nearby distributed networks. These results indicate that other drainage mechanisms such as turbulent sheets or linked-cavity networks are likely to be of greater importance for interior subglacial drainage than the growth of channels. C1 [Dow, C. F.; Kulessa, B.; Rutt, I. C.] Swansea Univ, Coll Sci, Glaciol Grp, Swansea, W Glam, Wales. [Doyle, S. H.; Hubbard, A.] Aberystwyth Univ, Ctr Glaciol, Dept Geog & Earth Sci, Aberystwyth, Dyfed, Wales. RP Dow, CF (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. EM christine.f.dow@nasa.gov RI Rutt, Ian/A-6307-2012; OI Kulessa, Bernd/0000-0002-4830-4949; Rutt, Ian/0000-0003-4015-6010; Hubbard, Alun/0000-0002-0503-3915 FU SKB-Posiva through the Greenland Analogue Project; UK Natural Environment Research Council (NERC) [NE/G007195/1]; NERC FX This project was funded by SKB-Posiva through the Greenland Analogue Project and UK Natural Environment Research Council (NERC) grant NE/G007195/1. C.F.D. was funded by a NERC doctoral scholarship. We thank Rickard Pettersson and Katrin Lindback for data, and Ed Bueler for helpful discussions and comments on an early draft of the manuscript. Alison Banwell and an anonymous reviewer are also thanked for constructive comments. NR 41 TC 9 Z9 9 U1 2 U2 13 PU INT GLACIOL SOC PI CAMBRIDGE PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PY 2014 VL 60 IS 224 BP 1044 EP 1052 DI 10.3189/2014JoG141093 PG 9 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AZ5QM UT WOS:000348275000002 ER PT S AU Berriman, GB Gelino, CR Goodrich, RW Holt, J Kong, M Laity, AC Mader, JA Swain, M Tran, HD AF Berriman, G. Bruce Gelino, Christopher R. Goodrich, Robert W. Holt, Jennifer Kong, Mihseh Laity, Anastasia C. Mader, Jeffrey A. Swain, Melanie Tran, Hien D. BE Chiozzi, G Radziwill, NM TI The Design and Operation of The Keck Observatory Archive SO SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Software and Cyberinfrastructure for Astronomy III CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE Archives; ground-based telescopes; software development; data management; metrics; software architecture AB The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck Observatory (WMKO) operate an archive for the Keck Observatory. At the end of 2013, KOA completed the ingestion of data from all eight active observatory instruments. KOA will continue to ingest all newly obtained observations, at an anticipated volume of 4 TB per year. The data are transmitted electronically from WMKO to IPAC for storage and curation. Access to data is governed by a data use policy, and approximately two-thirds of the data in the archive are public. C1 [Berriman, G. Bruce; Gelino, Christopher R.; Kong, Mihseh; Laity, Anastasia C.; Swain, Melanie] CALTECH, Infrared Proc & Anal Ctr, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Goodrich, Robert W.; Holt, Jennifer; Mader, Jeffrey A.; Tran, Hien D.] W M Keck Observ, Kamuela, HI 96743 USA. RP Berriman, GB (reprint author), CALTECH, Infrared Proc & Anal Ctr, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. EM gbb@ipac.caltech.edu NR 13 TC 2 Z9 2 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9620-1 J9 PROC SPIE PY 2014 VL 9152 AR UNSP 91520A DI 10.1117/12.2054772 PG 11 WC Astronomy & Astrophysics; Computer Science, Software Engineering; Optics SC Astronomy & Astrophysics; Computer Science; Optics GA BB8TL UT WOS:000347467300009 ER PT S AU Fiebig, N Jakob, H Pfuller, E Roser, HP Wiedemann, M Wolf, J AF Fiebig, Norbert Jakob, Holger Pfueller, Enrico Roeser, Hans-Peter Wiedemann, Manuel Wolf, Juergen BE Chiozzi, G Radziwill, NM TI Evolution of the SOFIA Tracking Control System SO SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Software and Cyberinfrastructure for Astronomy III CY JUN 22-26, 2014 CL Montreal, CANADA SP SPIE DE SOFIA; focal plane imager; tracking; instrument control software; real-time; industrial PC; Linux; telescope control; Qt GUI AB The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19 '' VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking. C1 [Fiebig, Norbert] redlogix GmbH, Bindlacher Str 1, D-94448 Bayreuth, Germany. [Jakob, Holger; Pfueller, Enrico; Roeser, Hans-Peter; Wiedemann, Manuel; Wolf, Juergen] Univ Stuttgart, Deutsches SOFIA Inst, D-70569 Stuttgart, Germany. [Jakob, Holger] NASA, Dryden Flight Res Ctr, SOFIA Airborne Syst Operat Ctr, Edwards AFB, CA 93523 USA. [Pfueller, Enrico; Wiedemann, Manuel; Wolf, Juergen] NASA, Ames Res Ctr, Sofia Sci Ctr, Moffett Field, CA 94035 USA. RP Fiebig, N (reprint author), redlogix GmbH, Bindlacher Str 1, D-94448 Bayreuth, Germany. EM fiebig@redlogix.de FU Deutsches Zentrum fur Luft-und Raumfahrt e.V. (DLR; German Aerospace Center) [50OK0901]; National Aeronautics and Space Administration (NASA); DLR by the Federal Ministry of Economics and Technology; German Parliament the state of Baden-Wurttemberg; University of Stuttgart; USA; Universities Space Research Association (USRA) FX SOFIA, the "Stratospheric Observatory for Infrared Astronomy" is a joint project of the Deutsches Zentrum fur Luft-und Raumfahrt e.V. (DLR; German Aerospace Center, grant: 50OK0901) and the National Aeronautics and Space Administration (NASA). It is funded on behalf of DLR by the Federal Ministry of Economics and Technology based on legislation by the German Parliament the state of Baden-Wurttemberg and the University of Stuttgart. Scientific operation for Germany is coordinated by the Deutsches SOFIA Institut (DSI) of the University of Stuttgart, in the USA by the Universities Space Research Association (USRA). NR 5 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9620-1 J9 PROC SPIE PY 2014 VL 9152 AR UNSP 915216 DI 10.1117/12.2055278 PG 12 WC Astronomy & Astrophysics; Computer Science, Software Engineering; Optics SC Astronomy & Astrophysics; Computer Science; Optics GA BB8TL UT WOS:000347467300038 ER PT J AU Seroussi, H Morlighem, M Larour, E Rignot, E Khazendar, A AF Seroussi, H. Morlighem, M. Larour, E. Rignot, E. Khazendar, A. TI Hydrostatic grounding line parameterization in ice sheet models SO CRYOSPHERE LA English DT Article ID PINE ISLAND GLACIER; PART 1; STREAM; SENSITIVITY; FLOW; ANTARCTICA; MIGRATION; DYNAMICS; RETREAT; MOTION AB Modeling of grounding line migration is essential to accurately simulate the behavior of marine ice sheets and investigate their stability. Here, we assess the sensitivity of numerical models to the parameterization of the grounding line position. We run the MISMIP3D benchmark experiments using the Ice Sheet System Model (ISSM) and a two-dimensional shelfy-stream approximation (SSA) model with different mesh resolutions and different sub-element parameterizations of grounding line position. Results show that different grounding line parameterizations lead to different steady state grounding line positions as well as different retreat/advance rates. Our simulations explain why some vertically depth-averaged model simulations deviate significantly from the vast majority of simulations based on SSA in the MISMIP3D benchmark. The results reveal that differences between simulations performed with and without sub-element parameterization are as large as those performed with different approximations of the stress balance equations in this configuration. They also demonstrate that the reversibility test is passed at relatively coarse resolution while much finer resolutions are needed to accurately capture the steady-state grounding line position. We conclude that fixed grid SSA models that do not employ such a parameterization should be avoided, as they do not provide accurate estimates of grounding line dynamics, even at high spatial resolution. For models that include sub-element grounding line parameterization, in the MISMIP3D configuration, a mesh resolution finer than 2 km should be employed. C1 [Seroussi, H.; Larour, E.; Rignot, E.; Khazendar, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morlighem, M.; Rignot, E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. RP Seroussi, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 300-323, Pasadena, CA 91109 USA. EM helene.seroussi@jpl.nasa.gov RI Morlighem, Mathieu/O-9942-2014; Rignot, Eric/A-4560-2014 OI Morlighem, Mathieu/0000-0001-5219-1310; Rignot, Eric/0000-0002-3366-0481 FU National Aeronautics and Space Administration's Cryospheric Sciences Program; NASA's Cryospheric Sciences and Modeling, Analysis and Prediction Programs FX H. Seroussi was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, and at the Department of Earth System Science, University of California Irvine. A. Khazendar and M. Morlighem were supported by grants from the National Aeronautics and Space Administration's Cryospheric Sciences Program. E. Larour was supported by grants from NASA's Cryospheric Sciences and Modeling, Analysis and Prediction Programs. We thank R. Gladstone, F. Pattyn, G. Durand and A. Levermann for their suggestions which improved the quality of the manuscript. NR 37 TC 7 Z9 7 U1 1 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2014 VL 8 IS 6 BP 2075 EP 2087 DI 10.5194/tc-8-2075-2014 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AY3ES UT WOS:000347468000005 ER PT J AU Scambos, TA Berthier, E Haran, T Shuman, CA Cook, AJ Ligtenberg, SRM Bohlander, J AF Scambos, T. A. Berthier, E. Haran, T. Shuman, C. A. Cook, A. J. Ligtenberg, S. R. M. Bohlander, J. TI Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats SO CRYOSPHERE LA English DT Article ID RADIO-ECHO SOUNDINGS; RECONCILED ESTIMATE; MASS-BALANCE; GLACIER; GREENLAND; CLIMATE; LARSEN; SHELF; PERFORMANCE; REANALYSIS AB The northern Antarctic Peninsula (nAP, < 66 degrees S) is one of the most rapidly changing glaciated regions on earth, yet the spatial patterns of its ice mass loss at the glacier basin scale have to date been poorly documented. We use satellite laser altimetry and satellite stereo-image topography spanning 2001-2010, but primarily 2003-2008, to map ice elevation change and infer mass changes for 33 glacier basins covering the mainland and most large islands in the nAP. Rates of ice volume and ice mass change are 27.7 +/- 8.6 km(3) a(-1) and 24.9 +/- 7.8 Gt a(-1), equal to -0.73ma(-1) w.e. for the study area. Mass loss is the highest for eastern glaciers affected by major ice shelf collapses in 1995 and 2002, where twelve glaciers account for 60% of the total imbalance. However, losses at smaller rates occur throughout the nAP, at both high and low elevation, despite increased snow accumulation along the western coast and ridge crest. We interpret the widespread mass loss to be driven by decades of ice front retreats on both sides of the nAP, and extended throughout the ice sheet due to the propagation of kinematic waves triggered at the fronts into the interior. C1 [Scambos, T. A.; Haran, T.; Bohlander, J.] Univ Colorado, NSIDC, Boulder, CO 80303 USA. [Berthier, E.] Univ Toulouse, CNRS, LEGOS, F-31400 Toulouse, France. [Shuman, C. A.] NASA, Goddard Space Flight Ctr, UMBC JCET, Greenbelt, MD 20771 USA. [Cook, A. J.] Swansea Univ, Dept Geog, Swansea SA2 8PP, W Glam, Wales. [Ligtenberg, S. R. M.] Inst Marine & Atmospher Res Utrecht IMAU, NL-3508 TA Utrecht, Netherlands. RP Scambos, TA (reprint author), Univ Colorado, NSIDC, Boulder, CO 80303 USA. EM teds@nsidc.org RI Berthier, Etienne/B-8900-2009 OI Berthier, Etienne/0000-0001-5978-9155 FU NASA [NNX10AR76G]; TOSCA program of the French Space Agency (CNES); ISIS program of the French Space Agency (CNES); NASA Cryospheric Program funds; NSF [ANT-0732921]; Netherlands Polar Program; European Union [226375] FX The ICESat data for this paper are available at the NASA Distributed Active Archive Center at NSIDC (GLA12 - GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data). The SPOT5 HRS data were provided at no cost by CNES through the SPIRIT project. The ASTER data were provided at no cost by NASA/USGS through the Global Land Ice Measurements from Space (GLIMS) project. This work was supported by NASA grant NNX10AR76G to T. Scambos and W. Abdalati, the TOSCA and ISIS programs of the French Space Agency (CNES) to E. Berthier, NASA Cryospheric Program funds to C. Shuman, NSF grant ANT-0732921 to T. Scambos, and the Netherlands Polar Program and European Union Seventh Framework Programme grant 226375 to S. Ligtenberg. NR 51 TC 14 Z9 14 U1 2 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2014 VL 8 IS 6 BP 2135 EP 2145 DI 10.5194/tc-8-2135-2014 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AY3ES UT WOS:000347468000009 ER PT J AU Larour, E Utke, J Csatho, B Schenk, A Seroussi, H Morlighem, M Rignot, E Schlegel, N Khazendar, A AF Larour, E. Utke, J. Csatho, B. Schenk, A. Seroussi, H. Morlighem, M. Rignot, E. Schlegel, N. Khazendar, A. TI Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model) SO CRYOSPHERE LA English DT Article ID SEA-LEVEL RISE; GEOTHERMAL HEAT-FLUX; JAKOBSHAVN ISBRAE; WEST ANTARCTICA; SPATIAL SENSITIVITIES; ENVIRONMENTAL-CHANGE; BED TOPOGRAPHY; GLACIER; FLOW; ADJOINT AB We present a new data assimilation method within the Ice Sheet System Model (ISSM) framework that is capable of assimilating surface altimetry data from missions such as ICESat (Ice Cloud and land Elevation Satellite) into reconstructions of transient ice flow. The new method relies on algorithmic differentiation to compute gradients of objective functions with respect to model forcings. It is applied to the Northeast Greenland Ice Stream, where surface mass balance and basal friction forcings are temporally inverted, resulting in adjusted modeled surface heights that best fit existing altimetry. This new approach allows for a better quantification of basal and surface processes and a better understanding of the physical processes currently missing in transient ice-flow models to better capture the important intra-and interannual variability in surface altimetry. It also demonstrates that large spatial and temporal variability is required in model forcings such as surface mass balance and basal friction, variability that can only be explained by including more complex processes such as snowpack compaction at the surface and basal hydrology at the bottom of the ice sheet. This approach is indeed a first step towards assimilating the wealth of high spatial resolution altimetry data available from EnviSat, ICESat, Operation IceBridge and CryoSat-2, and that which will be available in the near future with the launch of ICESat-2. C1 [Larour, E.; Seroussi, H.; Rignot, E.; Schlegel, N.; Khazendar, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morlighem, M.; Rignot, E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Utke, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Csatho, B.; Schenk, A.] SUNY Buffalo, Dept Geol Sci, Buffalo, NY 14260 USA. RP Larour, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 300-323, Pasadena, CA 91109 USA. EM eric.larour@jpl.nasa.gov RI Morlighem, Mathieu/O-9942-2014; Rignot, Eric/A-4560-2014 OI Schlegel, Nicole-Jeanne/0000-0001-8035-448X; Morlighem, Mathieu/0000-0001-5219-1310; Rignot, Eric/0000-0002-3366-0481 FU National Aeronautics and Space Administration; Cryospheric Sciences Program, Modeling Analysis and Prediction Program; Jet Propulsion Laboratory's Research; Technology Development Program; President's Fund Program; Director's Fund Program FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology; at Argonne National Lab; at the Department of Geological Sciences, University of Buffalo; and at the Department of Earth System Science, University of California Irvine, under a contract with the National Aeronautics and Space Administration, funded by the Cryospheric Sciences Program, Modeling Analysis and Prediction Program, Jet Propulsion Laboratory's Research and Technology Development Program and the President's and Director's Fund Program. We would also like to acknowledge J. Box's help in providing SMB time series for the initial values of our inversion, J. van Angelen and M. van den Broeke for providing climatology for the density estimation and S. B. Simonsen for providing firn compaction estimates. NR 108 TC 11 Z9 11 U1 3 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2014 VL 8 IS 6 BP 2335 EP 2351 DI 10.5194/tc-8-2335-2014 PG 17 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AY3ES UT WOS:000347468000021 ER PT S AU Jau, YY Schwindt, PDD Casias, A Serkland, D Manginell, R Moorman, M Boye, R Ison, A Winrow, T McCants, A Prestage, J Yu, N Kellogg, J Boschen, D Kosvin, I AF Jau Yuan-Yu Schwindt, Peter D. D. Casias, Adrian Serkland, Darwin Manginell, Ron Moorman, Mathew Boye, Robert Ison, Aaron Winrow, Ted McCants, Andrew Prestage, John Yu, Nan Kellogg, James Boschen, Dan Kosvin, Igor GP IEEE TI Miniature Microwave Frequency Standard with Trapped Yb-171(+) SO 2014 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (FCS) SE IEEE International Frequency Control Symposium LA English DT Proceedings Paper CT 1st IEEE International Frequency Control Symposium (FCS) CY MAY 19-22, 2014 CL Taipei, TAIWAN SP IEEE, UFFC, Asia Pacific Metrol Programme, Minist Sci & Technol, NAR Labs, Instrument Technol Res Ctr, Sensors & Actuators Tech, Tsing Hua Univ C1 [Jau Yuan-Yu; Schwindt, Peter D. D.; Casias, Adrian; Serkland, Darwin; Manginell, Ron; Moorman, Mathew; Boye, Robert; Ison, Aaron; Winrow, Ted; McCants, Andrew] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Prestage, John; Yu, Nan; Kellogg, James] Jet Prop Lab, Pasadena, CA USA. [Boschen, Dan; Kosvin, Igor] Microsemi, Beverly, MA USA. RP Jau, YY (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM yjau@sandia.gov FU Defense Advanced Research Projects Agency (DARPA) FX This work is supported by the Defense Advanced Research Projects Agency (DARPA). NR 3 TC 0 Z9 0 U1 1 U2 9 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1075-6787 BN 978-1-4799-4916-8 J9 P IEEE INT FREQ CONT PY 2014 BP 562 EP 562 PG 1 WC Engineering, Electrical & Electronic; Physics, Applied; Telecommunications SC Engineering; Physics; Telecommunications GA BB8BZ UT WOS:000346295600157 ER PT J AU Lee, R Yeary, M Fulton, C Rincon, R AF Lee, R. Yeary, M. Fulton, C. Rincon, R. GP IEEE TI Initial Measurements and Results of a Multi-Channel, Adaptive Pre-distortion System for an Airborne Phased Array Radar SO 2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS LA English DT Proceedings Paper CT IEEE International Instrumentation and Measurement Technology Conference (I2MTC) CY MAY 12-15, 2014 CL Montevideo, URUGUAY SP IEEE, IEEE Instrumentat & Measurement Soc ID BAND; LINEARIZATION; PREDISTORTER; ECOSAR AB With the advancement of synthetic aperture radars (SAR) and phased array radars, research is being done with a variety of amplifier/antenna schemes and over a wide range of frequencies. One major problem is spectral regrowth due to AM/AM and AM/PM effects due to memory effects and when operating near saturation. The distorted output of these systems can leak out-of-band and therefore create problems, such as unauthorized broadcast frequencies and unintended beam steer angles. By properly utilizing digital pre-distortion, most, if not all, of these out-of-band components can be eliminated, allowing radars to be operated in much wider bands and closer to the frequency limits. Work is being done at NASA's Goddard Space Flight Center on the Ecological Synthetic Aperture Radar (EcoSAR) to address these issues in this system. When completed, EcoSAR will be used to measure vegetation density from an airborne system in place of the traditional method of taking measurements on the ground and extrapolating. EcoSAR will potentially be operated in populated areas where broadcast frequencies are highly regulated and spectral regrowth will need to be minimized. The university team is partnering with NASA to develop advanced digital radar techniques for EcoSAR that will enable a new class of radar operations that improves science, enhances system performance, facilitates a path for space-borne implementation, and pushes technology beyond the current state-of-the-art, while keeping the costs to execute the project low. The results section of this paper provides details of the progress in this important area of research. C1 [Lee, R.; Yeary, M.; Fulton, C.] OU, Adv Radar Res Ctr, Sch Elect & Comp Engn, Norman, OK 73019 USA. [Rincon, R.] Goddard Space Flight Ctr, NASA, Greenbelt, MD 20771 USA. RP Lee, R (reprint author), OU, Adv Radar Res Ctr, Sch Elect & Comp Engn, Norman, OK 73019 USA. EM rlee@ou.edu; yeary@ou.edu; fulton@ou.edu; rafael.f.rincon@nasa.gov NR 19 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-6386-0 PY 2014 BP 1267 EP 1270 PG 4 WC Instruments & Instrumentation SC Instruments & Instrumentation GA BB8EN UT WOS:000346477200249 ER PT S AU Khor, WY Hee, WS Tan, FY Lim, HS Jafri, MZM Holben, B AF Khor, Wei Ying Hee, Wan Shen Tan, Fuyi Lim, Hwee San Jafri, Mohamad Zubir Mat Holben, Brent GP IOP TI Comparison of Aerosol optical depth (AOD) derived from AERONET sunphotometer and Lidar system SO 7TH IGRSM INTERNATIONAL REMOTE SENSING & GIS CONFERENCE AND EXHIBITION SE IOP Conference Series-Earth and Environmental Science LA English DT Proceedings Paper CT 7th IGRSM International Remote Sensing and GIS Conference and Exhibition CY APR 21-23, 2014 CL Kuala Lumpur, MALAYSIA SP Institut Geospatial & Remote Sensing Malaysia, Univ Putra Malaysia, Sci & Technol Res Inst Defence, ANGKASA, Univ Malaya, UTAR, MARIM, Univ Teknologe Mara, NAHRIM, Univ Teknologe Petronas AB Aerosol optical depth (AOD) is the measure of aerosols distributed within a column of air from the instrument or Earth's surface to the top of the atmosphere. In this paper, we compared the AOD measured by the Raymetrics Lidar system and AERONET sunphotometer. A total of 6 days data which was collected by both instruments were compiled and compared. Generally, AOD value calculated from Lidar data are higher than that calculated from AERONET data. Differences and similarities in the AOD data trend were observed and the corresponding explanations were done. Level 1.5 data of AERONET is estimated to have an accuracy of +/- 0.03, thus the Lidar data should follow the trend of the AERONET. But in this regards, this study was conducted less than one month and was very difficult to justify the differences and similarities between AOD measured by the Raymetrics Lidar system and AERONET sunphotometer. So further studies for an extended period will be needed and performed with more comprehensive LIDAR measurements. The slope of the best-fit straight line for the data points between the AOD values retrieved from LIDAR and the AERONET measurements is the closest to unity and the coefficient of determination is high (above 0.6692). Factors which affect AOD data were discussed. As a conclusion, the trends of the AOD of both systems are similar. Yet due to some external factors, the trend will be slightly different. C1 [Khor, Wei Ying; Hee, Wan Shen; Tan, Fuyi; Lim, Hwee San; Jafri, Mohamad Zubir Mat] Univ Sains Malaysia, Sch Phys, George Town 11800, Malaysia. [Holben, Brent] NASA, GSFC Code 923, Greenbelt, MD 20771 USA. RP Khor, WY (reprint author), Univ Sains Malaysia, Sch Phys, George Town 11800, Malaysia. EM weiying326@hotmail.com RI Lim, Hwee San/F-6580-2010; OI Lim, Hwee San/0000-0002-4835-8015; Hee, Wan Shen/0000-0002-0871-8530 FU ERGS [203/ PFIZIK/ 6730051]; Universiti Sains Malaysia ( USM) [304/ PFIZIK/ 6311082]; RUI [1001/ PFIZIK/ 811228]; Increased Green House Gasses In Peninsular Malaysia [305/ PFIZIK/ 613615]; USM FX The authors gratefully acknowledge the financial support under the ERGS grant 203/ PFIZIK/ 6730051, Universiti Sains Malaysia ( USM) Short Term Grant 304/ PFIZIK/ 6311082, RUI grant ( Investigation Of The Impacts Of Summertime Monsoon Circulation To The Aerosols Transportation And Distribution In Southeast Asia Which Can Lead To Global Climate Change) 1001/ PFIZIK/ 811228 and ScienceFund, Environmental Effects And Its Influence of Increased Green House Gasses In Peninsular Malaysia, 305/ PFIZIK/ 613615. We would like to thank the technical staff who participated in this project. Thanks are also extended to USM for support and encouragement. NR 17 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1755-1307 J9 IOP C SER EARTH ENV JI IOP Conf. Ser. Earth Envir. Sci. PY 2014 VL 20 AR UNSP 012058 DI 10.1088/1755-1315/20/1/012058 PG 9 WC Environmental Sciences; Geography, Physical; Remote Sensing SC Environmental Sciences & Ecology; Physical Geography; Remote Sensing GA BB8KD UT WOS:000346761600058 ER PT J AU Eingorn, M AF Eingorn, Maxim TI Gurzadyan's Problem 5 and Improvement of Softenings for Cosmological Simulations Using the PP Method SO ADVANCES IN HIGH ENERGY PHYSICS LA English DT Article ID GALAXIES AB This paper is devoted to different modifications of two standard softenings of the gravitational attraction (namely, the Plummer and Hernquist softenings), which are commonly used in cosmological simulations based on the particle-particle (PP) method, and their comparison. It is demonstrated that some of the proposed alternatives lead to almost the same accuracy as in the case of the pure Newtonian interaction, even despite the fact that the force resolution is allowed to equal half the minimum interparticle distance. The revealed way of precision improvement gives an opportunity to succeed in solving Gurzadyan's Problem 5 and bring modern computer codes up to a higher standard. C1 [Eingorn, Maxim] N Carolina Cent Univ, CREST, Durham, NC 27707 USA. [Eingorn, Maxim] N Carolina Cent Univ, NASA, Res Ctr, Durham, NC 27707 USA. RP Eingorn, M (reprint author), N Carolina Cent Univ, CREST, Fayetteville St 1801, Durham, NC 27707 USA. EM maxim.eingorn@gmail.com RI Eingorn, Maxim/L-1543-2014 OI Eingorn, Maxim/0000-0002-1545-7818 FU NSF CREST [HRD-1345219]; NASA [NNX09AV07A] FX This work was supported by NSF CREST award HRD-1345219 and NASA Grant NNX09AV07A. The author would like to thank S. J. Aarseth for valuable comments and the referee for critical remarks which have considerably improved the presentation of the obtained results. NR 18 TC 1 Z9 1 U1 0 U2 0 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-7357 EI 1687-7365 J9 ADV HIGH ENERGY PHYS JI Adv. High. Energy Phys. PY 2014 AR 903642 DI 10.1155/2014/903642 PG 4 WC Physics, Particles & Fields SC Physics GA AY1BB UT WOS:000347327400001 ER PT S AU Havelund, K Joshi, R AF Havelund, Klaus Joshi, Rajeev BE Merz, S Pang, J TI Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior SO FORMAL METHODS AND SOFTWARE ENGINEERING, ICFEM 2014 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th International Conference on Formal Engineering Methods (ICFEM) CY NOV 03-05, 2014 CL Luxembourg, LUXEMBOURG SP Univ Luxembourg, Interdisciplinary Ctr Secur, Reliabil & Trust, Natl Res Fund, Comp Sci & Commun Res Unit, Univ Luxembourg, Lab Algorithm, Cryptol & Secur AB A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs. C1 [Havelund, Klaus; Joshi, Rajeev] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Havelund, K (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 15 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0302-9743 BN 978-3-319-11737-9; 978-3-319-11736-2 J9 LECT NOTES COMPUT SC PY 2014 VL 8829 BP 187 EP 202 PG 16 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB8NZ UT WOS:000347029300013 ER PT J AU Funk, C Hoell, A Shukla, S Blade, I Liebmann, B Roberts, JB Robertson, FR Husak, G AF Funk, C. Hoell, A. Shukla, S. Blade, I. Liebmann, B. Roberts, J. B. Robertson, F. R. Husak, G. TI Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID GREATER HORN; RAINFALL; VARIABILITY; CIRCULATION; PREDICTABILITY; OSCILLATION; SIGNALS; SEASONS; MODELS; TRENDS AB In eastern East Africa (the southern Ethiopia, eastern Kenya and southern Somalia region), poor boreal spring (long wet season) rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent East African droughts to a stronger Walker circulation, resulting from warming in the Indo-Pacific warm pool and an increased east-to-west sea surface temperature (SST) gradient in the western Pacific, we show that the two dominant modes of East African boreal spring rainfall variability are tied to SST fluctuations in the western central Pacific and central Indian Ocean, respectively. Variations in these two rainfall modes can thus be predicted using two SST indices - the western Pacific gradient (WPG) and central Indian Ocean index (CIO), with our statistical forecasts exhibiting reasonable cross-validated skill (r(cv) approximate to 0.6). In contrast, the current generation of coupled forecast models show no skill during the long rains. Our SST indices also appear to capture most of the major recent drought events such as 2000, 2009 and 2011. Predictions based on these simple indices can be used to support regional forecasting efforts and land surface data assimilations to help inform early warning and guide climate outlooks. C1 [Funk, C.] US Geol Survey, Santa Barbara, CA 93441 USA. [Funk, C.; Hoell, A.; Shukla, S.; Husak, G.] Univ Calif Santa Barbara Geog, Santa Barbara, CA USA. [Blade, I.] Univ Barcelona, Barcelona, Spain. [Blade, I.] Inst Catala Ciencies Clima, Barcelona, Spain. [Liebmann, B.] Univ Colorado, Boulder, CO 80309 USA. [Liebmann, B.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Roberts, J. B.; Robertson, F. R.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. RP Funk, C (reprint author), US Geol Survey, Santa Barbara, CA 93441 USA. EM chris@geog.ucsb.edu FU USAID Famine Early Warning Systems Network (FEWS NET); NASA SERVIR; NASA [NNH12ZDA001N]; NOAA [NA11OAR4310151] FX This research was supported by the USAID Famine Early Warning Systems Network (FEWS NET), NASA SERVIR, the NASA NNH12ZDA001N IDS project Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions and NOAA Technical Transitions grant NA11OAR4310151. We would like to thank Libby White for her thoughtful comments. NR 52 TC 10 Z9 10 U1 12 U2 35 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2014 VL 18 IS 12 BP 4965 EP 4978 DI 10.5194/hess-18-4965-2014 PG 14 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA AY0UY UT WOS:000347313600004 ER PT J AU Ferrant, S Gascoin, S Veloso, A Salmon-Monviola, J Claverie, M Rivalland, V Dedieu, G Demarez, V Ceschia, E Probst, JL Durand, P Bustillo, V AF Ferrant, S. Gascoin, S. Veloso, A. Salmon-Monviola, J. Claverie, M. Rivalland, V. Dedieu, G. Demarez, V. Ceschia, E. Probst, J. -L. Durand, P. Bustillo, V. TI Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID LEAF-AREA INDEX; CATCHMENT SCALE; SOIL-MOISTURE; NITROGEN DYNAMICS; GENERIC MODEL; CROP MODEL; WATER-USE; PART 1; STICS; SYSTEMS AB The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr(-1) on average) but a noticeable impact on in-stream nitrogen fluxes (around 12 %), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution products from the Sentinel-2 satellite mission for improving agro-hydrological modeling by constraining the spatial representation of crop productivity. C1 [Ferrant, S.; Gascoin, S.; Veloso, A.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Bustillo, V.] Univ Toulouse, Ctr Etude Spatiale BIOsphere CESBIO, UPS, F-31401 Toulouse 9, France. [Ferrant, S.; Dedieu, G.] CESBIO, CNES, Toulouse, France. [Gascoin, S.; Veloso, A.; Rivalland, V.] CNRS CESBIO, Toulouse, France. [Salmon-Monviola, J.; Durand, P.] INRA, Sol Agro & Hydrosyst Spatialisat SAS UMR1069, F-35000 Rennes, France. [Salmon-Monviola, J.; Durand, P.] Agrocampus Ouest, UMR1069, SAS, F-35000 Rennes, France. [Claverie, M.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Claverie, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Probst, J. -L.] Univ Toulouse, Lab Ecol Fonct & Environm, EcoLab, INPT,UPS,ENSAT, F-31326 Castanet Tolosan, France. [Probst, J. -L.] CNRS, Ecolab, ENSAT, Castanet Tolosan, France. RP Ferrant, S (reprint author), Univ Toulouse, Ctr Etude Spatiale BIOsphere CESBIO, UPS, 18 Av Edouard Belin,Bpi 2801, F-31401 Toulouse 9, France. EM sylvain.ferrant@cesbio.cnes.fr RI ceschia, eric/P-5054-2014; Gascoin, Simon/J-7848-2012; UMR SAS, INRA/L-1751-2013; Durand, Patrick/F-3461-2011; Salmon-Monviola, Jordy/I-1614-2016 OI ceschia, eric/0000-0001-5941-752X; Ferrant, Sylvain/0000-0002-3478-2624; Gascoin, Simon/0000-0002-4996-6768; Durand, Patrick/0000-0002-0984-693X; Salmon-Monviola, Jordy/0000-0002-2739-7883 FU CNES (Centre National d'Etudes Spatiales) FX We would like to thank the Association des Agriculteurs d'Aurade (today Groupement des Agriculteurs de la Gascogne Toulousaine) for their cooperation and the people who are behind the large amount of data presented in this manuscript: Nicole Ferroni, Bernard Marciel, Pascal Keravec, Herve Gibrin, Tiphaine Tallec, Pierre Beziat, Pierre Adrien Solignac, Aurore Brut, Jean-Francois Dejoux, Claire Marais-Sicre, Jerome Cros, Olivier Hagolle and Mireille Huc. Nitrate concentration and stream discharge were recorded within the framework of a GPN-ECOLAB convention on the experimental catchment of Aurade. The BVEA (Bassin Versant Experimental d'Aurade) is a regional platform of research and innovation in Midi-Pyrenees and innovation and which is involved in the French SOERE Network RBV (Experimental catchment network) and in the international Critical Zone Exploratory Network. Sylvain Ferrant was the recipient of a CNES (Centre National d'Etudes Spatiales) post doctoral research grant. NR 63 TC 4 Z9 4 U1 4 U2 31 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2014 VL 18 IS 12 BP 5219 EP 5237 DI 10.5194/hess-18-5219-2014 PG 19 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA AY0UY UT WOS:000347313600018 ER PT J AU Clark, KE Torres, MA West, AJ Hilton, RG New, M Horwath, AB Fisher, JB Rapp, JM Caceres, AR Malhi, Y AF Clark, K. E. Torres, M. A. West, A. J. Hilton, R. G. New, M. Horwath, A. B. Fisher, J. B. Rapp, J. M. Caceres, A. Robles Malhi, Y. TI The hydrological regime of a forested tropical Andean catchment SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID MONTANE CLOUD FOREST; ATMOSPHERE WATER FLUX; AMAZON RIVER-BASIN; ELEVATION GRADIENT; STABLE-ISOTOPES; PERUVIAN-ANDES; SUSPENDED SEDIMENT; RAIN-FOREST; PUERTO-RICO; COSTA-RICA AB The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosnipata catchment (basin area: 164.4 km(2)) over the period 2010-2011. The catchment spans over 2500 m in elevation in the eastern Peruvian Andes and is dominated by tropical montane cloud forest with some high-elevation puna grasslands. Catchment-wide rainfall was 3112 +/- 414 mm yr(-1), calculated by calibrating Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall with rainfall data from nine meteorological stations in the catchment. Cloud water input to streamflow was 316 +/- 116 mm yr(-1) (9.2% of total inputs), calculated from an isotopic mixing model using deuterium excess (Dxs) and delta D of waters. Field streamflow was measured in 2010 by recording height and calibrating to discharge. River runoff was estimated to be 2796 +/- 126 mm yr(-1). Actual evapotranspiration (AET) was 688 +/- 138mm yr(-1), determined using the Priestley and Taylor-Jet Propulsion Laboratory (PT-JPL) model. The overall water budget was balanced within 1.6 +/- 13.7 %. Relationships between monthly rainfall and river run-off follow an anticlockwise hysteresis through the year, with a persistence of high run-off after the end of the wet season. The size of the soil and shallow groundwater reservoir is most likely insufficient to explain sustained dry-season flow. Thus, the observed hysteresis in rainfall-run-off relationships is best explained by sustained groundwater flow in the dry season, which is consistent with the water isotope results that suggest persistent wet-season sources to stream-flow throughout the year. These results demonstrate the importance of transient groundwater storage in stabilising the annual hydrograph in this region of the Andes. C1 [Clark, K. E.; New, M.; Malhi, Y.] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England. [Torres, M. A.; West, A. J.] Univ So Calif, Dept Earth Sci, Los Angeles, CA USA. [Hilton, R. G.] Univ Durham, Dept Geog, Durham, England. [New, M.] Univ Cape Town, African Climate & Dev Initiat, ZA-7925 Cape Town, South Africa. [Horwath, A. B.] Univ Cambridge, Dept Plant Sci, Cambridge, England. [Fisher, J. B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rapp, J. M.] Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA. [Caceres, A. Robles] Univ Nacl San Antonio Abad del Cusco, Fac Ciencias Biol, Cuzco, Peru. RP Clark, KE (reprint author), Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA. EM kathryn.clark23@gmail.com RI Hilton, Robert/C-4890-2013; New, Mark/A-7684-2008; OI New, Mark/0000-0001-6082-8879; Fisher, Joshua/0000-0003-4734-9085 FU Natural Sciences and Engineering Research Council of Canada (NSERC) [362718-2008 PGS-D3]; Clarendon Fund PhD scholarships; National Science Foundation (NSF) [EAR 1227192]; Jackson Foundation; European Research Council [321121] FX This paper is a product of the Andes Biodiversity and Ecosystems Research Group (ABERG). K. E. Clark was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC; 362718-2008 PGS-D3) and Clarendon Fund PhD scholarships. A. J. West is supported to work in the Kosnipata by National Science Foundation (NSF) EAR 1227192. Y. Malhi is supported by the Jackson Foundation and by European Research Council Advanced Investigator Grant 321121. We thank SERNANP for providing permits to work in the study area. We thank ACCA Peru (Wayqecha) and Incaterra (San Pedro) for field support; L. V. Morales, R. J. Abarca Martinez, M. H. Yucra Hurtado, R. Paja Yurca, J. A. Gibaja Lopez, I. Cuba Torres, J. Huaman Ovalle, A. Alfaro-Tapia, R. Butron Loayza, J. Farfan Flores, D. Ocampo, and D. Oviedo Licona for field assistance; J. Silva-Espejo and W. Huaraca Huasco for collection and provision of meteorological data; and SENHAMI for provision of national weather station data. We thank L. Anderson for the TRMM 3B43 v7a data; C. Girardin for assistance with the water budget figure; S. Abele for extraction of the SENAMHI rainfall data; M. Palace for the 2009 Quickbird image; G. P. Asner for use of the Carnegie Airborne Observatory (CAO) DEM; A. Barros, S. Waldron, S. Feakins, and G. Goldsmith for constructive comments and discussions; L. A. Bruijnzeel and M. B. Gush for their thorough and constructive reviews; and G. Jewitt for editing the manuscript. NR 127 TC 8 Z9 8 U1 3 U2 35 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2014 VL 18 IS 12 BP 5377 EP 5397 DI 10.5194/hess-18-5377-2014 PG 21 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA AY0UY UT WOS:000347313600028 ER PT J AU Liston, DB Stone, LS AF Liston, Dorion B. Stone, Leland S. TI Oculometric assessment of dynamic visual processing SO JOURNAL OF VISION LA English DT Article DE oculometrics; pursuit; screening; assessment; clinical ID PURSUIT EYE-MOVEMENTS; MOTION PERCEPTION DEFICITS; TRAUMATIC BRAIN-INJURY; HUMAN SMOOTH-PURSUIT; MIDLINE CEREBELLAR LESIONS; DIRECTION DISCRIMINATION; APPARENT MOTION; MACAQUE MONKEY; TIME-COURSE; TRACKING AB Eye movements are the most frequent (similar to 3/s), shortest-latency (similar to 150-250 ms), and biomechanically simplest (one joint, no inertial complexities) voluntary motor behavior in primates, providing a model system to assess sensorimotor disturbances arising from trauma, fatigue, aging, or disease states. We have developed a 15-min behavioral tracking protocol consisting of randomized Rashbass (1961) step-ramp radial target motion to assess several aspects of the behavioral response to visual motion, including pursuit initiation, steady-state tracking, direction tuning, and speed tuning. We show how oculomotor data can be converted into direction- and speed-tuning oculometric functions, with large increases in efficiency over traditional button-press psychophysics. We also show how the latter two can be converted into standard visual psychometric thresholds. To assess our paradigm, we first tested for the psychometric criterion of repeatability, and report that our metrics are reliable across repeated sessions. Second, we tested for the psychometric criterion of validity, and report that our metrics show the anticipated changes as the motion stimulus degrades due to spatiotemporal undersampling. Third, we documented the distribution of these metrics across a population of 41 normal observers to provide a thorough quantitative picture of normal human ocular tracking performance, with practice and expectation effects minimized. Our method computes 10 metrics that quantify various aspects of the eye-movement response during a simple 15-min clinical test, which could be used as a screening or assessment tool for disorders affecting sensorimotor processing, including degenerative retinal disease; developmental, neurological or psychiatric disorders; strokes; and traumatic brain injury. C1 [Liston, Dorion B.; Stone, Leland S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Liston, Dorion B.] San Jose State Univ, San Jose, CA 95192 USA. RP Liston, DB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM dorion.b.liston@nasa.gov FU NASA's Human Health and Performance Program [111-10-10]; NASA's Human Factors Engineering Program [131-20-30]; National Science Foundation's Program in Perception, Action, and Cognition Program [NSF 0924841]; National Space Biomedical Research Institute [SA 2002]; U.S. Air Force School of Aerospace Medicine; NASA Ames Research Center Director's Innovation Fund Award; Office of Naval Research [SAA2-402925] FX The development of this methodology has been supported over the past 10 years by NASA's Human Health and Performance Program (111-10-10), NASA's Human Factors Engineering Program (131-20-30), the National Science Foundation's Program in Perception, Action, and Cognition Program (NSF 0924841), the National Space Biomedical Research Institute (SA 2002), the U.S. Air Force School of Aerospace Medicine, a NASA Ames Research Center Director's Innovation Fund Award, and the Office of Naval Research (SAA2-402925). NR 79 TC 7 Z9 8 U1 1 U2 9 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 1534-7362 J9 J VISION JI J. Vision PY 2014 VL 14 IS 14 AR 12 DI 10.1167/14.14.12 PG 17 WC Ophthalmology SC Ophthalmology GA AX8TR UT WOS:000347181800012 PM 25527150 ER PT S AU An, HH Clement, WI Reed, B AF An, Happy H. Clement, William I. Reed, Benjamin GP IEEE TI Analytical Inverse Kinematic Solution with Self-Motion Constraint for the 7-DOF Restore Robot Arm SO 2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) SE IEEE ASME International Conference on Advanced Intelligent Mechatronics LA English DT Proceedings Paper CT IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) CY JUL 08-11, 2014 CL Besancon, FRANCE SP IEEE, ASME, ICS, DSC, IEEE Robot Automat Soc, Robot Soc Japan, JSPE, IEEJ, JSME, Femto St Sci & Technol, Labe Act, SICE, GDR MACS, Univ Franche Comte, Univ Technologie Belfort Montbeliard, ENSMM, SFMC, CNRS DE 7-DOF redundant robot arm; SEW inverse kinematics; self-motion; singularities ID MANIPULATORS AB This paper presents an analytical inverse kinematic (IK) solution for the seven degree-of-freedom (7-DOF) "Restore" robot arm with non-zero joint offsets. We provide two closed-form solutions - the shoulder-elbow-wrist (SEW) IK and the theta(1)-based solution. Both allow self-motion and together they solve the problem of algorithmic singularities within the workspace. Non-zero link offsets require careful selection of shoulder, elbow, and wrist locations. The solution is simple, fast and exact, providing full solution space (i.e. all eight solutions) per pose. C1 [An, Happy H.] Orbital Sci Corp, Greenbelt, MD 20771 USA. [Clement, William I.] Clement Engn, Arnold, MD 21012 USA. [Reed, Benjamin] NASAs Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP An, HH (reprint author), Orbital Sci Corp, Greenbelt, MD 20771 USA. EM hui.an-1@nasa.gov; william.i.clement@nasa.gov; benjamin.b.reed@nasa.gov FU NASA's Satellite Servicing Capabilities Office FX This work was supported by NASA's Satellite Servicing Capabilities Office. NR 27 TC 1 Z9 3 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2159-6255 BN 978-1-4799-5736-1 J9 IEEE ASME INT C ADV PY 2014 BP 1325 EP 1330 PG 6 WC Engineering, Electrical & Electronic; Robotics SC Engineering; Robotics GA BB8FG UT WOS:000346499600222 ER PT J AU Yurimoto, H Itoh, S Zolensky, M Kusakabe, M Karen, A Bodnar, R AF Yurimoto, Hisayoshi Itoh, Shoichi Zolensky, Michael Kusakabe, Minoru Karen, Akiya Bodnar, Robert TI Isotopic compositions of asteroidal liquid water trapped in fluid inclusions of chondrites SO GEOCHEMICAL JOURNAL LA English DT Article DE fluid inclusion; hydrogen isotope; oxygen isotope; asteroid; water ID EARLY SOLAR-SYSTEM; OXYGEN-ISOTOPE; DEUTERIUM ABUNDANCE; DEUTERATED WATER; MONAHANS 1998; PARENT BODY; RATIOS; HALITE; JUPITER; ORIGIN AB Determination of isotopic composition of extraterrestrial liquid water provides important information regarding the origin of water on Earth and the terrestrial planets. Fluid inclusions in halite of ordinary chondrites are the only direct samples of extraterrestrial liquid water available for laboratory measurements. We determined H and O isotopic compositions of this water by secondary ion mass spectrometry equipped with a cryogenic apparatus for sample cooling. Isotopic compositions of the fluid inclusion fluids (brines) were highly variable among individual inclusions, -400 < delta D < +1300 parts per thousand; -20 < Delta O-17 < +30 parts per thousand, indicating that these aqueous fluids were in isotopic disequilibrium before trapping in halite on asteroids. The isotopic variation of fluids shows that various degrees of water-rock interaction had been underway on the asteroids before trapping between D-rich-O-16-poor aqueous fluid, D-poor-O-16-rich aqueous fluid, and asteroidal rock by delivery of cometary water onto hydrous asteroids. This may be a fundamental mechanism in the evolution of modern planetary water. C1 [Yurimoto, Hisayoshi; Itoh, Shoichi] Hokkaido Univ, Dept Nat Hist Sci, Sapporo, Hokkaido 0600810, Japan. [Yurimoto, Hisayoshi] Hokkaido Univ, Creat Res Inst, Isotope Imaging Lab, Sapporo, Hokkaido 0010021, Japan. [Zolensky, Michael] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Kusakabe, Minoru] Toyama Univ, Dept Environm Biol & Chem, Toyama 9308555, Japan. [Karen, Akiya] Toray Res Ctr Ltd, Otsu, Shiga 5208567, Japan. [Bodnar, Robert] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RP Yurimoto, H (reprint author), Hokkaido Univ, Dept Nat Hist Sci, Sapporo, Hokkaido 0600810, Japan. EM yuri@ep.sci.hokudai.ac.jp FU Monkasho Grant; NASA Cosmochemistry Program FX We thank Hideo Kitajima for his assistance with the cryo-stage. We thank Francois Robert, Marc Chaussidon and Shogo Tachibana for their constructive reviews and suggestions. This study was partly supported by a Monkasho Grant (H.Y.) and the NASA Cosmochemistry Program (M.Z.). We thank Edwin Thompson for bringing the halite in Zag to our attention, and Everett Gibson for obtaining the Monahans samples for NASA. NR 42 TC 2 Z9 2 U1 3 U2 9 PU GEOCHEMICAL SOC JAPAN PI TOKYO PA 358-5 YAMABUKI-CHO, SHINJUKU-KU, TOKYO, 162-0801, JAPAN SN 0016-7002 EI 1880-5973 J9 GEOCHEM J JI Geochem. J. PY 2014 VL 48 IS 6 BP 549 EP 560 DI 10.2343/geochemj.2.0335 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AX3CX UT WOS:000346819200005 ER PT J AU Meier, WN Peng, G Scott, DJ Savoie, MH AF Meier, Walter N. Peng, Ge Scott, Donna J. Savoie, Matt H. TI Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record SO POLAR RESEARCH LA English DT Article DE Sea ice; Arctic and Antarctic oceans; climate data record; evaluation; passive microwave remote sensing ID SPECIAL SENSOR MICROWAVE/IMAGER; ALGORITHM; VARIABILITY; TRENDS; CHARTS AB A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea-ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self-describing file format, (2) ISO 19115-2 compliant collection-level metadata, (3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different. C1 [Meier, Walter N.] NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Peng, Ge] N Carolina State Univ, Cooperat Inst Climate & Satellites, Raleigh, NC 27695 USA. [Peng, Ge] NOAA, Remote Sensing & Applicat Div, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Scott, Donna J.; Savoie, Matt H.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. RP Meier, WN (reprint author), NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Code 615, Greenbelt, MD 20771 USA. EM walt.meier@nasa.gov OI Meier, Walter/0000-0003-2857-0550; Peng, Ge /0000-0002-1986-9115 FU NOAA's NCDC CDR; NOAA through the Cooperative Institute for Climate and Satellites-North Carolina [NA09NES4400006]; [NA07OAR4310056] FX This work was funded by NOAA's NCDC CDR programme. WNM, DJS and MHS were supported by the grant NA07OAR4310056. GP is supported by NOAA through the Cooperative Institute for Climate and Satellites-North Carolina under Cooperative Agreement NA09NES4400006. GP thanks J. Privette for beneficial suggestions and discussions on confusion matrix and K. Knapp, C. Schreck and J. Matthews for comments on the layout of the confusion matrix diagram. WNM thanks S. Mallory for initial development work on the CDR processing software. The daily and monthly NOAA/NSIDC passive microwave sea-ice concentration CDR data files, including both CDR and GSFC fields, can be downloaded from http://nsidc.org/data/g02202.html or http://www.ncdc.noaa.gov/cdr/operationalcdrs.html. NR 33 TC 4 Z9 4 U1 1 U2 8 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0800-0395 EI 1751-8369 J9 POLAR RES JI Polar Res. PY 2014 VL 33 AR 21004 DI 10.3402/polar.v33.21004 PG 22 WC Ecology; Geosciences, Multidisciplinary; Oceanography SC Environmental Sciences & Ecology; Geology; Oceanography GA AX3KZ UT WOS:000346839500001 ER PT S AU Hemmati, H AF Hemmati, Hamid BE Jaworski, M Marciniak, M TI Laser Communications: From Terrestrial Broadband to Deep-Space SO 2014 16TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON) SE International Conference on Transparent Optical Networks-ICTON LA English DT Proceedings Paper CT 16th International Conference on Transparent Optical Networks (ICTON) CY JUL 06-10, 2014 CL Graz, AUSTRIA SP IEEE, IEEE Photon Soc, Light Tec, Agilent Technologies, Cerebra InformationsSysteme GmbH, IEEE Austria Sect, Inst Engn & Technol, Natl Inst Telecommunicat, IIIE Media Event, ML11, GRAZ, Osterreichischer Verband Elektrotechnik, IEEE Photon Soc, Raiffeisen Meine Bank, GRAZ Stadt, Graz Univ Technology, TEST DE satellite laser communications; optical communications with spacecraft AB In response to an ever increasing demand for higher bandwidth, the free space optical (laser) communications technology has now matured to the point that is has commenced commercial use in Earth orbit at multi-Gb/s data-rates, and is on the verge of being demonstrated for the first time from other planets. This technology has long been used in terrestrial multi Gb/s data-rate links. The talk will provide an overview of state-of-the-art in technology implemented in terrestrial broadband links, and spacecraft telecommunications from near-Earth to deep space at unprecedented data-rates. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hemmati, H (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM Hemmati@fb.com NR 0 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2162-7339 BN 978-1-4799-5601-2 J9 INT C TRANS OPT NETW PY 2014 PG 3 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA BB8GC UT WOS:000346516400004 ER PT S AU Harcke, LJ Le, CTC AF Harcke, Leif J. Le, Charles T-C. GP IEEE TI AirMOSS P-band RF Interference Experience SO 2014 IEEE RADAR CONFERENCE SE IEEE Radar Conference LA English DT Proceedings Paper CT IEEE Radar Conference - From Sensing to Information CY MAY 19-23, 2014 CL Cincinnati, OH SP IEEE, AESS, IEEE Signal Proc Soc, IEEE Geoscience & Remote Sensing Soc, IEEE Antennas & Propagat Soc, Antenna Measurement & Tech Assoc, Inst Navigat AB The NASA AirMOSS instrument is a P-band (UHF) fully polarimetric synthetic aperture radar designed to measure root-zone soil moisture. The radar currently operates in the 420-440 MHz band in North America. Narrowband communications signals are secondary users of this spectrum and contribute RF interference to the radar's operation. An adaptive RF interference filter based on the least-mean squares (LMS) algorithm developed for the GeoSAR UHF airborne SAR program has been adopted for use by AirMOSS. Characterization of the algorithm's effects on simulated point targets finds a 1.2 dB average amplitude error. Though this is within the 1.5 dB absolute calibration specification for the AirMOSS radar, RFI removal can be a large contributor to the total radiometric error budget. Experience during the first nine months of AirMOSS operations has applied the adaptive RFI removal on an as-needed basis due to multiplicative noise (MNR) increase and calibration concerns. C1 [Harcke, Leif J.; Le, Charles T-C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Harcke, LJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Leif.J.Harcke@jpl.nasa.gov; Charles.T-C.Le@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1097-5764 BN 978-1-4799-2035-8 J9 IEEE RAD CONF PY 2014 BP 761 EP 764 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BB8EZ UT WOS:000346494600148 ER PT S AU Rincon, RF Fatoyinbo, T Ranson, KJ Osmanoglu, B Sun, GQ Deshpande, M Perrine, M Du Toit, C Bonds, Q Beck, J Lu, D AF Rincon, Rafael F. Fatoyinbo, Temilola Ranson, K. Jon Osmanoglu, Batuham Sun, Guoqing Deshpande, Manohar Perrine, Martin Du Toit, Cornelis Bonds, Quenton Beck, Jaclyn Lu, Daniel GP IEEE TI The Ecosystems SAR (EcoSAR) An airborne P-band Polarimetric InSAR for the measurement of vegetation structure, biomass and permafrost SO 2014 IEEE RADAR CONFERENCE SE IEEE Radar Conference LA English DT Proceedings Paper CT IEEE Radar Conference - From Sensing to Information CY MAY 19-23, 2014 CL Cincinnati, OH SP IEEE, AESS, IEEE Signal Proc Soc, IEEE Geoscience & Remote Sensing Soc, IEEE Antennas & Propagat Soc, Antenna Measurement & Tech Assoc, Inst Navigat ID CARBON AB EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP). C1 [Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuham; Sun, Guoqing; Deshpande, Manohar; Perrine, Martin; Du Toit, Cornelis; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rincon, RF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Fatoyinbo, Temilola/G-6104-2012 OI Fatoyinbo, Temilola/0000-0002-1130-6748 NR 13 TC 4 Z9 4 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1097-5764 BN 978-1-4799-2035-8 J9 IEEE RAD CONF PY 2014 BP 1443 EP 1445 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BB8EZ UT WOS:000346494600284 ER PT J AU Rejou-Mechain, M Muller-Landau, HC Detto, M Thomas, SC Le Toan, T Saatchi, SS Barreto-Silva, JS Bourg, NA Bunyavejchewin, S Butt, N Brockelman, WY Cao, M Cardenas, D Chiang, JM Chuyong, GB Clay, K Condit, R Dattaraja, HS Davies, SJ Duque, A Esufali, S Ewango, C Fernando, RHS Fletcher, CD Gunatilleke, IAUN Hao, Z Harms, KE Hart, TB Herault, B Howe, RW Hubbell, SP Johnson, DJ Kenfack, D Larson, AJ Lin, L Lin, Y Lutz, JA Makana, JR Malhi, Y Marthews, TR McEwan, RW McMahon, SM McShea, WJ Muscarella, R Nathalang, A Noor, NSM Nytch, CJ Oliveira, AA Phillips, RP Pongpattananurak, N Punchi-Manage, R Salim, R Schurman, J Sukumar, R Suresh, HS Suwanvecho, U Thomas, DW Thompson, J Uriarte, M Valencia, R Vicentini, A Wolf, AT Yap, S Yuan, Z Zartman, CE Zimmerman, JK Chave, J AF Rejou-Mechain, M. Muller-Landau, H. C. Detto, M. Thomas, S. C. Le Toan, T. Saatchi, S. S. Barreto-Silva, J. S. Bourg, N. A. Bunyavejchewin, S. Butt, N. Brockelman, W. Y. Cao, M. Cardenas, D. Chiang, J. -M. Chuyong, G. B. Clay, K. Condit, R. Dattaraja, H. S. Davies, S. J. Duque, A. Esufali, S. Ewango, C. Fernando, R. H. S. Fletcher, C. D. Gunatilleke, I. A. U. N. Hao, Z. Harms, K. E. Hart, T. B. Herault, B. Howe, R. W. Hubbell, S. P. Johnson, D. J. Kenfack, D. Larson, A. J. Lin, L. Lin, Y. Lutz, J. A. Makana, J. -R. Malhi, Y. Marthews, T. R. McEwan, R. W. McMahon, S. M. McShea, W. J. Muscarella, R. Nathalang, A. Noor, N. S. M. Nytch, C. J. Oliveira, A. A. Phillips, R. P. Pongpattananurak, N. Punchi-Manage, R. Salim, R. Schurman, J. Sukumar, R. Suresh, H. S. Suwanvecho, U. Thomas, D. W. Thompson, J. Uriarte, M. Valencia, R. Vicentini, A. Wolf, A. T. Yap, S. Yuan, Z. Zartman, C. E. Zimmerman, J. K. Chave, J. TI Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks SO BIOGEOSCIENCES LA English DT Article ID ALOS PALSAR DATA; ABOVEGROUND BIOMASS; ERROR PROPAGATION; AMAZONIAN FOREST; TROPICAL FORESTS; AIRBORNE LIDAR; LIVE BIOMASS; MODELS; DEFORESTATION; REGRESSION AB Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise. C1 [Rejou-Mechain, M.; Chave, J.] Univ Toulouse 3, Lab Evolut & Divers Biol, UMR5174, CNRS, F-31062 Toulouse, France. [Muller-Landau, H. C.; Detto, M.; Condit, R.; Hubbell, S. P.] Smithsonian Trop Res Inst, Balboa 084303092, Ancon, Panama. [Thomas, S. C.; Schurman, J.] Univ Toronto, Fac Forestry, Toronto, ON, Canada. [Le Toan, T.] Univ Toulouse 3, IRD, CNES, Ctr Etudes Spatiales Biosphere,CNRS,UMR5126, F-31401 Toulouse, France. [Saatchi, S. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Barreto-Silva, J. S.] Inst Amazon Invest Cientif SINCHI, Leticia, Amazonas, Colombia. [Bourg, N. A.; McShea, W. J.] Conservat Ecol Ctr, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA. [Bunyavejchewin, S.] Res Off, Natl Pk Wildlife & Plant Conservat Dept, Bangkok 10900, Thailand. [Butt, N.; Malhi, Y.; Marthews, T. R.] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford OX1 3QY, England. [Butt, N.] Univ Queensland, Sch Biol Sci, ARC Ctr Excellence Environm Decis, St Lucia, Qld 4072, Australia. [Brockelman, W. Y.; Nathalang, A.; Suwanvecho, U.] Ecol Lab, Bioresources Technol Unit, Khlongluang 12120, Pathum Thani, Thailand. [Cao, M.; Lin, L.] Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Key Lab Trop Forest Ecol, Kunming 650223, Peoples R China. [Cardenas, D.] Inst Amazon Invest Cientif SINCHI, Bogota, Colombia. [Chiang, J. -M.; Lin, Y.] Tunghai Univ, Dept Life Sci, Taichung 40704, Taiwan. [Chuyong, G. B.] Univ Buea, Dept Bot & Plant Physiol, Buea, Cameroon. [Clay, K.; Johnson, D. J.; Phillips, R. P.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Dattaraja, H. S.; Sukumar, R.; Suresh, H. S.] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India. [Davies, S. J.] Smithsonian Trop Res Inst, Smithsonian Inst Global Earth Observ, Ctr Trop Forest Sci, Washington, DC 20012 USA. [Duque, A.] Univ Nacl Colombia, Dept Ciencias Forest, Medellin, Colombia. [Esufali, S.; Gunatilleke, I. A. U. N.] Univ Peradeniya, Fac Sci, Dept Bot, Peradeniya, Sri Lanka. [Ewango, C.] Ctr Format & Rech Conservat Forestiere CEFRECOF, Wildlife Conservat Soc, Kinshasa, Zaire. [Fernando, R. H. S.] Royal Bot Garden, Peradeniya, Sri Lanka. [Fletcher, C. D.; Noor, N. S. M.; Salim, R.] Forest Res Inst Malaysia FRIM, Kepong 52109, Selangor, Malaysia. [Hao, Z.; Yuan, Z.] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China. [Harms, K. E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. [Hart, T. B.] Project TL2, Kinshasa, Zaire. [Herault, B.] UMR Ecol Forets Guyane EcoFoG, Kourou 97310, French Guiana. [Howe, R. W.; Wolf, A. T.] Univ Wisconsin, Dept Nat & Appl Sci, Green Bay, WI 54311 USA. [Hubbell, S. P.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Kenfack, D.] Harvard Univ, CTFS Arnold Arboretum Off, Cambridge, MA 02138 USA. [Larson, A. J.] Univ Montana, Coll Forestry & Conservat, Dept Forest Management, Missoula, MT 59812 USA. [Lutz, J. A.] Utah State Univ, Wildland Resources Dept, Logan, UT 84322 USA. [Makana, J. -R.] Wildlife Conservat Soc, DRC Program, Kinshasa, Zaire. [McEwan, R. W.] Univ Dayton, Dept Biol, Dayton, OH 45469 USA. [McMahon, S. M.] Smithsonian Trop Res Inst, Edgewater, MD USA. [McMahon, S. M.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA. [Muscarella, R.; Uriarte, M.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY USA. [Nytch, C. J.; Thompson, J.; Zimmerman, J. K.] Univ Puerto Rico, Dept Environm Sci, San Juan, PR 00936 USA. [Oliveira, A. A.] Univ Sao Paulo, Inst Biociencias, Dept Ecol, BR-04582050 Sao Paulo, Brazil. [Pongpattananurak, N.] Kasetsart Univ, Fac Forestry, Dept Conservat, Bangkok, Thailand. [Punchi-Manage, R.] Univ Gottingen, Dept Ecosyst Modelling, D-37073 Gottingen, Germany. [Thomas, D. W.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Thompson, J.] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland. [Valencia, R.] Pontificia Univ Catolica Ecuador, Escuela Ciencias Biol, Quito, Ecuador. [Vicentini, A.; Zartman, C. E.] Inst Nacl de Pesquisas da Amazonia, Manaus, Amazonas, Brazil. [Yap, S.] Univ Philippines Diliman, Inst Biol, Quezon City 1101, Philippines. RP Rejou-Mechain, M (reprint author), Univ Toulouse 3, Lab Evolut & Divers Biol, UMR5174, CNRS, F-31062 Toulouse, France. EM maxime.rejou@gmail.com RI Oliveira, Alexandre/G-8830-2012; Thompson, Jill/K-2200-2012; OI Oliveira, Alexandre/0000-0001-5526-8109; Thompson, Jill/0000-0002-4370-2593; Bourg, Norman/0000-0002-7443-1992; Herault, Bruno/0000-0002-6950-7286 FU central office of the Amacayacu National Natural Park of Colombia; NSF; EU FP7 through the ROBIN project; CNES; National Science Foundation (DEB) [1046113]; [CEBA: ANR-10-LABX-25-01]; [TULIP: ANR-10-LABX-0041] FX We thank E. T. A. Mitchard, G. P. Asner and an anonymous reviewer for useful comments and suggestions on our work. We are also grateful to all the people, institutions, foundations, and funding bodies that have contributed to the collection of the large plot data sets (http://www.ctfs.si.edu/group/Partners/Forest+Plot+Institutions), including the staff members and central office of the Amacayacu National Natural Park of Colombia, NSF support for the Luquillo LTER program and EU FP7 support through the ROBIN project for Jill Thompson. We sincerely thank Erika Gonzalez and Sandeep Pulla for their help with analyses for the SCBI and Mudumalai plots, respectively. Financial support for the analyses presented here was provided by the CNES (postdoctoral grant to M. Rejou-Mechain), the National Science Foundation (DEB #1046113), and two Investissement d'Avenir grants managed by Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01; TULIP: ANR-10-LABX-0041). NR 60 TC 11 Z9 12 U1 8 U2 59 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2014 VL 11 IS 23 BP 6827 EP 6840 DI 10.5194/bg-11-6827-2014 PG 14 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA AW6CM UT WOS:000346357100021 ER PT J AU Wintucky, EG Simons, RN AF Wintucky, Edwin G. Simons, Rainee N. GP IEEE TI A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies SO IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE SE IEEE International Vacuum Electronics Conference IVEC LA English DT Proceedings Paper CT 15th IEEE International Vacuum Electronics Conference CY APR 22-24, 2014 CL Monterey, CA SP IEEE DE TWT; waveguide coupler; harmonic frequencies AB This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies. C1 [Wintucky, Edwin G.; Simons, Rainee N.] NASA, GRC, Cleveland, OH 44135 USA. RP Wintucky, EG (reprint author), NASA, GRC, MS 54-1,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Edwin.G.Wintucky@nasa.gov; Rainee.N.Simons@nasa.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-3424-9 J9 IEEE INT VAC ELECT C PY 2014 BP 187 EP 188 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA BB7ZW UT WOS:000346166100086 ER PT J AU Cerrone, A Hochhalter, J Heber, G Ingraffea, A AF Cerrone, Albert Hochhalter, Jacob Heber, Gerd Ingraffea, Anthony TI On the Effects of Modeling As-Manufactured Geometry: Toward Digital Twin SO INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING LA English DT Article ID FRACTURE; PREDICTION; FAILURE; GROWTH AB A simple, nonstandardized material test specimen, which fails along one of two different likely crack paths, is considered herein. The result of deviations in geometry on the order of tenths of a millimeter, this ambiguity in crack path motivates the consideration of as manufactured component geometry in the design, assessment, and certification of structural systems. Herein, finite element models of as-manufactured specimens are generated and subsequently analyzed to resolve the crack-path ambiguity. The consequence and benefit of such a "personalized" methodology is the prediction of a crack path for each specimen based on its as-manufactured geometry, rather than a distribution of possible specimen geometries or nominal geometry. The consideration of as-manufactured characteristics is central to the Digital Twin concept. Therefore, this work is also intended to motivate its development. C1 [Cerrone, Albert; Ingraffea, Anthony] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Hochhalter, Jacob] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Heber, Gerd] HDF Grp, Champaign, IL 61820 USA. RP Cerrone, A (reprint author), Cornell Univ, Sch Civil & Environm Engn, 642 Rhodes Hall, Ithaca, NY 14853 USA. EM arc247@cornell.edu FU NASA Aeronautics Research Institute Seedling Fund; Ross-Tetelman Fellowship at Cornell University FX The authors would like to acknowledge Dr. Brad Boyce of Sandia National Labs for spearheading the 2012 Sandia Fracture Challenge as well as all of its participants. Andrew Gross and Professor Ravi-Chandar of the University of Texas at Austin are also acknowledged for providing the experimental data of the S11 specimen that appear in this paper. Dr. Aida Nonn of Salzgitter Mannesmann Forschung GmbH is also recognized for her assistance with the porous metal plasticity model. Jacob Hochhalter would like to acknowledge support from the NASA Aeronautics Research Institute Seedling Fund which provided the necessary resources to complete the simulation work presented. This research was made possible by support from the Ross-Tetelman Fellowship at Cornell University. NR 16 TC 2 Z9 2 U1 19 U2 27 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-5966 EI 1687-5974 J9 INT J AEROSPACE ENG JI Int. J. Aerosp. Eng. PY 2014 AR 439278 DI 10.1155/2014/439278 PG 10 WC Engineering, Aerospace SC Engineering GA AX0KB UT WOS:000346640300001 ER PT J AU Chang, IC Norman, TR Romander, EA AF Chang, I-Chung Norman, Thomas R. Romander, Ethan A. TI Airloads Correlation of the UH-60A Rotor inside the 40-by 80-Foot Wind Tunnel SO INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING LA English DT Article ID PREDICTION; FLIGHT AB The presented research validates the capability of a loosely coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the Full-Scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment. C1 [Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.] NASA, Ames Res Ctr, Aeromechan Off, Mountain View, CA 94035 USA. RP Chang, IC (reprint author), NASA, Ames Res Ctr, Aeromechan Off, Mountain View, CA 94035 USA. EM i.c.chang@nasa.gov NR 28 TC 0 Z9 0 U1 0 U2 3 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-5966 EI 1687-5974 J9 INT J AEROSPACE ENG JI Int. J. Aerosp. Eng. PY 2014 AR 473989 DI 10.1155/2014/473989 PG 19 WC Engineering, Aerospace SC Engineering GA AX0KE UT WOS:000346640600001 ER PT J AU Aschmann, J Burrows, JP Gebhardt, C Rozanov, A Hommel, R Weber, M Thompson, AM AF Aschmann, J. Burrows, J. P. Gebhardt, C. Rozanov, A. Hommel, R. Weber, M. Thompson, A. M. TI On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BREWER-DOBSON CIRCULATION; CHEMICAL-TRANSPORT MODEL; SHORT-LIVED SUBSTANCES; SAGE-II; STRATOSPHERIC OZONE; WATER-VAPOR; SATELLITE-OBSERVATIONS; UPPER TROPOSPHERE; CHANGING CLIMATE; TROPOPAUSE LAYER AB Chemistry climate models predict an acceleration of the upwelling branch of the Brewer Dobson circulation as a consequence of increasing global surface temperatures, resulting from elevated levels of atmospheric greenhouse gases. The observed decrease of ozone in the tropical lower stratosphere during the last decades of the 20th century is consistent with the anticipated acceleration of upwelling. However, more recent satellite observations of ozone reveal that this decrease has unexpectedly stopped in the first decade of the 21st century, challenging the implicit assumption of a continuous acceleration of tropical upwelling. In this study we use three decades of chemistry-transport-model simulations (1980-2013) to investigate this phenomenon and resolve this apparent contradiction. Aside from a high-bias between 1985-1990, our model is able to reproduce the observed tropical lower stratosphere ozone record. A regression analysis identifies a significant decrease in the early period followed by a statistically robust trend-change after 2002, in qualitative agreement with the observations. We demonstrate that this trend-change is correlated with structural changes in the vertical transport, represented in the model by diabatic heating rates taken from the reanalysis product Era-Interim. These changes lead to a hiatus in the acceleration of tropical upwelling between 70-30 hPa and a southward shift of the tropical pipe at 30 and 100 hPa during the past decade, which appear to be the primary causes for the observed trend-change in ozone. C1 [Aschmann, J.; Burrows, J. P.; Gebhardt, C.; Rozanov, A.; Hommel, R.; Weber, M.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Thompson, A. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Aschmann, J (reprint author), Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. EM jan.aschmann@iup.physik.uni-bremen.de RI Burrows, John/B-6199-2014; Thompson, Anne /C-3649-2014 OI Burrows, John/0000-0002-6821-5580; Thompson, Anne /0000-0002-7829-0920 FU University and State of Bremen; DFG Research Unit 1095 Stratospheric Change and its Role for Climate Prediction; SHARP; German Federal Ministry of Education and Research; NASA's Upper Atmosphere Research Program FX This study has been funded in part by the University and State of Bremen, the DFG Research Unit 1095 Stratospheric Change and its Role for Climate Prediction, SHARP, and the German Federal Ministry of Education and Research, research project Role Of the Middle atmosphere In Climate (ROMIC). SHADOZ, the Southern Hemisphere Additional Ozonesondes network, is funded by NASA's Upper Atmosphere Research Program. We thank G. Stiller and the three anonymous referees for their help in improving the manuscript. NR 60 TC 7 Z9 7 U1 0 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 23 BP 12803 EP 12814 DI 10.5194/acp-14-12803-2014 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AW2SW UT WOS:000346140100012 ER PT J AU Wang, JS Kawa, SR Eluszkiewicz, J Baker, DF Mountain, M Henderson, J Nehrkorn, T Zaccheo, TS AF Wang, J. S. Kawa, S. R. Eluszkiewicz, J. Baker, D. F. Mountain, M. Henderson, J. Nehrkorn, T. Zaccheo, T. S. TI A regional CO2 observing system simulation experiment for the ASCENDS satellite mission SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC CO2; ANTHROPOGENIC EMISSIONS; WEATHER RESEARCH; UNITED-STATES; NORTH-AMERICA; STILT MODEL; COLUMN CO2; GLOBAL CO2; FLUXES; SPACE AB Top down estimates of the spatiotemporal variations in emissions and uptake of CO2 will benefit from the increasing measurement density brought by recent and future additions to the suite of in situ and remote CO2 measurement platforms. In particular, the planned NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) satellite mission will provide greater coverage in cloudy regions, at high latitudes, and at night than passive satellite systems, as well as high precision and accuracy. In a novel approach to quantifying the ability of satellite column measurements to constrain CO2 fluxes, we use a portable library of footprints (surface influence functions) generated by the Stochastic Time-Inverted Lagrangian Transport (STILT) model in combination with the Weather Research and Forecasting (WRF) model in a regional Bayesian synthesis inversion. The regional Lagrangian particle dispersion model framework is well suited to make use of ASCENDS observations to constrain weekly fluxes in North America at a high resolution, in this case at 1 degrees latitude x 1 degrees longitude. We consider random measurement errors only, modeled as a function of the mission and instrument design specifications along with realistic atmospheric and surface conditions. We find that the ASCENDS observations could potentially reduce flux uncertainties substantially at biome and finer scales. At the grid scale and weekly resolution, the largest uncertainty reductions, on the order of 50 %, occur where and when there is good coverage by observations with low measurement errors and the a priori uncertainties are large. Uncertainty reductions are smaller for a 1.57 mu m candidate wavelength than for a 2.05 mu m wavelength, and are smaller for the higher of the two measurement error levels that we consider (1.0 ppm vs. 0.5 ppm clear-sky error at Railroad Valley, Nevada). Uncertainty reductions at the annual biome scale range from similar to 40% to similar to 75% across our four instrument design cases and from similar to 65% to similar to 85 % for the continent as a whole. Tests suggest that the quantitative results are moderately sensitive to assumptions regarding a priori uncertainties and boundary conditions. The a posteriori flux uncertainties we obtain, ranging from 0.01 to 0.06 Pg C yr(-1) across the biomes, would meet requirements for improved understanding of long-term carbon sinks suggested by a previous study. C1 [Wang, J. S.] Univ Space Res Assoc, Columbia, MD 21046 USA. [Wang, J. S.; Kawa, S. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eluszkiewicz, J.; Mountain, M.; Henderson, J.; Nehrkorn, T.; Zaccheo, T. S.] Atmospher & Environm Res, Lexington, MA USA. [Baker, D. F.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. RP Wang, JS (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA. EM james.s.wang@nasa.gov FU NASA Atmospheric CO2 Observations from Space program element; NASA ASCENDS pre-phase A activity FX Work at NASA and AER has been supported by the NASA Atmospheric CO2 Observations from Space program element and NASA ASCENDS pre-phase A activity funding. We are grateful to the NASA Ames HEC facility staff for assistance in executing the WRF STILT runs on the Pleiades supercomputer, and to the NASA HEC Program for granting use of the Dali and Discover systems at the NASA Center for Climate Simulation. We also thank J. Abshire, E. Browell, and R. Menzies for contributions to ASCENDS data characterization, G. J. Collatz for making available the CASA-GFED fluxes that we used to construct the a priori uncertainties, R. Aschbrenner for help with the footprint calculations, S. Gourdji for providing correlation parameters and the biome map, P. Rayner and A. Michalak for advice on inversions, M. Manyin and Y Liu for computing help, L. Ott for help with transferring WRF-STILT files, and G. J. Collatz and E. McGrath-Spangler for comments on the manuscript. Finally, we appreciate the comments provided by two anonymous referees. NR 55 TC 0 Z9 0 U1 1 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 23 BP 12897 EP 12914 DI 10.5194/acp-14-12897-2014 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AW2SW UT WOS:000346140100018 ER PT J AU Fluck, M Li, RW Valdivieso, P Linnehan, RM Castells, J Tesch, P Gustafsson, T AF Fluck, Martin Li, Ruowei Valdivieso, Paola Linnehan, Richard M. Castells, Josiane Tesch, Per Gustafsson, Thomas TI Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific SO BIOMED RESEARCH INTERNATIONAL LA English DT Article ID FOCAL ADHESION KINASE; HUMAN SKELETAL-MUSCLE; SHORT-DURATION SPACEFLIGHT; HUMAN QUADRICEPS MUSCLE; GLOBAL GENE-EXPRESSION; DISUSE ATROPHY; UNCOUPLING PROTEIN-3; FIBER-TYPE; HUMANS; SIZE AB We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 <= P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. C1 [Fluck, Martin; Valdivieso, Paola] Univ Zurich, Balgrist Univ Hosp, CH-8006 Zurich, Switzerland. [Fluck, Martin] Balgrist Univ Hosp, Lab Muscle Plast, CH-8008 Zurich, Switzerland. [Li, Ruowei] Manchester Metropolitan Univ, Inst Biomed Res Human Movement & Hlth, Manchester M15 6BH, Lancs, England. [Linnehan, Richard M.] Johnson Space Ctr, Natl Aeronaut & Space Adm, Houston, TX USA. [Castells, Josiane] Univ St Etienne, Fac Med, EA4338, Lab Physiol Exercice, St Etienne, France. [Tesch, Per] Mid Sweden Univ, Dept Hlth Sci, Ostersund, Sweden. [Tesch, Per] Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden. [Gustafsson, Thomas] Karolinska Univ Hosp, Clin Physiol Karolinska Inst, Dept Lab Med, Stockholm, Sweden. RP Fluck, M (reprint author), Univ Zurich, Balgrist Univ Hosp, CH-8006 Zurich, Switzerland. EM mflueck@research.balgrist.ch OI Valdivieso, Paola/0000-0001-9322-4510; Gustafsson, Thomas/0000-0002-1559-4206 FU EU FP7 grant Myoage [223576]; SNSB; NASA FX The authors thank Damien Freyssenet (Laboratoire de Physiologie de l'Exercice, EA4338, Faculte de Medecine, Saint Etienne Cedex, France) for infrastructural support during this study. The authors acknowledge partial financial support by EU FP7 grant Myoage (Contract no. 223576), SNSB (Per Tesch), and NASA (Richard M. Linnehan). NR 48 TC 2 Z9 2 U1 0 U2 1 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 2314-6133 EI 2314-6141 J9 BIOMED RES INT JI Biomed Res. Int. PY 2014 AR 519310 DI 10.1155/2014/519310 PG 11 WC Biotechnology & Applied Microbiology; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Research & Experimental Medicine GA AW4ZB UT WOS:000346284900001 ER PT J AU Levermann, A Winkelmann, R Nowicki, S Fastook, JL Frieler, K Greve, R Hellmer, HH Martin, MA Meinshausen, M Mengel, M Payne, AJ Pollard, D Sato, T Timmermann, R Wang, WL Bindschadler, RA AF Levermann, A. Winkelmann, R. Nowicki, S. Fastook, J. L. Frieler, K. Greve, R. Hellmer, H. H. Martin, M. A. Meinshausen, M. Mengel, M. Payne, A. J. Pollard, D. Sato, T. Timmermann, R. Wang, W. L. Bindschadler, R. A. TI Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models SO EARTH SYSTEM DYNAMICS LA English DT Article ID SEA-LEVEL RISE; FINITE-ELEMENT MODEL; GROUNDING-LINE; OCEAN MODEL; SPATIAL SENSITIVITIES; ENVIRONMENTAL-CHANGE; WEST ANTARCTICA; NUMERICAL-MODEL; CLIMATE-CHANGE; MASS RESPONSE AB The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04-0.17 m; 90% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07-0.28 m; 90% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets. C1 [Levermann, A.; Winkelmann, R.; Frieler, K.; Martin, M. A.; Meinshausen, M.; Mengel, M.] Potsdam Inst Climate Impact Res, Potsdam, Germany. [Levermann, A.] Univ Potsdam, Inst Phys, Potsdam, Germany. [Nowicki, S.; Wang, W. L.; Bindschadler, R. A.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. [Fastook, J. L.] Univ Maine, Comp Sci Quaternary Inst, Orono, ME 04469 USA. [Greve, R.; Sato, T.] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan. [Hellmer, H. H.; Timmermann, R.] Alfred Wegener Inst, Bremerhaven, Germany. [Meinshausen, M.] Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia. [Payne, A. J.] Univ Bristol, Bristol Glaciol Ctr, Bristol BS8 1SS, Avon, England. [Pollard, D.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. RP Levermann, A (reprint author), Potsdam Inst Climate Impact Res, Potsdam, Germany. EM anders.levermann@pik-potsdam.de RI Greve, Ralf/G-2336-2010; payne, antony/A-8916-2008; Levermann, Anders/G-4666-2011; OI Greve, Ralf/0000-0002-1341-4777; payne, antony/0000-0001-8825-8425; Levermann, Anders/0000-0003-4432-4704; Frieler, Katja/0000-0003-4869-3013; Winkelmann, Ricarda/0000-0003-1248-3217 FU German federal ministry of education and research (BMBF) [01LP1171A]; Deutsche Bundesstiftung Umwelt; Japan Society for the Promotion of Science (JSPS) [22244058]; NASA Cryospheric Science program [281945.02.53.02.19, 281945.02.53.02.20]; German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety [11_II_093_Global_A_SIDS]; European Union [226375] FX R. Winkelmann and M. A. Martin were funded by the German federal ministry of education and research (BMBF grant 01LP1171A). M. Meinshausen was funded by the Deutsche Bundesstiftung Umwelt. R. Greve and T. Sato were supported by a Grant-in-Aid for Scientific Research A (no. 22244058) from the Japan Society for the Promotion of Science (JSPS). S. Nowicki, R. A. Bindschadler, and W. L. Wang were supported by the NASA Cryospheric Science program (grants 281945.02.53.02.19 and 281945.02.53.02.20). K. Frieler was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (11_II_093_Global_A_SIDS and LDCs). H. H. Hellmer, A. J. Payne and R. Timmermann were supported by the ice2sea programme from the European Union 7th Framework Programme, grant no. 226375. NR 102 TC 19 Z9 19 U1 1 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 2190-4979 EI 2190-4987 J9 EARTH SYST DYNAM JI Earth Syst. Dynam. PY 2014 VL 5 IS 2 BP 271 EP 293 DI 10.5194/esd-5-271-2014 PG 23 WC Geosciences, Multidisciplinary SC Geology GA AW2TD UT WOS:000346140900002 ER PT J AU Huber, V Schellnhuber, HJ Arnell, NW Frieler, K Friend, AD Gerten, D Haddeland, I Kabat, P Lotze-Campen, H Lucht, W Parry, M Piontek, F Rosenzweig, C Schewe, J Warszawski, L AF Huber, V. Schellnhuber, H. J. Arnell, N. W. Frieler, K. Friend, A. D. Gerten, D. Haddeland, I. Kabat, P. Lotze-Campen, H. Lucht, W. Parry, M. Piontek, F. Rosenzweig, C. Schewe, J. Warszawski, L. TI Climate impact research: beyond patchwork SO EARTH SYSTEM DYNAMICS LA English DT Article ID GLOBAL VEGETATION MODELS; INTERCOMPARISON PROJECT; ISI-MIP; MULTIMODEL ENSEMBLE; WARMING WORLD; ADAPTATION; RISK; CROP; POLICY; UNCERTAINTIES AB Despite significant progress in climate impact research, the narratives that science can presently piece together of a 2, 3, 4, or 5 degrees C warmer world remain fragmentary. Here we briefly review past undertakings to characterise comprehensively and quantify climate impacts based on multi-model approaches. We then report on the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), a community-driven effort to compare impact models across sectors and scales systematically, and to quantify the uncertainties along the chain from greenhouse gas emissions and climate input data to the modelling of climate impacts themselves. We show how ISI-MIP and similar efforts can substantially advance the science relevant to impacts, adaptation and vulnerability, and we outline the steps that need to be taken in order to make the most of the available modelling tools. We discuss pertinent limitations of these methods and how they could be tackled. We argue that it is time to consolidate the current patchwork of impact knowledge through integrated cross-sectoral assessments, and that the climate impact community is now in a favourable position to do so. C1 [Huber, V.; Schellnhuber, H. J.; Frieler, K.; Gerten, D.; Lotze-Campen, H.; Lucht, W.; Piontek, F.; Schewe, J.; Warszawski, L.] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany. [Huber, V.] European Commiss Joint Res Ctr, IPTS, Seville, Spain. [Schellnhuber, H. J.] Santa Fe Inst, Santa Fe, NM USA. [Arnell, N. W.] Univ Reading, Walker Inst Climate Syst Res, Reading, Berks, England. [Friend, A. D.] Univ Cambridge, Dept Geog, Cambridge, England. [Haddeland, I.] Norwegian Water Resources & Energy Directorate NV, Oslo, Norway. [Kabat, P.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Lucht, W.] Humboldt Univ, Dept Geog, D-10099 Berlin, Germany. [Parry, M.] Univ London Imperial Coll Sci Technol & Med, Grantham Inst Climate Change Res, London, England. [Rosenzweig, C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Huber, V (reprint author), Potsdam Inst Climate Impact Res PIK, Potsdam, Germany. EM huber@pik-potsdam.de RI Schellnhuber, Hans Joachim/B-2607-2012; Lucht, Wolfgang/G-2180-2011; Gerten, Dieter/B-2975-2013; OI Schellnhuber, Hans Joachim/0000-0001-7453-4935; Lucht, Wolfgang/0000-0002-3398-8575; Frieler, Katja/0000-0003-4869-3013 FU Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) Fast Track - German Federal Ministry of Education and Research [01LS1201A] FX This work has been conducted under the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) Fast Track, funded by the German Federal Ministry of Education and Research (reference number 01LS1201A). NR 72 TC 8 Z9 8 U1 1 U2 19 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 2190-4979 EI 2190-4987 J9 EARTH SYST DYNAM JI Earth Syst. Dynam. PY 2014 VL 5 IS 2 BP 399 EP 408 DI 10.5194/esd-5-399-2014 PG 10 WC Geosciences, Multidisciplinary SC Geology GA AW2TD UT WOS:000346140900010 ER PT J AU Zhang, X Gurney, KR Rayner, P Liu, Y Asefi-Najafabady, S AF Zhang, X. Gurney, K. R. Rayner, P. Liu, Y. Asefi-Najafabady, S. TI Sensitivity of simulated CO2 concentration to regridding of global fossil fuel CO2 emissions SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID RECORD AB Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from -30.3 TgC grid cell(-1) yr(-1) (3.39 kgCm(-2) yr(-1)) to +30.0 TgC grid cell(-1) yr(-1) (+2.6 kgCm(-2) yr(-1)) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed +/- 6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed +/- 0.10 ppm with individual station differences exceeding 32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency. C1 [Zhang, X.; Gurney, K. R.; Asefi-Najafabady, S.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Gurney, K. R.] Arizona State Univ, Global Inst Sustainabil, Tempe, AZ 85287 USA. [Rayner, P.] Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia. [Liu, Y.] NASA, Lab Atmosphere Sci Syst & Applicat Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhang, X (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. EM tyouxia@gmail.com FU NASA CMS grant [NNX12AP52G]; Australian Professorial Fellowship [DP1096309] FX This work was supported by NASA CMS grant NNX12AP52G. P. Rayner is in receipt of an Australian Professorial Fellowship (DP1096309). NR 25 TC 1 Z9 1 U1 1 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2014 VL 7 IS 6 BP 2867 EP 2874 DI 10.5194/gmd-7-2867-2014 PG 8 WC Geosciences, Multidisciplinary SC Geology GA AW2TP UT WOS:000346142200020 ER PT S AU Lopes, RMC Solomonidou, A AF Lopes, Rosaly M. C. Solomonidou, Anezina BE Fernandes, MB Daflon, S AlvarezCandal, A Dupke, R Alcaniz, J TI Planetary Geological Processes SO GRADUATE SCHOOL IN ASTRONOMY - XVIII SPECIAL COURSES AT THE NATIONAL OBSERVATORY, RIO DE JANEIRO (XVIII CCE) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 18th Special Courses at the National-Observatory-of-Rio-de-Janeiro CY OCT 21-25, 2013 CL Rio de Janeiro, BRAZIL SP Natl Observ Rio de Janeiro, Observatorio Nacional / MCIT, Coordenacao Astronomia Astrofisica, Divisao Programas Pos Graduacao, Coordenacao Aperfeioamento Pessoal Nivel Superior DE impact cratering; volcanism; tectonism; erosion; terrestrial planets; Io; Titan ID TITAN RADAR MAPPER; JUPITERS MOON IO; ACTIVE VOLCANISM; SILICATE VOLCANISM; POSSIBLE ORIGIN; CASSINI RADAR; MU-M; SURFACE; GALILEO; LAKES AB In this introduction to planetary geology, We review the major geologic processes affecting the solid bodies of the solar system, namely volcanism, tectonism, impact cratering, and erosion. We illustrate the interplay of these processes in different worlds, briefly reviewing how they affect the surfaces of the Earth's Moon, Mercury, Venus and Mars, then focusing on two very different worlds: Jupiter's moon Io, the most volcanically active object in the solar system, and Saturn's moon Titan, where the interaction between a dense atmosphere and the surface make for remarkably earth-like landscapes despite the great differences in surface temperature and composition. C1 [Lopes, Rosaly M. C.; Solomonidou, Anezina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lopes, RMC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 101 TC 0 Z9 0 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1271-2 J9 AIP CONF PROC PY 2014 VL 1632 BP 27 EP 57 DI 10.1063/1.4902843 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BB7WD UT WOS:000346060900002 ER PT S AU Diosady, LT Murman, SM AF Diosady, Laslo T. Murman, Scott M. BE Simos, TE Kalogiratou, Z Monovasilis, T TI Tensor-Product Preconditioners for a Space-Time Discontinuous Galerkin Method SO INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014) SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference of Computational Methods in Sciences and Engineering 2014 (ICCMSE) CY APR 04-07, 2014 CL Athens, GREECE SP European Soc Computat Methods Sci Engn & Technol DE Discontinuous Galerkin Methods; Space-Time Formulations; Spectral Element Methods ID NAVIER-STOKES EQUATIONS AB A space-time discontinuous Galerkin spectral element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is presented. A diagonalized alternating direction implicit preconditioner is extended to a space-time formulation using entropy variables. The effectiveness of this technique is demonstrated for the direct numerical simulation of turbulent flow in a channel. C1 [Diosady, Laslo T.; Murman, Scott M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Diosady, LT (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 12 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1255-2 J9 AIP CONF PROC PY 2014 VL 1618 BP 946 EP 949 DI 10.1063/1.4897889 PG 4 WC Physics, Applied SC Physics GA BB7UI UT WOS:000346015200200 ER PT S AU Moss, JN O'Byrne, S Gai, SL AF Moss, J. N. O'Byrne, S. Gai, S. L. BE Fan, J TI Hypersonic Separated Flows about "Tick" Configurations with Sensitivity to Model Design SO PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 29th International Symposium on Rarefi ed Gas Dynamics (RGD) CY JUL 13-18, 2014 CL Xian, PEOPLES R CHINA SP Chinese Acad Sci, Inst Mech, Chinese Acad Sci, State Key Lab High temperature Gas Dynam, Minist Sci & Technol Peoples Republic China, Natl Nat Sci Fdn China, Chinese Soc Theoret & Appl Mech DE DSMC; leading edge effects; hypersonic flow; separated flow; surface effects; rarefaction effects ID SIMULATIONS AB This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several how regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a signiticant impact on the extent of separated flow. C1 [Moss, J. N.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Moss, JN (reprint author), NASA, Langley Res Ctr, Mail Stop 408A, Hampton, VA 23681 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1265-1 J9 AIP CONF PROC PY 2014 VL 1628 BP 162 EP 169 DI 10.1063/1.4902588 PG 8 WC Physics, Applied SC Physics GA BB7XJ UT WOS:000346083400020 ER PT J AU Carpenter, MH Fisher, TC Nielsen, EJ Frankel, SH AF Carpenter, Mark H. Fisher, Travis C. Nielsen, Eric J. Frankel, Steven H. TI ENTROPY STABLE SPECTRAL COLLOCATION SCHEMES FOR THE NAVIER-STOKES EQUATIONS: DISCONTINUOUS INTERFACES SO SIAM JOURNAL ON SCIENTIFIC COMPUTING LA English DT Article DE high-order finite-element methods; conservation; skew-symmetric; entropy stability; Navier-Stokes; SBP-SAT ID ESSENTIALLY NONOSCILLATORY SCHEMES; NONLINEAR CONSERVATION-LAWS; FINITE-DIFFERENCE SCHEMES; WALL BOUNDARY-CONDITIONS; EFFICIENT IMPLEMENTATION; ELEMENT-METHOD; FAR-FIELD; SYSTEMS; ORDER; ACCURACY AB Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation element methods of arbitrary order for the compressible Navier-Stokes equations. The new methods are similar to strong form, nodal discontinuous Galerkin spectral elements but conserve entropy for the Euler equations and are entropy stable for the Navier-Stokes equations. Shock capturing follows immediately by combining them with a dissipative companion operator via a comparison approach. Smooth and discontinuous test cases are presented that demonstrate their efficacy. C1 [Carpenter, Mark H.; Nielsen, Eric J.] NASA, Computat AeroSci Branch CASB, Langley Res Ctr LaRC, Hampton, VA 23681 USA. [Fisher, Travis C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Frankel, Steven H.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Carpenter, MH (reprint author), NASA, Computat AeroSci Branch CASB, Langley Res Ctr LaRC, Hampton, VA 23681 USA. EM mark.h.carpenter@nasa.gov; tcfishe@sandia.gov; eric.j.nielsen@nasa.gov; stevenfrankel@purdue.edu FU U.S. Government; "Revolutionary Computational Aerosciences" project; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Special thanks are extended to Dr. Mujeeb Malik for funding this work as part of the "Revolutionary Computational Aerosciences" project. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed by an employee of the U.S. Government or under U.S. Government contract. The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 43 TC 13 Z9 13 U1 0 U2 1 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1064-8275 EI 1095-7197 J9 SIAM J SCI COMPUT JI SIAM J. Sci. Comput. PY 2014 VL 36 IS 5 BP B835 EP B867 DI 10.1137/130932193 PG 33 WC Mathematics, Applied SC Mathematics GA AW2MT UT WOS:000346123200020 ER PT J AU Dinnat, EP Boutin, J Yin, XB Le Vine, DM AF Dinnat, Emmanuel P. Boutin, Jacqueline Yin, Xiaobin Le Vine, David M. GP IEEE TI Inter-Comparison of SMOS and Aquarius Sea Surface Salinity: Effects of the Dielectric Constant and Vicarious Calibration SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE sea surface salinity; L-band; radiometry; calibration; Aquarius; SMOS; dielectric constant ID MODEL; EMISSIVITY; SUN AB Two spaceborne instruments share the scientific objective of mapping the global Sea Surface Salinity (SSS). ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometry to retrieve SSS. We find that SSS retrieved by SMOS is generally lower than SSS retrieved by Aquarius, except for very cold waters where SMOS SSS is higher overall. The spatial distribution of the differences in SSS is similar to the distribution of sea surface temperature. There are several differences in the retrieval algorithm that could explain the observed SSS differences. We assess the impact of the dielectric constant model and the ancillary sea surface salinity used by both missions for calibrating the radiometers and retrieving SSS. The differences in dielectric constant model produce differences in SSS of the order of 0.3 psu and exhibit a dependence on latitude and temperature. We use comparisons with the Argo in situ data to assess the performances of the model in various regions of the globe. Finally, the differences in the ancillary sea surface salinity products used to perform the vicarious calibration of both instruments are relatively small (0.1 psu), but not negligible considering the requirements for spaceborne remote sensing of SSS. C1 [Dinnat, Emmanuel P.] Chapman Univ, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boutin, Jacqueline; Yin, Xiaobin] LOCEAN, CNRS IRD UPMC MN, Paris, France. [Le Vine, David M.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Dinnat, EP (reprint author), Chapman Univ, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM emmanuel.dinnat@nasa.gov RI Boutin, Jacqueline/M-2253-2016 FU NASA [NNX12AG69G] FX This research was supported by the NASA grant # NNX12AG69G NR 13 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 55 EP 60 PG 6 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600012 ER PT J AU de Matthaeis, P Utku, C Le Vine, DM Moyer, A AF de Matthaeis, P. Utku, C. Le Vine, D. M. Moyer, A. GP IEEE TI Aquarius Retrieval of Sea Ice Thickness: Initial Results SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE Sea Ice Thickness; Microwave Radiometry ID SALINITY; MODEL AB Aquarius brightness temperature data are used to calculate sea ice thickness in the Arctic region. The method is based on the inversion of a radiative transfer model for ice-covered sea. Using this technique, the initial sea ice thickness values retrieved from Aquarius data are compared to the SMOSIce Data as well as to estimates from NASA's Operation IceBridge. The results show similar trends between the SMOS- and Aquarius-derived sea ice thickness, however the Aquarius estimates tend to be higher and noisier than the corresponding SMOS values. The accuracy of retrieved Aquarius ice thickness is possibly influenced by uncertainties in the ancillary input parameters and by the coarser resolutions of Aquarius. C1 [de Matthaeis, P.; Utku, C.; Le Vine, D. M.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. [Moyer, A.] Univ British Columbia, Dept Geog, Y Vancouver, BC V6T 1Z2, Canada. RP de Matthaeis, P (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA. EM paolo.dematthaeis@nasa.gov NR 8 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 69 EP 71 PG 3 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600015 ER PT J AU Utku, C Le Vine, DM AF Utku, Cuneyt Le Vine, David M. GP IEEE TI Enhanced Resolution for Aquarius Salinity Retrieval near Land-Water Boundaries SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE Microwave Remote Sensing; L-Band; Sea Surface Salinity AB A numerical reconstruction of the brightness temperature is examined as a potential way to improve the retrieval of salinity from Aquarius measurements closer to land-water boundaries. A test case using simulated ocean-land scenes suggest promise for the technique. C1 [Utku, Cuneyt] NASA, Goddard Space Flight Ctr, USRA GESTAR, Greenbelt, MD 20771 USA. [Le Vine, David M.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Utku, C (reprint author), NASA, Goddard Space Flight Ctr, USRA GESTAR, Greenbelt, MD 20771 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 78 EP 80 PG 3 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600017 ER PT J AU Sahawneh, S Farrar, S Johnson, J Jones, WL Roberts, J Biswas, S Cecil, D AF Sahawneh, Saleem Farrar, Spencer Johnson, James Jones, W. Linwood Roberts, Jason Biswas, Sayak Cecil, Daniel GP IEEE TI Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE synthetic aperture radiometry; SFMR; Microwave radiometry; Brightness Temperature; HIRAD AB Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor [1]. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes. C1 [Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood] Univ Cent Florida, Dept EECS, Cent FL Remote Sensing Lab, Orlando, FL 32816 USA. [Roberts, Jason; Biswas, Sayak; Cecil, Daniel] NASA Marshall Space Flight Ctr, Huntsville, AL USA. RP Sahawneh, S (reprint author), Univ Cent Florida, Dept EECS, Cent FL Remote Sensing Lab, Orlando, FL 32816 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 85 EP 89 PG 5 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600019 ER PT J AU Tian, YD Peters-Lidard, CD Harrison, KW Kumar, S Ringerud, S AF Tian, Yudong Peters-Lidard, Christa D. Harrison, Kenneth W. Kumar, Sujay Ringerud, Sarah GP IEEE TI Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE remote sensing; passive microwave; microwave emissivity; land surface; radiative transfer model ID METHODOLOGY; ALGORITHMS; SYSTEM; WATER AB Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by similar to 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances. C1 [Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. [Ringerud, Sarah] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA. RP Tian, YD (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA. EM Yudong.tian@nasa.gov RI Kumar, Sujay/B-8142-2015 FU National Aeronautics and Space Administration Precipitation Science Program under Solicitation [NNH09ZDA001N] FX This research is supported by the National Aeronautics and Space Administration Precipitation Science Program under Solicitation NNH09ZDA001N (PI: C. D. Peters-Lidard). NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 99 EP 102 PG 4 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600022 ER PT J AU Chang, WM Tsang, L Lemmetyinen, J Xu, XL Yueh, S AF Chang, Wenmo Tsang, Leung Lemmetyinen, Juha Xu, Xiaolan Yueh, Simon GP IEEE TI Bicontinuous/DMRT Model Applied To Active and Passive Microwave Remote Sensing of Terrestrial Snow SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE Bicontinuous; Dense Media Radiative Transfer; NoSREx; passive remote sensing of snow; active remote sensing of snow AB Snow and Cold Land Processes (SCLP) is a decadal satellite mission of NASA with both the passive microwave sensors and the active Synthetic Aperture Radar (SAR). Bicontinuous / DMRT model is used to model the brightness temperature and radar backscatter. We apply the approach to the ground measurement data of NoSREx campaign which has multichannel measurements in both active and passive remote sensing. The same physical parameters are used in the input of bicontinuous / DMRT for all frequency channels and for both active and passive. The bicontinuous / DMRT model prediction is compared with the microwave measurement data of NoSREx. Good agreement has been achieved for multi-channels for both active and passive remote sensing. C1 [Chang, Wenmo; Tsang, Leung] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Lemmetyinen, Juha] Finnish Meteorol Inst, Arct Res Unit, Helsinki, Finland. [Xu, Xiaolan; Yueh, Simon] Jet Prop Lab, Pasadena, CA USA. RP Chang, WM (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. EM wmchang@uw.edu NR 10 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 103 EP 106 PG 4 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600023 ER PT J AU Haggerty, J Schick, K Mahoney, MJ Lim, B AF Haggerty, Julie Schick, Kelly Mahoney, Michael. J. Lim, Boon GP IEEE TI The NCAR Microwave Temperature Profiler: Data Applications from Recent Deployments SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE temperature; profiling; microwave radiometer AB A Microwave Temperature Profiler (MTP) was developed for research with the NSF-NCAR Gulfstream-V aircraft. MTP is a scanning microwave radiometer that measures thermal emission at spectral lines in the 50-60 GHz oxygen complex. A statistical retrieval method derives vertical temperature profiles from the measurements using radiosonde profiles in the vicinity of the aircraft as a priori information. This paper describes application of MTP data for analysis of data collected in recent field projects with varied scientific objectives. C1 [Haggerty, Julie; Schick, Kelly] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Mahoney, Michael. J.; Lim, Boon] Jet Prop Lab, Pasadena, CA USA. RP Haggerty, J (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM haggerty@ucar.edu FU National Science Foundation FX NCAR is sponsored by the National Science Foundation. NR 7 TC 1 Z9 1 U1 1 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 133 EP 135 PG 3 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600029 ER PT J AU Yanovsky, I Tanner, A Lambrigtsen, B AF Yanovsky, Igor Tanner, Alan Lambrigtsen, Bjorn GP IEEE TI EFFICIENT DECONVOLUTION AND SPATIAL RESOLUTION ENHANCEMENT FROM CONTINUOUS AND OVERSAMPLED OBSERVATIONS IN MICROWAVE IMAGERY SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE Super-resolution; spatial resolution; sparse optimization; microwave imaging; inverse problems AB In this paper, we develop efficient deconvolution and super-resolution methodologies and apply these techniques to reduce image blurring and distortion inherent in an aperture synthesis system. Such a system produces ringing at sharp edges and other transitions in the observed field. The conventional approach to suppressing sidelobes is to apply linear apodization, which has the undesirable side effect of degrading spatial resolution. We have developed an efficient total variation minimization technique based on Split Bregman deconvolution that reduces image ringing while sharpening the image and preserving information content. Furthermore, a proposed multiframe super-resolution method is presented that is robust to image noise and noise in the point spread function and leads to additional improvements in spatial resolution. Our super-resolution methodologies are based on current research in sparse optimization and compressed sensing, which lead to unprecedented efficiencies for solving image reconstruction problems. C1 [Yanovsky, Igor; Tanner, Alan; Lambrigtsen, Bjorn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yanovsky, I (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 5 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 151 EP 156 PG 6 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600034 ER PT J AU Parashare, CR Kangaslahti, PP Brown, ST Padmanabhan, S Tanner, AB Montes, O Dawson, DE Gaier, TC Reising, SC Hadel, VD Johnson, TP Bosch-Lluis, X AF Parashare, Chaitali R. Kangaslahti, Pekka P. Brown, Shannon T. Padmanabhan, Sharmila Tanner, Alan B. Montes, Oliver Dawson, Douglas E. Gaier, Todd C. Reising, Steven C. Hadel, Victoria D. Johnson, Thaddeus P. Bosch-Lluis, Xavier GP IEEE TI NOISE SOURCES FOR INTERNAL CALIBRATION OF MILLIMETER-WAVE RADIOMETERS SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE Millimeter-Wave Radiometers; Internal Calibration; Noise Diode; ENR AB We have developed noise sources at 90 GHz, 130 GHz and 168 GHz each using a custom-designed beam-lead noise diode from M-Pulse Microwave Inc. These noise sources measure a high excess noise ratio (ENR) of 17 dB, 9.6 dB and 6 dB at 90 GHz, 130 GHz and 168 GHz, respectively and are to be used for internal calibration in the high-frequency millimeter-wave nadir-viewing radiometers, which are expected to provide increased spatial resolution of wet-tropospheric path delay correction for coastal regions and inland water. The noise sources meet the ENR, radiometric stability, mass and size requirements, which enables us to achieve internal calibration for the high-frequency millimeter-wave channels. Furthermore, we have developed a novel approach that utilizes a MMIC LNA as a noise source in the 168 GHz frequency band. Both of these noise sources have demonstrated excellent stability of 0.07% per hour. This translates to < 0.1K per hour T-A stability for cold ocean scene. C1 [Parashare, Chaitali R.; Kangaslahti, Pekka P.; Brown, Shannon T.; Padmanabhan, Sharmila; Tanner, Alan B.; Montes, Oliver; Dawson, Douglas E.; Gaier, Todd C.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Reising, Steven C.; Hadel, Victoria D.; Johnson, Thaddeus P.; Bosch-Lluis, Xavier] Colorado State Univ, Microwave Syst Lab, Ft Collins, CO 80523 USA. RP Parashare, CR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA Earth Science Technology Office (ESTO) FX This work was supported by the NASA Earth Science Technology Office (ESTO) and was carried out at the Jet Propulsion Laboratory, California Institute of Technology sponsored by the National Aeronautics and Space Administration.; The authors would like to thank M-Pulse Microwave Inc. for their noise diode development efforts and Mary Soria and Heather Owen of the Jet Propulsion Laboratory for their assembly expertise. NR 6 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 157 EP 160 PG 4 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600035 ER PT J AU Tanner, A Gaier, T Kangaslahti, P Lambrigtsen, B Ramos, I AF Tanner, Alan Gaier, Todd Kangaslahti, Pekka Lambrigtsen, Bjorn Ramos, Isaac GP IEEE TI Image Synthesis for the GeoSTAR Array SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE microwave radiometer; aperture synthesis AB A new approach to the GeoSTAR image inversion is presented below which solves several practical problems which are encountered with large interferometer arrays. The approach is a variation of the G-matrix solution that uses the measured spatial response of the array-e.g. as measured on the antenna range-as the basis for image synthesis. But rather than attempting inversions of the entire array-a process very sensitive to errors-a new approach is presented which corrects the visibility responses of the array piecewise. The technique starts by assuming that the response of a given visibility sample in a STAR array will deviate from that of an idealized model in a manner that can be characterized by just a few low-order spatial harmonics. This presumes that imperfections of the antenna elemental radiation patterns and of the interferometric fringe frequencies are dominated by errors which are largely contained within the physical area of the elemental antenna apertures and of their immediate surroundings-due to mechanical tolerances, mutual coupling, scattering, etc.. As such, it should be possible to correct anomalies in the measured response of a given visibility sample by combining it with its nearest neighbors on the U-V plane. C1 [Tanner, Alan; Gaier, Todd; Kangaslahti, Pekka; Lambrigtsen, Bjorn; Ramos, Isaac] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Tanner, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 176 EP 180 PG 5 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600039 ER PT J AU Dinnat, EP Bindlish, R Le Vine, DM Piepmeier, JR Brown, ST AF Dinnat, Emmanuel P. Bindlish, Rajat Le Vine, David M. Piepmeier, Jeffrey R. Brown, Shannon T. GP IEEE TI Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE Microwave; Radiometry; L-band; Aquarius; Calibration AB Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies. For that purpose, the radiometers calibration is critical. Aquarius measurements are currently calibrated over the oceans. They have been found too cold at the low end (celestial sky) of the brightness temperature scale, and too warm at the warm end (land and ice). We assess the impact of the antenna pattern model on the biases and propose a correction. We re-calibrate Aquarius measurements using the corrected antenna pattern and measurements over the Sky and oceans. The performances of the new calibration are evaluated using measurements over well instrument land sites. C1 [Dinnat, Emmanuel P.] Chapman Univ, Cryospher Sci Lab, NASA, GSFC, Greenbelt, MD 20771 USA. [Bindlish, Rajat] USDA ARS, Beltsville, MD USA. [Piepmeier, Jeffrey R.] NASA Goddard Space Flight Ctr, Microwave Instrument Technol Branch, Greenbelt, MD USA. [Le Vine, David M.] NASA Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD USA. RP Dinnat, EP (reprint author), Chapman Univ, Cryospher Sci Lab, NASA, GSFC, Greenbelt, MD 20771 USA. EM emmanuel.dinnat@nasa.gov FU NASA [NNX10AV23G] FX This research was supported by the NASA grant # NNX10AV23G.. NR 10 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 192 EP 196 PG 5 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600042 ER PT J AU Colliander, A Chae, CS Kainulainen, J Dinnat, E Torres, F Corbella, I Oliva, R Martin-Neira, M AF Colliander, Andreas Chae, Chun Sik Kainulainen, Juha Dinnat, Emmanuel Torres, Francesc Corbella, Ignasi Oliva, Roger Martin-Neira, Manuel GP IEEE TI Advances in Calibration of the SMOS Zero-Baseline Radiometers SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE SMOS; Aquarius; inter-calibration AB Over the course of the more than four-year mission several enhancements have been developed for the calibration of the zero-baseline radiometers of ESA's SMOS (Soil Moisture Ocean Salinity) mission. Here a particular advancement in adjusting the antenna loss parameters is highlighted. Two methods that enable estimation of the antenna loss are utilized to update the calibration parameters. The impact of the new parameters is evaluated with respect to synthesized antenna temperature which is based on the simulator developed for the Aquarius instrument. The results indicate that the new parameters yield measurements which are significantly closer to the simulated values over the life-time of the mission. This suggests that the new parameters indeed improve the performance of the zero-baseline measurement of SMOS which improves the overall accuracy and stability of the SMOS brightness temperature products. C1 [Colliander, Andreas; Chae, Chun Sik] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Kainulainen, Juha] Harp Technol, Espoo, Finland. [Dinnat, Emmanuel] Chapman Univ, NASA GSFC, Greenbelt, MD USA. [Torres, Francesc; Corbella, Ignasi] Polytechn Univ Catalonia, Remote Sensing Lab, Barcelona, Spain. [Oliva, Roger] ESA European Space Astron, Ctr Villanueva Canada, Madrid, Spain. [Martin-Neira, Manuel] ESA European Space Astron, Ctr Noordwijk, Madrid, Spain. RP Colliander, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. RI Torres, Francesc/D-7587-2013 OI Torres, Francesc/0000-0003-1160-6350 NR 12 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 201 EP 204 PG 4 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600044 ER PT J AU Le Vine, DM Piepmeier, JR Abraham, S Dinnat, EP Lagerloef, GSE de Matthaeis, P Utku, C Meissner, T Wentz, F AF Le Vine, D. M. Piepmeier, J. R. Abraham, S. Dinnat, E. P. Lagerloef, G. S. E. de Matthaeis, P. Utku, C. Meissner, T. Wentz, F. GP IEEE TI Aquarius Radiometer Status SO 2014 13TH SPECIALIST MEETING ON MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT (MICRORAD) LA English DT Proceedings Paper CT 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) CY MAR 24-27, 2014 CL Pasadena, CA SP Inst Elect & Elect Engineers, IEEE Geoscience & Remote Sensing Soc DE Microwave Remote Sensing; L-band; Radiometry ID SURFACE SALINITY; SPACE AB Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results. C1 [Le Vine, D. M.; Piepmeier, J. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Abraham, S.] Wyle Informat Syst, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dinnat, E. P.] Chapman Univ, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lagerloef, G. S. E.] Earth & Space Res Seattle, Seattle, WA 98121 USA. [de Matthaeis, P.; Utku, C.] USRA GESTAR, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Meissner, T.; Wentz, F.] Remote Sensing Syst, Santa Rosa, CA 95401 USA. RP Le Vine, DM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 8 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4644-0 PY 2014 BP 226 EP + PG 2 WC Geosciences, Multidisciplinary; Remote Sensing; Physics, Applied SC Geology; Remote Sensing; Physics GA BB7PH UT WOS:000345894600050 ER PT S AU Komendera, E Dorsey, JT Doggett, WR Correll, N AF Komendera, Erik Dorsey, John T. Doggett, William R. Correll, Nikolaus GP IEEE TI Truss Assembly and Welding by Intelligent Precision Jigging Robots SO 2014 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR PRACTICAL ROBOT APPLICATIONS (TEPRA) SE IEEE International Conference on Technologies for Practical Robot Applications LA English DT Proceedings Paper CT IEEE International Conference on Technologies for Practical Robot Applications (TePRA) CY APR 14-15, 2014 CL Woburn, MA SP IEEE AB This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with mu m accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D. C1 [Komendera, Erik; Correll, Nikolaus] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA. [Dorsey, John T.; Doggett, William R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Komendera, E (reprint author), Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA. EM erik.komendera@colorado.edu; john.t.dorsey@nasa.gov; bill.doggett@nasa.gov; nikolaus.correll@colorado.edu FU NASA Space Technology Mission Directorate Space Technology FX This work was supported by a NASA Space Technology Mission Directorate Space Technology Research Fellowship. NR 10 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2325-0526 BN 978-1-4799-4605-1 J9 IEEE INT CONF TECH PY 2014 PG 6 WC Engineering, Electrical & Electronic; Robotics SC Engineering; Robotics GA BB7LU UT WOS:000345737500015 ER PT S AU Keymeulen, D Aranki, N Bakhshi, A Luong, H Sarture, C Dolman, D AF Keymeulen, Didier Aranki, Nazeeh Bakhshi, Alireza Luong, Huy Sarture, Charles Dolman, David GP IEEE TI Airborne Demonstration of FPGA Implementation of Fast Lossless Hyperspectral Data Compression System SO 2014 NASA/ESA CONFERENCE ON ADAPTIVE HARDWARE AND SYSTEMS (AHS) SE NASA/ESA Conference on Adaptive Hardware and Systems LA English DT Proceedings Paper CT NASA/ESA Conference on Adaptive Hardware and Systems (AHS) CY JUL 14-17, 2014 CL Univ Leicester, Leicester, ENGLAND SP Natl Aeronaut & Space Adm Jet Propuls Lab, European Space Agcy, Fraunhofer Inst Integrated Circuits IIS, IEEE, Soc Adapt & Evolvable Hardware & Syst, Bio Inspired Technologies & Syst, Jet Propuls Lab, IEEE Circuits & Syst Soc, ACM Special Interest Grp Design Automat HO Univ Leicester DE Hyperspectral data compression; FPGA; Airbrone; Real-time AB Efficient on-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. The technique also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. This paper describes a hardware implementation of the 'Modified Fast Lossless' compression algorithm for push broom instruments on a Field Programmable Gate Array (FPGA). The FPGA implementation has been integrated into the Next Generation Data Capture System (NGDCS) avionics system for the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRISng). The NGDCS includes two airborne hardware platforms which were flown on a Twin Otter aircraft: a National Instrument PXI and the Alpha Data Systems. The FPGA implementation targets the current state-of-the-art FPGAs (Xilinx Virtex V and VI families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications. C1 [Keymeulen, Didier; Aranki, Nazeeh; Luong, Huy; Sarture, Charles] CALTECH, Jet Prop Lab, 4800 Oak, Pasadena, CA 91125 USA. [Bakhshi, Alireza] B&A Engn Inc, Costa Mesa, CA 92626 USA. [Dolman, David] Alpha Data Inc, Denver, CO 80216 USA. RP Keymeulen, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak, Pasadena, CA 91125 USA. EM didier.keymeulen@jpl.nasa.gov NR 14 TC 4 Z9 4 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1939-7003 BN 978-1-4799-5356-1 J9 NASA ESA CONF PY 2014 BP 278 EP 284 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems SC Computer Science GA BB7PJ UT WOS:000345896600038 ER PT S AU Yiu, P Keymeulen, D Berisford, D Hand, K Carlson, R Wadsworth, W Dybwad, JP Levy, R AF Yiu, Patrick Keymeulen, Didier Berisford, Dan Hand, Kevin Carlson, Robert Wadsworth, Winthrop Dybwad, Jens Peter Levy, Ralph GP IEEE TI Design and Integration of an Adaptive Controller for a Fourier Transform Spectrometer SO 2014 NASA/ESA CONFERENCE ON ADAPTIVE HARDWARE AND SYSTEMS (AHS) SE NASA/ESA Conference on Adaptive Hardware and Systems LA English DT Proceedings Paper CT NASA/ESA Conference on Adaptive Hardware and Systems (AHS) CY JUL 14-17, 2014 CL Univ Leicester, Leicester, ENGLAND SP Natl Aeronaut & Space Adm Jet Propuls Lab, European Space Agcy, Fraunhofer Inst Integrated Circuits IIS, IEEE, Soc Adapt & Evolvable Hardware & Syst, Bio Inspired Technologies & Syst, Jet Propuls Lab, IEEE Circuits & Syst Soc, ACM Special Interest Grp Design Automat HO Univ Leicester AB This paper presents the design and integration of an adaptive controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 mu m) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA with the aim of sampling the instrument's detector and optical rotary encoder in order to construct an interferogram. Subsequent signal processing, including resampling, Fast Fourier Transform (FFT), filtering, and dispersion correction techniques are applied in real-time to compose the sample spectrum. The instrument's FPGA controller is demonstrated with the FTS to highlight its suitability for implementation in space systems. C1 [Yiu, Patrick] CALTECH, Pasadena, CA 91125 USA. [Keymeulen, Didier; Berisford, Dan; Hand, Kevin; Carlson, Robert] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Wadsworth, Winthrop; Dybwad, Jens Peter] Ltd Nashua, Designs Prototypes, Nashua, NH 03060 USA. [Levy, Ralph] LLC, Quant Engn, Doylestown, PA 18902 USA. RP Yiu, P (reprint author), CALTECH, Pasadena, CA 91125 USA. EM patrick_yiu@caltech.edu FU California Institute of Technology Summer Undergraduate Research Fellowship (SURF) program and donors Charles and Valerie Elachi FX The authors thank the California Institute of Technology Summer Undergraduate Research Fellowship (SURF) program and donors Charles and Valerie Elachi for their generous financial support and role in funding this project. NR 22 TC 1 Z9 1 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1939-7003 BN 978-1-4799-5356-1 J9 NASA ESA CONF PY 2014 BP 285 EP 292 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems SC Computer Science GA BB7PJ UT WOS:000345896600039 ER PT J AU Garcia-Comas, M Funke, B Gardini, A Lopez-Puertas, M Jurado-Navarro, A von Clarmann, T Stiller, G Kiefer, M Boone, CD Leblanc, T Marshall, BT Schwartz, MJ Sheese, PE AF Garcia-Comas, M. Funke, B. Gardini, A. Lopez-Puertas, M. Jurado-Navarro, A. von Clarmann, T. Stiller, G. Kiefer, M. Boone, C. D. Leblanc, T. Marshall, B. T. Schwartz, M. J. Sheese, P. E. TI MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID LIMB EMISSION-SPECTRA; ATMOSPHERIC CHEMISTRY; MIDDLE ATMOSPHERE; ATOMIC OXYGEN; RETRIEVAL; ALGORITHM; QUALITY; SPACE; MODEL AB We present vM21 MIPAS temperatures from the lower stratosphere to the lower thermosphere, which cover all optimized resolution measurements performed by MIPAS in the middle-atmosphere, upper-atmosphere and noctilucent-cloud modes during its lifetime, i.e., from January 2005 to April 2012. The main upgrades with respect to the previous version of MIPAS temperatures (vM11) are the update of the spectroscopic database, the use of a different climatology of atomic oxygen and carbon dioxide, and the improvement in important technical aspects of the retrieval setup (temperature gradient along the line of sight and offset regularizations, apodization accuracy). Additionally, an updated version of ESA-calibrated L1b spectra (5.02/5.06) is used. The vM21 temperatures correct the main systematic errors of the previous version because they provide on average a 1-2K warmer stratopause and middle mesosphere, and a 6-10K colder mesopause (except in high-latitude summers) and lower thermosphere. These lead to a remarkable improvement in MIPAS comparisons with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and the two Rayleigh lidars at Mauna Loa and Table Mountain, which, with a few specific exceptions, typically exhibit differences smaller than 1K below 50 km and than 2K at 50-80 km in spring, autumn and winter at all latitudes, and summer at low to midlatitudes. Differences in the high-latitude summers are typically smaller than 1K below 50 km, smaller than 2K at 50-65 km and 5K at 65-80 km. Differences between MIPAS and the other instruments in the mid-mesosphere are generally negative. MIPAS mesopause is within 4K of the other instruments measurements, except in the high-latitude summers, when it is within 5-10 K, being warmer there than SABER, MLS and OSIRIS and colder than ACE-FTS and SOFIE. The agreement in the lower thermosphere is typically better than 5 K, except for high latitudes during spring and summer, when MIPAS usually exhibits larger vertical gradients. C1 [Garcia-Comas, M.; Funke, B.; Gardini, A.; Lopez-Puertas, M.; Jurado-Navarro, A.] Inst Astrofis Andalucia CSIC, Granada, Spain. [von Clarmann, T.; Stiller, G.; Kiefer, M.] Karlsruhe Inst Technol, Inst Meteorol & Klimaforsch, D-76021 Karlsruhe, Germany. [Boone, C. D.] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. [Leblanc, T.] CALTECH, Jet Prop Lab, Wrightwood, CA USA. [Marshall, B. T.] GATS Inc, Newport News, VA USA. [Schwartz, M. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Sheese, P. E.] Univ Toronto, Toronto, ON, Canada. RP Garcia-Comas, M (reprint author), Inst Astrofis Andalucia CSIC, Granada, Spain. EM maya@iaa.es RI Schwartz, Michael/F-5172-2016; Funke, Bernd/C-2162-2008; OI Schwartz, Michael/0000-0001-6169-5094; Funke, Bernd/0000-0003-0462-4702; Lopez-Puertas, Manuel/0000-0003-2941-7734 FU Ministry of Economy and Competitiveness (MINECO); Spanish MINECO [AYA2011-23552]; CONSOLIDER program [CSD2009-00038]; EC FEDER; Canadian Space Agency FX M. Garcia-Comas was financially supported by the Ministry of Economy and Competitiveness (MINECO) through its "Ramon y Cajal" subprogram. The IAA team was supported by the Spanish MINECO, through project AYA2011-23552, the CONSOLIDER program CSD2009-00038, and EC FEDER funds. Funding for ACE comes primarily from the Canadian Space Agency. We thank ESA for providing MIPAS level-1b data. NR 27 TC 10 Z9 10 U1 1 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 11 BP 3633 EP 3651 DI 10.5194/amt-7-3633-2014 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU7LB UT WOS:000345781000002 ER PT J AU Payne, VH Alvarado, MJ Cady-Pereira, KE Worden, JR Kulawik, SS Fischer, EV AF Payne, V. H. Alvarado, M. J. Cady-Pereira, K. E. Worden, J. R. Kulawik, S. S. Fischer, E. V. TI Satellite observations of peroxyacetyl nitrate from the Aura Tropospheric Emission Spectrometer SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID MIDINFRARED CROSS-SECTIONS; RADIANCE MEASUREMENTS; INTEGRATED ANALYSIS; REACTIVE NITROGEN; UNITED-STATES; PAN VAPOR; INTEX-B; PACIFIC; OZONE; AIRCRAFT AB We present a description of the algorithm used to retrieve peroxyacetyl nitrate (PAN) concentrations from the Aura Tropospheric Emission Spectrometer (TES). We describe the spectral microwindows, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem global chemical transport model. The TES PAN retrievals contain up to one degree of freedom for signal. In general, the retrievals are most sensitive to PAN in the mid-troposphere. Estimated single-measurement uncertainties are on the order of 30 to 50 %. The detection limit for a single TES measurement is dependent on the atmospheric and surface conditions as well as on the instrument noise. For observations where the cloud optical depth is less than 0.5, we find that the TES detection limit for PAN is in the region of 200 to 300 pptv. We show that PAN retrievals capture plumes associated with boreal burning. Retrievals over the Northern Hemisphere Pacific in springtime show spatial features that are qualitatively consistent with the expected distribution of PAN in outflow of Asian pollution. C1 [Payne, V. H.; Worden, J. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Alvarado, M. J.; Cady-Pereira, K. E.] Atmospher & Environm Res Inc, Lexington, MA USA. [Kulawik, S. S.] Bay Area Environm Res Inst, Mountain View, CA USA. [Fischer, E. V.] Colorado State Univ, Ft Collins, CO 80523 USA. RP Payne, VH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM vivienne.h.payne@jpl.nasa.gov RI Fischer, Emily/K-7330-2015 OI Fischer, Emily/0000-0001-8298-3669 FU National Aeronautics and Space Administration FX We would like to thank the two anonymous reviewers, whose constructive input led to marked improvements in the manuscript. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer or otherwise does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. NR 47 TC 3 Z9 3 U1 1 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 11 BP 3737 EP 3749 DI 10.5194/amt-7-3737-2014 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU7LB UT WOS:000345781000008 ER PT J AU Muller, M Mikoviny, T Feil, S Haidacher, S Hanel, G Hartungen, E Jordan, A Mark, L Mutschlechner, P Schottkowsky, R Sulzer, P Crawford, JH Wisthaler, A AF Mueller, M. Mikoviny, T. Feil, S. Haidacher, S. Hanel, G. Hartungen, E. Jordan, A. Maerk, L. Mutschlechner, P. Schottkowsky, R. Sulzer, P. Crawford, J. H. Wisthaler, A. TI A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID TRANSFER-REACTION-TIME; IONIZATION MASS-SPECTROMETRY; SURINAM AB Herein, we report on the development of a compact proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) for airborne measurements of volatile organic compounds (VOCs). The new instrument resolves isobaric ions with a mass resolving power (m/Delta m) of similar to 1000, provides accurate m/z measurements (Delta m < 3 mDa), records full mass spectra at 1 Hz and thus overcomes some of the major analytical deficiencies of quadrupole-MS-based airborne instruments. 1 Hz detection limits for biogenic VOCs (isoprene, alpha total monoterpenes), aromatic VOCs (benzene, toluene, xylenes) and ketones (acetone, methyl ethyl ketone) range from 0.05 to 0.12 ppbV, making the instrument well-suited for fast measurements of abundant VOCs in the continental boundary layer. The instrument detects and quantifies VOCs in locally confined plumes (< 1 km), which improves our capability of characterizing emission sources and atmospheric processing within plumes. A deployment during the NASA 2013 DISCOVER-AQ mission generated high vertical- and horizontal-resolution in situ data of VOCs and ammonia for the validation of satellite retrievals and chemistry transport models. C1 [Mueller, M.; Wisthaler, A.] Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria. [Mikoviny, T.; Crawford, J. H.] NASA, Langley Res Ctr, Chem & Dynam Branch, Sci Directorate, Hampton, VA 23665 USA. [Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Feil, S.; Haidacher, S.; Hanel, G.; Hartungen, E.; Jordan, A.; Maerk, L.; Mutschlechner, P.; Schottkowsky, R.; Sulzer, P.] Ionicon Analyt GmbH, Innsbruck, Austria. [Mikoviny, T.; Wisthaler, A.] Univ Oslo, Dept Chem, Oslo, Norway. RP Wisthaler, A (reprint author), Univ Innsbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria. EM armin.wisthaler@uibk.ac.at RI Muller, Markus/L-1699-2014 OI Muller, Markus/0000-0003-4110-8950 FU Austrian Space Applications Programme (ASAP 8) [833451]; Austrian Ministry for Transport, Innovation and Technology (BMVIT); NASA FX The development of the PTR-ToF-MS was funded through the Austrian Space Applications Programme (ASAP 8, #833451). ASAP is sponsored by the Austrian Ministry for Transport, Innovation and Technology (BMVIT) and administered by the Aeronautics and Space Agency (ALR) of the Austrian Research Promotion Agency (FFG). Tomas Mikoviny was funded through the NASA Postdoctoral Program which is administered for NASA by Oak Ridge Associated Universities (ORAU). DISCOVER-AQ is part of the NASA Earth Venture-1 (EV-1) program. NR 19 TC 11 Z9 11 U1 3 U2 23 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 11 BP 3763 EP 3772 DI 10.5194/amt-7-3763-2014 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU7LB UT WOS:000345781000010 ER PT J AU Millan, L Lebsock, M Livesey, N Tanelli, S Stephens, G AF Millan, L. Lebsock, M. Livesey, N. Tanelli, S. Stephens, G. TI Differential absorption radar techniques: surface pressure SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID MARINE STRATOCUMULUS CLOUDS; SIZE DISTRIBUTIONS; RADIATIVE-TRANSFER; COMPLEX PERMITTIVITY; TROPICAL CIRRUS; 1 THZ; ICE; MODEL; WATER; LIDAR AB Two radar pulses sent at different frequencies near the 60 GHz O-2 absorption band can be used to determine surface pressure by measuring the differential absorption on and off the band. Results of inverting synthetic data assuming an airborne radar are presented. The analysis includes the effects of temperature, water vapor, and hydrometeors, as well as particle size distributions and surface backscatter uncertainties. Results show that an airborne radar (with sensitivity of -20 and 0.05 dBZ speckle and relative calibration uncertainties) can estimate surface pressure with a precision of similar to 1.0 hPa and accuracy better than 1.0 hPa for clear-sky and cloudy conditions and better than 3.5 hPa for precipitating conditions. Generally, accuracy would be around 0.5 and 2 hPa for non-precipitating and precipitating conditions, respectively. C1 [Millan, L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90045 USA. [Millan, L.; Lebsock, M.; Livesey, N.; Tanelli, S.; Stephens, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Millan, L (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90045 USA. EM luis.f.millan@jpl.nasa.gov RI Millan, Luis/J-2759-2015 FU National Aeronautics and Space Administration; Research and Technology Development program FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. NR 54 TC 2 Z9 2 U1 1 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 11 BP 3959 EP 3970 DI 10.5194/amt-7-3959-2014 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU7LB UT WOS:000345781000026 ER PT J AU Laeng, A Grabowski, U von Clarmann, T Stiller, G Glatthor, N Hopfner, M Kellmann, S Kiefer, M Linden, A Lossow, S Sofieva, V Petropavlovskikh, I Hubert, D Bathgate, T Bernath, P Boone, CD Clerbaux, C Coheur, P Damadeo, R Degenstein, D Frith, S Froidevaux, L Gille, J Hoppel, K McHugh, M Kasai, Y Lumpe, J Rahpoe, N Toon, G Sano, T Suzuki, M Tamminen, J Urban, J Walker, K Weber, M Zawodny, J AF Laeng, A. Grabowski, U. von Clarmann, T. Stiller, G. Glatthor, N. Hoepfner, M. Kellmann, S. Kiefer, M. Linden, A. Lossow, S. Sofieva, V. Petropavlovskikh, I. Hubert, D. Bathgate, T. Bernath, P. Boone, C. D. Clerbaux, C. Coheur, P. Damadeo, R. Degenstein, D. Frith, S. Froidevaux, L. Gille, J. Hoppel, K. McHugh, M. Kasai, Y. Lumpe, J. Rahpoe, N. Toon, G. Sano, T. Suzuki, M. Tamminen, J. Urban, J. Walker, K. Weber, M. Zawodny, J. TI Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID LIMB EMISSION-SPECTRA; MICHELSON INTERFEROMETER; SATELLITE DATA; POAM-III; SAGE II; RETRIEVAL; ALGORITHM; TEMPERATURE; PRODUCTS; SMILES AB We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofisica de Andalucia) MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005-April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014), is found: the known high bias around the ozone vmr (volume mixing ratio) peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5 %; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV. C1 [Laeng, A.; Grabowski, U.; von Clarmann, T.; Stiller, G.; Glatthor, N.; Hoepfner, M.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.] Karlsruhe Inst Technol IMK KIT, Inst Meteorol & Klimaforsch, Karlsruhe, Germany. [Coheur, P.; McHugh, M.] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Brussels, Belgium. [Rahpoe, N.; Weber, M.] Univ Bremen, Inst Umweltphys, D-28359 Bremen, Germany. [Froidevaux, L.; Toon, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Boone, C. D.; Walker, K.] Univ Toronto, Toronto, ON, Canada. [Sofieva, V.; Tamminen, J.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Damadeo, R.; Zawodny, J.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Clerbaux, C.] Univ Versailles St Quentin, Univ Paris 06, Sorbonne Univ, CNRS INSU,LATMOS IPSL, Versailles, France. [Clerbaux, C.] ULB, Brussels, Belgium. [Bathgate, T.; Degenstein, D.] Univ Saskatchevan, Saskatoon, SK, Canada. [Frith, S.] Sci Syst & Applicat Inc, Lanham, MD USA. [Gille, J.] Univ Colorado, Boulder, CO 80309 USA. [Kasai, Y.] NICT, Koganei, Tokyo, Japan. [Sano, T.; Suzuki, M.] JAXA, Tsukuba, Ibaraki, Japan. [Urban, J.] Chalmers, S-41296 Gothenburg, Sweden. [Petropavlovskikh, I.] NOAA, Boulder, CO USA. [Hubert, D.] Belgian Inst Space Aeron BIRA IASB, Brussels, Belgium. [Lumpe, J.] Computat Phys Inc, Boulder, CO USA. [Hoppel, K.] Naval Res Lab, Washington, DC USA. [Bernath, P.] Old Dominion Univ, Norfolk, VA USA. RP Laeng, A (reprint author), Karlsruhe Inst Technol IMK KIT, Inst Meteorol & Klimaforsch, Karlsruhe, Germany. EM alexandra.laeng@kit.edu RI Sofieva, Viktoria/E-1958-2014; Bernath, Peter/B-6567-2012; Hopfner, Michael/A-7255-2013; Weber, Mark/F-1409-2011; Tamminen, Johanna/D-7959-2014; clerbaux, cathy/I-5478-2013; OI Sofieva, Viktoria/0000-0002-9192-2208; Bernath, Peter/0000-0002-1255-396X; Hopfner, Michael/0000-0002-4174-9531; Weber, Mark/0000-0001-8217-5450; Tamminen, Johanna/0000-0003-3095-0069; Hubert, Daan/0000-0002-4365-865X FU National Aeronautics and Space Administration; Canadian Space Agency; Sweden (SNSB); Canada (CSA); Finland (TEKES); France (CNES); European Space Agency; Deutsche Forschungsgemeinschaft; Karlsruhe Institute of Technology FX Part of this work was done in the framework of Ozone_cci Project by the European Space Agency. MIPAS level 1 data are provided by the European Space Agency. Work at the Jet Propulsion Laboratory was performed under contract with the National Aeronautics and Space Administration. The ACE mission is supported primarily by the Canadian Space Agency. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), Finland (TEKES), and France (CNES), with support by the third party mission programme of the European Space Agency. The SMILES mission is a joint project of the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). Work at the Jet Propulsion Laboratory was performed under contract with the National Aeronautics and Space Administration.r We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology. NR 37 TC 8 Z9 8 U1 2 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 11 BP 3971 EP 3987 DI 10.5194/amt-7-3971-2014 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU7LB UT WOS:000345781000027 ER PT J AU Limbacher, JA Kahn, RA AF Limbacher, J. A. Kahn, R. A. TI MISR research-aerosol-algorithm refinements for dark water retrievals SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID IMAGING SPECTRORADIOMETER MISR; BIOOPTICAL MODEL; OPTICAL-MODELS; OCEAN; REFLECTANCE; PRODUCTS; NETWORK; AERONET; SENSITIVITY; CALIBRATION AB We explore systematically the cumulative effect of many assumptions made in the Multi-angle Imaging SpectroRadiometer (MISR) research aerosol retrieval algorithm with the aim of quantifying the main sources of uncertainty over ocean, and correcting them to the extent possible. A total of 1129 coincident, surface-based sun photometer spectral aerosol optical depth (AOD) measurements are used for validation. Based on comparisons between these data and our baseline case (similar to the MISR standard algorithm, but without the "modified linear mixing" approximation), for 558 nm AOD < 0.10, a high bias of 0.024 is reduced by about one-third when (1) ocean surface under-light is included and the assumed whitecap reflectance at 672 nm is increased, (2) physically based adjustments in particle microphysical properties and mixtures are made, (3) an adaptive pixel selection method is used, (4) spectral reflectance uncertainty is estimated from vicarious calibration, and (5) minor radiometric calibration changes are made for the 672 and 866 nm channels. Applying (6) more stringent cloud screening (setting the maximum fraction not-clear to 0.50) brings all median spectral biases to about 0.01. When all adjustments except more stringent cloud screening are applied, and a modified acceptance criterion is used, the Root-Mean-Square-Error (RMSE) decreases for all wavelengths by 8-27% for the research algorithm relative to the baseline, and is 12-36% lower than the RMSE for the Version 22 MISR standard algorithm (SA, with no adjustments applied). At 558 nm, 87% of AOD data falls within the greater of 0.05 or 20% of validation values; 62% of the 446 nm AOD data, and > 68% of 558, 672, and 866 nm AOD values fall within the greater of 0.03 or 10 %. For the Angstrom exponent (ANG), 67% of 1119 validation cases for AOD > 0.01 fall within 0.275 of the sun photometer values, compared to 49% for the SA. ANG RMSE decreases by 17% compared to the SA, and the median absolute error drops by 36 %. C1 [Limbacher, J. A.; Kahn, R. A.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Limbacher, J. A.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. RP Kahn, RA (reprint author), NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. EM ralph.kahn@nasa.gov FU NASA's Climate and Radiation Research and Analysis Program; NASA's Atmospheric Composition Program; NASA Earth Observing System MISR instrument project FX We thank our colleagues on the Jet Propulsion Laboratory's MISR instrument team and at the NASA Langley Research Center's Atmospheric Sciences Data Center for their roles in producing the MISR data sets, and our colleagues at the NASA Goddard Space Flight Center, the SeaWiFS, MERIS, and MODIS ocean color teams, the ESA, the GlobColour group, Brent Holben and the AERONET team, and Alexander Smirnov and the MAN team for the invaluable data sets they produce. We also thank Sergey Korkin, Alexei Lyapustin, Leigh Munchak, Falguni Patadia, and Andrew Sayer for helpful discussions, Jeff Reid and Andrew Sayer for thorough and constructive reviews, and Maksym Petrenko for identifying the MISR/MAN coincidences. This research is supported in part by NASA's Climate and Radiation Research and Analysis Program under H. Maring, NASA's Atmospheric Composition Program under R. Eckman, and the NASA Earth Observing System MISR instrument project. NR 46 TC 4 Z9 4 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 11 BP 3989 EP 4007 DI 10.5194/amt-7-3989-2014 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU7LB UT WOS:000345781000028 ER PT J AU Oetjen, H Payne, VH Kulawik, SS Eldering, A Worden, J Edwards, DP Francis, GL Worden, HM Clerbaux, C Hadji-Lazaro, J Hurtmans, D AF Oetjen, H. Payne, V. H. Kulawik, S. S. Eldering, A. Worden, J. Edwards, D. P. Francis, G. L. Worden, H. M. Clerbaux, C. Hadji-Lazaro, J. Hurtmans, D. TI Extending the satellite data record of tropospheric ozone profiles from Aura-TES to MetOp-IASI: characterisation of optimal estimation retrievals SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID EMISSION SPECTROMETER; RADIATIVE-TRANSFER; IASI/METOP SOUNDER; CHEMICAL TRACERS; ERROR ANALYSIS; VALIDATION; MODEL; SENSITIVITY; ALGORITHMS; STABILITY AB We apply the Tropospheric Emission Spectrometer (TES) ozone retrieval algorithm to Infrared Atmospheric Sounding Instrument (IASI) radiances and characterise the uncertainties and information content of the retrieved ozone profiles. This study focuses on mid-latitudes for the year 2008. We validate our results by comparing the IASI ozone profiles to ozone sondes. In the sonde comparisons, we find a negative bias (1-10 %) in the IASI profiles in the lower to mid-troposphere and a positive bias (up to 14 %) in the upper troposphere/lower stratosphere (UTLS) region. For the described cases, the degrees of freedom for signal are on average 3.2, 0.3, 0.8, and 0.9 for the columns 0 km - top of atmosphere, (0-6), (0-11), and (8-16) km, respectively. We find that our biases with respect to sondes and our degrees of freedom for signal for ozone are comparable to previously published results from other IASI ozone algorithms. In addition to evaluating biases, we validate the retrieval errors by comparing predicted errors to the sample covariance matrix of the IASI observations themselves. For the predicted versus empirical error comparison, we find that these errors are consistent and that the measurement noise and the interference of temperature and water vapour on the retrieval together mostly explain the empirically derived random errors. In general, the precision of the IASI ozone profiles is better than 20 %. C1 [Oetjen, H.; Eldering, A.] Univ Calif Los Angeles, JPL Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Oetjen, H.; Payne, V. H.; Kulawik, S. S.; Eldering, A.; Worden, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kulawik, S. S.] BAER Inst, Sonoma, CA USA. [Edwards, D. P.; Francis, G. L.; Worden, H. M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Clerbaux, C.; Hadji-Lazaro, J.] Univ Paris 06, Sorbonne Univ, Paris, France. [Clerbaux, C.; Hadji-Lazaro, J.] Univ Versailles St Quentin, Paris, France. [Clerbaux, C.; Hadji-Lazaro, J.] CNRS INSU, LATMOS IPSL, Paris, France. [Clerbaux, C.; Hurtmans, D.] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Brussels, Belgium. RP Oetjen, H (reprint author), Univ Calif Los Angeles, JPL Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM hilke.oetjen@jpl.nasa.gov RI Oetjen, Hilke/H-3708-2016; clerbaux, cathy/I-5478-2013 OI Oetjen, Hilke/0000-0002-3542-1337; FU National Aeronautics and Space Administration; NASA [NNX11AE19G] FX We acknowledge the NOAA/CLASS data centre for the IASI Level 1c spectra and EUMETSAT for the Level 2 data. IASI is a joint mission of EUMETSAT and the Centre National d'Etudes Spatiales (CNES, France). The ozone sonde data were provided by the Global Monitoring Division of NOAA (www.esrl.noaa.gov/gmd) and by the World Ozone and Ultraviolet Data Centre (www.woudc.org). Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge NASA support under the grant NNX11AE19G. We thank Gaelle Dufour (LISA, France) for discussions. NR 52 TC 4 Z9 4 U1 3 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 12 BP 4223 EP 4236 DI 10.5194/amt-7-4223-2014 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU7LL UT WOS:000345782000013 ER PT J AU Beacham, TD Beamish, RJ Candy, JR Wallace, C Tucker, S Moss, JH Trudel, M AF Beacham, Terry D. Beamish, Richard J. Candy, John R. Wallace, Colin Tucker, Strahan Moss, Jamal H. Trudel, Marc TI Stock-Specific Migration Pathways of Juvenile Sockeye Salmon in British Columbia Waters and in the Gulf of Alaska SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID EASTERN BERING-SEA; CHINOOK SALMON; ONCORHYNCHUS-TSHAWYTSCHA; PACIFIC SALMON; NORTH-AMERICA; MARINE SURVIVAL; LIFE-HISTORY; PUGET-SOUND; COHO SALMON; WEST-COAST AB We outlined the route and relative timing of juvenile Sockeye Salmon Oncorhynchus nerka migration by analyzing stock composition and relative CPUE in marine sampling conducted in coastal British Columbia and the Gulf of Alaska. Variation at 14 microsatellites was analyzed for 10,500 juvenile Sockeye Salmon obtained from surveys conducted during 1996-2011. Using a 404-population baseline, we identified the sampled individuals to 47 populations or stocks of origin. Stock compositions of the mixtures increased in diversity in more northerly sampling locations, indicating a general northward movement of juveniles. The primary migration route of Columbia River and Washington stocks was northward along the west coast of Vancouver Island, with a majority of the juveniles subsequently migrating through Queen Charlotte Sound and Dixon Entrance. Fraser River stocks migrated principally through the Strait of Georgia and Johnstone Strait. Some Fraser River populations, such as the Cultus Lake population, appeared to spend little time rearing in the Strait of Georgia, as individuals from this population were primarily observed in July samples from Hecate Strait, Dixon Entrance, and Southeast Alaska. Other Fraser River populations, such as the Chilko Lake and Quesnel Lake populations, were widely distributed during July surveys, as they were observed from the Gulf of Alaska to the Strait of Georgia. For the British Columbia central coast and Owikeno Lake stocks, not all individuals migrated northward in the summer: some individuals were still present in local areas during the fall and winter after spring entry into the marine environment. Juvenile Fraser River Sockeye Salmon dominated the catch of juveniles at the Yakutat, Prince William Sound, Kodiak Island, and Alaska Peninsula sampling locations. There was a wide divergence among stocks in dispersion among sampling locations. C1 [Beacham, Terry D.; Beamish, Richard J.; Candy, John R.; Wallace, Colin; Tucker, Strahan; Trudel, Marc] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC V9T 6N7, Canada. [Moss, Jamal H.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Ted Stevens Marine Res Inst,Auke Bay Labs, Juneau, AK 99801 USA. RP Beacham, TD (reprint author), Fisheries & Oceans Canada, Pacific Biol Stn, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada. EM terry.beacham@dfo-mpo.gc.ca RI Trudel, Marc/H-1955-2012 FU Fisheries and Oceans Canada; Canadian Space Agency; Genome British Columbia; Bonneville Power Administration; National Marine Fisheries Service; World Wildlife Fund FX We thank the captains and crews of the vessels W. E. Ricker, Ocean Selector, Frosti, and Northwest Explorer for conducting sampling operations, and we thank numerous staff for their assistance during sampling. Staff of the Molecular Genetics Laboratory at the Pacific Biological Station conducted the DNA analysis. R. Sweeting provided CPUE results for the Strait of Georgia, and S. Johnson provided access to some 2010 samples from the Strait of Georgia. Financial support for the study was provided by Fisheries and Oceans Canada, Canadian Space Agency, Genome British Columbia, Bonneville Power Administration, National Marine Fisheries Service, and World Wildlife Fund. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of Fisheries and Oceans Canada or the National Marine Fisheries Service. Reference to trade names does not imply endorsement by the National Marine Fisheries Service. NR 29 TC 9 Z9 9 U1 1 U2 21 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2014 VL 143 IS 6 BP 1386 EP 1403 DI 10.1080/00028487.2014.935476 PG 18 WC Fisheries SC Fisheries GA AU6IK UT WOS:000345706800002 ER PT J AU Eiler, JH Masuda, MM Spencer, TR Driscoll, RJ Schreck, CB AF Eiler, John H. Masuda, Michele M. Spencer, Ted R. Driscoll, Richard J. Schreck, Carl B. TI Distribution, Stock Composition and Timing, and Tagging Response of Wild Chinook Salmon Returning to a Large, Free-Flowing River Basin SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID YUKON RIVER; ONCORHYNCHUS-TSHAWYTSCHA; BRITISH-COLUMBIA; PACIFIC SALMON; BEHAVIORAL THERMOREGULATION; TELEMETRY TRANSMITTERS; SPAWNING MIGRATIONS; RADIO TRANSMITTERS; FISH REPRODUCTION; SOCKEYE-SALMON AB Chinook Salmon Oncorhynchus tshawytscha returns to the Yukon River basin have declined dramatically since the late 1990s, and detailed information on the spawning distribution, stock structure, and stock timing is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio-tagged in the lower basin during 2002-2004 and tracked upriver. Fish traveled to spawning areas throughout the basin, ranging from several hundred to over 3,000 km from the tagging site. Similar distribution patterns were observed across years, suggesting that the major components of the run were identified. Daily and seasonal composition estimates were calculated for the component stocks. The run was dominated by two regional components comprising over 70% of the return. Substantially fewer fish returned to other areas, ranging from 2% to 9% of the return, but their collective contribution was appreciable. Most regional components consisted of several principal stocks and a number of small, spatially isolated populations. Regional and stock composition estimates were similar across years even though differences in run abundance were reported, suggesting that the differences in abundance were not related to regional or stock-specific variability. Run timing was relatively compressed compared with that in rivers in the southern portion of the species' range. Most stocks passed through the lower river over a 6-week period, ranging in duration from 16 to 38 d. Run timing was similar for middle-and upper-basin stocks, limiting the use of timing information for management. The lower-basin stocks were primarily later-run fish. Although differences were observed, there was general agreement between our composition and timing estimates and those from other assessment projects within the basin, suggesting that the telemetry-based estimates provided a plausible approximation of the return. However, the short duration of the run, complex stock structure, and similar stock timing complicate management of Yukon River returns. C1 [Eiler, John H.; Masuda, Michele M.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. [Spencer, Ted R.; Driscoll, Richard J.] Alaska Dept Fish & Game, Div Commercial Fisheries, Anchorage, AK 99518 USA. [Schreck, Carl B.] Oregon State Univ, US Geol Survey, Oregon Cooperat Fish & Wildlife Res Unit, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. RP Eiler, JH (reprint author), Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Labs, Juneau, AK 99801 USA. EM john.eiler@noaa.gov FU U.S.-Canada Yukon River Treaty Implementation Fund; Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative Fund; Alaska Department of Fish and Game; National Marine Fisheries Service FX Primary funding for this study was provided by the U.S.-Canada Yukon River Treaty Implementation Fund, Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative Fund, Alaska Department of Fish and Game, and National Marine Fisheries Service. Supplemental support was provided by the U.S. Fish and Wildlife Service, U.S. Bureau of Land Management, Department of Fisheries and Oceans Canada, Bering Sea Fisherman's Association, Yukon River Drainage Fisheries Association, National Park Service, and the Restoration and Enhancement Fund of the Yukon River Panel. We thank the many people that assisted with field work, including agency personnel and local fishers from Russian Mission and Marshall. We are particularly grateful to R. Brown, B. Mercer, C. Osborne, and C. Stark for their assistance with fish tracking and spawning ground recoveries. Technical support for the telemetry component of the study was provided by N. Christensen, L. Kuechle, A. Mayer, and R. Reichle. J. Pella was instrumental in the development of the stock composition analysis. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. Reference to trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 97 TC 2 Z9 2 U1 2 U2 22 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2014 VL 143 IS 6 BP 1476 EP 1507 DI 10.1080/00028487.2014.959997 PG 32 WC Fisheries SC Fisheries GA AU6IK UT WOS:000345706800009 ER PT S AU Verma, R Hart, AF Mattmann, CA Crichton, DJ Kincaid, H Kelly, SC Joyce, MJ Zimdars, P Tabb, DL Holman, JD Chambers, M Anton, K Colbert, M Patriotis, C Srivastava, S AF Verma, Rishi Hart, Andrew F. Mattmann, Chris A. Crichton, Daniel J. Kincaid, Heather Kelly, Sean C. Joyce, Michael J. Zimdars, Paul Tabb, David L. Holman, Jay D. Chambers, Matthew Anton, Kristen Colbert, Maureen Patriotis, Christos Srivastava, Sudhir GP IEEE TI A Laboratory-targeted, Data Management and Processing System for the Early Detection Research Network SO 2014 IEEE 27TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) SE IEEE International Symposium on Computer-Based Medical Systems LA English DT Proceedings Paper CT 27th IEEE International Symposium on Computer-Based Medical Systems (CBMS) CY MAY 27-29, 2014 CL Icahn Sch Med, New York, NY SP IEEE, IEEE Comp Soc, Texas Tech Univ, IBMWATSON HO Icahn Sch Med DE informatics; cancer; biomarkers; analytics; government ID PEPTIDE IDENTIFICATION AB The National Institutes of Health (NIH), National Cancer Institute's Early Detection Research Network (EDRN) is a cross-institutional collaborative initiative seeking to accelerate the clinical application of cancer biomarker research. Over the past decade, it has been our role, as EDRN's Informatics Center (IC), to develop a comprehensive information services infrastructure as well as a set of software tools and services to support this overall initiative. We have recently developed a novel application called the Laboratory Catalog and Archive Service (LabCAS) whose focus is to extend EDRN IC data management and processing capabilities to EDRN laboratories. By leveraging the same technologies used to manage and process NASA Earth and Planetary data sets, we offer EDRN researchers an effective way of managing their laboratory data. More specifically, LabCAS enables EDRN researchers to reliably archive their experimental data, to optionally share these data in a controlled manner with other researchers, and to gain insight into these data through highly configurable data analysis pipelines tailored to the broad range of biomarker related experiments. This particular collaboration leverages expertise from NASA's Jet Propulsion Laboratory, Vanderbilt University Medical Center, and Dartmouth Medical School, as well as builds upon existing cross-governmental collaboration between NASA and the NIH. C1 [Verma, Rishi; Hart, Andrew F.; Mattmann, Chris A.; Crichton, Daniel J.; Kincaid, Heather; Kelly, Sean C.; Joyce, Michael J.; Zimdars, Paul] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Tabb, David L.; Holman, Jay D.; Chambers, Matthew] Vanderbilt Univ, Med Ctr, Learned Lab, MRB III, Nashville, TN 37232 USA. [Anton, Kristen; Colbert, Maureen] Dartmouth Med Sch, Lebanon, NH 03766 USA. [Patriotis, Christos; Srivastava, Sudhir] Natl Inst Hlth, Natl Canc Inst, Bethesda, MD 20892 USA. RP Verma, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Rishi.Verma@jpl.nasa.gov; Andrew.F.Hart@jpl.nasa.gov; Chris.A.Mattmann@jpl.nasa.gov; Daniel.J.Crichton@jpl.nasa.gov; Heather.Kincaid@jpl.nasa.gov; Sean.C.Kelly@jpl.nasa.gov; Michael.J.Joyce@jpl.nasa.gov; Paul.A.Zimdars@jpl.nasa.gov; david.l.tabb@vanderbilt.edu; jay.holman@vanderbilt.edu; matthew.chambers@vanderbilt.edu; kristen.anton@dartmouth.edu; maureen.colbert@dartmouth.edu; patriotisc@mail.nih.gov; srivasts@mail.nih.gov FU Jet Propulsion Laboratory FX This effort was supported by the Jet Propulsion Laboratory, managed by the California Institute of Technology under a contract with the National Aeronautics and Space Administration. The authors would like to thank Christos Patriotis, and Sudhir Srivastava, and the NCI leadership as a whole for their collaborative guidance and support. NR 14 TC 0 Z9 0 U1 1 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2372-9198 BN 978-1-4799-4435-4 J9 COMP MED SY PY 2014 BP 401 EP 405 DI 10.1109/CBMS.2014.139 PG 5 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Engineering, Biomedical SC Computer Science; Engineering GA BB6ZP UT WOS:000345222200078 ER PT S AU Bittner, RM Begault, DR AF Bittner, Rachel M. Begault, Durand R. GP IEEE TI SIGNAL PROCESSING METHODS FOR REMOVING THE EFFECTS OF WHOLE-BODY VIBRATION UPON SPEECH SO 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) SE International Conference on Acoustics Speech and Signal Processing ICASSP LA English DT Proceedings Paper CT IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) CY MAY 04-09, 2014 CL Florence, ITALY SP IEEE DE Whole-Body Vibration; Speech Intelligibility ID RANGE; CPS AB Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phase of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech during whole-body vibration is proposed and a method to remove its effect is described. The method presented reduces the perceptual effects of vibration, yields higher automatic speech recognition accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within spaceflight, aviation, or off-road vehicle radio-communication systems. C1 [Bittner, Rachel M.] NYU, Mus & Audio Res Lab, 35 W 4th St, New York, NY 10003 USA. [Begault, Durand R.] NASA Ames Res Ctr, Human Syst Integrat Div Moffett Field, Moffett Field, CA 94035 USA. RP Bittner, RM (reprint author), NYU, Mus & Audio Res Lab, 35 W 4th St, New York, NY 10003 USA. EM rmb456@nyu.edu; durand.r.begault@nasa.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1520-6149 BN 978-1-4799-2893-4 J9 INT CONF ACOUST SPEE PY 2014 PG 5 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA BB5BJ UT WOS:000343655300188 ER PT S AU Tan, F Lim, HS Abdullah, K Yoon, TL Matjafri, MZ Holben, B AF Tan, F. Lim, H. S. Abdullah, K. Yoon, T. L. Matjafri, M. Zubir Holben, B. GP IOP TI Multiple regression method to determine aerosol optical depth in atmospheric column in Penang, Malaysia SO 8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8) SE IOP Conference Series-Earth and Environmental Science LA English DT Proceedings Paper CT 8th International Symposium of the Digital Earth (ISDE) CY AUG 26-29, 2013 CL Univ Teknologi Malaysia, Inst Geospatial Sci & Technol, Kuching, MALAYSIA SP Univ Malaysia Sarawak, Sarawak Convent Bur, Malaysia Convent & Exhibit Bur, ESRI, FRIM, JKPTG, JUPEM, NRE, ANGKASA HO Univ Teknologi Malaysia, Inst Geospatial Sci & Technol ID AERONET; RETRIEVALS; SATELLITE; MODIS; OCEAN AB Aerosol optical depth (AOD) from AERONET data has a very fine resolution but air pollution index (API), visibility and relative humidity from the ground truth measurements are coarse. To obtain the local AOD in the atmosphere, the relationship between these three parameters was determined using multiple regression analysis. The data of southwest monsoon period (August to September, 2012) taken in Penang, Malaysia, was used to establish a quantitative relationship in which the AOD is modeled as a function of API, relative humidity, and visibility. The highest correlated model was used to predict AOD values during southwest monsoon period. When aerosol is not uniformly distributed in the atmosphere then the predicted AOD can be highly deviated from the measured values. Therefore these deviated data can be removed by comparing between the predicted AOD values and the actual AERONET data which help to investigate whether the non uniform source of the aerosol is from the ground surface or from higher altitude level. This model can accurately predict AOD if only the aerosol is uniformly distributed in the atmosphere. However, further study is needed to determine this model is suitable to use for AOD predicting not only in Penang, but also other state in Malaysia or even global. C1 [Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Matjafri, M. Zubir] Univ Sains Malaysia, Sch Phys, Gelugor, Pulau Pinang, Malaysia. [Holben, B.] NASA, Goddard Space Flight Ctr, Washington, DC USA. RP Tan, F (reprint author), Univ Sains Malaysia, Sch Phys, Gelugor, Pulau Pinang, Malaysia. EM fuyitan@yahoo.com RI Lim, Hwee San/F-6580-2010 OI Lim, Hwee San/0000-0002-4835-8015 FU RU [1001/PFIZIK/811228]; Universiti Sains Malaysia Short [304/PFIZIK/6310057] FX The authors gratefully acknowledge the financial support from RU grants 1001/PFIZIK/811228 and Universiti Sains Malaysia Short term grant 304/PFIZIK/6310057 used to carry out this project. NR 17 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1755-1307 J9 IOP C SER EARTH ENV JI IOP Conf. Ser. Earth Envir. Sci. PY 2014 VL 18 AR UNSP 012081 DI 10.1088/1755-1315/18/1/012081 PG 6 WC Environmental Sciences; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA BB7AC UT WOS:000345268900081 ER PT S AU Tan, F Lim, HS Abdullah, K Yoon, TL Matjafri, MZ Holben, B AF Tan, F. Lim, H. S. Abdullah, K. Yoon, T. L. Matjafri, M. Z. Holben, B. GP IOP TI Manipulating API and AOD data to distinguish transportation of aerosol at high altitude in Penang, Malaysia SO 8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8) SE IOP Conference Series-Earth and Environmental Science LA English DT Proceedings Paper CT 8th International Symposium of the Digital Earth (ISDE) CY AUG 26-29, 2013 CL Univ Teknologi Malaysia, Inst Geospatial Sci & Technol, Kuching, MALAYSIA SP Univ Malaysia Sarawak, Sarawak Convent Bur, Malaysia Convent & Exhibit Bur, ESRI, FRIM, JKPTG, JUPEM, NRE, ANGKASA HO Univ Teknologi Malaysia, Inst Geospatial Sci & Technol ID OPTICAL-PROPERTIES; EMISSIONS; AERONET AB Air pollution index (API) is an index commonly used in Malaysia to determine the air quality level. It is a ground truth data measurement which is unable to unambiguously quantify air quality level at higher atmosphere. On the other hand, aerosol optical depth (AOD) from AERONET data obtained using sun photometer provides reading of the air quality for a column of atmosphere from ground surface. We first determine the quantitative correlation between the API and AOD data collected in Penang, Malaysia, between January September, 2012, using two independent methods, one based on regression analysis and the other interpolation. Our purpose is to establish a systematic numerical procedure to determine whether aerosol transported in high altitude from other location has occurred. Two independent methods for establishing the quantitative relationship between the API and AOD data were used as a way to facilitate the verification of our approach. In our method, data from southwest monsoon period (August to September) were used as "calibration dataset" to establish the quantitative correlation between the AOD and API data. The established calibrated coefficients is then used to predict the AOD of other months, which are then compared against the data actually measured. Discrepancy between the predicted and measured AOD data can then be interpreted as an indication of whether the atmosphere at high altitude is polluted by aerosol transported from other location. If the predicted AOD is much larger than that measured, back trajectory analysis was applied to identify the aerosol transported source. This procedure is very helpful to investigate the aerosol transportation and distribution patterns during monsoon and non monsoon periods. C1 [Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Matjafri, M. Z.] Univ Sains Malaysia, Sch Phys, Gelugor, Pulau Pinang, Malaysia. [Holben, B.] Goddard Space Flight Ctr, Washington, DC USA. RP Tan, F (reprint author), Univ Sains Malaysia, Sch Phys, Gelugor, Pulau Pinang, Malaysia. EM fuyitan@yahoo.com RI Lim, Hwee San/F-6580-2010 OI Lim, Hwee San/0000-0002-4835-8015 FU RU [1001/PFIZIK/811228]; Universiti Sains Malaysia - Short term [304/PFIZIK/6310057] FX The authors gratefully acknowledge the financial support from RU grants 1001/PFIZIK/811228 and Universiti Sains Malaysia - Short term grant 304/PFIZIK/6310057 used to carry out this project. NR 17 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1755-1307 J9 IOP C SER EARTH ENV JI IOP Conf. Ser. Earth Envir. Sci. PY 2014 VL 18 AR UNSP 012082 DI 10.1088/1755-1315/18/1/012082 PG 6 WC Environmental Sciences; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA BB7AC UT WOS:000345268900082 ER PT J AU Cable, ML Stockton, AM Mora, MF Hand, KP Willis, PA AF Cable, M. L. Stockton, A. M. Mora, M. F. Hand, K. P. Willis, P. A. TI Microchip nonaqueous capillary electrophoresis of saturated fatty acids using a new fluorescent dye SO ANALYTICAL METHODS LA English DT Article ID LASER-INDUCED FLUORESCENCE; INDIRECT UV DETECTION; MID-ATLANTIC RIDGE; ABSORBENCY DETECTION; CARBOXYLIC-ACIDS; LIPIDS; SEPARATION; BIOMARKERS; ZONE; LIFE AB We demonstrate nonaqueous labeling and separation of the full range of short to long saturated fatty acids (C2 to C30) for the first time on a microfluidic device. A new fluorescent dye, Pacific Blue hydrazide, labels the carboxylic acid in a two-step, one-pot reaction to enable detection via laser-induced fluorescence at 405 nm excitation. Limits of detection for C10 to C30 acids range from 0.9 to 5.7 mu M. Fatty acids were successfully quantified in a sediment sample from the 'Snake Pit' hydrothermal system of the Mid-Atlantic Ridge, demonstrating the potential of this method to help characterize microbial communities through targeted biomarker analysis. Such a technique could also be utilized to differentiate between abiotic and biotic compounds in the search for life beyond Earth. C1 [Cable, M. L.; Stockton, A. M.; Mora, M. F.; Hand, K. P.; Willis, P. A.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Willis, PA (reprint author), CALTECH, NASA, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM willis@jpl.nasa.gov RI Mora, Maria/C-9753-2009; Willis, Peter/I-6621-2012 FU NASA Post-doctoral Program (NPP) at the Jet Propulsion Laboratory; NASA; NASA Astrobiology Science and Technology Development (ASTID) program [104320] FX The authors thank Life Technologies, Inc., for developing the protocol to synthesize the novel Pacific Blue dye introduced in this work. MLC and AMS were funded through the NASA Post-doctoral Program (NPP) at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. MFM and PAW were funded through the NASA Astrobiology Science and Technology Development (ASTID) program (Project no. 104320). This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. NR 34 TC 2 Z9 2 U1 5 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9660 EI 1759-9679 J9 ANAL METHODS-UK JI Anal. Methods PY 2014 VL 6 IS 24 BP 9532 EP 9535 DI 10.1039/c4ay01243g PG 4 WC Chemistry, Analytical; Food Science & Technology; Spectroscopy SC Chemistry; Food Science & Technology; Spectroscopy GA AU2MF UT WOS:000345451700001 ER PT S AU Saini, S Chang, J Jin, HQ AF Saini, Subhash Chang, Johnny Jin, Haoqiang BE Jarvis, S Wright, S Hammond, S TI Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades Using Scientific and Engineering Applications SO HIGH PERFORMANCE COMPUTING SYSTEMS: PERFORMANCE MODELING, BENCHMARKING AND SIMULATION SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 4th International Workshop on Performance Modeling, Benchmarking and Simulation of High-Performance Computing Systems (PMBS) CY NOV 18, 2013 CL Denver, CO AB We present a performance evaluation of Pleiades based on the Intel Xeon E5-2670 processor, a fourth-generation eight-core Sandy Bridge architecture, and compare it with the previous third generation Nehalem architecture. Several architectural features have been incorporated in Sandy Bridge: (a) four memory channels as opposed to three in Nehalem; (b) memory speed increased from 1333 MHz to 1600 MHz; (c) ring to connect on-chip L3 cache with cores, system agent, memory controller, and QPI agent and I/O controller to increase the scalability; (d) new AVX unit with wider vector registers of 256 bit; (e) integration of PCI-Express 3.0 controllers into the I/O subsystem on chip; (f) new Turbo Boost version 2.0 where base frequency of processor increased from 2.6 to 3.2 GHz; and (g) QPI link rate from 6.4 to 8 GT/s and two QPI links to second socket. We critically evaluate these new features using several low-level benchmarks, and four full-scale scientific and engineering applications. C1 [Saini, Subhash; Chang, Johnny; Jin, Haoqiang] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Saini, S (reprint author), NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA. EM subhash.saini@nasa.gov; johnny.chang@nasa.gov; haoqiang.jin@nasa.gov NR 15 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-10214-6; 978-3-319-10213-9 J9 LECT NOTES COMPUT SC PY 2014 VL 8551 BP 25 EP 51 DI 10.1007/978-3-319-10214-6_2 PG 27 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA BB7JA UT WOS:000345593400002 ER PT S AU Havelund, K AF Havelund, Klaus BE Margaria, T Steffen, B TI Monitoring with Data Automata SO LEVERAGING APPLICATIONS OF FORMAL METHODS, VERIFICATION AND VALIDATION: SPECIALIZED TECHNIQUES AND APPLICATIONS, PT II SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 6th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA) CY OCT 08-11, 2014 CL Imperial, GREECE AB We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Havelund, K (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 18 TC 4 Z9 4 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-662-45231-8; 978-3-662-45230-1 J9 LECT NOTES COMPUT SC PY 2014 VL 8803 BP 254 EP 273 PG 20 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB7GD UT WOS:000345509600018 ER PT S AU Winfree, WP Howell, PA Zalameda, JN AF Winfree, William P. Howell, Patricia A. Zalameda, Joseph N. BE Colbert, FP Hsieh, SJ TI Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites SO THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Thermosense - Thermal Infrared Applications XXXVI CY MAY 05-07, 2014 CL Baltimore, MD SP SPIE DE Nondestructive Evaluation; Thermography; Infrared Inspections; Composites ID IMPACT; DAMAGE AB Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage. C1 [Winfree, William P.] NASA, Langley Res Ctr, Res Directorate, MS 225, Hampton, VA 23681 USA. [Howell, Patricia A.; Zalameda, Joseph N.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA. RP Winfree, WP (reprint author), NASA, Langley Res Ctr, Res Directorate, MS 225, Hampton, VA 23681 USA. EM william.p.winfree@nasa.gov NR 6 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-042-6 J9 PROC SPIE PY 2014 VL 9105 AR UNSP 91050O DI 10.1117/12.2051356 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TS UT WOS:000345010300017 ER PT S AU Zalameda, JN Parker, FR AF Zalameda, Joseph N. Parker, F. Raymond BE Colbert, FP Hsieh, SJ TI Thermal inspection of composite honeycomb structures SO THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Thermosense - Thermal Infrared Applications XXXVI CY MAY 05-07, 2014 CL Baltimore, MD SP SPIE DE Thermal nondestructive evaluation; face sheet to core disbond; face sheet delamination; honeycomb composite structure inspection AB Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results. C1 [Zalameda, Joseph N.; Parker, F. Raymond] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Zalameda, JN (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM joseph.n.zalameda@nasa.gov NR 12 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-042-6 J9 PROC SPIE PY 2014 VL 9105 AR 91050C DI 10.1117/12.2052938 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TS UT WOS:000345010300009 ER PT J AU Lamsal, LN Krotkov, NA Celarier, EA Swartz, WH Pickering, KE Bucsela, EJ Gleason, JF Martin, RV Philip, S Irie, H Cede, A Herman, J Weinheimer, A Szykman, JJ Knepp, TN AF Lamsal, L. N. Krotkov, N. A. Celarier, E. A. Swartz, W. H. Pickering, K. E. Bucsela, E. J. Gleason, J. F. Martin, R. V. Philip, S. Irie, H. Cede, A. Herman, J. Weinheimer, A. Szykman, J. J. Knepp, T. N. TI Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OZONE MONITORING INSTRUMENT; TROPOSPHERIC NITROGEN-DIOXIDE; MAX-DOAS MEASUREMENTS; UNITED-STATES; SATELLITE RETRIEVALS; NORTH-AMERICA; POWER-PLANTS; GOME MEASUREMENTS; TRANSPORT MODEL; GMI CHEMISTRY AB We assess the standard operational nitrogen dioxide (NO2) data product (OMNO2, version 2.1) retrieved from the Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite using a combination of aircraft and surface in situ measurements as well as ground-based column measurements at several locations and a bottom-up NOx emission inventory over the continental US. Despite considerable sampling differences, NO2 vertical column densities from OMI are modestly correlated (r = 0.3-0.8) with in situ measurements of tropospheric NO2 from aircraft, ground-based observations of NO2 columns from MAX-DOAS and Pandora instruments, in situ surface NO2 measurements from photolytic converter instruments, and a bottom-up NOx emission inventory. Overall, OMI retrievals tend to be lower in urban regions and higher in remote areas, but generally agree with other measurements to within +/- 20%. No consistent seasonal bias is evident. Contrasting results between different data sets reveal complexities behind NO2 validation. Since validation data sets are scarce and are limited in space and time, validation of the global product is still limited in scope by spatial and temporal coverage and retrieval conditions. Monthly mean vertical NO2 profile shapes from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) used in the OMI retrievals are highly consistent with in situ aircraft measurements, but these measured profiles exhibit considerable day-to-day variation, affecting the retrieved daily NO2 columns by up to 40 %. This assessment of OMI tropospheric NO2 columns, together with the comparison of OMI-retrieved and model-simulated NO2 columns, could offer diagnostic evaluation of the model. C1 [Lamsal, L. N.; Celarier, E. A.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD 21046 USA. [Lamsal, L. N.; Krotkov, N. A.; Celarier, E. A.; Swartz, W. H.; Pickering, K. E.; Gleason, J. F.; Cede, A.; Herman, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Swartz, W. H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Bucsela, E. J.] SRI Int, Menlo Pk, CA 94025 USA. [Martin, R. V.; Philip, S.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Martin, R. V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Irie, H.] Chiba Univ, Ctr Environm Remote Sensing, Inage Ku, Chiba 2638522, Japan. [Cede, A.] LuftBlick, Kreith, Austria. [Herman, J.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Weinheimer, A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Szykman, J. J.] US EPA, Off Res & Dev, Hampton, VA 23681 USA. [Knepp, T. N.] Sci Syst & Applicat Inc, Hampton, VA 23681 USA. [Knepp, T. N.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Lamsal, LN (reprint author), Univ Space Res Assoc, Goddard Earth Sci Technol & Res, Columbia, MD 21046 USA. EM lok.lamsal@nasa.gov RI Martin, Randall/C-1205-2014; Krotkov, Nickolay/E-1541-2012; Swartz, William/A-1965-2010; Pickering, Kenneth/E-6274-2012; OI Martin, Randall/0000-0003-2632-8402; Krotkov, Nickolay/0000-0001-6170-6750; Swartz, William/0000-0002-9172-7189; Herman, Jay/0000-0002-9146-1632 FU NASA's Earth Science Division through an Aura Science team grant FX The work was supported by NASA's Earth Science Division through an Aura Science team grant. The Dutch-Finnish-built OMI instrument is part of the NASA EOS Aura satellite payload. The OMI instrument is managed by KNMI and the Netherlands Agency for Aero-space Programs (NIVR). NR 110 TC 29 Z9 29 U1 2 U2 46 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 21 BP 11587 EP 11609 DI 10.5194/acp-14-11587-2014 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT5LY UT WOS:000344985700004 ER PT J AU Eck, TF Holben, BN Reid, JS Arola, A Ferrare, RA Hostetler, CA Crumeyrolle, SN Berkoff, TA Welton, EJ Lolli, S Lyapustin, A Wang, Y Schafer, JS Giles, DM Anderson, BE Thornhill, KL Minnis, P Pickering, KE Loughner, CP Smirnov, A Sinyuk, A AF Eck, T. F. Holben, B. N. Reid, J. S. Arola, A. Ferrare, R. A. Hostetler, C. A. Crumeyrolle, S. N. Berkoff, T. A. Welton, E. J. Lolli, S. Lyapustin, A. Wang, Y. Schafer, J. S. Giles, D. M. Anderson, B. E. Thornhill, K. L. Minnis, P. Pickering, K. E. Loughner, C. P. Smirnov, A. Sinyuk, A. TI Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SPECTRAL-RESOLUTION LIDAR; SKY RADIANCE MEASUREMENTS; MARINE BOUNDARY-LAYER; ORGANIC AEROSOL; SATELLITE-OBSERVATIONS; SCATTERING PROPERTIES; PHYSICAL-PROPERTIES; SIZE DISTRIBUTION; SMOKE PARTICLES; MINERAL DUST AB During the July 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field experiment in Maryland, significant enhancements in Aerosol Robotic Network (AERONET) sun-sky radiometer measured aerosol optical depth (AOD) were observed in the immediate vicinity of non-precipitating cumulus clouds on some days. Both measured Angstrom exponents and aerosol size distribution retrievals made before, during and after cumulus development often suggest little change in fine mode particle size; therefore, implying possible new particle formation in addition to cloud processing and humidification of existing particles. In addition to sun-sky radiometer measurements of large enhancements of fine mode AOD, lidar measurements made from both ground-based and aircraft-based instruments during the experiment also measured large increases in aerosol signal at altitudes associated with the presence of fair weather cumulus clouds. These data show modifications of the aerosol vertical profile as a result of the aerosol enhancements at and below cloud altitudes. The airborne lidar data were utilized to estimate the spatial extent of these aerosol enhancements, finding increased AOD, backscatter and extinction out to 2.5 km distance from the cloud edge. Furthermore, in situ measurements made from aircraft vertical profiles over an AERONET site during the experiment also showed large increases in aerosol scattering and aerosol volume after cloud formation as compared to before. The 15-year AERONET database of AOD measurements at the Goddard Space Flight Center (GSFC), Maryland site, was investigated in order to obtain a climatological perspective of this phenomenon of AOD enhancement. Analysis of the diurnal cycle of AOD in summer showed significant increases in AOD from morning to late afternoon, corresponding to the diurnal cycle of cumulus development. C1 [Eck, T. F.] Univ Space Res Assoc, GESTAR, Columbia, MD 21046 USA. [Eck, T. F.; Holben, B. N.; Welton, E. J.; Lolli, S.; Lyapustin, A.; Wang, Y.; Schafer, J. S.; Giles, D. M.; Pickering, K. E.; Loughner, C. P.; Smirnov, A.; Sinyuk, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reid, J. S.] Naval Res Lab, Monterey, CA USA. [Arola, A.] Finnish Meteorol Inst, Kuopio, Finland. [Ferrare, R. A.; Hostetler, C. A.; Crumeyrolle, S. N.; Berkoff, T. A.; Anderson, B. E.; Thornhill, K. L.; Minnis, P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Crumeyrolle, S. N.] Univ Lille 1, CNRS, UMR8518, LOA, F-59655 Villeneuve Dascq, France. [Berkoff, T. A.; Lolli, S.; Wang, Y.] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA. [Schafer, J. S.; Giles, D. M.; Smirnov, A.; Sinyuk, A.] Sigma Space Corp, Lanham, MD USA. [Thornhill, K. L.] Sci Syst & Applicat Inc, Lanham, MD USA. [Loughner, C. P.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. RP Eck, TF (reprint author), Univ Space Res Assoc, GESTAR, Columbia, MD 21046 USA. EM thomas.f.eck@nasa.gov RI Reid, Jeffrey/B-7633-2014; Pickering, Kenneth/E-6274-2012; Smirnov, Alexander/C-2121-2009; OI Reid, Jeffrey/0000-0002-5147-7955; Smirnov, Alexander/0000-0002-8208-1304; Arola, Antti/0000-0002-9220-0194; Loughner, Christopher/0000-0002-3833-2014 FU NASA DISCOVER-AQ mission FX The AERONET project was supported by Michael D. King, retired in 2008 from the NASA EOS project office, and by Hal B. Maring, Radiation Sciences Program, NASA Headquarters. Sigma Space and Penn State are acknowledged for loan and site hosting, respectively, of the Mini-MPL at the Edgewood site. Funding for Mini-MPL work was provided by NASA DISCOVER-AQ mission to facilitate field work and data processing. NR 90 TC 9 Z9 10 U1 3 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 21 BP 11633 EP 11656 DI 10.5194/acp-14-11633-2014 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT5LY UT WOS:000344985700006 ER PT J AU Sun, W Hess, P Tian, B AF Sun, W. Hess, P. Tian, B. TI The response of the equatorial tropospheric ozone to the Madden-Julian Oscillation in TES satellite observations and CAM-chem model simulation SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID EMISSION SPECTROMETER; VERTICAL STRUCTURE; ATMOSPHERIC CHEMISTRY; CLIMATE MODEL; CONVECTION; PARAMETERIZATION; VARIABILITY; IMPACT; NOX; MJO AB The Madden-Julian Oscillation (MJO) is the dominant form of the atmospheric intra-seasonal oscillation, manifested by slow eastward movement (about 5 m s(-1)) of tropical deep convection. This study investigates the MJO's impact on equatorial tropospheric ozone (10 degrees N-10 degrees S) in satellite observations and chemical transport model (CTM) simulations. For the satellite observations, we analyze the Tropospheric Emission Spectrometer (TES) level-2 ozone profile data for the period of January 2004 to June 2009. For the CTM simulations, we run the Community Atmosphere Model with chemistry (CAM-chem) driven by the Goddard Earth Observing System Model, Version 5 (GEOS-5)-analyzed meteorological fields for the same data period as the TES measurements. Our analysis indicates that the behavior of the total tropospheric column (TTC) ozone at the intra-seasonal timescale is different from that of the total column ozone, with the signal in the equatorial region comparable with that in the subtropics. The model-simulated and satellite-measured ozone anomalies agree in their general pattern and amplitude when examined in the vertical cross section (the average spatial correlation coefficient among the eight phases is 0.63), with an eastward propagation signature at a similar phase speed as the convective anomalies (5 m s(-1)). The model ozone anomalies on the intra-seasonal timescale are about 5 times larger when lightning emissions of NOx are included in the simulation than when they are not. Nevertheless, large-scale advection is the primary driving force for the ozone anomalies associated with the MJO. The variability related to the MJO for ozone reaches up to 47% of the total variability (ranging from daily to interannual), indicating that the MJO should be accounted for in simulating ozone perturbations in the tropics. C1 [Sun, W.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14850 USA. [Hess, P.] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY USA. [Tian, B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Sun, W (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14850 USA. EM ws299@cornell.edu RI Tian, Baijun/A-1141-2007; Hess, Peter/M-3145-2015 OI Tian, Baijun/0000-0001-9369-2373; Hess, Peter/0000-0003-2439-3796 FU National Science Foundation [ATM-57003, ATM-0840755] FX This work was supported by the National Science Foundation through grant ATM-57003 to Cornell University and grant ATM-0840755 to University of California, Los Angeles. Part of this research was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), under a contract with National Aeronautics and Space Administration (NASA). The authors would like to thank Helen Worden for help with the TES satellite data. NR 69 TC 3 Z9 3 U1 1 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 21 BP 11775 EP 11790 DI 10.5194/acp-14-11775-2014 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT5LY UT WOS:000344985700013 ER PT J AU Li, J Carlson, BE Dubovik, O Lacis, AA AF Li, J. Carlson, B. E. Dubovik, O. Lacis, A. A. TI Recent trends in aerosol optical properties derived from AERONET measurements SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SKY RADIANCE MEASUREMENTS; ATMOSPHERIC COMPOSITION; ANGSTROM EXPONENT; BLACK-CARBON; ABSORPTION; CLIMATE; DEPTH; VISIBILITY; DEPENDENCE; EMISSIONS AB The Aerosol Robotic Network (AERONET) has been providing high-quality retrievals of aerosol optical properties from the surface at worldwide locations for more than a decade. Many sites have continuous and consistent records for more than 10 years, which enables the investigation of long-term trends in aerosol properties at these locations. In this study, we present the results of a trend analysis at selected stations with long data records. In addition to commonly studied parameters such as aerosol optical depth (AOD) and Angstrom exponent (AE), we also focus on inversion products including absorption aerosol optical depth (ABS), single-scattering albedo (SSA) and the absorption Angstrom exponent (AAE). Level 2.0 quality assured data are the primary source. However, due to the scarcity of level 2.0 inversion products resulting from the strict AOD quality control threshold, we have also analyzed level 1.5 data, with some quality control screening to provide a reference for global results. Two statistical methods are used to detect and estimate the trend: the Mann-Kendall test associated with Sen's slope and linear least-squares fitting. The results of these statistical tests agree well in terms of the significance of the trend for the majority of the cases. The results indicate that Europe and North America experienced a uniform decrease in AOD, while significant (> 90 %) increases in these two parameters are found for North India and the Arabian Peninsula. The AE trends turn out to be different for North America and Europe, with increases for the former and decreases for the latter, suggesting opposite changes in fine/coarse-mode fraction. For level 2.0 inversion parameters, Beijing and Kanpur both experienced an increase in SSA. Beijing also shows a reduction in ABS, while the SSA increase for Kanpur is mainly due the increase in scattering aerosols. Increased absorption and reduced SSA are found at Solar_Village. At level 1.5, most European and North American sites also show positive SSA and negative ABS trends, although the data are more uncertain. The AAE trends are less spatially coherent due to large uncertainties, except for a robust increase at three sites in West Africa, which suggests a possible reduction in black carbon. Overall, the trends do not exhibit obvious seasonality for the majority of parameters and stations. C1 [Li, J.; Carlson, B. E.; Lacis, A. A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Li, J.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Dubovik, O.] Univ Lille 1, French Natl Ctr Sci Res, Lille, France. RP Li, J (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM jing.li@nasa.gov OI Li, Jing/0000-0002-0540-0412 FU NASA climate grant [509496.02.08.04.24]; NASA Radiation Science program FX We thank the AERONET team, especially the PIs of the 90 selected stations, for providing the data used in this study. The AERONET data are obtained from the AERONET website, http://aeronet.gsfc.nasa.gov/. This study was funded by NASA climate grant 509496.02.08.04.24. Jing Li also acknowledges Hal Maring and the NASA Radiation Science program for providing funding for this investigation. NR 55 TC 20 Z9 20 U1 5 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 22 BP 12271 EP 12289 DI 10.5194/acp-14-12271-2014 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AU0CL UT WOS:000345290700018 ER PT S AU Ganguly, S Nemani, RR Baret, F Bi, J Weiss, M Zhang, G Milesi, C Hashimoto, H Samanta, A Verger, A Singh, K Myneni, RB AF Ganguly, Sangram Nemani, Ramakrishna R. Baret, Frederic Bi, Jian Weiss, Marie Zhang, Gong Milesi, Cristina Hashimoto, Hirofumi Samanta, Arindam Verger, Aleixandre Singh, Kumaresh Myneni, Ranga B. BE Hanes, JM TI Green Leaf Area and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation SO BIOPHYSICAL APPLICATIONS OF SATELLITE REMOTE SENSING SE Springer Remote Sensing Photogrammetry LA English DT Article; Book Chapter ID FOREST ECOSYSTEM PROCESSES; CYCLOPES GLOBAL PRODUCTS; SYSTEM DATA RECORD; LAI PRODUCTS; TIME-SERIES; PART 1; SPECTRAL INVARIANTS; CONIFEROUS FOREST; BIOSPHERE MODEL; INDEX PRODUCTS AB Leaf Area Index (LAI), the area of leaves per unit ground area, and the Fraction of Photosynthetically Active Radiation (FPAR; 400-700 nm) absorbed by vegetation are important biophysical variables for quantifying the cycling of water, carbon and nutrients through ecosystems. The LAI/FPAR products from the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and the Systeme Pour l'Observation de la Terre (SPOT) sensor have a large Earth science community user base and the ease of access, provision of pixel quality and validation information have greatly aided the use of these products. Recent research efforts focusing on inter-sensor product consistencies have developed a foundation upon which mature algorithms and a validation framework can act synergistically to further refine the accuracy and precision of these existing long-term products. This chapter provides a brief overview of the recent progresses in LAI/FPAR estimation algorithms and resulting biophysical products from the AVHRR, MODIS, SPOT and Landsat data. C1 [Ganguly, Sangram; Zhang, Gong] NASA, Ames Res Ctr, BAERI, Moffett Field, CA 94035 USA. [Bi, Jian; Myneni, Ranga B.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Nemani, Ramakrishna R.] NASA, Adv Supercomp Div, Moffett Field, CA USA. [Baret, Frederic; Weiss, Marie; Verger, Aleixandre] INRA EMMAH, Avignon, France. [Milesi, Cristina; Hashimoto, Hirofumi] Calif State Univ Monterey Bay, Dept Sci & Environm Policy, NASA, Ames Res Ctr, Moffett Field, CA USA. [Samanta, Arindam] Atmospher & Environm Res AER Inc, Lexington, MA USA. [Singh, Kumaresh] Risk Management Solut, Newark, CA USA. RP Ganguly, S (reprint author), NASA, Ames Res Ctr, BAERI, Moffett Field, CA 94035 USA. EM sangramganguly@gmail.com RI Myneni, Ranga/F-5129-2012; Baret, Fred/C-4135-2011; Singh, Kumaresh/P-4857-2016 OI Baret, Fred/0000-0002-7655-8997; NR 73 TC 1 Z9 1 U1 1 U2 5 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 2198-0721 BN 978-3-642-25047-7; 978-3-642-25046-0 J9 SPRING REMOTE SENS P PY 2014 BP 43 EP 61 DI 10.1007/978-3-642-25047-7_2 D2 10.1007/978-3-642-25047-7 PG 19 WC Ecology; Remote Sensing SC Environmental Sciences & Ecology; Remote Sensing GA BB6LR UT WOS:000344867900004 ER PT B AU Rasool, SI AF Rasool, S. Ichtiaque BE Ohring, G TI Climate Change in North America Preface SO CLIMATE CHANGE IN NORTH AMERICA SE Regional Climate Studies LA English DT Editorial Material; Book Chapter C1 NASA Headquarters, Washington, DC 20546 USA. RP Rasool, SI (reprint author), NASA Headquarters, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND BN 978-3-319-03768-4; 978-3-319-03767-7 J9 REG CLIM STUD PY 2014 BP V EP V D2 10.1007/978-3-319-03768-4 PG 1 WC Environmental Sciences; Geography, Physical; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Physical Geography; Meteorology & Atmospheric Sciences GA BB6NU UT WOS:000344883100001 ER PT S AU Sun, J Choi, KK Jhabvala, MD Jhabvala, CA Waczynski, A Olver, K AF Sun, J. Choi, K. K. Jhabvala, M. D. Jhabvala, C. A. Waczynski, A. Olver, K. BE LeVan, PD Sood, AK Wijewarnasuriya, P DSouza, AI TI Fabrication of Resonator-Quantum Well Infrared Photodetector test devices and focal plane arrays SO INFRARED SENSORS, DEVICES, AND APPLICATIONS IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Sensors, Devices, and Applications IV CY AUG 18-20, 2014 CL San Diego, CA SP SPIE DE inductively coupled plasma etching; Resonator-quantum well infrared photodetectors focal plane array; GaAs substrate removal ID DAMAGE; GAAS; SICL4; TIME; INP AB Resonator-Quantum Well Infrared Photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To achieve the expected performance, the detector geometry must be produced in precise specification. In particular, the height of the diffractive elements (DE) and the thickness of the active resonator must be uniformly and accurately realized to within 0.05 mu m accuracy and the substrates of the detectors have to be removed totally. To achieve these specifications, two optimized inductively coupled plasma (ICP) etching processes are developed. Using these etching techniques, we have fabricated a number of R-QWIP test detectors and FPAs with the required dimensions and completely removed their substrates. The QE spectra were tested to be in close agreement with the theoretical predictions. The operability and spectral uniformity of the focal plane array (FPA) is about 99.1% and 3% respectively. C1 [Sun, J.; Choi, K. K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.; Olver, K.] US Army Res Lab, Adelphi, MD 20783 USA. [Sun, J.; Choi, K. K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.; Olver, K.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Sun, J (reprint author), US Army Res Lab, Adelphi, MD 20783 USA. NR 15 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-247-5 J9 PROC SPIE PY 2014 VL 9220 AR UNSP 922004 DI 10.1117/12.2061985 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB6UE UT WOS:000345027200002 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Fundamental Concepts of Radiometry SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID SOLID ANGLE FUNCTION C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 1 EP 38 PG 38 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300002 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Introduction to Radiometry and Photometry Introduction SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Editorial Material; Book Chapter C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 27 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP XIII EP XIX PG 7 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300001 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Fundamental Concepts of Photometry SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID LUMINOUS EFFICIENCY; ADAPTATION C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 27 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 39 EP 69 PG 31 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300003 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Blackbodies and Other Sources SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID LIGHT-EMITTING-DIODES; DAYLIGHT C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 30 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 71 EP 98 PG 28 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300004 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Source/Receiver Flux Transfer Calculations SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID RADIATIVE TRANSFER C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 99 EP 125 PG 27 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300005 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI The Invariance of Radiance and the Limits of Optical Concentration SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID SOLAR CONCENTRATORS; DESIGN C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 23 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 127 EP 146 PG 20 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300006 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Optical Properties of Materials SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID SCATTERING; TURBIDITY C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 46 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 147 EP 200 PG 54 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300007 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI The Detection of Radiation SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 42 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 201 EP 261 PG 61 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300008 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Optical Systems SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID INTEGRATING-SPHERE; REFLECTANCE; TRANSMITTANCE; SCATTERING C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 51 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 263 EP 323 PG 61 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300009 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Radiometers and Photometers SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID ABSOLUTE SPECTRAL RESPONSE; ACCURACY CRYOGENIC RADIOMETER; NATIONAL INSTITUTE; SELF-CALIBRATION; IRRADIANCE; STANDARDS; SCALE C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 51 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 325 EP 358 PG 34 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300010 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Metric Primer and Additional Radiometric and Photometric Quantities and Units SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 359 EP 369 PG 11 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300011 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Virtual Measurement: Computerized Optical Ray Trace Analysis SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 371 EP 392 PG 22 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300012 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Basic Concepts of Color Science SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter ID TEMPERATURE C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 40 TC 0 Z9 0 U1 0 U2 1 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 393 EP 430 PG 38 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300013 ER PT B AU McCluney, WR AF McCluney, William Ross BA McCluney, WR BF McCluney, WR TI Correspondence Between Finite Elements and the Calculus SO INTRODUCTION TO RADIOMETRY AND PHOTOMETRY, SECOND EDITION SE Artech House Applied Photonics Series LA English DT Article; Book Chapter C1 [McCluney, William Ross] Florida Solar Energy Ctr, Melbourne, FL USA. [McCluney, William Ross] Amer Soc Heating Refrigerating & Air Conditioning, Tech Comm Fenestrat, Melbourne, FL USA. [McCluney, William Ross] Eastman Kodak Co, Rochester, NY USA. [McCluney, William Ross] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCluney, William Ross] Brevard Community Coll, Melbourne, FL USA. [McCluney, William Ross] Florida Technol Univ, Melbourne, FL USA. [McCluney, William Ross] Univ Cent Florida, Orlando, FL 32816 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU ARTECH HOUSE PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA BN 978-1-60807-833-2 J9 ARTECH H APPL PHOTON PY 2014 BP 431 EP 441 PG 11 WC Optics; Physics, Applied SC Optics; Physics GA BB6TE UT WOS:000344967300014 ER PT S AU Barnes, BW Sessions, AM Beyon, JY Petway, LB AF Barnes, Bruce W. Sessions, Alaric M. Beyon, Jeffrey Y. Petway, Larry B. BE Turner, MD Kamerman, GW Thomas, LMW Spillar, EJ TI Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III SO LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Radar Technology and Applications XIX and Atmospheric Propagation XI CY MAY 06-07, 2014 CL Baltimore, MD SP SPIE DE ALHAT; Doppler Lidar; IDEC; Langley; LARSS AB Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations. C1 [Barnes, Bruce W.; Beyon, Jeffrey Y.; Petway, Larry B.] NASA Langley Res Ctr, MS 468, Hampton, VA 23681 USA. [Sessions, Alaric M.] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA. RP Barnes, BW (reprint author), NASA Langley Res Ctr, MS 468, Hampton, VA 23681 USA. EM Bruce.W.Barnes@nasa.gov; alaricsessions@email.arizona.edu; Jeffrey.Y.Beyon@nasa.gov; Larry.B.Petway@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-017-4 J9 PROC SPIE PY 2014 VL 9080 AR UNSP 90800H DI 10.1117/12.2050373 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TQ UT WOS:000345008400013 ER PT S AU Beyon, JY Koch, GJ Kavaya, MJ AF Beyon, Jeffrey Y. Koch, Grady J. Kavaya, Michael J. BE Turner, MD Kamerman, GW Thomas, LMW Spillar, EJ TI Offshore Wind Measurements using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center SO LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Radar Technology and Applications XIX; and Atmospheric Propagation XI CY MAY 06-07, 2014 CL Baltimore, MD SP SPIE DE Wind profile algorithm; coherent lidar; APOLO; DAWN AIR AB The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign. C1 [Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Beyon, JY (reprint author), NASA Langley Res Ctr, MS 488, Hampton, VA 23681 USA. EM Jeffrey.Y.Beyon@nasa.gov; Grady.J.Koch@nasa.gov; Michael.J.Kavaya@nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-017-4 J9 PROC SPIE PY 2014 VL 9080 AR 908011 DI 10.1117/12.2050364 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TQ UT WOS:000345008400033 ER PT S AU Beyon, JY Ng, TK Lin, B Hu, YX Harrison, W AF Beyon, Jeffrey Y. Ng, Tak-Kwong Lin, Bing Hu, Yongxiang Harrison, Wallace BE Turner, MD Kamerman, GW Thomas, LMW Spillar, EJ TI High-Speed On-Board Data Processing for Science Instruments SO LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Radar Technology and Applications XIX; and Atmospheric Propagation XI CY MAY 06-07, 2014 CL Baltimore, MD SP SPIE DE onboard; high speed; FPGA; DAWN; ACE; ASCENDS AB A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper. C1 [Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Beyon, JY (reprint author), NASA Langley Res Ctr, MS 488, Hampton, VA 23681 USA. EM Jeffrey.Y.Beyon@nasa.gov; T.Ng@nasa.gov; Bing.Lin@nasa.gov; Yongxiang.Hu-1@nasa.gov; Fenton.W.Harrison@nasa.gov RI Hu, Yongxiang/K-4426-2012 NR 12 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-017-4 J9 PROC SPIE PY 2014 VL 9080 AR 90800L DI 10.1117/12.2050358 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TQ UT WOS:000345008400017 ER PT S AU Boyer, CM Jackson, TP Beyon, JY Petway, LB AF Boyer, Charles M. Jackson, Trevor P. Beyon, Jeffrey Y. Petway, Larry B. BE Turner, MD Kamerman, GW Thomas, LMW Spillar, EJ TI Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I SO LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Radar Technology and Applications XIX and Atmospheric Propagation XI CY MAY 06-07, 2014 CL Baltimore, MD SP SPIE DE ALHAT; Doppler Lidar; IDEC; Langley; LARSS AB Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function. C1 [Boyer, Charles M.; Beyon, Jeffrey Y.; Petway, Larry B.] NASA Langley Res Ctr, MS 432, Hampton, VA 23681 USA. [Jackson, Trevor P.] Old Dominion Univ, Dept Mech Engn, Norfolk, VA 23529 USA. RP Boyer, CM (reprint author), NASA Langley Res Ctr, MS 432, Hampton, VA 23681 USA. EM Charles.M.Boyer@nasa.gov; tjack040@odu.edu; Jeffrey.Y.Beyon@nasa.gov; Larry.B.Petway@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-017-4 J9 PROC SPIE PY 2014 VL 9080 AR UNSP 90800E DI 10.1117/12.2050365 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TQ UT WOS:000345008400010 ER PT S AU Crasner, AI Scola, S Beyon, JY Petway, LB AF Crasner, Aaron I. Scola, Salvatore Beyon, Jeffrey Y. Petway, Larry B. BE Turner, MD Kamerman, GW Thomas, LMW Spillar, EJ TI Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II SO LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Radar Technology and Applications XIX and Atmospheric Propagation XI CY MAY 06-07, 2014 CL Baltimore, MD SP SPIE DE ALHAT; Doppler Lidar; IDEC; Langley; LARSS; Thermal Analysis; Thermal Design AB Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits. C1 [Crasner, Aaron I.] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Scola, Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Crasner, AI (reprint author), Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. EM acrasner@umich.edu; Salvatore.Scola@nasa.gov; Jeffrey.Y.Beyon@nasa.gov; Larry.B.Petway@nasa.gov NR 9 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-017-4 J9 PROC SPIE PY 2014 VL 9080 AR UNSP 90800G DI 10.1117/12.2050370 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TQ UT WOS:000345008400012 ER PT S AU Hines, GD Pierrottet, DF Amzajerdian, F AF Hines, Glenn D. Pierrottet, Diego F. Amzajerdian, Farzin BE Turner, MD Kamerman, GW Thomas, LMW Spillar, EJ TI High-Fidelity Flash Lidar Model Development SO LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Radar Technology and Applications XIX and Atmospheric Propagation XI CY MAY 06-07, 2014 CL Baltimore, MD SP SPIE DE Flash Lidar; high-fidelity; model; simulation AB NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios. C1 [Hines, Glenn D.; Amzajerdian, Farzin] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Pierrottet, Diego F.] Coherent Applicat Inc, Hampton, VA 23666 USA. RP Hines, GD (reprint author), NASA Langley Res Ctr, Hampton, VA 23681 USA. NR 7 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-017-4 J9 PROC SPIE PY 2014 VL 9080 AR UNSP 90800D DI 10.1117/12.2050677 PG 9 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TQ UT WOS:000345008400009 ER PT S AU Pierrottet, DF Amzajerdian, F Barnes, B AF Pierrottet, Diego F. Amzajerdian, Farzin Barnes, Bruce BE Turner, MD Kamerman, GW Thomas, LMW Spillar, EJ TI A long distance Laser Altimeter for terrain relative navigation and spacecraft landing SO LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Radar Technology and Applications XIX and Atmospheric Propagation XI CY MAY 06-07, 2014 CL Baltimore, MD SP SPIE DE ALHAT; Lidar; range finder; altimeter AB A high precision laser altimeter was developed under the Autonomous Landing and Hazard Avoidance (ALHAT) project at NASA Langley Research Center. The laser altimeter provides slant-path range measurements from operational ranges exceeding 30 km that will be used to support surface-relative state estimation and navigation during planetary descent and precision landing. The altimeter uses an advanced time-of-arrival receiver, which produces multiple signal-return range measurements from tens of kilometers with 5 cm precision. The transmitter is eye-safe, simplifying operations and testing on earth. The prototype is fully autonomous, and able to withstand the thermal and mechanical stresses experienced during test flights conducted aboard helicopters, fixed-wing aircraft, and Morpheus, a terrestrial rocket-powered vehicle developed by NASA Johnson Space Center. This paper provides an overview of the sensor and presents results obtained during recent field experiments including a helicopter flight test conducted in December 2012 and Morpheus flight tests conducted during March of 2014. C1 [Pierrottet, Diego F.] Coherent Applicat Inc, 20 Res Dr,Suite 500, Hampton, VA 23666 USA. [Amzajerdian, Farzin; Barnes, Bruce] NASA, Langley Res Ctr, Hampton, VA 23682 USA. RP Pierrottet, DF (reprint author), Coherent Applicat Inc, 20 Res Dr,Suite 500, Hampton, VA 23666 USA. EM d.f.pierrottet@cailabs.net NR 5 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-017-4 J9 PROC SPIE PY 2014 VL 9080 AR UNSP 908005 DI 10.1117/12.2050481 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB6TQ UT WOS:000345008400003 ER PT S AU Kaplan, SG Quijada, MA AF Kaplan, Simon G. Quijada, Manuel A. BE Germer, TA Zwinkels, JC Tsai, BK TI Fourier Transform Methods SO SPECTROPHOTOMETRY: ACCURATE MEASUREMENT OF OPTICAL PROPERTIES OF MATERIALS SE Experimental Methods in the Physical Sciences LA English DT Article; Book Chapter ID TRANSMITTANCE MEASUREMENTS; INFRARED TRANSMITTANCE; FT-IR; REFLECTANCE; SPECTROSCOPY; SPECTROMETER; ACCURACY; SILICON; INDEX C1 [Kaplan, Simon G.] NIST, Gaithersburg, MD 20899 USA. [Quijada, Manuel A.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Kaplan, SG (reprint author), NIST, Gaithersburg, MD 20899 USA. NR 32 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER ACADEMIC PRESS INC PI SAN DIEGO PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA SN 1079-4042 BN 978-0-12-386023-1; 978-0-12-386022-4 J9 EXPTL METH PHYS SCI PY 2014 VL 46 BP 97 EP 141 DI 10.1016/B978-0-12-386022-4.00004-2 PG 45 WC Optics; Physics, Applied SC Optics; Physics GA BB6DB UT WOS:000344679600005 ER PT S AU Bruegge, CJ Davies, R Schwandner, FM Seidel, FC AF Bruegge, Carol J. Davies, Roger Schwandner, Florian M. Seidel, Felix C. BE Germer, TA Zwinkels, JC Tsai, BK TI Spectrophotometry Applications: Remote Sensing SO SPECTROPHOTOMETRY: ACCURATE MEASUREMENT OF OPTICAL PROPERTIES OF MATERIALS SE Experimental Methods in the Physical Sciences LA English DT Article; Book Chapter ID LANDSAT THEMATIC MAPPER; SNOW-COVERED AREA; GRAIN-SIZE; SOLAR-RADIATION; IMAGING SPECTROSCOPY; CLOUDY ATMOSPHERES; SPECTRAL ALBEDO; VOLCANIC GASES; SEASONAL SNOW; SPECTROMETER C1 [Bruegge, Carol J.; Schwandner, Florian M.; Seidel, Felix C.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Davies, Roger] Univ Auckland, Dept Phys, Auckland, New Zealand. RP Bruegge, CJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 90 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER ACADEMIC PRESS INC PI SAN DIEGO PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA SN 1079-4042 BN 978-0-12-386023-1; 978-0-12-386022-4 J9 EXPTL METH PHYS SCI PY 2014 VL 46 BP 457 EP 487 DI 10.1016/B978-0-12-386022-4.00012-1 PG 31 WC Optics; Physics, Applied SC Optics; Physics GA BB6DB UT WOS:000344679600013 ER PT S AU Kolodziejczak, JJ Atkins, C Roche, JM O'Dell, SL Ramsey, BD Elsner, RF Weisskopf, MC Gubarev, MV AF Kolodziejczak, Jeffery J. Atkins, Carolyn Roche, Jacqueline M. O'Dell, Stephen L. Ramsey, Brian D. Elsner, Ronald F. Weisskopf, Martin C. Gubarev, Mikhail V. BE ODell, SL Khounsary, AM TI Active figure control effects on mounting strategy for x-ray optics SO ADAPTIVE X-RAY OPTICS III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Adaptive X-Ray Optics III as part of the SPIE Optics + Photonics International Symposium on Optical Engineering + Applications CY AUG 17, 2014 CL San Diego, CA SP SPIE DE x-ray optics; active optics; optomechanical modeling; x-ray telescopes ID PERFORMANCE AB As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points. C1 [Kolodziejczak, Jeffery J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.] NASA, Marshall Space Flight Ctr, Space Sci Off, MSFC ZP12, Huntsville, AL 35812 USA. [Atkins, Carolyn] Univ Alabama Huntsville, Huntsville, AL 35899 USA. RP Kolodziejczak, JJ (reprint author), NASA, Marshall Space Flight Ctr, Space Sci Off, MSFC ZP12, Huntsville, AL 35812 USA. EM kolodz@nasa.gov OI O'Dell, Stephen/0000-0002-1868-8056 NR 30 TC 1 Z9 1 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-235-2 J9 PROC SPIE PY 2014 VL 9208 AR UNSP 92080H DI 10.1117/12.2061942 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BB6BH UT WOS:000344601900015 ER PT S AU O'Dell, SL Aldcroft, TL Allured, R Atkins, C Burrows, DN Cao, J Chalifoux, BD Chan, KW Cotroneo, V Elsner, RF Grahame, ME Gubarev, MV Heilmann, RK Johnson-Wilke, RL Kilaru, K Kolodziejczak, JJ Lillie, CF McMuldroch, S Ramsey, BD Reid, PB Riveros, RE Roche, JM Saha, TT Schattenburg, ML Schwartz, DA Trolier-McKinstry, SE Ulmer, MP Vaynman, S Vikhlinin, A Wang, XL Weisskopf, MC Wilke, RHT Zhang, WW AF O'Dell, Stephen L. Aldcroft, Thomas L. Allured, Ryan Atkins, Carolyn Burrows, David N. Cao, Jian Chalifoux, Brandon D. Chan, Kai-Wing Cotroneo, Vincenzo Elsner, Ronald F. Grahame, Michael E. Gubarev, Mikhail V. Heilmann, Ralf K. Johnson-Wilke, Raegan L. Kilaru, Kiranmayee Kolodziejczak, Jeffery J. Lillie, Charles F. McMuldroch, Stuart Ramsey, Brian D. Reid, Paul B. Riveros, Raul E. Roche, Jacqueline M. Saha, Timo T. Schattenburg, Mark L. Schwartz, Daniel A. Trolier-McKinstry, Susan E. Ulmer, Melville P. Vaynman, Semyon Vikhlinin, Alexey Wang, Xiaoli Weisskopf, Martin C. Wilke, Rudeger H. T. Zhang, William W. BE ODell, SL Khounsary, AM TI Toward large-area sub-arcsecond x-ray telescopes SO ADAPTIVE X-RAY OPTICS III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Adaptive X-Ray Optics III as part of the SPIE Optics + Photonics International Symposium on Optical Engineering + Applications CY AUG 17, 2014 CL San Diego, CA SP SPIE DE X-ray telescopes; x-ray optics; slumped-glass mirrors; silicon mirrors; differential deposition; ion implantation; active optics; electro-active devices; magneto-active devices ID DIFFERENTIAL DEPOSITION; OPTICS; MIRRORS; ASTRONOMY; MISSIONS AB The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (approximate to 3 m(2)) and fine angular resolution (approximate to 1"). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (approximate to 600 m(2)) of lightweight (approximate to 1 kg/m(2) areal density) high-quality mirrors at an acceptable cost (approximate to 1 M$/m(2) of mirror surface area). This paper reviews relevant technological and programmatic issues, as well as possible approaches for addressing these issues-including active (in-space adjustable) alignment and figure correction. C1 [O'Dell, Stephen L.] NASA, MSFC, Huntsville, AL 35805 USA. RP O'Dell, SL (reprint author), NASA, MSFC, ZP12,320 Sparkman Dr NW, Huntsville, AL 35805 USA. EM stephen.l.odell@nasa.gov OI O'Dell, Stephen/0000-0002-1868-8056; Trolier-McKinstry, Susan/0000-0002-7267-9281 NR 68 TC 5 Z9 5 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-235-2 J9 PROC SPIE PY 2014 VL 9208 AR 920805 DI 10.1117/12.2061882 PG 14 WC Optics; Physics, Applied SC Optics; Physics GA BB6BH UT WOS:000344601900004 ER PT S AU Reid, PB Aldcroft, TL Allured, R Cotroneo, V Johnson-Wilke, RL Marquez, V McMuldroch, S O'Dell, SL Ramsey, BD Schwartz, DA Trolier-McKinstry, S Vikhlinin, A Wilke, RHT Zhao, R AF Reid, Paul B. Aldcroft, Thomas L. Allured, Ryan Cotroneo, Vincenzo Johnson-Wilke, Raegan L. Marquez, Vanessa McMuldroch, Stuart O'Dell, Stephen L. Ramsey, Brian D. Schwartz, Daniel A. Trolier-McKinstry, Susan Vikhlinin, Alexey Wilke, Rudeger H. T. Zhao, Rui BE ODell, SL Khounsary, AM TI Development status of adjustable grazing incidence optics for 0.5 arcsecond X-ray imaging SO ADAPTIVE X-RAY OPTICS III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Adaptive X-Ray Optics III as part of the SPIE Optics + Photonics International Symposium on Optical Engineering + Applications CY AUG 17, 2014 CL San Diego, CA SP SPIE DE x-ray optics; adjustable optics; active optics; piezoelectric; deformable mirrors; SMART-X; high resolution; lightweight optics AB We describe progress in the development of adjustable grazing incidence X-ray optics for 0.5 arcsec resolution cosmic X-ray imaging. To date, no optics technology is available to blend high resolution imaging like the Chandra X-ray Observatory, with square meter collecting area. Our approach to achieve these goals simultaneously is to directly deposit thin film piezoelectric actuators on the back surface of thin, lightweight Wolter-I or Wolter-Schwarschild mirror segments. The actuators are used to correct mirror figure errors due to fabrication, mounting and alignment, using calibration and a one-time figure adjustment on the ground. If necessary, it will also be possible to correct for residual gravity release and thermal effects on-orbit. In this paper we discuss our most recent results measuring influence functions of the piezoelectric actuators using a Shack-Hartmann wavefront sensor. We describe accelerated and real-time lifetime testing of the piezoelectric material, and we also discuss changes to, and recent results of, our simulations of mirror correction. C1 [Reid, Paul B.; Aldcroft, Thomas L.; Allured, Ryan; Cotroneo, Vincenzo; Marquez, Vanessa; McMuldroch, Stuart; Schwartz, Daniel A.; Vikhlinin, Alexey] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhao, Rui] Penn State Univ, University Pk, PA 16802 USA. [O'Dell, Stephen L.; Ramsey, Brian D.] NASA Marshall Space Flight Ctr, Astrophys Off ZP12, Huntsville, AL 35812 USA. RP Reid, PB (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM preid@cfa.harvard.edu OI O'Dell, Stephen/0000-0002-1868-8056; Trolier-McKinstry, Susan/0000-0002-7267-9281 FU NASA [NNX13AD46G]; Smithsonian Astrophysical Observatory FX This work was supported by NASA Contract NNX13AD46G and by internal funding from the Smithsonian Astrophysical Observatory. NR 24 TC 11 Z9 11 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-235-2 J9 PROC SPIE PY 2014 VL 9208 AR UNSP 920807 DI 10.1117/12.2063305 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BB6BH UT WOS:000344601900006 ER PT J AU Reynolds, K Nguyen, N Ting, E Urnes, J AF Reynolds, Kevin Nhan Nguyen Ting, Eric Urnes, James, Sr. TI Wing shaping concepts using distributed propulsion SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY LA English DT Article DE Wing shaping; Distributed propulsion; Hybrid electric; Aeroelastic; Electric propulsion AB Purpose - The purpose of this research is to explore innovative aircraft concepts that use flexible wings and distributed propulsion to significantly reduce fuel burn of future transport aircraft by exploiting multidisciplinary interactions. Design/methodology/approach - Multidisciplinary analysis and trajectory optimization are used to evaluate the mission performance benefits of flexible wing distributed propulsion aircraft concepts. Findings - The flexible wing distributed propulsion aircraft concept was shown to achieve a 4 per cent improvement in L/D over a mission profile consisting of a minimum fuel climb, minimum fuel cruise and continuous descent. Practical implications - The technologies being investigated may lead to mission adaptive aircraft that can minimize drag, and thus fuel burn, throughout the flight envelope. Originality/value - The aircraft concepts being explored seek to create synergistic interactions between disciplines for reducing fuel burn while capitalizing on the potential benefits of lightweight, flexible wing structures and distributed propulsion. C1 [Reynolds, Kevin; Nhan Nguyen; Ting, Eric] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Urnes, James, Sr.] Boeing Res & Technol, Platform & Networked Syst Technol, St Louis, MO USA. RP Reynolds, K (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM kevin.w.reynolds@nasa.gov FU NASA Aeronautics Research Institute (NARI) FX The authors would like to thank the NASA Aeronautics Research Institute (NARI) for funding this work. The authors also would like to thank the primary authors Nhan Nguyen and Eric Ting as well as members of the team who contributed to the work presented, namely, those from NASA Ames, NASA Glenn, and Boeing Research and Technology, St. Louis. NR 8 TC 0 Z9 0 U1 1 U2 5 PU EMERALD GROUP PUBLISHING LIMITED PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1748-8842 EI 1758-4213 J9 AIRCR ENG AEROSP TEC JI Aircr. Eng. Aerosp. Technol. PY 2014 VL 86 IS 6 SI SI BP 478 EP 482 DI 10.1108/AEAT-04-2014-0050 PG 5 WC Engineering, Aerospace SC Engineering GA AT6BW UT WOS:000345024800006 ER PT J AU Kim, HD Felder, JL Tong, MT Berton, JJ Haller, WJ AF Kim, Hyun Dae Felder, James L. Tong, Michael T. Berton, Jeffrey J. Haller, William J. TI Turboelectric distributed propulsion benefits on the N3-X vehicle SO AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY LA English DT Article DE Turboelectric distributed propulsion; Superconducting; Hybrid-wing-body AB Purpose - The purpose of this article is to present a summary of recent study results on a turboelectric distributed propulsion vehicle concept named N3-X. Design/methodology/approach - The turboelectric distributed propulsion system uses multiple electric motor-driven propulsors that are distributed on an aircraft. The power to drive these electric propulsors is generated by separately located gas turbine-driven electric generators on the airframe. To estimate the benefits associated with this new propulsion concept, a system analysis was performed on a hybrid-wing-body transport configuration to determine fuel burn (or energy usage), community noise and emissions reductions. Findings - N3-X would be able to reduce energy consumption by 70-72 per cent compared to a reference vehicle, a Boeing 777-200LR, flying the same mission. Predictions for landing and take-off NOX are estimated to be 85 per cent less than the Tier 6-CAEP/6 standard. Two variants of the N3-X vehicle were examined for certification noise and found to have International Civil Aviation Organization Chapter 4 cumulative margins of 32EPNdB and 64EPNdB. Practical implications - It is expected that the turboelectric distributed propulsion system may indeed provide unprecedented reductions in fuel/energy consumption, community noise and landing and take-off NOX emissions required in future transport aircraft. Originality/value - The studied propulsion concept is a step change from the conventional propulsion system and addresses growing aviation demands and concerns on the environment and energy usage. C1 [Kim, Hyun Dae; Felder, James L.; Tong, Michael T.; Berton, Jeffrey J.; Haller, William J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kim, HD (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM Hyun.D.Kim@nasa.gov NR 6 TC 1 Z9 1 U1 2 U2 11 PU EMERALD GROUP PUBLISHING LIMITED PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1748-8842 EI 1758-4213 J9 AIRCR ENG AEROSP TEC JI Aircr. Eng. Aerosp. Technol. PY 2014 VL 86 IS 6 SI SI BP 558 EP 561 DI 10.1108/AEAT-04-2014-0037 PG 4 WC Engineering, Aerospace SC Engineering GA AT6BW UT WOS:000345024800016 ER PT J AU Klenzing, J de La Beaujardiere, O Gentile, LC Retterer, J Rodrigues, FS Stoneback, RA AF Klenzing, J. de La Beaujardiere, O. Gentile, L. C. Retterer, J. Rodrigues, F. S. Stoneback, R. A. TI C/NOFS results and equatorial ionospheric dynamics Preface SO ANNALES GEOPHYSICAE LA English DT Editorial Material C1 [Klenzing, J.] Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [de La Beaujardiere, O.; Gentile, L. C.] Space Vehicles Directorate, Air Force Res Lab, Kirtland AFB, NM USA. [Retterer, J.] Boston Coll, Inst Sci Res, Chestnut Hill, MA 02167 USA. [Rodrigues, F. S.; Stoneback, R. A.] Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75083 USA. RP Klenzing, J (reprint author), Goddard Space Flight Ctr, Space Weather Lab, Code 674, Greenbelt, MD 20771 USA. EM jeffrey.klenzing@nasa.gov RI Klenzing, Jeff/E-2406-2011 OI Klenzing, Jeff/0000-0001-8321-6074 NR 0 TC 0 Z9 0 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 EI 1432-0576 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PY 2014 VL 32 IS 10 BP 1303 EP 1303 DI 10.5194/angeo-32-1303-2014 PG 1 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA AT2AH UT WOS:000344732500010 ER PT J AU Kaku, KC Reid, JS O'Neill, NT Quinn, PK Coffman, DJ Eck, TF AF Kaku, K. C. Reid, J. S. O'Neill, N. T. Quinn, P. K. Coffman, D. J. Eck, T. F. TI Verification and application of the extended spectral deconvolution algorithm (SDA plus ) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID OPTICAL-PROPERTIES; SIZE DISTRIBUTION; IN-SITU; PARTICLES; DEPTH; PARAMETERIZATIONS; TRANSPORT; EXPONENT; PACIFIC; BRAZIL AB The spectral deconvolution algorithm (SDA) and SDA+ (extended SDA) methodologies can be employed to separate the fine and coarse mode extinction coefficients from measured total aerosol extinction coefficients, but their common use is currently limited to AERONET (AErosol RObotic NETwork) aerosol optical depth (AOD). Here we provide the verification of the SDA+ methodology on a non-AERONET aerosol product, by applying it to fine and coarse mode nephelometer and particle soot absorption photometer (PSAP) data sets collected in the marine boundary layer. Using data sets collected on research vessels by NOAAPMEL(National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory), we demonstrate that with accurate input, SDA+ is able to predict the fine and coarse mode scattering and extinction coefficient partition in global data sets representing a range of aerosol regimes. However, in low-extinction regimes commonly found in the clean marine boundary layer, SDA+ output accuracy is sensitive to instrumental calibration errors. This work was extended to the calculation of coarse and fine mode scattering coefficients with similar success. This effort not only verifies the application of the SDA+ method to in situ data, but by inference verifies the method as a whole for a host of applications, including AERONET. Study results open the door to much more extensive use of nephelometers and PSAPs, with the ability to calculate fine and coarse mode scattering and extinction coefficients in field campaigns that do not have the resources to explicitly measure these values. C1 [Kaku, K. C.] CSC, Monterey, CA 93940 USA. [Reid, J. S.] Naval Res Lab, Monterey, CA USA. [O'Neill, N. T.] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada. [Quinn, P. K.; Coffman, D. J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Eck, T. F.] Univ Space Res Assoc, Columbia, MD USA. [Eck, T. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kaku, KC (reprint author), CSC, Monterey, CA 93940 USA. EM kkaku@csc.com RI Reid, Jeffrey/B-7633-2014; Quinn, Patricia/R-1493-2016 OI Reid, Jeffrey/0000-0002-5147-7955; Quinn, Patricia/0000-0003-0337-4895 FU office of Naval Research; National Sciences and Engineering Research Council of Canada; Environment Canada; NASA AERONET Program FX Funding for this effort was initiated under a grant from the office of Naval Research Code 35, with completion by Code 32. We are grateful to NOAA for the collection and use of their voluminous data records. PMEL's contribution to this work was provided by NOAA's Climate Program Office. Funding for N. T. O'Neill was provided by the National Sciences and Engineering Research Council of Canada and Environment Canada. T. F. Eck's funding was provided by the NASA AERONET Program. NR 38 TC 6 Z9 6 U1 0 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 10 BP 3399 EP 3412 DI 10.5194/amt-7-3399-2014 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT2AE UT WOS:000344732200012 ER PT J AU Muller, D Hostetler, CA Ferrare, RA Burton, SP Chemyakin, E Kolgotin, A Hair, JW Cook, AL Harper, DB Rogers, RR Hare, RW Cleckner, CS Obland, MD Tomlinson, J Berg, LK Schmid, B AF Mueller, D. Hostetler, C. A. Ferrare, R. A. Burton, S. P. Chemyakin, E. Kolgotin, A. Hair, J. W. Cook, A. L. Harper, D. B. Rogers, R. R. Hare, R. W. Cleckner, C. S. Obland, M. D. Tomlinson, J. Berg, L. K. Schmid, B. TI Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID PRINCIPAL COMPONENT ANALYSIS; DISPERSION MODEL FLEXPART; RAMAN-LIDAR; TROPOSPHERIC AEROSOL; PARTICLE PARAMETERS; ASIAN DUST; BACKSCATTER; EXTINCTION; RETRIEVAL; REGULARIZATION AB We present measurements acquired by the world's first airborne 3 backscatter (beta)+ 2 extinction (alpha) High Spectral Resolution Lidar (HSRL-2). HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle extinction coefficients at 355 and 532 nm. The instrument has been developed by the NASA Langley Research Center. The instrument was operated during Phase 1 of the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed pollution outflow from the northeastern coast of the US out over the western Atlantic Ocean. Lidar ratios were 50-60 sr at 355 nm and 6070 sr at 532 nm. Extinction-related Angstrom exponents were on average 1.2-1.7, indicating comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieved particle effective radii of approximately 0.2 mu m, which is in agreement with the large Angstrom exponents. We find good agreement with particle size parameters obtained from coincident in situ measurements carried out with the DOE Gulfstream-1 aircraft. C1 [Mueller, D.] Univ Hertfordshire, Hatfield AL10 9AB, Herts, England. [Mueller, D.; Chemyakin, E.] NASA, Sci Syst & Applicat Inc, Langley Res Ctr, Hampton, VA USA. [Hostetler, C. A.; Ferrare, R. A.; Burton, S. P.; Hair, J. W.; Cook, A. L.; Harper, D. B.; Rogers, R. R.; Hare, R. W.; Cleckner, C. S.; Obland, M. D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Kolgotin, A.] Phys Instrumentat Ctr, Troitsk, Russia. [Tomlinson, J.; Berg, L. K.; Schmid, B.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Muller, D (reprint author), Univ Hertfordshire, Hatfield AL10 9AB, Herts, England. EM d.mueller@herts.ac.uk RI MUELLER, DETLEF/F-1010-2015; Berg, Larry/A-7468-2016 OI MUELLER, DETLEF/0000-0002-0203-7654; Berg, Larry/0000-0002-3362-9492 FU DOE ARM [DE-SC0006730] FX The authors thank the NASA Langley B-200 King Air flight crew or their outstanding work and support during the research flights. Support for the HSRL-2 flight operations during TCAP was provided by the DOE ARM program: Interagency Agreement DE-SC0006730. Support for data analysis was provided in part by the DOE Atmospheric System Research (ASR) program. Support for the development of HSRL-2 was provided by the NASA Science Mission Directorate, ESTO, AITT, and Radiation Science Program. We thank C. Flynn, R. Wagener, L. Gregory, and P. Russell at the Barnstable AERONET station for providing data. The AERONET data at MVCO are provided by H. Feng and H. M. Sosik. NR 37 TC 21 Z9 21 U1 1 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 10 BP 3487 EP 3496 DI 10.5194/amt-7-3487-2014 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT2AE UT WOS:000344732200017 ER PT J AU Sullivan, JT McGee, TJ Sumnicht, GK Twigg, LW Hoff, RM AF Sullivan, J. T. McGee, T. J. Sumnicht, G. K. Twigg, L. W. Hoff, R. M. TI A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, DC region SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID GROUND-BASED LIDAR; STIMULATED RAMAN-SCATTERING; EASTERN-UNITED-STATES; STRATOSPHERIC OZONE; BOUNDARY-LAYER; AIRBORNE LIDAR; MULTIWAVELENGTH LIDAR; VERTICAL-DISTRIBUTION; DIAL MEASUREMENTS; SUBTROPICAL JET AB Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TRO-Pospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 degrees N, 76.84 degrees W, 57ma.s.l.), from 400m to 12 km a. g. l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area. C1 [Sullivan, J. T.; Hoff, R. M.] UMBC, Dept Atmospher Phys, Baltimore, MD 21250 USA. [Sullivan, J. T.; Hoff, R. M.] JCET, Baltimore, MD USA. [McGee, T. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sumnicht, G. K.; Twigg, L. W.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Sullivan, JT (reprint author), UMBC, Dept Atmospher Phys, Baltimore, MD 21250 USA. EM johnsullivan@umbc.edu FU UMBC/JCET [374, 8306]; Maryland Department of the Environment (MDE) [U00P4400079]; NOAA-CREST CCNY Foundation [49173B-02]; Tropospheric Ozone Lidar Network (TOLNet) FX The authors wish gratefully to acknowledge support for this study provided from UMBC/JCET (task no. 374, project 8306), the Maryland Department of the Environment (MDE, contract no. U00P4400079), NOAA-CREST CCNY Foundation (sub-contract no. 49173B-02), and the Tropospheric Ozone Lidar Network (TOLNet). Also, thanks to the Howard University Beltsville Center for Climate Systems Observation for launching the ozonesondes necessary to begin validating this system. NR 100 TC 9 Z9 10 U1 1 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 10 BP 3529 EP 3548 DI 10.5194/amt-7-3529-2014 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT2AE UT WOS:000344732200020 ER PT J AU Seroussi, H Morlighem, M Rignot, E Mouginot, J Larour, E Schodlok, M Khazendar, A AF Seroussi, H. Morlighem, M. Rignot, E. Mouginot, J. Larour, E. Schodlok, M. Khazendar, A. TI Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years SO CRYOSPHERE LA English DT Article ID ICE-SHEET; SATELLITE RADAR; PART 1; SHELF; MODEL; RETREAT; GREENLAND; THICKNESS; BRIDGE AB Pine Island Glacier, a major contributor to sea level rise in West Antarctica, has been undergoing significant changes over the last few decades. Here, we employ a three-dimensional, higher-order model to simulate its evolution over the next 50 yr in response to changes in its surface mass balance, the position of its calving front and ocean-induced ice shelf melting. Simulations show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects the glacier speed over several hundreds of kilometers upstream of the grounding line. Our simulations show that the speedup observed in the 1990s and 2000s is consistent with an increase in sub-ice-shelf melting. According to our modeling results, even if the grounding line stabilizes for a few decades, we find that the glacier reaction can continue for several decades longer. Furthermore, Pine Island Glacier will continue to change rapidly over the coming decades and remain a major contributor to sea level rise, even if ocean-induced melting is reduced. C1 [Seroussi, H.; Rignot, E.; Larour, E.; Schodlok, M.; Khazendar, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morlighem, M.; Rignot, E.; Mouginot, J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Schodlok, M.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. RP Seroussi, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 300-323, Pasadena, CA 91109 USA. EM helene.seroussi@jpl.nasa.gov RI Mouginot, Jeremie/G-7045-2015; Morlighem, Mathieu/O-9942-2014; Rignot, Eric/A-4560-2014; OI Morlighem, Mathieu/0000-0001-5219-1310; Rignot, Eric/0000-0002-3366-0481; Mouginot, Jeremie/0000-0001-9155-5455 FU NASA; JPL Research, Technology and Development program FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of California, Irvine, under a contract with the National Aeronautics and Space Administration. H. Seroussi was supported by appointments to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Additional funding was provided by the JPL Research, Technology and Development program and NASA Cryospheric Science (AK), Modeling, Analysis and Prediction and Interdisciplinary Science programs. We thank R. Gladstone, G. Durand and I. Joughin for the helpful and insightful comments. NR 45 TC 15 Z9 15 U1 4 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2014 VL 8 IS 5 BP 1699 EP 1710 DI 10.5194/tc-8-1699-2014 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AT1ZG UT WOS:000344728900006 ER PT J AU Kala, J Evans, JP Pitman, AJ Schaaf, CB Decker, M Carouge, C Mocko, D Sun, Q AF Kala, J. Evans, J. P. Pitman, A. J. Schaaf, C. B. Decker, M. Carouge, C. Mocko, D. Sun, Q. TI Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID CLIMATE MODEL; AREA INDEX; RESOLUTION; MOISTURE; BRDF; PARAMETERIZATION; PHOTOSYNTHESIS; REPRESENTATION; TRANSPIRATION; PRECIPITATION AB Land surface albedo, the fraction of incoming solar radiation reflected by the land surface, is a key component of the Earth system. This study evaluates snow-free surface albedo simulations by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model with the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour L'Observation de la Terre (SPOT) albedo. We compare results from offline simulations over the Australian continent. The control simulation has prescribed background snow-free and vegetation-free soil albedo derived from MODIS whilst the experiments use a simple parameterisation based on soil moisture and colour, originally from the Biosphere Atmosphere Transfer Scheme (BATS), and adopted in the Common Land Model (CLM). The control simulation, with prescribed soil albedo, shows that CABLE simulates overall albedo over Australia reasonably well, with differences compared to MODIS and SPOT albedos within +/- 0.1. Application of the original BATS scheme, which uses an eight-class soil classification, resulted in large differences of up to -0.25 for the near-infrared (NIR) albedo over large parts of the desert regions of central Australia. The use of a recalibrated 20-class soil colour classification from the CLM, which includes a higher range for saturated and VIS (visible) and NIR soil albedos, reduced the underestimation of the NIR albedo. However, this soil colour mapping is tuned to CLM soil moisture, a quantity which is not necessarily transferrable between land surface models. We therefore recalibrated the soil color map using CABLE's climatological soil moisture, which further reduced the underestimation of the NIR albedo to within +/- 0.15 over most of the continent as compared to MODIS and SPOT albedos. Small areas of larger differences of up to -0.25 remained within the central arid parts of the continent during summer; however, the spatial extent of these large differences is substantially reduced as compared to the simulation using the default eight-class uncalibrated soil colour map. It is now possible to use CABLE coupled to atmospheric models to investigate soil-moisture-albedo feedbacks, an important enhancement of the model. C1 [Kala, J.; Evans, J. P.; Pitman, A. J.; Decker, M.; Carouge, C.] Univ New S Wales, Australian Res Council, Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia. [Kala, J.; Evans, J. P.; Pitman, A. J.; Decker, M.; Carouge, C.] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia. [Schaaf, C. B.; Sun, Q.] NASA, Goddard Space Flight Ctr, Sci Applicat Int Corp NASA, Greenbelt, MD 20771 USA. [Mocko, D.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. RP Kala, J (reprint author), Univ New S Wales, Australian Res Council, Ctr Excellence Climate Syst Sci, Sydney, NSW 2052, Australia. EM j.kala@unsw.edu.au RI Pitman, Andrew/A-7353-2011; kala, Jatin/G-8408-2011; Sun, Qingsong/I-9040-2016; Evans, Jason/F-3716-2011; OI Pitman, Andrew/0000-0003-0604-3274; kala, Jatin/0000-0001-9338-2965; Sun, Qingsong/0000-0002-7710-2123; Evans, Jason/0000-0003-1776-3429; Decker, Mark/0000-0003-1071-611X; Carouge, Claire/0000-0002-0313-8385 FU Australian Research Council Centre of Excellence for Climate System Science [CE110001028]; NSW Environment Trust [RM08603]; European Community [218795] FX All the authors except David Mocko, Crystal B. Schaaf, and Qingsong Sun are supported by the Australian Research Council Centre of Excellence for Climate System Science (CE110001028). This work was also supported by the NSW Environment Trust (RM08603). We thank CSIRO and the Bureau of Meteorology through the Center for Australian Weather and Climate Research for their support in the use of the CABLE model. We thank the National Computational Infrastructure at the Australian National University, an initiative of the Australian Government, for access to supercomputer resources. We thank the NASA GSFC LIS team for support in coupling CABLE to LIS. The MODIS-derived background soil albedo was provided by Peter R. J. North from the Department of Geography, Swansea University, Swansea, United Kingdom. The modified MODIS LAI data was provided by Hua Yuan from the Land-Atmosphere Interaction Research Group at Beijing Normal University. The AMSR-E soil moisture data was provided by Yi Liu from the University of New South Wales. The SPOT albedo product was obtained from: http://www.geoland2.eu/index.jsp, and we formally acknowledge the use of the SPOT albedo as per the data policy: "The research leading to these results has received funding from the European Community's Seventh Framework Program (PF7/2007-2013) under grant agreement no. 218795. The BioPar SPOT/VEGETATION albedo products were originally defined in the framework of the PF5/CYCLOPES project. They are a joint property of CNES and VITO under copyright geoland2. They have been generated from the SPOT VEGETATION data under copyright CNES and distributed by VITO". All of this assistance is gratefully acknowledged. NR 53 TC 3 Z9 3 U1 2 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2014 VL 7 IS 5 BP 2121 EP 2140 DI 10.5194/gmd-7-2121-2014 PG 20 WC Geosciences, Multidisciplinary SC Geology GA AT1ZW UT WOS:000344730900018 ER PT J AU Kala, J Evans, JP Pitman, AJ Schaaf, CB Decker, M Carouge, C Mocko, D Sun, Q AF Kala, J. Evans, J. P. Pitman, A. J. Schaaf, C. B. Decker, M. Carouge, C. Mocko, D. Sun, Q. TI Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia (vol 7, pg 2121, 2014) SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Correction C1 [Kala, J.; Evans, J. P.; Pitman, A. J.; Decker, M.; Carouge, C.] Univ New S Wales, Australian Res Council Ctr Excellence Climate Sys, Sydney, NSW 2052, Australia. [Kala, J.; Evans, J. P.; Pitman, A. J.; Decker, M.; Carouge, C.] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia. [Schaaf, C. B.; Sun, Q.] Univ Massachusetts, Sch Environm, Boston, MA 02125 USA. [Mocko, D.] NASA, Goddard Space Flight Ctr, Sci Applicat Int Corp, Greenbelt, MD 20771 USA. RP Kala, J (reprint author), Univ New S Wales, Australian Res Council Ctr Excellence Climate Sys, Sydney, NSW 2052, Australia. EM j.kala@unsw.edu.au RI Pitman, Andrew/A-7353-2011; Sun, Qingsong/I-9040-2016; Evans, Jason/F-3716-2011 OI Pitman, Andrew/0000-0003-0604-3274; Sun, Qingsong/0000-0002-7710-2123; Evans, Jason/0000-0003-1776-3429 NR 1 TC 0 Z9 0 U1 2 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2014 VL 7 IS 5 BP 2501 EP 2501 DI 10.5194/gmd-7-2501-2014 PG 1 WC Geosciences, Multidisciplinary SC Geology GA AT1ZW UT WOS:000344730900038 ER PT J AU Shukla, S McNally, A Husak, G Funk, C AF Shukla, S. McNally, A. Husak, G. Funk, C. TI A seasonal agricultural drought forecast system for food-insecure regions of East Africa SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID CONTERMINOUS UNITED-STATES; HYDROLOGICALLY BASED DATASET; LAND INFORMATION-SYSTEM; WATER-BALANCE MODEL; SOIL-MOISTURE; SURFACE FLUXES; GLOBAL RIVERS; INDIAN-OCEAN; PREDICTION; PREDICTABILITY AB The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agropastoral management decisions, support optimal allocation of the region's water resources, and mitigate socioeconomic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's (FEWS NET) science team. We evaluate this forecast system for a region of equatorial EA (2 degrees S-8 degrees N, 36-46 degrees E) for the March-April- May (MAM) growing season. This domain encompasses one of the most food-insecure, climatically variable, and socioeconomically vulnerable regions in EA, and potentially the world; this region has experienced famine as recently as 2011. To produce an "agricultural outlook", our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios describing the upcoming season. First, we forced the VIC model with high-quality atmospheric observations to produce baseline soil moisture (SM) estimates (here after referred as SM a posteriori estimates). These compared favorably (correlation = 0.75) with the water requirement satisfaction index (WRSI), an index that the FEWS NET uses to estimate crop yields. Next, we evaluated the SM forecasts generated by this system on 5 March and 5 April of each year between 1993 and 2012 by comparing them with the corresponding SM a posteriori estimates. We found that initializing SM forecasts with start-of-season (SOS) (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month and, in some cases, 3-month lead times. Similarly, when the forecast was initialized with midseason (i.e., 5 April) SM conditions, the skill of forecasting SM estimates until the end-of-season improved (correlation> 0.5 over several grid cells). We also found these SM forecasts to be more skillful than the ones generated using the Ensemble Streamflow Prediction (ESP) method, which derives its hydrologic forecast skill solely from the knowledge of the initial hydrologic conditions. Finally, we show that, in terms of forecasting spatial patterns of SM anomalies, the skill of this agricultural drought forecast system is generally greater (> 0.8 correlation) during drought years (when standardized anomaly of MAM precipitation is below 0). This indicates that this system might be particularity useful for identifying drought events in this region and can support decision-making for mitigation or humanitarian assistance. C1 [Shukla, S.; McNally, A.; Husak, G.; Funk, C.] Univ Calif Santa Barbara, Dept Geog, Climate Hazards Grp, Santa Barbara, CA 93106 USA. [Shukla, S.] Univ Corp Atmospheric Res, Boulder, CO USA. [Funk, C.] US Geol Survey, Earth Resources Observat & Sci Ctr, Sioux Falls, SD USA. [McNally, A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [McNally, A.] NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Shukla, S (reprint author), Univ Calif Santa Barbara, Dept Geog, Climate Hazards Grp, Santa Barbara, CA 93106 USA. EM shrad@geog.ucsb.edu FU Postdocs Applying Climate Expertise (PACE) fellowship program; NOAA Climate Program Office; USAID's FEWS NET (USGS award) [G09AC00001]; NOAA Technical Transitions grant [NA11OAR4310151]; NASA SERVIR grant [NNH12ZDA001N] FX This research was supported by the Postdocs Applying Climate Expertise (PACE) fellowship program, partially funded by the NOAA Climate Program Office and administered by the UCAR Visiting Scientist Programs. Additional support for this work was provided by the USAID's FEWS NET (USGS award #G09AC00001), NOAA Technical Transitions grant NA11OAR4310151 and NASA SERVIR grant NNH12ZDA001N. The authors would like to thank Diego Pedreros (USGS/UCSB) for his work on generating WRSI data. NR 66 TC 12 Z9 12 U1 7 U2 38 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2014 VL 18 IS 10 BP 3907 EP 3921 DI 10.5194/hess-18-3907-2014 PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA AT1ZQ UT WOS:000344730300004 ER PT J AU Kirchner, PB Bales, RC Molotch, NP Flanagan, J Guo, Q AF Kirchner, P. B. Bales, R. C. Molotch, N. P. Flanagan, J. Guo, Q. TI LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID WESTERN UNITED-STATES; WATER EQUIVALENT; OROGRAPHIC PRECIPITATION; CLIMATE-CHANGE; ATMOSPHERIC RIVERS; BLOWING SNOW; MOUNTAINOUS TERRAIN; ENERGY EXCHANGE; ALPINE REGION; COVER DATA AB We present results from snow-on and snow-off airborne-scanning LiDAR measurements over a 53 km(2) area in the southern Sierra Nevada. We found that snow depth as a function of elevation increased approximately 15 cm per 100 m, until reaching an elevation of 3300 m, where depth sharply decreased at a rate of 48 cm per 100 m. Departures from the 15 cm per 100 m trend, based on 1 m elevation-band means of regression residuals, showed slightly less steep increases below 2050 m; steeper increases between 2050 and 3300 m; and less steep increases above 3300 m. Although the study area is partly forested, only measurements in open areas were used. Below approximately 2050 m elevation, ablation and rainfall are the primary causes of departure from the orographic trend. From 2050 to 3300 m, greater snow depths than predicted were found on the steeper terrain of the northwest and the less steep northeast-facing slopes, suggesting that ablation, aspect, slope and wind redistribution all play a role in local snow-depth variability. At elevations above 3300 m, orographic processes mask the effect of wind deposition when averaging over large areas. Also, terrain in this basin becomes less steep above 3300 m. This suggests a reduction in precipitation from upslope lifting and/or the exhaustion of precipitable water from ascending air masses. Our results suggest a cumulative precipitation lapse rate for the 2100-3300 m range of about 6 cm per 100 m elevation for the accumulation period of 3 December 2009 to 23 March 2010. This is a higher gradient than the widely used PRISM (Parameter-elevation Relationships on Independent Slopes Model) precipitation products, but similar to that from re-construction of snowmelt amounts from satellite snow-cover data. Our findings provide a unique characterization of the consistent, steep average increase in precipitation with elevation in snow-dominated terrain, using high-resolution, highly accurate data and highlighs the importance of solar radiation, wind redistribution and mid-winter melt with regard to snow distribution. C1 [Kirchner, P. B.; Bales, R. C.; Flanagan, J.; Guo, Q.] UC Merced, Sierra Nevada Res Inst, Merced, CA USA. [Molotch, N. P.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Molotch, N. P.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Molotch, N. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kirchner, PB (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. EM peter.b.kirchner@jpl.nasa.gov RI Molotch, Noah/C-8576-2009 FU National Science Foundation (NSF), through the Southern Sierra Critical Zone Observatory [EAR-0725097]; NSF [EAR 1141764, EAR 1032295, EAR 0922307]; Southern California Edison; Lawrence Livermore National Laboratory [6766]; NASA project [NNX10A0976G] FX Research was supported by the National Science Foundation (NSF), through the Southern Sierra Critical Zone Observatory (EAR-0725097) and NSF grants (EAR 1141764, EAR 1032295, EAR 0922307), a fellowship for the first author from Southern California Edison, and a seed grant through Lawrence Livermore National Laboratory (6766). Supplemental support was also provided by T. Painter and NASA project NNX10A0976G. We acknowledge the helpful comments from an anonymous reviewer, G. Bloschel, J. Fernandez Diaz, M. Conklin, M. Goulden, R. Rice, C. Riebe and T. Harmon, and thank J. Sickman and J. Melack for providing meteorological data. NR 80 TC 9 Z9 9 U1 0 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2014 VL 18 IS 10 BP 4261 EP 4275 DI 10.5194/hess-18-4261-2014 PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA AT1ZQ UT WOS:000344730300026 ER PT J AU Beirle, S Koshak, W Blakeslee, R Wagner, T AF Beirle, S. Koshak, W. Blakeslee, R. Wagner, T. TI Global patterns of lightning properties derived by OTD and LIS SO NATURAL HAZARDS AND EARTH SYSTEM SCIENCES LA English DT Article ID OPTICAL TRANSIENT DETECTOR; ELECTRIC-CIRCUIT; CARNEGIE CURVE; UNITED-STATES; IMAGER DATA; THUNDERSTORMS; FRACTION; FLASHES; HEIGHT; SENSOR AB The satellite instruments Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) provide unique empirical data about the frequency of lightning flashes around the globe (OTD), and the tropics (LIS), which have been used before to compile a well-received global climatology of flash rate densities. Here we present a statistical analysis of various additional lightning properties derived from OTD /LIS, i.e., the number of so-called "events" and "groups" per flash, as well as the mean flash duration, footprint and radiance. These normalized quantities, which can be associated with the flash "strength", show consistent spatial patterns; most strikingly, oceanic flashes show higher values than continental flashes for all properties. Over land, regions with high (eastern US) and low (India) flash strength can be clearly identified. We discuss possible causes for and implications of the observed regional differences. Although a direct quantitative interpretation of the investigated flash properties is difficult, the observed spatial patterns provide valuable information for the interpretation and application of climatological flash rates. Due to the systematic regional variations of physical flash characteristics, viewing conditions, and/or measurement sensitivities, parametrizations of lightning NOx based on total flash rate densities alone are probably affected by regional biases. C1 [Beirle, S.; Wagner, T.] Max Planck Inst Chem, Mainz, Germany. [Koshak, W.; Blakeslee, R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL USA. RP Beirle, S (reprint author), Max Planck Inst Chem, Mainz, Germany. EM steffen.beirle@mpic.de NR 46 TC 8 Z9 8 U1 3 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1561-8633 J9 NAT HAZARD EARTH SYS JI Nat. Hazards Earth Syst. Sci. PY 2014 VL 14 IS 10 BP 2715 EP 2726 DI 10.5194/nhess-14-2715-2014 PG 12 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA AT1ZN UT WOS:000344729800006 ER PT S AU Kukhtarev, N Kukhtareva, T Gallegos, SC Chirita, A AF Kukhtarev, N. Kukhtareva, T. gallegos, S. C. Chirita, A. BE Gao, W Chang, NB Wang, J TI Crude oil remote sensing, characterization and cleaning with ContinuousWave and pulsed lasers SO REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Remote Sensing and Modeling of Ecosystems for Sustainability XI CY AUG 18-20, 2014 CL San Diego, CA SP SPIE AB We demonstrate a successful combination of several optical methods of remote sensing (coherent fringe projection illumination (CFP), holographic in-line interferometry (HILI), laser induced fluorescence,) for detection, identification, and characterization of crude oil. These methods enable the three-dimensional characterization of oil spills that is important for practical applications. Combined methods of CFP and HILI are described in the frame of coherent superposition of partial interference patterns. We show that in addition to detection/identification of oil, laser illumination in the green-blue region can also degrade oil slicks. We tested these methods on differentsurfaces contaminated by oil, which include: oil on water, oil on flat solid surfaces, and oil on curved surfaces of. We use coherent fiber bundles for the detection and monitoring of the laser-induced oil degradation in pipes.. Both continuouswave (CW) and pulsed lasers are tested using pump-probe schemes. This finding allows us to suggest that properly structured laser clean-up can be an alternative environmental-friendly method of decontamination and cleaning, which can be an alternative to chemical methods, which are dangerous to environmentApplication of holographic amplifier with phase conjugation will allow to increase sensitivity, reduce aberrations from atmospheric distortions and to focus back-reflected amplified beam on the contaminated area thus accelerating laser cleaning. C1 [Kukhtarev, N.; Kukhtareva, T.] Alabama A&M Univ, Dept Phys, Normal, AL 35762 USA. [gallegos, S. C.] NASA, ASTPO Stennis Spaceflight Ctr, ast, Bay St Louis, MS 39529 USA. [Chirita, A.] State Univ Moldova, Dept Phys, Kishinev, Moldova. RP Kukhtarev, N (reprint author), Alabama A&M Univ, Dept Phys, Normal, AL 35762 USA. FU NASA; USDA FX We would like to acknowledge support from a NASA Grant # ???-,, a DoE Thurgood- Marshall Grant # ???, USDA, the Title III Program of Alabama A& M University. We extend our appreciation to the Chevron Pascagoula refinery for providing crude oil samples. S. Gallegos labor hours were supported by NASA- Applied Science and Technology Project () NR 13 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-248-2 J9 PROC SPIE PY 2014 VL 9221 AR UNSP 92210C DI 10.1117/12.2061103 PG 12 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB6AY UT WOS:000344548600007 ER PT J AU Ketcheson, DI Loczi, L Parsani, M AF Ketcheson, David I. Loczi, Lajos Parsani, Matteo TI INTERNAL ERROR PROPAGATION IN EXPLICIT RUNGE-KUTTA METHODS SO SIAM JOURNAL ON NUMERICAL ANALYSIS LA English DT Article DE Runge-Kutta methods; internal stability; roundoff error; strong stability preservation; extrapolation; ordinary differential equations ID ORDINARY DIFFERENTIAL-EQUATIONS; STABILITY; CONVERGENCE; SCHEMES AB In practical computation with Runge-Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors. C1 [Ketcheson, David I.; Loczi, Lajos] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia. [Parsani, Matteo] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. RP Ketcheson, DI (reprint author), King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia. EM david.ketcheson@kaust.edu.sa; lajos.loczi@kaust.edu.sa; parsani.matteo@gmail.com RI Ketcheson, David/K-5949-2013; OI Ketcheson, David/0000-0002-1212-126X; Loczi, Lajos/0000-0002-7999-5658 FU KAUST [FIC/2010/05 2000000231]; NASA FX The authors were supported by award FIC/2010/05 2000000231 made by KAUST.; This author was supported in part by an appointment to the NASA postdoctoral program at Langley Research Center, administered by Oak Ridge Associates Universities. NR 29 TC 0 Z9 0 U1 0 U2 1 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1429 EI 1095-7170 J9 SIAM J NUMER ANAL JI SIAM J. Numer. Anal. PY 2014 VL 52 IS 5 BP 2227 EP 2249 DI 10.1137/130936245 PG 23 WC Mathematics, Applied SC Mathematics GA AT2EY UT WOS:000344746400002 ER PT S AU Fitzsimons, JK Lu, TT AF Fitzsimons, Jack K. Lu, Thomas T. BE Tescher, AG TI Markov random fields for static foreground classification in surveillance systems SO APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Applications of Digital Image Processing XXXVII CY AUG 18-21, 2014 CL San Diego, CA SP SPIE DE Markov Random Fields; Image Processing; Airport Surveillance; Abandoned/Removed Objects; Pattern Recognition AB We present a novel technique for classifying static foreground in automated airport surveillance systems between abandoned and removed objects by representing the image as a Markov Random Field. The proposed algorithm computes and compares the net probability of the region of interest before and after the event occurs, hence finding which fits more naturally with their respective backgrounds. Having tested on a dataset from the PETS 2006, PETS 2007, AV5520074, CVSG, VISOR, CANDELA and WCAM datasets, the algorithm has shown capable of matching the results of the state-of-the-art, is highly parallel and has a degree of robustness to noise and illumination changes. C1 [Fitzsimons, Jack K.] Univ Dublin Trinity Coll, Dublin 2, Ireland. [Lu, Thomas T.] Jet Prop Lab, Pasadena, CA 91109 USA. RP Fitzsimons, JK (reprint author), Univ Dublin Trinity Coll, Dublin 2, Ireland. EM fitzsija@tcd.ie NR 29 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-244-4 J9 PROC SPIE PY 2014 VL 9217 AR UNSP 92171O DI 10.1117/12.2062508 PG 10 WC Engineering, Electrical & Electronic; Optics; Imaging Science & Photographic Technology SC Engineering; Optics; Imaging Science & Photographic Technology GA BB5PJ UT WOS:000344014100047 ER PT J AU Jiao, N Robinson, C Azam, F Thomas, H Baltar, F Dang, H Hardman-Mountford, NJ Johnson, M Kirchman, DL Koch, BP Legendre, L Li, C Liu, J Luo, T Luo, YW Mitra, A Romanou, A Tang, K Wang, X Zhang, C Zhang, R AF Jiao, N. Robinson, C. Azam, F. Thomas, H. Baltar, F. Dang, H. Hardman-Mountford, N. J. Johnson, M. Kirchman, D. L. Koch, B. P. Legendre, L. Li, C. Liu, J. Luo, T. Luo, Y. -W. Mitra, A. Romanou, A. Tang, K. Wang, X. Zhang, C. Zhang, R. TI Mechanisms of microbial carbon sequestration in the ocean - future research directions SO BIOGEOSCIENCES LA English DT Article ID DISSOLVED ORGANIC-MATTER; TRANSPARENT EXOPOLYMER PARTICLES; RESONANCE MASS-SPECTROMETRY; PHYTOPLANKTON FUNCTIONAL TYPES; DIFFERENT CO2 CONCENTRATIONS; NORTHWESTERN SARGASSO SEA; DIFFERENT PCO(2) LEVELS; COMMUNITY STRUCTURE; ATLANTIC-OCEAN; NORTH-ATLANTIC AB This paper reviews progress on understanding biological carbon sequestration in the ocean with special reference to the microbial formation and transformation of recalcitrant dissolved organic carbon (RDOC), the microbial carbon pump (MCP). We propose that RDOC is a concept with a wide continuum of recalcitrance. Most RDOC compounds maintain their levels of recalcitrance only in a specific environmental context (RDOCt). The ocean RDOC pool also contains compounds that may be inaccessible to microbes due to their extremely low concentration (RDOCc). This differentiation allows us to appreciate the linkage between microbial source and RDOC composition on a range of temporal and spatial scales. Analyses of biomarkers and isotopic records show intensive MCP processes in the Proterozoic oceans when the MCP could have played a significant role in regulating climate. Understanding the dynamics of the MCP in conjunction with the better constrained biological pump (BP) over geological timescales could help to predict future climate trends. Integration of the MCP and the BP will require new research approaches and opportunities. Major goals include understanding the interactions between particulate organic carbon (POC) and RDOC that contribute to sequestration efficiency, and the concurrent determination of the chemical composition of organic carbon, microbial community composition and enzymatic activity. Molecular biomarkers and isotopic tracers should be employed to link water column processes to sediment records, as well as to link present-day observations to paleo-evolution. Ecosystem models need to be developed based on empirical relationships derived from bioassay experiments and field investigations in order to predict the dynamics of carbon cycling along the stability continuum of POC and RDOC under potential global change scenarios. We propose that inorganic nutrient input to coastal waters may reduce the capacity for carbon sequestration as RDOC. The nutrient regime enabling maximum carbon storage from combined POC flux and RDOC formation should therefore be sought. C1 [Jiao, N.; Dang, H.; Liu, J.; Luo, T.; Luo, Y. -W.; Tang, K.; Zhang, R.] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China. [Robinson, C.; Johnson, M.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Azam, F.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92019 USA. [Thomas, H.] Dalhousie Univ, Halifax, NS, Canada. [Baltar, F.] Univ Otago, Dept Marine Sci, Dunedin 9054, New Zealand. [Hardman-Mountford, N. J.] CSIRO Marine & Atmospher Res, Floreat, WA 6014, Australia. [Kirchman, D. L.] Univ Delaware, Sch Marine Sci & Policy, Lewes, DE 19958 USA. [Koch, B. P.] Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, D-27570 Bremerhaven, Germany. [Legendre, L.] Univ Paris 06, Sorbonne Univ, UMR7093, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France. [Legendre, L.] CNRS, UMR7093, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France. [Li, C.] Chinese Univ Geol, Wuhan, Peoples R China. [Mitra, A.] Swansea Univ, Ctr Sustainable Aquat Res, Swansea, W Glam, Wales. [Romanou, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Romanou, A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wang, X.] Chinese Acad Sci, South China Sea Inst Oceanol, Guangzhou, Guangdong, Peoples R China. [Zhang, C.] Tongji Univ, Shanghai 200092, Peoples R China. RP Jiao, N (reprint author), Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China. EM jiao@xmu.edu.cn; carol.robinson@uea.ac.uk; fazam@ucsd.edu; helmuth.thomas@dal.ca RI Koch, Boris/B-2784-2009; Robinson, Carol/F-7649-2011; Baltar, Federico/C-3260-2012; Luo, Ya-Wei/C-9990-2016; OI Koch, Boris/0000-0002-8453-731X; Robinson, Carol/0000-0003-3033-4565; Baltar, Federico/0000-0001-8907-1494; Luo, Ya-Wei/0000-0001-6106-7901; Mitra, Aditee/0000-0001-5572-9331 FU MOST 973 program [2013CB955700]; NSFC [91028001, 91328209, 41376132, 91028011]; SOA [201105021, GASI-03-01-02-05]; Gordon and Betty Moore Foundation Marine Microbiology Initiative; project EURO-BASIN [264933]; Leverhulme International Networking Grant FX We thank the organisers, sponsors and participants of the IMBIZO III workshop. Particular thanks go to our hosts at the National Institute of Oceanography, Goa, India, and the staff of the IMBER International Project Office, Lisa Maddison, Bernard Avril and Liuming Hu. We acknowledge financial support from the MOST 973 program 2013CB955700, the NSFC projects 91028001, 91328209, 41376132 and 91028011, and the SOA projects 201105021 and GASI-03-01-02-05. FA was supported by a grant from the Gordon and Betty Moore Foundation Marine Microbiology Initiative. A. Mitra was supported in part by project EURO-BASIN (ref. 264933, 7FP, European Union) and also by a Leverhulme International Networking Grant. NR 205 TC 19 Z9 22 U1 13 U2 96 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2014 VL 11 IS 19 BP 5285 EP 5306 DI 10.5194/bg-11-5285-2014 PG 22 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA AS3CG UT WOS:000344153200002 ER PT J AU Jiao, N Robinson, C Azam, F Thomas, H Baltar, F Dang, H Hardman-Mountford, NJ Johnson, M Kirchman, DL Koch, BP Legendre, L Li, C Liu, J Luo, T Luo, YW Mitra, A Romanou, A Tang, K Wang, X Zhang, C Zhang, R AF Jiao, N. Robinson, C. Azam, F. Thomas, H. Baltar, F. Dang, H. Hardman-Mountford, N. J. Johnson, M. Kirchman, D. L. Koch, B. P. Legendre, L. Li, C. Liu, J. Luo, T. Luo, Y. -W. Mitra, A. Romanou, A. Tang, K. Wang, X. Zhang, C. Zhang, R. TI Mechanisms of microbial carbon sequestration in the ocean future research directions (vol 11, pg 5285, 2014) SO BIOGEOSCIENCES LA English DT Correction C1 [Jiao, N.; Dang, H.; Liu, J.; Luo, T.; Luo, Y. -W.; Tang, K.; Zhang, R.] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China. [Robinson, C.; Johnson, M.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Azam, F.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92019 USA. [Thomas, H.] Dalhousie Univ, Halifax, NS, Canada. [Baltar, F.] Univ Otago, Dept Marine Sci, Dunedin 9054, New Zealand. [Hardman-Mountford, N. J.] CSIRO Marine & Atmospher Res, Floreat, WA 6014, Australia. [Kirchman, D. L.] Univ Delaware, Sch Marine Sci & Policy, Lewes, DE 19958 USA. [Koch, B. P.] Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, D-27570 Bremerhaven, Germany. [Legendre, L.] Univ Paris 06, Sorbonne Univ, UMR7093, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France. [Legendre, L.] CNRS, UMR7093, Lab Oceanog Villefranche, F-06230 Villefranche Sur Mer, France. [Li, C.] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. [Mitra, A.] Swansea Univ, Ctr Sustainable Aquat Res, Swansea, W Glam, Wales. [Romanou, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Romanou, A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Wang, X.] Chinese Acad Sci, South China Sea Inst Oceanol, Guangzhou, Guangdong, Peoples R China. [Zhang, C.] Tongji Univ, Shanghai 200092, Peoples R China. RP Jiao, N (reprint author), Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China. EM jiao@xmu.edu.cn; carol.robinson@uea.ac.uk; fazam@ucsd.edu; helmuth.thomas@dal.ca NR 1 TC 0 Z9 0 U1 1 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2014 VL 11 IS 19 BP 5565 EP 5565 DI 10.5194/bg-11-5565-2014 PG 1 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA AS3CG UT WOS:000344153200018 ER PT S AU Atlas, R Pagano, TS AF Atlas, Robert Pagano, Thomas S. BE Mouroulis, P Pagano, TS TI Observing system simulation experiments to assess the potential impact of proposed satellite instruments on hurricane prediction SO IMAGING SPECTROMETRY XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XIX CY AUG 18, 2014 CL San Diego, CA SP SPIE DE OSSE; hurricanes; numerical weather prediction AB Observing System Simulation Experiments (OSSEs) are an important tool for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. Extensive OSSEs have been conducted at NASA/GSFC and NOAA/AOML over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this paper, we summarize early applications of global OSSEs to hurricane track forecasting and new experiments using both global and regional models. These experiments are aimed at determining (1) the potential impact of unmanned aerial systems, (2) the relative impact of alternative concepts for space-based lidar winds, and (3) the relative impact of alternative concepts for polar and geostationary hyperspectral sounders. C1 [Atlas, Robert] NOAA, Atlantic Oceanog & Meteorol Lab, 4301 Rickenbacker Causeway, Miami, FL 33149 USA. [Pagano, Thomas S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Atlas, R (reprint author), NOAA, Atlantic Oceanog & Meteorol Lab, 4301 Rickenbacker Causeway, Miami, FL 33149 USA. EM Robert.atlas@noaa.gov NR 0 TC 2 Z9 2 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-249-9 J9 PROC SPIE PY 2014 VL 9222 AR UNSP 922202 DI 10.1117/12.2063648 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BB5JU UT WOS:000343913700001 ER PT S AU Bender, HA Mouroulis, P Korniski, RJ Green, RO Wilson, DW AF Bender, Holly A. Mouroulis, Pantazis Korniski, Ronald J. Green, Robert O. Wilson, Daniel W. BE Mouroulis, P Pagano, TS TI Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission SO IMAGING SPECTROMETRY XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XIX CY AUG 18, 2014 CL San Diego, CA SP SPIE DE imaging spectroscopy; Offner spectrometer; optical alignment; HyspIRI ID FIDELITY; DESIGN AB We report on the design, tolerancing, and laboratory breadboard of an imaging spectrometer for the Earth Science Decadal Survey Hyperspectral and Infrared Imager (HyspIRI) mission. The spectrometer is of the Offner type but with a much longer slit than typical designs, with 1600 resolvable spatial elements along the slit for a length of 48 mm. Two such spectrometers cover more than the required swath while maintaining high throughput and signal-to-noise thanks to the large pixel size (30 mu m), relatively high speed (F/2.8) and small number of reflections. We also demonstrate a method for measuring smile using a linear array, and use the method to prove the achievement of negligible smile of less than 2% of a pixel over the entire 48 mm slit. Thus we show that this high-heritage, all-spherical mirror design can serve the requirements of the HyspIRI mission. C1 [Bender, Holly A.; Mouroulis, Pantazis; Korniski, Ronald J.; Green, Robert O.; Wilson, Daniel W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bender, HA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 306-392, Pasadena, CA 91109 USA. EM holly.a.bender@jpl.nasa.gov NR 15 TC 2 Z9 2 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-249-9 J9 PROC SPIE PY 2014 VL 9222 AR 92220E DI 10.1117/12.2062768 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BB5JU UT WOS:000343913700010 ER PT S AU Green, RO AF Green, Robert O. BE Mouroulis, P Pagano, TS TI Lessons and Key Results from 30 Years of Imaging Spectroscopy SO IMAGING SPECTROMETRY XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XIX CY AUG 18, 2014 CL San Diego, CA SP SPIE DE Imaging; Spectroscopy; Spectrometer; Remote Measurement ID SPECTROMETER; DESIGN; FORESTS; EARTH AB Spectroscopy was first used in 1814 by Joseph von Fraunhofer as a scientific method for discovery, and to develop and test scientific hypotheses. From this beginning, spectroscopy evolved to a broadly used analytical tool for both science and applications. In the 1970's, technology began to enable a class of instruments that measure spectra for every point in an image. The first airborne imaging spectrometer developed at the Jet Propulsion Laboratory flew in 1982. Subsequently, a wide range of imaging spectrometers have been developed, many at the Jet Propulsion Laboratory, for airborne and space platforms and they have participated in NASA mission throughout the solar system. A key lesson over this time period has been the broad applicability of imaging spectrometers to pursue a range of science and application objectives wherever there is relevant signal in the spectral range from the ultra violet to the thermal infrared. As with all optical imaging instruments, imaging spectrometers have spectral, radiometric and spatial characteristics and related requirements. Of these, uniformity, radiometric precision, and calibration have been identified as critically important for the science and application utility of imaging spectrometer instruments. These key requirements are enabling for the most advanced imaging spectrometer algorithms that retrieve parameters with units and quantifiable uncertainties. The current trend in imaging spectrometer instrumentation is for broader spectral coverage and wider swath while improving uniformity, precision, and calibration. A companion emphasis is for lower mass, power and volume, with instruments taking advantage of the latest detector, optical, electronics and computational technologies. The number of imaging spectrometers in use is increasing every year and this trend is on track to continue. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Green, RO (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.O.Green@jpl.nasa.gov NR 27 TC 2 Z9 2 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-249-9 J9 PROC SPIE PY 2014 VL 9222 AR 92220B DI 10.1117/12.2062426 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BB5JU UT WOS:000343913700007 ER PT S AU Johnson, WR Hook, SJ Foote, M Eng, BT Jau, B AF Johnson, William R. Hook, Simon J. Foote, Marc Eng, Bjorn T. Jau, Bruno BE Mouroulis, P Pagano, TS TI Characterization and Performance of the Prototype HyspIRI-TIR (PHyTIR) Sensor SO IMAGING SPECTROMETRY XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XIX CY AUG 18, 2014 CL San Diego, CA SP SPIE DE imaging; spectroscopy; Multi-spectral; MCT; thermal; LWIR AB The Prototype Hyspiri-TIR (PHyTIR) instrument was developed under NASA's instrument incubator program and is now operational in the laboratory. The scan head uses state-of-the-art focal plane technology to rapidly acquire data from an eight inch telescope focused at infinite, reflective relay and continuously rotating scan mirror. A series of narrowband interference filters are placed in close proximity to the focal plane. Arrays of 256x16 Mercury Cadmium detectors are under each filter. The detectors have their long wave cutoff at 13.2um. The filters serve to block out unwanted radiation from other spectral channels, hence forming a high performance multi-band imager with the use of the scanning mirror. C1 [Johnson, William R.; Hook, Simon J.; Foote, Marc; Eng, Bjorn T.; Jau, Bruno] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Johnson, WR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM William.R.Johnson@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-249-9 J9 PROC SPIE PY 2014 VL 9222 AR 922208 DI 10.1117/12.2063194 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BB5JU UT WOS:000343913700005 ER PT S AU Mouroulis, P Van Gorp, B Green, RO Wilson, DW AF Mouroulis, Pantazis Van Gorp, Byron Green, Robert O. Wilson, Daniel W. BE Mouroulis, P Pagano, TS TI Optical design of a CubeSat-compatible imaging spectrometer SO IMAGING SPECTROMETRY XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XIX CY AUG 18, 2014 CL San Diego, CA SP SPIE DE Imaging spectrometer; CubeSat; Dyson spectrometer AB We describe a fast, uniform, low-polarization imaging spectrometer and telescope system that can be integrated in a 6U CubeSat. The spectral range is 350-1700 nm, with 5.7 nm sampling. The telescope and spectrometer operate at F/1.8. At 100 mm focal length, the telescope is the highest resolution form that can fit in the CubeSat frame without deployable mirrors. The field of view is 10 degrees with 600 cross-track pixels. The spectrometer is designed for the new Teledyne CHROMA detector array with 30 mu m pixel size for maximizing throughput. The primary intended applications are coastal ocean and snow cover monitoring. C1 [Mouroulis, Pantazis; Van Gorp, Byron; Green, Robert O.; Wilson, Daniel W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mouroulis, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM pantazis.mouroulis@jpl.nasa.gov NR 3 TC 6 Z9 6 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-249-9 J9 PROC SPIE PY 2014 VL 9222 AR 92220D DI 10.1117/12.2062680 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BB5JU UT WOS:000343913700009 ER PT S AU Pagano, TS Mathews, W Irion, FW Sturm, EJ AF Pagano, Thomas S. Mathews, William Irion, Fredrick W. Sturm, Erick J. BE Mouroulis, P Pagano, TS TI Simulating satellite infrared sounding retrievals in support of Observing System Simulation Experiments (OSSEs) SO IMAGING SPECTROMETRY XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XIX CY AUG 18, 2014 CL San Diego, CA SP SPIE DE Infrared; Sounder; AIRS; OSSE; Retrieval; Simulation AB A new set of Observing System Simulation Experiments (OSSEs) are underway to assess the impact of higher spatial and temporal resolution sounding on hurricane forecast accuracy. To support these studies, we have developed an OSSE retrieval simulation system. The system uses a simulated satellite orbit track to provide sample locations and footprint area of the infrared sounder configuration to be simulated over the region of interest. The data to be sampled are an OSSE nature run developed by the NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) and the University of Miami (UM). The nature run is sampled at the sounder locations and integrated over the sounder footprint area. The resulting averaged profiles are smoothed vertically with simulated averaging kernels for the Atmospheric Infrared Sounder (AIRS) using a linear retrieval simulation to produce calculated temperature and water vapor profiles. With reasonable fidelity, the sampled and smoothed profiles simulate the retrievals we can expect from a sounder like AIRS for the orbit and sampling configurations under test. Three instruments were simulated corresponding to the AIRS 45x45km footprint in LEO, a hypothetical sounder at 2x2km footprint in LEO, and a hypothetical GEO sounder at 5x5km regional and 10km x 10km full disk footprint sizes. RMS error relative to the nature run is calculated to demonstrate the error characteristics of the simulation system. The simulated retrievals as a result of this effort are currently being assessed by NOAA AOML in an OSSE study to determine the impact of advanced hyperspectral infrared sounders on hurricane forecast improvement. C1 [Pagano, Thomas S.; Mathews, William; Irion, Fredrick W.; Sturm, Erick J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pagano, TS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM thomas.s.pagano@jpl.nasa.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-249-9 J9 PROC SPIE PY 2014 VL 9222 AR 922203 DI 10.1117/12.2061468 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BB5JU UT WOS:000343913700002 ER PT S AU Van Gorp, B Mouroulis, P Wilson, DW Green, RO AF Van Gorp, B. Mouroulis, P. Wilson, D. W. Green, R. O. BE Mouroulis, P Pagano, TS TI Design of the Compact Wide Swath Imaging Spectrometer (CWIS) SO IMAGING SPECTROMETRY XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Imaging Spectrometry XIX CY AUG 18, 2014 CL San Diego, CA SP SPIE DE Imaging Spectrometer; Imaging spectroscopy; Dyson spectrometer AB The Compact Wide Swath Imaging Spectrometer (CWIS) is a pushbroom imaging spectrometer for the solar reflected spectrum (380-2500 nm) with wide swath (1600 elements), fast optical speed (F/1.8), and high uniformity (>= 95%). The CWIS compact Dyson demonstrates a reduction in volume and mass over the equivalent Offner-type instrument. CWIS is currently under development at the Jet Propulsion Laboratory and is intended to address the need for high signal to noise ratio compact imaging spectrometer systems for the visible short wave infrared wavelength range. Optical design, stray light modeling, and current status of the instrument are discussed. C1 [Van Gorp, B.; Mouroulis, P.; Wilson, D. W.; Green, R. O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Van Gorp, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM byron.e.van.gorp@jpl.nasa.gov NR 4 TC 3 Z9 3 U1 0 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-249-9 J9 PROC SPIE PY 2014 VL 9222 AR 92220C DI 10.1117/12.2062886 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BB5JU UT WOS:000343913700008 ER PT S AU Choi, KK Jhabvala, MD Sun, J Jhabvala, CA Waczynski, A Olver, K AF Choi, K. K. Jhabvala, M. D. Sun, J. Jhabvala, C. A. Waczynski, A. Olver, K. BE Andresen, BF Fulop, GF Hanson, CM Norton, PR TI Resonator-QWIPs and FPAs SO INFRARED TECHNOLOGY AND APPLICATIONS XL SE Proceedings of SPIE LA English DT Proceedings Paper CT 40th Conference on Infrared Technology and Applications CY MAY 04-08, 2014 CL Baltimore, MD SP SPIE DE QWIP; resonance; FPA; electromagnetic; modeling; quantum efficiency ID WELL INFRARED PHOTODETECTOR AB The quantum efficiency of QWIPs is difficult to predict and optimize. Recently, we have established a quantitative 3-dimensional electromagnetic model for QE computation. In this work, we used this model to design and optimize new detector structures. In one approach, we adjusted the detector volume to resonate strongly with the scattered light from the diffractive elements (DEs). The resulting intensified field increases the detector QE correspondingly. We tested this resonator-QWIP concept on four detector materials and obtained satisfactory agreements between theory and experiment. The observed single detector QE ranges from 15 to 71%, depending on the realized pixel geometry and the matching detector material. We processed one of the materials into hybridized FPAs and observed a QE of 30% with a conversion efficiency of 11%, in agreement with theory. By using rings as DEs, the FPA spectral nonuniformity can also be minimized with an observed value of 4% in comparison with the 7% for gratings. With a proven EM model, we further designed different R-QWIPs for a wide range of applications, including high conversion efficiency detection, narrow band detection through a medium, narrow band detection at a gaseous medium, simultaneous two-color detection, sequential voltage tunable two-color detection, and broadband detection at Landsat wavelengths. Experimental efforts are underway. C1 [Choi, K. K.; Sun, J.; Olver, K.] US Army Res Lab, Electroopt & Photon Div, Adelphi, MD 20783 USA. [Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.] NASA, Goddard Space Flight Ctr, Instrument Syst & Technol Div, Greenbelt, MD 20771 USA. RP Choi, KK (reprint author), US Army Res Lab, Electroopt & Photon Div, Adelphi, MD 20783 USA. EM kwong.k.choi.civ@mail.mil NR 11 TC 5 Z9 5 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-007-5 J9 PROC SPIE PY 2014 VL 9070 AR UNSP 907037 DI 10.1117/12.2049838 PG 12 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB5UG UT WOS:000344113500108 ER PT J AU Stavros, EN Abatzoglou, J Larkin, NK McKenzie, D Steel, EA AF Stavros, E. Natasha Abatzoglou, John Larkin, Narasimhan K. McKenzie, Donald Steel, E. Ashley TI Climate and very large wildland fires in the contiguous western USA SO INTERNATIONAL JOURNAL OF WILDLAND FIRE LA English DT Article DE AUC; GACC; logistic regression; niche space; precision; rare events; recall; wildland fire ID UNITED-STATES; RELATIVE IMPORTANCE; MEGA-FIRES; WILDFIRE; AREA; WEATHER; FORESTS; ECOSYSTEMS; DROUGHT; REGIMES AB Very large wildfires can cause significant economic and environmental damage, including destruction of homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large wildland fires (VLWFs >= 50 000 acres, or similar to 20 234 ha) in the western contiguous USA. We used composite records of climate and fire to investigate the spatial and temporal variability of VLWF-climatic relationships. Results showed quantifiable fire weather leading up and up to 3 weeks post VLWF discovery, thus providing predictors of the probability that VLWF occurrence in a given week. Models were created for eight National Interagency Fire Center Geographic Area Coordination Centers (GACCs). Accuracy was good (AUC > 0.80) for all models, but significant fire weather predictors of VLWFs vary by GACC, suggesting that broad-scale ecological mechanisms associated with wildfires also vary across regions. These mechanisms are very similar to those found by previous analyses of annual area burned, but this analysis provides a means for anticipating VLWFs specifically and thereby the timing of substantial area burned within a given year, thus providing a quantifiable justification for proactive fire management practices to mitigate the risk and associated damage of VLWFs. C1 [Stavros, E. Natasha] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Abatzoglou, John] Univ Idaho, Dept Geog, Moscow, ID 83844 USA. [Larkin, Narasimhan K.; McKenzie, Donald; Steel, E. Ashley] US Forest Serv, Pacific Wildland Fire Sci Lab, Seattle, WA 98103 USA. RP Stavros, EN (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 233-300, Pasadena, CA 91109 USA. EM natasha.stavros@jpl.nasa.gov OI Abatzoglou, John/0000-0001-7599-9750 FU Pacific Northwest Research Station, US Forest Service; Joint Fire Science Program [11-1-7-4]; National Aeronautics and Space Administration FX The Pacific Northwest Research Station, US Forest Service and the Joint Fire Science Program, Project 11-1-7-4, provided funding for this research. The authors also thank Robert Norheim, with the University of Washington, for all of his hard work designing maps used in the analysis and organising of the data. Many thanks for constructive reviews from Ernesto Alvarado, Christian Torgersen, Tim Essington, David L. Peterson and Tara Strand. The final stages of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 50 TC 12 Z9 12 U1 1 U2 23 PU CSIRO PUBLISHING PI COLLINGWOOD PA 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA SN 1049-8001 EI 1448-5516 J9 INT J WILDLAND FIRE JI Int. J. Wildland Fire PY 2014 VL 23 IS 7 BP 899 EP 914 DI 10.1071/WF13169 PG 16 WC Forestry SC Forestry GA AS6EK UT WOS:000344357200001 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Varieties of Count Data SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 1 EP 34 D2 10.1017/CBO9781139236065 PG 34 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500002 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI MODELING COUNT DATA Preface SO MODELING COUNT DATA LA English DT Editorial Material; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP XI EP + D2 10.1017/CBO9781139236065 PG 12 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500001 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Poisson Regression SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 35 EP 73 D2 10.1017/CBO9781139236065 PG 39 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500003 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Testing Overdispersion SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 74 EP 107 D2 10.1017/CBO9781139236065 PG 34 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500004 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Assessment of Fit SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 108 EP 125 D2 10.1017/CBO9781139236065 PG 18 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500005 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Negative Binomial Regression SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 1 Z9 1 U1 0 U2 4 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 126 EP 161 D2 10.1017/CBO9781139236065 PG 36 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500006 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Poisson Inverse Gaussian Regression SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 162 EP 171 D2 10.1017/CBO9781139236065 PG 10 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500007 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Problems with Zeros SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 172 EP 209 D2 10.1017/CBO9781139236065 PG 38 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500008 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Modeling Underdispersed Count Data - Generalized Poisson SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 210 EP 216 D2 10.1017/CBO9781139236065 PG 7 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500009 ER PT B AU Hilbe, JM AF Hilbe, Joseph M. BA Hilbe, JM BF Hilbe, JM TI Complex Data: More Advanced Models SO MODELING COUNT DATA LA English DT Article; Book Chapter C1 [Hilbe, Joseph M.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, Joseph M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Hilbe, JM (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-02833-3; 978-1-107-61125-2 PY 2014 BP 217 EP 253 D2 10.1017/CBO9781139236065 PG 37 WC Statistics & Probability SC Mathematics GA BB5CB UT WOS:000343660500010 ER PT S AU Prasad, NS Taylor, P Nemir, D AF Prasad, Narasimha S. Taylor, Patrick Nemir, David BE Taylor, EW Cardimona, DA TI Shockwave consolidation of nanostructured thermoelectric materials SO NANOPHOTONICS AND MACROPHOTONICS FOR SPACE ENVIRONMENTS VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nanophotonics and Macrophotonics for Space Environments VIII CY AUG 18-19, 2014 CL San Diego, CA SP SPIE DE Thermoelectric effect; nano-structured materials; Shock wave consolidation; Bismuth telluride alloy AB Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nanostructured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique. C1 [Prasad, Narasimha S.] NASA Langley Res Ctr, 5 N Dryden St,MS 468, Hampton, VA 23681 USA. [Taylor, Patrick] US Army Res Lab, Adelphi, MD 20783 USA. [Nemir, David] TXL Grp Inc, El Paso, TX 79903 USA. RP Prasad, NS (reprint author), NASA Langley Res Ctr, 5 N Dryden St,MS 468, Hampton, VA 23681 USA. EM narasimha.s.prasad@nasa.gov NR 3 TC 1 Z9 1 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-253-6 J9 PROC SPIE PY 2014 VL 9226 AR UNSP 92260J DI 10.1117/12.2063852 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BB5JO UT WOS:000343911900019 ER PT S AU Prasad, NS Trivedi, S Rosemeier, J Diestler, M AF Prasad, Narasimha S. Trivedi, Sudhir Rosemeier, Jolanta Diestler, Mark BE Taylor, EW Cardimona, DA TI Post-flight test results of acousto-optic modulator devices subjected to Space Exposure SO NANOPHOTONICS AND MACROPHOTONICS FOR SPACE ENVIRONMENTS VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nanophotonics and Macrophotonics for Space Environments VIII CY AUG 18-19, 2014 CL San Diego, CA SP SPIE DE MISSE 7; Space Qualification; Lidar components; International Space Station (ISS); STS-129; STS-134 AB The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation. C1 [Prasad, Narasimha S.] NASA Langley Res Ctr, 5 N Dryden St,MS 468, Hampton, VA 23681 USA. [Trivedi, Sudhir; Rosemeier, Jolanta] Brimrose Technol Corp, Sparks, MD 21152 USA. RP Prasad, NS (reprint author), NASA Langley Res Ctr, 5 N Dryden St,MS 468, Hampton, VA 23681 USA. EM narasnnha.s.prasad@nasa.gov NR 8 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-253-6 J9 PROC SPIE PY 2014 VL 9226 AR UNSP 922609 DI 10.1117/12.2063853 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BB5JO UT WOS:000343911900009 ER PT S AU Watson, MD Pryor, JE AF Watson, Michael D. Pryor, Jonathan E. BE Taylor, EW Cardimona, DA TI System Engineering of Photonic Systems for Space Application SO NANOPHOTONICS AND MACROPHOTONICS FOR SPACE ENVIRONMENTS VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nanophotonics and Macrophotonics for Space Environments VIII CY AUG 18-19, 2014 CL San Diego, CA SP SPIE DE System Engineering; Optical Transfer Function; Optical Physics; Photonics; Image Jitter; Launch Vehicle; System Integration; Organizational Interaction AB The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. C1 [Watson, Michael D.; Pryor, Jonathan E.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Watson, MD (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. NR 16 TC 1 Z9 1 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-253-6 J9 PROC SPIE PY 2014 VL 9226 AR 92260A DI 10.1117/12.2062921 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA BB5JO UT WOS:000343911900010 ER PT S AU De la Perriere, VB Kress, B Ben-Menahem, S Ishihara, AK Dorais, G AF De la Perriere, Vincent Brae Kress, Bernard Ben-Menahem, Shahar Ishihara, Abraham K. Dorais, Greg BE Kazemi, AA Kress, BC Mendoza, EA Murshid, SH Javahiraly, N Ishihara, AK TI Rollable Nano-etched Diffractive Low-Concentration PV Sheets for Small Satelites SO PHOTONICS APPLICATIONS FOR AVIATION, AEROSPACE, COMMERCIAL, AND HARSH ENVIRONMENTS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V CY AUG 18-21, 2014 CL San Diego, CA SP SPIE ID SOLAR CONCENTRATOR AB This paper discuses a novel, rollable, mass fabricable, low-concentration photovoltaic sheets for Cubesats providing them with efficient photoelectric conversion of sunlight and secondary diffuse light. The wrap consists of three thin (of order a millimeter or less), cheap plastic-sheet layers, which can be rolled together in a spiral wrapping configuration when stowed. Preliminary simulation based on the above modeling approaches show that the designs achieve comparable photovoltaic power (area for area) and (b) result in a flat angular response curve which remains flat from normal incidence of over 35 degrees to the normal. The simulation were performed using a ray tracing simulator built in Mat lab. In addition, we have constructed a demonstrator using quartz wafers based on the optimized design to show the technology. Details of its fabrication are also provided. C1 [De la Perriere, Vincent Brae; Ben-Menahem, Shahar; Ishihara, Abraham K.] NASA, Ames Res Ctr, Carnegie Mellon SV, Moffett Field, CA 94035 USA. [Dorais, Greg] NASA Ames Res Ctr, Moffett Field, CA USA. [Ben-Menahem, Shahar] USI Photon Inc, San Jose, CA 95112 USA. RP De la Perriere, VB (reprint author), NASA, Ames Res Ctr, Carnegie Mellon SV, Moffett Field, CA 94035 USA. NR 13 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-229-1 J9 PROC SPIE PY 2014 VL 9202 AR UNSP 920215 DI 10.1117/12.2062809 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BB5JR UT WOS:000343913000034 ER PT S AU Ishihara, AK Ben-Menahem, S Kazemi, A Kress, B Kulishovc, M AF Ishihara, Abraham K. Ben-Menahem, Shahar Kazemi, Alex Kress, Bernard Kulishovc, Mykola BE Kazemi, AA Kress, BC Mendoza, EA Murshid, SH Javahiraly, N Ishihara, AK TI LPFG Sensing Network for Distributed Shape Control SO PHOTONICS APPLICATIONS FOR AVIATION, AEROSPACE, COMMERCIAL, AND HARSH ENVIRONMENTS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V CY AUG 18-21, 2014 CL San Diego, CA SP SPIE ID PERIOD FIBER GRATINGS; OPTICAL-FIBER; SENSORS; TORSION; STRAIN AB In this paper, we discuss various aspects of the control and sensing in a flexible wing aircraft using embedded LPFG (Long Period Fiber Grating). Driven by the need to improve aerodynamic efficiency and reduce fuel burn, interest in light-weight structures for next generation aircraft has been on the rise. However, in order to fully exploit novel lightweight structures, there is a critical need for distributed sensing along the entire wing span and its integration with closed-loop control systems. A model of an LPFG sensor string embedded in an Euler-Bernoulli beam is proposed along with an associated control algorithm. C1 [Ishihara, Abraham K.; Ben-Menahem, Shahar] NASA, Ames Res Ctr, Carnegie Mellon SV, Moffett Field, CA 94035 USA. [Kazemi, Alex] ARK Inc, Pasadena, CA 95112 USA. [Kress, Bernard] USI Photon Inc, San Jose, CA 95112 USA. [Kulishovc, Mykola] HTA Photomask, San Jose, CA USA. RP Ishihara, AK (reprint author), NASA, Ames Res Ctr, Carnegie Mellon SV, Moffett Field, CA 94035 USA. NR 22 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-229-1 J9 PROC SPIE PY 2014 VL 9202 AR UNSP 920212 DI 10.1117/12.2062377 PG 18 WC Optics; Physics, Applied SC Optics; Physics GA BB5JR UT WOS:000343913000031 ER PT S AU Ishihara, AK Ben-Menahem, S De la Perriere, VB Kress, B AF Ishihara, Abraham K. Ben-Menahem, Shahar De la Perriere, Vincent Brae Kress, Bernard BE Kazemi, AA Kress, BC Mendoza, EA Murshid, SH Javahiraly, N Ishihara, AK TI Optimization of a Low-Concentrator Photovoltaic System SO PHOTONICS APPLICATIONS FOR AVIATION, AEROSPACE, COMMERCIAL, AND HARSH ENVIRONMENTS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V CY AUG 18-21, 2014 CL San Diego, CA SP SPIE AB In this paper, we discuss optimization of a novel low-concentration photovoltaic system with the following properties: (1) static concentration without the need for tracking (2) thermal uniformity via Diffraction Efficiency Modulation (DEM), and (3) mass-fabricability and rollability. The approach leverages a unique combination of wave-optics modeling, multi-objective thermal-electro-optical optimization, and mass-fabricable, nano-manufacturing technology. We discuss various aspects of the optimization including a novel Helmholtz FD solver and thermal and electrical considerations. C1 [Ishihara, Abraham K.; Ben-Menahem, Shahar; De la Perriere, Vincent Brae] NASA, Ames Res Ctr, Carnegie Mellon SV, Moffett Field, CA 94035 USA. [Kress, Bernard] USI Photon Inc, San Jose, CA 95112 USA. RP Ishihara, AK (reprint author), NASA, Ames Res Ctr, Carnegie Mellon SV, Moffett Field, CA 94035 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-229-1 J9 PROC SPIE PY 2014 VL 9202 AR UNSP 92021G DI 10.1117/12.2064434 PG 19 WC Optics; Physics, Applied SC Optics; Physics GA BB5JR UT WOS:000343913000045 ER PT S AU Cormia, RD Oye, MM Nguyen, A Skiver, D Shi, M Torres, Y AF Cormia, Robert D. Oye, Michael M. Anh Nguyen Skiver, David Shi, Meng Torres, Yessica BE Postek, MT Newbury, DE Platek, SF Maugel, TK TI Integrating Electron Microscopy into Nanoscience and Materials Engineering Programs SO SCANNING MICROSCOPIES 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Scanning Microscopies CY SEP 16-18, 2014 CL Monterey, CA SP SPIE DE Microscopy; Training; Nanotechnology; Workforce Development AB Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called 'the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators. C1 [Cormia, Robert D.; Anh Nguyen] Foothill Coll, 12345 El Monte Rd, Los Altos Hills, CA 94022 USA. [Cormia, Robert D.; Oye, Michael M.; Anh Nguyen; Skiver, David; Shi, Meng] NASA, Ames Res Ctr, UCSC NASA ARC, Adv Studies Labs, Moffett Field, CA 94035 USA. [Oye, Michael M.] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. [Oye, Michael M.; Skiver, David] San Jose State Univ, Dept Biomed Chem & Mat Engn, San Jose, CA 95192 USA. [Torres, Yessica] EAG Labs, Sunnyvale, CA 94086 USA. RP Cormia, RD (reprint author), Foothill Coll, 12345 El Monte Rd, Los Altos Hills, CA 94022 USA. EM CormiaRobert@fhda.edu NR 4 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-299-4 J9 PROC SPIE PY 2014 VL 9236 AR UNSP 92360N DI 10.1117/12.2066250 PG 7 WC Microscopy; Optics SC Microscopy; Optics GA BB5JJ UT WOS:000343909200017 ER PT S AU Badescu, M Bao, XQ Bar-Cohen, Y AF Badescu, Mircea Bao, Xiaoqi Bar-Cohen, Yoseph BE Lynch, JP Wang, KW Sohn, H TI Shape memory alloy (SMA)-based launch lock SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE launch lock; shape memory alloy; flexure AB Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing free motion of the shaft, which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper. C1 [Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Badescu, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 2 TC 0 Z9 0 U1 2 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9987-5 J9 PROC SPIE PY 2014 VL 9061 AR 90613L DI 10.1117/12.2045355 PG 7 WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical; Optics SC Engineering; Optics GA BB5UD UT WOS:000344110800100 ER PT S AU Bahrami, P Yamamoto, N Chen, Y Manohara, H AF Bahrami, P. Yamamoto, N. Chen, Y. Manohara, H. BE Lynch, JP Wang, KW Sohn, H TI Capacitance-based Damage Detection Sensing for Aerospace Structural Composites SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers AB Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (similar to 1 mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum. C1 [Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bahrami, P (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 2 TC 0 Z9 0 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9987-5 J9 PROC SPIE PY 2014 VL 9061 AR 90612M DI 10.1117/12.2045160 PG 8 WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical; Optics SC Engineering; Optics GA BB5UD UT WOS:000344110800072 ER PT S AU Bao, XQ Younse, P AF Bao, Xiaoqi Younse, Paulo BE Lynch, JP Wang, KW Sohn, H TI Finite element analysis of seal mechanism using SMA for Mars sample return SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE SMA; Shape memory alloy; seal; FE simulation; Mars sample return AB Returning Martian samples to Earth for extensive analysis is of great interest to planetary science community. Current Mars sample return architecture would require leaving the acquired samples on Mars for several years before being retrieved by subsequent mission. Each sample would be sealed securely to keep its integrity. A reliable seal technique that does not affect the integrity of the samples and uses simple low-mass tool is required. The shape memory alloy (SMA) seal technique is a promising candidate. The performances of several primary designs of SMA seal for sample tubes were analyzed by finite element (FE) modeling. The results of thermal heating characteristics had been reported in a previous presentation this paper focus on the preparation and actuation of SMA plugs, the seal pressure, and the stress and strain induced in the sealing procedure with various designs. C1 [Bao, Xiaoqi; Younse, Paulo] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bao, XQ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xbao@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9987-5 J9 PROC SPIE PY 2014 VL 9061 AR 90613N DI 10.1117/12.2045327 PG 9 WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical; Optics SC Engineering; Optics GA BB5UD UT WOS:000344110800102 ER PT S AU Basu, C Chen, B Richards, J Dhinakaran, A Agogino, A Martin, R AF Basu, Chandrayee Chen, Benjamin Richards, Jacob Dhinakaran, Aparna Agogino, Alice Martin, Rodney BE Lynch, JP Wang, KW Sohn, H TI Affordable and Personalized Lighting Using Inverse Modeling and Virtual Sensors SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE wireless sensor network; daylight harvesting; inverse model; clustering; commissioning ID OPEN-PLAN OFFICES; ALGORITHMS; ENERGY AB Wireless sensor networks (WSN) have great potential to enable personalized intelligent lighting systems while reducing building energy use by 50%-70%. As a result WSN systems are being increasingly integrated in state-of-art intelligent lighting systems. In the future these systems will enable participation of lighting loads as ancillary services. However, such systems can be expensive to install and lack the plug-and-play quality necessary for user-friendly commissioning. In this paper we present an integrated system of wireless sensor platforms and modeling software to enable affordable and user-friendly intelligent lighting. It requires similar to 60% fewer sensor deployments compared to current commercial systems. Reduction in sensor deployments has been achieved by optimally replacing the actual photo-sensors with real-time discrete predictive inverse models. Spatially sparse and clustered sub-hourly photo-sensor data captured by the WSN platforms are used to develop and validate a piece-wise linear regression of indoor light distribution. This deterministic data-driven model accounts for sky conditions and solar position. The optimal placement of photo-sensors is performed iteratively to achieve the best predictability of the light field desired for indoor lighting control. Using two weeks of daylight and artificial light training data acquired at the Sustainability Base at NASA Ames, the model was able to predict the light level at seven monitored workstations with 80%-95% accuracy. We estimate that 10% adoption of this intelligent wireless sensor system in commercial buildings could save 0.2-0.25 quads BTU of energy nationwide. C1 [Basu, Chandrayee; Chen, Benjamin; Richards, Jacob; Dhinakaran, Aparna; Agogino, Alice] Univ Calif Berkeley, Berkeley Energy & Sustainable Technol Lab, Berkeley, CA 94720 USA. [Martin, Rodney] NASA, Ames Res Ctr, Moffett Field, CA USA. RP Basu, C (reprint author), Univ Calif Berkeley, Berkeley Energy & Sustainable Technol Lab, Berkeley, CA 94720 USA. FU NASA-UC; California Energy Commission's EISG programs FX The authors wish to acknowledge the work of Andrew Sabelhaus, Julien Caubel and Kyunam Kim for helping mentor the undergraduate students in this research project and for their work in creating low power electronic solutions and solar panel energy harvesting. We would also like to thank our undergraduate student Elizabeth Cheng for her support in software development. This research was made possible with research funding from the NASA-UC and the California Energy Commission's EISG programs. NR 38 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9987-5 J9 PROC SPIE PY 2014 VL 9061 AR UNSP 90612S DI 10.1117/12.2048681 PG 14 WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical; Optics SC Engineering; Optics GA BB5UD UT WOS:000344110800077 ER PT S AU Islam, AKMA Dempsey, PJ Feldman, J Larsen, C AF Islam, A. K. M. Anwarul Dempsey, Paula J. Feldman, Jason Larsen, Chris BE Lynch, JP Wang, KW Sohn, H TI Characterization of vibration transfer paths in nose gearboxes of an AH-64 Apache SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE Health monitoring; HUMS; vibration transfer path; frequency response functions; Apache helicopter; nose gearbox AB Health monitoring of rotorcraft components, which is currently being performed by Health and Usage Monitoring Systems (HUMS) through analyzing vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. Vibration diagnostic algorithms in HUMS analyze vibration signatures associated with faults and quantify them as condition indicators (CI) to predict component behavior. Vibration transfer paths (VTP) play important roles in CI response and are characterized by frequency response functions (FRF) derived from vibration signatures of dynamic mechanical components of a helicopter. With an objective to investigate the difference in VTP of a component in a helicopter and test stand, and to relate that to the CI response, VTP measurements were recorded from 0-50 kHz under similar conditions in the left and right nose gearboxes (NGBs) of an AH-64 Apache and an isolated left NGB in a test stand at NASA Glenn Research Center. The test fixture enabled the application of measured torques common during an actual operation. Commercial and lab piezo shakers, and an impact hammer were used in both systems to collect the vibration response using two types of commercially available accelerometers under various test conditions. The FRFs of both systems were found to be consistent, and certain real-world installation and maintenance issues, such as sensor alignments, locations and installation torques, had minimal effect on the VTP. However, gear vibration transfer path dynamics appeared to be somewhat dependent on presence of oil, and the lightly-damped ring gear produced sharp and closer transfer path resonances. C1 [Islam, A. K. M. Anwarul] Youngstown State Univ, One Univ Plaza, Youngstown, OH 44555 USA. [Dempsey, Paula J.] NASA Glenn Res Ctr, Dept Mech Engn, Cleveland, OH 44135 USA. [Dempsey, Paula J.] Etegent Technol Ltd, Cincinnati, OH 45212 USA. RP Islam, AKMA (reprint author), Youngstown State Univ, One Univ Plaza, Youngstown, OH 44555 USA. EM aaislam@ysu.edu NR 15 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9987-5 J9 PROC SPIE PY 2014 VL 9061 AR UNSP 90610Q DI 10.1117/12.2041309 PG 8 WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical; Optics SC Engineering; Optics GA BB5UD UT WOS:000344110800018 ER PT S AU Sherrit, S Zimmerman, W Takano, N Avellar, L AF Sherrit, Stewart Zimmerman, Wayne Takano, Nobuyuki Avellar, Louisa BE Lynch, JP Wang, KW Sohn, H TI Miniature Cryogenic valves for a Titan Lake Sampling System SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems CY MAR 10-13, 2014 CL San Diego, CA SP SPIE, Amer Soc Mech Engineers DE Actuators; Piezoelectric Devices; Cryogenic valves; Titan; Liquid sampling AB The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications. C1 [Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Sherrit, S (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9987-5 J9 PROC SPIE PY 2014 VL 9061 AR 90613J DI 10.1117/12.2045185 PG 10 WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical; Optics SC Engineering; Optics GA BB5UD UT WOS:000344110800099 ER PT S AU Abraham, NS Hasegawa, MM Straka, SA AF Abraham, Nithin S. Hasegawa, Mark M. Straka, Sharon A. BE Carosso, N Egges, J TI Black Molecular Adsorber Coatings for Spaceflight Applications SO SYSTEMS CONTAMINATION: PREDICTION, MEASUREMENT, AND CONTROL 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Systems Contamination - Prediction, Measurement, and Control CY AUG 18-19, 2014 CL San Diego, CA SP SPIE DE molecular adsorber coatings; zeolite; adsorber; adsorption; stray light control; outgassing; molecular contamination; spaceflight applications AB The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions. C1 [Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Abraham, NS (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 4 TC 2 Z9 2 U1 3 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-223-9 J9 PROC SPIE PY 2014 VL 9196 AR 91960F DI 10.1117/12.2060731 PG 9 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA BB5XR UT WOS:000344185900012 ER PT S AU Brieda, L Newcome, J Errigo, T AF Brieda, Lubos Newcome, John Errigo, Therese BE Carosso, N Egges, J TI Diffusion of water into purged volumes SO SYSTEMS CONTAMINATION: PREDICTION, MEASUREMENT, AND CONTROL 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Systems Contamination - Prediction, Measurement, and Control CY AUG 18-19, 2014 CL San Diego, CA SP SPIE DE purge; water infiltration; molecular contamination; diffusion AB In this paper, we report on an experimental and numerical effort to characterize removal and infiltration of atmospheric water vapor into a cavity purged with dry GN2. Multiple miniature sensors were used to track humidity and pressure inside a cylindrical enclosure with internal obstruction and a secondary volume. These measurements were compared against the well-known model of Scialdone. Although our data indicate a similar exponential-like decay, the fit parameters differed from the predicted values. In addition, a numerical model was developed to study the purge and infiltration problem in more detail. The model utilizes an Advection-Diffusion solver for the contaminant species, and an incompressible Navier-Stokes solver for the flow velocity. Comparison of preliminary numerical results with the experimental data is presented. C1 [Brieda, Lubos] Particle Cell Consulting LLC, Falls Church, VA 22046 USA. [Newcome, John] ASRC Fed, Beltsville, MD USA. [Errigo, Therese] NASA, Goddard Space Flight Ctr, Goddard, MD USA. RP Brieda, L (reprint author), Particle Cell Consulting LLC, Falls Church, VA 22046 USA. EM lubos.brieda@particleincell.com FU GOES-R; MMS FX The authors would like to acknowledge Gregory Bennett (GOES-R engineering co-op) for performing initial research on pressure and humidity sensors; John Fiorello Jr. and Zoe Dormuth (GOES-R engineering interns) for supporting data collection activities; Steve McKim, Hal Baesh, and the rest of GSFC propulsion lab for making the testing possible; and Rob Studer at GOES-R, and Mark Secunda, David Hughes, Mike Woronowicz and Evelyn Lambert at NASA/GSFC contamination branch for fruitful discussions on purge testing and analysis. This effort was supported by the GOES-R and MMS projects. NR 10 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-223-9 J9 PROC SPIE PY 2014 VL 9196 AR UNSP 919606 DI 10.1117/12.2061939 PG 19 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA BB5XR UT WOS:000344185900005 ER PT S AU Wooldridge, EM Schweiss, A Henderson-Nelson, K Woronowicz, M Patel, J Macias, M McGregor, RD Farmer, G Schmeitzky, O Jensen, P Rumler, P Romero, B Breton, J AF Wooldridge, Eve M. Schweiss, Andrea Henderson-Nelson, Kelly Woronowicz, Michael Patel, Jignasha Macias, Matthew McGregor, R. Daniel Farmer, Greg Schmeitzky, Olivier Jensen, Peter Rumler, Peter Romero, Beatriz Breton, Jacques BE Carosso, N Egges, J TI Contamination control requirements implementation for the James Webb Space Telescope (JWST), Part 2: Spacecraft, sunshield, observatory and launch SO SYSTEMS CONTAMINATION: PREDICTION, MEASUREMENT, AND CONTROL 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Systems Contamination - Prediction, Measurement, and Control CY AUG 18-19, 2014 CL San Diego, CA SP SPIE DE Contamination; contamination control; monitoring; particulate; molecular; venting; JWST; ISIM AB This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton (TM) layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented. C1 [Wooldridge, Eve M.; Schweiss, Andrea] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha] Stinger Ghaffarian Technol Inc, Greenbelt, MD USA. [Macias, Matthew; McGregor, R. Daniel] Northrop Grumman Aerosp Syst, Chantilly, VA USA. [Farmer, Greg] Nexolve, Huntsville, AL USA. [Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter] European Space Agcy, F-75738 Paris 15, France. [Romero, Beatriz; Breton, Jacques] Arianesp, Evry, France. RP Wooldridge, EM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU JWST contamination control and coatings team FX The authors are grateful to acknowledge the work of many people who have formed or supported the JWST contamination control and coatings team. NR 2 TC 0 Z9 0 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-223-9 J9 PROC SPIE PY 2014 VL 9196 AR UNSP 91960L DI 10.1117/12.2066501 PG 11 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA BB5XR UT WOS:000344185900016 ER PT S AU Wooldridge, EM Henderson-Nelson, K Woronowicz, M Novo-Gradac, K Perry, RL Macias, M Arenberg, J Egges, J AF Wooldridge, Eve M. Henderson-Nelson, Kelly Woronowicz, Michael Novo-Gradac, Kevin Perry, Radford L. Macias, Matthew Arenberg, Jon Egges, Joanne BE Carosso, N Egges, J TI Contamination control requirements implementation for the James Webb Space Telescope (JWST), Part 1: Optics, instruments and thermal vacuum testing SO SYSTEMS CONTAMINATION: PREDICTION, MEASUREMENT, AND CONTROL 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Systems Contamination - Prediction, Measurement, and Control CY AUG 18-19, 2014 CL San Diego, CA SP SPIE DE Contamination; contamination control; monitoring; particulate; molecular; cryo-vacuum testing; JWST; ISIM AB The derivation of contamination control (CC) requirements for the JWST Optical Telescope Element (OTE) was presented at the SPIE conference in 2008(1). Since then, much work has been done to allocate contamination at each phase of Integration and Test (I&T) and to plan for achieving the allocations. Because JWST is such a large and complicated observatory, plans for meeting the requirements are many and varied. There are primary mirror segments that must be cleaned early and maintained clean; there are four science instruments that each have tight contamination requirements but cannot be cleaned after they are integrated onto the Integrated Science Instrument Module (ISIM) structure; there is the composite ISIM structure that is fragile and must be minimally handled; there are numerous cryo-vacuum tests that must be controlled and monitored in order to minimize molecular contamination during return to ambient;. and more. An overview of plans developed to implement contamination control for JWST optics, instruments, and thermal vacuum testing for JWST will be presented. C1 [Wooldridge, Eve M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Henderson-Nelson, Kelly; Woronowicz, Michael; Novo-Gradac, Kevin; Perry, Radford L.] Stinger Ghaffarian Technol Inc, Greenbelt, MD USA. [Macias, Matthew; Arenberg, Jon] Northrop Grumman Aerosp Syst, Chantilly, VA USA. [Egges, Joanne] Ball Aerosp Technology Corp, Boulder, CO USA. RP Wooldridge, EM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU JWST contamination control and coatings team FX The authors are grateful to acknowledge the work of many people who have formed or supported the JWST contamination control and coatings team. NR 9 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-223-9 J9 PROC SPIE PY 2014 VL 9196 AR UNSP 91960K DI 10.1117/12.2066500 PG 9 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA BB5XR UT WOS:000344185900015 ER PT J AU Arumugam, DD AF Arumugam, Darmindra D. GP IEEE TI Near- and far-regions of mode splitting in coupled magnetic resonators and use in passive ranging SO 2014 IEEE 15TH ANNUAL WIRELESS AND MICROWAVE TECHNOLOGY CONFERENCE (WAMICON) LA English DT Proceedings Paper CT 15th Annual IEEE Conference on Wireless and Microwave Technology (WAMICON) CY JUN 06, 2014 CL Tampa, FL SP IEEE ID POSITION MEASUREMENT; RESONANCES AB The monostatic backscattered magnetoquasistatic field coupling measured at the terminals of a resonant coil due to strongly coupled magnetic resonance (SCMR) coupling with a nearby passive resonant coil exhibits dual orthogonal mode splitting. The difference between the center frequencies of the orthogonal modes, known as the coupled mode frequency split, is sensitive to range of the nearby passive resonant coil. Near-and far-region relationships are derived for the SCMR coupling which are important in practical passive magnetoquasistatic systems. Measurements of this frequency split is presented and inverted for range using the exact theory. The results are compared to inversions using the near-and far-region solutions. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Arumugam, DD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM darmindra.d.arumugam@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-4608-2 PY 2014 PG 3 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic; Physics, Applied; Telecommunications SC Computer Science; Engineering; Physics; Telecommunications GA BB5BF UT WOS:000343650000021 ER PT J AU Choi, S Joiner, J Choi, Y Duncan, BN Vasilkov, A Krotkov, N Bucsela, E AF Choi, S. Joiner, J. Choi, Y. Duncan, B. N. Vasilkov, A. Krotkov, N. Bucsela, E. TI First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID NITROGEN-OXIDE EMISSIONS; EASTERN UNITED-STATES; LONG-RANGE TRANSPORT; GULF-OF-MEXICO; LIGHTNING NOX; COLUMN RETRIEVAL; ECONOMIC RECESSION; GOME MEASUREMENTS; RADIATION BUDGET; MIXING RATIOS AB We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloudslicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx. C1 [Choi, S.; Vasilkov, A.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Choi, S.; Joiner, J.; Duncan, B. N.; Vasilkov, A.; Krotkov, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Choi, Y.] Univ Houston, Houston, TX USA. [Bucsela, E.] SRI Int, Menlo Pk, CA 94025 USA. RP Choi, S (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM sungyeon.choi@nasa.gov RI Krotkov, Nickolay/E-1541-2012; Duncan, Bryan/A-5962-2011 OI Krotkov, Nickolay/0000-0001-6170-6750; FU National Aeronautics and Space Administration under Science Mission Directorate [NNH10ZDA001N-AURA] FX This material is based upon work supported by the National Aeronautics and Space Administration under agreement NNH10ZDA001N-AURA issued through the Science Mission Directorate for the Aura Science Team managed by Kenneth Jucks. We thank the the OMI data processing team and algorithm developers, particularly F. Boersma and P. Veefkind, the GMI team, (lead by S. Strahan), and R. Cohen for providing the data used for this study. We also thank E. Celarier, P. K. Bhartia, L. Lamsal, R. Salawitch, T. Canty, and S. Marchenko for helpful discussions. Finally, the authors express special thanks to the two anonymous referees and editor M. Van Roozendael for valuable comments that improved this paper. NR 91 TC 8 Z9 8 U1 2 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 19 BP 10565 EP 10588 DI 10.5194/acp-14-10565-2014 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS3GF UT WOS:000344164800011 ER PT J AU Ebmeier, SK Sayer, AM Grainger, RG Mather, TA Carboni, E AF Ebmeier, S. K. Sayer, A. M. Grainger, R. G. Mather, T. A. Carboni, E. TI Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; OPTICAL DEPTH; LA FOURNAISE; CONDENSATION NUCLEI; SHIP TRACKS; KILAUEA VOLCANO; WIND-SPEED; CLIMATE; MODIS; PITON AB The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The time-averaged indirect aerosol effects within 200 km downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002-2008) data. Retrievals of aerosol and cloud properties at Kilauea (Hawai'i), Yasur (Vanuatu) and Piton de la Four-naise (la Reunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes -including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2-8 mu m at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Wm(-2) at distances of 150-400 km from the volcano, with much greater local (< 80 km) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere. C1 [Ebmeier, S. K.] Univ Bristol, Sch Earth Sci, COMET, Bristol, Avon, England. [Sayer, A. M.] NASA, Goddard Space Flight Ctr, Goddard Earth Sci Technol & Res GESTAR, Greenbelt, MD 20771 USA. [Grainger, R. G.; Carboni, E.] Univ Oxford, COMET, Oxford, England. [Mather, T. A.] Univ Oxford, Dept Earth Sci, COMET, Oxford OX1 3PR, England. RP Ebmeier, SK (reprint author), Univ Bristol, Sch Earth Sci, COMET, Pk St, Bristol, Avon, England. EM sk.ebmeier@bristol.ac.uk RI Mather, Tamsin/A-7604-2011; Sayer, Andrew/H-2314-2012; Ebmeier, Susanna/M-2294-2013; Grainger, Roy/E-8823-2011 OI Mather, Tamsin/0000-0003-4259-7303; Sayer, Andrew/0000-0001-9149-1789; Ebmeier, Susanna/0000-0002-5454-2652; Grainger, Roy/0000-0003-0709-1315 FU UK National Environmental Research Council through the COMET/NCEO programme; UK National Environmental Research Council through STREVA programme; COMET/NCEO FX We thank Santiago Gasso for useful discussions at the inception of this project and during this paper's preparation. SKE is funded by the UK National Environmental Research Council through the COMET/NCEO and STREVA programmes. RGG, TAM and EC are also supported by COMET/NCEO. GRAPE data are hosted by the BADC and MODIS data are hosted by NASA LAADS. NR 78 TC 8 Z9 8 U1 1 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 19 BP 10601 EP 10618 DI 10.5194/acp-14-10601-2014 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS3GF UT WOS:000344164800013 ER PT J AU Rocha-Lima, A Martins, JV Remer, LA Krotkov, NA Tabacniks, MH Ben-Ami, Y Artaxo, P AF Rocha-Lima, A. Martins, J. V. Remer, L. A. Krotkov, N. A. Tabacniks, M. H. Ben-Ami, Y. Artaxo, P. TI Optical, microphysical and compositional properties of the Eyjafjallajokull volcanic ash SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC AEROSOLS; MASS CONCENTRATION; REFRACTIVE-INDEX; LIGHT-ABSORPTION; RISK-ASSESSMENT; MINERAL DUST; BLACK CARBON; SAMUM 2006; PARTICLES; CLOUD AB Better characterization of the optical properties of aerosol particles are an essential step to improve atmospheric models and satellite remote sensing, reduce uncertainties in predicting particulate transport, and estimate aerosol forcing and climate change. Even natural aerosols such as mineral dust or particles from volcanic eruptions require better characterization in order to define the background conditions from which anthropogenic perturbations emerge. We present a detailed laboratorial study where the spectral optical properties of the ash from the April-May (2010) Eyjafjallajokull volcanic eruption were derived over a broad spectral range, from ultra-violet (UV) to near-infrared (NIR) wavelengths. Samples of the volcanic ash taken on the ground in the vicinity of the volcano were sieved, re-suspended, and collected on filters to separate particle sizes into fine and mixed (coarse and fine) modes. We derived the spectral mass absorption efficiency alpha(abs) [m(2) g(-1)] for fine and mixed modes particles in the wavelength range from 300 to 2500 nm from measurements of optical reflectance. We retrieved the imaginary part of the complex refractive index Im(m) from alpha(abs), using Mie-Lorenz and T-matrix theories and considering the size distribution of particles obtained by scanning electron microscopy (SEM), and the grain density of the volcanic ash measured as rho = 2.16 +/- 0.13 g cm(-3). Im(m) was found to vary from 0.001 to 0.005 in the measured wavelength range. The dependence of the retrieval on the shape considered for the particles were found to be small and within the uncertainties estimated in our calculation. Fine and mixed modes were also analyzed by X-ray fluorescence, exhibiting distinct elemental composition supporting the optical differences we found between the modes. This is a comprehensive and consistent character-ization of spectral absorption and imaginary refractive index, density, size, shape and elemental composition of volcanic ash, which will help constrain assumptions of ash particles in models and remote sensing, thereby narrowing uncertainties in representing these particles both for short-term regional forecasts and long-term climate change. C1 [Rocha-Lima, A.; Martins, J. V.; Remer, L. A.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Martins, J. V.; Krotkov, N. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tabacniks, M. H.; Artaxo, P.] Univ Sao Paulo, Inst Phys, Sao Paulo, Brazil. [Ben-Ami, Y.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. RP Rocha-Lima, A (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. EM limadri1@umbc.edu RI Krotkov, Nickolay/E-1541-2012; Tabacniks, Manfredo/M-6620-2014; Artaxo, Paulo/E-8874-2010 OI Krotkov, Nickolay/0000-0001-6170-6750; Tabacniks, Manfredo/0000-0002-1303-2314; Artaxo, Paulo/0000-0001-7754-3036 FU NASA Atmospheric Composition Program [NNX07AT47G]; JCET/UMBC [2013-14]; NASA Postdoctoral Program at the Goddard Space Flight Center FX We acknowledge funding support from the NASA Atmospheric Composition Program (Investigation of Aerosol Spectral Absorption Properties from UV to NIR, grant number NNX07AT47G) and from the JCET/UMBC 2013-14 Graduate Fellowship. We thank the scientific and technical support of the LACO team at UMBC (especially D. Cieslak and S. Buczkowski), and the LFA team at University of Sao Paulo (Ana Loureiro and Andrea Arana). We also thank U. Schumann from DRL and H. Olafsson for providing samples collected in Iceland and for providing information about the collection process. Y. Ben-Ami thanks the support of the NASA Postdoctoral Program at the Goddard Space Flight Center. NR 56 TC 2 Z9 2 U1 3 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 19 BP 10649 EP 10661 DI 10.5194/acp-14-10649-2014 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS3GF UT WOS:000344164800016 ER PT J AU Tsigaridis, K Daskalakis, N Kanakidou, M Adams, PJ Artaxo, P Bahadur, R Balkanski, Y Bauer, SE Bellouin, N Benedetti, A Bergman, T Berntsen, TK Beukes, JP Bian, H Carslaw, KS Chin, M Curci, G Diehl, T Easter, RC Ghan, SJ Gong, SL Hodzic, A Hoyle, CR Iversen, T Jathar, S Jimenez, JL Kaiser, JW Kirkevag, A Koch, D Kokkola, H Lee, YH Lin, G Liu, X Luo, G Ma, X Mann, GW Mihalopoulos, N Morcrette, JJ Muller, JF Myhre, G Myriokefalitakis, S Ng, NL O'Donnell, D Penner, JE Pozzoli, L Pringle, KJ Russell, LM Schulz, M Sciare, J Seland, O Shindell, DT Sillman, S Skeie, RB Spracklen, D Stavrakou, T Steenrod, SD Takemura, T Tiitta, P Tilmes, S Tost, H van Noije, T van Zyl, PG von Salzen, K Yu, F Wang, Z Wang, Z Zaveri, RA Zhang, H Zhang, K Zhang, Q Zhang, X AF Tsigaridis, K. Daskalakis, N. Kanakidou, M. Adams, P. J. Artaxo, P. Bahadur, R. Balkanski, Y. Bauer, S. E. Bellouin, N. Benedetti, A. Bergman, T. Berntsen, T. K. Beukes, J. P. Bian, H. Carslaw, K. S. Chin, M. Curci, G. Diehl, T. Easter, R. C. Ghan, S. J. Gong, S. L. Hodzic, A. Hoyle, C. R. Iversen, T. Jathar, S. Jimenez, J. L. Kaiser, J. W. Kirkevag, A. Koch, D. Kokkola, H. Lee, Y. H. Lin, G. Liu, X. Luo, G. Ma, X. Mann, G. W. Mihalopoulos, N. Morcrette, J. -J. Mueller, J. -F. Myhre, G. Myriokefalitakis, S. Ng, N. L. O'Donnell, D. Penner, J. E. Pozzoli, L. Pringle, K. J. Russell, L. M. Schulz, M. Sciare, J. Seland, O. Shindell, D. T. Sillman, S. Skeie, R. B. Spracklen, D. Stavrakou, T. Steenrod, S. D. Takemura, T. Tiitta, P. Tilmes, S. Tost, H. van Noije, T. van Zyl, P. G. von Salzen, K. Yu, F. Wang, Z. Wang, Z. Zaveri, R. A. Zhang, H. Zhang, K. Zhang, Q. Zhang, X. TI The AeroCom evaluation and intercomparison of organic aerosol in global models SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VOLATILITY BASIS-SET; BIOMASS BURNING EMISSIONS; CHEMICAL-TRANSPORT MODEL; GENERAL-CIRCULATION MODEL; CLIMATE MODEL; CARBONACEOUS AEROSOLS; MASS-SPECTROMETER; EARTH SYSTEM; ATMOSPHERIC AEROSOL; PARTICULATE MATTER AB This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA/OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a(-1) (range 34-144 Tg a(-1)) and the median SOA source strength (natural and anthropogenic) is 19 Tg a(-1) (range 13-121 Tg a(-1)). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a(-1) (range 16-121 Tg a(-1)), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a(-1); range 13-20 Tg a(-1), with one model at 37 Tg a(-1)). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a(-1) (range 28-209 Tg a(-1)), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model-observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model-measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to -0.62 (-0.51) based on the comparison against OC (OA) urban data of all models at the surface, -0.15 (+0.51) when compared with remote measurements, and -0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately. C1 [Tsigaridis, K.; Bauer, S. E.; Koch, D.; Shindell, D. T.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. [Tsigaridis, K.; Bauer, S. E.; Koch, D.; Shindell, D. T.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Daskalakis, N.; Kanakidou, M.; Mihalopoulos, N.; Myriokefalitakis, S.] Univ Crete, Dept Chem, Environm Chem Proc Lab, Iraklion, Greece. [Daskalakis, N.; Myriokefalitakis, S.] Fdn Res & Technol Hellas ICE HT FORTH, Inst Chem Engn, Patras, Greece. [Adams, P. J.; Jathar, S.; Lee, Y. H.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Adams, P. J.] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA. [Artaxo, P.] Univ Sao Paulo, Dept Appl Phys, BR-05508 Sao Paulo, Brazil. [Bahadur, R.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Balkanski, Y.; Russell, L. M.; Sciare, J.] Lab Sci Climat & Environm, Gif Sur Yvette, France. [Bellouin, N.] Met Off Hadley Ctr, Exeter, Devon, England. [Benedetti, A.; Iversen, T.; Kaiser, J. W.; Morcrette, J. -J.] ECMWF, Reading, Berks, England. [Bergman, T.; Kokkola, H.] Finnish Meteorol Inst, Kuopio, Finland. [Berntsen, T. K.; Iversen, T.] Univ Oslo, Dept Geosci, Oslo, Norway. [Berntsen, T. K.; Myhre, G.; Skeie, R. B.] CICERO, Oslo, Norway. [Beukes, J. P.; Tiitta, P.; van Zyl, P. G.] North West Univ, Potchefstroom, South Africa. [Bian, H.] Univ Maryland, Joint Ctr Environm Technol, Baltimore, MD USA. [Carslaw, K. S.; Mann, G. W.; Spracklen, D.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Chin, M.; Diehl, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Curci, G.] Univ Aquila, Dept Phys CETEMPS, I-67100 Laquila, Italy. [Diehl, T.; Steenrod, S. D.] Univ Space Res Assoc, Greenbelt, MD USA. [Easter, R. C.; Ghan, S. J.; Liu, X.; Zaveri, R. A.; Zhang, K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gong, S. L.] Meteorol Serv Canada, Air Qual Res Branch, Toronto, ON, Canada. [Hodzic, A.; Tilmes, S.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Hoyle, C. R.] Paul Scherrer Inst, Villigen, Switzerland. [Hoyle, C. R.] Swiss Fed Inst Forest Snow & Landscape Res WSL, Inst Snow & Avalanche Res SLF, Davos, Switzerland. [Iversen, T.; Kirkevag, A.; Schulz, M.; Seland, O.] Norwegian Meteorol Inst, Oslo, Norway. [Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Kaiser, J. W.] Kings Coll London, Dept Geog, London WC2R 2LS, England. [Kaiser, J. W.; Pringle, K. J.] Max Planck Inst Chem, Dept Atmospher Chem, D-55128 Mainz, Germany. [Lin, G.; Penner, J. E.; Sillman, S.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Luo, G.; Yu, F.] SUNY Albany, Albany, NY 12222 USA. [Ma, X.; von Salzen, K.] Environm Canada, Victoria, BC, Canada. [Mann, G. W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Mueller, J. -F.; Stavrakou, T.] Belgian Inst Space Aeron, Brussels, Belgium. [Ng, N. L.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Ng, N. L.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [O'Donnell, D.; Zhang, K.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Pozzoli, L.] Istanbul Tech Univ, Eurasia Inst Earth Sci, TR-80626 Istanbul, Turkey. [Pringle, K. J.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England. [Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka 812, Japan. [Tiitta, P.] Univ Eastern Finland, Dept Environm Sci, Fine Particle & Aerosol Technol Lab, Kuopio, Finland. [Tost, H.] Johannes Gutenberg Univ Mainz, Inst Atmospher Phys, D-55122 Mainz, Germany. [van Noije, T.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Wang, Z.; Zhang, H.] China Meteorol Adm, Climate Ctr, Lab Climate Studies, Beijing, Peoples R China. [Wang, Z.; Zhang, X.] Chinese Acad Meteorol Sci, Beijing, Peoples R China. [Zhang, Q.] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA. RP Tsigaridis, K (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. EM kostas.tsigaridis@columbia.edu; mariak@chemistry.uoc.gr RI Zaveri, Rahul/G-4076-2014; Mihalopoulos, Nikolaos/H-5327-2016; Curci, Gabriele/A-2020-2011; Artaxo, Paulo/E-8874-2010; Kanakidou, Maria/D-7882-2012; Myriokefalitakis, Stylianos/J-3701-2014; Lee, Yunha/Q-7222-2016; Chin, Mian/J-8354-2012; Tost, Holger/C-3812-2017; Kokkola, Harri/J-5993-2014; Adams, Peter/D-7134-2013; Kyushu, RIAM/F-4018-2015; Zhang, Qi/F-9653-2010; Myhre, Gunnar/A-3598-2008; Bergman, Tommi/C-2445-2009; Zhang, Kai/F-8415-2010; Skeie, Ragnhild/K-1173-2015; Shindell, Drew/D-4636-2012; Schulz, Michael/A-6930-2011; Spracklen, Dominick/B-4890-2014; U-ID, Kyushu/C-5291-2016; Ghan, Steven/H-4301-2011; Daskalakis, Nikos/B-9632-2014; Takemura, Toshihiko/C-2822-2009; Balkanski, Yves/A-6616-2011; Liu, Xiaohong/E-9304-2011; Carslaw, Ken/C-8514-2009; Yu, Fangqun/F-3708-2011; Hoyle, Christopher/B-7786-2008; Jimenez, Jose/A-5294-2008; Jathar, Shantanu/A-2966-2015; Penner, Joyce/J-1719-2012; Beukes, Johan/A-4868-2012; Kaiser, Johannes/A-7057-2012; Bauer, Susanne/P-3082-2014; OI Zaveri, Rahul/0000-0001-9874-8807; Mihalopoulos, Nikolaos/0000-0002-1282-0896; Curci, Gabriele/0000-0001-9871-5570; Artaxo, Paulo/0000-0001-7754-3036; Kanakidou, Maria/0000-0002-1724-9692; Myriokefalitakis, Stylianos/0000-0002-1541-7680; Lee, Yunha/0000-0001-7478-2672; Tost, Holger/0000-0002-3105-4306; Adams, Peter/0000-0003-0041-058X; Myhre, Gunnar/0000-0002-4309-476X; Bergman, Tommi/0000-0002-6133-2231; Zhang, Kai/0000-0003-0457-6368; Skeie, Ragnhild/0000-0003-1246-4446; Schulz, Michael/0000-0003-4493-4158; Ghan, Steven/0000-0001-8355-8699; Daskalakis, Nikos/0000-0002-2409-0392; Takemura, Toshihiko/0000-0002-2859-6067; Balkanski, Yves/0000-0001-8241-2858; Liu, Xiaohong/0000-0002-3994-5955; Carslaw, Ken/0000-0002-6800-154X; Yu, Fangqun/0000-0003-0874-4883; Hoyle, Christopher/0000-0002-1369-9143; Jimenez, Jose/0000-0001-6203-1847; Jathar, Shantanu/0000-0003-4106-2358; Beukes, Johan/0000-0003-3780-4929; Kaiser, Johannes/0000-0003-3696-9123; van Zyl, Pieter/0000-0003-1470-3359 FU NASA-MAP (NASA) [NNX09AK32G]; PEGASOS [FP7-ENV-2010-265148]; ECLIPSE [282688]; Research Council of Norway [207711/E10]; NOTUR/NorStore; EU project ACCESS; Norwegian Space Center through the PM-VRAE; MACC by the European Commission under EU [218793]; MACC-II by the European Commission under EU [283576]; PRODEX-A3C; BIOSOA [SD/CS/05A]; Funding Program for Next Generation World-Leading Researchers of the Cabinet Office, Government of Japan [GR079]; DECC/Defra Met Office Hadley Centre Climate Programme [Ga01101]; NASA-ACMAP [NNX13AK20G]; NSF [AGS-0942106, AGS-1243354]; US Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program; Office of Science Earth System Modeling Program; DOE (BER/ASR) [DE-FG02-11ER65293, DE-SC0006035, DE-SC0006711]; NOAA [NA13OAR4310063]; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; EPA STAR [83337701]; National Center for Atmospheric Research; Swiss National Science Foundation (SNSF) [200021 140663]; Deutsches Klimarechenzentrum (DKRZ); Forschungszentrum Juelich; Research Council of Norway through SLAC project FX K. Tsigaridis and S. E. Bauer were supported by NASA-MAP (NASA Award Number: NNX09AK32G); N. Daskalakis, T. Iversen, A. Kirkevag, O. Seland, K. S. Carslaw, G. W. Mann and L. Pozzoli by PEGASOS (FP7-ENV-2010-265148); M. Kanakidou and S. Myriokefalitakis by ECLIPSE (FP7-ENV-2011, 282688); T. Iversen, A. Kirkevag and O. Seland also by the Research Council of Norway through the EarthClim (207711/E10) and NOTUR/NorStore projects, and through the EU project ACCESS; A. Kirkevag also received funding from the Norwegian Space Center through the PM-VRAE project; A. Benedetti, J. W. Kaiser, and J.-J. Morcrette were funded through the MACC and MACC-II projects funded by the European Commission under the EU Seventh Research Framework Programme, contract numbers 218793 and 283576, respectively; J.-F. Muller and T. Stavrakou by the Belspo projects PRODEX-A3C and BIOSOA (SD/CS/05A); T. Takemura by the Funding Program for Next Generation World-Leading Researchers of the Cabinet Office, Government of Japan (GR079); Y. H. Lee by the NASA MAP and ACMAP programs; N. Bellouin by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (Ga01101); G. Luo and F. Yu by NASA-ACMAP (NNX13AK20G) and NSF (AGS-0942106); G. Curci by the Italian Space Agency in the frame of QUITSAT and PRIMES projects; R. C. Easter, S. J. Ghan, X. Liu, R. A. Zaveri and K. Zhang by the US Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and by the Office of Science Earth System Modeling Program; J. L. Jimenez and Q. Zhang through DOE (BER/ASR) DE-FG02-11ER65293; J. L. Jimenez also through DOE (BER/ASR) DE-SC0006035 and DE-SC0006711, NOAA NA13OAR4310063, and NSF AGS-1243354. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. G. Lin, J. E. Penner and S. Sillman are funded by EPA STAR program (grant no. 83337701). A. Hodzic and S. Tilmes were supported by the National Center for Atmospheric Research, which is operated by the University Corporation for Atmospheric Research on behalf of the National Science Foundation. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. C. R. Hoyle was funded through Swiss National Science Foundation (SNSF) (grant number 200021 140663). ECHAM5-HAMMOZ simulations were supported by the Deutsches Klimarechenzentrum (DKRZ) and the Forschungszentrum Juelich. Model simulations with OsloCTM2 have received support from the Research Council of Norway through the SLAC project. The AeroCom database benefits greatly from caretaking by Jan Griesfeller and the infrastructure support from IT at the Norwegian Meteorological Institute. Q. Zhang acknowledges DE-SC0001673. We also acknowledge D. Plummer for helpful comments. NR 209 TC 61 Z9 62 U1 10 U2 93 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 19 BP 10845 EP 10895 DI 10.5194/acp-14-10845-2014 PG 51 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS3GF UT WOS:000344164800028 ER PT J AU Houweling, S Krol, M Bergamaschi, P Frankenberg, C Dlugokencky, EJ Morino, I Notholt, J Sherlock, V Wunch, D Beck, V Gerbig, C Chen, H Kort, EA Rockmann, T Aben, I AF Houweling, S. Krol, M. Bergamaschi, P. Frankenberg, C. Dlugokencky, E. J. Morino, I. Notholt, J. Sherlock, V. Wunch, D. Beck, V. Gerbig, C. Chen, H. Kort, E. A. Rockmann, T. Aben, I. TI A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements (vol 14, pg 3991, 2014) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Houweling, S.; Krol, M.; Aben, I.] SRON Netherlands Inst Space Res, Utrecht, Netherlands. [Houweling, S.; Krol, M.; Rockmann, T.] Univ Utrecht, Inst Marine & Atmospher Res IMAU, Utrecht, Netherlands. [Krol, M.] Univ Wageningen & Res Ctr, Dept Meteorol & Air Qual MAQ, Wageningen, Netherlands. [Bergamaschi, P.] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, Va, Italy. [Frankenberg, C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dlugokencky, E. J.] NOAA Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. [Morino, I.] NIES, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan. [Notholt, J.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Sherlock, V.] Natl Inst Water & Atmospher Res NIWA, Wellington, New Zealand. [Wunch, D.] CALTECH, Pasadena, CA 91125 USA. [Beck, V.; Gerbig, C.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Chen, H.] Univ Groningen, Ctr Isotope Res CIO, NL-9700 AB Groningen, Netherlands. [Chen, H.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Kort, E. A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Houweling, S (reprint author), SRON Netherlands Inst Space Res, Utrecht, Netherlands. EM s.houweling@sron.nl RI Morino, Isamu/K-1033-2014; Rockmann, Thomas/F-4479-2015; Frankenberg, Christian/A-2944-2013; Notholt, Justus/P-4520-2016 OI Morino, Isamu/0000-0003-2720-1569; Rockmann, Thomas/0000-0002-6688-8968; Frankenberg, Christian/0000-0002-0546-5857; Notholt, Justus/0000-0002-3324-885X NR 1 TC 0 Z9 0 U1 0 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 20 BP 10961 EP 10962 DI 10.5194/acp-14-10961-2014 PG 2 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS3GO UT WOS:000344165800003 ER PT J AU Dhomse, SS Emmerson, KM Mann, GW Bellouin, N Carslaw, KS Chipperfield, MP Hommel, R Abraham, NL Telford, P Braesicke, P Dalvi, M Johnson, CE O'Connor, F Morgenstern, O Pyle, JA Deshler, T Zawodny, JM Thomason, LW AF Dhomse, S. S. Emmerson, K. M. Mann, G. W. Bellouin, N. Carslaw, K. S. Chipperfield, M. P. Hommel, R. Abraham, N. L. Telford, P. Braesicke, P. Dalvi, M. Johnson, C. E. O'Connor, F. Morgenstern, O. Pyle, J. A. Deshler, T. Zawodny, J. M. Thomason, L. W. TI Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LARGE VOLCANIC-ERUPTIONS; CHEMICAL-TRANSPORT MODEL; SULFURIC-ACID AEROSOL; STRATOSPHERIC AEROSOL; MOUNT-PINATUBO; SIZE DISTRIBUTION; CONDENSATION NUCLEI; NUCLEATION RATES; OZONE DEPLETION; II MEASUREMENTS AB We use a stratosphere-troposphere composition-climate model with interactive sulfur chemistry and aerosol microphysics, to investigate the effect of the 1991 Mount Pinatubo eruption on stratospheric aerosol properties. Satellite measurements indicate that shortly after the eruption, between 14 and 23 Tg of SO2 (7 to 11.5 Tg of sulfur) was present in the tropical stratosphere. Best estimates of the peak global stratospheric aerosol burden are in the range 19 to 26 Tg, or 3.7 to 6.7 Tg of sulfur assuming a composition of between 59 and 77% H2SO4. In light of this large uncertainty range, we performed two main simulations with 10 and 20 Tg of SO2 injected into the tropical lower stratosphere. Simulated stratospheric aerosol properties through the 1991 to 1995 period are compared against a range of available satellite and in situ measurements. Stratospheric aerosol optical depth (sAOD) and effective radius from both simulations show good qualitative agreement with the observations, with the timing of peak sAOD and decay timescale matching well with the observations in the tropics and mid-latitudes. However, injecting 20 Tg gives a factor of 2 too high stratospheric aerosol mass burden compared to the satellite data, with consequent strong high biases in simulated sAOD and surface area density, with the 10 Tg injection in much better agreement. Our model cannot explain the large fraction of the injected sulfur that the satellite-derived SO2 and aerosol burdens indicate was removed within the first few months after the eruption. We suggest that either there is an additional alternative loss pathway for the SO2 not included in our model (e. g. via accommodation into ash or ice in the volcanic cloud) or that a larger proportion of the injected sulfur was removed via cross-tropopause transport than in our simulations. We also critically evaluate the simulated evolution of the particle size distribution, comparing in detail to balloon-borne optical particle counter (OPC) measurements from Laramie, Wyoming, USA (41 degrees N). Overall, the model captures remarkably well the complex variations in particle concentration profiles across the different OPC size channels. However, for the 19 to 27 km injection height-range used here, both runs have a modest high bias in the lowermost stratosphere for the finest particles (radii less than 250 nm), and the decay timescale is longer in the model for these particles, with a much later return to background conditions. Also, whereas the 10 Tg run compared best to the satellite measurements, a significant low bias is apparent in the coarser size channels in the volcanically perturbed lower stratosphere. Overall, our results suggest that, with appropriate calibration, aerosol microphysics models are capable of capturing the observed variation in particle size distribution in the stratosphere across both volcanically perturbed and quiescent conditions. Furthermore, additional sensitivity simulations suggest that predictions with the models are robust to uncertainties in sub-grid particle formation and nucleation rates in the stratosphere. C1 [Dhomse, S. S.; Mann, G. W.; Carslaw, K. S.; Chipperfield, M. P.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Emmerson, K. M.] CSIRO Marine & Atmospher Res, Aspendale, Vic 3195, Australia. [Mann, G. W.; Abraham, N. L.; Telford, P.; Braesicke, P.; Dalvi, M.; Pyle, J. A.] Natl Ctr Atmospher Sci NCAS Climate, Leeds, W Yorkshire, England. [Bellouin, N.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Hommel, R.; Abraham, N. L.; Telford, P.; Braesicke, P.; Pyle, J. A.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Dalvi, M.; Johnson, C. E.; O'Connor, F.] Met Off, Exeter, Devon, England. [Morgenstern, O.] Natl Inst Water & Atmospher Res NIWA, Lauder, New Zealand. [Deshler, T.] Univ Wyoming, Laramie, WY 82071 USA. [Zawodny, J. M.; Thomason, L. W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Dhomse, SS (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. EM s.s.dhomse@leeds.ac.uk RI Carslaw, Ken/C-8514-2009; Chipperfield, Martyn/H-6359-2013; Emmerson, Kathryn/A-1678-2012; Braesicke, Peter/D-8330-2016; Dhomse, Sandip/C-8198-2011; OI Carslaw, Ken/0000-0002-6800-154X; Chipperfield, Martyn/0000-0002-6803-4149; Emmerson, Kathryn/0000-0002-0727-0340; Braesicke, Peter/0000-0003-1423-0619; Dhomse, Sandip/0000-0003-3854-5383; Thomason, Larry/0000-0002-1902-0840; Morgenstern, Olaf/0000-0002-9967-9740; Bellouin, Nicolas/0000-0003-2109-9559 FU UK Natural Environment Research Council (NERC) [NE/E005659/1, NE/E017150/1]; National Centre for Atmospheric Science, one of the NERC research centres; European Research Council (ERC) under Seventh Framework Programme (FP7) consortium project MACC [218793, 283576]; European Research Council (ERC) under Seventh Framework Programme (FP7) consortium project MACC-II [218793, 283576]; UK Integrated Climate Programme - Department for Energy and Climate Change (DECC); Department for Environment Food and Rural Affairs - DECC/Defra [GA01101]; German Federal Ministry of Education and Research (BMBF) project ROSA within the ROMIC (Role Of the Middle Atmosphere in Climate) research programme [01LG1212A]; NIWA; [ATM-0437406] FX We would like to thank P. B. Russell for effective radius data. This work was supported by the UK Natural Environment Research Council (NERC grants NE/E005659/1 and NE/E017150/1). GWM and KSC received funding from the National Centre for Atmospheric Science, one of the NERC research centres. GWM received EU funding from the European Research Council (ERC) under Seventh Framework Programme (FP7) consortium projects MACC and MACC-II (grant agreements 218793 and 283576 respectively). NB, MD, CEJ, FOC were supported as part the UK Integrated Climate Programme funded by the Department for Energy and Climate Change (DECC) and Department for Environment Food and Rural Affairs - DECC/Defra (GA01101). RH was partly funded by German Federal Ministry of Education and Research (BMBF) project ROSA (reference code 01LG1212A) within the ROMIC (Role Of the Middle Atmosphere in Climate) research programme. We would also like to thank James Keeble for his help during model development. We acknowledge use of the MONSooN system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, which is a strategic partnership between the UK Met Office and the Natural Environment Research Council. This work has been also supported by NIWA as part of its Government-funded, core research programme. The in situ measurements were supported by the US National Science Foundation. Current measurements are supported under grant number ATM-0437406. NR 111 TC 13 Z9 13 U1 8 U2 27 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 20 BP 11221 EP 11246 DI 10.5194/acp-14-11221-2014 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS3GO UT WOS:000344165800017 ER PT J AU Sayer, AM Hsu, NC Eck, TF Smirnov, A Holben, BN AF Sayer, A. M. Hsu, N. C. Eck, T. F. Smirnov, A. Holben, B. N. TI AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BIOMASS BURNING AEROSOLS; SPECTRAL-RESOLUTION LIDAR; SUN-PHOTOMETER DATA; FOREST-FIRE SMOKE; RAMAN LIDAR; SOUTHERN AFRICA; ANGSTROM EXPONENT; SAFARI 2000; AIRBORNE MEASUREMENTS; CLOUD CONTAMINATION AB Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from similar to 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to similar to 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA similar to 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA similar to 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/ optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with the level of underestimated absorption. C1 [Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Sayer, A. M.; Eck, T. F.] USRA, GESTAR, Columbia, MD USA. [Smirnov, A.] Sigma Space Corp, Lanham, MD USA. RP Sayer, AM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. EM andrew.sayer@nasa.gov RI Sayer, Andrew/H-2314-2012; Smirnov, Alexander/C-2121-2009 OI Sayer, Andrew/0000-0001-9149-1789; Smirnov, Alexander/0000-0002-8208-1304 FU NASA EOS program FX This work was supported by the NASA EOS program, managed by Hal Maring. The authors are grateful to the AERONET PIs and site managers (I. Abboud, R. Aguiar, P. Andryszczak, N. X. Anh, P. Arruda, P. Artaxo, E. Bernardino de Andrade, T. Bigala, J. de Brito Gomes, W. Brower, S. Campbell, P. Cesarano, N. Chubarova, G. Crooks, F. Denn, E. G. Dutton, R. D. Elia, B. Fabbri, R. Frouin, P. Glowacki, P. Greenwood, S. Halewood, N. M. Hoan, J. Hollingsworth, J. Ivanoff, M. Ives, D. Jatoba dos Santos, A. Jorge, D. M. Kabanov, G. Karasinski, K. L. Keong, M. E. Lee, S.-C. Liew, S. Meesiri, R. Mitchell, F. Morais, M. Mukulabai, N. Nelson, N. P. Ndhlovu, S. Nikolashkin, C. B. Ning, A. Niyompam, E. Ojeda de Almeida Filho, N. O'Neill, L. Otero, M. Panchenko, S. Piketh, E. Quel, E. Reid, J. S. Reid, A. Royer, S. Sakerin, S. V. Salinas Cortijo, I. Sano, P. Sobolewski, J. de Souza Nogueira, E. Stolyarova, G. A. Tolkachenko, G. Thomas, J. R. Vande Castle, R. Wagener, A. D. Webler, E. Wolfram, A. Yangthaisong, B. Zak) for the creation and stewardship of the ground-based data records used, and useful discussions about their sites. MODIS data were obtained from the Level 1 and Atmosphere Archive and Distribution System (LAADS). F. Patadia, J. Limbacher, R. A. Kahn, and K. J. Mueller are thanked for their assistance in interpreting the MISR aerosol product file format. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication. R. Gautam is acknowledged for useful discussions about Asian aerosols. The authors are grateful to A. Bovchaliuk, J. S. Reid, and three anonymous reviewers for their extensive comments. NR 131 TC 15 Z9 15 U1 1 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2014 VL 14 IS 20 BP 11493 EP 11523 DI 10.5194/acp-14-11493-2014 PG 31 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS3GO UT WOS:000344165800031 ER PT S AU Arthur, JJ Prinzel, LJ Barnes, JR Williams, SP Jones, DR Harrison, SJ Bailey, RE AF Arthur, Jarvis (Trey) J., III Prinzel, Lawrence J., III Barnes, James R. Williams, Steven P. Jones, Denise R. Harrison, Stephanie J. Bailey, Randall E. BE Desjardins, DD Sarma, KR Marasco, PL Havig, PR Browne, MP Melzer, JE TI Performance comparison between a head-worn display system and a head-up display for low visibility commercial operations SO DISPLAY TECHNOLOGIES AND APPLICATIONS FOR DEFENSE, SECURITY, AND AVIONICS VIII; AND HEAD- AND HELMET-MOUNTED DISPLAYS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Display Technologies and Applications for Defense, Security, and Avionics VIII CY MAY 07-08, 2014 CL Baltimore, MA SP SPIE DE Enhanced Flight Vision Systems; HUD; HWD; Enhanced Vision; NextGen; Equivalent Visual Operations; Flight Simulation AB Research, development, test, and evaluation of flight deck interface technologies is being conducted by NASA to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in Next Generation Air Transportation System (NextGen). Under the Vehicle Systems Safety Technologies (VSST) project in the Aviation Safety Program, one specific area of research is the use of small Head-Worn Displays (HWDs) as an equivalent display to a Head-Up Display (HUD). Title 14 of the US Code of Federal Regulations (CFR) 91.175 describes a possible operational credit which can be obtained with airplane equipage of a HUD or an "equivalent" display combined with Enhanced Vision (EV). If successful, a HWD may provide the same safety and operational benefits as current HUD-equipped aircraft but for significantly more aircraft in which HUD installation is neither practical nor possible. A simulation experiment was conducted to evaluate if the HWD, coupled with a head-tracker, can provide an equivalent display to a HUD. Comparative testing was performed in the Research Flight Deck (RFD) Cockpit Motion Facility (CMF) full mission, motion-based simulator at NASA Langley. Twelve airline crews conducted approach and landing, taxi, and departure operations during low visibility operations (1000' Runway Visual Range (RVR), 300' RVR) at Memphis International Airport (Federal Aviation Administration (FAA) identifier: KMEM). The results showed that there were no statistical differences in the crews performance in terms of touchdown and takeoff. Further, there were no statistical differences between the HUD and HWD in pilots' responses to questionnaires. C1 [Arthur, Jarvis (Trey) J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Jones, Denise R.; Bailey, Randall E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Arthur, JJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM Trey.Arthur@nasa.gov NR 23 TC 0 Z9 0 U1 4 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-023-5 J9 PROC SPIE PY 2014 VL 9086 AR 90860N DI 10.1117/12.2048700 PG 17 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BB5GU UT WOS:000343864900013 ER PT S AU Burns, DE Jones, JS Li, MJ AF Burns, Devin E. Jones, Justin S. Li, Mary J. BE Campo, EM Dobisz, EA Eldada, LA TI Mechanical Behavior of Microelectromechanical Microshutters SO NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nanoengineering - Fabrication, Properties, Optics, and Devices XI CY AUG 19-20, 2014 CL San Diego, CA SP SPIE DE Microshutters; MEMS; mechanical testing; silicon nitride; digital image correlation; James Webb Space Telescope ID SILICON-NITRIDE AB A custom micro-mechanical test system was constructed using off-the-shelf components to characterize the mechanical properties of microshutters. Microshutters are rectangular microelectromechanical apertures which open and close about a narrow torsion bar hinge. Displacement measurements were verified using both capacitive and digital image correlation techniques. Repeatable experiments on Si3N4 cantilever beams verified that the test system operates consistently. Using beam theory, the modulus of elasticity of the low stress Si3N4 was approximately 150 GPa, though significant uncertainty exists for this measurement due primarily to imprecise knowledge of the cantilever thickness. Tests conducted on microshutter arrays concluded that reducing the Si3N4 thickness from 250 nm to 500 nm reduces the torsional stiffness by a factor of approximately four. This is in good agreement with analytical and finite element models of the microshutters. C1 [Burns, Devin E.; Jones, Justin S.; Li, Mary J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Burns, DE (reprint author), NASA, Goddard Space Flight Ctr, Code 916, Greenbelt, MD 20771 USA. NR 5 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-197-3 J9 PROC SPIE PY 2014 VL 9170 AR 917009 DI 10.1117/12.2060449 PG 8 WC Nanoscience & Nanotechnology; Optics SC Science & Technology - Other Topics; Optics GA BB5HM UT WOS:000343874400005 ER PT S AU Arnone, R Vandermeulen, R Ladner, SD Bowers, J Martinolich, P Fargion, G Ondrusek, M AF Arnone, R. Vandermeulen, R. Ladner, S. D. Bowers, J. Martinolich, P. Fargion, G. Ondrusek, M. BE Hou, WW Arnone, RA TI Sensitivity of calibration "gains" to ocean color processing in coastal and open waters using ensembles members for NPP-VIIRS SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE DE Satellite; SNPP VIIRS; Ocean Color; Optics; Validation; Vicarious Calibration ID VALIDATION; ALGORITHM; AERONET AB The sensitivity of ocean color products to variations in vicarious calibration gains at Top of Atmosphere (TOA) shows varying impacts in different water types for Suomi- NPP VIIRS. Blue water vicarious gains from MOBY in situ data, which is used for global open waters, and green water gains derived from complex coastal WaveCIS AERONET waters, have a different impact on spectral normalized water leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll). We evaluated the influence of gains from open and coastal waters by establishing a set of ensemble-processed products. The TOA gains show a non-linear impact on derived ocean color products, since gains affect multiple ocean color processing algorithms such as atmospheric correction, NIR iterations, etc. We show how the variations within the ensemble TOA gain members spatially impact derived products from different water types (high CDOM, high backscattering, etc). The difference in color products derived from the Blue and Green water gain show a spatial distribution to characterize the product uncertainty in coastal and open ocean water types. The results of the ensemble gain members are evaluated with in situ matchups. Results suggest the sensitivity of the ocean color processing for open ocean verses coastal waters. C1 [Arnone, R.; Vandermeulen, R.] Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. [Ladner, S. D.] Stennis Space Ctr, Naval Res Lab, Mississippi State, MS USA. [Bowers, J.; Martinolich, P.] Stennis Space Ctr, QinetiQ North Amer, Mississippi State, MS USA. [Fargion, G.] San Diego State Univ, San Diego, CA 92115 USA. [Ondrusek, M.] NOAA, NESDIS, College Pk, MD 20740 USA. RP Arnone, R (reprint author), Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. RI Ondrusek, Michael/F-5617-2010 OI Ondrusek, Michael/0000-0002-5311-9094 FU Navy; NOAA FX We acknowledge the support from Navy and NOAA sponsors. We appreciate NOAA CLASS for providing VIIRS data and the JPSS SDR team for contribution of the VIIRS weekly LUTS. We recognize the NASA AERONET - OC network and the MOBY team for providing quality data in a timely manner. NR 15 TC 4 Z9 4 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 911105 DI 10.1117/12.2053409 PG 7 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700003 ER PT S AU Cayula, JFP May, DA McKenzie, BD AF Cayula, Jean-Francois P. May, Douglas A. McKenzie, Bruce D. BE Hou, WW Arnone, RA TI Analysis of the VIIRS Cloud Mask, Comparison with the NAVOCEANO Cloud Mask, and How They Complement Each Other SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE DE SST; VIIRS; NAVOCEANO; cloud mask; NCM; VCM ID SEA-SURFACE TEMPERATURES AB The Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask (VCM) Intermediate Product (IP) has been developed for use with Suomi National Polar-orbiting Partnership (NPP) VIIRS Environmental Data Record (EDR) products. In particular, the VIIRS Sea Surface Temperature (SST) EDR relies on VCM to identify cloud contaminated observations. Unfortunately, VCM does not appear to perform as well as cloud detection algorithms for SST. This may be due to similar but different goals of the two algorithms. VCM is concerned with detecting clouds while SST is interested in identifying clear observations. The result is that in undetermined cases VCM defaults to "clear," while the SST cloud detection defaults to "cloud." This problem is further compounded because classic SST cloud detection often flags as "cloud" all types of corrupted data, thus making a comparison with VCM difficult. The Naval Oceanographic Office (NAVOCEANO), which operationally produces a VIIRS SST product, relies on cloud detection from the NAVOCEANO Cloud Mask (NCM), adapted from cloud detection schemes designed for SST processing. To analyze VCM, the NAVOCEANO SST process was modified to attach the VCM flags to all SST retrievals. Global statistics are computed for both day and night data. The cases where NCM and/or VCM tag data as cloud-contaminated or clear can then be investigated. By analyzing the VCM individual test flags in conjunction with the status of NCM, areas where VCM can complement NCM are identified. C1 [Cayula, Jean-Francois P.] Qinetiq North Amer, Stennis Space Ctr, 1103 Balch Blvd,Suite 218, Stennis Space Ctr, MS 39529 USA. [May, Douglas A.; McKenzie, Bruce D.] Naval Oceanograph Off, Stennis Space Ctr, Stennis Space Ctr, MS 39522 USA. RP Cayula, JFP (reprint author), Qinetiq North Amer, Stennis Space Ctr, 1103 Balch Blvd,Suite 218, Stennis Space Ctr, MS 39529 USA. EM j.cayula@ieee.org NR 8 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 91110D DI 10.1117/12.2053430 PG 9 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700011 ER PT S AU Church, P Hou, WL Fournier, G Dalgleish, F Butler, D Pari, S Jamieson, M Pike, D AF Church, Philip Hou, Weilin Fournier, Georges Dalgleish, Fraser Butler, Derek Pari, Sergio Jamieson, Michael Pike, David BE Hou, WW Arnone, RA TI Overview of a Hybrid Underwater Camera System SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE DE Sonar; Laser Range-gated camera; Underwater imaging; Turbidity AB The paper provides an overview of a Hybrid Underwater Camera (HUC) system combining sonar with a range-gated laser camera system. The sonar is the BlueView P900-45, operating at 900kHz with a field of view of 45 degrees and ranging capability of 60m. The range-gated laser camera system is based on the third generation LUCIE (Laser Underwater Camera Image Enhancer) sensor originally developed by the Defence Research and Development Canada. LUCIE uses an eye-safe laser generating 1ns pulses at a wavelength of 532nm and at the rate of 25kHz. An intensified CCD camera operates with a gating mechanism synchronized with the laser pulse. The gate opens to let the camera capture photons from a given range of interest and can be set from a minimum delay of 5ns with increments of 200ps. The output of the sensor is a 30Hz video signal. Automatic ranging is achieved using a sonar altimeter. The BlueView sonar and LUCIE sensors are integrated with an underwater computer that controls the sensors parameters and displays the real-time data for the sonar and the laser camera. As an initial step for data integration, graphics overlays representing the laser camera field-of-view along with the gate position and width are overlaid on the sonar display. The HUC system can be manually handled by a diver and can also be controlled from a surface vessel through an umbilical cord. Recent test data obtained from the HUC system operated in a controlled underwater environment will be presented along with measured performance characteristics. C1 [Church, Philip; Butler, Derek; Pari, Sergio; Jamieson, Michael; Pike, David] Neptec Technol Corp, 302 Legget Dr, Kanata, ON K2K IY5, Canada. [Hou, Weilin] Stennis Space Ctr, Naval Res Lab, Mississippi State, MS 39529 USA. [Fournier, Georges] Def R&D Canada, Quebec City G3J 1X5, PQ, Canada. [Dalgleish, Fraser] Florida Atlant Univ, Oceanograph Inst, Harbor Branch, Ocean Visibil & Optic Lab, Ft Pierce, FL 34946 USA. RP Church, P (reprint author), Neptec Technol Corp, 302 Legget Dr, Kanata, ON K2K IY5, Canada. NR 6 TC 1 Z9 1 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 91110O DI 10.1117/12.2053365 PG 7 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700017 ER PT S AU Kil, B Burrage, D Wesson, J Howden, S AF Kil, Bumjun Burrage, Derek Wesson, Joel Howden, Stephan BE Hou, WW Arnone, RA TI Relationship between sea surface salinity from L-band radiometer and optical features in the East China Sea SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE DE East China Sea; Sea surface salinity; Colored dissolved organic matter; Aquarius/SAC-D ID DISSOLVED ORGANIC-MATTER; LIGHT-ABSORPTION; WATERS; COEFFICIENTS; PARTICLES; ESTUARY; COASTAL; COLOR; OCEAN AB The East China Sea (ECS) is often obscured from space in the visible and near-visible bands by cloud cover, which prevents remote sensing retrieval of optical properties. However, clouds are transparent to microwaves, and satellites with L-band radiometers have recently been put into orbit to monitor sea surface salinity (SSS). Previous studies have used the mixing of fluvial colored dissolved organic matter (CDOM) near coasts, where the mixing is approximately conservative over short time scales, to estimate SSS. In this study, the usual relationship between CDOM and salinity in the ECS has been used in reverse to estimate CDOM from remotely sensed SSS in the ECS and compare that CDOM with MODIS data. The SSS data used are 7 day composites from NASA's Aquarius/SAC-D satellite which has an L-band radiometer. The challenges in using this approach are that 1) Aquarius SSS has coarse spatial resolution (150 km), and 2) the ECS has numerous anthropogenic sources of radiofrequency interference which adds noise to the L-band signal for the SSS retrievals. Despite the limits in the method, CDOM distribution in the ECS can be estimated under cloudy conditions. In addition to all-weather retrievals, an additional advantage of the approach is that the algorithm provides an estimate of CDOM absorption that is unaffected by the spectrally similar detritus absorption that can confound optical remote sensing estimates of CDOM. C1 [Kil, Bumjun; Howden, Stephan] Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. [Burrage, Derek; Wesson, Joel] Stennis Space Ctr, Naval Res Lab, Div Oceanography, Mississippi State, MS USA. RP Kil, B (reprint author), Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. FU Office of Naval Research as part of NRL's basic research project Sea Surface Roughness Impacts on Microwave Sea Surface Salinity Measurements ( SRIMS) under Program Element 61153N FX The Aquarius/ SAC-D data was provided by NASA Jet Propulsion Laboratory via Physical Oceanography Distributed Active Archive Center. The Aqua-MODIS data was provided via NASA Ocean color web. The KODC in situ salinity data was provided by Republic of Korea National Fisheries Research and Development Institute. The authors would like to thank Dr. Antonio Mannino in NASA Goddard Space Flight Center for providing the CDOM measurement, Dr. SeJong, Ju in Korea Institute of Ocean Science and Technology for providing ocean salinity measurement in the East China Sea via NASA SeaWiFS Bio-optical Archive and Storage System. The first author would like to thank Dr. Jerry Wiggert and Robert Arnone in the University of Southern Mississippi for good suggestions. And the first author gratefully acknowledges receipt of a student travel grant awarded by Society of Photographic Instrumentation Engineers. Work by the second and third author was supported by the Office of Naval Research as part of NRL's basic research project Sea Surface Roughness Impacts on Microwave Sea Surface Salinity Measurements ( SRIMS) under Program Element 61153N. This is NRL contribution NRL/PP/7330-14-2132. NR 30 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 91110A DI 10.1117/12.2052951 PG 12 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700008 ER PT S AU Ladner, SD Arnone, R Vandermeulen, R Martinolich, P Lawson, A Bowers, J Crouti, R Ondrusek, M Fargion, G AF Ladner, S. D. Arnone, R. Vandermeulen, R. Martinolich, P. Lawson, A. Bowers, J. Crouti, R. Ondrusek, M. Fargion, G. BE Hou, WW Arnone, RA TI Inter-Satellite Comparison and Evaluation of Navy SNPP-VIIRS and MODIS-Aqua Ocean Color Properties SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE DE Satellite; SNPP VIIRS; Ocean Color; Optics; Validation; Vicarious Calibration ID PRODUCTS; AERONET AB Navy operational ocean color products of inherent optical properties and radiances are evaluated for the Suomi-NPP VIIRS and MODIS-Aqua sensors. Statistical comparisons with shipboard measurements were determined in a wide variety of coastal, shelf and offshore locations in the Northern Gulf of Mexico during two cruises in 2013. Product consistency between MODIS-Aqua, nearing its end-of-life expectancy, and Suomi-NPP VIIRS is being evaluated for the Navy to retrieve accurate ocean color properties operationally from VIIRS in a variety of water types. Currently, the existence, accuracy and consistency of multiple ocean color sensors (VIIRS, MODIS-Aqua) provides multiple looks per day for monitoring the temporal and spatial variability of coastal waters. Consistent processing methods and algorithms are used in the Navy's Automated Processing System (APS) for both sensors for this evaluation. The inherent optical properties from both sensors are derived using a coupled ocean-atmosphere NIR correction extending well into the bays and estuaries where high sediment and CDOM absorption dominate the optical signature. Coastal optical properties are more complex and vary from chlorophyll-dominated waters offshore. The in-water optical properties were derived using vicariously calibrated remote sensing reflectances and the Quasi Analytical Algorithm (QAA) to derive the Inherent Optical Properties (IOP's). The Naval Research Laboratory (NRL) and the JPSS program have been actively engaged in calibration/validation activities for Visible Infrared Imager Radiometer Suite (VIIRS) ocean color products. C1 [Ladner, S. D.; Lawson, A.; Crouti, R.] Naval Res Lab, Stennis Space Ctr, MS 39529 USA. [Arnone, R.; Vandermeulen, R.] Univ Southern Mississippi, Stennis Space Ctr, Dept Marine Sci, Mississippi State, MS 39529 USA. [Martinolich, P.; Bowers, J.] Stennis Space Ctr, QinetiQ North Amer, Mississippi State, MS USA. [Ondrusek, M.] NOAA, NESDIS, College Pk, MD 20740 USA. [Fargion, G.] San Diego State Univ, San Diego, CA 92115 USA. RP Ladner, SD (reprint author), Naval Res Lab, Stennis Space Ctr, MS 39529 USA. RI Ondrusek, Michael/F-5617-2010 OI Ondrusek, Michael/0000-0002-5311-9094 FU Navy; NOAA FX We greatly appreciate the support we have received from our Navy and NOAA sponsors. Wesley Goode (NRL), Mike Ondrusek ( NOAA),Nima Pahlevan (UMASS) and ZhongPing Lee ( UMASS) is recognized for collecting, processing and providing in situ cruise data. We appreciate NAVO (VIIRS SDR AFWA) and NOAA CLASS for providing VIIRS and MODIS Aqua data in a timely manner and the JPSS SDR team for contribution of the VIIRS weekly LUTS. NR 21 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 911107 DI 10.1117/12.2053060 PG 9 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700005 ER PT S AU Ouyang, B Hou, WL Dalgleish, FR Caimi, FM Nootz, G Vuorenkoski, AK AF Ouyang, Bing Hou, Weilin Dalgleish, Fraser R. Caimi, Frank M. Nootz, Gero Vuorenkoski, Anni K. BE Hou, WW Arnone, RA TI Experimental studies of the compressive line sensing underwater serial imaging system SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE AB The compressive line sensing (CLS) imaging system adopts the paradigm of independently sensing each line and jointly reconstructing a group of lines. This system achieves "resource compression" and is compatible with the conventional push-broom line-by-line sensing mode. This paper discusses the development of a prototype system to enable the experimental study the CLS imaging system. The results from an initial turbidity cycle experiments are presented. C1 [Ouyang, Bing; Dalgleish, Fraser R.; Caimi, Frank M.; Vuorenkoski, Anni K.] Florida Atlantic Univ, Harbor Branch Oceanog Inst, 5600 US1 North, Ft Pierce, FL 34946 USA. [Hou, Weilin] Stennis Space Ctr, Naval Res Lab, Mississippi State, MS USA. [Nootz, Gero] Univ Circle I, Naval Post Grad Sch, Monterey, CA 93943 USA. RP Ouyang, B (reprint author), Florida Atlantic Univ, Harbor Branch Oceanog Inst, 5600 US1 North, Ft Pierce, FL 34946 USA. FU ONR [N000141210921]; AFOSR Young Investigator Program and HBOI internal fund FX This work was support by ONR grant N000141210921, 2013 AFOSR Young Investigator Program and HBOI internal fund. The authors want to thank Mr. Ben Metzger for the help during all phases of the experimental tests. NR 22 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 91110M DI 10.1117/12.2050691 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700015 ER PT S AU Turpie, KR Eplee, RE Franz, BA Del Castillo, C AF Turpie, Kevin R. Eplee, Robert E., Jr. Franz, Bryan A. Del Castillo, Carlos BE Hou, WW Arnone, RA TI Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE DE VIIRS; remote sensing; phytoplankton; ocean color; calibration; uncertainty; time series; climate data record ID CHLOROPHYLL; SEAWIFS; PRODUCTIVITY AB Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research. C1 [Turpie, Kevin R.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, 5523 Res Pk Dr 320, Baltimore, MD 21228 USA. [Eplee, Robert E., Jr.] Sci Applicat Int Corp, Beltsville, MD 20705 USA. [Franz, Bryan A.; Del Castillo, Carlos] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Turpie, KR (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, 5523 Res Pk Dr 320, Baltimore, MD 21228 USA. EM kevin.r.turpie@nasa.gov RI Franz, Bryan/D-6284-2012 OI Franz, Bryan/0000-0003-0293-2082 NR 17 TC 5 Z9 5 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 911103 DI 10.1117/12.2053427 PG 9 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700002 ER PT S AU Vandermeulen, RA Arnone, R Ladner, S Martinolich, P AF Vandermeulen, Ryan A. Arnone, Robert Ladner, Sherwin Martinolich, Paul BE Hou, WW Arnone, RA TI Estimating sea surface salinity in coastal waters of the Gulf of Mexico using visible channels on SNPP-VIIRS SO OCEAN SENSING AND MONITORING VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VI CY MAY 06-07, 2014 CL Baltimore, MA SP SPIE DE Sea surface salinity; Suomi-NPP; VIIRS; ocean color; coastal remote sensing ID DISSOLVED ORGANIC-MATTER; OPTICAL-PROPERTIES; ABSORPTION; ALGORITHM; CDOM AB Sea surface salinity is determined using the visible channels from the Visual Infrared Imaging Radiometer Suite (VIIRS) to derive regional algorithms for the Gulf of Mexico by normalizing to seasonal river discharge. The dilution of river discharge with open ocean waters and the surface salinity is estimated by tracking the surface spectral signature. The water leaving radiances derived from atmospherically-corrected and calibrated 750-m resolution visible M-bands (410, 443, 486, 551, 671 nm) are applied to bio-optical algorithms and subsequent multivariate statistical methods to derive regional empirical relationships between satellite radiances and surface salinity measurements. Although radiance to salinity is linked to CDOM dilution, we explored alternative statistical relationships to account for starting conditions. In situ measurements are obtained from several moorings spread across the Mississippi Sound and Mobile Bay, with a salinity range of 0.1 - 33. Data were collected over all seasons in the year 2013 in order to assess inter-annual variability. The seasonal spectral signatures at the river mouth were used to track the fresh water end members and used to develop a seasonal slope and bias between salinity and radiance. Results show an increased spatial resolution for remote detection of coastal sea surface salinity from space, compared to the Aquarius Microwave salinity. Characterizing the coastal surface salinity has a significant impact on the physical circulation which affects the coastal ecosystems. Results identify locations and dissipation of the river plumes and can provide direct data for assimilation into physical circulation models. C1 [Vandermeulen, Ryan A.; Arnone, Robert] Univ So Mississippi, Stennis Space Ctr, MS 39529 USA. [Ladner, Sherwin] Stennis Space Ctr, Naval Res Lab, Mississippi State, MS USA. [Martinolich, Paul] Stennis Space Ctr, QinetiQ North Amer, Mississippi State, MS USA. RP Vandermeulen, RA (reprint author), Univ So Mississippi, Stennis Space Ctr, MS 39529 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-048-8 J9 PROC SPIE PY 2014 VL 9111 AR UNSP 911109 DI 10.1117/12.2053417 PG 7 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BB5GR UT WOS:000343862700007 ER PT S AU DiPirro, M Tuttle, J Hait, T Shirron, P AF DiPirro, M. Tuttle, J. Hait, T. Shirron, P. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc AB We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope. C1 [DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.] NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, Greenbelt, MD 20771 USA. RP DiPirro, M (reprint author), NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, Greenbelt, MD 20771 USA. NR 3 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 110 EP 117 DI 10.1063/1.4860690 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400015 ER PT S AU Homan, J Redman, R Ganni, V Sidi-Yekhlef, A Knudsen, P Norton, R Lauterbach, J Linza, R Vargas, G AF Homan, J. Redman, R. Ganni, V. Sidi-Yekhlef, A. Knudsen, P. Norton, R. Lauterbach, J. Linza, R. Vargas, G. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber-A SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Large Scale Refrigerator; Floating Pressure; Space Environment Testing; NASA AB A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL's Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (23 metric tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the design, project execution and commissioning results. C1 [Homan, J.; Redman, R.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.] Thomas Jefferson Natl Accelerator Fac JLab, Newport News, VA 23606 USA. [Lauterbach, J.; Linza, R.; Vargas, G.] Jacobs Technol, Engn & Sci Grp JSC, Houston, TX 77058 USA. RP Homan, J (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 307 EP 314 DI 10.1063/1.4860716 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400041 ER PT S AU Homan, J Montz, M Ganni, V Sidi-Yekhlef, A Knudsen, P Garcia, S Garza, J AF Homan, J. Montz, M. Ganni, V. Sidi-Yekhlef, A. Knudsen, P. Garcia, S. Garza, J. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Nitrogen; cycles; refrigeration; natural flow; gravity flow; thermo-siphon AB NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or "shrouds") which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA's James Webb Space Telescope (JWST). Chamber A's previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system. C1 [Homan, J.; Montz, M.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.] Thomas Jefferson Natl Accelerator Fac JLab, Newport News, VA 23606 USA. [Garcia, S.; Garza, J.] Jacobs Technol, Engn & Sci Grp JSC, Houston, TX 77058 USA. RP Homan, J (reprint author), NASA, Johnson Space Ctr, Houston, TX 77058 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 345 EP 351 DI 10.1063/1.4860721 PG 7 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400046 ER PT S AU Boyle, R Marquardt, E AF Boyle, R. Marquardt, E. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI TIRS Cryocooler: Spacecraft Integration and Test and Early Flight Data SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE LDCM; Landsat; Thermal Infrared Sensor; TIRS; cryocooler; Stirling AB The Thermal Infrared Sensor (TIRS) is an instrument on Landsat 8, launched in February 2013. The focal plane is cooled by a two-stage Ball Aerospace Stirling cycle cryocooler, with a coldfinger operating at 40K. This paper describes events during the spacecraft integration and test program, and results from early orbit operation of the cryocooler. C1 [Boyle, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Marquardt, E.] Ball Aerosp Technol Corp, Boulder, CO 80301 USA. RP Boyle, R (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 352 EP 356 DI 10.1063/1.4860722 PG 5 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400047 ER PT S AU Demko, JA Fesmire, JE Johnson, WL Swanger, AM AF Demko, J. A. Fesmire, J. E. Johnson, W. L. Swanger, A. M. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Cryogenic Insulation Standard Data And Methodologies SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Thermal testing; insulation materials; cryostat; thermal conductivity; standards AB Although some standards exist for thermal insulation, few address the sub-ambient temperature range and cold-side temperatures below 100 K. Standards for cryogenic insulation systems require cryostat testing and data analysis that will allow the development of the tools needed by design engineers and thermal analysts for the design of practical cryogenic systems. Thus, this critically important information can provide reliable data and methodologies for industrial efficiency and energy conservation. Two Task Groups have been established in the area of cryogenic insulation systems Under ASTM International's Committee C16 on Thermal Insulation. These are WK29609 - New Standard for Thermal Performance Testing of Cryogenic Insulation Systems and WK29608 - Standard Practice for Multilayer Insulation in Cryogenic Service. The Cryogenics Test Laboratory of NASA Kennedy Space Center and the Thermal Energy Laboratory of LeTourneau University are conducting Inter- Laboratory Study (ILS) of selected insulation materials. Each lab carries out the measurements of thermal properties of these materials using identical flat- plate boil- off calorimeter instruments. Parallel testing will provide the comparisons necessary to validate the measurements and methodologies. Here we discuss test methods, some initial data in relation to the experimental approach, and the manner reporting the thermal performance data. This initial study of insulation materials for sub-ambient temperature applications is aimed at paving the way for further ILS comparative efforts that will produce standard data sets for several commercial materials. Discrepancies found between measurements will be used to improve the testing and data reduction techniques being developed as part of the future ASTM International standards. C1 [Demko, J. A.] LeTourneau Univ, 2100 South Mobberly Ave, Longview, TX 75607 USA. [Fesmire, J. E.; Johnson, W. L.; Swanger, A. M.] NASA, Kennedy Space Ctr, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. RP Demko, JA (reprint author), LeTourneau Univ, 2100 South Mobberly Ave, Longview, TX 75607 USA. FU National Aeronautics and Space Administration (NASA) Kennedy Space Center, Cryogenics Test Laboratory [NNX13AJ14G] FX Research sponsored by the National Aeronautics and Space Administration (NASA) Kennedy Space Center, Cryogenics Test Laboratory through Grant/Cooperative Agreement Number NNX13AJ14G. We would like to thank LeTourneau University for providing facilities and much needed support and to the LeTourneau mechanical engineering students, Cody Daniels, Peter Heitmann, and Christopher DeKastle for volunteering time to get this facility up and running. We also thank William Hassenzahl of Advanced Energy Analysis for providing review and many constructive comments on this work. NR 13 TC 1 Z9 1 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 463 EP 470 DI 10.1063/1.4860737 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400062 ER PT S AU Johnson, WL Kelly, AO Fesmire, JE AF Johnson, W. L. Kelly, A. O. Fesmire, J. E. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Thermal Degradation of Multilayer Insulation Due to the Presence of Penetrations SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Multilayer Insulation; Structural Integration; Boil-off Calorimetry AB Invented in the 1950s, cryogenic multilayer insulation (MLI) continues to be studied, tested, and analyzed as it represents a complex system that is integral with the total system to be insulated. Numerous tank and calorimeter tests have been performed using many different insulation approaches. Many different variables have been tested and documented, mainly within the insulation system itself. There are several factors in insulation application that can drive up the heat load on the entire system. These include the treatment of insulation seams, instrumentation wires running through the insulation, and the integration of the insulation with the structures and fluids. Several attempts have been made to identify the performance losses due to structural integration with a real system. Due to the nature of MLI, these were tied to specific programs and configuration dependent. In an effort to understand the complex heat transfer mechanisms surrounding such systems, a series of calorimeter testing coupled with thermal modeling of the calorimeter tests was put into place. Testing showed that a buffer of micro-fiberglass material such as Cryolite is a robust method of closing out MLI penetrations. Additionally, a validated thermal model was used to develop parametric analysis far beyond the limitations of the calorimeter testing. This paper presents the methodology and approach, with experimental data providing the basis for developing the thermal model and its results for applicability to future design cases. C1 [Johnson, W. L.; Kelly, A. O.; Fesmire, J. E.] NASA, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. RP Johnson, WL (reprint author), NASA, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. NR 7 TC 0 Z9 0 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 471 EP 478 DI 10.1063/1.4860738 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400063 ER PT S AU Johnson, WL Plachta, DW Rhys, NO Kelly, AO AF Johnson, W. L. Plachta, D. W. Rhys, N. O. Kelly, A. O. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Temperature Matching of Multilayer Insulation to Penetrations SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Multilayer Insulation; Structural Integration AB To accurately predict the heat load into a cryogenic tank or cold mass which includes multilayer insulation (MLI), heat loads other than just through the pristine MLI must be accounted for. One such type of heat load is the integration of the MLI system around penetrations. While a number of different methods that have been developed, the ideal solution would be one in which there are zero thermal losses due to the integration. Theoretically, the be st method to achieving zero integration losses is to match the individual MLI temperature layers with the corresponding penetration location having the same temperature; this method is known as temperature matching. Recently, NASA has employed temperature matching integration of multilayer insulation systems onto several different cryogenic tanks with different structural elements and attachments. T esting included the Methane Lunar Surface Thermal Control testing at Glenn Research Center, the CRYOTE Ground Test Article testing at Marshall Space Flight Center, and the Penetration Calorimetery work done at Kennedy Space Center. Each test was instrumented to determine the effects of temperature matching within MLI and each system was designed in a different manner. The testing showed that temperature matching can indeed produce nearly zero thermal losses. However, our findings show that there are many practical limitations to this approach. Temperature matching integration schemes were found to be very sensitive to thermal environmental changes and even tank liquid level changes. The approach is therefore considered useful only for a select few cases and not useful for most engineering applications. C1 [Johnson, W. L.; Kelly, A. O.] Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. [Plachta, D. W.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Rhys, N. O.] Yetispace Inc, Huntsville, AL 35802 USA. RP Johnson, WL (reprint author), Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. NR 9 TC 0 Z9 0 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 493 EP 499 DI 10.1063/1.4860741 PG 7 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400066 ER PT S AU Pathak, MG Helvensteijn, BP Patel, VC Ghiaasiaan, SM Mulcahey, TI Kashani, A Feller, JR AF Pathak, M. G. Helvensteijn, B. P. Patel, V. C. Ghiaasiaan, S. M. Mulcahey, T. I. Kashani, A. Feller, J. R. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Hydrodynamic Resistance Parameters for ErPr Rare-Earth Regenerator Material under Steady and Periodic Flow Conditions SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Regenerator; Porous Media; Periodic Flow; Oscillatory Flow; Cryogenic Physics; ErPr Rare; Earth; CFD; Darcy Permeability; Forchheimer Inertial; Hydrodynamic Resistance; Steady Flow; Pulse Tube; Cryocooler. ID CRYOCOOLER REGENERATORS; PULSE TUBE AB The regenerator, typically a microporous structure that is subject to periodic flow of a cryogenic fluid, is a critical component of pulse tube or Stirling cryocoolers, which are widely used for high-demand aerospace and defense applications. In this investigation, experiments were conducted in which steady and oscillatory flows of helium were imposed on ErPr rare-Earth regenerator filler material and mass flow and pressure drop data were recorded under ambient temperature conditions. A computational fluid dynamics (CFD)- assisted method was applied for the analysis and interpretation of the experimental data. The permeability and inertial coefficients that lead to agreement between the experimental data and computational simulations were iteratively obtained. The Darcy permeability and Forchheimer inertial coefficients were obtained and were found to be functions of the system charge pressure, operating frequency, and compressor piston stroke within the studied range of interest. The results also exhibit that the periodic flow hydrodynamic resistance parameters are in general different than steady flow parameters. C1 [Pathak, M. G.; Patel, V. C.; Ghiaasiaan, S. M.; Mulcahey, T. I.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Georgia Tech Cryo Lab, Atlanta, GA 30332 USA. [Helvensteijn, B. P.; Kashani, A.] Atlas Sci, San Jose, CA 95120 USA. [Feller, J. R.] NASA, Ames Res Ctr, Cryogen Grp, Moffett Field, CA 94035 USA. RP Pathak, MG (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Georgia Tech Cryo Lab, Atlanta, GA 30332 USA. FU NASA Office; Chief Technologist's Space Technology Research Fellowship FX This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship. Also, a special thank you goes to Dr. Ray Radebaugh for his advice. NR 18 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 555 EP 561 DI 10.1063/1.4860750 PG 7 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400075 ER PT S AU Tuttle, J Canavan, E DiPirro, M Li, X Knollenberg, P AF Tuttle, J. Canavan, E. DiPirro, M. Li, X. Knollenberg, P. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI The Total Hemispheric Emissivity Of Painted Aluminum Honeycomb At Cryogenic Temperatures SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE emissivity; total hemispheric emissivity; painted aluminum honeycomb; space flight radiators AB NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration. C1 [Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.] NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA. [Knollenberg, P.] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. RP Tuttle, J (reprint author), NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA. FU NASA's James Webb Space Telescope program FX This work was supported by NASA's James Webb Space Telescope program. NR 5 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 590 EP 596 DI 10.1063/1.4860755 PG 7 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400080 ER PT S AU Johnson, WL Kelly, AO Heckle, KW Jumper, KM Fesmire, JE AF Johnson, W. L. Kelly, A. O. Heckle, K. W. Jumper, K. M. Fesmire, J. E. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Calorimeter Testing of Thermal Degradation of Multilayer Insulation Due to the Presence of Penetrations SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Multilayer Insulation; Structural Integration; Boil-off Calorimetry ID REDUCE; CRACKS AB Cryogenic multilayer insulation (MLI) has been studied thoroughly over the last 60 years. Numerous tank and calorimeter tests have been performed using many different insulation approaches. However, a large majority of these tests have been on ideal or nearly ideal insulation systems. There are several important factors such as seams or penetrations through the insulation that can drive up the heat load on the entire system, for full system design, these factors must be accounted for. Several attempts have been made to identify the performance losses due to structural integration with a real system. These specific cases were tied to specific programs and configuration dependent. In an effort to understand the complex heat transfer mechanisms surrounding such systems, a calorimeter testing program coupled with thermal modeling of the experimental results tests was performed. A new boil-off calorimeter was developed for measurement of the two dimensional heat transfer effects. The corresponding methodology was devised to calculate the thermal losses within the MLI due to the presence of the penetration and determine the affected area within the blanket. The test matrix included multiple integration methods, materials, penetration materials, and penetrations sizes. Results of the testing were used to anchor a thermal model of the system that allows for characterization of a wider range of situations. C1 [Johnson, W. L.; Kelly, A. O.; Fesmire, J. E.] NASA, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. [Heckle, K. W.; Jumper, K. M.] Cryogen Test Lab, ESC, Kennedy Space Ctr, FL 32899 USA. RP Johnson, WL (reprint author), NASA, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. FU National Aeronautic; Space Administration's Cryogenic Propellant Storage; Transfer Technology Demonstration Mission FX This work was funded by the National Aeronautic and Space Administration's Cryogenic Propellant Storage and Transfer Technology Demonstration Mission. NR 12 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 701 EP 707 DI 10.1063/1.4860771 PG 7 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400096 ER PT S AU Kashani, A Ponizhovskaya, E Luchinsky, D Smelyanskiy, V Sass, J Brown, B Patterson-Hine, A AF Kashani, Ali Ponizhovskaya, Ekaterina Luchinsky, Dmitry Smelyanskiy, Vadim Sass, Jared Brown, Barbara Patterson-Hine, Anna BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Physics Based Model for Online Fault Detection in Autonomous Cryogenic Loading System SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc AB We report the progress in the development of the chilldown model for a rapid cryogenic loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDA/FLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDA/FLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation. C1 [Kashani, Ali] Atlas Sci, San Jose, CA 95120 USA. [Ponizhovskaya, Ekaterina] BSGT Inc, Greenbelt, MD USA. [Luchinsky, Dmitry; Sass, Jared; Brown, Barbara] Miss Crit Technol Inc, El Segundo, CA USA. [Smelyanskiy, Vadim; Patterson-Hine, Anna] NASA, Ames Res Ctr, Moffett Field, CA USA. NASA, Kennedy Space Ctr, Moffett Field, CA USA. RP Kashani, A (reprint author), Atlas Sci, San Jose, CA 95120 USA. NR 5 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 1305 EP 1310 DI 10.1063/1.4860857 PG 6 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400182 ER PT S AU Fesmire, JE Tomsik, TM Bonner, T Oliveira, JM Conyers, HJ Johnson, WL Notardonato, WU AF Fesmire, J. E. Tomsik, T. M. Bonner, T. Oliveira, J. M. Conyers, H. J. Johnson, W. L. Notardonato, W. U. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Integrated Heat Exchanger Design for a Cryogenic Storage Tank SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Liquid hydrogen; cryofuels; heat exchanger; refrigeration; cryocooler; densified propellants ID LIQUID-HYDROGEN; SYSTEM AB Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications. C1 [Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U.] NASA, Kennedy Space Ctr, Cryogen Test Lab, NE F6, Kennedy Space Ctr, FL 32899 USA. [Tomsik, T. M.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Conyers, H. J.] NASA, Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA. RP Fesmire, JE (reprint author), NASA, Kennedy Space Ctr, Cryogen Test Lab, NE F6, Kennedy Space Ctr, FL 32899 USA. NR 5 TC 4 Z9 4 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 1365 EP 1372 DI 10.1063/1.4860865 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400190 ER PT S AU Johnson, WL Cook, CR AF Johnson, W. L. Cook, C. R. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Thermodynamic Processes Associated With Frostbite in the Handling of Liquid Nitrogen SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Personal Protective Equipment; Frostbite; Liquid Nitrogen Handling AB It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection. C1 [Johnson, W. L.] NASA, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. [Cook, C. R.] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. RP Johnson, WL (reprint author), NASA, Cryogen Test Lab, Kennedy Space Ctr, FL 32899 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 1567 EP 1573 DI 10.1063/1.4860893 PG 7 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400218 ER PT S AU Johnson, DL Lysek, MJ Morookian, JM AF Johnson, Dean L. Lysek, Mark J. Morookian, John Michael BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI The Ricor K508 Cryocooler Operational Experience on Mars SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Ricor K508; Stirling cooler; CheMin; X-Ray Diffraction; X-Ray Fluorescence AB The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from -90 degrees C to 0 degrees C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20 degrees C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data. C1 [Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Johnson, DL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 1792 EP 1799 DI 10.1063/1.4860925 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400250 ER PT S AU Paine, CG AF Paine, Christopher G. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Thermal Performance Testing of Two Thales 9310 Pulse-tube Cryocoolers for PHyTIR SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Thales cryocooler; cryocooler performance AB PHyTIR is a NASA-funded technology demonstration for a near-term earth-observing instrument in the thermal infrared spectrum, intended for use in the HyspIRI mission. PHyTIR will use two Thales 9310 single-stage pulse tube cryocoolers, one to directly cool the FPA, the other to simulate a passive radiator. We report performance measurements for the two Thales 9310 cryocoolers intended for inclusion in the PHyTIR demonstrator. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Paine, CG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 1800 EP 1805 DI 10.1063/1.4860926 PG 6 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400251 ER PT S AU Johnson, DL Rodriguez, JI Carroll, BA Bustamante, JG Kirkconnell, CS Luong, TT Murphy, JB Haley, MF AF Johnson, Dean L. Rodriguez, Jose I. Carroll, Brian A. Bustamante, John G. Kirkconnell, Carl S. Luong, Thomas. T. Murphy, J. B. Haley, Michael F. BE Weisend, JG Breon, S Demko, J DiPirro, M Fesmire, J Kittel, P Klebaner, A Marquardt, J Nellis, G Peterson, T Pfotenhauer, J Yuan, S Zagarola, M Zeller, A TI Integrated Testing of the Thales LPT9510 Pulse Tube Cooler and the Iris LCCE Electronics SO ADVANCES IN CRYOGENIC ENGINEERING SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference (CEC) / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc AB The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to + 40C during characterization testing. The cooler was placed on a force dynamometer to measure the self-generated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here. C1 [Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Bustamante, John G.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Kirkconnell, Carl S.; Luong, Thomas. T.; Murphy, J. B.; Haley, Michael F.] Iris Technol, Irvine, CA 92616 USA. RP Johnson, DL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA JPL Earth Science Directorate through an agreement with the National Aeronautics and Space Administration FX The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the NASA JPL Earth Science Directorate through an agreement with the National Aeronautics and Space Administration. NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1202-6 J9 AIP CONF PROC PY 2014 VL 1573 BP 1806 EP 1813 DI 10.1063/1.4860927 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB4VM UT WOS:000343409400252 ER PT S AU Koltz, MT Rorie, RC Robles, J Vu, KPL Marayong, P Strybel, TZ Battiste, V AF Koltz, Martin T. Rorie, R. Conrad Robles, Jose Vu, Kim-Phuong L. Marayong, Panadda Strybel, Thomas Z. Battiste, Vernol BE Yamamoto, S TI Effects of Type and Strength of Force Feedback on the Path of Movement in a Target Selection Task SO HUMAN INTERFACE AND THE MANAGEMENT OF INFORMATION: INFORMATION AND KNOWLEDGE DESIGN AND EVALUATION, PT I SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th International Conference on Human-Computer Interaction (HCI) CY JUN 22-27, 2014 CL Heraklion, GREECE DE Haptic and Tactile interaction; Multimodal interaction; Force Feedback; Input Devices AB New flight deck technologies being developed under the proposed NextGen National Airspace System will require precise and efficient input from flight crews. The benefits of force feedback for these types of inputs in terms of a reduction in overall movement times have been shown in the past; however, an important component of input efficiency is the path taken by the cursor. The present study investigates the effects of multiple levels of two types of force feedback (gravitational and spring forces) on the path of movement for a target selection task. Mean square error from an ideal straight line path and cursor speeds in terms of the distance from the target were measured. Results suggest that increasing the gravitational force has an effect on path error at short distances and produces higher cursor speeds as the target is approached. C1 [Koltz, Martin T.; Robles, Jose; Vu, Kim-Phuong L.; Marayong, Panadda; Strybel, Thomas Z.] Calif State Univ Long Beach, Ctr Human Factors Adv Aeronaut Technol, Long Beach, CA 90840 USA. [Rorie, R. Conrad; Battiste, Vernol] San Jose State Univ, NASA, Ames Res Ctr, San Jose, CA USA. RP Koltz, MT (reprint author), Calif State Univ Long Beach, Ctr Human Factors Adv Aeronaut Technol, Long Beach, CA 90840 USA. EM mkoltz2@gmail.com; conrad.rorie@nasa.gov; jjvrobles@gmail.com; kvu8@csulb.edu; Panadda.Marayong@csulb.edu; thomas.strybel@csulb.edu; Vernol.Battiste-@nasa.gov FU NASA [NNX09AU66A]; Group 5 University Research Center: Center for Human Factors in Advanced Aeronautics Technologies ( Brenda Collins, Technical Monitor) FX This project was supported by NASA cooperative agreement NNX09AU66A, Group 5 University Research Center: Center for Human Factors in Advanced Aeronautics Technologies ( Brenda Collins, Technical Monitor). NR 11 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-07731-4; 978-3-319-07730-7 J9 LECT NOTES COMPUT SC PY 2014 VL 8521 BP 217 EP 225 PG 9 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB4VY UT WOS:000343413900022 ER PT S AU Bardin, JC Ravindran, P Chang, SW Mohamed, C Kumar, R Stern, JA Shaw, MD Russell, D Marsili, F Resta, G Farr, WH AF Bardin, Joseph C. Ravindran, Prasana Chang, Su-Wei Mohamed, Charif Kumar, Raghavan Stern, Jeffrey A. Shaw, Matthew D. Russell, Damon Marsili, Francesco Resta, Giovanni Farr, William H. BE Itzler, MA Campbell, JC TI Cryogenic SiGe Integrated Circuits for Superconducting Nanowire Single Photon Detector Readout SO ADVANCED PHOTON COUNTING TECHNIQUES VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advanced Photon Counting Techniques VIII CY MAY 07-08, 2014 CL Baltimore, MD SP SPIE DE Cryogenic integrated circuits; silicon germanium; SiGe; superconducting nanowire single photon detector; SNSPD ID SPACE AB There is a growing interest in developing systems employing large arrays of SNSPDs. To make such instruments practical, it is desirable to perform signal processing before transporting the detector outputs to room temperature. We present a cryogenic eight-channel pixel combiner circuit designed to amplify, digitize, edge detect, and combine the output signals of an array of eight SNSPDs. The circuit has been fabricated and measurement results agree well with expectation. The paper will conclude with a summary of ongoing work and future directions. C1 [Bardin, Joseph C.; Ravindran, Prasana; Chang, Su-Wei; Mohamed, Charif; Kumar, Raghavan] Univ Massachusetts, 100 Nat Resources Rd,Marcus 201, Amherst, MA 01003 USA. [Stern, Jeffrey A.; Shaw, Matthew D.; Russell, Damon; Marsili, Francesco; Resta, Giovanni; Farr, William H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Bardin, JC (reprint author), Univ Massachusetts, 100 Nat Resources Rd,Marcus 201, Amherst, MA 01003 USA. EM jbardin@ecs.umass.edu NR 9 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-051-8 J9 PROC SPIE PY 2014 VL 9114 AR UNSP 911404 DI 10.1117/12.2053200 PG 8 WC Optics SC Optics GA BB3YO UT WOS:000343107600002 ER PT S AU Sun, XL Abshire, JB Beck, JD AF Sun, Xiaoli Abshire, James B. Beck, Jeffrey D. BE Itzler, MA Campbell, JC TI HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications SO ADVANCED PHOTON COUNTING TECHNIQUES VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advanced Photon Counting Techniques VIII CY MAY 07-08, 2014 CL Baltimore, MD SP SPIE DE HgCdTe; APD; single photon detector; lidar AB A multi-element HgCdTe electron initiated avalanche photodiode (e-APD) array has been developed for space lidar applications. The detector array was fabricated with 4.3-mu m cutoff HgCdTe which covered a spectral response from 0.4 to 4.3 mu m. We have characterized a 4x4 detector array with 80 mu m square elements and an integrated custom cryogenic silicon read-out integrated circuit (ROIC). The device operated at 77K inside a small closed-cycle Dewar. Measurements showed a unity gain quantum efficiency of about 90% at 1.55 mu m. The bulk dark current of the HgCdTe e-APD at 77K was less than 50,000 input referred electrons/s at 12 V APD bias where the APD gain was 620 and the measured noise equivalent power (NEP) was 0.4 fW/Hz(1/2). The electrical bandwidth of the ROIC was about 6 MHz, which was chosen to match the laser pulse width of our CO2 lidar. Even with the relatively low bandwidth, the high APD gain and low dark current enabled the device to detect single photon events. Because the APD was biased below the break-down voltage, the detector output was linear with the input optical signal and there was no dead-time and afterpulsing. A new series of HgCdTe e-APDs are being developed with a much wider bandwidth ROIC and higher gain HgCdTe e-APD array, which is expected to give a much better performance in linear mode photon counting applications. C1 [Sun, Xiaoli; Abshire, James B.] NASA, Goddard Space Flight Ctr, Code 694-690, Greenbelt, MD 20771 USA. [Beck, Jeffrey D.] BDRS C4ISR Grp, Dallas, TX 75374 USA. RP Sun, XL (reprint author), NASA, Goddard Space Flight Ctr, Code 694-690, Greenbelt, MD 20771 USA. EM Xiaoli.sun-1@nasa.gov FU NASA ESTO FX This work was supported by the NASA ESTO IIP program that is managed by Parminder Ghuman and Irene Bibyk. NR 8 TC 5 Z9 5 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-051-8 J9 PROC SPIE PY 2014 VL 9114 AR UNSP 91140K DI 10.1117/12.2053757 PG 10 WC Optics SC Optics GA BB3YO UT WOS:000343107600011 ER PT S AU Kopp, G Belting, C Castleman, Z Drake, G Espejo, J Heuerman, K Lamprecht, B Lanzi, J Smith, P Stuchlik, D Vermeer, B AF Kopp, Greg Belting, Chris Castleman, Zach Drake, Ginger Espejo, Joey Heuerman, Karl Lamprecht, Bret Lanzi, James Smith, Paul Stuchlik, David Vermeer, Bill BE VelezReyes, M Kruse, FA TI First results from the Hyper Spectral Imager for Climate Science (HySICS) SO ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX SE Proceedings of SPIE LA English DT Proceedings Paper CT 20th SPIE Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery CY MAY 05-07, 2014 CL Baltimore, MD SP SPIE DE Hyperspectral imaging; climate change; radiometry; spectrometry AB The 2007 National Research Council Decadal Survey for Earth Science identified needed measurements to improve understanding of the Earth's climate system, recommending acquiring Earth spectral radiances with an unprecedented 0.2% absolute radiometric accuracy to track long-term climate change and to improve climate models and predictions. Current space-based imagers have radiometric uncertainties of 2% or higher limited by the high degradation uncertainties of onboard solar diffusers or calibration lamps or by vicarious ground scenes viewed through the Earth's atmosphere. The HyperSpectral Imager for Climate Science (HySICS) is a spatial/spectral imaging spectrometer with an emphasis on radiometric accuracy for such long-term climate studies based on Earth-reflected visible and near-infrared radiances. The HySICS's accuracy is provided by direct views of the Sun, which is more stable and better characterized than traditional flight calibration sources. Two high-altitude balloon flights provided by NASA's Wallops Flight Facility and NASA's Columbia Scientific Balloon Facility are intended to demonstrate the instrument's 10x improvement in radiometric accuracy over existing instruments. We present the results of the first of these flights, during which measurements of the Sun, Earth, and lunar crescent were acquired from 37 km altitude. Covering the entire 350-2300 nm spectral region needed for shortwave Earth remote sensing with the Hy SICS's single, flight-heritage detector array promises mass, cost, and size advantages for eventual space- and air-borne missions. A 6 nm spectral resolution with a 0.5 km spatial resolution from low Earth orbit helps in determinations of atmospheric composition, land usage, vegetation, and ocean color. C1 [Kopp, Greg; Belting, Chris; Castleman, Zach; Drake, Ginger; Espejo, Joey; Heuerman, Karl; Lamprecht, Bret; Smith, Paul; Vermeer, Bill] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Lamprecht, Bret; Lanzi, James; Stuchlik, David] NASA, Wallops Flight Facil, Wallops Isl, VA USA. RP Kopp, G (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. NR 10 TC 1 Z9 1 U1 2 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-025-9 J9 PROC SPIE PY 2014 VL 9088 AR UNSP 90880Q DI 10.1117/12.2053426 PG 10 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BB4BH UT WOS:000343126000022 ER PT J AU Kelley, MC Rodrigues, FS Pfaff, RF Klenzing, J AF Kelley, M. C. Rodrigues, F. S. Pfaff, R. F. Klenzing, J. TI Observations of the generation of eastward equatorial electric fields near dawn SO ANNALES GEOPHYSICAE LA English DT Article DE Ionosphere; electric fields and currents; equatorial ionosphere ID MAGNETIC-DECLINATION CONTROL; F-REGION DYNAMO; SPREAD-F; 2-DIMENSIONAL TURBULENCE; IONOSPHERE; DEPENDENCE; DRIFTS AB We report and discuss interesting observations of the variability of electric fields and ionospheric densities near sunrise in the equatorial ionosphere made by instruments onboard the Communications/Navigation Outage Forecasting System (C/NOFS) satellite over six consecutive orbits. Electric field measurements were made by the Vector Electric Field Instrument (VEFI), and ionospheric plasma densities were measured by Planar Langmuir Probe (PLP). The data were obtained on 17 June 2008, a period of solar minimum conditions. Deep depletions in the equatorial plasma density were observed just before sunrise on three orbits, for which one of these depletions was accompanied by a very large eastward electric field associated with the density depletion, as previously described by de La Beaujardiere et al. (2009), Su et al. (2009) and Burke et al. (2009). The origin of this large eastward field (positive upward/meridional drift), which occurred when that component of the field is usually small and westward, is thought to be due to a large-scale Rayleigh-Taylor process. On three subsequent orbits, however, a distinctly different, second type of relationship between the electric field and plasma density near dawn was observed. Enhancements of the eastward electric field were also detected, one of them peaking around 3 mV m(-1), but they were found to the east (later local time) of pre-dawn density perturbations. These observations represent sunrise enhancements of vertical drifts accompanied by eastward drifts such as those observed by the San Marco satellite (Aggson et al., 1995). Like the San Marco measurements, the enhancements occurred during winter solstice and low solar flux conditions in the Pacific longitude sector. While the evening equatorial ionosphere is believed to present the most dramatic examples of variability, our observations exemplify that the dawn sector can be highly variable as well. C1 [Kelley, M. C.] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA. [Rodrigues, F. S.] Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75083 USA. [Pfaff, R. F.; Klenzing, J.] NASA, Goddard Space Flight Ctr, Space Weather Lab Code 674, Greenbelt, MD 20771 USA. RP Kelley, MC (reprint author), Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA. EM mikek@ece.cornell.edu RI Klenzing, Jeff/E-2406-2011 OI Klenzing, Jeff/0000-0001-8321-6074 FU National Science Foundation [ATM-0551107]; NSF [AGS-1261107] FX Work at Cornell was supported by the National Science Foundation under grant ATM-0551107. F. S. Rodrigues was supported by NSF AGS-1261107. The authors would like to thank Patrick Roddy and the Air Force Research Laboratory (AFRL) for providing the PLP density data, and Roderick Heelis for helpful discussions. NR 26 TC 2 Z9 2 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 EI 1432-0576 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PY 2014 VL 32 IS 9 BP 1169 EP 1175 DI 10.5194/angeo-32-1169-2014 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA AQ8WX UT WOS:000343120600009 ER PT J AU Hamann, U Walther, A Baum, B Bennartz, R Bugliaro, L Derrien, M Francis, PN Heidinger, A Joro, S Kniffka, A Le Gleau, H Lockhoff, M Lutz, HJ Meirink, JF Minnis, P Palikonda, R Roebeling, R Thoss, A Platnick, S Watts, P Wind, G AF Hamann, U. Walther, A. Baum, B. Bennartz, R. Bugliaro, L. Derrien, M. Francis, P. N. Heidinger, A. Joro, S. Kniffka, A. Le Gleau, H. Lockhoff, M. Lutz, H. -J. Meirink, J. F. Minnis, P. Palikonda, R. Roebeling, R. Thoss, A. Platnick, S. Watts, P. Wind, G. TI Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID BULK SCATTERING PROPERTIES; METEOROLOGICAL SATELLITE IMAGERS; ICE CLOUDS; OPTICAL-PROPERTIES; RAPID CALIBRATION; SOLAR CHANNELS; DUST DETECTION; WATER CLOUDS; SOUNDER DATA; MODIS DATA AB The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 km lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0.90. The average CTHs derived by the SEVIRI algorithms are closer to the CPR measurements than to CALIOP measurements. The biases between SEVIRI and CPR retrievals range from -0.8 km to 0.6 km. The correlation coefficients of CPR and SEVIRI observations vary between 0.82 and 0.89. To discuss the origin of the CTH deviation, we investigate three cloud categories: optically thin and thick single layer as well as multi-layer clouds. For optically thick clouds the correlation coefficients between the SEVIRI and the reference data sets are usually above 0.95. For optically thin single layer clouds the correlation coefficients are still above 0.92. For this cloud category the SEVIRI algorithms yield CTHs that are lower than CALIOP and similar to CPR observations. Most challenging are the multi-layer clouds, where the correlation coefficients are for most algorithms between 0.6 and 0.8. Finally, we evaluate the performance of the SEVIRI retrievals for boundary layer clouds. While the CTH retrieval for this cloud type is relatively accurate, there are still considerable differences between the algorithms. These are related to the uncertainties and limited vertical resolution of the assumed temperature profiles in combination with the presence of temperature inversions, which lead to ambiguities in the CTH retrieval. Alternative approaches for the CTH retrieval of low clouds are discussed. C1 [Hamann, U.; Meirink, J. F.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Hamann, U.] MeteoSwiss, Locarno, Switzerland. [Walther, A.; Baum, B.; Bennartz, R.] Univ Wisconsin, Madison, WI USA. [Bennartz, R.] Vanderbilt Univ, Nashville, TN 37235 USA. [Bugliaro, L.] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany. [Derrien, M.; Le Gleau, H.] Meteo France, Lannion, France. [Francis, P. N.] Met Off, Exeter, Devon, England. [Heidinger, A.] NOAA, Ctr Satellite Applicat & Res, NESDIS, Madison, WI USA. [Joro, S.; Lutz, H. -J.; Roebeling, R.; Watts, P.] EUMETSAT, Darmstadt, Germany. [Kniffka, A.; Lockhoff, M.] Deutsch Wetterdienst DWD, Offenbach, Germany. [Minnis, P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Palikonda, R.] Sci Syst & Applicat Inc, Hampton, VA USA. [Platnick, S.; Wind, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thoss, A.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. RP Hamann, U (reprint author), Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. EM ulrich.hamann@meteoswiss.ch RI Francis, Peter/H-9352-2013; Baum, Bryan/B-7670-2011; Bugliaro, Luca/C-9579-2016; Hamann, Ulrich/G-5388-2016; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010 OI Francis, Peter/0000-0002-5869-803X; Baum, Bryan/0000-0002-7193-2767; Bugliaro, Luca/0000-0003-4793-0101; Hamann, Ulrich/0000-0001-8091-722X; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X FU EUMETSAT FX This work was done in the framework of a EUMETSAT fellowship named CLOUDSTATE. We like to thank EUMETSAT for the funding of this fellowship and the Cloud Retrieval Evaluation Workshops. We thank the ICARE Data and Services Center (http://www.icare-lille1.fr) for providing computing support and access to the data used in these studies and for general support to the CREW project. We thank Frank Fell and EUMETSAT for providing the AVAC-S software that was used extensively for this research. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position, policy or decision. NR 110 TC 7 Z9 8 U1 2 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 9 BP 2839 EP 2867 DI 10.5194/amt-7-2839-2014 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8WR UT WOS:000343119600004 ER PT J AU Vasilkov, A Joiner, J Seftor, C AF Vasilkov, A. Joiner, J. Seftor, C. TI First results from a rotational Raman scattering cloud algorithm applied to the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID MONITORING INSTRUMENT; RADIATIVE-TRANSFER; PRESSURE; RETRIEVALS; SPECTRA; SENSORS; OXYGEN; UV AB This paper reports initial results from an Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper cloud pressure and cloud fraction algorithm. The OMPS cloud products are intended for use in OMPS ozone or other trace-gas algorithms. We developed the OMPS cloud products using a heritage algorithm developed for the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The cloud pressure algorithm utilizes the filling-in of ultraviolet solar Fraunhofer lines by rotational Raman scattering. The OMPS cloud products are evaluated by comparison with OMI cloud products that have been compared in turn with other collocated satellite data including cloud optical thickness profiles derived from a combination of measurements from the CloudSat radar and MODerate-resolution Imaging Spectroradiometer (MODIS). We find that the probability density functions (PDFs) of effective cloud fraction retrieved from OMPS and OMI measurements are very similar. The PDFs of the OMPS and OMI cloud pressures are comparable. However, OMPS retrieves somewhat higher pressures on average. The current NASA total ozone retrieval algorithm makes use of a monthly gridded cloud pressure climatology developed from OMI. This climatology captures much of the variability associated with the relevant cloud pressures. However, the use of actual cloud pressures retrieved with OMPS in place of the OMI climatology changes OMPS total column ozone estimates locally (presumably in the correct direction) only in areas with large differences between climatological and actual cloud pressures. The ozone differences can be up to 5% in such areas. C1 [Vasilkov, A.; Seftor, C.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Joiner, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Vasilkov, A (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA. EM alexander.vasilkov@ssaihq.com FU NASA NPP Science Team for Climate Data Records program [NNH10ZDA001N]; NASA FX Funding for this work was provided in part by the NASA NPP Science Team for Climate Data Records program (NNH10ZDA001N) managed by Diane Wickland; we significantly leveraged our algorithm development experience funded by the NASA Aura science team. We thank P. K. Bhartia, R. D. McPeters, N. Krotkov, and K. Yang for helpful discussions. We particularly thank Jason Li for processing OMPS data used for comparisons of OMPS and OMI total ozone. NR 28 TC 3 Z9 3 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 9 BP 2897 EP 2906 DI 10.5194/amt-7-2897-2014 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8WR UT WOS:000343119600007 ER PT J AU Saad, KM Wunch, D Toon, GC Bernath, P Boone, C Connor, B Deutscher, NM Griffith, DWT Kivi, R Notholt, J Roehl, C Schneider, M Sherlock, V Wennberg, PO AF Saad, K. M. Wunch, D. Toon, G. C. Bernath, P. Boone, C. Connor, B. Deutscher, N. M. Griffith, D. W. T. Kivi, R. Notholt, J. Roehl, C. Schneider, M. Sherlock, V. Wennberg, P. O. TI Derivation of tropospheric methane from TCCON CH4 and HF total column observations SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID OBSERVING NETWORK; MOLE FRACTIONS; FTS; VALIDATION; FTIR; SPECTROMETRY; SPACE; CO2 AB The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CH4). Temporal variability in the total column of CH4 due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CH4 sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CH4 derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CH4 because it is strongly correlated to CH4 in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CH4 is calculated as a function of the zonal and annual trends in the relationship between CH4 and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CH4 column averaging kernel to estimate the contribution of stratospheric CH4 to the total column. The resulting tropospheric CH4 columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere. C1 [Saad, K. M.; Wunch, D.; Toon, G. C.; Roehl, C.; Wennberg, P. O.] CALTECH, Pasadena, CA 91125 USA. [Toon, G. C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bernath, P.] Old Dominion Univ, Norfolk, VA USA. [Boone, C.] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. [Connor, B.] BC Consulting Ltd, Alexandra, New Zealand. [Deutscher, N. M.; Griffith, D. W. T.] Univ Wollongong, Wollongong, NSW, Australia. [Deutscher, N. M.; Notholt, J.] Univ Bremen, D-28359 Bremen, Germany. [Kivi, R.] Finnish Meteorol Inst, Sodankyla, Finland. [Schneider, M.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Sherlock, V.] Natl Inst Water & Atmospher Res, Wellington, New Zealand. RP Saad, KM (reprint author), CALTECH, Pasadena, CA 91125 USA. EM katsaad@caltech.edu RI Bernath, Peter/B-6567-2012; Deutscher, Nicholas/E-3683-2015; Schneider, Matthias/B-1441-2013; Notholt, Justus/P-4520-2016 OI Bernath, Peter/0000-0002-1255-396X; Deutscher, Nicholas/0000-0002-2906-2577; Notholt, Justus/0000-0002-3324-885X FU NASA's Carbon Cycle Science program [NNX10AT83G]; NASA [NNX11AG01G, NAG5-12247, NNG05-GD07G]; NASA Orbiting Carbon Observatory Program; GEOMON; InGOS; IMECC; New Zealand Foundation of Research Science and Technology [CO1X0204, CO1X0703, CO1X0406]; NIWA's Atmosphere Research Programme [3]; Australian Research Council [DP0879468, LP0562346]; Canadian Space Agency; US Department of Energy, Office of Science, Office of Biological and Environmental Research FX Support for this research was received from NASA's Carbon Cycle Science program (NNX10AT83G, James Randerson, PI). Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. US funding for TCCON comes from NASA grants NNX11AG01G, NAG5-12247, NNG05-GD07G, and NASA Orbiting Carbon Observatory Program. We are grateful to the DOE ARM program for technical support in Lamont and Darwin and Jeff Ayers for technical support in Park Falls. European funding is from GEOMON, InGOS, and IMECC. From 2004 to 2011 the Lauder TCCON program was funded by the New Zealand Foundation of Research Science and Technology contracts CO1X0204, CO1X0703 and CO1X0406. Since 2011 the program has been funded by NIWA's Atmosphere Research Programme 3 (2011/13 Statement of Corporate Intent). Australian funding is from the Australian Research Council, DP0879468 and LP0562346. Funding for the ACE-FTS mission is primarily provided by the Canadian Space Agency. NCEP Reanalysis data are provided by NOAA/OAR/ESRL PSD. SGP aircraft flask data were obtained through the ARM Program sponsored by the US Department of Energy, Office of Science, Office of Biological and Environmental Research and were generated by NOAA-ESRL, Carbon Cycle Greenhouse Gases Group. Baring Head NIWA surface data were provided courtesy of Gordon Brailsford, Dave Lowe and Ross Martin. We would also acknowledge the contributions of in situ vertical profiles from the HIPPO, IMECC, INTEX, Learjet, and START08 campaigns. Color schemes for Figs. 1 and 3 are from Brewer, Cynthia A., 200x. http://www.ColorBrewer.org. NR 26 TC 12 Z9 12 U1 0 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 9 BP 2907 EP 2918 DI 10.5194/amt-7-2907-2014 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8WR UT WOS:000343119600008 ER PT J AU Inoue, M Morino, I Uchino, O Miyamoto, Y Saeki, T Yoshida, Y Yokota, T Sweeney, C Tans, PP Biraud, SC Machida, T Pittman, JV Kort, EA Tanaka, T Kawakami, S Sawa, Y Tsuboi, K Matsueda, H AF Inoue, M. Morino, I. Uchino, O. Miyamoto, Y. Saeki, T. Yoshida, Y. Yokota, T. Sweeney, C. Tans, P. P. Biraud, S. C. Machida, T. Pittman, J. V. Kort, E. A. Tanaka, T. Kawakami, S. Sawa, Y. Tsuboi, K. Matsueda, H. TI Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID FOURIER-TRANSFORM SPECTROMETER; GASES OBSERVING SATELLITE; ATMOSPHERIC METHANE; TROPOSPHERIC METHANE; CARBON-DIOXIDE; RETRIEVAL ALGORITHM; COMMERCIAL AIRLINES; INFRARED-SPECTRA; CH4 MEASUREMENTS; MOLE FRACTIONS AB Column-averaged dry-air mole fractions of methane (XCH4), retrieved from Greenhouse gases Observing SATellite (GOSAT) short-wavelength infrared (SWIR) spectra, were validated by using aircraft measurement data from the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the HIAPER Pole-to-Pole Observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. In the calculation of XCH4 from aircraft measurements (aircraft-based XCH4), other satellite data were used for the CH4 profiles above the tropopause. We proposed a data-screening scheme for aircraft-based XCH4 for reliable validation of GOSAT XCH4. Further, we examined the impact of GOSAT SWIR column averaging kernels (CAK) on the aircraft-based XCH4 calculation and found that the difference between aircraft-based XCH4 with and without the application of the GOSAT CAK was less than +/- 9 ppb at maximum, with an average difference of -0.5 ppb. We compared GOSAT XCH4 Ver. 02.00 data retrieved within +/- 2 degrees or +/- 5 degrees latitude-longitude boxes centered at each aircraft measurement site with aircraft-based XCH4 measured on a GOSAT overpass day. In general, GOSAT XCH4 was in good agreement with aircraft-based XCH4. However, over land, the GOSAT data showed a positive bias of 1.5 ppb (2.0 ppb) with a standard deviation of 14.9 ppb (16.0 ppb) within the +/- 2 degrees (+/- 5 degrees) boxes, and over ocean, the average bias was 4.1 ppb (6.5 ppb) with a standard deviation of 9.4 ppb (8.8 ppb) within the +/- 2 degrees (+/- 5 degrees) boxes. In addition, we obtained similar results when we used an aircraft-based XCH4 time series obtained by curve fitting with temporal interpolation for comparison with GOSAT data. C1 [Inoue, M.; Morino, I.; Uchino, O.; Saeki, T.; Yoshida, Y.; Yokota, T.; Machida, T.; Tanaka, T.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Miyamoto, Y.] Okayama Univ, Grad Sch Nat Sci & Technol, Okayama 7008530, Japan. [Sweeney, C.; Tans, P. P.] NOAA, Boulder, CO USA. [Biraud, S. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Pittman, J. V.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Kort, E. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kawakami, S.] Japan Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki, Japan. [Sawa, Y.; Tsuboi, K.; Matsueda, H.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. RP Inoue, M (reprint author), Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. EM inoue.makoto@nies.go.jp RI Morino, Isamu/K-1033-2014; Kort, Eric/F-9942-2012; Inoue, Makoto/M-8505-2014; Biraud, Sebastien/M-5267-2013 OI Morino, Isamu/0000-0003-2720-1569; Kort, Eric/0000-0003-4940-7541; Inoue, Makoto/0000-0002-6826-5334; Biraud, Sebastien/0000-0001-7697-933X FU Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF); Canadian Space Agency (CSA); Ministry of the Environment, Japan [2A-1102] FX DOE flights were supported by the Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of the Atmospheric Radiation Measurement Program (ARM), ARM Aerial Facility, and Terrestrial Ecosystem Science Program. We also thank the HIPPO team members for CH4 profile data from HIPPO missions and Steven C. Wofsy at Harvard University for helpful suggestions. The HIPPO program is supported by the National Science Foundation (NSF), and its operations are managed by the Earth Observing Laboratory (EOL) of the National Center for Atmospheric Research (NCAR). We also acknowledge the Canadian Space Agency (CSA), which provides most funding support for ACE. We are grateful to the HALOE team for publishing their data for scientific use. TCCON data were obtained from the TCCON Data Archive, operated by the California Institute of Technology (http://tccon.ipac.caltech.edu/). US support for TCCON retrieval software and the development of these data comes from NASA's Carbon Cycle Science Program and NASA's OCO-2 project. We are grateful to the DOE ARM program for technical support in Lamont and Jeff Ayers for technical support in Park Falls. This research was supported in part by the Environment Research and Technology Development Fund (2A-1102) of the Ministry of the Environment, Japan. NR 59 TC 9 Z9 9 U1 0 U2 14 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 9 BP 2987 EP 3005 DI 10.5194/amt-7-2987-2014 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8WR UT WOS:000343119600014 ER PT J AU Sawamura, P Muller, D Hoff, RM Hostetler, CA Ferrare, RA Hair, JW Rogers, RR Anderson, BE Ziemba, LD Beyersdorf, AJ Thornhill, KL Winstead, EL Holben, BN AF Sawamura, P. Mueller, D. Hoff, R. M. Hostetler, C. A. Ferrare, R. A. Hair, J. W. Rogers, R. R. Anderson, B. E. Ziemba, L. D. Beyersdorf, A. J. Thornhill, K. L. Winstead, E. L. Holben, B. N. TI Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set - DISCOVER-AQ 2011 SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID SINGLE-SCATTERING ALBEDO; SKY RADIANCE MEASUREMENTS; RAMAN-LIDAR; PARTICLE PARAMETERS; RELATIVE-HUMIDITY; TROPOSPHERIC AEROSOL; IN-SITU; HYGROSCOPIC GROWTH; LINEAR-ESTIMATION; ASIAN DUST AB Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies. C1 [Sawamura, P.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Rogers, R. R.; Anderson, B. E.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Sawamura, P.; Hoff, R. M.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Mueller, D.] Univ Hertfordshire, Hatfield AL10 9AB, Herts, England. [Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sawamura, P.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Sawamura, P (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM patricia.sawamura@nasa.gov RI MUELLER, DETLEF/F-1010-2015 OI MUELLER, DETLEF/0000-0002-0203-7654 FU NASA DISCOVER-AQ [NNX10AR38G] FX This work was funded by grant NNX10AR38G (NASA DISCOVER-AQ). NR 67 TC 1 Z9 1 U1 2 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 9 BP 3095 EP 3112 DI 10.5194/amt-7-3095-2014 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8WR UT WOS:000343119600021 ER PT J AU Herman, RL Cherry, JE Young, J Welker, JM Noone, D Kulawik, SS Worden, J AF Herman, R. L. Cherry, J. E. Young, J. Welker, J. M. Noone, D. Kulawik, S. S. Worden, J. TI Aircraft validation of Aura Tropospheric Emission Spectrometer retrievals of HDO/H2O SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID STRATOSPHERIC DEUTERATED WATER; RING-DOWN SPECTROSCOPY; INFRARED SOLAR SPECTRA; HDO MEASUREMENTS; DELTA-D; VAPOR ISOTOPOLOGUES; NADIR RETRIEVALS; IMG/ADEOS DATA; ERROR ANALYSIS; PROFILES AB The EOS (Earth Observing System) Aura Tropospheric Emission Spectrometer (TES) retrieves the atmospheric HDO/H2O ratio in the mid-to-lower troposphere as well as the planetary boundary layer. TES observations of water vapor and the HDO isotopologue have been compared with nearly coincident in situ airborne measurements for direct validation of the TES products. The field measurements were made with a commercially available Picarro L1115-i isotopic water analyzer on aircraft over the Alaskan interior boreal forest during the three summers of 2011 to 2013. TES special observations were utilized in these comparisons. The TES averaging kernels and a priori constraints have been applied to the in situ data, using version 5 (V005) of the TES data. TES calculated errors are compared with the standard deviation (1 sigma) of scan-to-scan variability to check consistency with the TES observation error. Spatial and temporal variations are assessed from the in situ aircraft measurements. It is found that the standard deviation of scan-to-scan variability of TES delta D is +/- 34.1% in the boundary layer and +/- 26.5% in the free troposphere. This scan-to-scan variability is consistent with the TES estimated error (observation error) of 10-18% after accounting for the atmospheric variations along the TES track of +/- 16% in the boundary layer, increasing to +/- 30% in the free troposphere observed by the aircraft in situ measurements. We estimate that TES V005 delta D is biased high by an amount that decreases with pressure: approximately +123% at 1000 hPa, +98% in the boundary layer and +37% in the free troposphere. The uncertainty in this bias estimate is +/- 20 parts per thousand. A correction for this bias has been applied to the TES HDO Lite Product data set. After bias correction, we show that TES has accurate sensitivity to water vapor isotopologues in the boundary layer. C1 [Herman, R. L.; Worden, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cherry, J. E.; Young, J.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Cherry, J. E.] Univ Alaska Fairbanks, Inst Northern Engn, Fairbanks, AK USA. [Welker, J. M.] Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK USA. [Noone, D.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Noone, D.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Kulawik, S. S.] Bay Area Environm Res Inst, Mountain View, CA USA. RP Herman, RL (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM robert.l.herman@jpl.nasa.gov FU NASA Aura Program; National Science Foundation EAGER [ARC-1332274]; National Science Foundation RAPID [PLR-1342455]; NSF MRI [0976553] FX The authors would like to thank T. von Clarmann, M. Luo, and two anonymous reviewers for helpful comments on this paper. We also thank B. Fisher for scheduling TES special observations. Support for R. Herman was provided by the NASA Aura Program. Participation by J. Cherry and J. Young was supported by the Jet Propulsion Laboratory (P.O. 1458171) and National Science Foundation EAGER Award Number ARC-1332274. Alaskan flights were supported by the National Science Foundation RAPID Award Number PLR-1342455. Thanks to Kirst Aviation and Arctic Aviation for their assistance in the data collection. The Alaskan aircraft Picarro water vapor unit was provided by NSF MRI (0976553), awarded to J. Welker. Part of the research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 46 TC 7 Z9 7 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 9 BP 3127 EP 3138 DI 10.5194/amt-7-3127-2014 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8WR UT WOS:000343119600023 ER PT J AU Fahey, DW Gao, RS Mohler, O Saathoff, H Schiller, C Ebert, V Kramer, M Peter, T Amarouche, N Avallone, LM Bauer, R Bozoki, Z Christensen, LE Davis, SM Durry, G Dyroff, C Herman, RL Hunsmann, S Khaykin, SM Mackrodt, P Meyer, J Smith, JB Spelten, N Troy, RF Vomel, H Wagner, S Wienhold, FG AF Fahey, D. W. Gao, R. -S. Moehler, O. Saathoff, H. Schiller, C. Ebert, V. Kraemer, M. Peter, T. Amarouche, N. Avallone, L. M. Bauer, R. Bozoki, Z. Christensen, L. E. Davis, S. M. Durry, G. Dyroff, C. Herman, R. L. Hunsmann, S. Khaykin, S. M. Mackrodt, P. Meyer, J. Smith, J. B. Spelten, N. Troy, R. F. Voemel, H. Wagner, S. Wienhold, F. G. TI The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID CHILLED-MIRROR HYGROMETER; DIODE-LASER SPECTROMETER; AEROSOL CHAMBER AIDA; CIRRUS CLOUDS; MU-M; ABSORPTION SPECTROMETER; ICE SUPERSATURATIONS; TROPICAL TROPOPAUSE; VALIDATION; H2O AB The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m(3), multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about +/- 10% (+/- 1 sigma). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of +/- 20% (+/- 1 sigma). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the substantially larger differences observed during in-flight intercomparisons stem from other factors associated with the moving platforms or the non-laboratory environment. The success of AquaVIT-1 provides a template for future intercomparison efforts with water vapor or other species that are focused on improving the analytical quality of atmospheric measurements on moving platforms. C1 [Fahey, D. W.; Gao, R. -S.; Davis, S. M.; Voemel, H.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Davis, S. M.; Voemel, H.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Moehler, O.; Saathoff, H.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Atmospher Aerosol Res IMK AAF, D-76021 Karlsruhe, Germany. [Schiller, C.; Kraemer, M.; Bauer, R.; Meyer, J.; Spelten, N.] Forschungszentrum Julich, Stratosphere IEK 7, Inst Energy & Climate Res, D-52425 Julich, Germany. [Ebert, V.; Hunsmann, S.; Mackrodt, P.; Wagner, S.] Heidelberg Univ, PCI, Heidelberg, Germany. [Ebert, V.] PTB, Natl Metrol Inst Germany, Braunschweig, Germany. [Ebert, V.; Wagner, S.] Tech Univ Darmstadt, CSI, Darmstadt, Germany. [Peter, T.; Wienhold, F. G.] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Amarouche, N.] UPS 855 CNRS, Inst Natl Sci Univers, Div Tech, Meudon, France. [Avallone, L. M.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Bozoki, Z.] Univ Szeged, MTA SZTE Res Grp Photoacoust Spect, Szeged, Hungary. [Christensen, L. E.; Herman, R. L.; Troy, R. F.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Durry, G.] Univ Reims, UMR CNRS 7331, Grp Spectrometrie Mol & Atmospher, Reims, France. [Dyroff, C.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Atmospher Trace Gases & Remote Sensing IMK ASF, D-76021 Karlsruhe, Germany. [Khaykin, S. M.] Cent Aerol Observ, Moscow, Russia. [Smith, J. B.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Fahey, DW (reprint author), NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. EM david.w.fahey@noaa.gov RI Saathoff, Harald/J-8911-2012; Gao, Ru-Shan/H-7455-2013; Davis, Sean/C-9570-2011; Wagner, Steven/H-3433-2015; Schiller, Cornelius/B-1004-2013; Mohler, Ottmar/J-9426-2012; Fahey, David/G-4499-2013; Kramer, Martina/A-7482-2013; Manager, CSD Publications/B-2789-2015; OI Davis, Sean/0000-0001-9276-6158; Wagner, Steven/0000-0002-1504-9259; Fahey, David/0000-0003-1720-0634; zoltan, Bozoki/0000-0003-3638-9524 FU OTKA Foundation from the Hungarian Research and Technology Innovation Fund [NN109679]; NASA Atmospheric Composition Focus FX The success of the AquaVIT-1 campaign derived significantly from the excellent support of the staff scientists and technicians at the AIDA facility led by O. Mohler and H. Saathoff. R. Bauer of Forschungszentrum Julich, Julich, Germany, provided support for the AquaVIT-1 wiki page. Travel support for the referees (D. W. Fahey and R. S. Gao) and some investigator groups was provided by the EU project EUROCHAMP; by SPARC - a core project of the world climate research program; and by the Institute for Meteorology and Climate Research of Karlsruhe, Germany. The NASA Upper Atmospheric Research Program also provided travel support for some USA participants. Elliot Weinstock is gratefully acknowledged for his valuable assistance with the HWV measurements. Ulrich Krieger and Martin Brabec are gratefully acknowledged for their help with SnowWhite. Z. Bozoki was partially supported by the OTKA Foundation from the Hungarian Research and Technology Innovation Fund (project number: NN109679).; This research and participation of JLH in AquaVIT-1 were supported by the NASA Atmospheric Composition Focus. The research described here was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. (Copyright 2009 California Institute of Technology. Government sponsorship acknowledged.) NR 80 TC 28 Z9 28 U1 1 U2 19 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2014 VL 7 IS 9 BP 3177 EP 3213 DI 10.5194/amt-7-3177-2014 PG 37 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8WR UT WOS:000343119600026 ER PT S AU Kramer, LJ Harrison, SJ Bailey, RE Shelton, KJ Ellis, KKE AF Kramer, Lynda J. Harrison, Stephanie J. Bailey, Randall E. Shelton, Kevin J. Ellis, Kyle K. E. BE Guell, JJ SandersReed, J TI Visual advantage of enhanced flight vision system during NextGen flight test evaluation SO DEGRADED VISUAL ENVIRONMENTS: ENHANCED, SYNTHETIC, AND EXTERNAL VISION SOLUTIONS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT 20th Conference on Degraded Visual Environments - Enhanced, Synthetic, and External Vision Solutions CY MAY 07-08, 2014 CL Baltimore, MD SP SPIE DE FLIR; enhanced flight vision system; enhanced vision; visual advantage; NextGen; flight tests AB Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision. C1 [Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K. E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Kramer, LJ (reprint author), NASA, Langley Res Ctr, MS 152,24 West Taylor St, Hampton, VA 23681 USA. EM lynda.j.kramer@nasa.gov NR 11 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-024-2 J9 PROC SPIE PY 2014 VL 9087 AR 90870G DI 10.1117/12.2045087 PG 18 WC Optics SC Optics GA BB4AR UT WOS:000343121000012 ER PT S AU Shelton, KJ Williams, SP Kramer, LJ Arthur, JJ Prinzel, L Bailey, RE AF Shelton, Kevin J. Williams, Steven P. Kramer, Lynda J. Arthur, Jarvis (Trey) J. Prinzel, Lawrence (Lance), III Bailey, Randall E. BE Guell, JJ SandersReed, J TI External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation SO DEGRADED VISUAL ENVIRONMENTS: ENHANCED, SYNTHETIC, AND EXTERNAL VISION SOLUTIONS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT 20th Conference on Degraded Visual Environments - Enhanced, Synthetic, and External Vision Solutions CY MAY 07-08, 2014 CL Baltimore, MD SP SPIE DE External Vision System; XVS; Enhanced Vision; Supersonics Research; High Speed Research; Low-Boom AB NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date. C1 [Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis (Trey) J.; Prinzel, Lawrence (Lance), III; Bailey, Randall E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Shelton, KJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM kevin.j.shelton@nasa.gov NR 5 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-024-2 J9 PROC SPIE PY 2014 VL 9087 AR 90870F DI 10.1117/12.2048395 PG 14 WC Optics SC Optics GA BB4AR UT WOS:000343121000011 ER PT S AU Bjorner, D Havelund, K AF Bjorner, Dines Havelund, Klaus BE Jones, C Pihlajasaari, P Sun, J TI 40 Years of Formal Methods Some Obstacles and Some Possibilities? SO FM 2014: FORMAL METHODS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 19th International Symposium on Formal Methods (FM) CY MAY 12-16, 2014 CL Natl Univ Singapore, Singapore, SINGAPORE SP Formal Methods Europe, Nanyang Technol Univ, Singapore UNiv Technol & Design, IPAL, French Singapore Joint Res Lab HO Natl Univ Singapore ID VERIFICATION; SPECIFICATION; EXPRESSIONS; SYSTEMS AB In this "40 years of formal methods" essay we shall first delineate, Sect. 1, what we mean by method, formal method, computer science, computing science, software engineering, and model-oriented and algebraic methods. Based on this, we shall characterize a spectrum from specification-oriented methods to analysis-oriented methods. Then, Sect. 2, we shall provide a "survey": which are the 'prerequisite works' that have enabled formal methods, Sect. 2.1, and which are, to us, the, by now, classical 'formal methods', Sect. 2.2. We then ask ourselves the question: have formal methods for software development, in the sense of this paper been successful? Our answer is, regretfully, no! We motivate this answer, in Sect. 3.2, by discussing eight obstacles or hindrances to the proper integration of formal methods in university research and education as well as in industry practice. This "looking back" is complemented, in Sect. 3.4, by a "looking forward" at some promising developments besides the alleviation of the (eighth or more) hindrances! C1 [Bjorner, Dines] Tech Univ Denmark, DK-2800 Lyngby, Denmark. [Havelund, Klaus] Calif Inst Techn, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bjorner, D (reprint author), Fredsvej 11, DK-2840 Holte, Denmark. EM bjorner@gmail.com; klaus.havelund@jpl.nasa.gov NR 151 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-06410-9; 978-3-319-06409-3 J9 LECT NOTES COMPUT SC PY 2014 VL 8442 BP 42 EP 61 PG 20 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB3SZ UT WOS:000343040100004 ER PT S AU Denman, W Munoz, C AF Denman, William Munoz, Cesar BE Jones, C Pihlajasaari, P Sun, J TI Automated Real Proving in PVS via MetiTarski SO FM 2014: FORMAL METHODS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 19th International Symposium on Formal Methods (FM) CY MAY 12-16, 2014 CL Natl Univ Singapore, Singapore, SINGAPORE SP Formal Methods Europe, Nanyang Technol Univ, Singapore UNiv Technol & Design, IPAL, French Singapore Joint Res Lab HO Natl Univ Singapore AB This paper reports the development of a proof strategy that integrates the MetiTarski theorem prover as a trusted external decision procedure into the PVS theorem prover. The strategy automatically discharges PVS sequents containing real-valued formulas, including transcendental and special functions, by translating the sequents into first order formulas and submitting them to MetiTarski. The new strategy is considerably faster and more powerful than other strategies for nonlinear arithmetic available to PVS. C1 [Denman, William] Univ Cambridge, Comp Lab, Cambridge CB2 1TN, England. [Munoz, Cesar] NASA, Langley Res Ctr, Los Angeles, CA USA. RP Denman, W (reprint author), Univ Cambridge, Comp Lab, Cambridge CB2 1TN, England. EM wd239@cam.ac.uk; cesar.a.munoz@nasa.gov FU SRI International, under NSF [CNS-0917375]; Engineering and Physical Sciences Research Council [EP/I011005/1, EP/I010335/1]; Assurance of Flight Critical System's project of NASA's Aviation Safety Program at Langley Research Center [NNL09AA00A] FX Research supported by SRI International, under NSF Grant CNS-0917375, and Engineering and Physical Sciences Research Council, under grants EP/I011005/1 and EP/I010335/1. Author would like to thank the National Institute of Aerospace for a short visit supported by the Assurance of Flight Critical System's project of NASA's Aviation Safety Program at Langley Research Center under Research Cooperative Agreement No. NNL09AA00A. NR 8 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-06410-9; 978-3-319-06409-3 J9 LECT NOTES COMPUT SC PY 2014 VL 8442 BP 194 EP 199 PG 6 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB3SZ UT WOS:000343040100014 ER PT S AU Duggirala, PS Wang, L Mitra, S Viswanathan, M Munoz, C AF Duggirala, Parasara Sridhar Wang, Le Mitra, Sayan Viswanathan, Mahesh Munoz, Cesar BE Jones, C Pihlajasaari, P Sun, J TI Temporal Precedence Checking for Switched Models and Its Application to a Parallel Landing Protocol SO FM 2014: FORMAL METHODS SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 19th International Symposium on Formal Methods (FM) CY MAY 12-16, 2014 CL Natl Univ Singapore, Singapore, SINGAPORE SP Formal Methods Europe, Nanyang Technol Univ, Singapore UNiv Technol & Design, IPAL, French Singapore Joint Res Lab HO Natl Univ Singapore ID SYSTEMS AB This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation. C1 [Duggirala, Parasara Sridhar; Wang, Le; Mitra, Sayan; Viswanathan, Mahesh] Univ Illinois, Urbana, IL 61801 USA. [Munoz, Cesar] NASA, Washington, DC USA. RP Duggirala, PS (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM duggira3@illinois.edu; lewang2@illinois.edu; mitras@illinois.edu; vmahesh@illinois.edu; cesar.a.munoz@nasa.gov FU NSF CSR [1016791]; US AFOSR [FA9550-12-1-0336] FX The authors at University of Illinois Urbana Champaign were supported by grants NSF CSR 1016791 and US AFOSR FA9550-12-1-0336. NR 13 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-06410-9; 978-3-319-06409-3 J9 LECT NOTES COMPUT SC PY 2014 VL 8442 BP 215 EP 229 PG 15 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB3SZ UT WOS:000343040100016 ER PT J AU Ryser, C Luthi, MP Andrews, LC Hoffman, MJ Catania, GA Hawley, RL Neumann, TA Kristensen, SS AF Ryser, Claudia Luethi, Martin P. Andrews, Lauren C. Hoffman, Matthew J. Catania, Ginny A. Hawley, Robert L. Neumann, Thomas A. Kristensen, Steen S. TI Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation SO JOURNAL OF GLACIOLOGY LA English DT Article DE Arctic glaciology; ice dynamics; ice rheology ID ABLATION ZONE; JAKOBSHAVN ISBRAE; FLOW; GLACIER; CLIMATE; ACCELERATION; STREAMS; WATER AB Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73% in winter, and up to 90% in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models. C1 [Ryser, Claudia; Luethi, Martin P.] ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol, VAW, CH-8092 Zurich, Switzerland. [Andrews, Lauren C.; Catania, Ginny A.] Univ Texas Austin, Inst Geophys, Austin, TX 78712 USA. [Andrews, Lauren C.; Catania, Ginny A.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Hoffman, Matthew J.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM USA. [Hawley, Robert L.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Neumann, Thomas A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kristensen, Steen S.] Tech Univ Denmark, Natl Space Inst, DK-2800 Lyngby, Denmark. RP Ryser, C (reprint author), ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol, VAW, CH-8092 Zurich, Switzerland. EM ryser@vaw.baug.ethz.ch RI Catania, Ginny/B-9787-2008; Andrews, Lauren/D-8274-2017 OI Andrews, Lauren/0000-0003-3727-4737 FU Swiss National Science Foundation [200021_127197]; US National Science Foundation [OPP 0908156, OPP 0909454, ANT-0424589]; NASA Cryospheric Sciences; Climate Modeling Programs within US Department of Energy Office of Science; NASA HQ FX We thank several people who were essential in this project: Cornelius Senn, Edi Imhof, Thomas Wyder, Martin Funk, Andreas Bauder, Christian Birchler, Michael Meier, Blaine Moriss and Fabian Walter. This project was supported by Swiss National Science Foundation grant 200021_127197, US National Science Foundation grants OPP 0908156, OPP 0909454 and ANT-0424589 (to CReSIS), NASA Cryospheric Sciences, and Climate Modeling Programs within the US Department of Energy Office of Science. Logistical support was provided by CH2M HILL Polar Services. GPS receivers were provided by UNAVCO. We also acknowledge the help of pilots and airport cargo staff of Air Greenland in Ilulissat. We thank 'Microwave and Remote Sensing, DTU Space, the Technical University of Denmark' for providing bedrock topography data of the area. We acknowledge the use of Rapid Response imagery from the Land Atmosphere Near-real time Capability for EOS (LANCE) system operated by the NASA Goddard Space Flight Center's Earth Science Data and Information System (ESDIS) with funding provided by NASA HQ. NR 36 TC 17 Z9 17 U1 0 U2 8 PU INT GLACIOL SOC PI CAMBRIDGE PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PY 2014 VL 60 IS 222 BP 647 EP 660 DI 10.3189/2014JoG13J196 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AR0OV UT WOS:000343272100004 ER PT J AU Dow, CF Kavanaugh, JL Sanders, JW Cuffey, KM AF Dow, Christine F. Kavanaugh, Jeffrey L. Sanders, Johnny W. Cuffey, Kurt M. TI A test of common assumptions used to infer subglacial water flow through overdeepenings SO JOURNAL OF GLACIOLOGY LA English DT Article DE glacier flow; glacier hydrology; glacier modelling; mountain glaciers; subglacial processes ID DIGITAL ELEVATION MODELS; FREEZE-ON MECHANISM; RICH BASAL ICE; CIRQUE GLACIER; DRAINAGE PATTERN; LEVEL VARIATIONS; PRESSURE; SVALBARD; SYSTEM; BED AB Borehole instrument records from a cirque glacier with an overdeepened bed are examined to assess the validity of widely held glacial hydrological assumptions. At this glacier, hydraulic-potential calculations suggest water below overburden pressure will flow into the overdeepening, where the steepness of the riegel causes water to pool in the basin and increase in pressure. Our subglacial water pressure data also show high consistent pressures in the overdeepening and the presence of an active, variable-pressure drainage system towards the margin of the cirque. Therefore, we find that although uniform hydraulic-potential calculations are not directly applicable, they can still be useful for interpretation of the subglacial hydrological system. We also examine supercooling assumptions under different pressure and temperature regimes for water flowing over a riegel, driven using our borehole records of subglacial water temperatures that are consistently above the pressure-melting point during the late melt season. Our results show that even a slight increase in basal temperatures relative to the local pressure-melting point is sufficient to prevent a reduction in basal hydraulic conductivity as a result of supercooling freeze-on. C1 [Dow, Christine F.] Swansea Univ, Coll Sci, Glaciol Grp, Swansea, W Glam, Wales. [Dow, Christine F.; Kavanaugh, Jeffrey L.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada. [Sanders, Johnny W.; Cuffey, Kurt M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Cuffey, Kurt M.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. RP Dow, CF (reprint author), NASA Goddard Space Flight, Cryospher Sci Lab, Greenbelt, MD 20771 USA. EM christine.f.dow@nasa.gov FU National Science and Engineering Research Council of Canada; US National Science Foundation [NSF GLD-0518608]; Canadian Circumpolar Institute; University of Alberta; Alberta Ingenuity Fund; UK Natural Environment Research Council FX This research was funded by the National Science and Engineering Research Council of Canada, the US National Science Foundation (grant No. NSF GLD-0518608 to K.M.C.), the Canadian Circumpolar Institute and the University of Alberta. C.F.D. was funded by the Alberta Ingenuity Fund and a UK Natural Environment Research Council doctoral scholarship. We thank the British Columbia Ministry of Agriculture and Lands for permission to conduct fieldwork in the study area, and J. Beckers for assistance in the field. NR 43 TC 2 Z9 2 U1 3 U2 7 PU INT GLACIOL SOC PI CAMBRIDGE PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PY 2014 VL 60 IS 222 BP 725 EP 734 DI 10.3189/2014JoG14J027 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AR0OV UT WOS:000343272100011 ER PT J AU van Wessem, JM Reijmer, CH Morlighem, M Mouginot, J Rignot, E Medley, B Joughin, I Wouters, B Depoorter, MA Bamber, JL Lenaerts, JTM van de Berg, WJ van den Broeke, MR van Meijgaard, E AF van Wessem, J. M. Reijmer, C. H. Morlighem, M. Mouginot, J. Rignot, E. Medley, B. Joughin, I. Wouters, B. Depoorter, M. A. Bamber, J. L. Lenaerts, J. T. M. van de Berg, W. J. van den Broeke, M. R. van Meijgaard, E. TI Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model SO JOURNAL OF GLACIOLOGY LA English DT Article DE accumulation; atmosphere/ice/ocean interactions; ice and climate; ice velocity; surface mass budget ID GREENLAND ICE-SHEET; RADAR INTERFEROMETRY; SNOW; VARIABILITY; PRECIPITATION; RESOLUTION; SYSTEM; IMPACT; GRACE; WIND AB This study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44 Gt a(-1)), with a small change in West Antarctica. This mainly results from an increase in precipitation, which is explained by changes in the cloud microphysics, including a new parameterization for ice cloud supersaturation, and changes in large-scale circulation patterns, which alter topographically forced precipitation. The spatial changes in SMB are evaluated using 3234 in situ SMB observations and ice-balance velocities, and the temporal variability using GRACE satellite retrievals. The in situ observations and balance velocities show a clear improvement of the spatial representation of the SMB in the interior of East Antarctica, which has become considerably wetter. No improvements are seen for West Antarctica and the coastal regions. A comparison of model SMB temporal variability with GRACE satellite retrievals shows no significant change in performance. C1 [van Wessem, J. M.; Reijmer, C. H.; Lenaerts, J. T. M.; van de Berg, W. J.; van den Broeke, M. R.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Utrecht, Netherlands. [Morlighem, M.; Mouginot, J.; Rignot, E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Medley, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Joughin, I.] Univ Washington, Polar Sci Ctr, Appl Phys Lab, Seattle, WA 98195 USA. [Wouters, B.; Depoorter, M. A.; Bamber, J. L.] Univ Bristol, Bristol Glaciol Ctr, Sch Geog Sci, Bristol, Avon, England. [van Meijgaard, E.] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. RP van Wessem, JM (reprint author), Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Utrecht, Netherlands. EM j.m.vanwessem@uu.nl RI Reijmer, Carleen/G-8736-2011; Morlighem, Mathieu/O-9942-2014; Van den Broeke, Michiel/F-7867-2011; Bamber, Jonathan/C-7608-2011; Mouginot, Jeremie/G-7045-2015; Rignot, Eric/A-4560-2014; van de Berg, Willem Jan/H-4385-2011; Joughin, Ian/A-2998-2008; OI Reijmer, Carleen/0000-0001-8299-3883; Morlighem, Mathieu/0000-0001-5219-1310; Van den Broeke, Michiel/0000-0003-4662-7565; Bamber, Jonathan/0000-0002-2280-2819; Rignot, Eric/0000-0002-3366-0481; Joughin, Ian/0000-0001-6229-679X; Wouters, Bert/0000-0002-1086-2435 FU NWO/ALW, Netherlands Polar Programme; UK Natural Environment Research Council [NE/I027401/1] FX We are grateful for the financial support of NWO/ALW, Netherlands Polar Programme. J.L.B. was funded by the UK Natural Environment Research Council grant NE/I027401/1. We thank the ECMWF for use of their supercomputing facilities. NR 44 TC 24 Z9 24 U1 2 U2 26 PU INT GLACIOL SOC PI CAMBRIDGE PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PY 2014 VL 60 IS 222 BP 761 EP 770 DI 10.3189/2014JoG14J051 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AR0OV UT WOS:000343272100014 ER PT J AU Turrin, JB Forster, RR Sauber, JM Hall, DK Bruhn, RL AF Turrin, James B. Forster, Richard R. Sauber, Jeanne M. Hall, Dorothy K. Bruhn, Ronald L. TI Effects of bedrock lithology and subglacial till on the motion of Ruth Glacier, Alaska, deduced from five pulses from 1973 to 2012 SO JOURNAL OF GLACIOLOGY LA English DT Article DE glacial tills; glacier flow; glacier surges; ice dynamics; remote sensing ID OPTICAL SATELLITE IMAGERY; SURGE MECHANISM; DEFORMATION; VELOCITIES; SVALBARD; BENEATH; DYNAMICS; USA AB A pulse is a type of unstable glacier flow intermediate between normal flow and surging. Using Landsat MSS, TM and ETM+ imagery and feature-tracking software, a time series of mostly annual velocity maps from 1973 to 2012 was produced that reveals five pulses of Ruth Glacier, Alaska. Peaks in ice velocity were found in 1981, 1989, 1997, 2003 and 2010, approximately every 7 years. During these peak years the ice velocity increased 300%, from approximately 40 m a(-1) to 160 m a(-1). Based on the spatio-temporal behavior of Ruth Glacier during the pulse cycles, we suggest the pulses are due to enhanced basal motion via deformation of a subglacial till. The cyclical nature of the pulses is interpreted to be due to a thin till, with low permeability, that causes incomplete drainage of the till between the pulses, followed by eventual recharge and dilation of the till. These findings suggest care is needed when attempting to correlate changes in regional climate with decadal-scale changes in velocity, because in some instances basal conditions may have a greater influence on ice dynamics than climate. C1 [Turrin, James B.; Forster, Richard R.] Univ Utah, Dept Geog, Salt Lake City, UT 84105 USA. [Sauber, Jeanne M.; Hall, Dorothy K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bruhn, Ronald L.] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT USA. RP Turrin, JB (reprint author), Univ Utah, Dept Geog, Salt Lake City, UT 84105 USA. EM jturrin@hotmail.corn FU NASA [NNX08APZ76, NNX08AX88G] FX This project was funded by NASA grants NNX08APZ76 and NNX08AX88G. We thank Peter Haeussler of the US Geological Survey for providing information on the geology of the Mount McKinley area. We also thank the reviewers, including Garry Clarke and John Woodward, for helpful comments. NR 37 TC 0 Z9 0 U1 1 U2 4 PU INT GLACIOL SOC PI CAMBRIDGE PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND SN 0022-1430 EI 1727-5652 J9 J GLACIOL JI J. Glaciol. PY 2014 VL 60 IS 222 BP 771 EP 781 DI 10.3189/2014JoG13J182 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AR0OV UT WOS:000343272100015 ER PT S AU Dekens, FG Seo, BJ Troy, M AF Dekens, Frank G. Seo, Byoung-Joon Troy, Mitchell BE Angeli, GZ Dierickx, P TI System Modeling of the Thirty Meter Telescope Alignment and Phasing System SO MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Modeling, Systems Engineering, and Project Management for Astronomy VI CY JUN 22-24, 2014 CL Montreal, CANADA SP SPIE, American Astronom Soc, Australian Astronom Observ, Assoc Univ Res Astron, Canadian Astronom Soc, Canadian Space Agcy, European Astronom Soc, European So Observ, Natl Radio Astron Observ, Royal Astronom Soc, Sci & Technol Facilities Council DE Thirty Meter Telescope; SysML; System Model; Segmented Telescope Phasing; Segmented Telescope Alignment AB We have developed a system model using the System Modeling Language (SysML) for the Alignment and Phasing System (APS) on the Thirty Meter Telescope (TMT). APS is a Shack-Hartmann wave-front sensor that will be used to measure the alignment and phasing of the primary mirror segments, and the alignment of the secondary and tertiary mirrors. The APS system model contains the flow-down of the Level 1 TMT requirements to APS (Level 2) requirements, and from there to the APS sub-systems (Level 3) requirements. The model also contains the operating modes and scenarios for various activities, such as maintenance alignment, post-segment exchange alignment, and calibration activities. The requirements flow-down is captured in SysML requirements diagrams, and we describe the process of maintaining the DOORS database as the single-source-of-truth for requirements, while using the SysML model to capture the logic and notes associated with the flow-down. We also use the system model to capture any needed communications from APS to other TMT systems, and between the APS sub-systems. The operations are modeled using SysML activity diagrams, and will be used to specify the APS interface documents. The modeling tool can simulate the top level activities to produce sequence diagrams, which contain all the communications between the system and subsystem needed for that activity. By adding time estimates for the lowest level APS activities, a robust estimate for the total time on-sky that APS requires to align and phase the telescope can be obtained. This estimate will be used to verify that the time APS requires on-sky meets the Level 1 TMT requirements. C1 [Dekens, Frank G.; Seo, Byoung-Joon; Troy, Mitchell] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Dekens, FG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM fdekens@jpl.nasa.gov NR 7 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9618-8 J9 PROC SPIE PY 2014 VL 9150 AR 91500Z DI 10.1117/12.2057066 PG 12 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BB3SN UT WOS:000343032800033 ER PT S AU Nissly, C Seo, BJ Troy, M Chanan, G Roberts, S Rogers, J AF Nissly, Carl Seo, Byoung-Joon Troy, Mitchell Chanan, Gary Roberts, Scott Rogers, John BE Angeli, GZ Dierickx, P TI Wavefront Sensing and Control Performance Modeling of the Thirty Meter Telescope for Systematic Trade Analyses SO MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Modeling, Systems Engineering, and Project Management for Astronomy VI CY JUN 22-24, 2014 CL Montreal, CANADA SP SPIE, American Astronom Soc, Australian Astronom Observ, Assoc Univ Res Astron, Canadian Astronom Soc, Canadian Space Agcy, European Astronom Soc, European So Observ, Natl Radio Astron Observ, Royal Astronom Soc, Sci & Technol Facilities Council DE Wavefront Sensing and Control; Segmented Mirrors; Optical Modeling; MACOS; Normalized Point Source Sensitivity; Thirty Meter Telescope; Alignment and Phasing System; Shack-Hartmann Wavefront Sensing AB We have developed an integrated optical model of the semi-static performance of the Thirty Meter Telescope. The model includes surface and rigid body errors of all telescope optics as well as a model of the Alignment and Phasing System Shack-Hartmann wavefront sensors and control algorithms. This integrated model allows for simulation of the correction of the telescope wavefront, including optical errors on the secondary and tertiary mirrors, using the primary mirror segment active degrees of freedom. This model provides the estimate of the predicted telescope performance for system engineering and error budget development. In this paper we present updated performance values for the TMT static optical errors in terms of Normalized Point Source Sensitivity and RMS wavefront error after Adaptive Optics correction. As an example of a system level trade, we present the results from an analysis optimizing the number of Shack-Hartmann lenslets per segment. We trade the number of lenslet rings over each primary mirror segment against the telescope performance metrics of PSSN and RMS wavefront error. C1 [Nissly, Carl; Seo, Byoung-Joon; Troy, Mitchell] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Nissly, Carl; Seo, Byoung-Joon; Troy, Mitchell] CALTECH, Pasadena, CA 91125 USA. [Chanan, Gary] Univ Calif Irvine, Irvine, CA 92697 USA. [Roberts, Scott; Rogers, John] Thirty Meter Telescope Observ, Pasadena, CA 91107 USA. RP Nissly, C (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Carl.R.Nissly@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9618-8 J9 PROC SPIE PY 2014 VL 9150 AR UNSP 91500S DI 10.1117/12.2057157 PG 10 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BB3SN UT WOS:000343032800026 ER PT S AU Roberts, S Rogers, J Thompson, H Vogiatzis, K MacMartin, D Wilde, E Troy, M Seo, BJ Nissly, C AF Roberts, Scott Rogers, John Thompson, Hugh Vogiatzis, Konstantinos MacMartin, Douglas Wilde, Eric Troy, Mitchell Seo, Byoung-Joon Nissly, Carl BE Angeli, GZ Dierickx, P TI Systems engineering of the Thirty Meter Telescope for the construction phase SO MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Modeling, Systems Engineering, and Project Management for Astronomy VI CY JUN 22-24, 2014 CL Montreal, CANADA SP SPIE, American Astronom Soc, Australian Astronom Observ, Assoc Univ Res Astron, Canadian Astronom Soc, Canadian Space Agcy, European Astronom Soc, European So Observ, Natl Radio Astron Observ, Royal Astronom Soc, Sci & Technol Facilities Council DE TMT; Thirty Meter Telescope; systems engineering AB This paper provides an overview of the system design, architecture, and construction phase system engineering processes of the Thirty Meter Telescope project. We summarize the key challenges and our solutions for managing TMT systems engineering during the construction phase. We provide an overview of system budgets, requirements and interfaces, and the management thereof. The requirements engineering processes, including verification and plans for collection of technical data and testing during the assembly and integration phases, are described. We present configuration, change control and technical review processes, covering all aspects of the system design including performance models, requirements, and CAD databases. C1 [Roberts, Scott; Rogers, John; Thompson, Hugh; Vogiatzis, Konstantinos; MacMartin, Douglas; Wilde, Eric] TMT Observ Corp, 1111 South Arroyo Pkwy,Suite 200, Pasadena, CA 91105 USA. [Troy, Mitchell; Seo, Byoung-Joon; Nissly, Carl] Nasa Jet Prop Lab, Pasadena, CA 91109 USA. RP Roberts, S (reprint author), TMT Observ Corp, 1111 South Arroyo Pkwy,Suite 200, Pasadena, CA 91105 USA. EM sroberts@tmt.org RI MacMartin, Douglas/A-6333-2016 OI MacMartin, Douglas/0000-0003-1987-9417 FU TMT collaborating institutions; Association of Canadian Universities for Research in Astronomy (ACURA); California Institute of Technology; University of California; National Astronomical Observatory of Japan; National Astronomical Observatories of China; Department of Science and Technology of India; Gordon and Betty Moore Foundation; Canada Foundation for Innovation; Ontario Ministry of Research and Innovation; National Research Council of Canada; Natural Sciences and Engineering Research Council of Canada; British Columbia Knowledge Development Fund; Association of Universities for Research in Astronomy ( AURA); U.S. National Science Foundation; National Institutes of Natural Sciences of Japan FX The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology, the University of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of China and their consortium partners, and the Department of Science and Technology of India and their supported institutes. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy ( AURA), the U.S. National Science Foundation and the National Institutes of Natural Sciences of Japan. NR 2 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9618-8 J9 PROC SPIE PY 2014 VL 9150 AR UNSP 91500V DI 10.1117/12.2056870 PG 15 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BB3SN UT WOS:000343032800029 ER PT S AU Shaklan, SB Marchen, L Peterson, L Levine, MB AF Shaklan, Stuart B. Marchen, Luis Peterson, Lee Levine, Marie B. BE Angeli, GZ Dierickx, P TI Have confidence in your coronagraph: statistical analysis of high-contrast coronagraph dynamics error budgets SO MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Modeling, Systems Engineering, and Project Management for Astronomy VI CY JUN 22-24, 2014 CL Montreal, CANADA SP SPIE, American Astronom Soc, Australian Astronom Observ, Assoc Univ Res Astron, Canadian Astronom Soc, Canadian Space Agcy, European Astronom Soc, European So Observ, Natl Radio Astron Observ, Royal Astronom Soc, Sci & Technol Facilities Council DE Coronagraphy; high contrast imaging; error budget; DAKOTA AB We have combined our Excel-based coronagraph dynamics error budget spreadsheets with DAKOTA scripts to perform statistical analyses of the predicted dark-hole contrast. Whereas in the past we have reported the expected contrast level for an input set of allocated parameters, we now generate confidence intervals for the predicted contrast. Further, we explore the sensitivity to individual or groups of parameters and model uncertainty factors through aleatory-epistemic simulations based on a surrogate model fitted to the error budget. We show example results for a generic high-contrast coronagraph. C1 [Shaklan, Stuart B.; Marchen, Luis; Peterson, Lee; Levine, Marie B.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Shaklan, SB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM Stuart.b.shaklan@jpl.nasa.gov NR 24 TC 1 Z9 1 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9618-8 J9 PROC SPIE PY 2014 VL 9150 AR 915018 DI 10.1117/12.2054960 PG 8 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BB3SN UT WOS:000343032800042 ER PT S AU Bendek, EA Leatherbee, M Smith, H Strappa, V Zinnecker, H Perez, M AF Bendek, Eduardo A. Leatherbee, Michael Smith, Heather Strappa, Valentina Zinnecker, Hans Perez, Mario BE Peck, AB Benn, CR Seaman, RL TI Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development SO OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Observatory Operations - Strategies, Processes, and Systems V CY JUN 25-27, 2014 CL Montreal, CANADA SP SPIE DE personnel lifecycle; industry; spin-offs AB Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the know-how of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country. C1 [Bendek, Eduardo A.; Smith, Heather] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bendek, EA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 13 TC 0 Z9 0 U1 1 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9617-1 J9 PROC SPIE PY 2014 VL 9149 AR 91491L DI 10.1117/12.2057110 PG 13 WC Astronomy & Astrophysics; Optics; Physics, Applied SC Astronomy & Astrophysics; Optics; Physics GA BB3WP UT WOS:000343092000053 ER PT S AU Dodd, SR AF Dodd, Suzanne R. BE Peck, AB Benn, CR Seaman, RL TI A Comparison of Operation Models and Management Strategies for the Spitzer Space Telescope and the Nuclear Spectroscopic Telescope Array SO OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Observatory Operations - Strategies, Processes, and Systems V CY JUN 25-27, 2014 CL Montreal, CANADA SP SPIE DE Spitzer Space Telescope; Nuclear Spectroscopic Telescope Array (NuSTAR); Mission Operations; Project Management ID MISSION AB The Spitzer Space Telescope was launched in 2003 as part of NASA's Great Observatory Program, measuring the infrared universe. As a 100% Community Observatory, Spitzer started with a large infrastructure, and has been trimmed during its extended missions to less than two-thirds of its original budget. The Nuclear Spectroscopic Telescope Array is a NASA Small Explorer Mission targeting the high-energy x-ray sky. It was launched in June of 2012 and is currently carrying out its two-year primary mission. This paper discusses a comparison of the two missions; differences between large and small missions, Community and Principal Investigator missions, and operations and management strategies of each. In addition, the paper will discuss the process of downsizing a large mission into a model similar to that of an explorer class spacecraft. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dodd, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 8 TC 0 Z9 0 U1 2 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9617-1 J9 PROC SPIE PY 2014 VL 9149 AR 914914 DI 10.1117/12.2055499 PG 9 WC Astronomy & Astrophysics; Optics; Physics, Applied SC Astronomy & Astrophysics; Optics; Physics GA BB3WP UT WOS:000343092000036 ER PT S AU Forster, K Harrison, FA Dodd, SR Stern, DK Miyasaka, H Madsen, KK Grefenstette, BW Markwardt, CB Craig, WW Marshall, FE AF Forster, Karl Harrison, Fiona A. Dodd, Suzanne R. Stern, Daniel K. Miyasaka, Hiromasa Madsen, Kristin K. Grefenstette, Brian W. Markwardt, Craig B. Craig, William W. Marshall, Francis E. BE Peck, AB Benn, CR Seaman, RL TI NuSTAR observatory science operations: on-orbit acclimation SO OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Observatory Operations - Strategies, Processes, and Systems V CY JUN 25-27, 2014 CL Montreal, CANADA SP SPIE DE NuSTAR; NASA small explorer; X-ray optics; CZT detectors; Science Operations; Metrology AB The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory. The NuSTAR project is led by Caltech, which hosts the Science Operations Center (SOC), with mission operations managed by UCB Space Sciences Laboratory. We present an overview of NuSTAR science operations and describe the on-orbit performance of the observatory. The SOC is enhancing science operations to serve the community with a guest observing program beginning in 2015. We present some of the challenges and approaches taken by the SOC to operating a full service space observatory that maximizes the scientific return from the mission. C1 [Forster, Karl; Harrison, Fiona A.; Miyasaka, Hiromasa; Madsen, Kristin K.; Grefenstette, Brian W.] CALTECH, Cahill Ctr Astron & Astrophys, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Dodd, Suzanne R.; Stern, Daniel K.] Jet Prop Lab, Pasadena, CA 91109 USA. [Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Markwardt, Craig B.; Marshall, Francis E.] Goddard Space Flight Ctr, NASA, Greenbelt, MD USA. RP Forster, K (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM krl@srl.caltech.edu OI Madsen, Kristin/0000-0003-1252-4891 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration FX This work was supported under NASA contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 13 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9617-1 J9 PROC SPIE PY 2014 VL 9149 AR UNSP 91490R DI 10.1117/12.2056916 PG 12 WC Astronomy & Astrophysics; Optics; Physics, Applied SC Astronomy & Astrophysics; Optics; Physics GA BB3WP UT WOS:000343092000025 ER PT S AU Rantakyro, FT Cardwell, A Chilcote, J Dunn, J Goodsell, S Hibon, P Macintosh, B Quiroz, C Perrin, MD Sadakuni, N Saddlemyer, L Savransky, D Serio, A Winge, C Galvez, R Gausachs, G Hardie, K Hartung, M Luhrs, J Poyneer, L Thomas, S AF Rantakyroe, Fredrik T. Cardwell, Andrew Chilcote, Jeffrey Dunn, Jennifer Goodsell, Stephen Hibon, Pascale Macintosh, Bruce Quiroz, Carlos Perrin, Marshall D. Sadakuni, Naru Saddlemyer, Leslie Savransky, Dmitry Serio, Andrew Winge, Claudia Galvez, Ramon Gausachs, Gaston Hardie, Kayla Hartung, Markus Luhrs, Javier Poyneer, Lisa Thomas, Sandrine BE Peck, AB Benn, CR Seaman, RL TI Gemini planet imager integration to the Gemini South telescope software environment SO OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Observatory Operations - Strategies, Processes, and Systems V CY JUN 25-27, 2014 CL Montreal, CANADA SP SPIE DE Gemini Planet Imager; Instrumentation; operation; operations AB The Gemini Planet Imager is an extreme AO instrument with an integral field spectrograph (IFS) operating in Y, J, H, and K bands. Both the Gemini telescope and the GPI instrument are very complex systems. Our goal is that the combined telescope and instrument system may be run by one observer operating the instrument, and one operator controlling the telescope and the acquisition of light to the instrument. This requires a smooth integration between the two systems and easily operated control interfaces. We discuss the definition of the software and hardware interfaces, their implementation and testing, and the integration of the instrument with the telescope environment. C1 [Rantakyroe, Fredrik T.; Cardwell, Andrew; Hibon, Pascale; Quiroz, Carlos; Sadakuni, Naru; Serio, Andrew; Winge, Claudia; Galvez, Ramon; Gausachs, Gaston; Hardie, Kayla; Hartung, Markus; Luhrs, Javier] Gemini Observ, Casilla 603, La Serena, Chile. [Chilcote, Jeffrey] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Dunn, Jennifer; Saddlemyer, Leslie] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Goodsell, Stephen] Gemini Observ, Hilo, HI USA. [Macintosh, Bruce] Stanford Univ, Stanford, CA 94305 USA. [Perrin, Marshall D.] Space Telescope Inst, Baltimore, MD 21218 USA. [Savransky, Dmitry] Cornell Univ, Ithaca, NY 14850 USA. [Poyneer, Lisa] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Thomas, Sandrine] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Rantakyro, FT (reprint author), Gemini Observ, Casilla 603, La Serena, Chile. EM frantaky@gemini.edu RI Savransky, Dmitry/M-1298-2014 OI Savransky, Dmitry/0000-0002-8711-7206 NR 7 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9617-1 J9 PROC SPIE PY 2014 VL 9149 AR UNSP 91492B DI 10.1117/12.2055654 PG 13 WC Astronomy & Astrophysics; Optics; Physics, Applied SC Astronomy & Astrophysics; Optics; Physics GA BB3WP UT WOS:000343092000076 ER PT S AU Graham, TM Bernstein, HJ Javadi, H Geldzahler, BJ Kwiat, PG AF Graham, T. M. Bernstein, H. J. Javadi, H. Geldzahler, B. J. Kwiat, P. G. BE Donkor, E Pirich, AR Brandt, HE Frey, MR Lomonaco, SJ Myers, JM TI SuperDense Teleportation for Space Applications SO QUANTUM INFORMATION AND COMPUTATION XII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Quantum Information and Computation XII CY MAY 08-09, 2014 CL Baltimore, MD SP SPIE DE Quantum Communication; SuperDense Teleportation; Remote State Preparation; Quantum Teleportation Hyperentanglement ID QUANTUM CRYPTOGRAPHY; ENTANGLED PHOTONS; STATES; COMMUNICATION AB We report the implementation of a novel entanglement-enabled quantum state communication protocol, known as SuperDense Teleportation, using photons hyperentangled in polarization and orbital angular momentum. We used these techniques to transmit unimodular ququart states between distant parties with an averaged fidelity of 86.2 +/- 3%; almost twice the classical limit of 44%. We also propose a method to use SuperDense Teleportation to communicate quantum states from a space platform, such as the International Space Station, to a terrestrial optical telescope. We evaluate several configurations and investigate the challenges arising from the movement of the space station with respect to the ground. C1 [Graham, T. M.; Kwiat, P. G.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Bernstein, H. J.] Hampshire Coll, Sch Nat Sci, ISIS, Amherst, MA 01002 USA. [Javadi, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Geldzahler, B. J.] NASA Headquarters, Washington, DC 20546 USA. RP Graham, TM (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM tgraham2@illinois.edu FU NSF [PHY-0903865]; NASA [NNX13AP35A]; Jet Propulsion Laboratory; California Institute of Technology; National Aeronautics and Space Administration FX This work was supported by NSF Grant No. PHY-0903865, NASA NIAC Program, and NASA Grant No. NNX13AP35A. The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, was under a contract with the National Aeronautics and Space Administration. NR 26 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-060-0 J9 PROC SPIE PY 2014 VL 9123 AR UNSP 912302 DI 10.1117/12.2050978 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB3ZO UT WOS:000343113500001 ER PT S AU Santos, JR Silva, CVD Galvao, LS Treuhaft, R Mura, JC Madsen, S Goncalves, FG Keller, MM AF Santos, Joao Roberto de Jesus Silva, Camila Valeria Galvao, Lenio Soares Treuhaft, Robert Mura, Jose Claudio Madsen, Soren Goncalves, Fabio Guimaraes Keller, Michael Maier BE Hadjimitsis, DG Themistocleous, K Michaelides, S Papadavid, G TI Determining aboveground biomass of the forest successional chronosequence in a test- site of Brazilian Amazon through X- and L- band data analysis SO SECOND INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2014) SE Proceedings of SPIE LA English DT Proceedings Paper CT 2nd International Conference on Remote Sensing and Geoinformation of the Environment (RSCy) CY APR 07-10, 2014 CL Paphos, CYPRUS SP Cyprus Remote Sensing Soc, Cyprus Univ Technol, European Space Agcy, Cyprus Sci & Tech Chamber, Dept Meteorol & Minist Def, Minist Coomun & Works, Dept Elect Commun, Agr Res Inst, Hellas Sat, Neapolis Univ, Frederick Univ, European Cooperat Sci & Technol, Intergraph, Geosystems Hellas, Li Cor, Spectra Vista Corp, Cyprus Assoc Civil Engineers, Agisoft, QuestUAV, Smart Events, Pegeia Municipal, Municipal Pafos DE biomass; secondary succession; PALSAR/ALOS; TanDEM/TerraSAR-X; Amazon forest; monitoring ID REMOTE-SENSING DATA; LANDSAT TM DATA; TROPICAL FOREST; TANDEM-X; SPATIAL VARIABILITY; SAR DATA; RADAR; CLASSIFICATION; DECOMPOSITION; REGENERATION AB Secondary succession is an important process in the Amazonian region with implications for the global carbon cycle and for the sustainable regional agricultural and pasture activities. In order to better discriminate the secondary succession and to characterize and estimate the aboveground biomass (AGB), backscatter and interferometric SAR data generally have been analyzed through empirical-based statistical modeling. The objective of this study is to verify the capability of the full polarimetric PALSAR/ALOS (L-band) attributes, when combined with the interferometric (InSAR) coherence from the TanDEM-X (X-band), to improve the AGB estimates of the succession chronosequence located in the Brazilian Tapajos region. In order to perform this study, we carried out multivariate regression using radar attributes and biophysical parameters acquired during a field inventory. A previous floristic-structural analysis was performed to establish the chronosequence in three stages: initial vegetation regrowth, intermediate, and advanced regrowth. The relationship between PALSAR data and AGB was significant (p< 0.001) and results suggested that the "volumetric scattering" (Pv) and "anisotropy" (A) attributes were important to explain the biomass content of the successional chronosequence (R-adjusted(2) = 0.67; RMSE = 32.29 Mg. ha(-1)). By adding the TanDEM-derived interferometric coherence (gamma(i)) into the regression modeling, better results were obtained (R y adjusted = 0.75; RMSE = 28.78Mg. ha(-1)). When we used both the L-and X-band attributes, the stock density prediction improved to 10.8 % for the secondary succession stands. C1 [Santos, Joao Roberto; de Jesus Silva, Camila Valeria; Galvao, Lenio Soares; Mura, Jose Claudio] Natl Inst Space Res, Av Astronautas 1758, Sao Jose Dos Campos, Brazil. [Treuhaft, Robert; Madsen, Soren] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Goncalves, Fabio Guimaraes] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Keller, Michael Maier] Univ New Hampshire, USDA Forest Serv, Durham, NH 03824 USA. RP Santos, JR (reprint author), Natl Inst Space Res, Av Astronautas 1758, Sao Jose Dos Campos, Brazil. RI Keller, Michael/A-8976-2012 OI Keller, Michael/0000-0002-0253-3359 FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior ( CAPES); Conselho Nacional de Desenvolvimento Cientfico e Tecnologico (CNPq); Jet Propulsion Laboratory and California Institute of Technology [281945.02.61.02.82]; Instituto Chico Mendes de Conservacao da Biodiversidade (ICMBio/ MMA - Sisbio Process) [35010- 1, 38157- 2] FX The authors are grateful to the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior ( CAPES), the Conselho Nacional de Desenvolvimento Cientfico e Tecnologico (CNPq), the Jet Propulsion Laboratory and California Institute of Technology ( under a contract with National Aeronautics and Space Administration - task number 281945.02.61.02.82) and the Instituto Chico Mendes de Conservacao da Biodiversidade (ICMBio/ MMA - Sisbio Process 35010- 1 and 38157- 2). Thanks are also due to Museu Paraense Emilio Goeldi - MPEG for the botanical assistance and Large Scale Biosphere- Atmosphere Experiment in Amazonia (LBA- Santarem Office) for the logistic support during the field surveys. We thank the German Aerospace Center (DLR) for processing and delivery of the TanDEM- X data. NR 47 TC 0 Z9 0 U1 2 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-276-5 J9 PROC SPIE PY 2014 VL 9229 AR UNSP 92291E DI 10.1117/12.2066031 PG 10 WC Geosciences, Multidisciplinary; Remote Sensing; Optics SC Geology; Remote Sensing; Optics GA BB4AV UT WOS:000343123100044 ER PT S AU Chiamori, HC Angadi, C Suria, A Shankar, A Hou, M Bhattacharya, S Senesky, DG AF Chiamori, Heather C. Angadi, Chetan Suria, Ateeq Shankar, Ashwin Hou, Minmin Bhattacharya, Sharmila Senesky, Debbie G. BE Senesky, DG DeKate, S TI Effects of radiation and temperature on gallium nitride (GaN) metal-semiconductor-metal ultraviolet photodetectors SO SENSORS FOR EXTREME HARSH ENVIRONMENTS SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors for Extreme Harsh Environments CY MAY 07-08, 2014 CL Baltimore, MD SP SPIE DE III-V semiconductors; gallium nitride (GaN); MSM photodetectors; radiation; extreme harsh environments ID OPERATION; DEVICES AB The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15 degrees C to 150 degrees C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed. C1 [Chiamori, Heather C.; Senesky, Debbie G.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Angadi, Chetan; Bhattacharya, Sharmila] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Suria, Ateeq] Stanford Univ, Dept Mech Engn, Moffett Field, CA 94035 USA. [Shankar, Ashwin; Hou, Minmin; Senesky, Debbie G.] Stanford Univ, Dept Elect Engn, Moffett Field, CA 94035 USA. RP Chiamori, HC (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. EM chiamori@stanford.edu FU National Aeronautics and Space Administration ( NASA ) [NNX12AQ48G] FX The authors would like to acknowledge support from the National Aeronautics and Space Administration ( NASA grant # NNX12AQ48G). The authors are grateful for the assistance of Dr. Joshua Alwood ( NASA Ames Research Center) with radiation tests. NR 26 TC 1 Z9 1 U1 3 U2 15 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-050-1 J9 PROC SPIE PY 2014 VL 9113 AR UNSP 911304 DI 10.1117/12.2050983 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB4AN UT WOS:000343119800003 ER PT S AU Okojie, RS Lukco, D Nguyen, V Savrun, E AF Okojie, Robert S. Lukco, Dorothy Vu Nguyen Savrun, Ender BE Senesky, DG DeKate, S TI High Temperature SiC Pressure Sensors with Low Offset Voltage Shift SO SENSORS FOR EXTREME HARSH ENVIRONMENTS SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors for Extreme Harsh Environments CY MAY 07-08, 2014 CL Baltimore, MD SP SPIE DE Silicon Carbide; Pressure Sensors; High Temperature; Harsh Environment; Wide Bandgap; MEMS AB Very low (similar to 0.125 mV) shifts in offset voltage were achieved in silicon carbide (SiC) piezoresistive pressure sensors during thermal cycling between 25 and 500 degrees C for 500 hours. It resulted in reduced measurement error to similar to 0.36 % and similar to 0.9 % of the full-scale output at 25 and 500 degrees C, respectively. The reduction in the offset shift was the result of the advancement made in controlling the intermetallic diffusion and microstructural phase changes within the contact metallization. The low offset voltage results provide critical figures of merit needed for quantifying the measurement error and correction when the SiC pressure sensors are used. The results demonstrate more robust and reliable SiC pressure sensors operating with significantly reduced FSO errors at 500 degrees C. C1 [Okojie, Robert S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Lukco, Dorothy] NASA Glenn Res Ctr, LLC, Vantage Partners, Cleveland, OH 44135 USA. [Vu Nguyen; Savrun, Ender] Sienna Technol Inc, Woodinville, WA 98072 USA. RP Okojie, RS (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM robert.s.okojie@nasa.gov FU NASA Aeronautical Sciences FX The funding for this work was provided by the NASA Aeronautical Sciences Project under the Fundamental Aeronautics Program. The authors thank the technical staff of the NASA Glenn Research Center SiC microfabrication laboratory for the successful fabrication and testing of the sensors. NR 7 TC 1 Z9 1 U1 0 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-050-1 J9 PROC SPIE PY 2014 VL 9113 AR UNSP 911308 DI 10.1117/12.2050812 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB4AN UT WOS:000343119800006 ER PT S AU Shankar, A Angadi, C Bhattacharya, S Lin, CM Senesky, DG AF Shankar, Ashwin Angadi, Chetan Bhattacharya, Sharmila Lin, Chih-Ming Senesky, Debbie G. BE Senesky, DG DeKate, S TI Characterization of Irradiated and Temperature-compensated Gallium Nitride Surface Acoustic Wave Resonators SO SENSORS FOR EXTREME HARSH ENVIRONMENTS SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Sensors for Extreme Harsh Environments CY MAY 07-08, 2014 CL Baltimore, MD SP SPIE DE Gallium nitride; surface acoustic wave resonator; nuclear radiation; space environments; temperature compensation; cryogenic temperatures ID DEVICES; FILMS AB Conventional electronic components are prone to failure and drift when exposed to space environments, which contain harsh conditions, such as extreme variation in temperature and radiation exposure. As a result, electronic components are often shielded with heavy and complex packaging. New material platforms that leverage the radiation and temperature tolerance of wide bandgap materials can be used to develop robust electronic components without complex packaging. One such component that is vital for communication, navigation and signal processing on space exploration systems is the on-board timing reference, which is conventionally provided by a quartz crystal resonator and is prone to damage from radiation and temperature fluctuations. As a possible alternative, this paper presents the characterization of microfabricated and wide bandgap gallium nitride (GaN) surface acoustic wave (SAW) resonators in radiation environments. Ultimately, in combination with the two-dimensional gas (2DEG) layer at the AlGaN/GaN interface, high electron mobility transistor (HEMT) structures can provide a monolithic solution for timing electronics on board space systems. One-port SAW resonators are microfabricated on a GaN-on-sapphire substrate are used to explore the impact of irradiation on the device performance. The GaN-based SAW resonator was subjected to extreme temperature conditions to study the change in resonance frequency. Thermal characterization of the resonator has revealed a self-compensating property at cryogenic temperatures. In addition, GaN-on-sapphire samples were irradiated using a Cs-137 source up to 55 krads of total ionizing dose (TID). The measured frequency response and Raman spectroscopy of the GaN/sapphire SAW resonators microfabricated from the irradiated samples are presented. C1 [Shankar, Ashwin; Senesky, Debbie G.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Angadi, Chetan] Delft Univ Technol, Dept Space Engn, NL-2628 CN Delft, Netherlands. [Angadi, Chetan; Bhattacharya, Sharmila] NASA, Ames Res Ctr, Mountain View, CA 94035 USA. [Lin, Chih-Ming] Silicon Lab Inc, Sunnyvale, CA 94085 USA. [Senesky, Debbie G.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. RP Senesky, DG (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM dsenesky@stanford.edu OI Lin, Chih-Ming/0000-0001-6152-6936 FU NASA [NNX12AQ48G] FX This work was performed with the support of NASA grant # NNX12AQ48G. The authors would like to thank Ms. Amal El- Ghazaly in Prof. Shan Wang's group and Dr. Phil Wu in the Kapitulnik Geballe Beasley Group at the Stanford University for assistance with cryogenic testing. NR 21 TC 0 Z9 0 U1 1 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-050-1 J9 PROC SPIE PY 2014 VL 9113 AR UNSP 91130B DI 10.1117/12.2050838 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BB4AN UT WOS:000343119800009 ER PT J AU Detweiler, AM Bebout, BM Frisbee, AE Kelley, CA Chanton, JP Prufert-Bebout, LE AF Detweiler, Angela M. Bebout, Brad M. Frisbee, Adrienne E. Kelley, Cheryl A. Chanton, Jeffrey P. Prufert-Bebout, Leslie E. TI Characterization of methane flux from photosynthetic oxidation ponds in a wastewater treatment plant SO WATER SCIENCE AND TECHNOLOGY LA English DT Article DE greenhouse gases; methane flux; methane oxidation; oxidation efficiency; photosynthetic oxidation ponds; stable isotopes ID CARBON-ISOTOPE FRACTIONATION; LANDFILL COVER MATERIALS; STABILIZATION PONDS; EMISSIONS; TEMPERATURE; DAIRY AB Photosynthetic oxidation ponds are a low-cost method for secondary treatment of wastewater using natural and more energy-efficient aeration strategies. Methane (CH4) is produced during the anaerobic digestion of organic matter, but only some of it is oxidized in the water column, with the remaining CH4 escaping into the atmosphere. In order to characterize the CH4 flux in two photosynthetic oxidation ponds in a wastewater treatment plant in northern California, the isotopic compositions and concentrations of CH4 were measured in the water column, in bubbles and in flux chambers, over a period of 12 to 21 months to account for seasonal trends in CH4 emissions. Methane flux varied seasonally throughout the year, with an annual average flux of 5.5 g CH4 m(-2) d(-1) Over half of the CH4 flux, 56.1-74.4% v/v, was attributed to ebullition. The oxidation efficiency of this system was estimated at 69.1%, based on stable carbon isotopes and a calculated fractionation factor of 1.028. This is the first time, to our knowledge, that a fractionation factor for CH4 oxidation has been empirically determined for oxidation ponds. Quantifying CH4 emissions from these systems is essential to properly identify their contribution and to mitigate their impact on global warming. C1 [Detweiler, Angela M.; Bebout, Brad M.; Frisbee, Adrienne E.; Prufert-Bebout, Leslie E.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Detweiler, Angela M.; Frisbee, Adrienne E.] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. [Kelley, Cheryl A.] Univ Missouri, Dept Geol Sci, Columbia, MO 65211 USA. [Chanton, Jeffrey P.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. RP Detweiler, AM (reprint author), NASA, Ames Res Ctr, Exobiol Branch, Mail Stop 239-4,POB 1, Moffett Field, CA 94035 USA. EM angela.m.detweiler@nasa.gov RI Kelley, Cheryl/K-9392-2015 FU NASA Ames Director's discretionary funding award; Water Environmental Research Foundation [U2R08c] FX We would like to thank Richard Kropp and Jasmine McDaniel for assistance in the field. We also thank Brooke Nicholson, Claire Beaudoin and Amanda Tazaz for running the samples on the GC-IRMS. We kindly extend our thanks to the staff at the SWPCP for allowing us to sample the oxidation ponds. This study was funded by the NASA Ames Director's discretionary funding award to the Algae for Exploration (AlEx) project focusing on synergies between terrestrial applications of microbial based methodologies for cleaner water and energy production and future space bioregenerative life support applications. Part of this study was included in the Water Environmental Research Foundation project # U2R08c. NR 39 TC 3 Z9 3 U1 2 U2 10 PU IWA PUBLISHING PI LONDON PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND SN 0273-1223 EI 1996-9732 J9 WATER SCI TECHNOL JI Water Sci. Technol. PY 2014 VL 70 IS 6 BP 980 EP 989 DI 10.2166/wst.2014.317 PG 10 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA AQ8XP UT WOS:000343122700005 PM 25259485 ER PT S AU Martin, RA Poll, S AF Martin, Rodney A. Poll, Scott GP ASHRAE TI Energy Analysis of Multi-Function Devices in an Office Environment SO ASHRAE TRANSACTIONS 2014, VOL 120, PT 1 SE ASHRAE Transactions LA English DT Proceedings Paper CT ASHRAE Winter Conference CY 2014 CL New York, NY SP ASHRAE AB As part of an effort to monitor electricity usage by plug loads in a new high performance office building, plug load management devices were deployed to enable data collection, analysis, and active control of plug loads. We used a Commercial Off-The-Shelf (COTS) plug load management system to capture relevant data for two different types of multi-function devices (MFDs) in the facility, one of which was tested for use with different power settings. This enabled a quantitative analysis to assess impacts on energy consumption. It was found that a projected 65% reduction in annual energy consumption would result by using a newer, Energy Star compliant model of MFD, and an additional projected 39% reduction in annual energy consumption would result by subsequently changing the time-to-sleep for that MFD. It was also found that it may be beneficial to apply automated analysis with anomaly detection algorithms to detect problems with MFD performance, such as a failure to go to sleep mode or variations in sleep power draw. Furthermore, we observed that energy savings realized by using plug load management devices to de-energize (unplug) MFDs during non-business hours depends on the sleep power draw and time-to-sleep setting. For the MFDs in this study with settings established per the maintenance contract (which were different than factory default values), turning the device off at night and then on in the morning used more energy than leaving it on in sleep mode due to the start-up behavior and excessive time-to-sleep setting of four hours. From this and other assessments, we offer these recommendations to building occupants: reduce MFD time-to-sleep, encourage employees to use the power save button, and apply automated analysis to detect problems with device performance. C1 [Martin, Rodney A.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Poll, Scott] NASA, Ames Res Ctr, Intelligent Syst Div, Deputy lead Diagnost & Prognost Grp, Moffett Field, CA 94035 USA. RP Martin, RA (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. NR 7 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC HEATING, REFRIGERATING AND AIR-CONDITIONING ENGS PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2505 J9 ASHRAE TRAN PY 2014 VL 120 IS 1 PG 8 WC Thermodynamics; Construction & Building Technology SC Thermodynamics; Construction & Building Technology GA BB3GM UT WOS:000342765800038 ER PT S AU Hooey, BL Aurisicchio, M Bracewell, R Foyle, DC AF Hooey, Becky L. Aurisicchio, Marco Bracewell, Robert Foyle, David C. BE Kurosu, M TI Evidence-Based Error Analysis: Supporting the Design of Error-Tolerant Systems SO HUMAN-COMPUTER INTERACTION: APPLICATIONS AND SERVICES, PT III SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th International Conference on Human-Computer Interaction (HCI) CY JUN 22-27, 2014 CL Heraklion, GREECE DE error-tolerant design; human error; design rationale; designVUE ID RATIONALE AB This paper proposes an evidence-based process and engineering design tool for linking human error identification taxonomies, and human error prevention and mitigation design principles with the system engineering design process. The process synthesizes the design evidence generated and used during the design and analysis process to clearly demonstrate that credible error threats have been identified and considered appropriately in the design of the system. In doing so, it supports the designer in managing design solutions across the entire design process, leaves a design trace that is transparent and auditable by other designers, managers, or certification experts, and manages the complex interactions among other systems and sub-systems. C1 [Hooey, Becky L.] San Jose State Univ, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Aurisicchio, Marco] Dept Mech Engn, Imperial Coll London, London, England. [Bracewell, Robert] Rolls Royce, United Kingdom, London, England. [Foyle, David C.] NASA Ames Res Ctr, Moffett Field, CA USA. RP Hooey, BL (reprint author), San Jose State Univ, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM becky.l.hooey@nasa.gov; m.aurisicchio@imperial.ac.uk; rob.bracewell@gmail.com; david.c.foyle@nasa.gov FU National Aeronautics and Space Administration (NASA) Aviation Safety Program; United Kingdom Engineering and Physical Sciences Research Council (EPSRC) through the Pathways to Impact funding scheme FX This research was funded by the National Aeronautics and Space Administration (NASA) Aviation Safety Program, (System- wide Safety Assurance: Human Systems Solutions) and the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) through the Pathways to Impact funding scheme. NR 21 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-07227-2; 978-3-319-07226-5 J9 LECT NOTES COMPUT SC PY 2014 VL 8512 BP 401 EP 412 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods SC Computer Science GA BB3FB UT WOS:000342750300038 ER PT S AU Garoche, PL Howar, F Kahsai, T Thirioux, X AF Garoche, Pierre-Loic Howar, Falk Kahsai, Temesghen Thirioux, Xavier BE Badger, JM Rozier, KY TI Testing-Based Compiler Validation for Synchronous Languages SO NASA FORMAL METHODS, NFM 2014 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 6th NASA Formal Methods Symposium (NFM) CY APR 29-MAY 01, 2014 CL NASA Johnson Space Ctr, Houston, TX HO NASA Johnson Space Ctr ID GENERATION AB In this paper we present a novel lightweight approach to validate compilers for synchronous languages. Instead of verifying a compiler for all input programs or providing a fixed suite of regression tests, we extend the compiler to generate a test-suite with high behavioral coverage and geared towards discovery of faults for every compiled artifact. We have implemented and evaluated our approach using a compiler from Lustre to C. C1 [Garoche, Pierre-Loic] Off Natl Etud & Rech Aerosp, Chatillon, France. [Howar, Falk; Kahsai, Temesghen] NASA Ames, CMU, Mountain View, CA USA. [Thirioux, Xavier] IRIT, Toulouse, France. RP Garoche, PL (reprint author), Off Natl Etud & Rech Aerosp, Chatillon, France. FU ANR INS CAFEIN; NSF FX Acknowledgement for the projects ANR INS CAFEIN and NSF Craves. NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-06200-6; 978-3-319-06199-3 J9 LECT NOTES COMPUT SC PY 2014 VL 8430 BP 246 EP 251 PG 6 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB3IX UT WOS:000342810300019 ER PT S AU Schumann, J Schneider, SA AF Schumann, Johann Schneider, Stefan-Alexander BE Badger, JM Rozier, KY TI Automated Testcase Generation for Numerical Support Functions in Embedded Systems SO NASA FORMAL METHODS, NFM 2014 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 6th NASA Formal Methods Symposium (NFM) CY APR 29-MAY 01, 2014 CL NASA Johnson Space Ctr, Houston, TX HO NASA Johnson Space Ctr AB We present a tool for the automatic generation of test stimuli for small numerical support functions, e. g., code for trigonometric functions, quaternions, filters, or table lookup. Our tool is based on KLEE to produce a set of test stimuli for full path coverage. We use a method of iterative deepening over abstractions to deal with floating-point values. During actual testing the stimuli exercise the code against a reference implementation. We illustrate our approach with results of experiments with low-level trigonometric functions, interpolation routines, and mathematical support functions from an open source UAS autopilot. C1 [Schumann, Johann] SGT Inc, NASA Ames, Moffett Field, CA 94035 USA. [Schneider, Stefan-Alexander] Schneider Syst Consulting, Munich, Germany. RP Schumann, J (reprint author), SGT Inc, NASA Ames, Moffett Field, CA 94035 USA. EM Johann.M.Schumann@nasa.gov; sahschneider@gmx.de NR 10 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-06200-6; 978-3-319-06199-3 J9 LECT NOTES COMPUT SC PY 2014 VL 8430 BP 252 EP 257 PG 6 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BB3IX UT WOS:000342810300020 ER PT S AU Johnston, PH Parker, FR AF Johnston, Patrick H. Parker, F. Raymond BE Chimenti, DE Bond, LJ Thompson, DO TI NDE Evidence for the Damage Arrestment Performance of PRSEUS Composite Cube During High-Pressure Load Test SO 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Barkhausen and Micro-Magnetics (ICBM) CY JUL 21-26, 2013 CL Baltimore, MD SP Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, NDE Centers, World Federat, Stresstech Grp & Int Conf Barkhausen Noise & Micromagnet Testing Org Comm, Int Comm NDT, Natl Sci Fdn Ind Univ Cooperat Res Ctr, Iowa State Univ, Ctr Nondestruct Evaluat DE ultrasonics; composite structure; stitched composite; damage arrestment AB As an approach to light-weight, cost-effective and manufacturable structures required to enable the hybrid wing body aircraft, The Boeing Company, Inc. and NASA have developed the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. A PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept as part of a building block approach for technology development of the PRSEUS concept. The overall specimen strength exceeded the 18.4 psi load requirement as testing resulted in the cube reaching a final pressure load of around 48 psi prior to catastrophic failure. The cube pressure test verified that the joints and structure were capable of sustaining the required loads, and represented the first testing of joined PRSEUS structure. This paper will address the damage arrestment performance of the stitched PRSEUS structure. Following catastrophic failure of the cube, ultrasonic pulse-echo inspection found that the localized damage, surrounding a barely-visible impact damage site, did not change noticeably between just after impact and catastrophic failure of the cube, and did not play a role in the catastrophic failure event. Ultrasonic inspection of the remaining intact cube panels presented three basic types of indications: delaminations between laminae parallel to the face sheets, lying between face sheet and tear strap layers, or between tear strap and flange layers; delaminations above the noodles of stringers, frames or integral caps, lying within face sheet or tear strap layers; and delaminations between the laminae in the inner fillets of the integral caps, where pull-off stresses were expected to be highest. Delaminations of all three types were predominantly contained by the first row of stitches encountered. For the small fraction of delaminations extending beyond the first row of stitches, all were contained by the second stitch row. C1 [Johnston, Patrick H.; Parker, F. Raymond] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Johnston, PH (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1212-5 J9 AIP CONF PROC PY 2014 VL 1581 BP 1106 EP 1113 DI 10.1063/1.4864944 PG 8 WC Physics, Applied SC Physics GA BB2TW UT WOS:000342312400149 ER PT S AU Leckey, CAC Parker, FR AF Leckey, Cara A. C. Parker, F. Raymond BE Chimenti, DE Bond, LJ Thompson, DO TI Simulation Based Investigation of Hidden Delamination Damage Detection in CFRP Composites SO 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Barkhausen and Micro-Magnetics (ICBM) CY JUL 21-26, 2013 CL Baltimore, MD SP Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, NDE Centers, World Federat, Stresstech Grp & Int Conf Barkhausen Noise & Micromagnet Testing Org Comm, Int Comm NDT, Natl Sci Fdn Ind Univ Cooperat Res Ctr, Iowa State Univ, Ctr Nondestruct Evaluat DE Composite; Guided Wave; Delamination; Simulation; EFIT AB Guided wave (GW) based damage detection methods have shown promise in structural health monitoring (SHM) and hybrid SHM-nondestructive evaluation (NDE) techniques. Much previous GW work in the aerospace field has been primarily focused on metallic materials, with a growing focus on composite materials. The work presented in this paper demonstrates how realistic three-dimensional (3D) GW simulations can aid in the development of GW based damage characterization techniques for aerospace composites. 3D elastodynamic finite integration technique is implemented to model GW interaction with realistic delamination damage. A local wavenumber technique is applied to simulation data in order to investigate the detectability of hidden delamination damage to enable accurate characterization of damage extent. C1 [Leckey, Cara A. C.; Parker, F. Raymond] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23681 USA. RP Leckey, CAC (reprint author), NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23681 USA. EM cara.ac.leckey@nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1212-5 J9 AIP CONF PROC PY 2014 VL 1581 BP 1114 EP 1121 DI 10.1063/1.4864945 PG 8 WC Physics, Applied SC Physics GA BB2TW UT WOS:000342312400150 ER PT S AU Tian, ZH Leckey, CAC Yu, LY AF Tian, Zhenhua Leckey, Cara A. C. Yu, Lingyu BE Chimenti, DE Bond, LJ Thompson, DO TI 3D Guided Wave Motion Analysis on Laminated Composites SO 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Barkhausen and Micro-Magnetics (ICBM) CY JUL 21-26, 2013 CL Baltimore, MD SP Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, NDE Centers, World Federat, Stresstech Grp & Int Conf Barkhausen Noise & Micromagnet Testing Org Comm, Int Comm NDT, Natl Sci Fdn Ind Univ Cooperat Res Ctr, Iowa State Univ, Ctr Nondestruct Evaluat DE Frequency Wavenumber Analysis; EFIT; Delamination; Guided Waves ID LAMB WAVES AB Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis allows for the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The possibility of mode isolation is also explored and potential for damage detection in laminated composites is discussed in this paper. C1 [Tian, Zhenhua; Yu, Lingyu] Univ South Carolina, Dept Mech Engn, Columbia, SC 29205 USA. [Leckey, Cara A. C.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23681 USA. RP Tian, ZH (reprint author), Univ South Carolina, Dept Mech Engn, Columbia, SC 29205 USA. RI Tian, Zhenhua/I-6687-2015 OI Tian, Zhenhua/0000-0002-1903-5604 FU SPARC Graduate Fellowship from the Office of the Vice President for Research at the University of South Carolina FX Part of this work is conducted through the non-reimbursement space act umbrella agreement SAA1-1181 between South Carolina Research Foundation (SCRF) and the National Aeronautics and Space Administration (NASA) Langley research center. This work was partially supported by a SPARC Graduate Fellowship from the Office of the Vice President for Research at the University of South Carolina. NR 21 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1212-5 J9 AIP CONF PROC PY 2014 VL 1581 BP 1149 EP 1156 DI 10.1063/14864950 PG 8 WC Physics, Applied SC Physics GA BB2TW UT WOS:000342312400155 ER PT S AU Wincheski, B Wallace, T Newman, A Leser, P Simpson, J AF Wincheski, Buzz Wallace, Terryl Newman, Andy Leser, Paul Simpson, John BE Chimenti, DE Bond, LJ Thompson, DO TI Design and Application of Hybrid Magnetic Field-Eddy Current Probe SO 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Barkhausen and Micro-Magnetics (ICBM) CY JUL 21-26, 2013 CL Baltimore, MD SP Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, NDE Centers, World Federat, Stresstech Grp & Int Conf Barkhausen Noise & Micromagnet Testing Org Comm, Int Comm NDT, Natl Sci Fdn Ind Univ Cooperat Res Ctr, Iowa State Univ, Ctr Nondestruct Evaluat DE Eddy Current; Anisotropic Magnetoresistance; Ferromagnetic Shape Memory Alloy AB The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 MHz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results. C1 [Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Simpson, John] Northrop Grumman, Hampton, VA 23681 USA. RP Wincheski, B (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM russell.a.wincheski@nasa.gov NR 7 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1212-5 J9 AIP CONF PROC PY 2014 VL 1581 BP 1359 EP 1365 DI 10.1063/1.4864979 PG 7 WC Physics, Applied SC Physics GA BB2TW UT WOS:000342312400184 ER PT S AU Cramer, KE Hayward, M Yost, WT AF Cramer, K. Elliott Hayward, Maurice Yost, William T. BE Chimenti, DE Bond, LJ Thompson, DO TI Quantification of Residual Stress from Photonic Signatures of Fused Silica SO 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Barkhausen and Micro-Magnetics (ICBM) CY JUL 21-26, 2013 CL Baltimore, MD SP Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, NDE Centers, World Federat, Stresstech Grp & Int Conf Barkhausen Noise & Micromagnet Testing Org Comm, Int Comm NDT, Natl Sci Fdn Ind Univ Cooperat Res Ctr, Iowa State Univ, Ctr Nondestruct Evaluat DE Glass; Fused Silica; Photoelasticity; Residual Stress ID STRENGTH DEGRADATION; SHARP PARTICLES; SURFACES AB A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(-12) Pa-1. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. C1 [Cramer, K. Elliott; Yost, William T.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Hayward, Maurice] Coll William & Mary, Williamsburg, VA 23185 USA. RP Cramer, KE (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM k.elliott.cramer@nasa.gov NR 13 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1212-5 J9 AIP CONF PROC PY 2014 VL 1581 BP 1679 EP 1686 DI 10.1063/1.4865025 PG 8 WC Physics, Applied SC Physics GA BB2TW UT WOS:000342312400230 ER PT S AU Livingston, RA Schweitzer, JS Parsons, AM Arens, EE AF Livingston, R. A. Schweitzer, J. S. Parsons, A. M. Arens, E. E. BE Chimenti, DE Bond, LJ Thompson, DO TI Feasibility Study for Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Storage Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques SO 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Barkhausen and Micro-Magnetics (ICBM) CY JUL 21-26, 2013 CL Baltimore, MD SP Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, NDE Centers, World Federat, Stresstech Grp & Int Conf Barkhausen Noise & Micromagnet Testing Org Comm, Int Comm NDT, Natl Sci Fdn Ind Univ Cooperat Res Ctr, Iowa State Univ, Ctr Nondestruct Evaluat DE Perlite; Neutrons; Density AB The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal. C1 [Livingston, R. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Schweitzer, J. S.] Univ Connecticut, Dept Phys, Storrs, CT USA. [Parsons, A. M.] Goddard Space Flight Ctr, Greenbelt, MD USA. RP Livingston, RA (reprint author), Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. EM rliving1@umd.edu FU NASA/Kennedy Space Center [NNK10MB33P, NNK11OS17P, NNK11OS25P.] FX We are indebted to NASA/Kennedy Space Center for support for this research under contracts NNK10MB33P, NNK11OS17P, and NNK11OS25P. We are also very indebted to Michael Csonka and Robert Cox of KSC; and Suzanne Nowicki, Sam Floyd, Larry Evans, Min Namkung, and Julia Bodnarik of GSFC for invaluable assistance in preparing the test article, performing the experiments and data analysis and many helpful suggestions. NR 6 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1212-5 J9 AIP CONF PROC PY 2014 VL 1581 BP 1832 EP 1839 DI 10.1063/14865046 PG 8 WC Physics, Applied SC Physics GA BB2TW UT WOS:000342312400251 ER PT S AU Kindler, A Matthies, L AF Kindler, A. Matthies, L. BE George, T Islam, MS Dutta, AK TI High specific energy and specific power aluminum/air battery for micro air vehicles SO MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Micro- and Nanotechnology Sensors, Systems, and Applications VI CY MAY 05-09, 2014 CL Baltimore, MD SP SPIE DE Battery; Air Electrode; Aluminum electrode; KOH ID ANODES AB Micro air vehicles developed under the Army's Micro Autonomous Systems and Technology program generally need a specific energy of 300 - 550 watt-hrs/kg and 300 -550 watts/kg to operate for about 1 hour. At present, no commercial cell can fulfill this need. The best available commercial technology is the Lithium-ion battery or its derivative, the Li-Polymer cell. This chemistry generally provides around 15 minutes flying time. One alternative to the State-of-the Art is the Al/air cell, a primary battery that is actually half fuel cell. It has a high energy battery like aluminum anode, and fuel cell like air electrode that can extract oxygen out of the ambient air rather than carrying it. Both of these features tend to contribute to a high specific energy (watt-hrs/kg). High specific power (watts/kg) is supported by high concentration KOH electrolyte, a high quality commercial air electrode, and forced air convection from the vehicles rotors. The performance of this cell with these attributes is projected to be 500 watt-hrs/kg and 500 watts/kg based on simple model. It is expected to support a flying time of approximately 1 hour in any vehicle in which the usual limit is 15 minutes. C1 [Kindler, A.; Matthies, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kindler, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 8 TC 0 Z9 0 U1 4 U2 33 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-020-4 J9 PROC SPIE PY 2014 VL 9083 AR 90831V DI 10.1117/12.2051820 PG 11 WC Nanoscience & Nanotechnology; Optics; Physics, Applied SC Science & Technology - Other Topics; Optics; Physics GA BB2VW UT WOS:000342426300046 ER PT S AU Norton, CD Pasciuto, MP AF Norton, Charles D. Pasciuto, Michael P. BE George, T Islam, MS Dutta, AK TI NASA ESTO's Strategic Investments in Space-Based Radiometer Technology and Flight Validation SO MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Micro- and Nanotechnology Sensors, Systems, and Applications VI CY MAY 05-09, 2014 CL Baltimore, MD SP SPIE DE Cube Sat; InVEST; ESTO; radiometer; MiRaTA; RAVAN AB NASA's Earth Science Technology Office (ESTO) performs strategic investments in instrument subsystems, information systems, and most recently the use of Cube Sat platforms to advance the technology readiness level (TRL) of relevant Earth Science Decadal Survey technologies to reduce and retire risk before infusion into flight missions. In this talk we describe the ESTO philosophy to strategic investment focusing on radiometer technology development and testing including new work involving spaceborne flight validation of radiometer technologies using CubeSats. C1 [Norton, Charles D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Norton, Charles D.; Pasciuto, Michael P.] NASA Earth Sci Technol Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Norton, CD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Charles.D.Norton@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-020-4 J9 PROC SPIE PY 2014 VL 9083 AR UNSP 908329 DI 10.1117/12.2051379 PG 6 WC Nanoscience & Nanotechnology; Optics; Physics, Applied SC Science & Technology - Other Topics; Optics; Physics GA BB2VW UT WOS:000342426300053 ER PT S AU Johnson, WR Hulley, G Hook, SJ AF Johnson, William R. Hulley, Glynn Hook, Simon J. BE Druy, MA Crocombe, RA TI Remote gas plume sensing and imaging with NASA's Hyperspectral Thermal Emission Spectrometer (HyTES) SO NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Next-Generation Spectroscopic Technologies VII CY MAY 05-06, 2014 CL Baltimore, MD SP SPIE DE imaging; spectroscopy; QWIP; thermal; LWIR; Dyson AB The hyperspectral thermal emission spectrometer was developed under NASA's instrument incubator program and has now completed three deployments. The scan head uses a state-of-the-art Dyson spectrometer cooled to 100K coupled to a quantum well infrared photodetector array held at 40K. The combination allows for 256 spectral channels between 7.5 mu m and 12 mu m with 512 cross track spatial pixels. Spectral features for many interesting gases fall within the instrument passband. We first review the pre-flight calibration and validation process for HyTES using a suite of instrumentation. This includes a smile measurement at two wavelengths (8.18 mu m and 10.6 mu m) as well as a concentration determination using large aperture gas cells. We then show positive gas plume detection at ranges >1000m for various cases: Ammonia gas detection from Salton Sea fumaroles, Methane detection from staged releases points in Wyoming as well as naturally occurring methane hot spots off the coast of Santa Barbara. C1 [Johnson, William R.; Hulley, Glynn; Hook, Simon J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Johnson, WR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 4 TC 1 Z9 1 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-038-9 J9 PROC SPIE PY 2014 VL 9101 AR 91010V DI 10.1117/12.2049005 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA BB2ZP UT WOS:000342581800027 ER PT S AU Johnson, WL Youngquist, RC Gibson, TL Jolley, ST Williams, MK AF Johnson, W. L. Youngquist, R. C. Gibson, T. L. Jolley, S. T. Williams, M. K. BE Balachandran, U Amm, K Cooley, L Hartwig, KT Osofsky, M Pamidi, S Reed, R Stautner, W Sumption, M Umezawa, O Walsh, R Weber, H TI Measurement of the Mechanical Properties of Thin Film Polymers at Cryogenic Temperatures SO ADVANCES IN CRYOGENIC ENGINEERING, VOL 60 SE AIP Conference Proceedings LA English DT Proceedings Paper CT Joint Conference of the Transactions of the Cryogenic Engineering Conference / Transactions of the International Cryogenic Materials Conference CY JUN 17-21, 2013 CL Anchorage, AK SP Air Liquide, Burkert Fluid Control Syst, Cryomech Inc, DeMaCo, Linde, Lydall, Meyer Tool & Mfg Inc, PHPK Technologies, SuperPower Inc DE Polymer Mechanical Properties; Cryogenic Measurements; Cryogenic Instrumentation AB Many applications require specific knowledge of thin film polymeric properties at cryogenic temperatures. In particular, applications in pressure vessels and structural components require understanding of the mechanical properties of polymers. The use of polymeric and composite materials has a strong potential to replace metals and decrease the mass of spacecraft while providing lower thermal conductivity for future space exploration missions. There is limited mechanical property data of thin film polymers available at cryogenic temperatures to evaluate these materials for such applications. In order to quantify material properties such as Young's Modulus and ultimate strength at cryogenic temperatures, a new experimental device has been constructed. This test apparatus uses pressurized liquid nitrogen to deform a polymer film disk and a laser displacement sensor to measure the resulting deformation. In this method, the liquid nitrogen pressure is slowly increased to provide incremental loads for evaluation. Several materials with known bulk modulus at 77 K were tested along with novel materials that are on the cutting edge of polymer science. The test setup and test results are presented here for discussion and further study. C1 [Johnson, W. L.; Youngquist, R. C.; Williams, M. K.] NASA, Kennedy Space Ctr, FL 32899 USA. RP Johnson, WL (reprint author), NASA, Kennedy Space Ctr, FL 32899 USA. NR 12 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1204-0 J9 AIP CONF PROC PY 2014 VL 1574 BP 162 EP 169 DI 10.1063/1.4860619 PG 8 WC Thermodynamics; Materials Science, Multidisciplinary; Physics, Applied SC Thermodynamics; Materials Science; Physics GA BB2UG UT WOS:000342342400023 ER PT S AU Nikzad, S AF Nikzad, S. BE Durini, D TI High-performance silicon imagers and their applications in astrophysics, medicine and other fields SO HIGH PERFORMANCE SILICON IMAGING: FUNDAMENTALS AND APPLICATIONS OF CMOS AND CCD SENSORS SE Woodhead Publishing Series in Electronic and Optical Materials LA English DT Article; Book Chapter DE back illumination; surface states; spectral range; quantum efficiency; stability; delta doping; band-structure engineering ID CHARGE-COUPLED-DEVICES; DELTA-DOPED CCDS; HIGH-RESISTIVITY SILICON; MOLECULAR-BEAM EPITAXY; QUANTUM EFFICIENCY; RADIATION-DAMAGE; CMOS TECHNOLOGY; IMAGING ARRAYS; UV; DETECTORS AB This chapter briefly describes some elements of physics and materials that constitute the essential criteria for producing high-performance silicon imagers. In particular, the chapter discusses back illumination and passivation of surface states as a key approach for enabling high performance in silicon imagers, independent of their electronic readout structure. The chapter provides a brief review of silicon imaging arrays, applications in planetary exploration and astronomy, as well as a brief mention of specific cases in the commercial and medical fields. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Nikzad, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM Shouleh.Nikzad@jpl.nasa.gov NR 62 TC 1 Z9 1 U1 0 U2 1 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2050-1501 BN 978-0-85709-752-1; 978-0-85709-598-5 J9 WOODH PUB SER ELECT PY 2014 IS 60 BP 411 EP 438 DI 10.1533/9780857097521.2.411 PG 28 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BB2OY UT WOS:000341992300014 ER PT J AU Silva, WA Chwalowski, P Perry, B AF Silva, Walter A. Chwalowski, Pawel Perry, Boyd, III TI Evaluation of linear, inviscid, viscous, and reduced-order modelling aeroelastic solutions of the AGARD 445.6 wing using root locus analysis SO INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS LA English DT Article DE ROM; aeroelasticity; flutter; CFD; AGARD 445.6 ID FLUTTER ANALYSIS; DYNAMICS; IDENTIFICATION; SYSTEMS; REDUCTION; ALGORITHM; FLOWS AB Reduced-order modelling (ROM) methods are applied to the Computational Fluid Dynamics (CFD)-based aeroelastic analysis of the AGARD 445.6 wing in order to gain insight regarding well-known discrepancies between the aeroelastic analyses and the experimental results. The results presented include aeroelastic solutions using the inviscid Computational Aeroelasticity Programme-Transonic Small Disturbance (CAP-TSD) code and the FUN3D code (Euler and Navier-Stokes). Full CFD aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. Important conclusions are drawn from these results including the ability of the linear CAP-TSD code to accurately predict the entire experimental flutter boundary (repeat of analyses performed in the 1980s), that the Euler solutions at supersonic conditions indicate that the third mode is always unstable, and that the FUN3D Navier-Stokes solutions stabilize the unstable third mode seen in the Euler solutions. C1 [Silva, Walter A.; Chwalowski, Pawel; Perry, Boyd, III] NASA, Aeroelast Branch, Hampton, VA 23681 USA. RP Silva, WA (reprint author), NASA, Aeroelast Branch, Hampton, VA 23681 USA. EM Walter.A.Silva@nasa.gov NR 44 TC 2 Z9 2 U1 1 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1061-8562 EI 1029-0257 J9 INT J COMPUT FLUID D JI Int. J. Comput. Fluid Dyn. PY 2014 VL 28 IS 3-4 SI SI BP 122 EP 139 DI 10.1080/10618562.2014.922179 PG 18 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA AP7YH UT WOS:000342294000004 ER PT J AU Vander Wal, RL Gaddam, CK Kulis, MJ AF Vander Wal, Randy L. Gaddam, Chethan K. Kulis, Michael J. TI Spectroscopic characterization and comparison between biologics, organics and mineral compounds using pulsed micro-hollow glow discharge SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID OPTICAL-EMISSION SPECTROSCOPY; ATMOSPHERIC-PRESSURE; CATHODE DISCHARGES; MICROPLASMAS; PLASMAS; SPECTROMETRY; AIR; DETECTOR; SAMPLES AB A new mode of operation -pulsed -is demonstrated for compound identification of solid materials in the form of dry powders. Both plasma and analytical utility are characterized spectroscopically. The acquired emission spectra provided molecular and elemental information. The microgram sample analysis capability and atmospheric pressure operation are demonstrated for benign and biological organics, a commercial fertilizer and other inorganic materials. The plasma temperature is estimated by spectral simulation of the NO (A(2)Sigma(+) -> X-2 Pi) bands, and the inferred temperature is 1300 degrees C. Atomic transitions from C (P-1(0) -> S-1) and molecular bands from CH (B-2 Sigma -> X-2 Pi) and CH (A(2)Delta -> X-2 Pi) were manifestly observed in the optical emission spectra of organic materials. Relative intensities of common spectral signatures could distinguish biological agents from common benign organic materials. High-resolution spectra were particularly useful in resolving and identifying atomic transitions such as Mg, Ca, Fe and Si for the inorganic materials. Such a detector system has the capability to rapidly sense hazards with the added advantage of portability. C1 [Vander Wal, Randy L.; Gaddam, Chethan K.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Vander Wal, Randy L.; Gaddam, Chethan K.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Kulis, Michael J.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Vander Wal, RL (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. EM ruv12@psu.edu FU NASA SBIR [NNX10RA55P]; Makel Engineering and Penn State [10-SUB-DGA01PSU] FX Funding for this work was through NASA SBIR Contract NNX10RA55P with Makel Engineering and Penn State subcontract 10-SUB-DGA01PSU, with Dr Benjamin Ward as Makel Eng. PI and R. Vander Wal as PSU PI. The authors gratefully acknowledge Dr Ken Street (at The NASA-Glenn Research Center) for supply of the basaltic mineral. NR 38 TC 3 Z9 3 U1 2 U2 5 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 EI 1364-5544 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2014 VL 29 IS 10 BP 1791 EP 1798 DI 10.1039/c4ja00187g PG 8 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA AP4UV UT WOS:000342075200006 ER PT J AU Tang, M McDonough, WF Arevalo, R AF Tang, Ming McDonough, William F. Arevalo, Ricardo, Jr. TI High-precision measurement of Eu/Eu* in geological glasses via LA-ICP-MS analysis SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID INDUCTIVELY-COUPLED PLASMA; PARTICLE-SIZE DISTRIBUTION; LASER-ABLATION; MASS SPECTROMETRY; TRACE-ELEMENTS; SIGNAL INTENSITY; EU ANOMALIES; UPPER-MANTLE; FRACTIONATION; STATE AB Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (>100 mu m) and line scanning mode. In addition (1) ion yields decrease when using spot sizes above 100 mm; (2) (Eu/Eu*)(raw) positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)(raw) shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference materials analyzed in this work, the 100 mm spot measurements of Eu/Eu* agreed with GeoRem preferred values within 3%. Our long-term analyses of Eu/Eu* in MPI-DING glass KL-2G and USGS glass BIR-1G were reproducible at 3% (2 RSD). C1 [Tang, Ming; McDonough, William F.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Arevalo, Ricardo, Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tang, M (reprint author), Univ Maryland, Dept Geol, College Pk, MD 20742 USA. EM tangmyes@gmail.com RI McDonough, William/I-7720-2012 OI McDonough, William/0000-0001-9154-3673 FU NSF [EAR-0739006] FX This work was supported by NSF grant EAR-0739006. We thank Richard Ash for assistance with LA-ICP-MS analysis. We also appreciate Yu Huang's help on data reduction. NR 32 TC 5 Z9 5 U1 1 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 EI 1364-5544 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2014 VL 29 IS 10 BP 1835 EP 1843 DI 10.1039/c4ja00155a PG 9 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA AP4UV UT WOS:000342075200012 ER EF