FN Thomson Reuters Web of Science™
VR 1.0
PT S
AU Boogert, ACA
Gerakines, PA
Whittet, DCB
AF Boogert, A. C. Adwin
Gerakines, Perry A.
Whittet, Douglas C. B.
BE Faber, SM
VanDishoeck, E
TI Observations of the Icy Universe
SO ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 53
SE Annual Review of Astronomy and Astrophysics
LA English
DT Review; Book Chapter
DE interstellar ices; astrochemistry; volatiles; interstellar molecules;
cometary ices; infrared absorption
ID YOUNG STELLAR OBJECTS; SPITZER SPECTROSCOPIC SURVEY; DENSE MOLECULAR
CLOUDS; KLEINMANN-LOW NEBULA; TAURUS DARK CLOUD; LOW-MASS STARS;
LINE-OF-SIGHT; INFRARED SPECTROGRAPH OBSERVATIONS; MICRON KECK/NIRSPEC
SPECTRA; INTERSTELLAR GRAIN MANTLES
AB Freeze-out of the gas-phase elements onto cold grains in dense interstellar and circumstellar media builds up ice mantles consisting of molecules that are mostly formed in situ (H2O, NH3, CO2, CO, CH3OH, and more). This review summarizes the detected infrared spectroscopic ice features and compares the abundances across Galactic, extragalactic, and Solar System environments. A tremendous amount of information is contained in the ice band profiles. Laboratory experiments play a critical role in the analysis of the observations. Strong evidence is found for distinct ice formation stages, separated by CO freeze-out at high densities. The ice bands have proven to be excellent probes of the thermal history of their environment. The evidence for the long-held idea that processing of ices by energetic photons and cosmic rays produces complex molecules is weak. Recent state-of-the-art observations show promise for much progress in this area with planned infrared facilities.
C1 [Boogert, A. C. Adwin] NASA, Ames Res Ctr, Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA.
[Gerakines, Perry A.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Astrochem Lab, Greenbelt, MD 20771 USA.
[Whittet, Douglas C. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
[Whittet, Douglas C. B.] Rensselaer Polytech Inst, New York Ctr Astrobiol, Troy, NY 12180 USA.
RP Boogert, ACA (reprint author), NASA, Ames Res Ctr, Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA.
EM acaboogert@alumni.caltech.edu; perry.a.gerakines@nasa.gov;
whittd@rpi.edu
RI Gerakines, Perry/D-2226-2012;
OI Gerakines, Perry/0000-0002-9667-5904; Whittet,
Douglas/0000-0001-8539-3891
NR 225
TC 55
Z9 55
U1 4
U2 40
PU ANNUAL REVIEWS
PI PALO ALTO
PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA
SN 0066-4146
BN 978-0-8243-0953-4
J9 ANNU REV ASTRON ASTR
JI Annu. Rev. Astron. Astrophys.
PY 2015
VL 53
BP 541
EP 581
DI 10.1146/annurev-astro-082214-122348
PG 41
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BD3LH
UT WOS:000359857000014
ER
PT S
AU Airapetian, VS
Cuntz, M
AF Airapetian, Vladimir S.
Cuntz, Manfred
BE Ake, TB
Griffin, E
TI Atmospheric Heating and Wind Acceleration in Cool Evolved Stars
SO GIANTS OF ECLIPSE: THE ZETA AURIGAE STARS AND OTHER BINARY SYSTEMS
SE Astrophysics and Space Science Library
LA English
DT Article; Book Chapter
ID LOW-GRAVITY STARS; SOLAR-TYPE STARS; WKB ALFVEN WAVES; ORIONIS M2 IAB;
HIGH-RESOLUTION SPECTROGRAPH; STELLAR MODEL CHROMOSPHERES; TRANSITION
REGION LINES; MAIN-SEQUENCE STARS; LATE-TYPE GIANTS; T TAURI STARS
AB A chromosphere is a universal property of stars of spectral type later than similar to F5. Evolved K and M giants and supergiants, including the zeta Aur binaries, show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What mechanisms heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modelling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.
C1 [Airapetian, Vladimir S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cuntz, Manfred] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
RP Airapetian, VS (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM vladimir.airapetian@nasa.gov; cuntz@uta.edu
NR 152
TC 1
Z9 1
U1 1
U2 1
PU SPRINGER
PI DORDRECHT
PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0067-0057
BN 978-3-319-09198-3; 978-3-319-09197-6
J9 ASTROPHYS SPACE SC L
PY 2015
VL 408
BP 123
EP 156
DI 10.1007/978-3-319-09198-3_5
D2 10.1007/978-3-319-09198-3
PG 34
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BD0QY
UT WOS:000357595600006
ER
PT S
AU Huber, D
AF Huber, Daniel
BE Ake, TB
Griffin, E
TI Asteroseismology of Eclipsing Binary Stars
SO GIANTS OF ECLIPSE: THE ZETA AURIGAE STARS AND OTHER BINARY SYSTEMS
SE Astrophysics and Space Science Library
LA English
DT Article; Book Chapter
ID SOLAR-LIKE OSCILLATIONS; RED-GIANT STARS; TRANSITING EXTRASOLAR PLANETS;
STELLAR EVOLUTION DATABASE; FINE GUIDANCE SENSOR; PULSATING SDB STAR;
DELTA-SCUTI STARS; RR LYRAE STARS; KEPLER PHOTOMETRY; FUNDAMENTAL
PROPERTIES
AB Eclipsing binaries have long served as benchmark systems to measure fundamental properties of stars. In recent decades, asteroseismology-the study of stellar pulsations-has emerged as a powerful new tool to study the structure and evolution of stars across the H-R diagram. Pulsating stars in eclipsing binary systems are particularly valuable since fundamental properties such as radii and masses can then be determined using two independent techniques. Furthermore, independently measured properties from binary orbits can be used to improve asteroseismic modelling for pulsating stars in which mode identifications are not straightforward. This chapter provides a review of asteroseismic detections in eclipsing binary stars, with a focus on space-based missions such as CoRoT and Kepler and empirical tests of asteroseismic scaling relations for stochastic ('solar-like') oscillations.
C1 [Huber, Daniel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Huber, Daniel] SETI Inst, Mountain View, CA 94043 USA.
RP Huber, D (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM dhuber@seti.org
NR 124
TC 1
Z9 1
U1 2
U2 4
PU SPRINGER
PI DORDRECHT
PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0067-0057
BN 978-3-319-09198-3; 978-3-319-09197-6
J9 ASTROPHYS SPACE SC L
PY 2015
VL 408
BP 169
EP 194
DI 10.1007/978-3-319-09198-3_7
D2 10.1007/978-3-319-09198-3
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BD0QY
UT WOS:000357595600008
ER
PT S
AU Andersson, BG
AF Andersson, B-G
BE Lazarian, A
DalPino, EMD
Melioli, C
TI Interstellar Grain Alignment: Observational Status
SO MAGNETIC FIELDS IN DIFFUSE MEDIA
SE Astrophysics and Space Science Library
LA English
DT Article; Book Chapter
ID MOLECULAR-HYDROGEN FORMATION; TAURUS DARK CLOUDS; FAR-INFRARED
POLARIZATION; MAGNETIC-FIELD STRENGTHS; OH ZEEMAN OBSERVATIONS;
WAVELENGTH DEPENDENCE; LINEAR-POLARIZATION; RADIATIVE TORQUES; DUST
GRAINS; SIZE DISTRIBUTION
AB Interstellar polarization in the optical/infrared has long been known to be due to asymmetrical dust grains aligned with the magnetic field and can potentially provide a resource effective way to probe both the topology and strength of the magnetic-field. However, to do so with confidence, the physics and variability of the alignment mechanisms must be quantitatively understood. The last 15 years has seen major advancements in both the theoretical and observational understanding of this problem. I here review the current state of the observational constraints on the grain alignment physics. While none of the three classes of proposed grain alignment theories: mechanical, paramagnetic relaxation and radiative alignment torque, can be viewed as having been empirically confirmed, the first two have failed some critical observational tests, whereas the latter has recently been given specific observational support and must now be viewed as the leading candidate.
C1 NASA, Ames Res Ctr, Univ Space Res Assoc, SOFIA Sci Ctr, Moffett Field, CA 94035 USA.
RP Andersson, BG (reprint author), NASA, Ames Res Ctr, Univ Space Res Assoc, SOFIA Sci Ctr, MS N232-12, Moffett Field, CA 94035 USA.
EM bgandersson@sofia.usra.edu
OI Andersson, B-G/0000-0001-6717-0686
NR 129
TC 10
Z9 10
U1 0
U2 0
PU SPRINGER
PI DORDRECHT
PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0067-0057
BN 978-3-662-44625-6; 978-3-662-44624-9
J9 ASTROPHYS SPACE SC L
PY 2015
VL 407
BP 59
EP 87
DI 10.1007/978-3-662-44625-6_4
D2 10.1007/978-3-662-44625-6
PG 29
WC Astronomy & Astrophysics; Physics, Fluids & Plasmas
SC Astronomy & Astrophysics; Physics
GA BD0QW
UT WOS:000357594300005
ER
PT J
AU Needelman, WM
Zaretsky, EV
AF Needelman, William M.
Zaretsky, Erwin V.
TI Recalibrated Equations for Determining Effect of Oil Filtration on
Rolling Bearing Life
SO TRIBOLOGY TRANSACTIONS
LA English
DT Article
DE Oil Filter Ratings; Oil Filtration; Rolling-Element Bearings; Life
Prediction
ID CONTACT FATIGUE; EHL CONTACTS; CONTAMINATED LUBRICANT; SURFACE DENTS;
DAMAGE; MODEL
AB In 1991, Needelman and Zaretsky presented a set of empirically derived equations for bearing fatigue life (adjustment) factors (LFs) as a function of oil filter ratings. These equations for life factors were incorporated into the reference book, STLE Life Factors for Rolling Bearings (Zaretsky, 1992). These equations were normalized (LF = 1) to a 10-mu m filter rating at beta(x) = 200 (normal cleanliness) as it was then defined. Over the past 20 years, these life factors based on oil filtration have been used in conjunction with American National Standards Institute/American Bearing Manufacturers Association (ANSI/ABMA) standards and bearing computer codes to predict rolling bearing life. Additional experimental studies have been made by other investigators into the relationship between rolling bearing life and the size, number, and type of particle contamination. During this time period, filter ratings have also been revised and improved, and they now use particle counting calibrated to a new National Institute of Standards and Technology (NIST) reference material, NIST SRM 2806 (NIST 1997). This article reviews the relevant bearing life studies and describes the new filter ratings. New filter ratings, beta(x(c)) = 200 and beta(x(c)) = 1,000, are benchmarked to old filter ratings, beta(x) = 200, and vice versa. Two separate sets of filter LF values were derived based on the new filter ratings for roller bearings and ball bearings, respectively. Bearing LFs can be calculated for the new filter ratings.
C1 [Needelman, William M.] Filtrat Sci Solut, Huntington, NY 11743 USA.
[Zaretsky, Erwin V.] Natl Aeronaut & Space Adm, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Needelman, WM (reprint author), Filtrat Sci Solut, Huntington, NY 11743 USA.
NR 56
TC 2
Z9 2
U1 2
U2 5
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1040-2004
EI 1547-397X
J9 TRIBOL T
JI Tribol. Trans.
PY 2015
VL 58
IS 5
BP 786
EP 800
DI 10.1080/10402004.2015.1005857
PG 15
WC Engineering, Mechanical
SC Engineering
GA CP6DJ
UT WOS:000359974200003
ER
PT S
AU Lih, SS
Lee, HJ
Bar-Cohen, Y
AF Lih, Shyh-Shiuh
Lee, Hyeong Jae
Bar-Cohen, Yoseph
BE Kundu, T
TI Signal processing for determining water height in steam pipes with
dynamic surface conditions
SO HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Health Monitoring of Structural and Biological Systems
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Health monitoring; water level in pipe; dynamic surface conditions;
Hilbert Transform; signal processing
AB An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.
C1 [Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Lih, SS (reprint author), CALTECH, Jet Prop Lab, MS 67-119,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM lih@jpl.nasa.gov
NR 8
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-541-4
J9 PROC SPIE
PY 2015
VL 9438
AR 943804
DI 10.1117/12.2084519
PG 8
WC Engineering, Multidisciplinary; Engineering, Biomedical; Engineering,
Mechanical; Optics
SC Engineering; Optics
GA BD3DC
UT WOS:000359481400002
ER
PT J
AU Lopez, CF
Jeevarajan, JA
Mukherjee, PP
AF Lopez, Carlos F.
Jeevarajan, Judith A.
Mukherjee, Partha P.
TI Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion
Battery Modules
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID HIGH-POWER; CELLS; FIRE; CALORIMETRY; PERFORMANCE; STABILITY; ADDITIVES;
MECHANISM; BEHAVIOR; SYSTEMS
AB While the energy and power density of lithium-ion batteries (LIBs) are steadily improving, thermal safety continues to remain a critical challenge. Under abuse conditions, exothermic reactions may lead to the release of heat that can trigger subsequent unsafe reactions. The situation worsens in a module configuration, as the released heat from an abused cell can activate a chain of reactions in the neighboring cells, causing catastrophic thermal runaway. This work focuses on experimental elucidation and analysis of different LIB module configurations to characterize the thermal behavior and determine safe practices. The abuse test consists of a heat-to-vent setting where a single cell in a module is triggered into thermal runaway via a heating element. The cell-to-cell thermal runaway propagation behavior has been characterized. Results have shown that increasing the inter-cell spacing in a module containing cylindrical cells significantly decreases the probability of thermal runaway propagation. Additionally, it was determined that appropriate tab configuration combined with cell form factors exhibit a major influence on thermal runaway propagation. Different thermal insulation materials have been analyzed to determine their ability to ameliorate and/or potentially mitigate propagation effects. (C) The Author(s) 2015. Published by ECS. All rights reserved.
C1 [Lopez, Carlos F.; Mukherjee, Partha P.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Jeevarajan, Judith A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Lopez, CF (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
EM Judy.Jeevarajan@ul.com; pmukherjee@tamu.edu
FU NASA Office of Education
FX Financial support from NASA Office of Education is gratefully
acknowledged. The cooperation of Pyrophobic Systems is greatly
appreciated as they provided us with the flexibility to design the
intumescent material modules to better suit our cell designs.
Additionally, the support of the Energy System Test Area at NASA Johnson
Space Center was invaluable for this work.
NR 39
TC 13
Z9 14
U1 8
U2 45
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2015
VL 162
IS 9
BP A1905
EP A1915
DI 10.1149/2.0921509jes
PG 11
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA CO5CL
UT WOS:000359177100028
ER
PT J
AU He, F
Jin, XF
Tian, TF
Ding, HP
Green, RD
Xue, XJ
AF He, Fei
Jin, Xinfang
Tian, Tingfang
Ding, Hanping
Green, Robert D.
Xue, Xingjian
TI Determination of Electrochemical Kinetic Property for Mixed Ionic
Electronic Conductors from Electrical Conductivity Relaxation
Measurements
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID CHEMICAL DIFFUSION-COEFFICIENT; OXYGEN-SURFACE EXCHANGE; TRANSPORT;
CATHODE; BULK; LA0.5SR0.5COO3-DELTA; LSCF
AB Electrical conductivity relaxation (ECR) technique has been widely used to determine surface exchange and bulk diffusion coefficients for mixed ionic electronic conductors (MIECs). However, this extensively employed method is built upon an analytic solution with the form of infinite series derived from a strictly specified geometric sample shape. This may cause various problems for accurate parameter estimation due to the ill-posed nature. This research reports a new strategy to overcome these issues by utilizing a direct numerical method with inverse algorithm solution. The similarity relation between dimensionless relaxation time and chemical Biot number is revealed and used to identify whether or not the electrochemical kinetic property is limited by either bulk diffusion or surface exchange process for a set of MIECs. The Blot number effect on parameter estimation results is systematically studied and a suitable range of Biot number is suggested for obtaining more accurate estimations The uncertainty induced by measurement noise is also discussed for the estimated parameters. A case study of ECR measurement is carried out for an electrode material (La0.6Sr0.4)(0.95)Fe0.9Mo0.1 O-3 in CO/CO2 atmosphere at different temperatures and is comprehensively evaluated using the developed approach. (C) 2015 The Electrochemical Society. All rights reserved.
C1 [He, Fei; Jin, Xinfang; Tian, Tingfang; Ding, Hanping; Xue, Xingjian] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
[Green, Robert D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP He, F (reprint author), Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
EM Xue@cec.sc.edu
RI Ding, Hanping/G-2029-2016
OI Ding, Hanping/0000-0002-8734-7933
FU NASA's Space Technology Research Grants Program [NNX14AB26G]
FX This work was supported by Early Stage Innovations grant #NNX14AB26G
from NASA's Space Technology Research Grants Program.
NR 30
TC 2
Z9 2
U1 3
U2 10
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2015
VL 162
IS 9
BP F951
EP F958
DI 10.1149/2.0131509jes
PG 8
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA CO5CL
UT WOS:000359177100069
ER
PT S
AU Sandford, SA
Bera, PP
Lee, TJ
Materese, CK
Nuevo, M
AF Sandford, Scott A.
Bera, Partha P.
Lee, Timothy J.
Materese, Christopher K.
Nuevo, Michel
BE Barbatti, M
Borin, AC
Ullrich, S
TI Photosynthesis and Photo-Stability of Nucleic Acids in Prebiotic
Extraterrestrial Environments
SO PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II: DNA FRAGMENTS AND
PHENOMENOLOGICAL ASPECTS
SE Topics in Current Chemistry
LA English
DT Review; Book Chapter
DE Astrochemistry; Extraterrestrial abiotic nucleobase synthesis; Ice
irradiation; Nucleobases; UV irradiation
ID POLYCYCLIC AROMATIC-HYDROCARBONS; INTERSTELLAR ICE ANALOGS; FOCK
PERTURBATION-THEORY; RACEMIC AMINO-ACIDS; SIDE-GROUP ADDITION; MURCHISON
METEORITE; ORGANIC-MOLECULES; HYDROGEN-CYANIDE; ULTRAVIOLET PHOTOLYSIS;
UV PHOTOLYSIS
AB Laboratory experiments have shown that the UV photo-irradiation of low-temperature ices of astrophysical interest leads to the formation of organic molecules, including molecules important for biology such as amino acids, quinones, and amphiphiles. When pyrimidine is introduced into these ices, the products of irradiation include the nucleobases uracil, cytosine, and thymine, the informational sub-units of DNA and RNA, as well as some of their isomers. The formation of these compounds, which has been studied both experimentally and theoretically, requires a succession of additions of OH, NH2, and CH3 groups to pyrimidine. Results show that H2O ice plays key roles in the formation of the nucleobases, as an oxidant, as a matrix in which reactions can take place, and as a catalyst that assists proton abstraction from intermediate compounds. As H2O is also the most abundant icy component in most cold astrophysical environments, it probably plays the same roles in space in the formation of biologically relevant compounds. Results also show that although the formation of uracil and cytosine from pyrimidine in ices is fairly straightforward, the formation of thymine is not.
C1 [Sandford, Scott A.; Bera, Partha P.; Lee, Timothy J.; Materese, Christopher K.; Nuevo, Michel] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
[Bera, Partha P.] Bay Area Environm Res Inst, Sonoma, CA 95476 USA.
[Nuevo, Michel] SETI Inst, Mountain View, CA 94043 USA.
RP Sandford, SA (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA.
EM Scott.A.Sandford@nasa.gov
RI Lee, Timothy/K-2838-2012
NR 198
TC 3
Z9 3
U1 3
U2 22
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0340-1022
BN 978-3-319-13272-3; 978-3-319-13271-6
J9 TOP CURR CHEM
JI Top. Curr. Chem.
PY 2015
VL 356
BP 123
EP 164
DI 10.1007/128_2013_499
D2 10.1007/978-3-319-13272-3
PG 42
WC Chemistry, Multidisciplinary
SC Chemistry
GA BD2WO
UT WOS:000359359300005
PM 24500331
ER
PT J
AU El-Askary, H
Park, SK
Nickovic, S
Chin, M
AF El-Askary, Hesham
Park, Seon K.
Nickovic, Slobodan
Chin, Mian
TI Remote Sensing and Modeling of Atmospheric Dust and Studying Its Impact
on Environment, Weather, and Climate
SO ADVANCES IN METEOROLOGY
LA English
DT Editorial Material
C1 [El-Askary, Hesham] Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA.
[El-Askary, Hesham] Chapman Univ, Ctr Excellence Earth Observing, Orange, CA 92866 USA.
[El-Askary, Hesham] Univ Alexandria, Dept Environm Sci, Alexandria 21522, Egypt.
[Park, Seon K.] Ewha Womans Univ, Dept Environm Sci & Engn, Seoul 120750, South Korea.
[Park, Seon K.] Ewha Womans Univ, Dept Atmospher Sci & Engn, Seoul 120750, South Korea.
[Park, Seon K.] Ewha Womans Univ, Severe Storm Res Ctr, Seoul 120750, South Korea.
[Park, Seon K.] Ewha Womans Univ, Ctr Climate Environm Change Predict Res, Seoul 120750, South Korea.
[Nickovic, Slobodan] Univ Arizona, Inst Atmospher Phys, Tucson, AZ 85721 USA.
[Nickovic, Slobodan] South East European Virtual Climate Change Ctr, Republ Hydrometeorol Serv, Belgrade 11000, Serbia.
[Nickovic, Slobodan] Inst Phys, Belgrade 11080, Serbia.
[Chin, Mian] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA.
RP El-Askary, H (reprint author), Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA.
EM elaskary@chapman.edu
RI Chin, Mian/J-8354-2012
NR 0
TC 0
Z9 0
U1 1
U2 7
PU HINDAWI PUBLISHING CORPORATION
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-9309
EI 1687-9317
J9 ADV METEOROL
JI Adv. Meteorol.
PY 2015
AR 854968
DI 10.1155/2015/854968
PG 2
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CP0EY
UT WOS:000359549800001
ER
PT J
AU Garnier, A
Pelon, J
Vaughan, MA
Winker, DM
Trepte, CR
Dubuisson, P
AF Garnier, A.
Pelon, J.
Vaughan, M. A.
Winker, D. M.
Trepte, C. R.
Dubuisson, P.
TI Lidar multiple scattering factors inferred from CALIPSO lidar and IIR
retrievals of semi-transparent cirrus cloud optical depths over oceans
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID ICE WATER-CONTENT; PART I; DEPOLARIZATION RATIO; EXTINCTION; ALGORITHM;
SPACEBORNE; PARTICLES; PERFORMANCE; EMISSIVITY; RADIATION
AB Cirrus cloud absorption optical depths retrieved at 12.05 mu m are compared to extinction optical depths retrieved at 0.532 mu m from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) flying on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite. IIR infrared absorption optical depths are compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent two-way transmittance through the cloud. An evaluation of the CALIOP multiple scattering factor is inferred from these comparisons after assessing and correcting biases in IIR and CALIOP optical depths reported in version 3 data products. In particular, the blackbody radiance taken in the IIR version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40% as the temperature at the layer centroid altitude decreases from 240 to 200 K. It is discussed that this behavior can be explained by variations of the multiple scattering factor eta(T) applied to correct the measured apparent two-way transmittance for contribution of forward-scattering. While the CALIOP version 3 retrievals hold eta(T) fixed at 0.6, this study shows that eta(T) varies with temperature (and hence cloud particle size) from eta(T) = 0.8 at 200K to eta(T) = 0.5 at 240K for single-layered semi-transparent cirrus clouds with optical depth larger than 0.3. The revised parameterization of eta(T) introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP depolarization ratios and particle habits derived from IIR measurements.
C1 [Garnier, A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Pelon, J.] UPMC UVSQ CNRS, Atmospheres Lab, Milieux, Observat Spatiales, Paris, France.
[Vaughan, M. A.; Winker, D. M.; Trepte, C. R.] NASA Langley Res Ctr, Hampton, VA USA.
[Dubuisson, P.] Univ Lille 1, Opt Atmospher Lab, Lille, France.
RP Garnier, A (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
EM anne.garnier@latmos.ipsl.fr
NR 50
TC 9
Z9 9
U1 4
U2 6
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 7
BP 2759
EP 2774
DI 10.5194/amt-8-2759-2015
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CN9WA
UT WOS:000358799900009
ER
PT J
AU Mannucci, AJ
Tsurutani, BT
Verkhoglyadova, O
Komjathy, A
Pi, X
AF Mannucci, A. J.
Tsurutani, B. T.
Verkhoglyadova, O.
Komjathy, A.
Pi, X.
TI Use of radio occultation to probe the high-latitude ionosphere
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID HEIGHT-INTEGRATED PEDERSEN; ELECTRON-DENSITY PROFILES; HIGH-INTENSITY;
LONG-DURATION; MODEL; CONDUCTIVITY; CONDUCTANCES; SYSTEM; ENERGY; CHAMP
AB We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere-ionosphere because of the important role of conductivity on high-latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejection (CME) storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude) is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E-layer-dominant ionosphere" (ELDI) profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the Southern, less sunlit, Hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm's main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50 degrees magnetic latitude for signatures of precipitation in the E region. For 9 days during the July 2012 period, we find a signature of precipitation occurs nearly uniformly in local time, although the magnitude of electron density increase may vary with local time. The latitudinal extent of the precipitation layers is generally consistent with auroral climatology. However, after the storm main phase on 14 July 2012 the precipitation tended to be somewhat more equatorward than the climatology (by about 5-10 degrees latitude) and equatorward of the auroral boundary data acquired from the SSUSI sensor onboard the F18 DMSP satellite. We conclude that, if analyzed appropriately, high-latitude COSMIC profiles have the potential to contribute to our understanding of MI coupling processes and extend and improve existing models of the auroral region.
C1 [Mannucci, A. J.; Tsurutani, B. T.; Verkhoglyadova, O.; Komjathy, A.; Pi, X.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Mannucci, AJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM tony.mannucci@jpl.nasa.gov
OI Verkhoglyadova, Olga/0000-0002-9295-9539
FU National Aeronautics and Space Administration; Living With a Star
Program within the Heliophysics Division of NASA's Science Mission
Directorate
FX This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. We acknowledge the support of the
Living With a Star Program, within the Heliophysics Division of NASA's
Science Mission Directorate. We gratefully acknowledge the provision of
Formosat-3/COSMIC electron density profile data from the COSMIC Data
Analysis and Archive Center and SSUSI data from the Johns Hopkins
University Applied Physics Laboratory. We acknowledge use of
NASA/Goddard Space Flight Center's Space Physics Data Facility's OMNIWeb
service and OMNI data.
NR 33
TC 0
Z9 0
U1 0
U2 12
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 7
BP 2789
EP 2800
DI 10.5194/amt-8-2789-2015
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CN9WA
UT WOS:000358799900011
ER
PT J
AU Limbacher, JA
Kahn, RA
AF Limbacher, J. A.
Kahn, R. A.
TI MISR empirical stray light corrections in high-contrast scenes
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID RADIOMETRIC CALIBRATION; DARK WATER; PERFORMANCE; REFINEMENTS; AEROSOLS;
AERONET; OCEAN
AB We diagnose the potential causes for the Multi-angle Imaging SpectroRadiometer's (MISR) persistent high aerosol optical depth (AOD) bias at low AOD with the aid of coincident MODerate-resolution Imaging Spectroradiometer (MODIS) imagery from NASA's Terra satellite. Stray light in the MISR instrument is responsible for a large portion of the high AOD bias in high-contrast scenes, such as broken-cloud scenes that are quite common over ocean. Discrepancies among MODIS and MISR nadir-viewing blue, green, red, and near-infrared images are used to optimize seven parameters individually for each wavelength, along with a background reflectance modulation term that is modeled separately, to represent the observed features. Independent surface-based AOD measurements from the AErosol RObotic NETwork (AERONET) and the Marine Aerosol Network (MAN) are compared with MISR research aerosol retrieval algorithm (RA) AOD retrievals for 1118 coincidences to validate the corrections when applied to the nadir and off-nadir cameras. With these corrections, plus the baseline RA corrections and enhanced cloud screening applied, the median AOD bias for all data in the mid-visible (green, 558 nm) band decreases from 0.006 (0.020 for the MISR standard algorithm (SA)) to 0.000, and the RMSE decreases by 5% (27% compared to the SA). For AOD(558 nm) < 0.10, which includes about half the validation data, 68th percentile absolute AOD(558 nm) errors for the RA have dropped from 0.022 (0.034 for the SA) to < 0.02 (similar to 0.018).
C1 [Limbacher, J. A.; Kahn, R. A.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA.
[Limbacher, J. A.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
RP Kahn, RA (reprint author), NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA.
EM ralph.kahn@nasa.gov
FU NASA's Climate and Radiation Research and Analysis Program; NASA's
Atmospheric Composition Program; NASA Earth Observing System MISR
instrument project
FX We thank our colleagues on the Jet Propulsion Laboratory's MISR
instrument team and at the NASA Langley Research Center's Atmospheric
Sciences Data Center for their roles in producing the MISR standard data
sets, as well as our colleagues on the MODIS team, Brent Holben and the
AERONET team, and Alexander Smirnov and the MAN team for the invaluable
data sets they produce. We also thank Sergey Korkin, and Andrew Sayer
for helpful discussions, Alexei Lyapustin for providing his MODIS
radiometric correction code, Maksym Petrenko for identifying the
MISR/MAN coincidences, and Carol Bruegge, James Butler, Veljko
Jovanovic, and Michael Garay for comments on an early version of the
manuscript. This research is supported in part by NASA's Climate and
Radiation Research and Analysis Program under H. Maring, NASA's
Atmospheric Composition Program under R. Eckman, and the NASA Earth
Observing System MISR instrument project.
NR 26
TC 0
Z9 0
U1 2
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 7
BP 2927
EP 2943
DI 10.5194/amt-8-2927-2015
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CN9WA
UT WOS:000358799900020
ER
PT J
AU Dutkiewicz, S
Hickman, AE
Jahn, O
Gregg, WW
Mouw, CB
Follows, MJ
AF Dutkiewicz, S.
Hickman, A. E.
Jahn, O.
Gregg, W. W.
Mouw, C. B.
Follows, M. J.
TI Capturing optically important constituents and properties in a marine
biogeochemical and ecosystem model
SO BIOGEOSCIENCES
LA English
DT Article
ID DISSOLVED ORGANIC-MATTER; PHYTOPLANKTON COMMUNITY STRUCTURE; IRRADIANCE
INVERSION ALGORITHM; EQUATORIAL PACIFIC-OCEAN; CLEAREST NATURAL-WATERS;
GLOBAL OCEAN; ATLANTIC-OCEAN; LIGHT-ABSORPTION; BACKSCATTERING
COEFFICIENTS; INTERANNUAL VARIABILITY
AB We present a numerical model of the ocean that couples a three-stream radiative transfer component with a marine biogeochemical-ecosystem component in a dynamic three-dimensional physical framework. The radiative transfer component resolves the penetration of spectral irradiance as it is absorbed and scattered within the water column. We explicitly include the effect of several optically important water constituents (different phytoplankton functional types; detrital particles; and coloured dissolved organic matter, CDOM). The model is evaluated against in situ-observed and satellite-derived products. In particular we compare to concurrently measured biogeochemical, ecosystem, and optical data along a meridional transect of the Atlantic Ocean. The simulation captures the patterns and magnitudes of these data, and estimates surface upwelling irradiance analogous to that observed by ocean colour satellite instruments. We find that incorporating the different optically important constituents explicitly and including spectral irradiance was crucial to capture the variability in the depth of the subsurface chlorophyll a (Chl a) maximum. We conduct a series of sensitivity experiments to demonstrate, globally, the relative importance of each of the water constituents, as well as the crucial feedbacks between the light field, the relative fitness of phytoplankton types, and the biogeochemistry of the ocean. CDOM has proportionally more importance at attenuating light at short wavelengths and in more productive waters, phytoplankton absorption is relatively more important at the subsurface Chl a maximum, and water molecules have the greatest contribution when concentrations of other constituents are low, such as in the oligotrophic gyres. Scattering had less effect on attenuation, but since it is important for the amount and type of upwelling irradiance, it is crucial for setting sea surface reflectance. Strikingly, sensitivity experiments in which absorption by any of the optical constituents was increased led to a decrease in the size of the oligotrophic regions of the subtropical gyres: lateral nutrient supplies were enhanced as a result of decreasing high-latitude productivity. This new model that captures bio-optical feedbacks will be important for improving our understanding of the role of light and optical constituents on ocean biogeochemistry, especially in a changing environment. Further, resolving surface upwelling irradiance will make it easier to connect to satellite-derived products in the future.
C1 [Dutkiewicz, S.] MIT, Ctr Global Change Sci, Cambridge, MA 02139 USA.
[Dutkiewicz, S.; Jahn, O.; Follows, M. J.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
[Hickman, A. E.] Univ Southampton, Natl Oceanog Ctr Southampton, Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England.
[Gregg, W. W.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Mouw, C. B.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA.
RP Dutkiewicz, S (reprint author), MIT, Ctr Global Change Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM stephd@mit.edu
RI Mouw, Colleen/M-4431-2015;
OI Mouw, Colleen/0000-0003-2516-1882; Jahn, Oliver/0000-0002-0130-5186
FU NASA [NNX13AC34G]; NERC [NE/H015930/2]; NSF [OCE1434007, OCE1155295];
Gordon and Betty Moore Foundation; NERC through AMT consortium
[NER/O/S/2001/00680]; NERC
FX We are grateful to NASA (NNX13AC34G), NERC (NE/H015930/2), NSF
(OCE1434007, OCE1155295), and the Gordon and Betty Moore Foundation for
funding. The work on AMT-15 was supported by NERC through the AMT
consortium (NER/O/S/2001/00680). This is contribution number 262 of the
AMT programme. Participation of A. E. Hickman in AMT-15 was funded by a
NERC PhD studentship. We thank S. Alvain for making the PHYSAT data
available to us. We appreciate the NASA GSFC website for the MODIS level
3 data used here, as well as the ocean productivity website at Oregon
State University for primary production data, and the efforts of the
MAREDAT team for the phytoplankton compilations. We would like to thank
D. Stramski for phytoplankton absorption and scattering data for
phytoplankton and detritus, and D. Suggett and L. Moore for additional
phytoplankton absorption spectra. Thanks also to the Atlantic Meridional
Transect (AMT) community, in particular J. Heywood and M. Zubkov for
analytical flow cytometry measurements, L. Hay and G. Moore for optics
data, A. Stubbins for aCDOM data, M. Woodward and K. Chamberlain for
nutrient data, and A. Pattenden for assistance with Chl a and
phytoplankton light absorption measurements. We appreciate the
constructive comments and suggestions from E. Boss and an anonymous
reviewer, which significantly improved this article. We also thank C.
Follett, A. Mignot, and S. Sathyendranath for catching typos in the
equations and tables.
NR 130
TC 8
Z9 8
U1 3
U2 17
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1726-4170
EI 1726-4189
J9 BIOGEOSCIENCES
JI Biogeosciences
PY 2015
VL 12
IS 14
BP 4447
EP 4481
DI 10.5194/bg-12-4447-2015
PG 35
WC Ecology; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA CN9WJ
UT WOS:000358800900017
ER
PT J
AU Sproles, EA
Leibowitz, SG
Reager, JT
Wigington, PJ
Famiglietti, JS
Patil, SD
AF Sproles, E. A.
Leibowitz, S. G.
Reager, J. T.
Wigington, P. J., Jr.
Famiglietti, J. S.
Patil, S. D.
TI GRACE storage-runoff hystereses reveal the dynamics of regional
watersheds
SO HYDROLOGY AND EARTH SYSTEM SCIENCES
LA English
DT Article
ID WESTERN UNITED-STATES; DATA ASSIMILATION SYSTEM; CLIMATE-CHANGE;
GROUNDWATER DEPLETION; OREGON CASCADES; SOIL-MOISTURE; RIVER-BASIN;
MOUNTAIN HYDROLOGY; SNOWPACK; MODEL
AB We characterize how regional watersheds function as simple, dynamic systems through a series of hysteresis loops using measurements from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites. These loops illustrate the temporal relationship between runoff and terrestrial water storage in three regional-scale watersheds (> 150 000 km(2)) of the Columbia River Basin, USA and Canada. The shape and size of the hysteresis loops are controlled by the climate, topography, and geology of the watershed. The direction of the hystereses for the GRACE signals moves in opposite directions from the isolated groundwater hystereses. The subsurface water (soil moisture and groundwater) hystereses more closely resemble the storage-runoff relationship of a soil matrix. While the physical processes underlying these hystereses are inherently complex, the vertical integration of terrestrial water in the GRACE signal encapsulates the processes that govern the non-linear function of regional-scale watersheds. We use this process-based understanding to test how GRACE data can be applied prognostically to predict seasonal runoff (mean Nash-Sutcliffe Efficiency of 0.91) and monthly runoff during the low flow/high demand month of August (mean Nash-Sutcliffe Efficiency of 0.77) in all three watersheds. The global nature of GRACE data allows this same methodology to be applied in other regional-scale studies, and could be particularly useful in regions with minimal data and in trans-boundary watersheds.
C1 [Sproles, E. A.] US EPA, Natl Hlth & Environm Effects Res Lab, Oak Ridge Inst Sci & Technol, Corvallis, OR 97333 USA.
[Sproles, E. A.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA.
[Leibowitz, S. G.; Wigington, P. J., Jr.] US EPA, Natl Hlth & Environm Effects Res Lab, Corvallis, OR 97333 USA.
[Reager, J. T.; Famiglietti, J. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Patil, S. D.] Bangor Univ, Sch Environm Nat Resources & Geog, Bangor LL57 2UW, Gwynedd, Wales.
[Sproles, E. A.] Univ La Serena, Ctr Estudios Avanzados Zonas Aridas, La Serena 1305, Chile.
RP Sproles, EA (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Oak Ridge Inst Sci & Technol, 200 SW 35th St, Corvallis, OR 97333 USA.
EM eric.sproles@gmail.com
RI Patil, Sopan/E-8497-2011;
OI Patil, Sopan/0000-0002-8575-5220; Sproles, Eric/0000-0003-1245-1653
FU NASA MEaSUREs Program; US Environmental Protection Agency
FX The authors would like to thank Matthew Rodell and Felix Landerer for
their expertise in understanding GRACE data during the initial stages of
the research. GRACE terrestrial data were processed by Sean Swenson,
supported by the NASA MEaSUREs Program, and are available at
http://grace.jpl.nasa.gov. The GLDAS and NLDAS data used in this study
were acquired as part of the mission of NASA's Earth Science Division
and archived and distributed by the Goddard Earth Sciences Data and
Information Services Center. We would like to thank the reviewers of the
manuscript that have helped improve its overall quality. Additionally,
Tim Kerr provided objective feedback and comments on the research
findings. The information in this document has been funded entirely by
the US Environmental Protection Agency, in part by an appointment to the
Internship/Research Participation Program at the Office of Research and
Development, U.S. Environmental Protection Agency, administered by the
Oak Ridge Institute for Science and Education through an interagency
agreement between the U.S. Department of Energy and EPA. This manuscript
has been subjected to Agency review and has been approved for
publication. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.
NR 75
TC 3
Z9 3
U1 3
U2 16
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1027-5606
EI 1607-7938
J9 HYDROL EARTH SYST SC
JI Hydrol. Earth Syst. Sci.
PY 2015
VL 19
IS 7
BP 3253
EP 3272
DI 10.5194/hess-19-3253-2015
PG 20
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA CO1MA
UT WOS:000358918200016
ER
PT J
AU Kwok, R
Haas, C
AF Kwok, R.
Haas, C.
TI Effects of radar side-lobes on snow depth retrievals from Operation
IceBridge
SO JOURNAL OF GLACIOLOGY
LA English
DT Article
DE remote sensing; sea ice; snow; snow/ice surface processes
ID ARCTIC SEA-ICE; THICKNESS
AB Arctic snow depth data products from four years (2009-12) of Operation Ice Bridge (OIB) surveys are examined. In our analysis, we found spurious spikes in the snow depth distributions of both the multi-year and seasonal ice covers. These spikes are artifacts that stem from the incorrect identification of side lobes and main lobes of the impulse response of the snow radar as returns from the air-snow interface. The current OIB snow depth retrieval algorithm does not explicitly account for the presence of these side lobes and main lobes. As a result, overall accuracy of snow depth returns and related statistics is negatively affected. Although the range locations of these side lobes are predictable for each radar installation, they vary with individual airborne campaigns. Comparisons with limited in situ snow surveys show significant differences of >20 cm between OIB and in situ snow surveys. These artifacts affect OIB ice thickness estimates because they rely on estimates of sea-ice freeboard, which are calculated as the differences between coincident snow freeboard from lidar elevations and the retrieved snow depth estimates discussed here. Since these products are widely distributed to the scientific community, our results suggest that earlier geophysical studies based on these products may need to be re-examined.
C1 [Kwok, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Haas, C.] York Univ, Toronto, ON M3J 2R7, Canada.
RP Kwok, R (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM ron.kwok@jpl.nasa.gov
RI Kwok, Ron/A-9762-2008; Haas, Christian/L-5279-2016
OI Kwok, Ron/0000-0003-4051-5896; Haas, Christian/0000-0002-7674-3500
FU NASA
FX We thank Shirley Pang for software support during the course of this
study. Data from OIB are provided by the NSIDC. CryoVEx data are
available through the ESA data portal: http://earth.esa.int. R.K.
performed this work at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with NASA.
NR 19
TC 3
Z9 4
U1 3
U2 4
PU INT GLACIOL SOC
PI CAMBRIDGE
PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND
SN 0022-1430
EI 1727-5652
J9 J GLACIOL
JI J. Glaciol.
PY 2015
VL 61
IS 227
BP 576
EP 584
DI 10.3189/2015JoG14J229
PG 9
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CO2HS
UT WOS:000358977400014
ER
PT J
AU Coutre, KM
Beaudreau, AH
Malecha, PW
AF Coutre, K. M.
Beaudreau, A. H.
Malecha, P. W.
TI Temporal Variation in Diet Composition and Use of Pulsed Resource
Subsidies by Juvenile Sablefish
SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY
LA English
DT Article
ID PRINCE-WILLIAM-SOUND; LIONS EUMETOPIAS-JUBATUS; ANOPLOPOMA-FIMBRIA;
PACIFIC SALMON; TERRESTRIAL ECOSYSTEMS; ENERGY ALLOCATION;
CLUPEA-PALLASI; OCEAN CLIMATE; NORTHERN GULF; BERING-SEA
AB Pulsed resources create an influx of energy that can provide individual and population level benefits to their consumers. As consumers, Sablefish Anoplopoma fimbria experience strong seasonal pulses in prey resources during their critical period of juvenile growth in the nearshore marine environment. This study described temporal patterns in diet composition of Sablefish (N = 1,081) ranging in size from 226 to 455 mm FL during July and September in St. John Baptist Bay, Alaska. Juvenile Sablefish exploited a large variety of prey taxa characteristic of a generalist predator and experienced significant diet shifts among sampling periods revealing seasonal and interannual variation in resource use. Diets appeared more diverse in 2012 when more invertebrate taxa were consumed compared with 2013 when diets were dominated by herring and salmonid offal. In September of both years, spawning Pink Salmon Oncorhynchus gorbuscha were observed within the study area and juvenile Sablefish capitalized on this high energy subsidy, and salmon carcasses were among the top contributors to their diets by weight. However, Sablefish also exploited in situ prey of lower energy, such as benthic invertebrates, suggesting that Sablefish are not entirely reliant on seasonally pulsed, high-energy prey. This study further emphasizes the significance of salmon as a vector of energy across ecosystems and is one of the first to document a marine teleost species scavenging on adult salmon carcasses in coastal marine waters.
C1 [Coutre, K. M.; Beaudreau, A. H.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA.
[Malecha, P. W.] Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, NOAA, Auke Bay Lab, Juneau, AK 99801 USA.
RP Coutre, KM (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA.
EM kmcoutre@alaska.edu
FU National Oceanic and Atmospheric Administration [NA08OAR4320751];
University of Alaska; University of Alaska Fairbanks; Cooperative
Institute for Alaska Research
FX This publication is the result, in part, of research sponsored by the
Cooperative Institute for Alaska Research with funds from the National
Oceanic and Atmospheric Administration under cooperative agreement
NA08OAR4320751 with the University of Alaska. Additional funding was
provided by the University of Alaska Fairbanks. The authors thank F.
Mueter for invaluable discussion and feedback. We thank two anonymous
reviewers whose thoughtful comments improved the paper. Also, thanks to
K. Echave, D. Hanselman, P. Rigby, C. Rodgveller, B. Mecum, K. Fenske,
N. Richardson, M. Chan, and S. Fouse for excellent field help,
laboratory assistance, and feedback. Thanks to Sitka Sound Science
Center, Island-view Charters, and the Sitka Fine Arts Camp for providing
housing and resources necessary for sampling trips.
NR 62
TC 1
Z9 1
U1 2
U2 9
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0002-8487
EI 1548-8659
J9 T AM FISH SOC
JI Trans. Am. Fish. Soc.
PY 2015
VL 144
IS 4
BP 807
EP 819
DI 10.1080/00028487.2015.1037015
PG 13
WC Fisheries
SC Fisheries
GA CO0PP
UT WOS:000358854700013
ER
PT J
AU Liu, J
Scheuer, E
Dibb, J
Diskin, GS
Ziemba, LD
Thornhill, KL
Anderson, BE
Wisthaler, A
Mikoviny, T
Devi, JJ
Bergin, M
Perring, AE
Markovic, MZ
Schwarz, JP
Campuzano-Jost, P
Day, DA
Jimenez, JL
Weber, RJ
AF Liu, J.
Scheuer, E.
Dibb, J.
Diskin, G. S.
Ziemba, L. D.
Thornhill, K. L.
Anderson, B. E.
Wisthaler, A.
Mikoviny, T.
Devi, J. J.
Bergin, M.
Perring, A. E.
Markovic, M. Z.
Schwarz, J. P.
Campuzano-Jost, P.
Day, D. A.
Jimenez, J. L.
Weber, R. J.
TI Brown carbon aerosol in the North American continental troposphere:
sources, abundance, and radiative forcing
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID LIGHT-ABSORPTION ENHANCEMENT; SOUTHEASTERN UNITED-STATES; BIOMASS
BURNING PARTICLES; SECONDARY ORGANIC AEROSOL; BLACK CARBON;
OPTICAL-PROPERTIES; SOLAR-RADIATION; RESOLVED MEASUREMENTS;
CHEMICAL-COMPOSITION; ANGSTROM EXPONENT
AB Chemical components of organic aerosol (OA) selectively absorb light at short wavelengths. In this study, the prevalence, sources, and optical importance of this so-called brown carbon (BrC) aerosol component are investigated throughout the North American continental tropospheric column during a summer of extensive biomass burning. Spectrophotometric absorption measurements on extracts of bulk aerosol samples collected from an aircraft over the central USA were analyzed to directly quantify BrC abundance. BrC was found to be prevalent throughout the 1 to 12 km altitude measurement range, with dramatic enhancements in biomass-burning plumes. BrC to black carbon (BC) ratios, under background tropospheric conditions, increased with altitude, consistent with a corresponding increase in the absorption Angstrom exponent (AAE) determined from a three-wavelength particle soot absorption photometer (PSAP). The sum of inferred BC absorption and measured BrC absorption at 365 nm was within 3% of the measured PSAP absorption for background conditions and 22% for biomass burning. A radiative transfer model showed that BrC absorption reduced top-of-atmosphere (TOA) aerosol forcing by similar to 20% in the background troposphere. Extensive radiative model simulations applying this study background tropospheric conditions provided a look-up chart for determining radiative forcing efficiencies of BrC as a function of a surface-measured BrC : BC ratio and single scattering albedo (SSA). The chart is a first attempt to provide a tool for better assessment of brown carbon's forcing effect when one is limited to only surface data. These results indicate that BrC is an important contributor to direct aerosol radiative forcing.
C1 [Liu, J.; Weber, R. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Scheuer, E.; Dibb, J.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[Diskin, G. S.; Ziemba, L. D.; Thornhill, K. L.; Anderson, B. E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria.
[Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA.
[Devi, J. J.; Bergin, M.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA.
[Perring, A. E.; Markovic, M. Z.; Schwarz, J. P.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Chem Sci Div, Boulder, CO 80305 USA.
[Perring, A. E.; Markovic, M. Z.; Schwarz, J. P.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
RP Weber, RJ (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
EM rodney.weber@eas.gatech.edu
RI Liu, Jiumeng/K-2024-2012; Perring, Anne/G-4597-2013; Jimenez,
Jose/A-5294-2008; schwarz, joshua/G-4556-2013; Manager, CSD
Publications/B-2789-2015
OI Liu, Jiumeng/0000-0001-7238-593X; Perring, Anne/0000-0003-2231-7503;
Jimenez, Jose/0000-0001-6203-1847; schwarz, joshua/0000-0002-9123-2223;
FU GIT NASA [NNX12AB83G, NNX08AH80G]; UNH NASA [NNX12AB80G]; NASA
[NNX12AC03G]
FX This project was funded by GIT NASA contracts NNX12AB83G and NNX08AH80G
and UNH NASA contract NNX12AB80G. Acetonitrile measurements onboard the
DC-8 were supported by BMVIT/FFG-ALR and the NASA Postdoctoral Program.
P. Campuzano-Jost, D. A. Day, and J. L. Jimenez were supported by NASA
NNX12AC03G. The authors thank the DC3 personnel for logistical support.
NR 70
TC 10
Z9 10
U1 4
U2 42
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 14
BP 7841
EP 7858
DI 10.5194/acp-15-7841-2015
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CN9VS
UT WOS:000358799000007
ER
PT J
AU Achakulwisut, P
Mickley, LJ
Murray, LT
Tai, APK
Kaplan, JO
Alexander, B
AF Achakulwisut, P.
Mickley, L. J.
Murray, L. T.
Tai, A. P. K.
Kaplan, J. O.
Alexander, B.
TI Uncertainties in isoprene photochemistry and emissions: implications for
the oxidative capacity of past and present atmospheres and for climate
forcing agents
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID LAST GLACIAL MAXIMUM; INTERCOMPARISON PROJECT ACCMIP; BIOMASS-BURNING
EMISSIONS; LAND-USE; TROPOSPHERIC CHEMISTRY; SOUTHERN-HEMISPHERE;
HYDROXYL RADICALS; METHYL CHLOROFORM; CO2 CONCENTRATION; ORGANIC
NITRATES
AB Isoprene and its oxidation products are major players in the oxidative chemistry of the troposphere. Current understanding of the factors controlling biogenic isoprene emissions and of the fate of isoprene oxidation products in the atmosphere has been evolving rapidly. We use a climate-biosphere-chemistry modeling framework to evaluate the sensitivity of estimates of the tropospheric oxidative capacity to uncertainties in isoprene emissions and photochemistry. Our work focuses on two climate transitions: from the Last Glacial Maximum (LGM, 19 000-23 000 years BP) to the preindustrial (1770s) and from the preindustrial to the present day (1990s). We find that different oxidants have different sensitivities to the uncertainties tested in this study. Ozone is relatively insensitive, whereas OH is the most sensitive: changes in the global mean OH levels for the LGM-to-preindustrial transition range between 29 and +7% and those for the preindustrial-to-present-day transition range between -8 and +17% across our simulations. We find little variability in the implied relative LGM-preindustrial difference in methane emissions with respect to the uncertainties tested in this study. Conversely, estimates of the preindustrial-to-present-day and LGM-to-preindustrial changes in the global burden of secondary organic aerosol (SOA) are highly sensitive. We show that the linear relationship between tropospheric mean OH and tropospheric mean ozone photolysis rates, water vapor, and total emissions of NOx and reactive carbon - first reported in Murray et al. (2014) - does not hold across all periods with the new isoprene photochemistry mechanism. This study demonstrates how inadequacies in our current understanding of isoprene emissions and photochemistry impede our ability to constrain the oxidative capacities of the present and past atmospheres, its controlling factors, and the radiative forcing of some short-lived species such as SOA over time.
C1 [Achakulwisut, P.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Mickley, L. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Murray, L. T.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Murray, L. T.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
[Tai, A. P. K.] Chinese Univ Hong Kong, Earth Syst Sci Programme, Hong Kong, Hong Kong, Peoples R China.
[Kaplan, J. O.] Ecole Polytech Fed Lausanne, ARVE Grp, Lausanne, Switzerland.
[Alexander, B.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
RP Achakulwisut, P (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA.
EM pachakulwisut@fas.harvard.edu
RI Murray, Lee/F-2296-2014; Alexander, Becky/N-7048-2013; Kaplan,
Jed/P-1796-2015
OI Murray, Lee/0000-0002-3447-3952; Alexander, Becky/0000-0001-9915-4621;
Kaplan, Jed/0000-0001-9919-7613
FU NSF [AGS-1102880]
FX The authors would like to thank Mirjam Pfeiffer for performing the
LPJ-LMfire simulations, John Mak for providing ice-core CO data, and
Daniel Jacob, Karena McKinney, Fabien Paulot, and Malcolm Possell for
stimulating discussions. This project was funded by NSF grant
AGS-1102880 to Harvard University and to the University of Washington.
NR 107
TC 2
Z9 2
U1 4
U2 29
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 14
BP 7977
EP 7998
DI 10.5194/acp-15-7977-2015
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CN9VS
UT WOS:000358799000015
ER
PT J
AU Ziemke, JR
Douglass, AR
Oman, LD
Strahan, SE
Duncan, BN
AF Ziemke, J. R.
Douglass, A. R.
Oman, L. D.
Strahan, S. E.
Duncan, B. N.
TI Tropospheric ozone variability in the tropics from ENSO to MJO and
shorter timescales
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID MADDEN-JULIAN OSCILLATION; 1997-1998 EL-NINO; SATELLITE MEASUREMENTS;
INTRASEASONAL VARIABILITY; TRANSPORT MODEL; CLIMATE MODELS; CHEMISTRY;
SIMULATION; IMPACT; CIRCULATION
AB Aura OMI and MLS measurements are combined to produce daily maps of tropospheric ozone beginning October 2004. We show that El Nino-Southern Oscillation (ENSO) related inter-annual change in tropospheric ozone in the tropics is small in relation to combined intra-seasonal/Madden-Julian Oscillation (MJO) and shorter timescale variability by a factor of similar to 3-10 (largest in the Atlantic). Outgoing longwave radiation (OLR), taken as a proxy for convection, suggests that convection is a dominant driver of large-scale variability of tropospheric ozone in the Pacific from inter-annual (e.g., ENSO) to weekly periods. We compare tropospheric ozone and OLR satellite observations with two simulations: (1) the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) that uses observed sea surface temperatures and is otherwise free-running, and (2) the NASA Global Modeling Initiative (GMI) chemical transport model (CTM) that is driven by Modern Era Retrospective-Analysis for Research and Applications (MERRA) analyses. It is shown that the CTM-simulated ozone accurately matches measurements for timescales from ENSO to intra-seasonal/MJO and even 1-2-week periods. The CCM simulation reproduces ENSO variability but not shorter timescales. These analyses suggest that a model used to delineate temporal and/or spatial properties of tropospheric ozone and convection in the tropics must reproduce both ENSO and non-ENSO variability.
C1 [Ziemke, J. R.] Morgan State Univ, Baltimore, MD 21239 USA.
[Ziemke, J. R.; Douglass, A. R.; Oman, L. D.; Strahan, S. E.; Duncan, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Strahan, S. E.] Univ Space Res Assoc, Columbia, MD USA.
RP Ziemke, JR (reprint author), Morgan State Univ, Baltimore, MD 21239 USA.
EM jerald.r.ziemke@nasa.gov
RI Douglass, Anne/D-4655-2012; Oman, Luke/C-2778-2009; Duncan,
Bryan/A-5962-2011
OI Oman, Luke/0000-0002-5487-2598;
FU NASA [NN10ZDA001N-AURA]
FX The authors thank the Aura MLS and OMI instrument and algorithm teams
for the extensive satellite measurements used in this study. We thank
the NOAA Earth System Research Laboratory (ESRL) for producing the OLR
daily data product and the modeling teams involving the NASA CCM and CTM
at Goddard Space Flight Center. We also thank the two anonymous
reviewers whose helpful comments have improved our paper and also Sarah
Strode and Steve Steenrod for discussions regarding the models. OMI is a
Dutch-Finnish contribution to the Aura mission. Funding for this
research was provided in part by NASA NN10ZDA001N-AURA.
NR 56
TC 10
Z9 10
U1 3
U2 17
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 14
BP 8037
EP 8049
DI 10.5194/acp-15-8037-2015
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CN9VS
UT WOS:000358799000018
ER
PT J
AU Wagner, NL
Brock, CA
Angevine, WM
Beyersdorf, A
Campuzano-Jost, P
Day, DA
de Gouw, JA
Diskin, GS
Gordon, TD
Graus, MG
Holloway, JS
Huey, G
Jimenez, JL
Lack, DA
Liao, J
Liu, X
Markovic, MZ
Middlebrook, AM
Mikoviny, T
Peischl, J
Perring, AE
Richardson, MS
Ryerson, TB
Schwarz, JP
Warneke, C
Welti, A
Wisthaler, A
Ziemba, LD
Murphy, DM
AF Wagner, N. L.
Brock, C. A.
Angevine, W. M.
Beyersdorf, A.
Campuzano-Jost, P.
Day, D. A.
de Gouw, J. A.
Diskin, G. S.
Gordon, T. D.
Graus, M. G.
Holloway, J. S.
Huey, G.
Jimenez, J. L.
Lack, D. A.
Liao, J.
Liu, X.
Markovic, M. Z.
Middlebrook, A. M.
Mikoviny, T.
Peischl, J.
Perring, A. E.
Richardson, M. S.
Ryerson, T. B.
Schwarz, J. P.
Warneke, C.
Welti, A.
Wisthaler, A.
Ziemba, L. D.
Murphy, D. M.
TI In situ vertical profiles of aerosol extinction, mass, and composition
over the southeast United States during SENEX and SEAC(4)RS:
observations of a modest aerosol enhancement aloft (vol 15, pg 7085,
2015)
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Correction
C1 [Wagner, N. L.; Brock, C. A.; Angevine, W. M.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Murphy, D. M.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Wagner, N. L.; Angevine, W. M.; Campuzano-Jost, P.; Day, D. A.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Warneke, C.; Welti, A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Beyersdorf, A.; Diskin, G. S.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Huey, G.; Liu, X.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN USA.
[Welti, A.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland.
[Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria.
RP Wagner, NL (reprint author), NOAA, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA.
EM nick.wagner@noaa.gov
RI Murphy, Daniel/J-4357-2012; Perring, Anne/G-4597-2013; Jimenez,
Jose/A-5294-2008; Warneke, Carsten/E-7174-2010; schwarz,
joshua/G-4556-2013
OI Murphy, Daniel/0000-0002-8091-7235; Perring, Anne/0000-0003-2231-7503;
Jimenez, Jose/0000-0001-6203-1847; schwarz, joshua/0000-0002-9123-2223
NR 1
TC 1
Z9 1
U1 1
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 14
BP 8455
EP 8455
DI 10.5194/acp-15-8455-2015
PG 1
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CN9VS
UT WOS:000358799000038
ER
PT J
AU Kishcha, P
da Silva, A
Starobinets, B
Long, C
Kalashnikova, O
Alpert, P
AF Kishcha, Pavel
da Silva, Arlindo
Starobinets, Boris
Long, Charles
Kalashnikova, Olga
Alpert, Pinhas
TI Saharan dust as a causal factor of hemispheric asymmetry in aerosols and
cloud cover over the tropical Atlantic Ocean
SO INTERNATIONAL JOURNAL OF REMOTE SENSING
LA English
DT Article
ID OPTICAL-PROPERTIES; MINERAL DUST; MODIS; PRECIPITATION; SATELLITE;
TRENDS; THICKNESS; TRANSPORT; POLLUTION; IMPACT
AB Previous studies showed that, over the global ocean, there is no noticeable hemispheric asymmetry in cloud fraction (CF). This contributes to the balance in solar radiation reaching the sea surface in the northern and southern hemispheres. In the current study, we focus on the tropical Atlantic (30 degrees N-30 degrees S), which is characterized by significant amounts of Saharan dust dominating other aerosol species over the North Atlantic. Our main point is that, over the tropical Atlantic, Saharan dust not only is responsible for the pronounced hemispheric aerosol asymmetry, but also contributes to significant cloud cover along the Saharan Air Layer (SAL). Over the tropical Atlantic in July, along the SAL, Moderate Resolution Imaging Spectroradiometer CF data showed significant cloud cover (up to 0.8-0.9). This significant CF along SAL together with clouds over the Atlantic Intertropical Convergence Zone contributes to the 20% hemispheric CF asymmetry. This leads to the imbalance in strong solar radiation, which reaches the sea surface between the tropical North and South Atlantic, and, consequently, affects climate formation in the tropical Atlantic. During the 10-year study period (July 2002-June 2012), NASA Aerosol Reanalysis (aka MERRAero) showed that, when the hemispheric asymmetry in dust aerosol optical thickness (AOT) was most pronounced (particularly in July), dust AOT averaged separately over the tropical North Atlantic was one order of magnitude higher than that averaged over the tropical South Atlantic. In the presence of such strong hemispheric asymmetry in dust AOT in July, CF averaged separately over the tropical North Atlantic exceeded that over the tropical South Atlantic by 20%. Both Multiangle Imaging Spectroradiometer measurements and MERRAero data were in agreement on seasonal variations in hemispheric aerosol asymmetry. Hemispheric asymmetry in total AOT over the Atlantic was most pronounced between March and July, when dust presence over the North Atlantic was maximal. In September and October, there was no noticeable hemispheric aerosol asymmetry between the tropical North and South Atlantic. During the season with no noticeable hemispheric aerosol asymmetry, we found no noticeable asymmetry in cloud cover.
C1 [Kishcha, Pavel; Starobinets, Boris; Alpert, Pinhas] Tel Aviv Univ, Dept Geosci, IL-69978 Tel Aviv, Israel.
[da Silva, Arlindo] NASA GSFC, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
[Long, Charles] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Kalashnikova, Olga] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Kishcha, P (reprint author), Tel Aviv Univ, Dept Geosci, IL-69978 Tel Aviv, Israel.
EM pavelk@post.tau.ac.il
FU Office of Biological and Environmental Research of the US Department of
Energy; international Virtual Institute DESERVE (Dead Sea Research
Venue) - German Helmholtz Association
FX Dr Long acknowledges support from the Office of Biological and
Environmental Research of the US Department of Energy as part of the
Atmospheric Systems Research Program. The Tel-Aviv University team
acknowledges support from the international Virtual Institute DESERVE
(Dead Sea Research Venue), funded by the German Helmholtz Association.
NR 45
TC 1
Z9 1
U1 0
U2 3
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0143-1161
EI 1366-5901
J9 INT J REMOTE SENS
JI Int. J. Remote Sens.
PY 2015
VL 36
IS 13
BP 3423
EP 3445
DI 10.1080/01431161.2015.1060646
PG 23
WC Remote Sensing; Imaging Science & Photographic Technology
SC Remote Sensing; Imaging Science & Photographic Technology
GA CN8UJ
UT WOS:000358719600008
ER
PT S
AU Armano, M
Audley, H
Auger, G
Baird, J
Binetruy, P
Born, M
Bortoluzzi, D
Brandt, N
Bursi, A
Caleno, M
Cavalleri, A
Cesarini, A
Cruise, M
Danzmann, K
Diepholz, I
Dolesi, R
Dunbar, N
Ferraioli, L
Ferroni, V
Fitzsimons, E
Freschi, M
Gallegos, J
Marirrodriga, CG
Gerndt, R
Gesa, LI
Gibert, F
Giardini, D
Giusteri, R
Grimani, C
Harrison, I
Heinzel, G
Hewitson, M
Hollington, D
Hueller, M
Huesler, J
Inchauspe, H
Jennrich, O
Jetzer, P
Johlander, B
Karnesis, N
Kaune, B
Korsakova, N
Killow, C
Lloro, I
Maarschalkerweerd, R
Madden, S
Mance, D
Martin, V
Martin-Porqueras, F
Mateos, I
McNamara, P
Mendes, J
Mendes, L
Moroni, A
Nofrarias, M
Paczkowski, S
Perreur-Lloyd, M
Petiteau, A
Pivato, P
Plagnol, E
Prat, P
Ragnit, U
Ramos-Castro, J
Reiche, J
Perez, JAR
Robertson, D
Rozemeijer, H
Russano, G
Sarra, P
Schleicher, A
Slutsky, J
Sopuerta, CF
Sumner, T
Texier, D
Thorpe, J
Trenkel, C
Tu, HB
Vetrugno, D
Vitale, S
Wanner, G
Ward, H
Waschke, S
Wass, P
Wealthy, D
Wen, S
Weber, W
Wittchen, A
Zanoni, C
Ziegler, T
Zweifel, P
AF Armano, M.
Audley, H.
Auger, G.
Baird, J.
Binetruy, P.
Born, M.
Bortoluzzi, D.
Brandt, N.
Bursi, A.
Caleno, M.
Cavalleri, A.
Cesarini, A.
Cruise, M.
Danzmann, K.
Diepholz, I.
Dolesi, R.
Dunbar, N.
Ferraioli, L.
Ferroni, V.
Fitzsimons, E.
Freschi, M.
Gallegos, J.
Marirrodriga, C. Garcia
Gerndt, R.
Gesa, L. I.
Gibert, F.
Giardini, D.
Giusteri, R.
Grimani, C.
Harrison, I.
Heinzel, G.
Hewitson, M.
Hollington, D.
Hueller, M.
Huesler, J.
Inchauspe, H.
Jennrich, O.
Jetzer, P.
Johlander, B.
Karnesis, N.
Kaune, B.
Korsakova, N.
Killow, C.
Lloro, I.
Maarschalkerweerd, R.
Madden, S.
Mance, D.
Martin, V.
Martin-Porqueras, F.
Mateos, I.
McNamara, P.
Mendes, J.
Mendes, L.
Moroni, A.
Nofrarias, M.
Paczkowski, S.
Perreur-Lloyd, M.
Petiteau, A.
Pivato, P.
Plagnol, E.
Prat, P.
Ragnit, U.
Ramos-Castro, J.
Reiche, J.
Perez, J. A. Romera
Robertson, D.
Rozemeijer, H.
Russano, G.
Sarra, P.
Schleicher, A.
Slutsky, J.
Sopuerta, C. F.
Sumner, T.
Texier, D.
Thorpe, J.
Trenkel, C.
Tu, H. B.
Vetrugno, D.
Vitale, S.
Wanner, G.
Ward, H.
Waschke, S.
Wass, P.
Wealthy, D.
Wen, S.
Weber, W.
Wittchen, A.
Zanoni, C.
Ziegler, T.
Zweifel, P.
GP IOP
TI A noise simulator for eLISA: Migrating LISA Pathfinder knowledge to the
eLISA mission
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented.
C1 [Armano, M.; Freschi, M.; Gallegos, J.; Martin-Porqueras, F.; Mendes, L.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Auger, G.; Binetruy, P.; Inchauspe, H.; Petiteau, A.; Plagnol, E.; Prat, P.] Univ Paris Diderot, APC UMR7164, Paris, France.
[Bortoluzzi, D.; Zanoni, C.] Univ Trento, Dept Ind Engn, Trento 38123, Italy.
[Bortoluzzi, D.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, Trento, Italy.
[Brandt, N.; Fitzsimons, E.; Gerndt, R.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, D-88090 Immenstaad, Germany.
[Caleno, M.; Marirrodriga, C. Garcia; Huesler, J.; Johlander, B.; Madden, S.; Ragnit, U.; Perez, J. A. Romera; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Cruise, M.] Univ Birmingham, Dept Phys & Astron, Birmingham, W Midlands, England.
[Dunbar, N.; Trenkel, C.; Wealthy, D.] Airbus Def & Space, Stevenage SG1 2AS, Herts, England.
[Ferraioli, L.; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland.
[Gesa, L. I.; Gibert, F.; Karnesis, N.; Lloro, I.; Martin, V.; Mateos, I.; Nofrarias, M.; Sopuerta, C. F.] CSIC, Fac Ciencies, Inst Ciencies Espai, IEEC, Bellaterra 08193, Spain.
[Grimani, C.] Univ Urbino, Ist Fis, Ist Nazl Fis Nucl, I-61029 Urbino, PU, Italy.
[Harrison, I.; Maarschalkerweerd, R.; Mendes, J.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany.
[Baird, J.; Hollington, D.; Sumner, T.; Waschke, S.; Wass, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Jetzer, P.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland.
[Killow, C.; Perreur-Lloyd, M.; Robertson, D.; Ward, H.] Univ Glasgow, Sch Phys & Astron, Inst Gravitat Res, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Ramos-Castro, J.] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain.
[Ramos-Castro, J.] Inst Estudis Espacials Catalunya, Barcelona 08034, Spain.
[Slutsky, J.; Thorpe, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bursi, A.; Moroni, A.; Sarra, P.] CGS SpA, Co Gen Spazio, I-20151 Milan, Italy.
RP Armano, M (reprint author), European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
EM henri.inchauspe@apc.univ-paris7.fr
RI Vitale, Stefano/C-2312-2012; Pivato, Paolo/K-6641-2015; Weber,
William/H-4351-2012; Lloro, Ivan/F-1509-2016; Nofrarias,
Miquel/N-6249-2015; Wass, Peter/C-5767-2017; cavalleri,
antonella/D-3678-2015;
OI F. Sopuerta, Carlos/0000-0002-1779-4447; Vitale,
Stefano/0000-0002-2427-8918; Pivato, Paolo/0000-0003-2691-5236; Weber,
William/0000-0003-1536-2410; Lloro, Ivan/0000-0001-5966-1434; Nofrarias,
Miquel/0000-0003-1518-2196; Wass, Peter/0000-0002-2945-399X; Cesarini,
Andrea/0000-0002-8611-8610; cavalleri, antonella/0000-0003-0461-0968;
Zanoni, Carlo/0000-0002-5767-9064
NR 5
TC 0
Z9 0
U1 3
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012036
DI 10.1088/1742-6596/610/1/012036
PG 6
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000036
ER
PT S
AU Armano, M
Audley, H
Auger, G
Baird, J
Binetruy, P
Born, M
Bortoluzzi, D
Brandt, N
Bursi, A
Caleno, M
Cavalleri, A
Cesarini, A
Cruise, M
Danzmann, K
Diepholz, I
Dolesi, R
Dunbar, N
Ferraioli, L
Ferroni, V
Fitzsimons, E
Freschi, M
Gallegos, J
Marirrodriga, CG
Gerndt, R
Gesa, LI
Gibert, F
Giardini, D
Giusteri, R
Grimani, C
Harrison, I
Heinzel, G
Hewitson, M
Hollington, D
Hueller, M
Huesler, J
Inchauspe, H
Jennrich, O
Jetzer, P
Johlander, B
Karnesis, N
Kaune, B
Korsakova, N
Killow, C
Lloro, I
Maarschalkerweerd, R
Madden, S
Mance, D
Martin, V
Martin-Porqueras, F
Mateos, I
McNamara, P
Mendes, J
Mendes, L
Moroni, A
Nofrarias, M
Paczkowski, S
Perreur-Lloyd, M
Petiteau, A
Pivato, P
Plagnol, E
Prat, P
Ragnit, U
Ramos-Castro, J
Reiche, J
Perez, JAR
Robertson, D
Rozemeijer, H
Russano, G
Sarra, P
Schleicher, A
Slutsky, J
Sopuerta, CF
Sumner, T
Texier, D
Thorpe, J
Trenkel, C
Tu, HB
Vitale, S
Wanner, G
Ward, H
Waschke, S
Wass, P
Wealthy, D
Wen, S
Weber, W
Wittchen, A
Zanoni, C
Ziegler, T
Zweifel, P
AF Armano, M.
Audley, H.
Auger, G.
Baird, J.
Binetruy, P.
Born, M.
Bortoluzzi, D.
Brandt, N.
Bursi, A.
Caleno, M.
Cavalleri, A.
Cesarini, A.
Cruise, M.
Danzmann, K.
Diepholz, I.
Dolesi, R.
Dunbar, N.
Ferraioli, L.
Ferroni, V.
Fitzsimons, E.
Freschi, M.
Gallegos, J.
Marirrodriga, C. Garcia
Gerndt, R.
Gesa, L. I.
Gibert, F.
Giardini, D.
Giusteri, R.
Grimani, C.
Harrison, I.
Heinzel, G.
Hewitson, M.
Hollington, D.
Hueller, M.
Huesler, J.
Inchauspe, H.
Jennrich, O.
Jetzer, P.
Johlander, B.
Karnesis, N.
Kaune, B.
Korsakova, N.
Killow, C.
Lloro, I.
Maarschalkerweerd, R.
Madden, S.
Mance, D.
Martin, V.
Martin-Porqueras, F.
Mateos, I.
McNamara, P.
Mendes, J.
Mendes, L.
Moroni, A.
Nofrarias, M.
Paczkowski, S.
Perreur-Lloyd, M.
Petiteau, A.
Pivato, P.
Plagnol, E.
Prat, P.
Ragnit, U.
Ramos-Castro, J.
Reiche, J.
Perez, J. A. Romera
Robertson, D.
Rozemeijer, H.
Russano, G.
Sarra, P.
Schleicher, A.
Slutsky, J.
Sopuerta, C. F.
Sumner, T.
Texier, D.
Thorpe, J.
Trenkel, C.
Tu, H. B.
Vitale, S.
Wanner, G.
Ward, H.
Waschke, S.
Wass, P.
Wealthy, D.
Wen, S.
Weber, W.
Wittchen, A.
Zanoni, C.
Ziegler, T.
Zweifel, P.
GP IOP
TI Disentangling the magnetic force noise contribution in LISA Pathfinder
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB Magnetically-induced forces on the inertial masses on-board LISA Path finder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end-to-end LISA Path finder simulation, and we describe the methods under development to map the magnetic field on-board.
C1 [Armano, M.; Freschi, M.; Gallegos, J.; Martin-Porqueras, F.; Mendes, L.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Auger, G.; Binetruy, P.; Inchauspe, H.; Petiteau, A.; Plagnol, E.; Prat, P.] Univ Paris Diderot, APC UMR7164, Paris, France.
[Bortoluzzi, D.; Zanoni, C.] Univ Trento, Dept Ind Engn, I-38123 Trento, Italy.
[Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Pivato, P.; Russano, G.; Tu, H. B.; Vitale, S.; Wen, S.; Weber, W.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Brandt, N.; Fitzsimons, E.; Gerndt, R.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, D-88090 Immenstaad, Germany.
[Caleno, M.; Marirrodriga, C. Garcia; Huesler, J.; Jennrich, O.; Johlander, B.; Madden, S.; McNamara, P.; Ragnit, U.; Perez, J. A. Romera; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vitale, S.; Wen, S.; Weber, W.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Cruise, M.] Univ Birmingham, Dept Phys & Astron, Birmingham, W Midlands, England.
[Dunbar, N.; Trenkel, C.; Wealthy, D.] Airbus Def & Space, Stevenage SG1 2AS, Herts, England.
[Ferraioli, L.; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland.
[Gesa, L. I.; Gibert, F.; Karnesis, N.; Lloro, I.; Martin, V.; Mateos, I.; Nofrarias, M.; Sopuerta, C. F.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain.
[Grimani, C.] Univ Urbino, Ist Fis, Ist Nazl Fis Nucl, I-61029 Urbino, PU, Italy.
[Harrison, I.; Maarschalkerweerd, R.; Mendes, J.; Sumner, T.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany.
[Baird, J.; Hollington, D.; Waschke, S.; Wass, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Jetzer, P.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland.
[Killow, C.; Perreur-Lloyd, M.] Univ Glasgow, Inst Gravitat Res, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Ramos-Castro, J.] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain.
[Ramos-Castro, J.] IEEC, Barcelona 08034, Spain.
[Slutsky, J.; Thorpe, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bursi, A.; Moroni, A.; Sarra, P.] CGS SpA, Co Gen Spazio, I-20151 Milan, Italy.
RP Armano, M (reprint author), European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
EM nofrarias@ice.cat
RI Vitale, Stefano/C-2312-2012; Pivato, Paolo/K-6641-2015; Weber,
William/H-4351-2012; Nofrarias, Miquel/N-6249-2015; Lloro,
Ivan/F-1509-2016; Wass, Peter/C-5767-2017; cavalleri,
antonella/D-3678-2015;
OI F. Sopuerta, Carlos/0000-0002-1779-4447; Zanoni,
Carlo/0000-0002-5767-9064; Vitale, Stefano/0000-0002-2427-8918; Pivato,
Paolo/0000-0003-2691-5236; Weber, William/0000-0003-1536-2410;
Nofrarias, Miquel/0000-0003-1518-2196; Lloro, Ivan/0000-0001-5966-1434;
Wass, Peter/0000-0002-2945-399X; cavalleri,
antonella/0000-0003-0461-0968; Cesarini, Andrea/0000-0002-8611-8610
NR 7
TC 1
Z9 1
U1 2
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012024
DI 10.1088/1742-6596/610/1/012024
PG 6
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000024
ER
PT S
AU Armano, M
Audley, H
Auger, G
Baird, J
Binetruy, P
Born, M
Bortoluzzi, D
Brandt, N
Bursi, A
Caleno, M
Cavalleri, A
Cesarini, A
Cruise, M
Danzmann, K
Diepholz, I
Dolesi, R
Dunbar, N
Ferraioli, L
Ferroni, V
Fitzsimons, E
Freschi, M
Gallegos, J
Marirrodriga, CG
Gerndt, R
Gesa, LI
Gibert, F
Giardini, D
Giusteri, R
Grimani, C
Harrison, I
Heinzel, G
Hewitson, M
Hollington, D
Hueller, M
Huesler, J
Inchauspe, H
Jennrich, O
Jetzer, P
Johlander, B
Karnesis, N
Kaune, B
Korsakova, N
Killow, C
Lloro, I
Maarschalkerweerd, R
Madden, S
Mance, D
Martin, V
Martin-Porqueras, F
Mateos, I
McNamara, P
Mendes, J
Mendes, L
Moroni, A
Nofrarias, M
Paczkowski, S
Perreur-Lloyd, M
Petiteau, A
Pivato, P
Plagnol, E
Prat, P
Ragnit, U
Ramos-Castro, J
Reiche, J
Perez, JAR
Robertson, D
Rozemeijer, H
Russano, G
Sarra, P
Schleicher, A
Slutsky, J
Sopuerta, CF
Sumner, T
Texier, D
Thorpe, J
Trenkel, C
Tu, HB
Vetrugno, D
Vitale, S
Wanner, G
Ward, H
Waschke, S
Wass, P
Wealthy, D
Wen, S
Weber, W
Wittchen, A
Zanoni, C
Ziegler, T
Zweifel, P
AF Armano, M.
Audley, H.
Auger, G.
Baird, J.
Binetruy, P.
Born, M.
Bortoluzzi, D.
Brandt, N.
Bursi, A.
Caleno, M.
Cavalleri, A.
Cesarini, A.
Cruise, M.
Danzmann, K.
Diepholz, I.
Dolesi, R.
Dunbar, N.
Ferraioli, L.
Ferroni, V.
Fitzsimons, E.
Freschi, M.
Gallegos, J.
Marirrodriga, C. Garcia
Gerndt, R.
Gesa, L. I.
Gibert, F.
Giardini, D.
Giusteri, R.
Grimani, C.
Harrison, I.
Heinzel, G.
Hewitson, M.
Hollington, D.
Hueller, M.
Huesler, J.
Inchauspe, H.
Jennrich, O.
Jetzer, P.
Johlander, B.
Karnesis, N.
Kaune, B.
Korsakova, N.
Killow, C.
Lloro, I.
Maarschalkerweerd, R.
Madden, S.
Mance, D.
Martin, V.
Martin-Porqueras, F.
Mateos, I.
McNamara, P.
Mendes, J.
Mendes, L.
Moroni, A.
Nofrarias, M.
Paczkowski, S.
Perreur-Lloyd, M.
Petiteau, A.
Pivato, P.
Plagnol, E.
Prat, P.
Ragnit, U.
Ramos-Castro, J.
Reiche, J.
Perez, J. A. Romera
Robertson, D.
Rozemeijer, H.
Russano, G.
Sarra, P.
Schleicher, A.
Slutsky, J.
Sopuerta, C. F.
Sumner, T.
Texier, D.
Thorpe, J.
Trenkel, C.
Tu, H. B.
Vetrugno, D.
Vitale, S.
Wanner, G.
Ward, H.
Waschke, S.
Wass, P.
Wealthy, D.
Wen, S.
Weber, W.
Wittchen, A.
Zanoni, C.
Ziegler, T.
Zweifel, P.
GP IOP
TI The LISA Pathfinder Mission
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB LISA Path finder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Path finder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter.
The paper introduces the LISA Path finder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Path finder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper
C1 [Armano, M.; Freschi, M.; Gallegos, J.; Martin-Porqueras, F.; Mendes, L.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Auger, G.; Binetruy, P.; Inchauspe, H.; Petiteau, A.; Plagnol, E.; Prat, P.] Univ Paris Diderot, APC UMR7164, Paris, France.
[Bortoluzzi, D.; Zanoni, C.] Univ Trento, Dept Ind Engn, I-38123 Trento, Italy.
[Bortoluzzi, D.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, Trento, Italy.
[Brandt, N.; Fitzsimons, E.; Gerndt, R.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, D-88090 Immenstaad, Germany.
[Caleno, M.; Marirrodriga, C. Garcia; Huesler, J.; Jennrich, O.; Johlander, B.; Madden, S.; McNamara, P.; Ragnit, U.; Perez, J. A. Romera; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Cruise, M.] Univ Birmingham, Dept Phys & Astron, Birmingham, W Midlands, England.
[Dunbar, N.; Trenkel, C.; Wealthy, D.] Airbus Def & Space, Stevenage SG1 2AS, Herts, England.
[Ferraioli, L.; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland.
[Gesa, L. I.; Gibert, F.; Karnesis, N.; Lloro, I.; Martin, V.; Mateos, I.; Nofrarias, M.; Sopuerta, C. F.] Fac Ciencies, Inst Ciencies Espai CSIC IEEC, Bellaterra 08193, Spain.
[Grimani, C.] Univ Urbino, Ist Fis, INFN Urbino PU, I-61029 Urbino, Italy.
[Harrison, I.; Maarschalkerweerd, R.; Mendes, J.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany.
[Baird, J.; Hollington, D.; Sumner, T.; Waschke, S.; Wass, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Jetzer, P.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland.
[Killow, C.; Perreur-Lloyd, M.; Robertson, D.; Ward, H.] Univ Glasgow, SUPA, Inst Gravitat Res, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
[Ramos-Castro, J.] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain.
[Ramos-Castro, J.] Inst Estudis Espacials Catalunya, Barcelona 08034, Spain.
[Slutsky, J.; Thorpe, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bursi, A.; Moroni, A.; Sarra, P.] CGS SpA, Compagnia Gen Spazio, I-20151 Milan, Italy.
RP Armano, M (reprint author), European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
EM paul.mcnamara@esa.int
RI cavalleri, antonella/D-3678-2015; Vitale, Stefano/C-2312-2012; Pivato,
Paolo/K-6641-2015; Weber, William/H-4351-2012; Nofrarias,
Miquel/N-6249-2015; Lloro, Ivan/F-1509-2016; Wass, Peter/C-5767-2017;
OI cavalleri, antonella/0000-0003-0461-0968; Zanoni,
Carlo/0000-0002-5767-9064; Vitale, Stefano/0000-0002-2427-8918; Pivato,
Paolo/0000-0003-2691-5236; Weber, William/0000-0003-1536-2410;
Nofrarias, Miquel/0000-0003-1518-2196; Lloro, Ivan/0000-0001-5966-1434;
Wass, Peter/0000-0002-2945-399X; Cesarini, Andrea/0000-0002-8611-8610
NR 17
TC 6
Z9 6
U1 6
U2 16
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012005
DI 10.1088/1742-6596/610/1/012005
PG 18
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000005
ER
PT S
AU Armano, M
Audley, H
Auger, G
Baird, J
Binetruy, P
Born, M
Bortoluzzi, D
Brandt, N
Bursi, A
Caleno, M
Cavalleri, A
Cesarini, A
Cruise, M
Cutler, C
Danzmann, K
Diepholz, I
Dolesi, R
Dunbar, N
Ferraioli, L
Ferroni, V
Fitzsimons, E
Freschi, M
Gallegos, J
Marirrodriga, CG
Gerndt, R
Gesa, LI
Gibert, F
Giardini, D
Giusteri, R
Grimani, C
Harrison, I
Heinzel, G
Hewitson, M
Hollington, D
Hueller, M
Huesler, J
Inchauspe, H
Jennrich, O
Jetzer, P
Johlander, B
Karnesis, N
Kaune, B
Korsakova, N
Killow, C
Lloro, I
Maarschalkerweerd, R
Madden, S
Maghami, P
Mance, D
Martin, V
Martin-Porqueras, F
Mateos, I
McNamara, P
Mendes, J
Mendes, L
Moroni, A
Nofrarias, M
Paczkowski, S
Perreur-Lloyd, M
Petiteau, A
Pivato, P
Plagnol, E
Prat, P
Ragnit, U
Ramos-Castro, J
Reiche, J
Perez, JAR
Robertson, D
Rozemeijer, H
Russano, G
Sarra, P
Schleicher, A
Slutsky, J
Sopuerta, CF
Sumner, T
Texier, D
Thorpe, J
Trenkel, C
Tu, HB
Vetrugno, D
Vitale, S
Wanner, G
Ward, H
Waschke, S
Wass, P
Wealthy, D
Wen, S
Weber, W
Wittchen, A
Zanoni, C
Ziegler, T
Zweifel, P
AF Armano, M.
Audley, H.
Auger, G.
Baird, J.
Binetruy, P.
Born, M.
Bortoluzzi, D.
Brandt, N.
Bursi, A.
Caleno, M.
Cavalleri, A.
Cesarini, A.
Cruise, M.
Cutler, C.
Danzmann, K.
Diepholz, I.
Dolesi, R.
Dunbar, N.
Ferraioli, L.
Ferroni, V.
Fitzsimons, E.
Freschi, M.
Gallegos, J.
Marirrodriga, C. Garcia
Gerndt, R.
Gesa, L. I.
Gibert, F.
Giardini, D.
Giusteri, R.
Grimani, C.
Harrison, I.
Heinzel, G.
Hewitson, M.
Hollington, D.
Hueller, M.
Huesler, J.
Inchauspe, H.
Jennrich, O.
Jetzer, P.
Johlander, B.
Karnesis, N.
Kaune, B.
Korsakova, N.
Killow, C.
Lloro, I.
Maarschalkerweerd, R.
Madden, S.
Maghami, P.
Mance, D.
Martin, V.
Martin-Porqueras, F.
Mateos, I.
McNamara, P.
Mendes, J.
Mendes, L.
Moroni, A.
Nofrarias, M.
Paczkowski, S.
Perreur-Lloyd, M.
Petiteau, A.
Pivato, P.
Plagnol, E.
Prat, P.
Ragnit, U.
Ramos-Castro, J.
Reiche, J.
Perez, J. A. Romera
Robertson, D.
Rozemeijer, H.
Russano, G.
Sarra, P.
Schleicher, A.
Slutsky, J.
Sopuerta, C. F.
Sumner, T.
Texier, D.
Thorpe, J.
Trenkel, C.
Tu, H. B.
Vetrugno, D.
Vitale, S.
Wanner, G.
Ward, H.
Waschke, S.
Wass, P.
Wealthy, D.
Wen, S.
Weber, W.
Wittchen, A.
Zanoni, C.
Ziegler, T.
Zweifel, P.
GP IOP
TI Free-flight experiments in LISA Pathfinder
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
ID SPECTRAL-ANALYSIS; SPACED DATA; REALIZATIONS; ALGORITHM
AB The LISA Path finder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Path finder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Path finder system that are not present in the full LISA con figuration. While LISA Path finder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.
C1 [Armano, M.; Freschi, M.; Gallegos, J.; Martin-Porqueras, F.; Mendes, L.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Auger, G.; Binetruy, P.; Inchauspe, H.; Petiteau, A.; Plagnol, E.; Prat, P.] Univ Paris Diderot, APC UMR7164, Paris, France.
[Bortoluzzi, D.; Zanoni, C.] Univ Trento, Dept Ind Engn, I-38123 Trento, Italy.
[Bortoluzzi, D.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, Trento, Italy.
[Brandt, N.; Fitzsimons, E.; Gerndt, R.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, D-88090 Immenstaad, Germany.
[Caleno, M.; Huesler, J.; Jennrich, O.; Johlander, B.; Madden, S.; McNamara, P.; Ragnit, U.; Perez, J. A. Romera; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Cruise, M.] Univ Birmingham, Dept Phys & Astron, Birmingham, W Midlands, England.
[Dunbar, N.; Trenkel, C.; Wealthy, D.] Airbus Def & Space, Stevenage SG1 2AS, Herts, England.
[Ferraioli, L.; Marirrodriga, C. Garcia; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland.
[Gesa, L. I.; Gibert, F.; Karnesis, N.; Lloro, I.; Martin, V.; Mateos, I.; Nofrarias, M.; Sopuerta, C. F.] Fac Ciencies, Inst Ciencie Espai CSIC IEEC, Bellaterra 08193, Spain.
[Grimani, C.] Univ Urbino, Inst Fis, INFN Urbino PU, I-61029 Urbino, Italy.
[Harrison, I.; Maarschalkerweerd, R.; Mendes, J.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany.
[Baird, J.; Hollington, D.; Sumner, T.; Waschke, S.; Wass, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Jetzer, P.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland.
[Killow, C.; Perreur-Lloyd, M.; Robertson, D.; Ward, H.] Univ Glasgow, Inst Gravitat Res, SUPA, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
[Ramos-Castro, J.] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain.
[Ramos-Castro, J.] Inst Estudis Espacials Catalunya, Barcelona 08034, Spain.
[Maghami, P.; Slutsky, J.; Thorpe, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bursi, A.; Moroni, A.; Sarra, P.] CGS SpA, Compagnia Gen Spazio, I-20151 Milan, Italy.
[Bursi, A.; Moroni, A.; Sarra, P.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Armano, M (reprint author), European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
EM james.i.thorpe@nasa.gov
RI cavalleri, antonella/D-3678-2015; Vitale, Stefano/C-2312-2012; Pivato,
Paolo/K-6641-2015; Weber, William/H-4351-2012; Lloro, Ivan/F-1509-2016;
Nofrarias, Miquel/N-6249-2015; Wass, Peter/C-5767-2017;
OI cavalleri, antonella/0000-0003-0461-0968; Zanoni,
Carlo/0000-0002-5767-9064; Vitale, Stefano/0000-0002-2427-8918; Pivato,
Paolo/0000-0003-2691-5236; Weber, William/0000-0003-1536-2410; Lloro,
Ivan/0000-0001-5966-1434; Nofrarias, Miquel/0000-0003-1518-2196; Wass,
Peter/0000-0002-2945-399X; Cesarini, Andrea/0000-0002-8611-8610; F.
Sopuerta, Carlos/0000-0002-1779-4447
NR 14
TC 1
Z9 1
U1 3
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012006
DI 10.1088/1742-6596/610/1/012006
PG 13
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000006
ER
PT S
AU Armano, M
Audley, H
Auger, G
Baird, J
Binetruy, P
Born, M
Bortoluzzi, D
Brandt, N
Bursi, A
Caleno, M
Cavalleri, A
Cesarini, A
Cruise, M
Danzmann, K
Diepholz, I
Dolesi, R
Dunbar, N
Ferraioli, L
Ferroni, V
Fitzsimons, E
Freschi, M
Gallegos, J
Marirrodriga, CG
Gerndt, R
Gesa, LI
Gibert, F
Giardini, D
Giusteri, R
Grimani, C
Harrison, I
Heinzel, G
Hewitson, M
Hollington, D
Hueller, M
Huesler, J
Inchauspe, H
Jennrich, O
Jetzer, P
Johlander, B
Karnesis, N
Kaune, B
Korsakova, N
Killow, C
Lloro, I
Maarschalkerweerd, R
Madden, S
Mance, D
Martin, V
Martin-Porqueras, F
Mateos, I
McNamara, P
Mendes, J
Mendes, L
Moroni, A
Nofrarias, M
Paczkowski, S
Perreur-Lloyd, M
Petiteau, A
Pivato, P
Plagnol, E
Prat, P
Ragnit, U
Ramos-Castro, J
Reiche, J
Perez, JAR
Robertson, D
Rozemeijer, H
Russano, G
Sarra, P
Schleicher, A
Slutsky, J
Sopuerta, CF
Sumner, T
Texier, D
Thorpe, J
Trenkel, C
Tu, HB
Vitale, S
Wanner, G
Ward, H
Waschke, S
Wass, P
Wealthy, D
Wen, S
Weber, W
Wittchen, A
Zanoni, C
Ziegler, T
Zweifel, P
AF Armano, M.
Audley, H.
Auger, G.
Baird, J.
Binetruy, P.
Born, M.
Bortoluzzi, D.
Brandt, N.
Bursi, A.
Caleno, M.
Cavalleri, A.
Cesarini, A.
Cruise, M.
Danzmann, K.
Diepholz, I.
Dolesi, R.
Dunbar, N.
Ferraioli, L.
Ferroni, V.
Fitzsimons, E.
Freschi, M.
Gallegos, J.
Marirrodriga, C. Garcia
Gerndt, R.
Gesa, L. I.
Gibert, F.
Giardini, D.
Giusteri, R.
Grimani, C.
Harrison, I.
Heinzel, G.
Hewitson, M.
Hollington, D.
Hueller, M.
Huesler, J.
Inchauspe, H.
Jennrich, O.
Jetzer, P.
Johlander, B.
Karnesis, N.
Kaune, B.
Korsakova, N.
Killow, C.
Lloro, I.
Maarschalkerweerd, R.
Madden, S.
Mance, D.
Martin, V.
Martin-Porqueras, F.
Mateos, I.
McNamara, P.
Mendes, J.
Mendes, L.
Moroni, A.
Nofrarias, M.
Paczkowski, S.
Perreur-Lloyd, M.
Petiteau, A.
Pivato, P.
Plagnol, E.
Prat, P.
Ragnit, U.
Ramos-Castro, J.
Reiche, J.
Perez, J. A. Romera
Robertson, D.
Rozemeijer, H.
Russano, G.
Sarra, P.
Schleicher, A.
Slutsky, J.
Sopuerta, C. F.
Sumner, T.
Texier, D.
Thorpe, J.
Trenkel, C.
Tu, H. B.
Vitale, S.
Wanner, G.
Ward, H.
Waschke, S.
Wass, P.
Wealthy, D.
Wen, S.
Weber, W.
Wittchen, A.
Zanoni, C.
Ziegler, T.
Zweifel, P.
GP IOP
TI A Strategy to Characterize the LISA-Pathfinder Cold Gas Thruster System
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB The cold gas micro-propulsion system that will be used during the LISA-Pathfinder mission will be one of the most important component used to ensure the "free-fall" of the enclosed test masses. In this paper we present a possible strategy to characterize the effective direction and amplitude gain of each of the 6 thrusters of this system.
C1 [Armano, M.; Freschi, M.; Gallegos, J.; Martin-Porqueras, F.; Mendes, L.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Auger, G.; Binetruy, P.; Inchauspe, H.; Petiteau, A.; Plagnol, E.; Prat, P.] Univ Paris Diderot, APC UMR7164, Paris, France.
[Bortoluzzi, D.; Zanoni, C.] Univ Trento, Dept Ind Engn, I-38123 Trento, Italy.
[Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vitale, S.; Wen, S.; Weber, W.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Brandt, N.; Fitzsimons, E.; Gerndt, R.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, D-88090 Immenstaad, Germany.
[Caleno, M.; Marirrodriga, C. Garcia; Huesler, J.; Jennrich, O.; Johlander, B.; Madden, S.; McNamara, P.; Ragnit, U.; Perez, J. A. Romera; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vitale, S.; Wen, S.; Weber, W.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Cruise, M.] Univ Birmingham, Dept Phys & Astron, Birmingham, W Midlands, England.
[Dunbar, N.; Trenkel, C.; Wealthy, D.] Airbus Def & Space, Stevenage SG1 2AS, Herts, England.
[Ferraioli, L.; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland.
[Gesa, L. I.; Gibert, F.; Karnesis, N.; Lloro, I.; Martin, V.; Mateos, I.; Nofrarias, M.; Sopuerta, C. F.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain.
[Grimani, C.] Univ Urbino, Ist Fis, Ist Nazl Fis Nucl, I-61029 Urbino, PU, Italy.
[Harrison, I.; Maarschalkerweerd, R.; Mendes, J.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany.
[Baird, J.; Hollington, D.; Sumner, T.; Waschke, S.; Wass, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Jetzer, P.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland.
[Killow, C.; Perreur-Lloyd, M.; Robertson, D.; Ward, H.] Univ Glasgow, Inst Gravitat Res, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Ramos-Castro, J.] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain.
[Ramos-Castro, J.] IEEC, Barcelona 08034, Spain.
[Slutsky, J.; Thorpe, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bursi, A.; Moroni, A.; Sarra, P.] CGS SpA, Co Gen Spazio, I-20151 Milan, Italy.
RP Armano, M (reprint author), European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
EM eric.plagnol@apc.univ-paris7.fr
RI Vitale, Stefano/C-2312-2012; Pivato, Paolo/K-6641-2015; Weber,
William/H-4351-2012; Nofrarias, Miquel/N-6249-2015; Lloro,
Ivan/F-1509-2016; Wass, Peter/C-5767-2017; cavalleri,
antonella/D-3678-2015
OI F. Sopuerta, Carlos/0000-0002-1779-4447; Vitale,
Stefano/0000-0002-2427-8918; Pivato, Paolo/0000-0003-2691-5236; Weber,
William/0000-0003-1536-2410; Zanoni, Carlo/0000-0002-5767-9064;
Nofrarias, Miquel/0000-0003-1518-2196; Lloro, Ivan/0000-0001-5966-1434;
Wass, Peter/0000-0002-2945-399X; Cesarini, Andrea/0000-0002-8611-8610;
cavalleri, antonella/0000-0003-0461-0968
NR 4
TC 1
Z9 1
U1 2
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012026
DI 10.1088/1742-6596/610/1/012026
PG 5
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000026
ER
PT S
AU Armano, M
Audley, H
Auger, G
Binetruy, P
Born, M
Bortoluzzi, D
Brandt, N
Bursi, A
Caleno, M
Cavalleri, A
Cesarini, A
Cruise, M
Danzmann, K
Diepholz, I
Dolesi, R
Dunbar, N
Ferraioli, L
Ferroni, V
Fitzsimons, E
Freschi, M
Marirrodriga, CG
Gerndt, R
Gesa, LI
Gibert, F
Giardini, D
Giusteri, R
Grimani, C
Harrison, I
Heinzel, G
Hewitson, M
Hollington, D
Hueller, M
Huesler, J
Inchauspe, H
Jennrich, O
Jetzer, P
Johlander, B
Karnesis, N
Kaune, B
Korsakova, N
Killow, C
Lloro, I
Maarschalkerweerd, R
Madden, S
Mance, D
Martin, V
Martin-Porqueras, F
Mateos, I
McNamara, P
Mendes, J
Mitchell, E
Moroni, A
Nofrarias, M
Paczkowski, S
Perreur-Lloyd, M
Pivato, P
Plagnol, E
Prat, P
Ragnit, U
Ramos-Castro, J
Reiche, J
Perez, JAR
Robertson, D
Rozemeijer, H
Russano, G
Sarra, P
Schleicher, A
Slutsky, J
Sopuerta, CF
Sumner, T
Texier, D
Thorpe, J
Trenkel, C
Tu, HB
Vitale, S
Wanner, G
Ward, H
Waschke, S
Wass, P
Wealthy, D
Wen, S
Weber, W
Wittchen, A
Zanoni, C
Ziegler, T
Zweifel, P
AF Armano, M.
Audley, H.
Auger, G.
Binetruy, P.
Born, M.
Bortoluzzi, D.
Brandt, N.
Bursi, A.
Caleno, M.
Cavalleri, A.
Cesarini, A.
Cruise, M.
Danzmann, K.
Diepholz, I.
Dolesi, R.
Dunbar, N.
Ferraioli, L.
Ferroni, V.
Fitzsimons, E.
Freschi, M.
Marirrodriga, C. Garcia
Gerndt, R.
Gesa, L. I.
Gibert, F.
Giardini, D.
Giusteri, R.
Grimani, C.
Harrison, I.
Heinzel, G.
Hewitson, M.
Hollington, D.
Hueller, M.
Huesler, J.
Inchauspe, H.
Jennrich, O.
Jetzer, P.
Johlander, B.
Karnesis, N.
Kaune, B.
Korsakova, N.
Killow, C.
Lloro, I.
Maarschalkerweerd, R.
Madden, S.
Mance, D.
Martin, V.
Martin-Porqueras, F.
Mateos, I.
McNamara, P.
Mendes, J.
Mitchell, E.
Moroni, A.
Nofrarias, M.
Paczkowski, S.
Perreur-Lloyd, M.
Pivato, P.
Plagnol, E.
Prat, P.
Ragnit, U.
Ramos-Castro, J.
Reiche, J.
Perez, J. A. Romera
Robertson, D.
Rozemeijer, H.
Russano, G.
Sarra, P.
Schleicher, A.
Slutsky, J.
Sopuerta, C. F.
Sumner, T.
Texier, D.
Thorpe, J.
Trenkel, C.
Tu, H. B.
Vitale, S.
Wanner, G.
Ward, H.
Waschke, S.
Wass, P.
Wealthy, D.
Wen, S.
Weber, W.
Wittchen, A.
Zanoni, C.
Ziegler, T.
Zweifel, P.
GP IOP
TI Bayesian statistics for the calibration of the LISA Pathfinder
experiment
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB The main goal of LISA Path finder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.
C1 [Armano, M.; Freschi, M.; Martin-Porqueras, F.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Auger, G.; Binetruy, P.; Inchauspe, H.; Plagnol, E.; Prat, P.] Univ Paris Diderot, APC UMR7164, Paris, France.
[Bortoluzzi, D.; Zanoni, C.] Univ Trento, Dept Ind Engn, I-38123 Trento, Italy.
[Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vitale, S.; Wen, S.; Weber, W.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental & Applicat, I-38123 Povo, Trento, Italy.
[Brandt, N.; Fitzsimons, E.; Gerndt, R.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, D-88090 Immenstaad, Germany.
[Caleno, M.; Marirrodriga, C. Garcia; Huesler, J.; Jennrich, O.; Johlander, B.; Madden, S.; McNamara, P.; Ragnit, U.; Perez, J. A. Romera; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vitale, S.; Wen, S.; Weber, W.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Cruise, M.] Univ Birmingham, Dept Phys & Astron, Birmingham, W Midlands, England.
[Dunbar, N.; Trenkel, C.; Wealthy, D.] Airbus Def & Space, Stevenage SG1 2AS, Herts, England.
[Ferraioli, L.; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland.
[Gesa, L. I.; Gibert, F.; Karnesis, N.; Lloro, I.; Martin, V.; Mateos, I.; Nofrarias, M.; Sopuerta, C. F.] Fac Ciencies, ICE CSIC IEEC, E-08193 Bellaterra, Barcelona, Spain.
[Grimani, C.] Univ Urbino, Ist Fis, Ist Nazl Fis Nucl, I-61029 Urbino, PU, Italy.
[Harrison, I.; Maarschalkerweerd, R.; Mendes, J.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany.
[Hollington, D.; Mitchell, E.; Sumner, T.; Waschke, S.; Wass, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Jetzer, P.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland.
[Killow, C.; Perreur-Lloyd, M.; Robertson, D.; Ward, H.] Univ Glasgow, Inst Gravitat Res, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Ramos-Castro, J.] Univ Politecn Cataluna, Engn Elect, ES-08034 Barcelona, Spain.
[Slutsky, J.; Thorpe, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bursi, A.; Moroni, A.; Sarra, P.] CGS SpA, Co Gen Spazio, I-20151 Milan, Italy.
RP Armano, M (reprint author), European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
EM karnesis@ieec.uab.es
RI cavalleri, antonella/D-3678-2015; Vitale, Stefano/C-2312-2012; Pivato,
Paolo/K-6641-2015; Weber, William/H-4351-2012; Nofrarias,
Miquel/N-6249-2015; Lloro, Ivan/F-1509-2016; Wass, Peter/C-5767-2017;
OI cavalleri, antonella/0000-0003-0461-0968; Zanoni,
Carlo/0000-0002-5767-9064; Vitale, Stefano/0000-0002-2427-8918; Pivato,
Paolo/0000-0003-2691-5236; Weber, William/0000-0003-1536-2410;
Nofrarias, Miquel/0000-0003-1518-2196; Lloro, Ivan/0000-0001-5966-1434;
Wass, Peter/0000-0002-2945-399X; Cesarini, Andrea/0000-0002-8611-8610;
F. Sopuerta, Carlos/0000-0002-1779-4447
NR 10
TC 1
Z9 1
U1 5
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012027
DI 10.1088/1742-6596/610/1/012027
PG 6
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000027
ER
PT S
AU Camp, J
Numata, K
AF Camp, J.
Numata, K.
GP IOP
TI Development of a US Gravitational Wave Laser System for LISA
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
ID EXTERNAL-CAVITY LASER
AB A highly stable and robust laser system is a key component of the space-based LISA mission architecture. We will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016. The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact external cavity laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendor Redfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2 W output, built at Goddard. We show noise and reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.
C1 [Camp, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Numata, K.] Univ Maryland, Dept Astron, CRESST, College Pk, MD 20741 USA.
RP Camp, J (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Jordan.B.Camp@nasa.gov
NR 9
TC 0
Z9 0
U1 3
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012033
DI 10.1088/1742-6596/610/1/012033
PG 5
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000033
ER
PT S
AU Gehrels, N
Spergel, D
AF Gehrels, N.
Spergel, D.
CA WFIRST SDT Project
GP IOP
TI Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with
LISA and LIGO-Virgo
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and well-funded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.
C1 [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Spergel, D.] Princeton Univ, Princeton, NJ 08544 USA.
RP Gehrels, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM neil.gehrels@nasa.gov
NR 8
TC 2
Z9 2
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012007
DI 10.1088/1742-6596/610/1/012007
PG 7
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000007
ER
PT S
AU Gibert, F
Nofrarias, M
Armano, M
Audley, H
Auger, G
Baird, J
Binetruy, P
Born, M
Bortoluzzi, D
Brandt, N
Bursi, A
Caleno, M
Cavalleri, A
Cesarini, A
Cruise, M
Danzmann, K
Diepholz, I
Dolesi, R
Dunbar, N
Ferraioli, L
Ferroni, V
Fitzsimons, E
Freschi, M
Gallegos, J
Marirrodriga, CG
Gerndt, R
Gesa, LI
Giardini, D
Giusteri, R
Grimani, C
Harrison, I
Heinzel, G
Hewitson, M
Hollington, D
Hueller, M
Huesler, J
Inchauspe, H
Jennrich, O
Jetzer, P
Johlander, B
Karnesis, N
Kaune, B
Korsakova, N
Killow, C
Lloro, I
Maarschalkerweerd, R
Madden, S
Maghami, P
Mance, D
Martin, V
Martin-Porqueras, F
Mateos, I
McNamara, P
Mendes, J
Mendes, L
Moroni, A
Paczkowski, S
Perreur-Lloyd, M
Petiteau, A
Pivato, P
Plagnol, E
Prat, P
Ragnit, U
Ramos-Castro, J
Reiche, J
Perez, JAR
Robertson, D
Rozemeijer, H
Russano, G
Sarra, P
Schleicher, A
Slutsky, J
Sopuerta, CF
Sumner, T
Texier, D
Thorpe, J
Trenkel, C
Tu, HB
Vetrugno, D
Vitale, S
Wanner, G
Ward, H
Waschke, S
Wass, P
Wealthy, D
Wen, S
Weber, W
Wittchen, A
Zanoni, C
Ziegler, T
Zweifel, P
AF Gibert, F.
Nofrarias, M.
Armano, M.
Audley, H.
Auger, G.
Baird, J.
Binetruy, P.
Born, M.
Bortoluzzi, D.
Brandt, N.
Bursi, A.
Caleno, M.
Cavalleri, A.
Cesarini, A.
Cruise, M.
Danzmann, K.
Diepholz, I.
Dolesi, R.
Dunbar, N.
Ferraioli, L.
Ferroni, V.
Fitzsimons, E.
Freschi, M.
Gallegos, J.
Marirrodriga, C. Garcia
Gerndt, R.
Gesa, L. I.
Giardini, D.
Giusteri, R.
Grimani, C.
Harrison, I.
Heinzel, G.
Hewitson, M.
Hollington, D.
Hueller, M.
Huesler, J.
Inchauspe, H.
Jennrich, O.
Jetzer, P.
Johlander, B.
Karnesis, N.
Kaune, B.
Korsakova, N.
Killow, C.
Lloro, I.
Maarschalkerweerd, R.
Madden, S.
Maghami, P.
Mance, D.
Martin, V.
Martin-Porqueras, F.
Mateos, I.
McNamara, P.
Mendes, J.
Mendes, L.
Moroni, A.
Paczkowski, S.
Perreur-Lloyd, M.
Petiteau, A.
Pivato, P.
Plagnol, E.
Prat, P.
Ragnit, U.
Ramos-Castro, J.
Reiche, J.
Perez, J. A. Romera
Robertson, D.
Rozemeijer, H.
Russano, G.
Sarra, P.
Schleicher, A.
Slutsky, J.
Sopuerta, C. F.
Sumner, T.
Texier, D.
Thorpe, J.
Trenkel, C.
Tu, H. B.
Vetrugno, D.
Vitale, S.
Wanner, G.
Ward, H.
Waschke, S.
Wass, P.
Wealthy, D.
Wen, S.
Weber, W.
Wittchen, A.
Zanoni, C.
Ziegler, T.
Zweifel, P.
GP IOP
TI In-flight thermal experiments for LISA Pathfinder: Simulating
temperature noise at the Inertial Sensors
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations.
C1 [Gibert, F.; Nofrarias, M.; Gesa, L. I.; Karnesis, N.; Lloro, I.; Martin, V.; Mateos, I.; Sopuerta, C. F.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain.
[Armano, M.; Freschi, M.; Gallegos, J.; Martin-Porqueras, F.; Mendes, L.; Texier, D.] European Space Agcy, European Space Astron Ctr, Madrid 28692, Spain.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Audley, H.; Born, M.; Danzmann, K.; Diepholz, I.; Heinzel, G.; Hewitson, M.; Kaune, B.; Korsakova, N.; Paczkowski, S.; Reiche, J.; Wanner, G.; Wittchen, A.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Auger, G.; Binetruy, P.; Inchauspe, H.; Petiteau, A.; Plagnol, E.; Prat, P.] Univ Paris Diderot, APC UMR7164, Paris, France.
[Bortoluzzi, D.; Zanoni, C.] Univ Trento, Dept Ind Engn, I-38123 Trento, Italy.
[Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.; Zanoni, C.] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy.
[Brandt, N.; Fitzsimons, E.; Gerndt, R.; Schleicher, A.; Ziegler, T.] Airbus Def & Space, D-88090 Immenstaad, Germany.
[Caleno, M.; Marirrodriga, C. Garcia; Huesler, J.; Jennrich, O.; Johlander, B.; Madden, S.; McNamara, P.; Ragnit, U.; Perez, J. A. Romera; Rozemeijer, H.] European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands.
[Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Giusteri, R.; Hueller, M.; Pivato, P.; Russano, G.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wen, S.; Weber, W.] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy.
[Cruise, M.] Univ Birmingham, Dept Phys & Astron, Birmingham, W Midlands, England.
[Dunbar, N.; Trenkel, C.; Wealthy, D.] Airbus Def & Space, Stevenage SG1 2AS, Herts, England.
[Ferraioli, L.; Giardini, D.; Mance, D.; Zweifel, P.] ETH, Inst Geophys, CH-8092 Zurich, Switzerland.
[Grimani, C.] Univ Urbino, Ist Fis, Ist Nazl Fis Nucl, I-61029 Urbino, PU, Italy.
[Harrison, I.; Maarschalkerweerd, R.; Mendes, J.] European Space Agcy, European Space Operat Ctr, D-64293 Darmstadt, Germany.
[Baird, J.; Hollington, D.; Sumner, T.; Waschke, S.; Wass, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Jetzer, P.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland.
[Killow, C.; Perreur-Lloyd, M.; Ward, H.] Univ Glasgow, Sch Phys & Astron, Inst Gravitat Res, SUPA, Glasgow G12 8QQ, Lanark, Scotland.
[Ramos-Castro, J.] Univ Politecn Cataluna, Dept Elect Engn, ES-08034 Barcelona, Spain.
[Ramos-Castro, J.] IEEC, Barcelona 08034, Spain.
[Maghami, P.; Slutsky, J.; Thorpe, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bursi, A.; Moroni, A.; Sarra, P.] CGS SpA, Co Gen Spazio, I-20151 Milan, Italy.
RP Gibert, F (reprint author), Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Campus UAB, Bellaterra 08193, Spain.
EM gibert@ieec.cat
RI cavalleri, antonella/D-3678-2015; Vitale, Stefano/C-2312-2012; Pivato,
Paolo/K-6641-2015; Weber, William/H-4351-2012; Nofrarias,
Miquel/N-6249-2015; Lloro, Ivan/F-1509-2016; Wass, Peter/C-5767-2017;
OI F. Sopuerta, Carlos/0000-0002-1779-4447; cavalleri,
antonella/0000-0003-0461-0968; Zanoni, Carlo/0000-0002-5767-9064;
Vitale, Stefano/0000-0002-2427-8918; Pivato, Paolo/0000-0003-2691-5236;
Weber, William/0000-0003-1536-2410; Nofrarias,
Miquel/0000-0003-1518-2196; Lloro, Ivan/0000-0001-5966-1434; Wass,
Peter/0000-0002-2945-399X; Cesarini, Andrea/0000-0002-8611-8610
NR 11
TC 0
Z9 0
U1 3
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012023
DI 10.1088/1742-6596/610/1/012023
PG 6
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000023
ER
PT S
AU Livas, J
Sankar, S
AF Livas, J.
Sankar, S.
GP IOP
TI Optical Telescope Design Study Results
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB We report on the results of a study conducted from Nov 2012-Apr 2013 to develop a telescope design for a space-based gravitational wave detector. The telescope is needed for efficient power delivery but since it is directly in the beam path, the design is driven by the requirements for the overall displacement sensitivity of the gravitational wave observatory. Two requirements in particular, optical pathlength stability and scattered light performance, are beyond the usual specifications for good image quality encountered in traditional telescopic systems. An important element of the study was to tap industrial expertise to develop an optimized design that can be reliably manufactured. Key engineering and design trade-offs and the sometimes surprising results will be presented.
C1 [Livas, J.; Sankar, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Sankar, S.] Univ Space Res Assoc, Greenbelt, MD 20771 USA.
RP Livas, J (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Jeffrey.Livas@nasa.gov
NR 4
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012029
DI 10.1088/1742-6596/610/1/012029
PG 5
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000029
ER
PT S
AU Sankar, SR
Livas, JC
AF Sankar, Shannon R.
Livas, Jeffrey C.
GP IOP
TI Initial progress with numerical modelling of scattered light in a
candidate eLISA telescope
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
AB We report a numerical analysis of the scattered light from within the field of view of an eLISA-like full-duplex telescope and, by comparison to a nominal allowable scattered light specification, we place constraints on the permissible mirror surface roughness and contamination levels of the mirrors. Our analysis was performed with commercially available stray light software, typically used in non-interferometric imaging telescopes and we do not include polarization or coherent effects. This work therefore represents the early steps towards a more complete understanding of the scattered light budget.
C1 [Sankar, Shannon R.] Univ Space Res Assoc, Columbia, MD 21046 USA.
[Livas, Jeffrey C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Sankar, SR (reprint author), Univ Space Res Assoc, Columbia, MD 21046 USA.
EM shannon.r.sankar@nasa.gov
NR 4
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012031
DI 10.1088/1742-6596/610/1/012031
PG 4
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000031
ER
PT S
AU Vallisneri, M
Kanner, J
Williams, R
Weinstein, A
Stephens, B
AF Vallisneri, Michele
Kanner, Jonah
Williams, Roy
Weinstein, Alan
Stephens, Branson
GP IOP
TI The LIGO Open Science Center
SO 10TH INTERNATIONAL LISA SYMPOSIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 10th International LISA Symposium
CY MAY 18-23, 2014
CL Univ Florida, Gainesville, FL
SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res
HO Univ Florida
ID ORIGIN
AB The LIGO Open Science Center (LOSC) fulfills LIGO's commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use the data. In August 2014, the LOSC published the full dataset from Initial LIGO's "S5" run at design sensitivity, the first such large-scale release and a valuable testbed to explore the use of LIGO data by non-LIGO researchers and by the public, and to help teach gravitational-wave data analysis to students across the world. In addition to serving the S5 data, the LOSC web portal (losc.ligo.org) now offers documentation, data-location and data-quality queries, tutorials and example code, and more. We review the mission and plans of the LOSC, focusing on the S5 data release.
C1 [Vallisneri, Michele] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Kanner, Jonah; Williams, Roy; Weinstein, Alan] CALTECH, LIGO, Pasadena, CA 91125 USA.
[Stephens, Branson] Univ Wisconsin, Milwaukee, WI 53201 USA.
RP Vallisneri, M (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
EM michele.vallisneri@jpl.nasa.gov
OI Kanner, Jonah/0000-0001-8115-0577
NR 23
TC 8
Z9 8
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 610
AR 012021
DI 10.1088/1742-6596/610/1/012021
PG 8
WC Astronomy & Astrophysics; Physics, Applied
SC Astronomy & Astrophysics; Physics
GA BD1MF
UT WOS:000358149000021
ER
PT S
AU Adriani, O
Akaike, Y
Asano, K
Asaoka, Y
Bagliesi, MG
Bigongiari, G
Binns, WR
Bonechi, S
Bongi, M
Buckley, JH
Castellini, G
Cherry, ML
Collazuol, G
Ebisawa, K
Di Felice, V
Fuke, H
Guzik, TG
Hams, T
Hareyama, M
Hasebe, N
Hibino, K
Ichimura, M
Ioka, K
Israel, MH
Javaid, A
Kamioka, E
Kasahara, K
Kataoka, J
Kataoka, R
Katayose, Y
Kawanaka, N
Kitamura, H
Kotani, T
Krawczynski, HS
Krizmanic, JF
Kubota, A
Kuramata, S
Lomtadze, T
Maestro, P
Marcelli, L
Marrocchesi, PS
Mitchell, JW
Miyake, S
Mizutani, K
Moiseev, AA
Mori, K
Mori, M
Mori, N
Motz, HM
Munakata, K
Murakami, H
Nakagawa, YE
Nakahira, S
Nishimura, J
Okuno, S
Ormes, JF
Ozawa, S
Palma, F
Papini, P
Rauch, BF
Ricciarini, SB
Sakamoto, T
Sasaki, M
Shibata, M
Shimizu, Y
Shiomi, A
Sparvoli, R
Spillantini, P
Takahashi, I
Takayanagi, M
Takita, M
Tamura, T
Tateyama, N
Terasawa, T
Tomida, H
Torii, S
Tunesada, Y
Uchihori, Y
Ueno, S
Vannuccini, E
Wefel, JP
Yamaoka, K
Yanagita, S
Yoshida, A
Yoshida, K
Yuda, T
AF Adriani, O.
Akaike, Y.
Asano, K.
Asaoka, Y.
Bagliesi, M. G.
Bigongiari, G.
Binns, W. R.
Bonechi, S.
Bongi, M.
Buckley, J. H.
Castellini, G.
Cherry, M. L.
Collazuol, G.
Ebisawa, K.
Di Felice, V.
Fuke, H.
Guzik, T. G.
Hams, T.
Hareyama, M.
Hasebe, N.
Hibino, K.
Ichimura, M.
Ioka, K.
Israel, M. H.
Javaid, A.
Kamioka, E.
Kasahara, K.
Kataoka, J.
Kataoka, R.
Katayose, Y.
Kawanaka, N.
Kitamura, H.
Kotani, T.
Krawczynski, H. S.
Krizmanic, J. F.
Kubota, A.
Kuramata, S.
Lomtadze, T.
Maestro, P.
Marcelli, L.
Marrocchesi, P. S.
Mitchell, J. W.
Miyake, S.
Mizutani, K.
Moiseev, A. A.
Mori, K.
Mori, M.
Mori, N.
Motz, H. M.
Munakata, K.
Murakami, H.
Nakagawa, Y. E.
Nakahira, S.
Nishimura, J.
Okuno, S.
Ormes, J. F.
Ozawa, S.
Palma, F.
Papini, P.
Rauch, B. F.
Ricciarini, S. B.
Sakamoto, T.
Sasaki, M.
Shibata, M.
Shimizu, Y.
Shiomi, A.
Sparvoli, R.
Spillantini, P.
Takahashi, I.
Takayanagi, M.
Takita, M.
Tamura, T.
Tateyama, N.
Terasawa, T.
Tomida, H.
Torii, S.
Tunesada, Y.
Uchihori, Y.
Ueno, S.
Vannuccini, E.
Wefel, J. P.
Yamaoka, K.
Yanagita, S.
Yoshida, A.
Yoshida, K.
Yuda, T.
BE Bravina, L
Foka, Y
Kabana, S
TI The CALorimetric Electron Telescope (CALET) for high-energy
astroparticle physics on the International Space Station
SO 3RD INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 3rd International Conference on New Frontiers in Physics (ICNFP)
CY JUL 28-AUG 06, 2014
CL Kolymbari, GREECE
ID PERFORMANCE
AB The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).
C1 [Sakamoto, T.; Takahashi, I.; Yoshida, A.] Aoyama Gakuin Univ, Tokyo 150, Japan.
[Hams, T.; Krizmanic, J. F.; Moiseev, A. A.; Sasaki, M.] NASA, GSFC, CRESST, Las Cruces, NM 88004 USA.
[Krizmanic, J. F.] Univ Space Res Assoc, Washington, DC USA.
[Hams, T.; Moiseev, A. A.; Sasaki, M.] Univ Maryland, College Pk, MD 20742 USA.
[Ichimura, M.; Kuramata, S.] Hirosaki Univ, Hirosaki, Aomori, Japan.
[Miyake, S.] Ibaraki Natl Coll Technol, Tsukuba, Ibaraki, Japan.
[Yanagita, S.] Ibaraki Univ, Tsukuba, Ibaraki, Japan.
[Akaike, Y.; Takita, M.; Terasawa, T.; Yuda, T.] Univ Tokyo, ICRR, Tokyo 1138654, Japan.
[Shimizu, Y.; Tamura, T.; Torii, S.] SEUC, JAXA, Tsukuba, Ibaraki, Japan.
[Ebisawa, K.; Fuke, H.; Mori, K.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Takayanagi, M.; Tomida, H.; Ueno, S.] ISAS, JAXA, Tsukuba, Ibaraki, Japan.
[Hibino, K.; Okuno, S.; Tamura, T.; Tateyama, N.] Kanagawa Univ, Yokohama, Kanagawa, Japan.
[Ioka, K.] KEK, Tsukuba, Ibaraki, Japan.
[Cherry, M. L.; Guzik, T. G.; Javaid, A.; Wefel, J. P.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Yamaoka, K.] Nagoya Univ, Nagoya, Aichi 4648601, Japan.
[Mitchell, J. W.] NASA, GSFC, Greenbelt, MD USA.
[Kataoka, R.] Natl Inst Polar Res, Tokyo, Japan.
[Kitamura, H.; Uchihori, Y.] Natl Inst Radiol Sci, Chiba, Japan.
[Shiomi, A.] Nihon Univ, Tokyo 102, Japan.
[Mori, M.] Ritsumeikan Univ, Kyoto, Japan.
[Mizutani, K.] Saitama Univ, Saitama, Japan.
[Kamioka, E.; Kubota, A.; Yoshida, K.] Shibaura Inst Technol, Tokyo, Japan.
[Munakata, K.] Shinshu Univ, Nagano, Japan.
[Hareyama, M.] St Marianna Univ, Sch Med, Kawasaki, Kanagawa, Japan.
[Kawanaka, N.] Univ Tokyo, Tokyo 1138654, Japan.
[Asano, K.; Tunesada, Y.] Tokyo Inst Technol, Tokyo, Japan.
[Ormes, J. F.] Univ Denver, Denver, CO 80208 USA.
[Adriani, O.; Bongi, M.; Castellini, G.; Mori, N.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Vannuccini, E.] Univ Florence, IFAC, CNR, I-50121 Florence, Italy.
[Adriani, O.; Bagliesi, M. G.; Bigongiari, G.; Bonechi, S.; Bongi, M.; Castellini, G.; Collazuol, G.; Di Felice, V.; Lomtadze, T.; Maestro, P.; Marcelli, L.; Marrocchesi, P. S.; Mori, N.; Palma, F.; Papini, P.; Ricciarini, S. B.; Sparvoli, R.; Spillantini, P.; Vannuccini, E.] Ist Nazl Fis Nucl, Milan, Italy.
[Collazuol, G.] Univ Padua, I-35100 Padua, Italy.
[Lomtadze, T.] Univ Pisa, I-56100 Pisa, Italy.
[Di Felice, V.; Marcelli, L.; Palma, F.; Sparvoli, R.] Univ Roma Tor Vergata, Rome, Italy.
[Bagliesi, M. G.; Bigongiari, G.; Bonechi, S.; Maestro, P.; Marrocchesi, P. S.] Univ Siena, I-53100 Siena, Italy.
[Asaoka, Y.; Hasebe, N.; Kasahara, K.; Kataoka, J.; Kotani, T.; Mori, K.; Motz, H. M.; Murakami, H.; Ozawa, S.; Torii, S.] Waseda Univ, Tokyo, Japan.
[Binns, W. R.; Buckley, J. H.; Israel, M. H.; Krawczynski, H. S.; Rauch, B. F.] Washington Univ, St Louis, MO USA.
[Katayose, Y.; Shibata, M.] Yokohama Natl Univ, Yokohama, Kanagawa, Japan.
RP Ricciarini, SB (reprint author), Univ Florence, IFAC, CNR, I-50121 Florence, Italy.
EM s.ricciarini@ifac.cnr.it
RI Palma, Francesco/K-3224-2015; Marrocchesi, Pier Simone/N-9068-2015;
Bongi, Massimo/L-9417-2015; maestro, paolo/E-3280-2010; marcelli,
laura/K-8860-2016; Di Felice, Valeria/L-2989-2016; Mori,
Nicola/D-9459-2016;
OI Palma, Francesco/0000-0001-7076-8830; Marrocchesi, Pier
Simone/0000-0003-1966-140X; Bongi, Massimo/0000-0002-6050-1937; maestro,
paolo/0000-0002-4193-1288; marcelli, laura/0000-0002-3180-1228; Mori,
Nicola/0000-0003-2138-3787; Ricciarini, Sergio Bruno/0000-0001-6176-3368
NR 18
TC 0
Z9 0
U1 3
U2 6
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2015
VL 95
AR 04056
DI 10.1051/epjconf/20159504056
PG 9
WC Physics, Applied; Physics, Multidisciplinary
SC Physics
GA BD1PP
UT WOS:000358248400119
ER
PT J
AU McGrath-Spangler, EL
Molod, A
Ott, LE
Pawson, S
AF McGrath-Spangler, E. L.
Molod, A.
Ott, L. E.
Pawson, S.
TI Impact of planetary boundary layer turbulence on model climate and
tracer transport
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID CO2 RETRIEVAL ALGORITHM; ATMOSPHERIC CO2; GLOBAL OCEANS; DUST AEROSOLS;
GOCART MODEL; DESERT DUST; AIR-QUALITY; SATELLITE; CARBON; VARIABILITY
AB Planetary boundary layer (PBL) processes are important for weather, climate, and tracer transport and concentration. One measure of the strength of these processes is the PBL depth. However, no single PBL depth definition exists and several studies have found that the estimated depth can vary substantially based on the definition used. In the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model, the PBL depth is particularly important because it is used to calculate the turbulent length scale that is used in the estimation of turbulent mixing. This study analyzes the impact of using three different PBL depth definitions in this calculation. Two definitions are based on the scalar eddy diffusion coefficient and the third is based on the bulk Richardson number. Over land, the bulk Richardson number definition estimates shallower nocturnal PBLs than the other estimates while over water this definition generally produces deeper PBLs. The near-surface wind velocity, temperature, and specific humidity responses to the change in turbulence are spatially and temporally heterogeneous, resulting in changes to tracer transport and concentrations. Near-surface wind speed increases in the bulk Richardson number experiment cause Saharan dust increases on the order of 1 x 10(-4) kg m(-2) downwind over the Atlantic Ocean. Carbon monoxide (CO) surface concentrations are modified over Africa during boreal summer, producing differences on the order of 20 ppb, due to the model's treatment of emissions from biomass burning. While differences in carbon dioxide (CO2) are small in the time mean, instantaneous differences are on the order of 10 ppm and these are especially prevalent at high latitude during boreal winter. Understanding the sensitivity of trace gas and aerosol concentration estimates to PBL depth is important for studies seeking to calculate surface fluxes based on near-surface concentrations and for studies projecting future concentrations.
C1 [McGrath-Spangler, E. L.] Univ Space Res Assoc, Columbia, MD 21044 USA.
[McGrath-Spangler, E. L.; Molod, A.; Ott, L. E.; Pawson, S.] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA.
[Molod, A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP McGrath-Spangler, EL (reprint author), Univ Space Res Assoc, Columbia, MD 21044 USA.
EM erica.l.mcgrath-spangler@nasa.gov
RI Pawson, Steven/I-1865-2014; Ott, Lesley/E-2250-2012
OI McGrath-Spangler, Erica/0000-0002-8540-5423; Pawson,
Steven/0000-0003-0200-717X;
FU National Aeronautics and Space Administration [NNG11HP16A]
FX The authors thank two anonymous reviewers. The MERRA data are produced
by the NASA Global Modeling and Assimilation Office and disseminated by
the GES DISC. The ACOS data were produced by the ACOS/OCO-2 project at
the Jet Propulsion Laboratory, California Institute of Technology, using
spectra data acquired by the GOSAT Project. We would like to acknowledge
the NASA Langley Research Center Atmospheric Science Data Center for
disseminating the MOPITT and ISCCP data, the Goddard DAAC and MODIS
software development and support teams for providing the MODIS data, and
the MISR retrieval team. Computing was supported by the NASA Center for
Climate Simulation. The research was supported by National Aeronautics
and Space Administration grant NNG11HP16A.
NR 77
TC 4
Z9 4
U1 3
U2 9
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 13
BP 7269
EP 7286
DI 10.5194/acp-15-7269-2015
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CM8UT
UT WOS:000357978300008
ER
PT J
AU Kaiser, J
Wolfe, GM
Min, KE
Brown, SS
Miller, CC
Jacob, DJ
deGouw, JA
Graus, M
Hanisco, TF
Holloway, J
Peischl, J
Pollack, IB
Ryerson, TB
Warneke, C
Washenfelder, RA
Keutsch, FN
AF Kaiser, J.
Wolfe, G. M.
Min, K. E.
Brown, S. S.
Miller, C. C.
Jacob, D. J.
deGouw, J. A.
Graus, M.
Hanisco, T. F.
Holloway, J.
Peischl, J.
Pollack, I. B.
Ryerson, T. B.
Warneke, C.
Washenfelder, R. A.
Keutsch, F. N.
TI Reassessing the ratio of glyoxal to formaldehyde as an indicator of
hydrocarbon precursor speciation
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID OZONE MONITORING INSTRUMENT; VOLATILE ORGANIC-COMPOUNDS; UNITED-STATES;
GAS-PHASE; IN-SITU; TROPOSPHERIC DEGRADATION; ATMOSPHERIC CHEMISTRY;
MODEL DESCRIPTION; FINE-PARTICLE; AIR-POLLUTION
AB The yield of formaldehyde (HCHO) and glyoxal (CHOCHO) from oxidation of volatile organic compounds (VOCs) depends on precursor VOC structure and the concentration of NOx (NOx = NO + NO2). Previous work has proposed that the ratio of CHOCHO to HCHO (R-GF) can be used as an indicator of precursor VOC speciation, and absolute concentrations of the CHOCHO and HCHO as indicators of NOx. Because this metric is measurable by satellite, it is potentially useful on a global scale; however, absolute values and trends in R-GF have differed between satellite and ground-based observations. To investigate potential causes of previous discrepancies and the usefulness of this ratio, we present measurements of CHOCHO and HCHO over the southeastern United States (SE US) from the 2013 SENEX (Southeast Nexus) flight campaign, and compare these measurements with OMI (Ozone Monitoring Instrument) satellite retrievals. High time-resolution flight measurements show that high R-GF is associated with monoterpene emissions, low R-GF is associated with isoprene oxidation, and emissions associated with oil and gas production can lead to small-scale variation in regional R-GF. During the summertime in the SE US, R-GF is not a reliable diagnostic of anthropogenic VOC emissions, as HCHO and CHOCHO production are dominated by isoprene oxidation. Our results show that the new CHOCHO retrieval algorithm reduces the previous disagreement between satellite and in situ R-GF observations. As the absolute values and trends in R-GF observed during SENEX are largely reproduced by OMI observations, we conclude that satellite-based observations of R-GF can be used alongside knowledge of land use as a global diagnostic of dominant hydrocarbon speciation.
C1 [Kaiser, J.; Keutsch, F. N.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA.
[Wolfe, G. M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA.
[Wolfe, G. M.; Hanisco, T. F.] NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Min, K. E.; deGouw, J. A.; Graus, M.; Holloway, J.; Peischl, J.; Pollack, I. B.; Warneke, C.; Washenfelder, R. A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Min, K. E.; Brown, S. S.; deGouw, J. A.; Graus, M.; Holloway, J.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Washenfelder, R. A.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA.
[Brown, S. S.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Miller, C. C.; Jacob, D. J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Jacob, D. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
RP Kaiser, J (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA.
EM jen.b.kaiser@gmail.com
RI Ryerson, Tom/C-9611-2009; Peischl, Jeff/E-7454-2010; Graus,
Martin/E-7546-2010; Wolfe, Glenn/D-5289-2011; Washenfelder,
Rebecca/E-7169-2010; de Gouw, Joost/A-9675-2008; Pollack,
Ilana/F-9875-2012; Warneke, Carsten/E-7174-2010; Kaiser,
Jennifer/N-7732-2014; Brown, Steven/I-1762-2013; Manager, CSD
Publications/B-2789-2015
OI Peischl, Jeff/0000-0002-9320-7101; Graus, Martin/0000-0002-2025-9242;
Washenfelder, Rebecca/0000-0002-8106-3702; de Gouw,
Joost/0000-0002-0385-1826;
FU US EPA Science to Achieve Results (STAR) program [83540601]; NASA
Headquarters under the NASA Earth and Space Science Fellowship Program
[NNX14AK97H]; NASA Aura Science Team
FX The authors would like to acknowledge the contribution from all members
of the SENEX flight and science teams. Funding was provided by US EPA
Science to Achieve Results (STAR) program grant 83540601. This research
has not been subjected to any EPA review and therefore does not
necessarily reflect the views of the agency, and no official endorsement
should be inferred. J. Kaiser acknowledges support from NASA
Headquarters under the NASA Earth and Space Science Fellowship Program -
grant NNX14AK97H. This work was also supported as part of the NASA Aura
Science Team.
NR 51
TC 9
Z9 9
U1 9
U2 42
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 13
BP 7571
EP 7583
DI 10.5194/acp-15-7571-2015
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CM8UT
UT WOS:000357978300027
ER
PT J
AU Shinozuka, Y
Clarke, AD
Nenes, A
Jefferson, A
Wood, R
McNaughton, CS
Strom, J
Tunved, P
Redemann, J
Thornhill, KL
Moore, RH
Lathem, TL
Lin, JJ
Yoon, YJ
AF Shinozuka, Y.
Clarke, A. D.
Nenes, A.
Jefferson, A.
Wood, R.
McNaughton, C. S.
Strom, J.
Tunved, P.
Redemann, J.
Thornhill, K. L.
Moore, R. H.
Lathem, T. L.
Lin, J. J.
Yoon, Y. J.
TI The relationship between cloud condensation nuclei (CCN) concentration
and light extinction of dried particles: indications of underlying
aerosol processes and implications for satellite-based CCN estimates
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; OPTICAL-PROPERTIES; VERTICAL PROFILES; FIELD
CAMPAIGNS; AIRBORNE; REMOTE; MODIS; VARIABILITY; PARAMETERS; POLLUTION
AB We examine the relationship between the number concentration of boundary-layer cloud condensation nuclei (CCN) and light extinction to investigate underlying aerosol processes and satellite-based CCN estimates. For a variety of airborne and ground-based observations not dominated by dust, regression identifies the CCN (cm(-3)) at 0.4 +/- 0.1% supersaturation with 10(0.3 alpha+1.3)sigma(0.75) where sigma (Mm(-1)) is the 500 nm extinction coefficient by dried particles and alpha is the Angstrom exponent. The deviation of 1 km horizontal average data from this approximation is typically within a factor of 2.0. partial derivative logCCN / partial derivative log sigma is less than unity because, among other explanations, growth processes generally make aerosols scatter more light without increasing their number. This, barring special meteorology-aerosol connections, associates a doubling of aerosol optical depth with less than a doubling of CCN, contrary to previous studies based on heavily averaged measurements or a satellite algorithm.
C1 [Shinozuka, Y.] NASA, Ames Res Ctr, Cooperat Res Earth Sci & Technol, Moffett Field, CA 94035 USA.
[Shinozuka, Y.] Bay Area Environm Res Inst, Petaluma, CA USA.
[Clarke, A. D.; McNaughton, C. S.] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA.
[Nenes, A.; Lathem, T. L.; Lin, J. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Nenes, A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Jefferson, A.] Univ Colorado, CIRES, Boulder, CO 80309 USA.
[Jefferson, A.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Wood, R.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
[McNaughton, C. S.] Golder Associates, Saskatoon, SK, Canada.
[Strom, J.; Tunved, P.] Stockholm Univ, Dept Appl Environm Sci, S-10691 Stockholm, Sweden.
[Redemann, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Thornhill, K. L.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Moore, R. H.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Lathem, T. L.] Phillips 66 Res Ctr, Bartlesville, OK USA.
[Yoon, Y. J.] Korea Polar Res Inst, Inchon, South Korea.
RP Shinozuka, Y (reprint author), NASA, Ames Res Ctr, Cooperat Res Earth Sci & Technol, Moffett Field, CA 94035 USA.
EM yohei.shinozuka@nasa.gov
RI Wood, Robert/A-2989-2008
OI Wood, Robert/0000-0002-1401-3828
FU NASA [NNX12AO27G]; KOPRI [NRF-2011-0021063]
FX We thank Teruyuki Nakajima, Kazuaki Kawamoto, Steve Howell, Steffen
Freitag, Chris Terai, Allison McComiskey, Andreas Beyersdorf, Bruce
Anderson, Phil Russell, John Livingston, Sam LeBlanc, Tom Ackerman,
Masataka Shiobara, Rob Levy, Meloe Kacenelenbogen, Qian Tan, Kirk
Knobelspiesse, Connor Flynn, Trish Quinn and the two anonymous reviewers
for valuable input. Funding through NASA New (Early Career) Investigator
Program (NNX12AO27G) is gratefully acknowledged. The Svalbard CCN
measurement was supported by the KOPRI project: NRF-2011-0021063.
Aerosol observations at the Zeppelin station were supported by the
Swedish EPA.
NR 67
TC 7
Z9 7
U1 2
U2 14
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 13
BP 7585
EP 7604
DI 10.5194/acp-15-7585-2015
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CM8UT
UT WOS:000357978300028
ER
PT J
AU Che, H
Zhang, XY
Xia, X
Goloub, P
Holben, B
Zhao, H
Wang, Y
Zhang, XC
Wang, H
Blarel, L
Damiri, B
Zhang, R
Deng, X
Ma, Y
Wang, T
Geng, F
Qi, B
Zhu, J
Yu, J
Chen, Q
Shi, G
AF Che, H.
Zhang, X. -Y.
Xia, X.
Goloub, P.
Holben, B.
Zhao, H.
Wang, Y.
Zhang, X. -C.
Wang, H.
Blarel, L.
Damiri, B.
Zhang, R.
Deng, X.
Ma, Y.
Wang, T.
Geng, F.
Qi, B.
Zhu, J.
Yu, J.
Chen, Q.
Shi, G.
TI Ground-based aerosol climatology of China: aerosol optical depths from
the China Aerosol Remote Sensing Network (CARSNET) 2002-2013
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SKY RADIANCE MEASUREMENTS; YANGTZE-RIVER DELTA; NORTH CHINA; ATMOSPHERIC
AEROSOL; ACE-ASIA; CHEMICAL-COMPOSITION; SUN-PHOTOMETER;
PHYSICAL-PROPERTIES; SOLAR-RADIATION; DUST EMISSION
AB Long-term measurements of aerosol optical depths (AODs) at 440 nm and Angstrom exponents (AE) between 440 and 870 nm made for CARSNET were compiled into a climatology of aerosol optical properties for China. Quality-assured monthly mean AODs are presented for 50 sites representing remote, rural, and urban areas. AODs were 0.14, 0.34, 0.42, 0.54, and 0.74 at remote stations, rural/desert regions, the Loess Plateau, central and eastern China, and urban sites, respectively, and the corresponding AE values were 0.97, 0.55, 0.82, 1.19, and 1.05. AODs increased from north to south, with low values (<0.20) over the Tibetan Plateau and northwestern China and high AODs (>0.60) in central and eastern China where industrial emissions and anthropogenic activities were likely sources. AODs were 0.20-0.40 in semi-arid and arid regions and some background areas in northern and northeastern China. AEs were >1.20 over the southern reaches of the Yangtze River and at clean sites in northeastern China. In the northwestern deserts and industrial parts of northeast China, AEs were lower (<0.80) compared with central and eastern regions. Dust events in spring, hygroscopic particle growth during summer, and biomass burning contribute the high AODs, especially in northern and eastern China. The AODs show decreasing trends from 2006 to 2009 but increased similar to 0.03 per year from 2009 to 2013.
C1 [Che, H.; Zhang, X. -Y.; Wang, Y.; Wang, H.] CAMS, CMA, Key Lab Atmospher Chem LAC, Beijing 100081, Peoples R China.
[Che, H.; Zhang, X. -Y.] Jiangsu Collaborat Innovat Ctr Climate Change, Nanjing 210093, Jiangsu, Peoples R China.
[Xia, X.; Zhu, J.] Chinese Acad Sci, Inst Atmospher Phys, Lab Middle Atmosphere & Global Environm Observat, Beijing 100029, Peoples R China.
[Xia, X.] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China.
[Goloub, P.; Blarel, L.] Univ Sci & Technol Lille, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France.
[Holben, B.] NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Zhao, H.; Ma, Y.] China Meteorol Adm, Inst Atmospher Environm, Shenyang 110016, Peoples R China.
[Zhang, X. -C.] CMA, Meteorol Observat Ctr, Beijing 100081, Peoples R China.
[Damiri, B.] Cimel Elect, F-75011 Paris, France.
[Zhang, R.] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Reg Climate Environm Temperate East Asia, Beijing 100029, Peoples R China.
[Deng, X.] CMA, Guangdong Prov Key Lab Reg Numer Weather Predict, Inst Trop & Marine Meteorol, Guangzhou 510080, Guangdong, Peoples R China.
[Wang, T.] Nanjing Univ, Sch Atmospher Sci, Nanjing 210093, Jiangsu, Peoples R China.
[Geng, F.] SMB, Pudong New Area Weather Off, Shanghai Urban Environm Meteorol Ctr, Shanghai 200135, Peoples R China.
[Qi, B.] Hangzhou Meteorol Bur, Hangzhou 310051, Zhejiang, Peoples R China.
[Yu, J.; Chen, Q.] Chengdu Univ Informat Technol, Coll Atmospher Sci, Plateau Atmospher & Environm Key Lab Sichuan Prov, Chengdu 610225, Peoples R China.
[Shi, G.] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China.
RP Che, H (reprint author), CAMS, CMA, Key Lab Atmospher Chem LAC, Beijing 100081, Peoples R China.
EM chehz@cams.cma.gov.cn; xiaoye@cams.cma.gov.cn
RI Xia, Xiangao/G-5545-2011; che, Huizheng/B-1354-2014;
OI Xia, Xiangao/0000-0002-4187-6311; che, Huizheng/0000-0002-9458-3387;
Zhu, Jun/0000-0003-2335-9692
FU National Key Project of Basic Research [2011CB403401]; National Natural
Science Foundation of China [41275167, 41130104]; Strategic Priority
Research Program of the Chinese Academy of Sciences [XDA05100301]; CAMS
Basis Research Project [2014R17]; Climate Change Special Fund of CMA
[CCSF201504]; European Union Seventh Framework Programme (FP7) [262254]
FX This research was funded by the National Key Project of Basic Research
(2011CB403401), the Project (41275167 and 41130104) supported by the
National Natural Science Foundation of China, Strategic Priority
Research Program of the Chinese Academy of Sciences (XDA05100301), CAMS
Basis Research Project (2014R17) and the Climate Change Special Fund of
CMA (CCSF201504). The research leading to these results has received
funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 262254.
NR 119
TC 18
Z9 21
U1 10
U2 36
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 13
BP 7619
EP 7652
DI 10.5194/acp-15-7619-2015
PG 34
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CM8UT
UT WOS:000357978300030
ER
PT J
AU Sun, W
Baize, RR
Lukashin, C
Hu, Y
AF Sun, W.
Baize, R. R.
Lukashin, C.
Hu, Y.
TI Deriving polarization properties of desert-reflected solar spectra with
PARASOL data
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID INTER-CALIBRATION APPLICATIONS; ATMOSPHERIC FLUXES; LIGHT-SCATTERING;
REFRACTIVE-INDEX; COOLING RATES; SURFACE; SATELLITE; RADIATION;
SUNLIGHT; MODELS
AB One of the major objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) is to conduct highly accurate spectral observations to provide an on-orbit inter-calibration standard for relevant Earth-observing sensors with various channels. To calibrate an Earth-observing sensor's measurements with the highly accurate data from the CLARREO, errors in the measurements caused by the sensor's sensitivity to the polarization state of light must be corrected. For correction of the measurement errors due to the light's polarization, both the instrument's dependence on the incident polarization state and the on-orbit knowledge of the polarization state of light as a function of observed scene type, viewing geometry, and solar wavelength are required. In this study, an algorithm for deriving the spectral polarization state of solar light from the desert is reported. The desert/bare land surface is assumed to be composed of two types of areas: fine sand grains with diffuse reflection (Lambertian non-polarizer) and quartz-rich sand particles with facets of various orientations (specular-reflection polarizer). The Adding-Doubling Radiative Transfer Model (ADRTM) is applied to integrate the atmospheric absorption and scattering in the system. Empirical models are adopted in obtaining the diffuse spectral reflectance of sands and the optical depth of the dust aerosols over the desert. The ratio of non-polarizer area to polarizer area and the angular distribution of the facet orientations are determined by fitting the modeled polarization states of light to the measurements at three polarized channels (490, 670, and 865 nm) by the Polarization and Anisotropy of Reflectances for Atmospheric Science instrument coupled with Observations from a Lidar (PARASOL). Based on this physical model of the surface, the desert-reflected solar light's polarization state at any wavelength in the whole solar spectra can be calculated with the ADRTM.
C1 [Sun, W.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Sun, W.; Baize, R. R.; Lukashin, C.; Hu, Y.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Sun, W (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
EM wenbo.sun-1@nasa.gov
RI Hu, Yongxiang/K-4426-2012; Richards, Amber/K-8203-2015
FU NASA's CLARREO mission
FX This work is supported by NASA's CLARREO mission. The authors thank
Bruce A. Wielicki for this support and helpful discussions.
NR 44
TC 0
Z9 0
U1 4
U2 9
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 13
BP 7725
EP 7734
DI 10.5194/acp-15-7725-2015
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CM8UT
UT WOS:000357978300035
ER
PT S
AU Lohr, J
Anderson, JP
Cengher, M
Ellis, RA
Gorelov, YA
Kolemen, E
Lambot, T
Murakami, DD
Myrabo, L
Noraky, S
Parkin, KL
Ponce, D
Torrezan, A
AF Lohr, J.
Anderson, J. P.
Cengher, M.
Ellis, R. A.
Gorelov, Y. A.
Kolemen, E.
Lambot, T.
Murakami, D. D.
Myrabo, L.
Noraky, S.
Parkin, K. L.
Ponce, D.
Torrezan, A.
BE Kubo, S
TI Performance History and Upgrades for the DIII-D Gyrotron Complex
SO EC18 - 18TH JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON
CYCLOTRON RESONANCE HEATING
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 18th Joint Workshop on Electron Cyclotron Emission and Electron
Cyclotron Resonance Heating (EC)
CY APR 22-25, 2014
CL Natl Inst Fus Sci, Nara, JAPAN
SP Communicat & Power Ind, Toshiba Elect Tube & Device, Nara Visitors Bur
HO Natl Inst Fus Sci
AB The gyrotron installation on the DIII-D tokamak has been in operation at the second harmonic of the electron cyclotron resonance since the mid-1990s. Prior to that a large installation of ten 60 GHz tubes was operated at the fundamental resonance. The system has been upgraded regularly and is an everyday tool for experiments on DIII-D.
C1 [Lohr, J.; Anderson, J. P.; Cengher, M.; Gorelov, Y. A.; Noraky, S.; Ponce, D.; Torrezan, A.] Gen Atom Co, San Diego, CA 92186 USA.
[Ellis, R. A.; Kolemen, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Lambot, T.; Parkin, K. L.] Carnegie Mellon Univ, Moffett Field, CA 94035 USA.
[Murakami, D. D.] NASA, Expt Aerophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Myrabo, L.] Lightcraft Technol Inc, Bennington, VT 05201 USA.
RP Lohr, J (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
EM lohr@fusion.gat.com
NR 5
TC 0
Z9 0
U1 1
U2 1
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2015
VL 87
AR 02009
DI 10.1051/epjconf/20158702009
PG 4
WC Physics, Fluids & Plasmas; Physics, Multidisciplinary
SC Physics
GA BD1ST
UT WOS:000358327700020
ER
PT S
AU Bertagne, CL
Sheth, RB
Hartl, DJ
Whitcomb, JD
AF Bertagne, Christopher L.
Sheth, Rubik B.
Hartl, Darren J.
Whitcomb, John D.
BE Liao, WH
Park, G
Erturk, A
TI Simulating Coupled Thermal-Mechanical Interactions in Morphing Radiators
SO ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Active and Passive Smart Structures and Integrated Systems
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, American Soc Mech Engineer
DE Morphing radiators; adaptive structures; shape memory alloys;
partitioned analysis
AB Thermal control is an important aspect of every spacecraft. The thermal control system (TCS) must maintain the temperature of all other systems within acceptable limits in spite of changes in environmental conditions or heat loads. Most thermal control systems used in crewed vehicles use a two-fluid-loop architecture in order to achieve the flexibility demanded by the mission. The two-loop architecture provides sufficient performance, but it does so at the cost of additional mass. A recently-proposed radiator concept known as a morphing radiator employs shape memory alloys in order to achieve the performance necessary to use a single-loop TCS architecture. However, modeling the behavior of morphing radiators is challenging due to the presence of a unique and complex thermomechanical coupling. In this work, a partitioned analysis procedure is implemented with existing finite element solvers in order to explore the behavior of a possible shape memory alloy-based morphing radiator in a mission-like thermal environment. The results help confirm the theory of operation and demonstrate the ability of this method to support the design and development of future morphing radiators.
C1 [Bertagne, Christopher L.; Hartl, Darren J.; Whitcomb, John D.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA.
[Sheth, Rubik B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Hartl, DJ (reprint author), Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA.
EM darren.hartl@tamu.edu
NR 17
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-534-6
J9 PROC SPIE
PY 2015
VL 9431
AR 94312F
DI 10.1117/12.2175739
PG 10
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Optics
SC Engineering; Materials Science; Optics
GA BD0SF
UT WOS:000357640200065
ER
PT S
AU Mackenzie, AI
AF Mackenzie, Anne I.
BE Henry, DJ
Gosian, GJ
Lange, DA
VonBerg, DL
Walls, TJ
Young, DL
TI EM Modeling of Far-Field Radiation Patterns for Antennas on the GMA-TT
UAV
SO AIRBORNE INTELLIGENCE, SURVEILLANCE, RECONNAISSANCE (ISR) SYSTEMS AND
APPLICATIONS XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Airborne Intelligence, Surveillance, Reconnaissance (ISR)
Systems and Applications XII
CY APR 20-21, 2015
CL Baltimore, MD
SP SPIE
DE UAV; electromagnetic simulation; antenna placement; far-field radiation
patterns
AB To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.
C1 NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Mackenzie, AI (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
EM a.i.mackenzie-1@nasa.gov
NR 2
TC 0
Z9 0
U1 1
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-576-6
J9 PROC SPIE
PY 2015
VL 9460
AR 946009
DI 10.1117/12.2182104
PG 8
WC Engineering, Electrical & Electronic; Optics
SC Engineering; Optics
GA BD0QF
UT WOS:000357565500006
ER
PT J
AU Koffi, EN
Rayner, PJ
Norton, AJ
Frankenberg, C
Scholze, M
AF Koffi, E. N.
Rayner, P. J.
Norton, A. J.
Frankenberg, C.
Scholze, M.
TI Investigating the usefulness of satellite-derived fluorescence data in
inferring gross primary productivity within the carbon cycle data
assimilation system
SO BIOGEOSCIENCES
LA English
DT Article
ID TERRESTRIAL CHLOROPHYLL FLUORESCENCE; EDDY COVARIANCE TECHNIQUE;
PHOTOSYNTHETIC CAPACITY; STOMATAL CONDUCTANCE; CO2 ASSIMILATION;
BIOSPHERE MODELS; C-3 PLANTS; SPACE; NITROGEN; LEAVES
AB Simulations of carbon fluxes with terrestrial biosphere models still exhibit significant uncertainties, in part due to the uncertainty in model parameter values. With the advent of satellite measurements of solar induced chlorophyll fluorescence (SIF), there exists a novel pathway for constraining simulated carbon fluxes and parameter values. We investigate the utility of SIF in constraining gross primary productivity (GPP). As a first test we assess whether SIF simulations are sensitive to important parameters in a biosphere model. SIF measurements at the wavelength of 755 nm are simulated by the Carbon-Cycle Data Assimilation System (CCDAS) which has been augmented by the fluorescence component of the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model.
Idealized sensitivity tests of the SCOPE model stand-alone indicate strong sensitivity of GPP to the carboxylation capacity (V-cmax) and of SIF to the chlorophyll AB content (C-ab) and incoming short wave radiation. Low sensitivity is found for SIF to V-cmax, however the relationship is subtle, with increased sensitivity under high radiation conditions and lower V-cmax ranges.
CCDAS simulates well the patterns of satellite-measured SIF suggesting the combined model is capable of ingesting the data. CCDAS supports the idealized sensitivity tests of SCOPE, with SIF exhibiting sensitivity to C-ab and incoming radiation, both of which are treated as perfectly known in previous CCDAS versions. These results demonstrate the need for careful consideration of C-ab and incoming radiation when interpreting SIF and the limitations of utilizing SIF to constrain V-cmax in the present set-up in the CCDAS system.
C1 [Koffi, E. N.] Ormes Merisiers, LSCE, UMR8212, F-91191 Gif Sur Yvette, France.
[Rayner, P. J.; Norton, A. J.] Univ Melbourne, Sch Earth Sci, Melbourne, Vic, Australia.
[Frankenberg, C.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Scholze, M.] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
RP Koffi, EN (reprint author), Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Va, Italy.
EM ernest.koffi@jrc.ec.europa.eu
RI Scholze, Marko/N-4573-2014; Frankenberg, Christian/A-2944-2013;
OI Scholze, Marko/0000-0002-3474-5938; Frankenberg,
Christian/0000-0002-0546-5857; Norton, Alexander/0000-0001-7708-3914
FU Australian Professorial Fellowship [DP1096309]
FX Rayner is in receipt of an Australian Professorial Fellowship
(DP1096309). We are grateful to Christiaan van der Tol for providing the
model SCOPE and his initial support. We are also grateful to both Timo
Vesala and Dario Papale for providing FLUXNET data at the stations
Hyytiala and Roccarespampani 1, respectively.
NR 56
TC 4
Z9 5
U1 10
U2 31
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1726-4170
EI 1726-4189
J9 BIOGEOSCIENCES
JI Biogeosciences
PY 2015
VL 12
IS 13
BP 4067
EP 4084
DI 10.5194/bg-12-4067-2015
PG 18
WC Ecology; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA CM8UY
UT WOS:000357978900009
ER
PT S
AU Ting, DZ
Soibel, A
Hoglund, L
Hill, CJ
Khoshakhlagh, A
Keo, SA
Fisher, AM
Luong, EM
Liu, JK
Mumolo, JM
Rafol, SB
Gunapala, SD
AF Ting, David Z.
Soibel, Alexander
Hoeglund, Linda
Hill, Cory J.
Khoshakhlagh, Arezou
Keo, Sam A.
Fisher, Anita M.
Luong, Edward M.
Liu, John K.
Mumolo, Jason M.
Rafol, Sir B.
Gunapala, Sarath D.
BE Andresen, BF
Fulop, GF
Hanson, CM
Norton, PR
TI Carrier transport in unipolar barrier infrared detectors
SO INFRARED TECHNOLOGY AND APPLICATIONS XLI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 41st Conference on Infrared Technology and Applications
CY APR 20-23, 2015
CL Baltimore, MD
SP SPIE
DE infrared detector; nBn; unipolar barrier; type-II superlattice;
conductivity effective mass
ID PHOTODETECTORS; SUPERLATTICES; HGCDTE
AB We examine carrier transport in unipolar barrier infrared photodetectors and discuss aspects of barrier, contact, and absorber properties that can affect minority carrier collection. In a barrier infrared detector the unipolar barrier should block only the majority carriers while allowing the un-impeded flow of the minority carriers. Under the right conditions, unipolar barrier doping can reduce generation-recombination dark current without affecting minority carrier extraction. In an nBn structure, ideally with an electron unipolar barrier, improper barrier doping or barrier-absorber valence band offset could also block minority carriers and result in higher turn-on bias. We also examined the temperature-dependent turn-on bias in an n(+)Bn device and showed that observed behavior may be attributed to contact doping. Hole mobility in n-doped type-II superlattice (T2SL) is believed to be very low because of the extremely large effective mass along the growth direction. In practice MWIR and LWIR barrier infrared detectors with n-type T2SL absorbers have demonstrated good optical response. A closer inspection of the T2SL band structure offers a possible explanation as to why the hole mobility may not be as poor as suggested by the simple effective mass picture.
C1 [Ting, David Z.; Soibel, Alexander; Hoeglund, Linda; Hill, Cory J.; Khoshakhlagh, Arezou; Keo, Sam A.; Fisher, Anita M.; Luong, Edward M.; Liu, John K.; Mumolo, Jason M.; Rafol, Sir B.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, Pasadena, CA 91109 USA.
RP Ting, DZ (reprint author), CALTECH, Jet Prop Lab, Ctr Infrared Photodetectors, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
NR 35
TC 0
Z9 0
U1 1
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-567-4
J9 PROC SPIE
PY 2015
VL 9451
AR 94510P
DI 10.1117/12.2177549
PG 8
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0QG
UT WOS:000357568500019
ER
PT B
AU Wolpe, PR
AF Wolpe, Paul Root
BE Dorff, EN
Zoloth, L
TI Genetic Testing in the Jewish Community
SO JEWS AND GENES: THE GENETIC FUTURE IN CONTEMPORARY JEWISH THOUGHT
LA English
DT Article; Book Chapter
ID ETHICS
C1 [Wolpe, Paul Root] Emory Univ, Bioeth, Atlanta, GA 30322 USA.
[Wolpe, Paul Root] Emory Univ, Jewish Bioeth, Atlanta, GA 30322 USA.
[Wolpe, Paul Root] Emory Univ, Dept Med, Atlanta, GA 30322 USA.
[Wolpe, Paul Root] Emory Univ, Dept Pediat, Atlanta, GA 30322 USA.
[Wolpe, Paul Root] Emory Univ, Dept Psychiat, Atlanta, GA 30322 USA.
[Wolpe, Paul Root] Emory Univ, Dept Sociol, Atlanta, GA 30322 USA.
[Wolpe, Paul Root] Emory Univ, Ctr Eth, Atlanta, GA 30322 USA.
[Wolpe, Paul Root] NASA, Philadelphia, PA USA.
[Wolpe, Paul Root] Amer Soc Bioeth & Humanities, New York, NY USA.
[Wolpe, Paul Root] Coll Phys Philadelphia, Philadelphia, PA USA.
[Wolpe, Paul Root] Hastings Ctr, Washington, DC USA.
[Wolpe, Paul Root] Planned Parenthood Federat Amer, Washington, DC USA.
RP Wolpe, PR (reprint author), Emory Univ, Bioeth, Atlanta, GA 30322 USA.
NR 24
TC 0
Z9 0
U1 0
U2 0
PU UNIV NEBRASKA PRESS
PI LINCOLN
PA 1111 LINCOLN MALL, LINCOLN, NE 68588-0630 USA
BN 978-0-8276-1194-8; 978-0-8276-1224-2
PY 2015
BP 201
EP 214
PG 14
WC Religion
SC Religion
GA BC8RF
UT WOS:000356017300013
ER
PT S
AU Tang, A
AF Tang, Adrian
BE George, T
Dutta, AK
Islam, MS
TI CMOS mm-wave System-on-Chip for Sensing and Communication
SO MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Micro- and Nanotechnology Sensors, Systems, and
Applications VII
CY APR 20-24, 2015
CL Baltimore, MD
SP SPIE
DE CMOS Circuit; mm-wave; communication; SoC
AB CMOS technology offers relatively low performance at mm-wave frequencies compared with other III-V technologies and the high levels of process variation further exacerbate design margins. This paper discusses several CMOS system-on-chips (SoCs) developed by JPL through collaboration with UCLA that use a self-healing approach to optimize mm-wave transceiver performance, as well as calibrate operation at runtime. Several applications will be discussed for mm-wave spectroscopy, radar, and communication systems, with SoCs demonstrated at V, W and D band.
C1 [Tang, Adrian] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Tang, Adrian] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Tang, A (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
NR 7
TC 0
Z9 0
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-583-4
J9 PROC SPIE
PY 2015
VL 9467
AR 94672D
DI 10.1117/12.2177613
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Optics; Physics, Applied
SC Engineering; Science & Technology - Other Topics; Optics; Physics
GA BD0IX
UT WOS:000357259000055
ER
PT S
AU Zirbel, SA
Trease, BP
Thomson, MW
Lang, RJ
Magleby, SP
Howell, LH
AF Zirbel, Shannon A.
Trease, Brian P.
Thomson, Mark W.
Lang, Robert J.
Magleby, Spencer P.
Howell, Larry H.
BE George, T
Dutta, AK
Islam, MS
TI HanaFlex: A Large Solar Array for Space Applications
SO MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Micro- and Nanotechnology Sensors, Systems, and
Applications VII
CY APR 20-24, 2015
CL Baltimore, MD
SP SPIE
DE Solar array; origami-inspired design
ID POWER SATELLITE; SYSTEM
AB HanaFlex is a new method for deployment from a compact folded form to a large array derived from the origami flasher folding pattern. One of the unique features of this model is that the height constraints of the stowed array do not limit the deployed diameter. Additional rings can be added to increase the deployed diameter while only minimally increasing the stowed diameter. Larger solar arrays may enable longer missions in space, manned missions to distant destinations, or clean energy sources for Earth. The novel folding design of the HanaFlex array introduces many new possibilities for space exploration. This paper demonstrates the performance of the HanaFlex array in four areas: deployed stiffness, deployed strength, stowed volume specific power, and mass specific power.
C1 [Zirbel, Shannon A.] Aerosp Corp, El Segundo, CA 90245 USA.
[Trease, Brian P.; Thomson, Mark W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Lang, Robert J.] Lang Origami, Alamo, CA 94507 USA.
[Magleby, Spencer P.; Howell, Larry H.] Brigham Young Univ, Provo, UT 84602 USA.
RP Howell, LH (reprint author), Brigham Young Univ, Provo, UT 84602 USA.
EM lhowell@byu.edu
NR 32
TC 0
Z9 0
U1 3
U2 15
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-583-4
J9 PROC SPIE
PY 2015
VL 9467
AR 94671C
DI 10.1117/12.2177730
PG 9
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Optics; Physics, Applied
SC Engineering; Science & Technology - Other Topics; Optics; Physics
GA BD0IX
UT WOS:000357259000025
ER
PT S
AU Ely, J
Nguyen, T
Wilson, J
Brown, R
Laughter, S
Teets, E
Parker, A
Chan, HM
Richards, L
AF Ely, Jay
Truong Nguyen
Wilson, Jennifer
Brown, Robert
Laughter, Sean
Teets, Ed
Parker, Allen
Chan, ''Patrick'' Hon Man
Richards, Lance
BE Karlsen, RE
Gage, DW
Shoemaker, CM
Gerhart, GR
TI Establishing a Disruptive New Capability for NASA to Fly UAV's into
Hazardous Conditions
SO UNMANNED SYSTEMS TECHNOLOGY XVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Unmanned Systems Technology XVII
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
DE UAV; Lightning; Volcanic Ash; Faraday; Fiber-Optic; Weather; Environment
AB A 2015 NASA Aeronautics Mission "Seedling" Proposal is described for a Severe-Environment UAV (SE-UAV) that can perform in-situ measurements in hazardous atmospheric conditions like lightning, volcanic ash and radiation. Specifically, this paper describes the design of a proof-of-concept vehicle and measurement system that can survive lightning attachment during flight operations into thunderstorms. Elements from three NASA centers draw together for the SE-UAV concept. 1) The NASA KSC Genesis UAV was developed in collaboration with the DARPA Nimbus program to measure electric field and X-rays present within thunderstorms. 2) A novel NASA LaRC fiber-optic sensor uses Faraday-effect polarization rotation to measure total lightning electric current on an air vehicle fuselage. 3) NASA AFRC's state-of-the-art Fiber Optics and Systems Integration Laboratory is envisioned to transition the Faraday system to a compact, light-weight, all-fiber design.
The SE-UAV will provide in-flight lightning electric-current return stroke and recoil leader data, and serve as a platform for development of emerging sensors and new missions into hazardous environments. NASA's Aeronautics and Science Missions are interested in a capability to perform in-situ volcanic plume measurements and long-endurance UAV operations in various weather conditions. (Figure 1 shows an artist concept of a SE-UAV flying near a volcano.) This paper concludes with an overview of the NASA Aeronautics Strategic Vision, Programs, and how a SE-UAV is envisioned to impact them. The SE-UAV concept leverages high-value legacy research products into a new capability for NASA to fly a pathfinder UAV into hazardous conditions, and is presented in the SPIE DSS venue to explore teaming, collaboration and advocacy opportunities outside NASA.
C1 [Ely, Jay; Truong Nguyen; Laughter, Sean] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Wilson, Jennifer; Brown, Robert] NASA, Kennedy Space Ctr, FL 32899 USA.
[Teets, Ed; Parker, Allen; Chan, ''Patrick'' Hon Man; Richards, Lance] NASA, Armstrong Flight Res Ctr, Edwards AFB, CA 93523 USA.
RP Ely, J (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
EM jay.j.ely@nasa.gov
NR 7
TC 0
Z9 0
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-584-1
J9 PROC SPIE
PY 2015
VL 9468
AR 94680S
DI 10.1117/12.2185215
PG 12
WC Computer Science, Artificial Intelligence; Engineering, Electrical &
Electronic; Robotics; Optics
SC Computer Science; Engineering; Robotics; Optics
GA BD0SE
UT WOS:000357636900022
ER
PT J
AU Emmons, LK
Arnold, SR
Monks, SA
Huijnen, V
Tilmes, S
Law, KS
Thomas, JL
Raut, JC
Bouarar, I
Turquety, S
Long, Y
Duncan, B
Steenrod, S
Strode, S
Flemming, J
Mao, J
Langner, J
Thompson, AM
Tarasick, D
Apel, EC
Blake, DR
Cohen, RC
Dibb, J
Diskin, GS
Fried, A
Hall, SR
Huey, LG
Weinheimer, AJ
Wisthaler, A
Mikoviny, T
Nowak, J
Peischl, J
Roberts, JM
Ryerson, T
Warneke, C
Helmig, D
AF Emmons, L. K.
Arnold, S. R.
Monks, S. A.
Huijnen, V.
Tilmes, S.
Law, K. S.
Thomas, J. L.
Raut, J. -C.
Bouarar, I.
Turquety, S.
Long, Y.
Duncan, B.
Steenrod, S.
Strode, S.
Flemming, J.
Mao, J.
Langner, J.
Thompson, A. M.
Tarasick, D.
Apel, E. C.
Blake, D. R.
Cohen, R. C.
Dibb, J.
Diskin, G. S.
Fried, A.
Hall, S. R.
Huey, L. G.
Weinheimer, A. J.
Wisthaler, A.
Mikoviny, T.
Nowak, J.
Peischl, J.
Roberts, J. M.
Ryerson, T.
Warneke, C.
Helmig, D.
TI The POLARCAT Model Intercomparison Project (POLMIP): overview and
evaluation with observations
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; BIOMASS BURNING EMISSIONS; EARTH SYSTEM
MODEL; TROPOSPHERIC CHEMISTRY; TRANSPORT MODEL; ARCTIC TROPOSPHERE;
LIGHTNING PARAMETERIZATION; VERTICAL DISTRIBUTIONS; LOWERMOST
STRATOSPHERE; ATMOSPHERIC CHEMISTRY
AB A model intercomparison activity was inspired by the large suite of observations of atmospheric composition made during the International Polar Year (2008) in the Arctic. Nine global and two regional chemical transport models participated in this intercomparison and performed simulations for 2008 using a common emissions inventory to assess the differences in model chemistry and transport schemes. This paper summarizes the models and compares their simulations of ozone and its precursors and presents an evaluation of the simulations using a variety of surface, balloon, aircraft and satellite observations. Each type of measurement has some limitations in spatial or temporal coverage or in composition, but together they assist in quantifying the limitations of the models in the Arctic and surrounding regions. Despite using the same emissions, large differences are seen among the models. The cloud fields and photolysis rates are shown to vary greatly among the models, indicating one source of the differences in the simulated chemical species. The largest differences among models, and between models and observations, are in NOy partitioning (PAN vs. HNO3) and in oxygenated volatile organic compounds (VOCs) such as acetaldehyde and acetone. Comparisons to surface site measurements of ethane and propane indicate that the emissions of these species are significantly underestimated. Satellite observations of NO2 from the OMI (Ozone Monitoring Instrument) have been used to evaluate the models over source regions, indicating anthropogenic emissions are underestimated in East Asia, but fire emissions are generally overestimated. The emission factors for wildfires in Canada are evaluated using the correlations of VOCs to CO in the model output in comparison to enhancement factors derived from aircraft observations, showing reasonable agreement for methanol and acetaldehyde but underestimate ethanol, propane and acetone, while overestimating ethane emission factors.
C1 [Emmons, L. K.; Tilmes, S.; Apel, E. C.; Hall, S. R.; Weinheimer, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA.
[Arnold, S. R.; Monks, S. A.] Univ Leeds, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England.
[Huijnen, V.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
[Law, K. S.; Thomas, J. L.; Raut, J. -C.; Bouarar, I.] Univ Versailles St Quentin, Univ Paris 06, Sorbonne Univ, CNRS,INSU,LATMOS IPSL,UMR8190, Paris, France.
[Turquety, S.; Long, Y.] Ecole Polytech, CNRS, Lab Meteorol Dynam, IPSL,UMR8539, F-91128 Palaiseau, France.
[Duncan, B.; Steenrod, S.; Strode, S.; Thompson, A. M.] NASA Goddard, Atmospher Chem & Dynam Lab, Greenbelt, MD USA.
[Flemming, J.] ECMWF, Reading, Berks, England.
[Mao, J.] NOAA, GFDL, Princeton, NJ USA.
[Mao, J.] Princeton Univ, Princeton, NJ 08544 USA.
[Langner, J.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden.
[Tarasick, D.] Environm Canada, Downsview, ON, Canada.
[Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA.
[Cohen, R. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Dibb, J.] Univ New Hampshire, Durham, NH 03824 USA.
[Diskin, G. S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23665 USA.
[Fried, A.] Univ Colorado, Boulder, CO 80309 USA.
[Huey, L. G.] Georgia Inst Technol, Atlanta, GA 30332 USA.
[Wisthaler, A.; Mikoviny, T.] Univ Innsbruck, A-6020 Innsbruck, Austria.
[Wisthaler, A.; Mikoviny, T.] Univ Oslo, Oslo, Norway.
[Nowak, J.; Peischl, J.; Roberts, J. M.; Ryerson, T.; Warneke, C.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Helmig, D.] Univ Colorado, INSTAAR, Boulder, CO 80309 USA.
[Strode, S.] Univ Space Res Assoc, Columbia, MD USA.
RP Emmons, LK (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA.
EM emmons@ucar.edu
RI Duncan, Bryan/A-5962-2011; Emmons, Louisa/R-8922-2016; Nowak,
John/B-1085-2008; Mao, Jingqiu/F-2511-2010; Ryerson, Tom/C-9611-2009;
Peischl, Jeff/E-7454-2010; Roberts, James/A-1082-2009; Strode,
Sarah/H-2248-2012; Cohen, Ronald/A-8842-2011; Warneke,
Carsten/E-7174-2010; Manager, CSD Publications/B-2789-2015; Raut,
Jean-Christophe/G-3946-2016; Thompson, Anne /C-3649-2014;
OI Emmons, Louisa/0000-0003-2325-6212; Nowak, John/0000-0002-5697-9807;
Mao, Jingqiu/0000-0002-4774-9751; Peischl, Jeff/0000-0002-9320-7101;
Roberts, James/0000-0002-8485-8172; Strode, Sarah/0000-0002-8103-1663;
Cohen, Ronald/0000-0001-6617-7691; Thompson, Anne /0000-0002-7829-0920;
Raut, Jean-Christophe/0000-0002-3552-2437; Arnold,
Steve/0000-0002-4881-5685; Huijnen, Vincent/0000-0002-2814-8475; MONKS,
SARAH/0000-0003-3474-027X; Tarasick, David/0000-0001-9869-0692
FU NASA [NNX08AD29G]; French Agence National de Recherche (ANR) CLIMSLIP
project; CNRS-LEFE; ANR; CNES; GENCI-IDRIS [2014-017141]; European
Commission [218793]; Swedish Environmental Protection Agency
[NV-09414-12]; Swedish Climate and Clean Air research program, SCAC;
BMVIT-FFG/ALR; NOAA Climate and Health of the Atmosphere programs; NOAA
Climate Program Office [NA13OAR4310071]; National Aeronautics and Space
Administration through the Science Mission Directorate, Tropospheric
Composition Program [NNX08AD22G]; National Science Foundation; Office of
Science (BER) of the US Department of Energy
FX The numerous individuals who provided observations used in this study
are gratefully acknowledged, including William H. Brune, Jingqiu Mao,
Xinrong Ren, and David Shelow of Pennsylvania State University for the
ARCTAS DC8 LIF OH measurements; Paul Wennberg and John Crounse of
California Institute of Technology for the ARCTAS DC8 CIT-CIMS data
(supported by NASA award NNX08AD29G); Steve Montzka of NOAA/ESRL/GMD for
NOAA P3 flask samples of propane during ARCPAC; Joost de Gouw of
NOAA/ESRL/CSD for ARCPAC PTRMS VOC observations; and John Holloway of
NOAA/ESRL/CSD for ARCPAC CO and SO2 (UV fluorescence)
measurements.; The GEOS-5 data used with CAM-chem in this study have
been provided by the Global Modeling and Assimilation Office (GMAO) at
NASA Goddard Space Flight Center. We acknowledge the free use of
tropospheric NO2 column data from the OMI sensor from
www.temis.nl. French co-authors acknowledge funding from the French
Agence National de Recherche (ANR) CLIMSLIP project and CNRS-LEFE.
POLARCAT-France was supported by ANR, CNRS-LEFE and CNES. This work was
performed in part using HPC resources from GENCI-IDRIS (grant
2014-017141). V. Huijnen acknowledges funding from the European
Commission under the Seventh Framework Programme (contract number
218793). Contributions by SMHI were funded by the Swedish Environmental
Protection Agency under contract NV-09414-12 and through the Swedish
Climate and Clean Air research program, SCAC. A. Wisthaler acknowledges
support from BMVIT-FFG/ALR. ARCPAC was supported in part by the NOAA
Climate and Health of the Atmosphere programs. J. Mao acknowledges the
NOAA Climate Program Office's grant NA13OAR4310071. L. K. Emmons
acknowledges support from the National Aeronautics and Space
Administration under award no. NNX08AD22G issued through the Science
Mission Directorate, Tropospheric Composition Program. The CESM project
is supported by the National Science Foundation and the Office of
Science (BER) of the US Department of Energy. The National Center for
Atmospheric Research is funded by the National Science Foundation.
NR 92
TC 15
Z9 17
U1 3
U2 36
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 12
BP 6721
EP 6744
DI 10.5194/acp-15-6721-2015
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZC
UT WOS:000357117500011
ER
PT J
AU Jiang, Z
Jones, DBA
Worden, J
Worden, HM
Henze, DK
Wang, YX
AF Jiang, Z.
Jones, D. B. A.
Worden, J.
Worden, H. M.
Henze, D. K.
Wang, Y. X.
TI Regional data assimilation of multi-spectral MOPITT observations of CO
over North America
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID GEOS-CHEM MODEL; METHANE EMISSIONS; SATELLITE-OBSERVATIONS;
CARBON-MONOXIDE; HIGH-RESOLUTION; TRANSPORT; INVERSION; IMPACT; TES;
UNCERTAINTIES
AB Chemical transport models (CTMs) driven with high-resolution meteorological fields can better resolve small-scale processes, such as frontal lifting or deep convection, and thus improve the simulation and emission estimates of tropospheric trace gases. In this work, we explore the use of the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system with the nested high-resolution version of the model (0.5A degrees x 0.67A degrees) to quantify North American CO emissions during the period of June 2004-May 2005. With optimized lateral boundary conditions, regional inversion analyses can reduce the sensitivity of the CO source estimates to errors in long-range transport and in the distributions of the hydroxyl radical (OH), the main sink for CO. To further limit the potential impact of discrepancies in chemical aging of air in the free troposphere, associated with errors in OH, we use surface-level multispectral MOPITT (Measurement of Pollution in The Troposphere) CO retrievals, which have greater sensitivity to CO near the surface and reduced sensitivity in the free troposphere, compared to previous versions of the retrievals. We estimate that the annual total anthropogenic CO emission from the contiguous US 48 states was 97 Tg CO, a 14 % increase from the 85 Tg CO in the a priori. This increase is mainly due to enhanced emissions around the Great Lakes region and along the west coast, relative to the a priori. Sensitivity analyses using different OH fields and lateral boundary conditions suggest a possible error, associated with local North American OH distribution, in these emission estimates of 20 % during summer 2004, when the CO lifetime is short. This 20 % OH-related error is 50 % smaller than the OH-related error previously estimated for North American CO emissions using a global inversion analysis. We believe that reducing this OH-related error further will require integrating additional observations to provide a strong constraint on the CO distribution across the domain. Despite these limitations, our results show the potential advantages of combining high-resolution regional inversion analyses with global analyses to better quantify regional CO source estimates.
C1 [Jiang, Z.; Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Jiang, Z.; Worden, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Jones, D. B. A.] Univ Calif Los Angeles, JIFRESSE, Los Angeles, CA USA.
[Worden, H. M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Henze, D. K.] Univ Colorado, Boulder, CO 80309 USA.
[Wang, Y. X.] Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA.
[Wang, Y. X.] Tsinghua Univ, Key Lab Earth Syst Modeling, Ctr Earth Syst Sci, Minist Educ,Inst Global Change Studies, Beijing 100084, Peoples R China.
RP Jiang, Z (reprint author), Univ Toronto, Dept Phys, Toronto, ON, Canada.
EM zhe.jiang@jpl.nasa.gov
RI Chem, GEOS/C-5595-2014
FU Natural Science and Engineering Research Council of Canada; Canadian
Space Agency; NASA [NNX10AT42G, NNX11AI54G]
FX This work was supported by funding from the Natural Science and
Engineering Research Council of Canada, the Canadian Space Agency, and
NASA grants NNX10AT42G and NNX11AI54G.
NR 48
TC 3
Z9 3
U1 4
U2 16
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 12
BP 6801
EP 6814
DI 10.5194/acp-15-6801-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZC
UT WOS:000357117500016
ER
PT J
AU Nedoluha, GE
Boyd, IS
Parrish, A
Gomez, RM
Allen, DR
Froidevaux, L
Connor, BJ
Querel, RR
AF Nedoluha, G. E.
Boyd, I. S.
Parrish, A.
Gomez, R. M.
Allen, D. R.
Froidevaux, L.
Connor, B. J.
Querel, R. R.
TI Unusual stratospheric ozone anomalies observed in 22 years of
measurements from Lauder, New Zealand
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SAGE-II; TRACE CONSTITUENTS; DATA SET; VALIDATION; TRENDS; TEMPERATURE;
TRANSPORT; PROFILE; HALOE; MODEL
AB The Microwave Ozone Profiling Instrument (MOPI1) has provided ozone (O-3) profiles for the Network for the Detection of Atmospheric Composition Change (NDACC) at Lauder, New Zealand (45.0A degrees S, 169.7A degrees E), since 1992. We present the entire 22-year data set and compare with satellite O-3 observations. We study in detail two particularly interesting variations in O-3. The first is a large positive O-3 anomaly that occurs in the mid-stratosphere ( 10-30 hPa) in June 2001, which is caused by an anticyclonic circulation that persists for several weeks over Lauder. This O-3 anomaly is associated with the most equatorward June average tracer equivalent latitude (TrEL) over the 36-year period (1979-2014) for which the Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis is available. A second, longer-lived feature, is a positive O-3 anomaly in the mid-stratosphere (10 hPa) from mid-2009 until mid-2013. Coincident measurements from the Aura Microwave Limb Sounder (MLS) show that these high O-3 mixing ratios are well correlated with high nitrous oxide (N2O) mixing ratios. This correlation suggests that the high O-3 over this 4-year period is driven by unusual dynamics. The beginning of the high O-3 and high N2O period at Lauder (and throughout this latitude band) occurs nearly simultaneously with a sharp decrease in O-3 and N2O at the equator, and the period ends nearly simultaneously with a sharp increase in O-3 and N2O at the equator.
C1 [Nedoluha, G. E.; Gomez, R. M.; Allen, D. R.] Naval Res Lab, Remote Sensing Div, Washington, DC 20375 USA.
[Boyd, I. S.; Connor, B. J.] BC Sci Consulting LLC, Stony Brook, NY USA.
[Parrish, A.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA.
[Froidevaux, L.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Querel, R. R.] Natl Inst Water & Atmospher Res, Lauder, New Zealand.
RP Nedoluha, GE (reprint author), Naval Res Lab, Remote Sensing Div, Washington, DC 20375 USA.
EM nedoluha@nrl.navy.mil
RI Querel, Richard/D-3770-2015
OI Querel, Richard/0000-0001-8792-2486
FU NASA under the Upper Atmosphere Research Program; Naval Research
Laboratory; Office of Naval Research; National Aeronautics and Space
Administration
FX We especially thank M. Kotkamp and A. Thomas for their long-term support
of the MOPI instrument at Lauder. This project was funded by NASA under
the Upper Atmosphere Research Program, by the Naval Research Laboratory,
and by the Office of Naval Research. Work at the Jet Propulsion
Laboratory, California Institute of Technology, was carried out under a
contract with the National Aeronautics and Space Administration. MLS and
HALOE data are available from the NASA Goddard Earth Science Data
Information and Services Center (acdisc.gsfc.nasa.gov).
NR 28
TC 4
Z9 4
U1 1
U2 3
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 12
BP 6817
EP 6826
DI 10.5194/acp-15-6817-2015
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZC
UT WOS:000357117500018
ER
PT J
AU Hopfner, M
Boone, CD
Funke, B
Glatthor, N
Grabowski, U
Gunther, A
Kellmann, S
Kiefer, M
Linden, A
Lossow, S
Pumphrey, HC
Read, WG
Roiger, A
Stiller, G
Schlager, H
von Clarmann, T
Wissmuller, K
AF Hoepfner, M.
Boone, C. D.
Funke, B.
Glatthor, N.
Grabowski, U.
Guenther, A.
Kellmann, S.
Kiefer, M.
Linden, A.
Lossow, S.
Pumphrey, H. C.
Read, W. G.
Roiger, A.
Stiller, G.
Schlager, H.
von Clarmann, T.
Wissmueller, K.
TI Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower
stratosphere 2002-2012
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID TRACE GAS MEASUREMENTS; GLOBAL CLIMATE-CHANGE; VOLCANIC SO2; ARCTIC
TROPOSPHERE; MASS-SPECTROMETER; IASI MEASUREMENTS; POLLUTION PLUME; 2007
ERUPTION; AEROSOL; RETRIEVAL
AB Vertically resolved distributions of sulfur dioxide (SO2) with global coverage in the height region from the upper troposphere to 20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70-100 pptv and by a vertical resolution ranging from 3 to 5 km. Comparison with observations by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) revealed a slightly varying bias with altitude of -20 to 50 pptv for the MIPAS data set in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within -10 to 20 pptv in the altitude range of 10-20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS data set with in situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around +/- 50 pptv. The SO2 emissions of more than 30 volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS). Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period - Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 - derived lifetimes of SO2 for the altitude ranges 10-14, 14-18 and 18-22 km are 13.3 +/- 2.1, 23.6 +/- 1.2 and 32.3 +/- 5.5 days respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual cycle at northern mid- and high latitudes with maximum values in summer and an amplitude of about 30 pptv. At higher altitudes of about 16-18 km, enhanced mixing ratios of SO2 can be found in the regions of the Asian and the North American monsoons in summer - a possible connection to an aerosol layer discovered by Vernier et al. (2011b) in that region.
C1 [Hoepfner, M.; Glatthor, N.; Grabowski, U.; Guenther, A.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Stiller, G.; von Clarmann, T.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany.
[Boone, C. D.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada.
[Funke, B.] CSIC, Inst Astrofis Andalucia, Granada, Spain.
[Pumphrey, H. C.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland.
[Read, W. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Roiger, A.; Schlager, H.; Wissmueller, K.] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany.
RP Hopfner, M (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany.
EM michael.hoepfner@kit.edu
RI Funke, Bernd/C-2162-2008; Hopfner, Michael/A-7255-2013
OI Funke, Bernd/0000-0003-0462-4702; Hopfner, Michael/0000-0002-4174-9531
FU DLR project ESMVal; DLR project VolcATS; European Community within the
StratoClim project [603557]; Canadian Space Agency; Deutsche
Forschungsgemeinschaft; Open Access Publishing Fund of the Karlsruhe
Institute of Technology
FX H. Schlager, A. Roiger and K. Wissmuller acknowledge support by the DLR
projects ESMVal and VolcATS. This work was supported by the European
Community within the StratoClim project (grant no. 603557). We
acknowledge provision of MIPAS level-1b calibrated spectra by ESA,
meteorological data by ECMWF and data on volcanic activity by the
Smithsonian's Global Volcanism Program and by NASA's Global Sulfur
Dioxide Monitoring home page. Funding for the Atmospheric Chemistry
Experiment is provided by the Canadian Space Agency. We acknowledge
support by the Deutsche Forschungsgemeinschaft and Open Access
Publishing Fund of the Karlsruhe Institute of Technology.
NR 64
TC 5
Z9 6
U1 6
U2 17
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 12
BP 7017
EP 7037
DI 10.5194/acp-15-7017-2015
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZC
UT WOS:000357117500032
ER
PT J
AU Turner, AJ
Jacob, DJ
Wecht, KJ
Maasakkers, JD
Lundgren, E
Andrews, AE
Biraud, SC
Boesch, H
Bowman, KW
Deutscher, NM
Dubey, MK
Griffith, DWT
Hase, F
Kuze, A
Notholt, J
Ohyama, H
Parker, R
Payne, VH
Sussmann, R
Sweeney, C
Velazco, VA
Warneke, T
Wennberg, PO
Wunch, D
AF Turner, A. J.
Jacob, D. J.
Wecht, K. J.
Maasakkers, J. D.
Lundgren, E.
Andrews, A. E.
Biraud, S. C.
Boesch, H.
Bowman, K. W.
Deutscher, N. M.
Dubey, M. K.
Griffith, D. W. T.
Hase, F.
Kuze, A.
Notholt, J.
Ohyama, H.
Parker, R.
Payne, V. H.
Sussmann, R.
Sweeney, C.
Velazco, V. A.
Warneke, T.
Wennberg, P. O.
Wunch, D.
TI Estimating global and North American methane emissions with high spatial
resolution using GOSAT satellite data
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID COLUMN OBSERVING NETWORK; IN-SITU MEASUREMENTS; UNITED-STATES; SURFACE
MEASUREMENTS; NITROGEN DEPOSITION; ATMOSPHERIC METHANE; AIRCRAFT
CAMPAIGN; GREENHOUSE GASES; MOLE FRACTION; AVERAGED CH4
AB We use 2009-2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4A degrees x 5A degrees and up to 50 km x 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a total methane source of 539 Tg a(-1) with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2-42.7 Tg a(-1), as compared to 24.9-27.0 Tg a(-1) in the EDGAR and EPA bottom-up inventories, and 30.0-44.5 Tg a(-1) in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern-central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29-44 % of US anthropogenic methane emissions to livestock, 22-31 % to oil/gas, 20 % to landfills/wastewater, and 11-15 % to coal. Wetlands contribute an additional 9.0-10.1 Tg a(-1).
C1 [Turner, A. J.; Jacob, D. J.; Maasakkers, J. D.; Lundgren, E.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Jacob, D. J.; Wecht, K. J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Andrews, A. E.; Sweeney, C.] NOAA, Earth Syst Res Lab, Boulder, CO USA.
[Biraud, S. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Boesch, H.; Parker, R.] Univ Leicester, Dept Phys & Astron, Earth Observat Sci Grp, Leicester LE1 7RH, Leics, England.
[Boesch, H.; Parker, R.] Univ Leicester, Natl Ctr Earth Observat, Leicester, Leics, England.
[Bowman, K. W.; Payne, V. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Deutscher, N. M.; Griffith, D. W. T.; Velazco, V. A.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW 2522, Australia.
[Deutscher, N. M.; Notholt, J.; Warneke, T.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany.
[Dubey, M. K.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Hase, F.] Karlsruhe Inst Technol, IMK ASF, D-76021 Karlsruhe, Germany.
[Kuze, A.; Ohyama, H.] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki, Japan.
[Ohyama, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Sussmann, R.] Karlsruhe Inst Technol, IMK IFU, Garmisch Partenkirchen, Germany.
[Sweeney, C.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Wennberg, P. O.; Wunch, D.] CALTECH, Pasadena, CA 91125 USA.
RP Turner, AJ (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
EM aturner@fas.harvard.edu
RI Dubey, Manvendra/E-3949-2010; Velazco, Voltaire/H-2280-2011; Boesch,
Hartmut/G-6021-2012; Biraud, Sebastien/M-5267-2013; Chem,
GEOS/C-5595-2014; KUZE, AKIHIKO/J-2074-2016; Sussmann, Ralf/K-3999-2012;
Notholt, Justus/P-4520-2016
OI Dubey, Manvendra/0000-0002-3492-790X; Velazco,
Voltaire/0000-0002-1376-438X; Biraud, Sebastien/0000-0001-7697-933X;
KUZE, AKIHIKO/0000-0001-5415-3377; Notholt, Justus/0000-0002-3324-885X
FU NASA Carbon Monitoring System; Department of Energy (DOE) Computational
Science Graduate Fellowship (CSGF); California Energy Commission's
Natural Gas Program [DE-AC02-05CH11231]; NASA; UK National Centre for
Earth Observation (NCEO); ESA Climate Change Initiative (ESA GHG-CCI);
NASA [NNX11AG01G, NAG5-12247, NNG05-GD07G]; NASA Orbiting Carbon
Observatory Program; EU project InGOS; EU project ICOS-INWIRE; Senate of
Bremen; Australian Research Council [DP0879468, LP0562346]; EC within
the INGOS project; New Zealand Foundation of Research Science and
Technology [CO1X0204, CO1X0703, CO1X0406]; NIWA's Atmosphere Research
Programme 3 [2011/13]; LANL-LDRD [20110081DR]; Environment Research and
Technology Development Fund of the Ministry of the Environment, Japan
[A-1102]; Office of Biological and Environmental Research of the US
Department of Energy as part of the Atmospheric Radiation Measurement
Program (ARM), ARM Aerial Facility [DE-AC02-05CH11231]; Terrestrial
Ecosystem Science Program
FX This work was supported by the NASA Carbon Monitoring System and a
Department of Energy (DOE) Computational Science Graduate Fellowship
(CSGF) to A. J. Turner. We also thank the Harvard SEAS Academic
Computing center for access to computing resources. Special thanks to S.
C. Wofsy for providing HIPPO aircraft data, and J. B. Miller and M.
Parker for providing NOAA/ESRL Global Greenhouse Gas Reference Network
data. We thank M. L. Fischer and the CALGEM team at LBNL for their
contributions to data collection at tower sites in central California as
supported by the California Energy Commission's Natural Gas Program
through a grant to the US Department of Energy under contract no.
DE-AC02-05CH11231. Part of this work was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with NASA. R. Parker and H. Boesch acknowledge funding from the
UK National Centre for Earth Observation (NCEO) and the ESA Climate
Change Initiative (ESA GHG-CCI). TCCON data at Park Falls, Lamont, and
JPL is funded by NASA grants NNX11AG01G, NAG5-12247 and NNG05-GD07G, and
the NASA Orbiting Carbon Observatory Program. We are grateful to the DOE
ARM program for technical support in Lamont and J. Ayers for technical
support in Park Falls. TCCON data from Bialystok and Bremen is funded by
the EU projects InGOS and ICOS-INWIRE, and by the Senate of Bremen.
TCCON data from Darwin is funded by NASA grants NAG5-12247 and
NNG05-GD07G and the Australian Research Council, DP0879468 and
LP0562346. We are grateful to the DOE ARM program for technical support
in Darwin. Garmisch TCCON work has been performed as part of the ESA
GHG-cci project via subcontract with the University of Bremen. In
addition, we acknowledge funding by the EC within the INGOS project.
From 2004 to 2011 the Lauder TCCON program was funded by the New Zealand
Foundation of Research Science and Technology contracts CO1X0204,
CO1X0703 and CO1X0406. Since 2011, the program has been funded by NIWA's
Atmosphere Research Programme 3 (2011/13 Statement of Corporate Intent).
M. K. Dubey thanks LANL-LDRD for funding 20110081DR for monitoring at
Four Corners. We thank B. Henderson (LANL) for help with retrievals at
Four Corners. A part of work at JAXA was supported by the Environment
Research and Technology Development Fund (A-1102) of the Ministry of the
Environment, Japan. Observations collected in the Southern Great plains
were supported by the Office of Biological and Environmental Research of
the US Department of Energy under contract no. DE-AC02-05CH11231 as part
of the Atmospheric Radiation Measurement Program (ARM), ARM Aerial
Facility, and Terrestrial Ecosystem Science Program. HIPPO aircraft data
are available at http://hippo.ornl.gov, TCCON data are available at
http://tccon.ornl.gov, and NOAA/ESRL Global Greenhouse Gas Reference
Network data are available at
http://www.esrl.noaa.gov/gmd/ccgg/flask.php.
NR 76
TC 33
Z9 33
U1 11
U2 58
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 12
BP 7049
EP 7069
DI 10.5194/acp-15-7049-2015
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZC
UT WOS:000357117500034
ER
PT J
AU Nisantzi, A
Mamouri, RE
Ansmann, A
Schuster, GL
Hadjimitsis, DG
AF Nisantzi, A.
Mamouri, R. E.
Ansmann, A.
Schuster, G. L.
Hadjimitsis, D. G.
TI Middle East versus Saharan dust extinction-to-backscatter ratios
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SPECTRAL-RESOLUTION LIDAR; AEROSOL OPTICAL-PROPERTIES; SKY RADIANCE
MEASUREMENTS; POLARIZATION LIDAR; RAMAN LIDAR; DESERT-DUST; SAMUM 2006;
METHODOLOGY; AERONET; CLASSIFICATION
AB Four years (2010-2013) of observations with polarization lidar and sun/sky photometer at the combined European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) site of Limassol (34.7A degrees N, 33A degrees E), Cyprus, were used to compare extinction-to-backscatter ratios (lidar ratios) for desert dust from Middle East deserts and the Sahara. In an earlier article, we analyzed one case only and found comparably low lidar ratios < 40 sr for Middle East dust. The complex data analysis scheme is presented. The quality of the retrieval is checked within a case study by comparing the results with respective Raman lidar solutions for particle backscatter, extinction, and lidar ratio. The applied combined lidar/photometer retrievals corroborate recent findings regarding the difference between Middle East and Saharan dust lidar ratios. We found values from 43-65 sr with a mean (+/- standard deviation) of 53 +/- 6 sr for Saharan dust and from 33-48 sr with a mean of 41 +/- 4 sr for Middle East dust for the wavelength of 532 nm. The presented data analysis, however, also demonstrates the difficulties in identifying the optical properties of dust even during outbreak situations in the presence of complex aerosol mixtures of desert dust, marine particles, fire smoke, and anthropogenic haze.
C1 [Nisantzi, A.; Mamouri, R. E.; Hadjimitsis, D. G.] Cyprus Univ Technol, Dept Civil Engn & Geomat, Limassol, Cyprus.
[Ansmann, A.] Leibniz Inst Tropospher Res, Leipzig, Germany.
[Schuster, G. L.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Nisantzi, A (reprint author), Cyprus Univ Technol, Dept Civil Engn & Geomat, Limassol, Cyprus.
EM argyro.nisantzi@cut.ac.cy
OI HADJIMITSIS, DIOFANTOS/0000-0002-2684-547X
FU CUT Remote Sensing Laboratory; European Regional Development Fund;
Republic of Cyprus through the Research Promotion Foundation
[PENEK/0311/05]; European Union [262 254]
FX The authors thank the CUT Remote Sensing Laboratory for their support.
The work was co-funded by the European Regional Development Fund and the
Republic of Cyprus through the Research Promotion Foundation
(PENEK/0311/05). The research leading to these results has also received
scientific support from the European Union Seventh Framework Programme
(FP7/2011-2015) under grant agreement no. 262 254 (ACTRIS project). The
authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL)
for the provision of the HYSPLIT transport and dispersion model as well
for the provision of Global Data Assimilation System (GDAS) data used in
this publication. We are also grateful to AERONET for high-quality
sun/sky photometer measurements.
NR 45
TC 5
Z9 5
U1 2
U2 8
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 12
BP 7071
EP 7084
DI 10.5194/acp-15-7071-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZC
UT WOS:000357117500035
ER
PT J
AU Wagner, NL
Brock, CA
Angevine, WM
Beyersdorf, A
Campuzano-Jost, P
Day, D
de Gouw, JA
Diskin, GS
Gordon, TD
Graus, MG
Holloway, JS
Huey, G
Jimenez, JL
Lack, DA
Liao, J
Liu, X
Markovic, MZ
Middlebrook, AM
Mikoviny, T
Peischl, J
Perring, AE
Richardson, MS
Ryerson, TB
Schwarz, JP
Warneke, C
Welti, A
Wisthaler, A
Ziemba, LD
Murphy, DM
AF Wagner, N. L.
Brock, C. A.
Angevine, W. M.
Beyersdorf, A.
Campuzano-Jost, P.
Day, D.
de Gouw, J. A.
Diskin, G. S.
Gordon, T. D.
Graus, M. G.
Holloway, J. S.
Huey, G.
Jimenez, J. L.
Lack, D. A.
Liao, J.
Liu, X.
Markovic, M. Z.
Middlebrook, A. M.
Mikoviny, T.
Peischl, J.
Perring, A. E.
Richardson, M. S.
Ryerson, T. B.
Schwarz, J. P.
Warneke, C.
Welti, A.
Wisthaler, A.
Ziemba, L. D.
Murphy, D. M.
TI In situ vertical profiles of aerosol extinction, mass, and composition
over the southeast United States during SENEX and SEAC(4)RS:
observations of a modest aerosol enhancement aloft
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; PARTICULATE MATTER MASS; OPTICAL DEPTH;
SATELLITE-OBSERVATIONS; CARBON-MONOXIDE; CUMULUS CLOUDS; US; ABSORPTION;
PARTICLES; AIRCRAFT
AB Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC(4)RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were 10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while the second study speculates that the layer aloft could be SOA or secondary particulate sulfate. In contrast to these hypotheses, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.
C1 [Wagner, N. L.; Brock, C. A.; Angevine, W. M.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Murphy, D. M.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Wagner, N. L.; Angevine, W. M.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Warneke, C.; Welti, A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Beyersdorf, A.; Diskin, G. S.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Campuzano-Jost, P.; Day, D.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Huey, G.; Liu, X.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN USA.
[Welti, A.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland.
[Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria.
RP Wagner, NL (reprint author), NOAA, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA.
EM nick.wagner@noaa.gov
RI schwarz, joshua/G-4556-2013; Murphy, Daniel/J-4357-2012; Manager, CSD
Publications/B-2789-2015; Perring, Anne/G-4597-2013; Lack,
Daniel/I-9053-2012; Ryerson, Tom/C-9611-2009; Peischl, Jeff/E-7454-2010;
Angevine, Wayne/H-9849-2013; Graus, Martin/E-7546-2010; de Gouw,
Joost/A-9675-2008; Jimenez, Jose/A-5294-2008; Gordon,
Timothy/H-9497-2013; Warneke, Carsten/E-7174-2010; Middlebrook,
Ann/E-4831-2011; Wagner, Nicholas/E-7437-2010
OI schwarz, joshua/0000-0002-9123-2223; Murphy, Daniel/0000-0002-8091-7235;
Perring, Anne/0000-0003-2231-7503; Peischl, Jeff/0000-0002-9320-7101;
Angevine, Wayne/0000-0002-8021-7116; Graus, Martin/0000-0002-2025-9242;
de Gouw, Joost/0000-0002-0385-1826; Jimenez, Jose/0000-0001-6203-1847;
Gordon, Timothy/0000-0002-5128-9532; Middlebrook,
Ann/0000-0002-2984-6304;
FU BMVIT/FFG-ALR of the Austrian Space Application Program (ASAP 8)
[833451]; NASA [NNX12AC03G]; NSF [AGS-1243354]; NOAA's Health of the
Atmosphere Program and Atmospheric Chemistry, Carbon Cycles, and Climate
Program; NASA's Radiation Sciences Program [NNH12AT31I]
FX We thank the NOAA WP-3D and NASA DC-8 scientists, flight crews, and
support staff for their outstanding efforts in the field. In particular
we would like to thank M. K. Trainer for flight planning during SENEX.
Isoprene measurements during SEAC4RS were supported by
BMVIT/FFG-ALR in the frame of the Austrian Space Application Program
(ASAP 8, project 833451). PCJ, DAD, and JLJ measured aerosol mass and
composition during SEAC4RS and were supported by NASA
NNX12AC03G and NSF AGS-1243354. Additionally, the SEARCH aerosol network
provided surface measurement used in overflight comparisons, and we
thank Brent Holben and Brad Gingrey and their staff for establishing and
maintaining the Centreville AERONET sites used in this investigation.
This analysis is funded by the NOAA's Health of the Atmosphere Program
and Atmospheric Chemistry, Carbon Cycles, and Climate Program and by
NASA's Radiation Sciences Program under Award NNH12AT31I.
NR 65
TC 12
Z9 12
U1 6
U2 31
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 12
BP 7085
EP 7102
DI 10.5194/acp-15-7085-2015
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZC
UT WOS:000357117500036
ER
PT J
AU Smith, KE
Gerakines, PA
Callahan, MP
AF Smith, Karen E.
Gerakines, Perry A.
Callahan, Michael P.
TI Metabolic precursors in astrophysical ice analogs: implications for
meteorites and comets
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID AMINO-ACIDS; MURCHISON METEORITE; DIPHOSPHOPYRIDINE NUCLEOTIDE;
DEUTERIUM ENRICHMENT; IRRADIATION; BENZENE; BIOSYNTHESIS; HETEROCYCLES;
MATTER
AB We report the synthesis of complex organic compounds including nicotinic and quinolinic acid, two members involved in the nicotinamide adenine dinucleotide (NAD) biosynthetic pathway, in irradiated astrophysical ice analogs. If delivered to Earth by meteorites and comets, these compounds may have contributed to the origin and early evolution of life.
C1 [Smith, Karen E.] NASA, Goddard Space Flight Ctr, Postdoctoral Program Administered, Oak Ridge Associated Univ, Greenbelt, MD 20771 USA.
[Gerakines, Perry A.; Callahan, Michael P.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA.
[Gerakines, Perry A.; Callahan, Michael P.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA.
RP Smith, KE (reprint author), NASA, Goddard Space Flight Ctr, Postdoctoral Program Administered, Oak Ridge Associated Univ, Greenbelt, MD 20771 USA.
EM karen.e.smith@nasa.gov
RI Gerakines, Perry/D-2226-2012
OI Gerakines, Perry/0000-0002-9667-5904
FU NASA Postdoctoral Program Fellowship; NASA; NASA Astrobiology Institute
via Goddard Center for Astrobiology; NASA Cosmochemistry Program
FX The authors thank T. Ward, E. Gerashchenko, and S. Brown for operation
of the proton accelerator, M. Loeffler for assistance with some
experimental measurements and helpful discussions, R. Hudson for helpful
discussions, and three anonymous reviewers. This work was supported by a
NASA Postdoctoral Program Fellowship administered by Oak Ridge
Associated Universities through a contract with NASA, the NASA
Astrobiology Institute via the Goddard Center for Astrobiology, and the
NASA Cosmochemistry Program.
NR 26
TC 2
Z9 2
U1 4
U2 16
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2015
VL 51
IS 59
BP 11787
EP 11790
DI 10.1039/c5cc03272e
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA CM6NF
UT WOS:000357804800010
PM 26107786
ER
PT S
AU Arthur, JJ
Bailey, RE
Williams, SP
Prinzel, LJ
Shelton, KJ
Jones, DR
Houston, V
AF Arthur, Jarvis (Trey) J., III
Bailey, Randall E.
Williams, Steven P.
Prinzel, Lawrence J., III
Shelton, Kevin J.
Jones, Denise R.
Houston, Vincent
BE Desjardins, DD
Marasco, PL
Sarma, KR
Havig, PR
Browne, MP
Melzer, JE
TI A review of head-worn display research at NASA Langley Research Center
SO DISPLAY TECHNOLOGIES AND APPLICATIONS FOR DEFENSE, SECURITY, AND
AVIONICS IX; AND HEAD- AND HELMET-MOUNTED DISPLAYS XX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Display Technologies and Applications for Defense,
Security, and Avionics IX and Head- and Helmet-Mounted Displays XX
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
DE Head-Worn Display; Helmet-Mounted Display; Commercial Aviation
AB NASA Langley has conducted research in the area of helmet-mounted/head-worn displays over the past 30 years. Initially, NASA Langley's research focused on military applications, but recently has conducted a line of research in the area of head-worn displays for commercial and business aircraft. This work has revolved around numerous simulation experiments as well as flight tests to develop technology and data for industry and regulatory guidance. The paper summarizes the results of NASA's helmet-mounted/head-worn display research. Of note, the work tracks progress in wearable collimated optics, head tracking, latency reduction, and weight. The research lends credence that a small, sunglasses-type form factor of the head-worn display would be acceptable to commercial pilots, and this goal is now becoming technologically feasible. The research further suggests that a head-worn display may serve as an "equivalent" Head-Up Display (HUD) with safety, operational, and cost benefits. "HUD equivalence" appears to be the economic avenue by which head-worn displays can become main-stream on the commercial and business aircraft flight deck. If this happens, NASA's research suggests that additional operational bene fits using the unique capabilities of the head-worn display can open up new operational paradigms.
C1 [Arthur, Jarvis (Trey) J., III; Bailey, Randall E.; Williams, Steven P.; Prinzel, Lawrence J., III; Shelton, Kevin J.; Jones, Denise R.; Houston, Vincent] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Arthur, JJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA.
EM Trey.Arthur@nasa.gov
NR 34
TC 1
Z9 1
U1 1
U2 7
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-586-5
J9 PROC SPIE
PY 2015
VL 9470
AR 94700W
DI 10.1117/12.2180436
PG 15
WC Engineering, Electrical & Electronic; Optics
SC Engineering; Optics
GA BD0OE
UT WOS:000357466100020
ER
PT S
AU Shelton, KJ
Arthur, JJ
Prinzel, LJ
Nicholas, SN
Williams, SP
Bailey, RE
AF Shelton, K. J.
Arthur, J. J., III
Prinzel, L. J., III
Nicholas, S. N.
Williams, S. P.
Bailey, R. E.
BE Desjardins, DD
Marasco, PL
Sarma, KR
Havig, PR
Browne, MP
Melzer, JE
TI Flight Test of a Head-Worn Display as an Equivalent-HUD for Terminal
Operations
SO DISPLAY TECHNOLOGIES AND APPLICATIONS FOR DEFENSE, SECURITY, AND
AVIONICS IX; AND HEAD- AND HELMET-MOUNTED DISPLAYS XX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Display Technologies and Applications for Defense,
Security, and Avionics IX; and Head- and Helmet-Mounted Displays XX
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
DE Head-Worn Display; HWD; Head-Up Display; HUD; Enhanced Vision; EV;
Equivalent HUD; NextGen
AB Research, development, test, and evaluation of flight deck interface technologies is being conducted by NASA to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in the Next Generation Air Transportation System (NextGen). Under NASA's Aviation Safety Program, one specific area of research is the use of small Head-Worn Displays (HWDs) as a potential equivalent display to a Head-up Display (HUD). Title 14 of the US CFR 91.175 describes a possible operational credit which can be obtained with airplane equipage of a HUD or an "equivalent"' display combined with Enhanced Vision (EV). A successful HWD implementation may provide the same safety and operational benefits as current HUD-equipped aircraft but for significantly more aircraft in which HUD installation is neither practical nor possible. A flight test was conducted to evaluate if the HWD, coupled with a head-tracker, can provide an equivalent display to a HUD. Approach and taxi testing was performed on-board NASA's experimental King Air aircraft in various visual conditions. Preliminary quantitative results indicate the HWD tested provided equivalent HUD performance, however operational issues were uncovered. The HWD showed significant potential as all of the pilots liked the increased situation awareness attributable to the HWD's unique capability of unlimited field-of-regard.
C1 [Shelton, K. J.; Arthur, J. J., III; Prinzel, L. J., III; Nicholas, S. N.; Williams, S. P.; Bailey, R. E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Shelton, KJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
NR 14
TC 0
Z9 0
U1 1
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-586-5
J9 PROC SPIE
PY 2015
VL 9470
AR 94700X
DI 10.1117/12.2177059
PG 15
WC Engineering, Electrical & Electronic; Optics
SC Engineering; Optics
GA BD0OE
UT WOS:000357466100021
ER
PT S
AU Amzajerdian, F
Roback, VE
Bulyshev, AE
Brewster, PF
Carrion, WA
Pierrottet, DF
Hines, GD
Petway, LB
Barnes, BW
Noe, AM
AF Amzajerdian, Farzin
Roback, Vincent E.
Bulyshev, Alexander E.
Brewster, Paul F.
Carrion, William A.
Pierrottet, Diego F.
Hines, Glenn D.
Petway, Larry B.
Barnes, Bruce W.
Noe, Anna M.
BE Turner, MD
Kamerman, GW
Thomas, LMW
Spillar, EJ
TI Imaging flash lidar for safe landing on solar system bodies and
spacecraft rendezvous and docking
SO LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION
XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Laser Radar Technology and Applications XX and Atmospheric
Propagation XII
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
DE Flash Lidar; Ladar; Laser Radar; ALHAT; Precision Navigation; Hazard
Avoidance; Rendezvous and Docking
ID SUPERRESOLUTION; RECONSTRUCTION; IMAGERY
AB NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of landing, from about 1 km to 500 m above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16k pixels range images with 7 cm precision, at a 20 Hz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.
C1 [Amzajerdian, Farzin; Roback, Vincent E.; Brewster, Paul F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Bulyshev, Alexander E.] Analyt Mech Associates, Hampton, VA 23666 USA.
[Carrion, William A.; Pierrottet, Diego F.] Coherent Applicat Inc, Hampton, VA 23666 USA.
RP Amzajerdian, F (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
NR 27
TC 1
Z9 1
U1 3
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-581-0
J9 PROC SPIE
PY 2015
VL 9465
AR 946502
DI 10.1117/12.2178410
PG 13
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0JA
UT WOS:000357260200001
ER
PT S
AU Beyon, JY
Ng, TK
Davis, MJ
Adams, JK
Bowen, SC
Fay, JJ
Hutchinson, MA
AF Beyon, Jeffrey Y.
Ng, Tak-Kwong
Davis, Mitchell J.
Adams, James K.
Bowen, Stephen C.
Fay, James J.
Hutchinson, Mark A.
BE Turner, MD
Kamerman, GW
Thomas, LMW
Spillar, EJ
TI Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data
Processing for Science Instruments (HOPS)
SO LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION
XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Laser Radar Technology and Applications XX; and
Atmospheric Propagation XII
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
DE onboard; high speed; HOPS; FPGA; ACES; ASCENDS
AB The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.
C1 [Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Beyon, JY (reprint author), NASA, Langley Res Ctr, MS 488, Hampton, VA 23681 USA.
EM Jeffrey.Y.Beyon@nasa.gov; T.Ng@nasa.gov; Mitchell.J.Davis@nasa.gov;
James.K.Adams@nasa.gov; Stephen.C.Bowen@nasa.gov; James.J.Fay@nasa.gov;
Mark.A.Hutchinson@nasa.gov
NR 17
TC 0
Z9 0
U1 1
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-581-0
J9 PROC SPIE
PY 2015
VL 9465
AR 94650G
DI 10.1117/12.2086285
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0JA
UT WOS:000357260200013
ER
PT S
AU Luzhansky, E
Choa, FS
Merritt, S
Yu, A
Krainak, M
AF Luzhansky, Edward
Choa, Fow-Sen
Merritt, Scott
Yu, Anthony
Krainak, Michael
BE Turner, MD
Kamerman, GW
Thomas, LMW
Spillar, EJ
TI Mid-IR Free-Space Optical Communication with Quantum Cascade Lasers
SO LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION
XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Laser Radar Technology and Applications XX and Atmospheric
Propagation XII
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
AB A free space optical communication link with simulated atmospheric turbulence investigation using un-cooled Mid-Wave Infrared (MWIR) system. Uncooled pulsed Quantum Cascade Laser was used as transmitter and photoelectromagnetic detector as receiver. For high photon efficiency and to eliminate QCL thermal effects signal was modulated at 32-ary Pulse Position Modulation (PPM) scheme. Concept enables extremely small and atmospheric propagation efficient optical communication system.
C1 [Luzhansky, Edward; Choa, Fow-Sen] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA.
[Luzhansky, Edward; Merritt, Scott; Yu, Anthony; Krainak, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Luzhansky, E (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA.
NR 14
TC 1
Z9 1
U1 2
U2 9
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-581-0
J9 PROC SPIE
PY 2015
VL 9465
AR 946512
DI 10.1117/12.2189315
PG 7
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0JA
UT WOS:000357260200025
ER
PT S
AU Prasad, NS
Sibell, R
Vetorino, S
Higgins, R
Tracy, A
AF Prasad, Narasimha S.
Sibell, Russ
Vetorino, Steve
Higgins, Richard
Tracy, Allen
BE Turner, MD
Kamerman, GW
Thomas, LMW
Spillar, EJ
TI An all-fiber, modular, compact Wind lidar for wind sensing and wake
vortex applications
SO LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION
XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Laser Radar Technology and Applications XX; and
Atmospheric Propagation XII
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
DE Coherent wind lidar; Wake vortex; 3D hemispherical scanner; fiber seed
laser; fiber amplifier
AB This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.
C1 [Prasad, Narasimha S.] NASA, Langley Res Ctr, Hampton, VA 23666 USA.
[Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen] Sibelloptics, Boulder, CO 80301 USA.
RP Prasad, NS (reprint author), NASA, Langley Res Ctr, 5 N Dryden St,MS 468, Hampton, VA 23666 USA.
EM narasimha.s.prasad@nasa.gov
NR 15
TC 2
Z9 2
U1 0
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-581-0
J9 PROC SPIE
PY 2015
VL 9465
AR 94650C
DI 10.1117/12.2181170
PG 11
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0JA
UT WOS:000357260200009
ER
PT S
AU Gerace, AD
Goodenough, AA
Montanaro, M
Yang, J
McCorkel, JT
AF Gerace, Aaron D.
Goodenough, Adam A.
Montanaro, Matthew
Yang, Jie
McCorkel, Joel T.
BE VelezReyes, M
Kruse, FA
TI The development of a DIRSIG simulation environment to support instrument
trade studies for the SOLARIS sensor
SO ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND
ULTRASPECTRAL IMAGERY XXI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XXI
CY APR 21-23, 2015
CL Baltimore, MD
SP SPIE
DE SOLARIS; CLARREO; Inter-calibration; Cross-calibration; DIRSIG;
Simulation and Modeling
AB NASA Goddard's SOLARIS (Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer) sensor is the calibration demonstration system for CLARREO (Climate Absolute Radiance and Refractivity Observatory), a mission that addresses the need to make highly accurate observations of long-term climate change trends. The SOLARIS instrument will be designed to support a primary objective of CLARREO, which is to advance the accuracy of absolute calibration for space-borne instruments in the reflected solar wavelengths. This work focuses on the development of a simulated environment to facilitate sensor trade studies to support instrument design and build for the SOLARIS sensor. Openly available data are used to generate geometrically and radiometrically realistic synthetic landscapes to serve as input to an image generation model, specifically the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model.
Recent enhancements to DIRSIG's sensor model capabilities have made it an attractive option for performing sensor trade studies. This research takes advantage of these enhancements to model key sensor characteristics (e.g., sensor noise, relative spectral response, spectral coverage, etc.) and evaluate their impact on SOLARIS's stringent 0.3% error budget for absolute calibration. A SOLARIS sensor model is developed directly from measurements provided by NASA Goddard and various synthetic landscapes generated to identify potential calibration sites once the instrument achieves orbit. The results of these experiments are presented and potential sources of error for sensor inter-calibration are identified.
C1 [Gerace, Aaron D.; Goodenough, Adam A.; Montanaro, Matthew; Yang, Jie] Rochester Inst Technol, Rochester, NY 14623 USA.
[McCorkel, Joel T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Gerace, AD (reprint author), Rochester Inst Technol, 54 Lomb Mem Dr, Rochester, NY 14623 USA.
EM gerace@cis.rit.edu
RI McCorkel, Joel/D-4454-2012; Richards, Amber/K-8203-2015
OI McCorkel, Joel/0000-0003-2853-2036;
NR 13
TC 0
Z9 0
U1 2
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-588-9
J9 PROC SPIE
PY 2015
VL 9472
AR 947214
DI 10.1117/12.2177507
PG 8
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0DU
UT WOS:000357086800034
ER
PT J
AU Pokhotelov, D
Rae, IJ
Murphy, KR
Mann, IR
AF Pokhotelov, D.
Rae, I. J.
Murphy, K. R.
Mann, I. R.
TI The influence of solar wind variability on magnetospheric ULF wave power
SO ANNALES GEOPHYSICAE
LA English
DT Article
DE Magnetospheric physics; solar wind-magnetosphere interactions; space
plasma physics; waves and instabilities
ID RADIATION BELT; SPEED; PULSATIONS; DEPENDENCE; FIELD; ACCELERATION;
DIFFUSION; VELOCITY; STREAMS
AB Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.
C1 [Pokhotelov, D.; Rae, I. J.] UCL, Mullard Space Sci Lab, Dorking, Surrey, England.
[Murphy, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Mann, I. R.] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
RP Pokhotelov, D (reprint author), UCL, Mullard Space Sci Lab, Dorking, Surrey, England.
EM d.pokhotelov@ucl.ac.uk
RI Pokhotelov, Dimitry/H-6969-2014
OI Pokhotelov, Dimitry/0000-0002-3712-0597
FU Science and Technology Facilities Council (STFC) [ST/L000563/1]; Natural
Environment Research Council (NERC) [NE/M00886X/1, NE/L007495/1];
Canadian NSERC
FX D. Pokhotelov and I. J. Rae are supported by Science and Technology
Facilities Council (STFC) grant ST/L000563/1; I. J. Rae is also
supported by Natural Environment Research Council (NERC) grants
NE/M00886X/1 and NE/L007495/1. K. R. Murphy is funded by a Canadian
NSERC Postdoctoral Fellowship. We thank H. Singer and NOAA for the use
of GOES magnetometer data, obtained from NASA CDAWeb
(http://cdaweb.gsfc.nasa.gov/). Solar wind data were obtained from NASA
OMNIWeb (http://omniweb.gsfc.nasa.gov/).
NR 28
TC 1
Z9 1
U1 0
U2 6
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 0992-7689
EI 1432-0576
J9 ANN GEOPHYS-GERMANY
JI Ann. Geophys.
PY 2015
VL 33
IS 6
BP 697
EP 701
DI 10.5194/angeocom-33-697-2015
PG 5
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA CL6ZH
UT WOS:000357118400007
ER
PT J
AU Ialongo, I
Hakkarainen, J
Kivi, R
Anttila, P
Krotkov, NA
Yang, K
Li, C
Tukiainen, S
Hassinen, S
Tamminen, J
AF Ialongo, I.
Hakkarainen, J.
Kivi, R.
Anttila, P.
Krotkov, N. A.
Yang, K.
Li, C.
Tukiainen, S.
Hassinen, S.
Tamminen, J.
TI Comparison of operational satellite SO2 products with ground-based
observations in northern Finland during the Icelandic Holuhraun fissure
eruption
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID OZONE MONITORING INSTRUMENT; VOLCANIC SULFUR-DIOXIDE; EL-CHICHON;
RETRIEVAL; ALGORITHM; OMI
AB This paper shows the results of the comparison of satellite SO2 observations from OMI (Ozone Monitoring Instrument) and OMPS (Ozone Mapping Profiler Suite) with ground-based measurements during the Icelandic Holuhraun fissure eruption in September 2014. The volcanic plume reached Finland on several days during the month of September. The SO2 total columns from the Brewer direct sun (DS) measurements in Sodankyla (67.42A degrees N, 26.59A degrees E), northern Finland, are compared to the satellite data.
The operational satellite SO2 products are evaluated for high latitude conditions (e.g. large solar zenith angle, SZA). The results show that the best agreement can be found for lowest SZAs, close-to-nadir satellite pixels, cloud fraction below 0.3 and small distance between the station and the centre of the pixel. Under good retrieval conditions, the difference between satellite data and Brewer measurements remains mostly below the uncertainty on the satellite SO2 retrievals (up to about 2 DU at high latitudes).
The satellite products assuming a priori profile with SO2 predominantly in the planetary boundary layer give total column values with the best agreement with the ground-based data.
The analysis of the SO2 surface concentrations at four air quality stations in northern Finland shows that the volcanic plume coming from Iceland was located very close to the surface. This is connected to the fact that this was a fissure eruption and most of the SO2 was emitted into the troposphere. This is an exceptional case because the SO2 volcanic emissions directly affect the air quality levels at surface in an otherwise pristine environment like northern Finland. The time evolution of the SO2 concentrations peaks during the same days when large SO2 total column values are measured by the Brewer in Sodankyla and enhanced SO2 signal is visible over northern Finland from the satellite maps. Thus, the satellite retrievals were able to detect the spatiotemporal evolution of the volcanic plume as compared to the surface observations.
Furthermore, direct-broadcast SO2 satellite data (from both OMI and OMPS instruments) are compared for the first time against ground-based observations.
C1 [Ialongo, I.; Hakkarainen, J.; Tukiainen, S.; Hassinen, S.; Tamminen, J.] Finnish Meteorol Inst, Earth Observat Unit, FIN-00101 Helsinki, Finland.
[Kivi, R.] Finnish Meteorol Inst, Arctic Res Ctr, Sodankyla, Finland.
[Anttila, P.] Finnish Meteorol Inst, Atmospher Composit Unit, FIN-00101 Helsinki, Finland.
[Krotkov, N. A.; Li, C.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA.
[Yang, K.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
[Li, C.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Ialongo, I (reprint author), Finnish Meteorol Inst, Earth Observat Unit, FIN-00101 Helsinki, Finland.
EM iolanda.ialongo@fmi.fi
RI Ialongo, Iolanda/E-1638-2014; Krotkov, Nickolay/E-1541-2012; Tamminen,
Johanna/D-7959-2014
OI Krotkov, Nickolay/0000-0001-6170-6750; Tamminen,
Johanna/0000-0003-3095-0069
FU Academy of Finland (INQUIRE project); TEKES (SPARK project); ESA (ILMA
Living Planet fellowship)
FX The FMI work is supported by the Academy of Finland (INQUIRE project),
by TEKES (SPARK project) and by ESA (ILMA Living Planet fellowship). The
standard product data are distributed through the NASA's MIRADOR website
(http://mirador.gsfc.nasa.gov), while the direct-broadcast data are
obtained from FMI's SAMPO service (http://sampo.fmi.fi).
NR 29
TC 8
Z9 8
U1 1
U2 17
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 6
BP 2279
EP 2289
DI 10.5194/amt-8-2279-2015
PG 11
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZE
UT WOS:000357117900004
ER
PT J
AU Kohler, P
Guanter, L
Joiner, J
AF Koehler, P.
Guanter, L.
Joiner, J.
TI A linear method for the retrieval of sun-induced chlorophyll
fluorescence from GOME-2 and SCIAMACHY data
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID SENTINEL-5 PRECURSOR; SPACE; SIMULATIONS; TROPOMI; MISSION; MODELS;
SYSTEM; FIELD; GOSAT; BAND
AB Global retrievals of near-infrared sun-induced chlorophyll fluorescence (SIF) have been achieved in the last few years by means of a number of space-borne atmospheric spectrometers. Here, we present a new retrieval method for medium spectral resolution instruments such as the Global Ozone Monitoring Experiment-2 (GOME-2) and the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY). Building upon the previous work by Guanter et al. (2013) and Joiner et al. (2013), our approach provides a solution for the selection of the number of free parameters. In particular, a backward elimination algorithm is applied to optimize the number of coefficients to fit, which reduces also the retrieval noise and selects the number of state vector elements automatically. A sensitivity analysis with simulated spectra has been utilized to evaluate the performance of our retrieval approach. The method has also been applied to estimate SIF at 740 nm from real spectra from GOME-2 and for the first time, from SCIAMACHY. We find a good correspondence of the absolute SIF values and the spatial patterns from the two sensors, which suggests the robustness of the proposed retrieval method. In addition, we compare our results to existing SIF data sets, examine uncertainties and use our GOME-2 retrievals to show empirically the relatively low sensitivity of the SIF retrieval to cloud contamination.
C1 [Koehler, P.; Guanter, L.] Free Univ Berlin, Inst Space Sci, Berlin, Germany.
[Koehler, P.; Guanter, L.] German Res Ctr Geosci GFZ, Remote Sensing Sect, Potsdam, Germany.
[Joiner, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Kohler, P (reprint author), Free Univ Berlin, Inst Space Sci, Berlin, Germany.
EM philipp.koehler@gfz-potsdam.de
FU Emmy Noether Programme of the German Research Foundation
FX The research is funded by the Emmy Noether Programme of the German
Research Foundation. With thanks to EUMETSAT to make the GOME-2 data
available and ESA for providing the SCIAMACHY data. Jochem Verrelst and
Luis Alonso from the University of Valencia are gratefully thanked for
the reflectance and fluorescence simulations produced in the framework
of the ESA FLUSS project.
NR 29
TC 9
Z9 9
U1 3
U2 16
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 6
BP 2589
EP 2608
DI 10.5194/amt-8-2589-2015
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZE
UT WOS:000357117900026
ER
PT J
AU Wu, L
Hasekamp, O
van Diedenhoven, B
Cairns, B
AF Wu, L.
Hasekamp, O.
van Diedenhoven, B.
Cairns, B.
TI Aerosol retrieval from multiangle, multispectral photopolarimetric
measurements: importance of spectral range and angular resolution
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID VECTOR RADIATIVE-TRANSFER; RESEARCH SCANNING POLARIMETER; TRANSFER
MODEL; INFORMATION-CONTENT; INTENSITY; POLARIZATION; CAPABILITIES;
ATMOSPHERES; REFLECTION; OCEAN
AB We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC(4)RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.
C1 [Wu, L.; Hasekamp, O.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands.
[van Diedenhoven, B.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA.
[van Diedenhoven, B.; Cairns, B.] NASA Goddard Inst Space Studies, New York, NY USA.
[Wu, L.] Hefei Univ Technol, Sch Comp & Informat, Hefei 230009, Anhui, Peoples R China.
RP Wu, L (reprint author), SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht, Netherlands.
EM l.wu@sron.nl
OI van Diedenhoven, Bastiaan/0000-0001-5622-8619; Cairns,
Brian/0000-0002-1980-1022
FU NASA Radiation Sciences Program; NASA Earth Science Division as part of
the pre-formulation study for the Aerosol Cloud and ocean Ecosystem
(ACE) mission; China Scholarship Council [201306690014]
FX We wish to thank two anonymous reviewers, Matteo Ottaviani, Thibaut
Lurton, and Michael Garay for their interest and valuable comments which
have led to several improvements. The RSP data from the
SEAC4RS and PODEX field experiments that are used in this
study were funded by the NASA Radiation Sciences Program managed by Hal
Maring and by the NASA Earth Science Division as part of the
pre-formulation study for the Aerosol Cloud and ocean Ecosystem (ACE)
mission. L. Wu was supported by a grant from the China Scholarship
Council (201306690014).
NR 30
TC 6
Z9 6
U1 4
U2 9
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 6
BP 2625
EP 2638
DI 10.5194/amt-8-2625-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CL6ZE
UT WOS:000357117900028
ER
PT J
AU Mittlefehldt, DW
AF Mittlefehldt, David W.
TI Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of
meteorites
SO CHEMIE DER ERDE-GEOCHEMISTRY
LA English
DT Review
DE Howardites; Eucrites; Diogenites; Vesta; Basaltic achondrites;
Differentiated asteroids
ID EARLY SOLAR-SYSTEM; MAGMA OCEAN CRYSTALLIZATION; SERRA-DE-MAGE;
CARBONACEOUS CHONDRITE CLASTS; TRACE-ELEMENT GEOCHEMISTRY; PARENT BODY
REGOLITH; GAS-RICH METEORITES; BASALTIC ACHONDRITES; ORTHO-PYROXENE;
NOBLE-GASES
AB The howardite, eucrite and diogenite (HED) clan of meteorites are ultramafic and mafic igneous rocks and impact-engendered fragmental debris derived from a thoroughly differentiated asteroid. Earth-based telescopic observation and data returned from vestan orbit by the Dawn spacecraft make a compelling case that the asteroid (4) Vesta is the parent asteroid of HEDs, although this is not universally accepted. Diogenites are petrologically diverse and include dunitic, harzburgitic and noritic lithologic types in addition to the traditional orthopyroxenites. Diogenites form the lower crust of Vesta. Cumulate eucrites are gabbroic rocks formed by accumulation of pigeonite and plagioclase from a mafic magma at depth within the crust, while basaltic eucrites are melt compositions that likely represent shallow-level dikes and sills, and flows. Some basaltic eucrites are richer in incompatible trace elements compared to most eucrites, and these may represent mixed melts contaminated by partial melts of the mafic crust. Differentiation occurred within a few Myr of formation of the earliest solids in the Solar System. Evidence from oxygen isotope compositions and siderophile element contents favor a model of extensive melting of Vesta forming a global magma ocean that rapidly (period of a few Myr) segregated and crystallized to yield a metallic core, olivine-rich mantle, orthopyroxene-rich lower crust and basaltic upper crust. The igneous lithologies were subjected to post-crystallization thermal processing, and most eucrites show textural and mineral-compositional evidence for metamorphism. The cause of this common metamorphism is unclear, but may have resulted from rapid burial of early basalts by later flows caused by high effusion rates on Vesta. The observed surface of Vesta is covered by fragmental debris resulting from impacts, and most HEDs are brecciated. Many eucrites and diogenites are monomict breccias indicating a lack of mixing. However, many HEDs are polymict breccias. Howardites are the most thoroughly mixed polymict breccias, yet only some of them contain evidence for residence in the true regolith. Based on the numbers of meteorites, compositions of howardites, and models of magma ocean solidification, cumulate eucrites and their residual ferroan mafic melts are minor components of the vestan crust. (C) 2014 Published by Elsevier GmbH.
C1 NASA, Lyndon B Johnson Space Ctr, Astromat Res Off XI3, Astromat Res & Explorat Sci Div, Houston, TX 77058 USA.
RP Mittlefehldt, DW (reprint author), NASA, Lyndon B Johnson Space Ctr, Astromat Res Off XI3, Astromat Res & Explorat Sci Div, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM david.w.mittlefehldt@nasa.gov
FU NASA Cosmochemistry Program
FX My career-long infatuation with HEDs and mesosiderites began as a
graduate student at UCLA working under John T. Wasson. Regardless of the
fact that we did not (and still do not) see eyeto-eye on several aspects
of HEDs and mesosiderites, this review would not have been possible
without his mentoring; special thanks to him. Collaborations and
discussions with several colleagues over the years have helped me refine
my thinking on HED genesis: A.W. Beck, D.D. Bogard, P.C. Buchanan, J.S.
Delaney, R. Greenwood, R.H. Hewins, J.H. Jones, A.G.J. Jurewicz, K.
Keil, M.M. Lindstrom, H.Y. McSween, Jr., L.E. Nyquist, H. Palme, J.J.
Papike, R.G. Mayne, C.H. Shearer, H. Takeda, P.H. Warren. Seminal papers
by J.-A. Barrat and A. Yamaguchi have had considerable influence on my
understanding of HED meteorites. I thank these individuals for their
insights. I thank B. Mandler and R. Mayne for some of the graphics used
here, and K. Ross for some of the SEM BSE images used. I thank Associate
Editor K. Keil for inviting me to write this review and for his handling
of the manuscript. Journal reviews by J.-A. Barrat and A. Yamaguchi
resulted in substantial improvements in the manuscript. Support for this
work came from the NASA Cosmochemistry Program.
NR 262
TC 13
Z9 14
U1 8
U2 27
PU ELSEVIER GMBH, URBAN & FISCHER VERLAG
PI JENA
PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY
SN 0009-2819
EI 1611-5864
J9 CHEM ERDE-GEOCHEM
JI Chem Erde-Geochem.
PY 2015
VL 75
IS 2
BP 155
EP 183
DI 10.1016/j.chemer.2014.08.002
PG 29
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CL8OE
UT WOS:000357233200001
ER
PT S
AU Broadway, DM
Weimer, J
Gurgew, D
Lis, T
Ramsey, BD
O'Dell, SL
Gubarev, M
Ames, A
Bruni, R
AF Broadway, David M.
Weimer, Jeffrey
Gurgew, Danielle
Lis, Tomasz
Ramsey, Brian D.
O'Dell, Stephen L.
Gubarev, Mikhail
Ames, A.
Bruni, R.
BE Hudec, R
Pina, L
TI Achieving zero stress in iridium, chromium, and nickel thin films
SO EUV AND X-RAY OPTICS: SYNERGY BETWEEN LABORATORY AND SPACE IV
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on EUV and X-ray Optics - Synergy between Laboratory and
Space IV
CY APR 13-14, 2015
CL Prague, CZECH REPUBLIC
SP SPIE
DE x-ray space telescopes; soft x-ray optical coatings; in-situ measurement
of film stress; thin film characterization; zero stress iridium thin
films
ID INTRINSIC STRESS; METAL-FILMS
AB We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for the intrinsic stress in iridium films. Additionally, we have identified zero stress in iridium shortly after island coalescence in the high adatom mobility growth regime. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film with a surface roughness of 5.0 +/- 0.5 angstrom based x-ray reflectivity (XRR) measurement at CuK alpha. The surface topography was also examined using atomic force microscopy (AFM).
The examination of the stress in these films has been performed with a novel in-situ measurement device. The methodology and sensitivity of the in-situ instrument is also described herein.
C1 [Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gubarev, Mikhail] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Weimer, Jeffrey; Gurgew, Danielle; Lis, Tomasz] Univ Alabama, Huntsville, AL 35899 USA.
[Ames, A.; Bruni, R.] Smithsonian Astrophys Observ, Cambridge, MA 02140 USA.
RP Broadway, DM (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
OI O'Dell, Stephen/0000-0002-1868-8056
NR 15
TC 3
Z9 3
U1 2
U2 11
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-631-2
J9 PROC SPIE
PY 2015
VL 9510
AR 95100E
DI 10.1117/12.2180641
PG 15
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9TE
UT WOS:000356859800013
ER
PT S
AU Camp, J
Barthelmy, S
Petre, R
Gehrels, N
Marshall, F
Ptak, A
Racusin, J
AF Camp, Jordan
Barthelmy, Scott
Petre, Rob
Gehrels, Neil
Marshall, Francis
Ptak, Andy
Racusin, Judith
BE Hudec, R
Pina, L
TI ISS-Lobster: a low-cost wide-field X-ray transient detector on the ISS
SO EUV AND X-RAY OPTICS: SYNERGY BETWEEN LABORATORY AND SPACE IV
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on EUV and X-ray Optics - Synergy between Laboratory and
Space IV
CY APR 13-14, 2015
CL Prague, CZECH REPUBLIC
SP SPIE
DE Gravitational Waves; ISS; Lobster X-ray detector
ID BURSTS
AB ISS-Lobster is a wide-field X-ray transient detector proposed to be deployed on the International Space Station. Through its unique imaging X-ray optics that allow a 30 deg by 30 deg FoV, a 1 arc min position resolution and a 1.6x10(-11) erg/(sec cm(2)) sensitivity in 2000 sec, ISS-Lobster will observe numerous events per year of X-ray transients related to compact objects, including: tidal disruptions of stars by supermassive black holes, supernova shock breakouts, neutron star bursts and superbursts, high redshift Gamma-Ray Bursts, and perhaps most exciting, X-ray counterparts of gravitational wave detections involving stellar mass and possibly supermassive black holes. The mission includes a 3-axis gimbal system that allows fast Target of Opportunity pointing, and a small gamma-ray burst monitor. In this article we focus on ISS-Lobster measurements of X-ray counterparts of detections by the world-wide ground-based gravitational wave network.
C1 [Camp, Jordan; Barthelmy, Scott; Petre, Rob; Gehrels, Neil; Marshall, Francis; Ptak, Andy; Racusin, Judith] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
RP Camp, J (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
NR 18
TC 1
Z9 1
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-631-2
J9 PROC SPIE
PY 2015
VL 9510
AR 951007
DI 10.1117/12.2176745
PG 7
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9TE
UT WOS:000356859800006
ER
PT S
AU O'Dell, SL
Atkins, C
Broadway, DM
Elsner, RF
Gaskin, JA
Gubarev, MV
Kilaru, K
Kolodziejczak, JJ
Ramsey, BD
Roche, JM
Swartz, DA
Tennant, AF
Weisskopf, MC
Zavlin, VE
AF O'Dell, Stephen L.
Atkins, Carolyn
Broadway, David M.
Elsner, Ronald F.
Gaskin, Jessica A.
Gubarev, Mikhail V.
Kilaru, Kiranmayee
Kolodziejczak, Jeffery J.
Ramsey, Brian D.
Roche, Jacqueline M.
Swartz, Douglas A.
Tennant, Allyn F.
Weisskopf, Martin C.
Zavlin, Vyacheslav E.
BE Hudec, R
Pina, L
TI X-ray optics at NASA Marshall Space Flight Center
SO EUV AND X-RAY OPTICS: SYNERGY BETWEEN LABORATORY AND SPACE IV
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on EUV and X-ray Optics - Synergy between Laboratory and
Space IV
CY APR 13-14, 2015
CL Prague, CZECH REPUBLIC
SP SPIE
DE X-ray telescopes; electroformed mirrors; x-ray optics; neutron optics;
differential deposition; coating stress; optics fabrication
ID DIFFERENTIAL DEPOSITION; 1ST IMAGES; TELESCOPE; MIRRORS; SATELLITE; HERO
AB NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators.
This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.
C1 [O'Dell, Stephen L.; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Tennant, Allyn F.; Weisskopf, Martin C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Atkins, Carolyn] Univ Alabama, Huntsville, AL 35899 USA.
[Kilaru, Kiranmayee; Swartz, Douglas A.; Zavlin, Vyacheslav E.] Univ Space Res Assoc, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP O'Dell, SL (reprint author), NASA, MSFC, ZP12 320 Sparkman Dr NW, Huntsville, AL 35805 USA.
EM stephen.l.odell@nasa.gov
OI O'Dell, Stephen/0000-0002-1868-8056
NR 52
TC 1
Z9 1
U1 2
U2 5
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-631-2
J9 PROC SPIE
PY 2015
VL 9510
AR 951003
DI 10.1117/12.2179415
PG 14
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9TE
UT WOS:000356859800002
ER
PT S
AU Weisskopf, MC
Gaskin, J
Tananbaum, H
Vikhlinin, A
AF Weisskopf, Martin C.
Gaskin, Jessica
Tananbaum, Harvey
Vikhlinin, Alexey
BE Hudec, R
Pina, L
TI Beyond Chandra - the X-ray Surveyor
SO EUV AND X-RAY OPTICS: SYNERGY BETWEEN LABORATORY AND SPACE IV
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on EUV and X-ray Optics - Synergy between Laboratory and
Space IV
CY APR 13-14, 2015
CL Prague, CZECH REPUBLIC
SP SPIE
DE X-ray Astronomy; X-ray optics; X-ray gratings; X-ray detectors
AB Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the high energy universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing most, if not all, areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission now named the X-ray Surveyor. This concept study starts with a baseline payload consisting of a high resolution X-ray telescope and an instrument set which may include an X-ray calorimeter, a wide-field imager and a dispersive grating spectrometer and readout. The telescope would consist of highly nested thin shells, for which a number of technical approaches are currently under development, including adjustable X-ray optics, differential deposition, and modern polishing techniques applied to a variety of substrates. In many areas, the mission requirements would be no more stringent than those of Chandra, and the study takes advantage of similar studies for other large area missions carried out over the past two decades. Initial assessments indicate that such an X-ray mission is scientifically compelling, technically feasible, and worthy of a high prioritization by the next American National Academy of Sciences Decadal Survey for Astronomy and Astrophysics.
C1 [Weisskopf, Martin C.; Gaskin, Jessica] NASA, MSFC, Huntsville, AL 35805 USA.
[Tananbaum, Harvey; Vikhlinin, Alexey] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
RP Weisskopf, MC (reprint author), NASA, MSFC, ZP12,320 Sparkman Dr, Huntsville, AL 35805 USA.
EM martin.c.weisskopf@nasa.gov
NR 9
TC 8
Z9 8
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-631-2
J9 PROC SPIE
PY 2015
VL 9510
AR 951002
DI 10.1117/12.2185084
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9TE
UT WOS:000356859800001
ER
PT J
AU Valivarthi, R
Lucio-Martinez, I
Chan, P
Rubenok, A
John, C
Korchinski, D
Duffin, C
Marsili, F
Verma, V
Shaw, MD
Stern, JA
Nam, SW
Oblak, D
Zhou, Q
Slater, JA
Tittel, W
AF Valivarthi, Raju
Lucio-Martinez, Itzel
Chan, Philip
Rubenok, Allison
John, Caleb
Korchinski, Daniel
Duffin, Cooper
Marsili, Francesco
Verma, Varun
Shaw, Mathew D.
Stern, Jeffrey A.
Nam, Sae Woo
Oblak, Daniel
Zhou, Qiang
Slater, Joshua A.
Tittel, Wolfgang
TI Measurement-device-independent quantum key distribution: from idea
towards application
SO JOURNAL OF MODERN OPTICS
LA English
DT Article
DE quantum key distribution; quantum communication; Bell-state measurement
ID DISTRIBUTION-SYSTEM; CRYPTOGRAPHY; NETWORK; SECURITY; PHOTONS; QKD
AB We assess the overall performance of our quantum key distribution (QKD) system implementing the measurement-device-independent (MDI) protocol using components with varying capabilities such as different single-photon detectors and qubit preparation hardware. We experimentally show that superconducting nanowire single-photon detectors allow QKD over a channel featuring 60dB loss, and QKD with more than 600 bits of secret key per second (not considering finite key effects) over a 16dB loss channel. This corresponds to 300 and 80km of standard telecommunication fiber, respectively. We also demonstrate that the integration of our QKD system into FPGA-based hardware (instead of state-of-the-art arbitrary waveform generators) does not impact on its performance. Our investigation allows us to acquire an improved understanding of the trade-offs between complexity, cost and system performance, which is required for future customization of MDI-QKD. Given that our system can be operated outside the laboratory over deployed fiber, we conclude that MDI-QKD is a promising approach to information-theoretic secure key distribution.
C1 [Valivarthi, Raju; Lucio-Martinez, Itzel; Chan, Philip; Rubenok, Allison; John, Caleb; Korchinski, Daniel; Duffin, Cooper; Oblak, Daniel; Zhou, Qiang; Slater, Joshua A.; Tittel, Wolfgang] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB, Canada.
[Valivarthi, Raju; Lucio-Martinez, Itzel; Rubenok, Allison; Korchinski, Daniel; Duffin, Cooper; Oblak, Daniel; Zhou, Qiang; Slater, Joshua A.; Tittel, Wolfgang] Univ Calgary, Dept Phys & Astron, Calgary, AB, Canada.
[Chan, Philip; John, Caleb] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB, Canada.
[Verma, Varun; Nam, Sae Woo] Natl Inst Stand & Technol, Boulder, CO USA.
[Marsili, Francesco; Shaw, Mathew D.; Stern, Jeffrey A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Valivarthi, R (reprint author), Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB, Canada.
EM vrrvaliv@ucalgary.ca
RI Slater, Joshua/F-2523-2011; Tittel, Wolfgang/A-1600-2011
FU Alberta Innovates Technology Futures; National Science and Engineering
Research Council of Canada; Calgary Urban Alliance; National Nature
Science Foundation of China [61405030]; Oversea Academic Training Fund
of the University of Electronic Science and Technology of China; US
Defense Advanced Research Projects Agency InPho Program; Killam Trusts;
National Aeronautics and Space Administration
FX This work was supported through Alberta Innovates Technology Futures,
the National Science and Engineering Research Council of Canada (through
their Discover Grant and CryptoWorks 21 CREATE programs), the Calgary
Urban Alliance, the National Nature Science Foundation of China [grant
number 61405030], the Oversea Academic Training Fund of the University
of Electronic Science and Technology of China, the US Defense Advanced
Research Projects Agency InPho Program, and the Killam Trusts. Part of
the research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. W.T. is a senior fellow of the
Canadian Institute for Advanced Research.
NR 56
TC 13
Z9 13
U1 8
U2 18
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0950-0340
EI 1362-3044
J9 J MOD OPTIC
JI J. Mod. Opt.
PY 2015
VL 62
IS 14
BP 1141
EP 1150
DI 10.1080/09500340.2015.1021725
PG 10
WC Optics
SC Optics
GA CM1CW
UT WOS:000357418700004
ER
PT J
AU Field, RD
Spessa, AC
Aziz, NA
Camia, A
Cantin, A
Carr, R
de Groot, WJ
Dowdy, AJ
Flannigan, MD
Manomaiphiboon, K
Pappenberger, F
Tanpipat, V
Wang, X
AF Field, R. D.
Spessa, A. C.
Aziz, N. A.
Camia, A.
Cantin, A.
Carr, R.
de Groot, W. J.
Dowdy, A. J.
Flannigan, M. D.
Manomaiphiboon, K.
Pappenberger, F.
Tanpipat, V.
Wang, X.
TI Development of a Global Fire Weather Database
SO NATURAL HAZARDS AND EARTH SYSTEM SCIENCES
LA English
DT Article
ID SEA-SURFACE TEMPERATURE; WILDFIRE REGIMES; CHANGING CLIMATE;
DECISION-MAKING; BOREAL FOREST; INDONESIA; DANGER; EMISSIONS; INDEXES;
FUTURE
AB The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 degrees latitude by 2/3 degrees longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.
C1 [Field, R. D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Field, R. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Spessa, A. C.] Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England.
[Spessa, A. C.] Max Planck Inst Chem, Dept Atmospher Chem, D-55128 Mainz, Germany.
[Aziz, N. A.] Malaysian Meteorol Dept, Petaling Jaya, Malaysia.
[Camia, A.] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy.
[Cantin, A.; de Groot, W. J.] Canadian Forest Serv, Nat Resources Canada, Sault Ste Marie, ON, Canada.
[Carr, R.] Canadian Forest Serv, Nat Resources Canada, Edmonton, AB, Canada.
[Dowdy, A. J.] Australian Bur Meteorol, Ctr Australian Weather & Climate Res, Docklands, Vic, Australia.
[Flannigan, M. D.; Wang, X.] Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada.
[Flannigan, M. D.] Western Partnership Wildland Fire Sci, Edmonton, AB, Canada.
[Manomaiphiboon, K.; Tanpipat, V.] King Mongkuts Univ Technol, Joint Grad Sch Energy & Environm, Bangkok, Thailand.
[Pappenberger, F.] European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
[Pappenberger, F.] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Jiangsu, Peoples R China.
[Pappenberger, F.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England.
RP Field, RD (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
EM robert.field@columbia.edu
RI Pappenberger, Florian/A-2839-2009; Dowdy, Andrew/J-3414-2016
OI Pappenberger, Florian/0000-0003-1766-2898; Dowdy,
Andrew/0000-0003-0720-4471
FU Australian Climate Change Science Program (ACCSP); Open University
Research Investment Fellowship scheme; NASA High-End Computing (HEC)
Program through the NASA Center for Climate Simulation (NCCS) at the
Goddard Space Flight Center
FX We thank Jose Moreno and an anonymous reviewer for their short comment
and detailed review, respectively. We thank Steve Taylor for his review
and for identifying and pointing out the error in DMC lag times. VT and
KM thank the Thailand Meteorological Department for providing weather
data, and Prayoonyong Nhuchaiya for guidance. AD was supported by the
Australian Climate Change Science Program (ACCSP). AS was supported by
the Open University Research Investment Fellowship scheme. Resources
supporting this work were provided by the NASA High-End Computing (HEC)
Program through the NASA Center for Climate Simulation (NCCS) at the
Goddard Space Flight Center. All data and code used in generating GFWED
can be obtained from http://data.giss.nasa.gov/impacts/gfwed/.
NR 81
TC 6
Z9 6
U1 3
U2 27
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1561-8633
J9 NAT HAZARD EARTH SYS
JI Nat. Hazards Earth Syst. Sci.
PY 2015
VL 15
IS 6
BP 1407
EP 1423
DI 10.5194/nhess-15-1407-2015
PG 17
WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences;
Water Resources
SC Geology; Meteorology & Atmospheric Sciences; Water Resources
GA CL7CG
UT WOS:000357127100025
ER
PT S
AU Corp, LA
Cook, BD
McCorkel, J
Middleton, EM
AF Corp, Lawrence A.
Cook, Bruce D.
McCorkel, Joel
Middleton, Elizabeth M.
BE Druy, MA
Crocombe, RA
Bannon, DP
TI Data products of NASA Goddard's LiDAR, Hyperspectral, and Thermal
Airborne Imager (G-LiHT)
SO NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES VIII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Next-Generation Spectroscopic Technologies VIII
CY APR 20-22, 2015
CL Baltimore, MD
SP SPIE
DE Remote Sensing; LIDAR; Imaging Spectroscopy; thermal; airborne imaging
ID IMAGING SPECTROSCOPY; SCIENCE; FUSION; FIELD
AB Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA & USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.
C1 [Corp, Lawrence A.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
[Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA.
RP Corp, LA (reprint author), Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
RI McCorkel, Joel/D-4454-2012
OI McCorkel, Joel/0000-0003-2853-2036
NR 19
TC 0
Z9 0
U1 0
U2 11
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-598-8
J9 PROC SPIE
PY 2015
VL 9482
AR 94821D
DI 10.1117/12.2177083
PG 12
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA BD0AF
UT WOS:000357016100037
ER
PT S
AU Daniels, TS
AF Daniels, Taumi S.
BE Druy, MA
Crocombe, RA
Bannon, DP
TI Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy
SO NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES VIII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Next-Generation Spectroscopic Technologies VIII
CY APR 20-22, 2015
CL Baltimore, MD
SP SPIE
DE radiometer; Fourier transform spectrometer; wake vortex; atmospheric
modeling; numerical simulation
ID ATMOSPHERIC FLUXES; CRUISE CONDITIONS; COOLING RATES; AIRCRAFT;
EMISSIONS; VORTICES; PLUME
AB This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.
C1 NASA, Electromagnet & Sensors Branch, Langley Res Ctr, Hampton, VA 23681 USA.
RP Daniels, TS (reprint author), NASA, Electromagnet & Sensors Branch, Langley Res Ctr, Hampton, VA 23681 USA.
EM taumi.daniels@nasa.gov
NR 33
TC 0
Z9 0
U1 1
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-598-8
J9 PROC SPIE
PY 2015
VL 9482
AR 94821B
DI 10.1117/12.2182507
PG 12
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA BD0AF
UT WOS:000357016100036
ER
PT S
AU Winfree, WP
Cramer, KE
Zalameda, JN
Howell, PA
Burke, ER
AF Winfree, William P.
Cramer, K. Elliott
Zalameda, Joseph N.
Howell, Patricia A.
Burke, Eric R.
BE Hsieh, SJ
Zalameda, JN
TI Principal Component Analysis of Thermographic Data
SO THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT SPIE Conference on Thermosense - Thermal Infrared Applications XXXVII
CY APR 20-23, 2015
CL Baltimore, MD
SP SPIE
DE Thermography; Nondestructive Evaluation; Principal Component Analysis;
Composite
AB Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. While a reliable technique for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the "good" material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued where a fixed set of eigenvectors, generated from an analytic model of the thermal response of the material under examination, is used to process the thermal data from composite materials. This method has been applied for characterization of flaws.
C1 [Winfree, William P.; Cramer, K. Elliott; Zalameda, Joseph N.; Howell, Patricia A.; Burke, Eric R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Winfree, WP (reprint author), NASA, Langley Res Ctr, MS 225, Hampton, VA 23681 USA.
EM william.p.winfree@nasa.gov
NR 17
TC 2
Z9 2
U1 0
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-601-5
J9 PROC SPIE
PY 2015
VL 9485
AR 94850S
DI 10.1117/12.2176285
PG 11
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9WC
UT WOS:000356923600024
ER
PT S
AU Winfree, WP
Zalameda, JN
Howell, PA
AF Winfree, William P.
Zalameda, Joseph N.
Howell, Patricia A.
BE Hsieh, SJ
Zalameda, JN
TI Measurement of flaw size from thermographic data
SO THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT SPIE Conference on Thermosense - Thermal Infrared Applications XXXVII
CY APR 20-23, 2015
CL Baltimore, MD
SP SPIE
DE Thermography; Nondestructive Evaluation; Composite; Flaw
characterization
ID TRANSIENT THERMOGRAPHY; AIRCRAFT COMPOSITES; INVERSE SCATTERING;
DEFECTS; DEPTH
AB Simple methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the delamination, since the heat diffuses in the plane parallel to the surface. The result is a temperature profile over the delamination which is larger than the delamination size. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that is much closer to the true size of the delamination. The method is based on an estimate for the thermal response that is a convolution of a Gaussian kernel with the shape of the flaw. The size is determined from both the temporal and spatial thermal response of the exterior surface above the delamination and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data are presented to investigate the limitations of the technique.
C1 [Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Winfree, WP (reprint author), NASA, Langley Res Ctr, Mail Stop 225, Hampton, VA 23681 USA.
EM william.p.winfree@nasa.gov
NR 19
TC 0
Z9 0
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-601-5
J9 PROC SPIE
PY 2015
VL 9485
AR 94850D
DI 10.1117/12.2176292
PG 11
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9WC
UT WOS:000356923600012
ER
PT S
AU Zalameda, JN
Burke, ER
Horne, MR
Bly, JB
AF Zalameda, Joseph N.
Burke, Eric R.
Horne, Michael R.
Bly, James B.
BE Hsieh, SJ
Zalameda, JN
TI Real time fatigue damage growth assessment of a composite three-stringer
panel using passive thermography
SO THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT SPIE Conference on Thermosense - Thermal Infrared Applications XXXVII
CY APR 20-23, 2015
CL Baltimore, MD
SP SPIE
DE Thermal nondestructive evaluation; fatigue damage detection; aerospace
composite inspection; acoustic emission; non-immersion ultrasound
AB Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.
C1 [Zalameda, Joseph N.; Burke, Eric R.] NASA, Langley Res Ctr Hampton, Hampton, VA 23681 USA.
[Horne, Michael R.] NASA, Langley Res Ctr Hampton, Natl Inst Aerosp, Hampton, VA 23681 USA.
[Bly, James B.] Lockheed Martin NASA Langley Res Ctr Hampton, Hampton, VA 23681 USA.
RP Zalameda, JN (reprint author), NASA, Langley Res Ctr Hampton, Hampton, VA 23681 USA.
EM joseph.n.zalameda@nasa.gov
NR 13
TC 0
Z9 0
U1 0
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-601-5
J9 PROC SPIE
PY 2015
VL 9485
AR 948502
DI 10.1117/12.2177719
PG 9
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9WC
UT WOS:000356923600001
ER
PT S
AU Cambrea, LR
Harris, DC
Salem, JA
AF Cambrea, Lee R.
Harris, Daniel C.
Salem, Jonathan A.
BE Zelinski, BJ
TI Weibull analysis and window lifetime prediction: a tutorial
SO WINDOW AND DOME TECHNOLOGIES AND MATERIALS XIV
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Window and Dome Technologies and Materials XIV
CY APR 21-22, 2015
CL Baltimore, MD
SP SPIE
DE Weibull analysis; slow crack growth; proof testing; window design;
window lifetime; transparent ceramics
ID CRACK
AB Mechanical strength measurements of transparent ceramic window material coupons are customarily fit to a Weibull equation that describes the strength and its distribution. Predictions of window lifetime under stress are commonly based on slow crack growth parameters obtained by measuring the mechanical strength of coupons over a range of constant stress rates. This tutorial paper describes how to derive Weibull and slow crack growth parameters from strength measurements and how to use those parameters to predict window lifetime under stress. Proof testing is employed to ensure that a window begins its life with a known, minimum strength.
C1 [Cambrea, Lee R.; Harris, Daniel C.] Naval Air Warfare Ctr, Weap Div, China Lake, CA 93555 USA.
[Salem, Jonathan A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Cambrea, LR (reprint author), Naval Air Warfare Ctr, Weap Div, 1900 N Knox Rd Stop 6303, China Lake, CA 93555 USA.
NR 9
TC 0
Z9 0
U1 0
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-569-8
J9 PROC SPIE
PY 2015
VL 9453
AR 94530A
DI 10.1117/12.2087410
PG 12
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA BC9TC
UT WOS:000356858200007
ER
PT S
AU Murphy, RP
Grein, ME
Gudmundsen, TJ
McCaughan, A
Najafi, F
Berggren, KK
Marsili, F
Dauler, EA
AF Murphy, Ryan P.
Grein, Matthew E.
Gudmundsen, Theodore J.
McCaughan, Adam
Najafi, Faraz
Berggren, Karl K.
Marsili, Francesco
Dauler, Eric A.
BE Itzler, MA
Campbell, JC
TI Large-Area NbN Superconducting Nanowire Avalanche Photon Detectors with
Saturated Detection Efficiency
SO ADVANCED PHOTON COUNTING TECHNIQUES IX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Advanced Photon Counting Techniques IX
CY APR 22-23, 2015
CL Baltimore, MD
SP SPIE
DE Photodetector; Quantum-detector; Single-photon-detector; NbN-SNSPD; SNAP
AB Superconducting circuits comprising SNSPDs placed in parallel-superconducting nanowire avalanche photodetectors, or SNAPs-have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 mu m with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.
C1 [Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; Dauler, Eric A.] MIT, Lincoln Lab, Lexington, MA 02420 USA.
[McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.] MIT, Elect Res Lab, Cambridge, MA 02139 USA.
[Marsili, Francesco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Murphy, RP (reprint author), MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02420 USA.
EM ryan.murphy@ll.mit.edu
NR 10
TC 0
Z9 0
U1 4
U2 12
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-608-4
J9 PROC SPIE
PY 2015
VL 9492
AR 94920E
DI 10.1117/12.2178322
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9MN
UT WOS:000356619900004
ER
PT S
AU Sullivan, W
Beck, J
Scritchfield, R
Skokan, M
Mitra, P
Sun, XL
Abshire, J
Carpenter, D
Lane, B
AF Sullivan, William, III
Beck, Jeffrey
Scritchfield, Richard
Skokan, Mark
Mitra, Pradip
Sun, Xiaoli
Abshire, James
Carpenter, Darren
Lane, Barry
BE Itzler, MA
Campbell, JC
TI Linear Mode Photon Counting From Visible To MWIR With HgCdTe Avalanche
Photodiode Focal Plane Arrays
SO ADVANCED PHOTON COUNTING TECHNIQUES IX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Advanced Photon Counting Techniques IX
CY APR 22-23, 2015
CL Baltimore, MD
SP SPIE
DE single photon counting; avalanche photodiode; HgCdTe; APD; MWIR; excess
noise factor; photon detection efficiency; false event rate
AB Results of characterization data on linear mode photon counting (LMPC) HgCdTe electron-initiated avalanche photodiode (e-APD) focal plane arrays (FPA) are presented that reveal an improved understanding and the growing maturity of the technology. The first successful 2x8 LMPC FPA was fabricated in 2010 [1]. Since then a process validation lot of 2x8 arrays was fabricated. Five arrays from this lot were characterized that replicated the previous 2x8 LMPC array performance. In addition, it was unambiguously verified that readout integrated circuit (ROIC) glow was responsible for most of the false event rate (FER) of the 2010 array. The application of a single layer metal blocking layer between the ROIC and the detector array and optimization of the ROIC biases reduced the FER by an order of magnitude. Photon detection efficiencies (PDEs) of greater than 50% were routinely demonstrated across 5 arrays, with one array reaching a PDE of 70%. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 mu m to 25 mu m resulting in a 2x increase in E-APD gain from 470 on the 2010 array to 1100 on one of the 2013 FPAs. Mean single photon signal to noise ratios of >12 were demonstrated at excess noise factors of 1.2-1.3. NASA Goddard Space Flight Center (GSFC) performed measurements on the delivered FPA that verified the PDE and FER data.
C1 [Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip] DRS Network & Imaging Syst LLC, Dallas, TX 75243 USA.
[Sun, Xiaoli; Abshire, James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Carpenter, Darren; Lane, Barry] A DIC Inc, Longwood, FL 32750 USA.
RP Sullivan, W (reprint author), DRS Network & Imaging Syst LLC, 13544 N Cent Expressway, Dallas, TX 75243 USA.
EM billy.sullivan@drs.com
NR 12
TC 2
Z9 2
U1 0
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-608-4
J9 PROC SPIE
PY 2015
VL 9492
AR 94920T
DI 10.1117/12.2180394
PG 13
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9MN
UT WOS:000356619900013
ER
PT J
AU Tapiador, FJ
Kacimi, S
de Castro, M
Levizzani, V
Katsanos, D
Garcia-Ortega, E
AF Tapiador, Francisco J.
Kacimi, Sahra
de Castro, Manuel
Levizzani, Vincenzo
Katsanos, Dimitrios
Garcia-Ortega, Eduardo
TI Precipitation Science: Observations, Retrievals, and Modeling
SO ADVANCES IN METEOROLOGY
LA English
DT Editorial Material
C1 [Tapiador, Francisco J.; de Castro, Manuel] Univ Castilla La Mancha, Inst Ciencias Ambient ICAM, Toledo 45071, Spain.
[Kacimi, Sahra] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Levizzani, Vincenzo] CNR, ISAC, I-40129 Bologna, Italy.
[Katsanos, Dimitrios] Athens Natl Observ, Athens 11810, Greece.
[Garcia-Ortega, Eduardo] Univ Leon, Atmospher Phys Grp, E-24071 Leon, Spain.
RP Tapiador, FJ (reprint author), Univ Castilla La Mancha, Inst Ciencias Ambient ICAM, Toledo 45071, Spain.
EM francisco.tapiador@uclm.es
RI Levizzani, Vincenzo/A-9070-2013; Garcia-Ortega, Eduardo/A-7088-2012;
OI Levizzani, Vincenzo/0000-0002-7620-5235; Garcia-Ortega,
Eduardo/0000-0002-6414-3081; Katsanos, Dimitrios/0000-0002-1969-7982
NR 0
TC 0
Z9 0
U1 0
U2 1
PU HINDAWI PUBLISHING CORPORATION
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-9309
EI 1687-9317
J9 ADV METEOROL
JI Adv. Meteorol.
PY 2015
AR 843403
DI 10.1155/2015/843403
PG 1
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CM0UP
UT WOS:000357394500001
ER
PT S
AU Checinska, A
Paszczynski, A
Burbank, M
AF Checinska, Aleksandra
Paszczynski, Andrzej
Burbank, Malcolm
BE Doyle, MP
Klaenhammer, TR
TI Bacillus and Other Spore-Forming Genera: Variations in Responses and
Mechanisms for Survival
SO ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 6
SE Annual Review of Food Science and Technology
LA English
DT Review; Book Chapter
DE Bacillus; endospores; biofilm; sterilization resistance; contamination
ID SUPERCRITICAL CARBON-DIOXIDE; SPACECRAFT-ASSEMBLY FACILITY; SUBTILIS
SPORES; HYDROGEN-PEROXIDE; HEAT-RESISTANCE; BIOFILM FORMATION;
BACTERIAL-SPORES; DRY-HEAT; CHLORINE DIOXIDE; UV-RADIATION
AB The ubiquity of Bacilli endospores in soils facilitates their easy transfer routes to other environments, including cleanrooms and low-biomass sites required by many industries such as food production and processing. A bacterial endospore is a metabolically dormant form of life that is much more resistant to heat, desiccation, lack of nutrients, exposure to UV and gamma radiation, organic chemicals, and oxidizing agents than is a vegetative cell. For example, the heat tolerance of endospores depends on multiple factors such as sporulation temperature, core dehydration, and the presence of minerals and small, acid-soluble proteins (SASPs) in the core. This review describes our current understanding of the persistence mechanisms related to spore-formers' biochemical properties and discusses in detail spores' heat, radiation, and reactive chemical resistance. In addition, it discusses the impact of contamination with spores on many areas of human activity, spore adhesive properties, and biofilm contribution to resistance.
C1 [Checinska, Aleksandra; Paszczynski, Andrzej; Burbank, Malcolm] Univ Idaho, Sch Food Sci, Moscow, ID 83844 USA.
[Checinska, Aleksandra; Paszczynski, Andrzej; Burbank, Malcolm] Washington State Univ, Pullman, WA 99164 USA.
RP Paszczynski, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Aleksandra.Checinska@jpl.nasa.gov; andrzej@uidaho.edu;
mburbank@alumni.uidaho.edu
NR 123
TC 11
Z9 11
U1 9
U2 42
PU ANNUAL REVIEWS
PI PALO ALTO
PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA
SN 1941-1413
BN 978-0-8243-4906-6
J9 ANNU REV FOOD SCI T
JI Annu. Rev. Food Sci. Technol.
PY 2015
VL 6
BP 351
EP 369
DI 10.1146/annurev-food-030713-092332
PG 19
WC Food Science & Technology
SC Food Science & Technology
GA BC9MZ
UT WOS:000356626700015
PM 25705935
ER
PT S
AU Prasad, N
Nemir, D
Beck, J
Maddux, J
Taylor, P
AF Prasad, Narasimha
Nemir, David
Beck, Jan
Maddux, Jay
Taylor, Patrick
BE Dhar, NK
Dutta, AK
TI Inhomogeneous Thermoelectric Materials: Improving Overall zT by
Localized Property Variations
SO ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS VI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Energy Harvesting and Storage - Materials, Devices, and
Applications VI
CY APR 21, 2015
CL Baltimore, MD
SP SPIE
DE Thermoelectric measurements; Seebeck coefficient; Peltier effect;
thermal conductivity; isothermal
ID PERFORMANCE; ALLOYS
AB The search for improved thermoelectric materials is driven in part by the desire to convert otherwise wasted low-temperature heat into useful electricity. In this work, we demonstrate a new path towards materials having higher overall zT, and consequently improved capacity to obtain more electrical power from a given content of heat. We produced alloys of (Bi,Sb)(2)Te-3 using a special gas atomization process that is capable of producing source powder material having nanometer-scale grain size. When impulse-compacted by shockwave consolidation, the obtained dense solid will retain its nanostructure because insufficient time and temperature are available for the kinetics of any appreciable grain growth to proceed. However, if there is initial non-uniformity in the properties of the source powder, or if there is stress non-symmetries during shockwave consolidation, then the obtained consolidated material may have locally inhomogeneous properties distributed throughout the material. Thermoelectric property measurements from selected regions within the consolidated sample indicate a wide distribution of properties. For example, the thermal conductivity at room temperature ranged from as low as 1.30 Watts/m-K in one region to higher than 3.00 Watts/m-K in a neighboring region. The electrical resistivity showed similar variation from as low as 0.5 m Omega-cm to as high as 1.5 m Omega-cm. Individually, those regions exhibited thermoelectric material figure-of-merit, zT values ranging between 0.3 and 0.4. However, when combined into a dense nanocomposite, the overall ensemble zT approaches 0.7 which is nearly a factor of 2 higher.
C1 [Prasad, Narasimha] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Nemir, David; Beck, Jan] TXL Grp Inc, El Paso, TX 79903 USA.
[Maddux, Jay; Taylor, Patrick] US Army Res Lab, Adelphi, MD 20783 USA.
RP Prasad, N (reprint author), NASA, Langley Res Ctr, 5 N Dryden St,MS 468, Hampton, VA 23681 USA.
EM narasimha.s.prasad@nasa.gov
NR 12
TC 1
Z9 1
U1 0
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-609-1
J9 PROC SPIE
PY 2015
VL 9493
AR 949305
DI 10.1117/12.2181143
PG 7
WC Energy & Fuels; Engineering, Electrical & Electronic; Optics; Physics,
Applied
SC Energy & Fuels; Engineering; Optics; Physics
GA BC9LM
UT WOS:000356606000004
ER
PT S
AU Frost, SA
Gorospe, GE
Wright, CHG
Barrett, SF
AF Frost, Susan A.
Gorospe, George E.
Wright, Cameron H. G.
Barrett, Steven F.
BE Pickrell, G
Udd, E
Du, HH
TI Biomimetic optical sensor for aerospace applications
SO FIBER OPTIC SENSORS AND APPLICATIONS XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Fiber Optic Sensors and Applications XII
CY APR 22-23, 2015
CL Baltimore, MD
SP SPIE
DE optical sensor; biomimetic; target tracking; deflection measurement
AB We report on a fiber optic sensor based on the physiological aspects of the eye and vision-related neural layers of the common housefly (Musca domestica) that has been developed and built for aerospace applications. The intent of the research is to reproduce select features from the fly's vision system that are desirable in image processing, including high functionality in low-light and low-contrast environments, sensitivity to motion, compact size, lightweight, and low power and computation requirements. The fly uses a combination of overlapping photoreceptor responses that are well approximated by Gaussian distributions and neural superposition to detect image features, such as object motion, to a much higher degree than just the photoreceptor density would imply. The Gaussian overlap in the biomimetic sensor comes from the front-end optical design, and the neural superposition is accomplished by subsequently combining the signals using analog electronics. The fly eye sensor is being developed to perform real-time tracking of a target on a flexible aircraft wing experiencing bending and torsion loads during flight. We report on results of laboratory experiments using the fly eye sensor to sense a target moving across its field of view.
C1 [Frost, Susan A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Gorospe, George E.] SGT, Moffett Field, CA 94035 USA.
[Wright, Cameron H. G.; Barrett, Steven F.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82071 USA.
RP Frost, SA (reprint author), NASA, Ames Res Ctr, POB 1,M-S 269-3, Moffett Field, CA 94035 USA.
EM susan.frost@nasa.gov
NR 25
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-596-4
J9 PROC SPIE
PY 2015
VL 9480
AR 94800M
DI 10.1117/12.2176662
PG 9
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0AJ
UT WOS:000357019100017
ER
PT S
AU Nguyen, TX
Ely, JJ
Szatkowski, GN
AF Nguyen, Truong X.
Ely, Jay J.
Szatkowski, George N.
BE Pickrell, G
Udd, E
Du, HH
TI A Fiber-Optic Current Sensor for Lightning Measurement Applications
SO FIBER OPTIC SENSORS AND APPLICATIONS XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Fiber Optic Sensors and Applications XII
CY APR 22-23, 2015
CL Baltimore, MD
SP SPIE
DE Faraday Effect; current sensor; fiber optic; lightning
AB An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements.
Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range.
Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
C1 [Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Nguyen, TX (reprint author), NASA, Langley Res Ctr, 1 S Wright St, Hampton, VA 23681 USA.
NR 13
TC 0
Z9 0
U1 7
U2 14
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-596-4
J9 PROC SPIE
PY 2015
VL 9480
AR 94800X
DI 10.1117/12.2179195
PG 12
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BD0AJ
UT WOS:000357019100024
ER
PT J
AU Comiso, JC
Perez, GJP
Stock, LV
AF Comiso, Josefino C.
Perez, Gay Jane P.
Stock, Larry V.
TI Enhanced Pacific Ocean Sea Surface Temperature and Its Relation to
Typhoon Haiyan
SO JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT
LA English
DT Article
DE Typhoon Haiyan; SST; Warm Pool
ID TROPICAL CYCLONES; INTENSITY; CLIMATE; HURRICANES
AB Typhoon Haiyan, which devastated the Visayan Islands in the Philippines on November 8, 2013 was recorded as the strongest typhoon ever-observed using satellite data. Typhoons in the region usually originate from the mid-Pacific region that includes the Warm Pool, which is regarded as the warmest ocean surface region globally. Two study areas were considered: one in the Warm Pool Region and the other in the West Pacific Region near the Philippines. Among the most important factors that affect the strength of a typhoon are sea surface temperature (SST) and water vapor It is remarkable that in November 2013 the average SST in the Warm Pool Region was the highest observed during the 1981 to 2014 period while that of the West Pacific Region was among the highest as well. Moreover the increasing trend in SST was around 0.20 degrees C per decade in the warm pool region and even higher at 0.23 degrees C per decade in the West Pacific region. The yearly minimum SST has also been increasing suggesting that the temperature of the ocean mixed layer is also increasing. Further analysis indicated that water vapor, clouds, winds and sea level pressure for the same period did not reveal strong signals associated with the 2013 event. The SST is shown to be well-correlated with wind strength of historically strong typhoons in the country and the observed trends in SST suggest that extremely destructive typhoons like Haiyan are likely to occur in the future.
C1 [Comiso, Josefino C.; Stock, Larry V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Perez, Gay Jane P.] Univ Philippines, Inst Environm Sci & Meteorol, Quezon City 1101, Philippines.
[Stock, Larry V.] SGT, Greenbelt, MD 20770 USA.
RP Comiso, JC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM josefino.c.comiso@nasa.gov
FU DOST; NASA [NNH13ZDA001N-TERAQEA]
FX The authors are grateful to Dr. Vicky Espaldon for reviewing a
preliminary version of this manuscript and for providing encouragement
and advise. G. Perez is grateful to DOST for support in this project. J.
Comiso acknowledges NASA's support under grant # NNH13ZDA001N-TERAQEA.
NR 26
TC 1
Z9 1
U1 4
U2 12
PU UNIV PHILIPPINES LOS BANOS, COLLEGE
PI LAGUNA
PA SCHOOL ENVIRONMENTAL SCIENCE & MANAGEMENT, LAGUNA, 4031, PHILIPPINES
SN 0119-1144
J9 J ENVIRON SCI MANAG
JI J. Environ. Sci. Manage.
PY 2015
VL 18
IS 1
BP 1
EP 10
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA CL6GI
UT WOS:000357065200001
ER
PT S
AU Allman, MS
Verma, VB
Stevens, M
Gerrits, T
Horansky, RD
Lita, AE
Marsili, F
Beyer, A
Shaw, MD
Kumor, D
Mirin, R
Nam, SW
AF Allman, M. S.
Verma, V. B.
Stevens, M.
Gerrits, T.
Horansky, R. D.
Lita, A. E.
Marsili, F.
Beyer, A.
Shaw, M. D.
Kumor, D.
Mirin, R.
Nam, S. W.
BE Prochazka, I
Sobolewski, R
James, RB
TI A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector
Array with Integrated Multiplexed Readout
SO PHOTON COUNTING APPLICATIONS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT SPIE Conference on Photon Counting Applications
CY APR 13-15, 2015
CL Prague, CZECH REPUBLIC
SP SPIE
DE nanowire; SNSPD; array
ID CIRCUIT; EFFICIENCY
AB We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.
C1 [Allman, M. S.; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.] NIST, Boulder, CO 80305 USA.
[Marsili, F.; Beyer, A.; Shaw, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Kumor, D.] Purdue Univ, W Lafayette, IN 47907 USA.
RP Allman, MS (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA.
OI Mirin, Richard/0000-0002-4472-4655
NR 17
TC 0
Z9 0
U1 2
U2 10
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-625-1
J9 PROC SPIE
PY 2015
VL 9504
AR 950402
DI 10.1117/12.2181024
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC9LO
UT WOS:000356607100002
ER
PT S
AU Dolph, C
Moore, AJ
Schubert, M
Woodell, G
AF Dolph, Chester
Moore, Andrew J.
Schubert, Matthew
Woodell, Glenn
BE Pham, KD
Chen, G
TI Anomalous cases of astronaut helmet detection
SO SENSORS AND SYSTEMS FOR SPACE APPLICATIONS VIII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Sensors and Systems for Space Applications
CY APR 20-21, 2015
CL Baltimore, MD
SP SPIE
DE EVA; Machine vision; Astronaut safety; Extra-atmospheric search and
rescue; Space suit augmentation
ID FEATURES
AB An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.
C1 [Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn] NASA, Computat Vis Lab, Langley Res Ctr, Hampton, VA 23681 USA.
[Dolph, Chester] Old Dominion Univ, Vis Lab, Norfolk, VA 23529 USA.
[Schubert, Matthew] Christopher Newport Univ, Newport News, VA 23606 USA.
Natl Inst Aerosp, Hampton, VA 23666 USA.
Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
RP Dolph, C (reprint author), NASA, Computat Vis Lab, Langley Res Ctr, 8 North Dryden St, Hampton, VA 23681 USA.
EM andrew.j.moore@nasa.gov
NR 9
TC 0
Z9 0
U1 3
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-585-8
J9 PROC SPIE
PY 2015
VL 9469
AR 946906
DI 10.1117/12.2176743
PG 9
WC Engineering, Aerospace; Engineering, Electrical & Electronic; Optics;
Physics, Applied
SC Engineering; Optics; Physics
GA BC9WB
UT WOS:000356922000005
ER
PT J
AU Arnold, SR
Emmons, LK
Monks, SA
Law, KS
Ridley, DA
Turquety, S
Tilmes, S
Thomas, JL
Bouarar, I
Flemming, J
Huijnen, V
Mao, J
Duncan, BN
Steenrod, S
Yoshida, Y
Langner, J
Long, Y
AF Arnold, S. R.
Emmons, L. K.
Monks, S. A.
Law, K. S.
Ridley, D. A.
Turquety, S.
Tilmes, S.
Thomas, J. L.
Bouarar, I.
Flemming, J.
Huijnen, V.
Mao, J.
Duncan, B. N.
Steenrod, S.
Yoshida, Y.
Langner, J.
Long, Y.
TI Biomass burning influence on high-latitude tropospheric ozone and
reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP
simulations
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID HIGH NORTHERN LATITUDES; PEROXYACETYL NITRATE PAN; GAS-PHASE REACTIONS;
ATMOSPHERIC CHEMISTRY; SATELLITE-OBSERVATIONS; PHOTOCHEMICAL DATA;
SOURCE ATTRIBUTION; POLLUTION TRANSPORT; ARCTIC TROPOSPHERE; LAGRANGIAN
MODEL
AB We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (>50 degrees N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multimodel comparison exercise. In model air masses dominated by fire emissions, Delta O-3/Delta CO values ranged between 0.039 and 0.196 ppbv ppbv(-1) (mean: 0.113 ppbv ppbv(-1)) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppb(-1) (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model Delta PAN/Delta CO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger Delta PAN/Delta CO values (4.47 to 7.00 pptv ppbv(-1)) than GEOS5-forced models (1.87 to 3.28 pptv ppbv(-1)), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O-3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer.
C1 [Arnold, S. R.; Monks, S. A.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England.
[Emmons, L. K.; Tilmes, S.] NCAR, Atmospher Chem Div, Boulder, CO USA.
[Law, K. S.; Thomas, J. L.; Bouarar, I.] Univ Versailles St Quentin, Univ Paris 06, Paris, France.
[Law, K. S.; Thomas, J. L.; Bouarar, I.] CNRS INSU, UMR 8190, Paris, France.
[Ridley, D. A.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA.
[Turquety, S.; Long, Y.] CNRS, IPSL, Lab Meteorol Dynam, UMR8539, F-91128 Palaiseau, France.
[Flemming, J.] ECMWF, Reading, Berks, England.
[Huijnen, V.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
[Mao, J.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
[Mao, J.] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Duncan, B. N.; Steenrod, S.; Yoshida, Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Langner, J.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden.
RP Arnold, SR (reprint author), Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England.
EM s.arnold@leeds.ac.uk
RI Mao, Jingqiu/F-2511-2010; Duncan, Bryan/A-5962-2011; Emmons,
Louisa/R-8922-2016;
OI Mao, Jingqiu/0000-0002-4774-9751; Emmons, Louisa/0000-0003-2325-6212;
Arnold, Steve/0000-0002-4881-5685; Huijnen, Vincent/0000-0002-2814-8475;
MONKS, SARAH/0000-0003-3474-027X
FU NCAR Advanced Study Program via a Faculty Fellowship award; NCAR
Atmospheric Chemistry Division; EurEX project - UK Natural Environment
Research Council [NE/H020241/1]; US National Science Foundation;
National Aeronautics and Space Administration through the Science
Mission Directorate, Tropospheric Composition Program [NNX08AD22G];
project Agence National de Recherche (ANR) Climate Impact of Short-lived
Climate Forcers and Methane in the Arctic (CLIMSLIP) [Blanc SIMI 5-6 021
01]; project Agence National de Recherche (ANR) CLIMSLIP-LEFE
(CNRS-INSU); European Union [283576]; Swedish Environmental Protection
Agency [NV-09414-12]; Swedish Climate and Clean Air research programme,
SCAC
FX S. R. Arnold acknowledges support from the NCAR Advanced Study Program
via a Faculty Fellowship award, and the NCAR Atmospheric Chemistry
Division. S. R. Arnold and S. A. Monks were supported by the EurEX
project, funded by the UK Natural Environment Research Council (ref:
NE/H020241/1). L. K. Emmons and S. Tilmes acknowledge the National
Center for Atmospheric Research, which is sponsored by the US National
Science Foundation. Author L. K. Emmons acknowledges support from the
National Aeronautics and Space Administration under Award No. NNX08AD22G
issued through the Science Mission Directorate, Tropospheric Composition
Program. Authors K. S. Law, J. L. Thomas, S. Turquety and Y. Long
acknowledge support from projects Agence National de Recherche (ANR)
Climate Impact of Short-lived Climate Forcers and Methane in the Arctic
(CLIMSLIP) Blanc SIMI 5-6 021 01 and CLIMSLIP-LEFE (CNRS-INSU). V.
Huijnen acknowledges funding from the European Union's Seventh Framework
Programme (FP7) under Grant Agreement no. 283576. Contributions from the
Swedish Meteorological and Hydrological Institute were funded by the
Swedish Environmental Protection Agency under contract NV-09414-12 and
through the Swedish Climate and Clean Air research programme, SCAC.
NR 60
TC 7
Z9 8
U1 2
U2 15
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 11
BP 6047
EP 6068
DI 10.5194/acp-15-6047-2015
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CK4GG
UT WOS:000356180900004
ER
PT J
AU Gong, J
Wu, DL
Limpasuvan, V
AF Gong, J.
Wu, D. L.
Limpasuvan, V.
TI Meridionally tilted ice cloud structures in the tropical upper
troposphere as seen by CloudSat
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID ANGULAR-DISTRIBUTION MODELS; GENERAL-CIRCULATION MODEL; RADIATIVE FLUX
ESTIMATION; ENERGY SYSTEM INSTRUMENT; HORIZONTAL INHOMOGENEITY; TERRA
SATELLITE; PART I; OVERLAP; IMPACT; MICROPHYSICS
AB It remains challenging to quantify global cloud properties and uncertainties associated with their impacts on climate change because of our poor understanding of cloud three-dimensional (3-D) structures from observations and unrealistic characterization of 3-D cloud effects in global climate models (GCMs). In this study we find cloud 3-D effects can cause significant error in cloud ice and radiation measurements if it is not taken into account appropriately.
One of the cloud 3-D complexities, the slantwise tilt structure, has not received much attention in research and even less has been reported considering a global perspective. A novel approach is presented here to analyze the ice cloud water content (IWC) profiles retrieved from CloudSat and a joint radar-lidar product (DARDAR). By integrating IWC profiles along different tilt angles, we find that upper-troposphere (UT) ice cloud mass between 11 and 17 km is tilted poleward from active convection centers in the tropics [30 degrees S, 30 degrees N]. This systematic tilt in cloud mass structure is expected from the mass conservation principle of the Hadley circulation with the divergent flow of each individual convection/convective system from down below, and its existence is further confirmed from cloud-resolving-scale Weather Research and Forecasting (WRF) model simulations. Thus, additive effects of tilted cloud structures can introduce 5-20% variability by its nature or produce errors to satellite cloud/hydrometeor ice retrievals if simply converting it from slant to nadir column. A surprising finding is the equatorward tilt in middle tropospheric (5-11 km) ice clouds, which is also evident in high-resolution model simulations but not in coarse-resolution simulations with cumulus parameterization. The observed cloud tilt structures are intrin-sic properties of tropical clouds, producing synoptic distributions around the Intertropical Convergence Zone (ITCZ). These findings imply that current interpretations based on over-simplified cloud vertical structures could lead to considerable cloud measurement errors and have a subsequent impact on understanding cloud radiative, dynamical and hydrological properties.
C1 [Gong, J.] Univ Space Res Assoc, Columbia, MD 21044 USA.
[Gong, J.; Wu, D. L.] NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD 20771 USA.
[Limpasuvan, V.] Coastal Carolina Univ, Sch Coastal & Marine Syst Sci, Conway, SC USA.
RP Gong, J (reprint author), Univ Space Res Assoc, Columbia, MD 21044 USA.
EM jie.gong@nasa.gov
RI Wu, Dong/D-5375-2012
FU NASA [NNH10ZDA001N-ESDRERR]; National Science Foundation (NSF)
[AGS-1116123, AGS-MRI-0958616]; Coastal Carolina University Kerns
Palmetto Professorship endowment
FX This work is performed at the NASA Goddard Space Flight Center with
support from the NASA NNH10ZDA001N-ESDRERR (Earth System Data Records
Uncertainty Analysis) project. V. Limpasuvan was supported by the
National Science Foundation (NSF) under grants AGS-1116123 and
AGS-MRI-0958616 and the Coastal Carolina University Kerns Palmetto
Professorship endowment. The CloudSat data processed and stored at
Colorado State University is appreciated. All data from this study are
available upon request by sending an email to the corresponding author.
NR 30
TC 0
Z9 0
U1 1
U2 8
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 11
BP 6271
EP 6281
DI 10.5194/acp-15-6271-2015
PG 11
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CK4GG
UT WOS:000356180900017
ER
PT J
AU Creamean, JM
Ault, AP
White, AB
Neiman, PJ
Ralph, FM
Minnis, P
Prather, KA
AF Creamean, J. M.
Ault, A. P.
White, A. B.
Neiman, P. J.
Ralph, F. M.
Minnis, P.
Prather, K. A.
TI Impact of interannual variations in sources of insoluble aerosol species
on orographic precipitation over California's central Sierra Nevada
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID CLOUD CONDENSATION NUCLEI; SLIGHTLY SOLUBLE ORGANICS; WESTERN
UNITED-STATES; ICE-NUCLEATION; AIR-POLLUTION; ATMOSPHERIC RIVERS;
INORGANIC SALT; NORTH-AMERICA; DUST; PARTICLES
AB Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater field campaign (2009-2011), the variability and associated impacts of different aerosol sources on precipitation were investigated in the California Sierra Nevada using an aerosol time-of-flight mass spectrometer for precipitation chemistry, S-band profiling radar for precipitation classification, remote sensing measurements of cloud properties, and surface meteorological measurements. The composition of insoluble residues in precipitation samples collected at a surface site contained mostly local biomass burning and longrange- transported dust and biological particles (2009), local sources of biomass burning and pollution (2010), and longrange transport (2011). Although differences in the sources of insoluble residues were observed from year to year, the most consistent source of dust and biological residues were associated with storms consisting of deep convective cloud systems with significant quantities of precipitation initiated in the ice phase. Further, biological residues were dominant (up to 40 %) during storms with relatively warm cloud temperatures (up to -15 degrees C), supporting the important role bioparticles can play as ice nucleating particles. On the other hand, lower percentages of residues from local biomass burning and pollution were observed over the three winter seasons (on average 31 and 9 %, respectively). When precipitation quantities were relatively low, these insoluble residues most likely served as CCN, forming smaller more numerous cloud droplets at the base of shallow cloud systems, and resulting in less efficient riming processes. Ultimately, the goal is to use such observations to improve the mechanistic linkages between aerosol sources and precipitation processes to produce more accurate predictive weather forecast models and improve water resource management.
C1 [Creamean, J. M.; White, A. B.; Neiman, P. J.] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO 80304 USA.
[Creamean, J. M.; Ault, A. P.; Prather, K. A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA.
[Ralph, F. M.; Prather, K. A.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Minnis, P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Prather, KA (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM kprather@ucsd.edu
RI Ault, Andrew/E-4594-2011; Prather, Kimberly/A-3892-2008
OI Ault, Andrew/0000-0002-7313-8559; Creamean, Jessie/0000-0003-3819-5600;
Prather, Kimberly/0000-0003-3048-9890
FU California Energy Commission [UCOP/CIEE C-09-07, CEC 500-09-043];
National Research Council; NASA; DOE ARM Program
FX Surface meteorological measurements and S-PROF radar data were retrieved
from NOAA HMT-West (http://hmt.noaa.gov/). Funding was provided by the
California Energy Commission under contract UCOP/CIEE C-09-07 and CEC
500-09-043. J. Creamean was partially supported by the National Research
Council Research Associateship Program. P. Minnis was supported by the
NASA Modeling, Analysis, and Prediction Program and the DOE ARM Program.
J. Mayer, D. Collins, J. Cahill, M. Zauscher, E. Fitzgerald, C. Gaston,
and M. Moore from UCSD provided assistance with equipment preparation
and setup at SPD. The deployment of the NOAA and UCSD/SIO equipment at
SPD involved many field staff, particularly C. King (NOAA). The Forest
Hill Power Utility District is acknowledged for hosting the sampling
site at SPD. A. Martin (UCSD), G. Wick (NOAA), and D. Gottas (NOAA)
provided insightful discussions.
NR 72
TC 8
Z9 8
U1 3
U2 38
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 11
BP 6535
EP 6548
DI 10.5194/acp-15-6535-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CK4GG
UT WOS:000356180900034
ER
PT J
AU Arkoosh, MR
Dietrich, JP
AF Arkoosh, Mary R.
Dietrich, Joseph P.
TI Pathogenicity of Members of the Vibrionaceae Family to Cultured Juvenile
Sablefish
SO JOURNAL OF AQUATIC ANIMAL HEALTH
LA English
DT Article
ID SALMON ONCORHYNCHUS-TSHAWYTSCHA; ANOPLOPOMA-FIMBRIA; FISH PATHOGEN;
RENIBACTERIUM-SALMONINARUM; ANGUILLARUM; STRAINS; ENVIRONMENT;
VIBRIOSIS; DISEASES; LARVAE
AB Sablefish Anoplopoma fimbria are a prized seafood species due to their high oil content and white flaky flesh. Raising these species in culture can help to provide an important source of protein for humans and relief to declining wild fish populations. Understanding the environmental factors that influence the production of Sablefish is important for successful culturing. The significance of host-pathogen interactions in Sablefish culture and the resulting environmental implications are unknown. Pathogens could potentially cause losses of cultured Sablefish stocks due to disease, while Sablefish cultured in net pens may also serve as reservoirs for pathogens and potentially transmit disease to wild fish species. In this initial study, the susceptibility of juvenile Sablefish to three bacterial pathogens from the family Vibrionaceae was examined. Listonella anguillarum, Vibrio ordalii, and V. splendidus can pose serious economic threats to cultured fish and shellfish. Groups of juvenile Sablefish were exposed to five concentrations of each of the pathogens. Sablefish were susceptible to L. anguillarum, but were resistant to V. ordalii and V. splendidus at exposure concentrations of <= 1.32 x 10(7) CFU/mL and <= 3.57 x 10(6) CFU/mL, respectively. The greatest L. anguillarum concentration examined (8.7 x 10(6) CFU/mL) resulted in 24% mortality in juvenile Sablefish. A 24% loss of Sablefish stock could significantly influence an aquaculture program. As determined by multiple logistic regression, the survival of Sablefish to L. anguillarum exposure was significantly affected by their body mass, and larger fish had a greater probability of survival. Aquaculture operations could employ various strategies to minimize the loss of juvenile Sablefish by accounting for their size and known susceptibilities to pathogens.
C1 [Arkoosh, Mary R.; Dietrich, Joseph P.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Environm & Fisheries Sci Div, Newport, OR 97365 USA.
RP Arkoosh, MR (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Environm & Fisheries Sci Div, 2032 Southeast OSU Dr, Newport, OR 97365 USA.
EM mary.arkoosh@noaa.gov
FU NOAA Office of Aquaculture
FX The NOAA Office of Aquaculture provided funds. We thank Rick Goetz and
Bill Fairgrieve of NOAA Manchester Research Station for supplying the
juvenile Sablefish and for insightful comments on the experimental
design and manuscript.
NR 52
TC 1
Z9 1
U1 3
U2 8
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0899-7659
EI 1548-8667
J9 J AQUAT ANIM HEALTH
JI J. Aquat. Anim. Health
PY 2015
VL 27
IS 2
BP 96
EP 103
DI 10.1080/08997659.2015.1019159
PG 8
WC Fisheries; Veterinary Sciences
SC Fisheries; Veterinary Sciences
GA CK7AP
UT WOS:000356381800004
PM 25970236
ER
PT J
AU Lamb, KG
Warn-Varnas, A
AF Lamb, K. G.
Warn-Varnas, A.
TI Two-dimensional numerical simulations of shoaling internal solitary
waves at the ASIAEX site in the South China Sea
SO NONLINEAR PROCESSES IN GEOPHYSICS
LA English
DT Article
ID SLOPE-SHELF TOPOGRAPHY; TRAPPED CORES; TIDAL FLOW; GENERATION;
EVOLUTION; BREAKING; SOLITONS; DYNAMICS; ROTATION; BEHAVIOR
AB The interaction of barotropic tides with Luzon Strait topography generates some of the world's largest internal solitary waves which eventually shoal and dissipate on the western side of the northern South China Sea. Two-dimensional numerical simulations of the shoaling of a single internal solitary wave at the site of the Asian Seas International Acoustic Experiment (ASIAEX) have been undertaken in order to investigate the sensitivity of the shoaling process to the stratification and the underlying bathymetry and to explore the influence of rotation. The bulk of the simulations are inviscid; however, exploratory simulations using a vertical eddy-viscosity confined to a near bottom layer, along with a no-slip boundary condition, suggest that viscous effects may become important in water shallower than about 200 m. A shoaling solitary wave fissions into several waves. At depths of 200-300 m the front of the leading waves become nearly parallel to the bottom and develop a very steep back as has been observed. The leading waves are followed by waves of elevation (pedestals) that are conjugate to the waves of depression ahead and behind them. Horizontal resolutions of at least 50 m are required to simulate these well. Wave breaking was found to occur behind the second or third of the leading solitary waves, never at the back of the leading wave. Comparisons of the shoaling of waves started at depths of 1000 and 3000 m show significant differences and the shoaling waves can be significantly non-adiabatic even at depths greater than 2000 m. When waves reach a depth of 200 m, their amplitudes can be more than 50% larger than the largest possible solitary wave at that depth. The shoaling behaviour is sensitive to the presence of small-scale features in the bathymetry: a 200 m high bump at 700 m depth can result in the generation of many mode-two waves and of higher mode waves. Sensitivity to the stratification is considered by using three stratifications based on summer observations. They primarily differ in the depth of the thermocline. The generation of mode-two waves and the behaviour of the waves in shallow water is sensitive to this depth. Rotation affects the shoaling waves by reducing the amplitude of the leading waves via the radiation of long trailing inertiagravity waves. The nonlinear-dispersive evolution of these inertia-gravity waves results in the formation of secondary mode-one wave packets.
C1 [Lamb, K. G.] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada.
[Warn-Varnas, A.] Naval Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS 39539 USA.
RP Lamb, KG (reprint author), Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada.
EM kglamb@uwaterloo.ca
FU Office of Naval Research [PE 62435]; Natural Sciences and Engineering
Research Council of Canada (NSERC); Canadian Foundation for Innovation
FX This work is supported by the Office of Naval Research under PE 62435
(A. Warn-Varnas) and grants from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Canadian Foundation for
Innovation (K. Lamb). The facilities of the Shared Hierarchical Academic
Research Computing Network (SHARCNET: http://www.sharcnet.ca) and
Compute/Calcul Canada were used for some of this work.
NR 51
TC 2
Z9 2
U1 5
U2 17
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1023-5809
J9 NONLINEAR PROC GEOPH
JI Nonlinear Process Geophys.
PY 2015
VL 22
IS 3
BP 289
EP 312
DI 10.5194/npg-22-289-2015
PG 24
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
GA CL1AM
UT WOS:000356674400004
ER
PT S
AU Cooper, C
Strobbia, P
Schultheis, E
Prasad, N
Arnold, B
Choa, FS
Singh, NB
AF Cooper, Christopher
Strobbia, Pietro
Schultheis, Emily
Prasad, Narasimha
Arnold, Bradley
Choa, Fow-Sen
Singh, N. B.
BE Senesky, DG
Dekate, S
TI Growth and morphology of lead tin selenide for MWIR detectors
SO SENSORS FOR EXTREME HARSH ENVIRONMENTS II
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Sensors for Extreme Harsh Environments II
CY APR 22-23, 2015
CL Baltimore, MD
SP SPIE
DE Detector; Infrared; Resistivity; Morphology; Physical Vapor deposition;
Lead Selenide; Lead Tin Selenide
AB A great deal of research has been performed on developing room temperature mid wave infrared (MWIR) and long wave infrared (LWIR) detectors to replace very costly mercury cadmium telluride based detectors. Among the more studied materials for high operating temperature detectors, PbSe and PbSe-type heavy metal selenides have been grown in the bulk, thin film and nano crystal morphologies. To better understand the effects of the substrate on the properties of these thin films, we have deposited lead selenide by physical vapor transport (PVT) method on high-resistivity Si substrates and studied the characteristics of the film. Growth on silicon and glass substrates showed different morphologies compared to pure lead selenide material. It was seen that materials grown on a glass substrate possessed different morphology after annealing. FTIR was used to calculate bandgap information comparison with undoped PbSe. We will describe the details of the growth method, effect of substrate on nucleation and morphology of the pure and lead selenide material and band gap comparisons between substrates.
C1 [Cooper, Christopher; Strobbia, Pietro; Schultheis, Emily; Arnold, Bradley; Choa, Fow-Sen; Singh, N. B.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA.
[Prasad, Narasimha] NASA, Langley Res Ctr, Laser Remote Sensing Branch, Hampton, VA 23681 USA.
RP Singh, NB (reprint author), Univ Maryland Baltimore Cty, 1000 Hilltop Circle, Baltimore, MD 21250 USA.
EM singhna@umbc.edu
OI Strobbia, Pietro/0000-0003-0884-6185
NR 7
TC 0
Z9 0
U1 6
U2 12
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-607-7
J9 PROC SPIE
PY 2015
VL 9491
AR 949104
DI 10.1117/12.2179724
PG 5
WC Engineering, Electrical & Electronic; Remote Sensing; Optics
SC Engineering; Remote Sensing; Optics
GA BC9OE
UT WOS:000356700400001
ER
PT J
AU Hunter, GW
Xu, JC
Evans, LJ
Fonseca, LF
Katiyar, R
Martinez-Inesta, MM
Otano, W
Panwar, N
Vander Wal, RL
AF Hunter, Gary W.
Xu, Jennifer C.
Evans, Laura J.
Fonseca, Luis F.
Katiyar, Ram
Martinez-Inesta, Maria M.
Otano, Wilfredo
Panwar, Neeraj
Vander Wal, Randy L.
BE Cabrera, CR
Miranda, FA
TI Advanced Sensor Nanomaterials for Aerospace Applications
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID SINGLE PALLADIUM NANOWIRES; SENSING PERFORMANCE; SPRAY-PYROLYSIS;
HYDROGEN; FILMS; ARRAYS; DEPOSITION; MGXZN1-XO; TRANSPORT; SWITCHES
AB Aeronautic and space applications require the development of sensors with capabilities beyond those of commercially available sensors. This chapter reviews a range of aerospace applications and the sensor operational requirements for those applications. These applications include leak detection, high-temperature physical parameter monitoring, emission monitoring, fire/nvironmental monitoring, and ultraviolet radiation monitoring. In response to these needs, a range of nanotechnology-based sensor material work is being developed. This includes transition metal silicide nanowires for physical measurements; palladium nanoshells, ultrathin films, and nanowires for hydrogen detection; semiconducting metal oxide nanostructures relevant to fire/environmental/ emissions monitoring; and modified zinc oxide materials for ultraviolet radiation detection. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The advent of nano-based sensor materials can have notable effect on aerospace applications. However, these materials must be integrated into complete sensor systems and these advantages must be demonstrated for the specific application.
C1 [Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.] NASA John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA.
[Fonseca, Luis F.; Katiyar, Ram; Panwar, Neeraj] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA.
[Martinez-Inesta, Maria M.] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00681 USA.
[Otano, Wilfredo] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00736 USA.
[Panwar, Neeraj] Cent Univ Rajasthan, Dept Phys, Bandarsindari 305801, Kishangarh, India.
[Vander Wal, Randy L.] Penn State Univ, University Pk, PA 16802 USA.
RP Hunter, GW (reprint author), NASA John H Glenn Res Ctr Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM ghunter@grc.nasa.gov
NR 98
TC 0
Z9 0
U1 2
U2 6
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 1
EP 38
PG 38
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300002
ER
PT J
AU Cabrera, CR
Miranda, FA
AF Cabrera, Carlos R.
Miranda, Felix A.
BE Cabrera, CR
Miranda, FA
TI Advanced Nanomaterials for Aerospace Applications Preface
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Editorial Material; Book Chapter
C1 [Cabrera, Carlos R.] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00936 USA.
[Miranda, Felix A.] NASA John H Glenn Res Ctr Lewis Field, Cleveland, OH USA.
RP Cabrera, CR (reprint author), Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, Rio Piedras Campus, San Juan, PR 00936 USA.
NR 0
TC 0
Z9 0
U1 2
U2 2
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP XIII
EP XV
PG 3
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300001
ER
PT J
AU Hunter, GW
Evans, L
Xu, J
Biaggi-Labiosa, A
Vander Wal, RL
Fonseca, LF
Berger, GM
Kulis, MJ
AF Hunter, Gary W.
Evans, Laura
Xu, Jennifer
Biaggi-Labiosa, Azlin
Vander Wal, Randy L.
Fonseca, Luis F.
Berger, Gordon M.
Kulis, Mike J.
BE Cabrera, CR
Miranda, FA
TI Challenges and Possibilities in Nanosensor Technology
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID ONE-DIMENSIONAL NANOSTRUCTURES; NANOWIRE ARRAYS; DIELECTROPHORETIC
MANIPULATION; CARBON NANOTUBES; OXIDE NANOBELTS; SENSOR; FABRICATION;
SPECTROSCOPY; PARTICLES; NETWORKS
AB Nanotechnology can enable a new generation of sensor systems due to the potentially unique and advantageous properties of these materials. In particular, the properties of nanostructures such as nanowires, nanofibers, nanorods, and nanoribbons are now being investigated to enable new sensing material properties and approaches. In order to achieve the potential of nanotechnology, basic and fundamental capabilities are needed in order to produce and evaluate sensor systems based on these materials. These include the ability to reproducibly fabricate sensors, understand the material properties, and determine their sensing mechanisms. However, the very nature of these materials makes the use of traditional sensor fabrication and characterization techniques, such as those used for microsystems, problematic. This chapter describes the challenges associated with the reproducible fabrication of nanostructures into microsensor systems; characterization of the basic properties of a nanowire; and investigations into the sensing mechanism of nanostructures of different crystal structure. These examples suggest that the transition from microsystem technology into those based on nanostructures involve a series of basic challenges beyond that seen in macroscopic materials. However, if these challenges can be met, the advent of nanotechnology into sensor systems enables the possibility of new sensor systems significantly changing how measurements are done. New sensor systems that can be enabled by nanotechnology, such as "Lick and Stick" smart sensor systems, are discussed.
C1 [Hunter, Gary W.; Evans, Laura; Xu, Jennifer; Biaggi-Labiosa, Azlin] NASA John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA.
[Vander Wal, Randy L.] Penn State Univ, University Pk, PA 16802 USA.
[Fonseca, Luis F.] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA.
[Berger, Gordon M.; Kulis, Mike J.] Natl Ctr Space Explorat Res, Cleveland, OH 44135 USA.
RP Hunter, GW (reprint author), NASA John H Glenn Res Ctr Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM ghunter@grc.nasa.gov
NR 52
TC 0
Z9 0
U1 2
U2 2
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 39
EP 69
PG 31
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300003
ER
PT J
AU Hernandez-Maldonado, AJ
Ishikawa, Y
Raptis, RG
Luna, B
Mulloth, L
Junaedi, C
Roychoudhury, S
Perry, JL
AF Hernandez-Maldonado, Arturo J.
Ishikawa, Yasuyuki
Raptis, Raphael G.
Luna, Bernadette
Mulloth, Lila
Junaedi, Christian
Roychoudhury, Subir
Perry, Jay L.
BE Cabrera, CR
Miranda, FA
TI Nanoporous Materials in Atmosphere Revitalization
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID METAL-ORGANIC FRAMEWORK; ZEOLITIC IMIDAZOLATE FRAMEWORKS;
CARBON-DIOXIDE; SECONDARY GROWTH; CO2 BINDING; SEPARATION; MEMBRANES;
PORES; ADSORPTION; STORAGE
C1 [Hernandez-Maldonado, Arturo J.; Ishikawa, Yasuyuki; Raptis, Raphael G.] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, Mayaguez, PR 00681 USA.
[Hernandez-Maldonado, Arturo J.; Ishikawa, Yasuyuki; Raptis, Raphael G.] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA.
[Luna, Bernadette; Mulloth, Lila] NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
[Junaedi, Christian; Roychoudhury, Subir] Precis Combust Inc, North Haven, CT 06473 USA.
[Perry, Jay L.] NASA George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Hernandez-Maldonado, AJ (reprint author), Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, Mayaguez Campus, Mayaguez, PR 00681 USA.
EM arturoj.hernandez@upr.edu
RI Raptis, Raphael/D-2833-2009
OI Raptis, Raphael/0000-0002-9522-0369
NR 85
TC 0
Z9 0
U1 0
U2 0
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 71
EP 99
PG 29
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300004
ER
PT J
AU Flynn, M
Nicolau, E
Cabrera, CR
AF Flynn, Michael
Nicolau, Eduardo
Cabrera, Carlos R.
BE Cabrera, CR
Miranda, FA
TI Nanotechnology in Advanced Life Support: Water Recycling
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID INTERNAL CONCENTRATION POLARIZATION; OF-THE-ART; ACTIVATED CARBON;
REVERSE-OSMOSIS; MICROGRAVITY CONDITION; ORGANIC CONTAMINANTS; CATALYST
SUPPORTS; FORCE MICROSCOPY; MEMBRANES; ADSORPTION
C1 [Flynn, Michael] NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
[Nicolau, Eduardo; Cabrera, Carlos R.] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA.
RP Flynn, M (reprint author), NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
EM eduardo.nicolau@upr.edu
NR 74
TC 0
Z9 0
U1 3
U2 3
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 101
EP 129
PG 29
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300005
ER
PT J
AU Baldwin, RS
Wu, JJ
Bennett, WR
AF Baldwin, Richard S.
Wu, James J.
Bennett, William R.
BE Cabrera, CR
Miranda, FA
TI Nanomaterials for Advanced Lithium-Ion Battery Anodes
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID CARBON NANOTUBES; ELECTROCHEMICAL LITHIATION; RECHARGEABLE BATTERIES;
PARTICLE-SIZE; THIN-FILMS; CAPACITY; STORAGE; COMPOSITE; ELECTRODE;
PERFORMANCE
C1 [Baldwin, Richard S.; Wu, James J.; Bennett, William R.] NASA John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA.
RP Baldwin, RS (reprint author), NASA John H Glenn Res Ctr Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM william.r.bennett@nasa.gov
NR 41
TC 0
Z9 0
U1 0
U2 1
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 131
EP 147
PG 17
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300006
ER
PT J
AU Valdez, TI
Gonzalez-Gonzalez, I
Cabrera, CR
AF Valdez, Thomas I.
Gonzalez-Gonzalez, Ileana
Cabrera, Carlos R.
BE Cabrera, CR
Miranda, FA
TI Nanomaterials in Regenerative Fuel Cells
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID SOLID-POLYMER-ELECTROLYTE; OXYGEN REDUCTION REACTION; SUPPORTED PT-NI;
WATER ELECTROLYSIS; ANODIC EVOLUTION; ALLOY CATALYSTS; ACID-SOLUTION;
SURFACES; ELECTROREDUCTION; RUTHENIUM
C1 [Valdez, Thomas I.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91101 USA.
[Gonzalez-Gonzalez, Ileana; Cabrera, Carlos R.] Univ Puerto Rico, NASA URC Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA.
RP Valdez, TI (reprint author), CALTECH, NASA Jet Prop Lab, Pasadena, CA 91101 USA.
EM thomas.i.valdez@jpl.nasa.gov
NR 44
TC 0
Z9 0
U1 3
U2 5
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 179
EP 199
PG 21
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300008
ER
PT J
AU Miranda, FA
Manohara, HM
AF Miranda, Felix A.
Manohara, Harish M.
BE Cabrera, CR
Miranda, FA
TI Nanotechnology for Nanoelectronic Devices
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID FIELD-EFFECT TRANSISTORS; HIGH-FREQUENCY APPLICATIONS; CONTROLLED
PLACEMENT; CARBON NANOTUBES; OHMIC CONTACTS; ELECTRONICS; SCHOTTKY
C1 [Miranda, Felix A.] NASA John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA.
[Manohara, Harish M.] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91101 USA.
RP Miranda, FA (reprint author), NASA John H Glenn Res Ctr Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM felix.a.miranda@nasa.gov
NR 45
TC 0
Z9 0
U1 0
U2 1
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 201
EP 226
PG 26
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300009
ER
PT J
AU Meador, MA
AF Meador, Michael A.
BE Cabrera, CR
Miranda, FA
TI Future Directions in Nanotechnology R&D at NASA
SO ADVANCED NANOMATERIALS FOR AEROSPACE APPLICATIONS
LA English
DT Article; Book Chapter
ID MECHANICAL-PROPERTIES; SUSPENDED GRAPHENE; SOLAR-CELLS; CARBON;
STRENGTH; DEVICES; NANOGENERATOR; NANOPARTICLES; REACTIVITY; BATTERIES
C1 NASA John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA.
RP Meador, MA (reprint author), NASA John H Glenn Res Ctr Lewis Field, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM michael.a.meador@nasa.gov
NR 48
TC 0
Z9 0
U1 1
U2 2
PU PAN STANFORD PUBLISHING PTE LTD
PI SINGAPORE
PA PENTHOUSE LEVEL, SUNTEC TOWER 3, 8 TEMASEK BLVD, SINGAPORE, 038988,
SINGAPORE
BN 978-981-4463-19-5
PY 2015
BP 355
EP 370
PG 16
WC Engineering, Aerospace; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Engineering; Science & Technology - Other Topics; Materials Science
GA BC6HP
UT WOS:000353922300013
ER
PT S
AU Alley, RB
Anandakrishnan, S
Christianson, K
Horgan, HJ
Muto, A
Parizek, BR
Pollard, D
Walker, RT
AF Alley, Richard B.
Anandakrishnan, Sridhar
Christianson, Knut
Horgan, Huw J.
Muto, Atsu
Parizek, Byron R.
Pollard, David
Walker, Ryan T.
BE Jeanloz, R
Freeman, KH
TI Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More
SO ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 43
SE Annual Review of Earth and Planetary Sciences
LA English
DT Review; Book Chapter
DE Antarctica; Greenland; sea level; ice sheet; stability
ID PINE ISLAND GLACIER; SEA-LEVEL RISE; LAST INTERGLACIAL STAGE; ABRUPT
CLIMATE-CHANGE; SHELF BREAK-UP; THWAITES GLACIER; MASS-LOSS;
PROBABILISTIC ASSESSMENT; SPATIAL SENSITIVITIES; ENVIRONMENTAL-CHANGE
AB Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing > 3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.
C1 [Alley, Richard B.; Anandakrishnan, Sridhar; Muto, Atsu; Pollard, David] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
[Alley, Richard B.; Anandakrishnan, Sridhar; Muto, Atsu; Pollard, David] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA.
[Christianson, Knut] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Christianson, Knut] NYU, Courant Inst Math Sci, New York, NY 10012 USA.
[Horgan, Huw J.] Victoria Univ Wellington, Antarctic Res Ctr, Wellington 6140, New Zealand.
[Parizek, Byron R.] Penn State Univ, Math & Geosci, Du Bois, PA 15801 USA.
[Walker, Ryan T.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Walker, Ryan T.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
RP Alley, RB (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
EM rba6@psu.edu
NR 165
TC 12
Z9 12
U1 16
U2 74
PU ANNUAL REVIEWS
PI PALO ALTO
PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA
SN 0084-6597
BN 978-0-8243-2043-0
J9 ANNU REV EARTH PL SC
JI Annu. Rev. Earth Planet. Sci.
PY 2015
VL 43
BP 207
EP 231
DI 10.1146/annurev-earth-060614-105344
PG 25
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Geology
GA BC8KX
UT WOS:000355760100008
ER
PT S
AU Day, J
Geddis, D
Kim, J
Choi, SH
Yoon, H
Song, KD
AF Day, John
Geddis, Demetris
Kim, Jaehwan
Choi, Sang H.
Yoon, Hargsoon
Song, Kyo D.
BE Varadan, VK
TI Review of Radio Wave for Power Transmission in Medical Applications with
Safety
SO NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Nanosensors, Biosensors, and Info-Tech Sensors and Systems
CY MAR 09-11, 2015
CL San Diego, CA
SP SPIE, American Soc Mech Engineers, Intelligent Mat Forum, Jet Propuls Lab, Natl Sci Fdn
DE Radio Frequency (RF); Safety; Wireless Power Transmission (WP, Medical
Applications
AB The integration of biosensors with radio frequency (RF) wireless power transmission devices is becoming popular, but there are challenges for implantable devices in medical applications. Integration and at the same time miniaturization of medical devices in a single embodiment are not trivial. The research reported herein, seeks to review possible effects of RF signals ranging from 900 MHz to 100 GHz on the human tissues and environment. Preliminary evaluation shows that radio waves selected for test have substantial influence on human tissues based on their dielectric properties. In the advancement of RF based biosensors, it is imperative to set up necessary guidelines that specify how to use RF power safely. In this paper, the dielectric properties of various human tissues will be used for estimation of influence within the selected RF frequency ranges.
C1 [Day, John; Geddis, Demetris; Yoon, Hargsoon; Song, Kyo D.] Norfolk State Univ, Dept Engn, Norfolk, VA 23504 USA.
[Kim, Jaehwan] Inha Univ, Dept Mech Engn, Inchon, South Korea.
[Choi, Sang H.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Day, J (reprint author), Norfolk State Univ, Dept Engn, Norfolk, VA 23504 USA.
NR 32
TC 0
Z9 0
U1 1
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-537-7
J9 PROC SPIE
PY 2015
VL 9434
AR 94340T
DI 10.1117/12.2084854
PG 15
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8PT
UT WOS:000355991300021
ER
PT S
AU Duzik, AJ
Park, Y
Choi, SH
AF Duzik, Adam J.
Park, Yeonjoon
Choi, Sang H.
BE Varadan, VK
TI Towards Rhombohedral SiGe Epitaxy on 150mm c-plane Sapphire Substrates
SO NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Nanosensors, Biosensors, and Info-Tech Sensors and Systems
CY MAR 09-11, 2015
CL San Diego, CA
SP SPIE, American Soc Mech Engineers, Intelligent Mat Forum, Jet Propuls Lab, Natl Sci Fdn
DE Electron Beam Evaporation Deposition; Semiconductor Devices; Group IV
Semiconductor Materials; Bandgap Engineering; X-ray Diffraction; Quantum
Well Solar Cells; MEMs
ID THERMAL-EXPANSION; GERMANIUM; MOBILITY; SILICON; CDTE
AB Previous work demonstrated for the first time the ability to epitaxially grow uniform single crystal diamond cubic SiGe (111) films on trigonal sapphire (0001) substrates. While SiGe (111) forms two possible crystallographic twins on sapphire (0001), films consisting primarily of one twin were produced on up to 99.95% of the total wafer area. This permits new bandgap engineering possibilities and improved group IV based devices that can exploit the higher carrier mobility in Ge compared to Si. Models are proposed on the epitaxy of such dissimilar crystal structures based on the energetic favorability of crystallographic twins and surface reconstructions.
This new method permits Ge (111) on sapphire (0001) epitaxy, rendering Ge an economically feasible replacement for Si in some applications, including higher efficiency Si/Ge/Si quantum well solar cells. Epitaxial SiGe films on sapphire showed a 280% increase in electron mobility and a 500% increase in hole mobility over single crystal Si. Moreover, Ge possesses a wider bandgap for solar spectrum conversion than Si, while the transparent sapphire substrate permits an inverted device structure, increasing the total efficiency to an estimated 30-40%, much higher than traditional Si solar cells. Hall Effect mobility measurements of the Ge layer in the Si/Ge/Si quantum well structure were performed to demonstrate the advantage in carrier mobility over a pure Si solar cell. Another application comes in the use of micro-electromechanical devices technology, where high-resistivity Si is currently used as a substrate. Sapphire is a more resistive substrate and offers better performance via lower parasitic capacitance and higher film carrier mobility over the current Si-based technology.
C1 [Duzik, Adam J.; Park, Yeonjoon] Natl Inst Aerosp, Hampton, VA 23666 USA.
[Choi, Sang H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Duzik, AJ (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA.
NR 12
TC 0
Z9 0
U1 2
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-537-7
J9 PROC SPIE
PY 2015
VL 9434
AR 943412
DI 10.1117/12.2085310
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8PT
UT WOS:000355991300029
ER
PT S
AU Kim, MH
Song, KD
Yoon, H
Park, Y
Choi, SH
Lee, DS
Shin, KS
Hwang, HI
Lee, U
AF Kim, Min Hyuck
Song, Kyo D.
Yoon, Hargsoon
Park, Yeonjoon
Choi, Sang H.
Lee, Dae-Sung
Shin, Kyu-Sik
Hwang, Hak-In
Lee, Uhn
BE Varadan, VK
TI Probe-Pin Device for Optical Neurotransmitter Sensing in the Brain
SO NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Nanosensors, Biosensors, and Info-Tech Sensors and Systems
CY MAR 09-11, 2015
CL San Diego, CA
SP SPIE, American Soc Mech Engineers, Intelligent Mat Forum, Jet Propuls Lab, Natl Sci Fdn
DE Optical neural sensing; microspectrometer; neurotransmitter; surface
plasmonic resonance; nanostructure
ID NANOPARTICLES; DOPAMINE
AB Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.
C1 [Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon] Norfolk State Univ, Dept Engn, Norfolk, VA 23504 USA.
[Park, Yeonjoon; Choi, Sang H.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In] Korea Elect Technol Inst, Songnam, South Korea.
[Lee, Uhn] Gachon Univ, Integrated Brian Res Inst, Inchon, South Korea.
RP Kim, MH (reprint author), Norfolk State Univ, Dept Engn, 700 Pk Ave, Norfolk, VA 23504 USA.
EM hyoon@nsu.edu
NR 6
TC 1
Z9 1
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-537-7
J9 PROC SPIE
PY 2015
VL 9434
AR 943409
DI 10.1117/12.2085610
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8PT
UT WOS:000355991300006
ER
PT S
AU Gyekenyesi, AL
Wroblewski, AC
AF Gyekenyesi, Andrew L.
Wroblewski, Adam C.
BE Shull, PJ
TI Using a general purpose finite element approach to attain higher
fidelity rotordynamic analyses
SO STRUCTURAL HEALTH MONITORING AND INSPECTION OF ADVANCED MATERIALS,
AEROSPACE, AND CIVIL INFRASTRUCTURE 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Structural Health Monitoring and Inspection of Advanced
Materials, Aerospace, and Civil Infrastructure
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Rotordynamics; Finite Element; Flexible Disk; Stress-Stiffening;
Spin-Softening; Temperature Dependence
AB By utilizing a general purpose finite element (FE) code, the dynamic response of a rotor system was numerically studied in order to assess physical effects that are typically not taken into account using traditional rotordynamic codes. This included the allowance for disk flexibility as well as conducting a simultaneous heat transfer analysis that resulted in varying temperatures in the axial and radial directions. The numerical study utilized a generic, multi-disk model with a flexible hollow shaft. The Campbell diagrams and the mode shapes showed that neglecting any of the additional influences may cause errors regarding the predicted rotor dynamic response. By increasing the fidelity of the rotor model and accounting for the various effects, the slight signal modifications due to damage can be more easily recognized allowing for increased accuracy during rotor health monitoring.
C1 [Gyekenyesi, Andrew L.] NASA, GRC, Ohio Aerosp Inst, Cleveland, OH 44135 USA.
[Wroblewski, Adam C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Gyekenyesi, AL (reprint author), NASA, GRC, Ohio Aerosp Inst, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM Andrew.L.Gyekenyesi@nasa.gov
NR 9
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-540-7
J9 PROC SPIE
PY 2015
VL 9437
AR 943713
DI 10.1117/12.2084625
PG 9
WC Engineering, Civil; Engineering, Mechanical; Materials Science,
Composites; Optics
SC Engineering; Materials Science; Optics
GA BC8JD
UT WOS:000355725000029
ER
PT S
AU Koshti, AM
AF Koshti, Ajay M.
BE Shull, PJ
TI Infrared contrast data analysis method for quantitative measurement and
monitoring in flash infrared thermography
SO STRUCTURAL HEALTH MONITORING AND INSPECTION OF ADVANCED MATERIALS,
AEROSPACE, AND CIVIL INFRASTRUCTURE 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Structural Health Monitoring and Inspection of Advanced
Materials, Aerospace, and Civil Infrastructure
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE normalized contrast; flash infrared thermography
AB The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided.
C1 NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Koshti, AM (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
NR 10
TC 0
Z9 0
U1 0
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-540-7
J9 PROC SPIE
PY 2015
VL 9437
AR 94370X
DI 10.1117/12.2083244
PG 15
WC Engineering, Civil; Engineering, Mechanical; Materials Science,
Composites; Optics
SC Engineering; Materials Science; Optics
GA BC8JD
UT WOS:000355725000025
ER
PT S
AU Koshti, AM
AF Koshti, Ajay M.
BE Shull, PJ
TI Simulating the x-ray image contrast to set-up techniques with desired
flaw detectability
SO STRUCTURAL HEALTH MONITORING AND INSPECTION OF ADVANCED MATERIALS,
AEROSPACE, AND CIVIL INFRASTRUCTURE 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Structural Health Monitoring and Inspection of Advanced
Materials, Aerospace, and Civil Infrastructure
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE x-ray; flaw size parameter; simulation; crack detection; radiography
technique
AB The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
C1 NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Koshti, AM (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
NR 7
TC 0
Z9 0
U1 3
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-540-7
J9 PROC SPIE
PY 2015
VL 9437
AR 94370W
DI 10.1117/12.2083225
PG 10
WC Engineering, Civil; Engineering, Mechanical; Materials Science,
Composites; Optics
SC Engineering; Materials Science; Optics
GA BC8JD
UT WOS:000355725000024
ER
PT S
AU Koshti, AM
AF Koshti, Ajay M.
BE Shull, PJ
TI Ultrasonic measurement and monitoring of loads in bolts used in
structural joints
SO STRUCTURAL HEALTH MONITORING AND INSPECTION OF ADVANCED MATERIALS,
AEROSPACE, AND CIVIL INFRASTRUCTURE 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Structural Health Monitoring and Inspection of Advanced
Materials, Aerospace, and Civil Infrastructure
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE ultrasonic preload measurement and monitoring; bolted joints; clamped
joint; flanged joint; shear joint
ID PRELOAD MEASUREMENT; AXIAL STRESS; SIMULATION
AB The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.
C1 NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Koshti, AM (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
NR 18
TC 0
Z9 0
U1 2
U2 7
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-540-7
J9 PROC SPIE
PY 2015
VL 9437
AR 94370T
DI 10.1117/12.2083220
PG 15
WC Engineering, Civil; Engineering, Mechanical; Materials Science,
Composites; Optics
SC Engineering; Materials Science; Optics
GA BC8JD
UT WOS:000355725000021
ER
PT S
AU Kosthi, AM
AF Kosthi, Ajay M.
BE Shull, PJ
TI Considerations for ultrasonic testing application for on-orbit NDE
SO STRUCTURAL HEALTH MONITORING AND INSPECTION OF ADVANCED MATERIALS,
AEROSPACE, AND CIVIL INFRASTRUCTURE 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Structural Health Monitoring and Inspection of Advanced
Materials, Aerospace, and Civil Infrastructure
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE nondestructive evaluation; ultrasonic testing; on-orbit NDE; in-space
NDE; eddy current testing; MMOD impact
AB The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in the state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.
C1 NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Kosthi, AM (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
NR 2
TC 0
Z9 0
U1 0
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-540-7
J9 PROC SPIE
PY 2015
VL 9437
AR 94372H
DI 10.1117/12.2083245
PG 11
WC Engineering, Civil; Engineering, Mechanical; Materials Science,
Composites; Optics
SC Engineering; Materials Science; Optics
GA BC8JD
UT WOS:000355725000065
ER
PT S
AU Morota, T
Ishihara, Y
Sasaki, S
Goossens, S
Matsumoto, K
Noda, H
Araki, H
Hanada, H
Tazawa, S
Kikuchi, F
Ishikawa, T
Tsuruta, S
Kamata, S
Otake, H
Haruyama, J
Ohtake, M
AF Morota, Tomokatsu
Ishihara, Yoshiaki
Sasaki, Sho
Goossens, Sander
Matsumoto, Koji
Noda, Hirotomo
Araki, Hiroshi
Hanada, Hideo
Tazawa, Seiichi
Kikuchi, Fuyuhiko
Ishikawa, Toshiaki
Tsuruta, Seiitsu
Kamata, Shunichi
Otake, Hisashi
Haruyama, Junichi
Ohtake, Makiko
BE Platz, T
Massironi, M
Byrne, PK
Hiesinger, H
TI Lunar mare volcanism: lateral heterogeneities in volcanic activity and
relationship with crustal structure
SO VOLCANISM AND TECTONISM ACROSS THE INNER SOLAR SYSTEM
SE Geological Society Special Publication
LA English
DT Article; Book Chapter
ID SOUTH-POLE-AITKEN; GAMMA-RAY SPECTROMETER; BASINS IMPLICATIONS; ERUPTION
CONDITIONS; CONVECTION MODELS; GRAVITY-FIELD; MOON; MANTLE; EVOLUTION;
BASALTS
AB Lunar mare basalts are spatially unevenly distributed, and their abundances differ between the nearside and farside of the Moon. Although mare asymmetry has been attributed to thickness variations in the low-density anorthositic crust, the eruptive mechanism of lunar magma remains unknown. In this study, we investigate the relationship between mare distribution and crustal thickness using geological and geophysical data obtained by the SELENE (Kaguya) and the Gravity Recovery and Interior Laboratory spacecraft, and quantitatively re-evaluate the influence of the anorthositic crust on magma eruption. We identify a lateral heterogeneity in the upper limit of crustal thickness that allows magma extrusion to the surface. In the Procellarum KREEP Terrane, where the surface abundances of heat-producing elements are extremely high, magmas can erupt in regions of crustal thickness below about 30 km. In contrast, magma eruptions are limited to regions of crustal thickness below about 20 km in other nearside regions, around 10 km in the South Pole-Aitken Basin and approximately 5 km in the farside Felspathic Highland Terrane. Such heterogeneity may result from lateral variations in magma production in the lunar mantle and/or crustal density.
C1 [Morota, Tomokatsu] Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan.
[Ishihara, Yoshiaki; Otake, Hisashi; Haruyama, Junichi; Ohtake, Makiko] Japan Aerosp Explorat Agcy, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan.
[Sasaki, Sho] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan.
[Goossens, Sander] NASA, CRESST, Planetary Geodynam Lab, GSFC, Greenbelt, MD 20771 USA.
[Matsumoto, Koji; Noda, Hirotomo; Hanada, Hideo; Tazawa, Seiichi; Kikuchi, Fuyuhiko; Ishikawa, Toshiaki; Tsuruta, Seiitsu] Natl Astron Observ Japan, RISE Project, Mizusawa Ku, Oshu, Iwate 0230861, Japan.
[Araki, Hiroshi] Natl Astron Observ Japan, RISE Project, Mitaka, Tokyo 1818588, Japan.
[Kamata, Shunichi] Hokkaido Univ, Grad Sch Sci, Kita Ku, Sapporo, Hokkaido 0600810, Japan.
RP Morota, T (reprint author), Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan.
EM morota@eps.nagoya-u.ac.jp
NR 61
TC 0
Z9 0
U1 0
U2 1
PU GEOLOGICAL SOC PUBLISHING HOUSE
PI BATH
PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON,
ENGLAND
SN 0305-8719
BN 978-1-86239-632-6
J9 GEOL SOC SPEC PUBL
JI Geol. Soc. Spec. Publ.
PY 2015
VL 401
BP 127
EP 138
DI 10.1144/SP401.11
PG 12
WC Geochemistry & Geophysics; Geology
SC Geochemistry & Geophysics; Geology
GA BC9EB
UT WOS:000356369300007
ER
PT S
AU Ferrari, S
Massironi, M
Marchi, S
Byrne, PK
Klimczak, C
Martellato, E
Cremonese, G
AF Ferrari, Sabrina
Massironi, Matteo
Marchi, Simone
Byrne, Paul K.
Klimczak, Christian
Martellato, Elena
Cremonese, Gabriele
BE Platz, T
Massironi, M
Byrne, PK
Hiesinger, H
TI Age relationships of the Rembrandt basin and Enterprise Rupes, Mercury
SO VOLCANISM AND TECTONISM ACROSS THE INNER SOLAR SYSTEM
SE Geological Society Special Publication
LA English
DT Article; Book Chapter
ID CALORIS BASIN; LUNAR CATACLYSM; IMPACT CRATERS; SMOOTH PLAINS;
MESSENGER; VOLCANISM; ORIGIN; EVOLUTION; STRATIGRAPHY; BOMBARDMENT
AB The Rembrandt basin is the largest well-preserved impact feature in the southern hemisphere of Mercury. Its smooth volcanic infill hosts wrinkle ridges and graben, and the entire basin is cross-cut by the Enterprise Rupes scarp system. On the basis of the Model Production Function crater chronology, our analysis shows that the formation of the Rembrandt basin occurred at 3.8 +/- 0.1 Ga during the Late Heavy Bombardment, consistent with previous studies. We also find that the smooth plains interior to the basin were emplaced between 3.7 and 3.6 +/- 0.1 Ga, indicative of a resurfacing event within the Rembrandt basin that is consistent with the presence of partially buried craters. These youngest plains appear temporally unrelated to basin formation, and so we regard their origin as likely to be due to volcanism. We identify the same chronological relationship for the terrain cross-cut by Enterprise Rupes to the west of the basin. Therefore, volcanic activity affected both the basin and its surroundings, but ended prior to the majority of basin-and regional-scale tectonic deformation. If Enterprise Rupes formed prior to the Rembrandt basin, then regional-scale tectonic activity along this structure might have lasted at least 200 myr.
C1 [Ferrari, Sabrina; Massironi, Matteo] Univ Padua, Dept Geosci, I-35131 Padua, Italy.
[Massironi, Matteo; Martellato, Elena; Cremonese, Gabriele] INAF, Astron Observ Padua, I-35122 Padua, Italy.
[Marchi, Simone] NASA, Lunar Sci Inst, Southwest Res Inst, Boulder, CO 80302 USA.
[Byrne, Paul K.; Klimczak, Christian] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA.
[Byrne, Paul K.] Univ Space Res Assoc, Lunar & Planetary Inst, Houston, TX 77058 USA.
[Martellato, Elena] Univ Padua, Dept Phys & Astron, I-35131 Padua, Italy.
RP Ferrari, S (reprint author), Univ Padua, Dept Geosci, Via Gradenigo 6, I-35131 Padua, Italy.
EM sabrina.ferrari@studenti.unipd.it
OI Cremonese, Gabriele/0000-0001-9021-1140; Massironi,
Matteo/0000-0002-7757-8818
NR 65
TC 3
Z9 3
U1 0
U2 0
PU GEOLOGICAL SOC PUBLISHING HOUSE
PI BATH
PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON,
ENGLAND
SN 0305-8719
BN 978-1-86239-632-6
J9 GEOL SOC SPEC PUBL
JI Geol. Soc. Spec. Publ.
PY 2015
VL 401
BP 159
EP 172
DI 10.1144/SP401.20
PG 14
WC Geochemistry & Geophysics; Geology
SC Geochemistry & Geophysics; Geology
GA BC9EB
UT WOS:000356369300009
ER
PT S
AU Giacomini, L
Massironi, M
Marchi, S
Fassett, CI
Di Achille, G
Cremonese, G
AF Giacomini, L.
Massironi, M.
Marchi, S.
Fassett, C. I.
Di Achille, G.
Cremonese, G.
BE Platz, T
Massironi, M
Byrne, PK
Hiesinger, H
TI Age dating of an extensive thrust system on Mercury: implications for
the planet's thermal evolution
SO VOLCANISM AND TECTONISM ACROSS THE INNER SOLAR SYSTEM
SE Geological Society Special Publication
LA English
DT Article; Book Chapter
ID BASALTIC ROCK MASSES; GLOBAL CONTRACTION; LOBATE SCARPS; THERMOCHEMICAL
EVOLUTION; WRINKLE RIDGES; IMPACT CRATERS; FAULT ZONES; MARS; MESSENGER;
DEFORMATION
AB The tectonic evolution of Mercury is dominated at a global scale by contractional features such as lobate scarps that are widely distributed across the planet. These structures are thought to be the consequence of the secular cooling of Mercury. Therefore, dating these features is essential to place constraints on the timing of planetary cooling, which is important for understanding the thermal evolution of Mercury. In this work, we date an extended thrust system, which we term the Blossom Thrust System, located between 80 degrees E and 100 degrees E, and 30 degrees N and 15 degrees S, and which consists of several individual lobate scarps exhibiting a north-south orientation and a westward vergence. The age of the system was determined using several different methods. Traditional stratigraphic analysis was accompanied by crater counting of units that overlap the thrust system and by using the buffered crater-counting technique, allowing us to determine an absolute model age for the tectonic feature. These complementary methods give consistent results, implying that activity on the thrust ended between 3.5 and 3.7 Ga, depending on the adopted absolute-age model. These data provide an important insight into this portion of Mercury's crust, which may have implications for models of the thermal evolution of the planet as a whole.
C1 [Giacomini, L.; Massironi, M.] Univ Padua, Ctr Interdipartimentale Studi & Attivita Spaziali, Padua, Italy.
[Giacomini, L.; Massironi, M.] Univ Padua, Dept Geosci, Padua, Italy.
[Marchi, S.] NASA, Lunar Sci Inst, Ctr Lunar Origin & Evolut, Southwest Res Inst, Boulder, CO 80302 USA.
[Fassett, C. I.] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01063 USA.
[Di Achille, G.] Osserv Astron Capodimonte, Ist Nazl Astrofis, Naples, Italy.
[Cremonese, G.] Osserv Astron Padova, Ist Nazl Astrofis, Padua, Italy.
RP Giacomini, L (reprint author), Univ Padua, Ctr Interdipartimentale Studi & Attivita Spaziali, Padua, Italy.
EM lorenza.giacomini@unipd.it
OI Cremonese, Gabriele/0000-0001-9021-1140; Di Achille,
Gaetano/0000-0002-2151-4057; Massironi, Matteo/0000-0002-7757-8818
NR 71
TC 1
Z9 1
U1 0
U2 0
PU GEOLOGICAL SOC PUBLISHING HOUSE
PI BATH
PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON,
ENGLAND
SN 0305-8719
BN 978-1-86239-632-6
J9 GEOL SOC SPEC PUBL
JI Geol. Soc. Spec. Publ.
PY 2015
VL 401
BP 291
EP 311
DI 10.1144/SP401.21
PG 21
WC Geochemistry & Geophysics; Geology
SC Geochemistry & Geophysics; Geology
GA BC9EB
UT WOS:000356369300016
ER
PT S
AU Nahm, AL
Schultz, RA
AF Nahm, Amanda L.
Schultz, Richard A.
BE Platz, T
Massironi, M
Byrne, PK
Hiesinger, H
TI Rupes Recta and the geological history of the Mare Nubium region of the
Moon: insights from forward mechanical modelling of the 'Straight Wall'
SO VOLCANISM AND TECTONISM ACROSS THE INNER SOLAR SYSTEM
SE Geological Society Special Publication
LA English
DT Article; Book Chapter
ID RECONNAISSANCE ORBITER CAMERA; NORMAL-FAULT SYSTEMS; SEGMENT LINKAGE;
THRUST FAULTS; SLIP DISTRIBUTIONS; BASIN TECTONICS; PLATE BOUNDARY;
IMPACT CRATERS; LOBATE SCARPS; LUNAR-SURFACE
AB Rupes Recta, also known as the 'Straight Wall', is an individual normal fault located in eastern Mare Nubium on the nearside of the Moon. Age and cross-cutting relationships suggest that the maximum age of Rupes Recta is 3.2 Ga, which may make it the youngest large-scale normal fault on the Moon. Based on detailed structural mapping and throw distribution analysis, fault nucleation is interpreted to have occurred near the fault centre, and the fault has propagated bi-directionally, growing northwards and southwards by segment linkage. Forward mechanical modelling of fault topography gives a best-fitting fault dip of approximately 858, and suggests that Rupes Recta accommodated approximately 400 m of maximum displacement and extends to a depth of around 42 km. The cumulative driving stresses required to form Rupes Recta are similar in magnitude to those that formed normal faults in Tempe Terra, Mars. The spatial and temporal association with Rima Birt, a sinuous rille to the west of Rupes Recta, suggests a genetic relationship between both structures and implies regional extension at the time of formation.
C1 [Nahm, Amanda L.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA.
[Nahm, Amanda L.] USRA Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX 77058 USA.
[Nahm, Amanda L.] NASA, Lunar Sci Inst, Washington, DC 20546 USA.
[Nahm, Amanda L.] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA.
[Schultz, Richard A.] Conoco Phillips, Houston, TX 77079 USA.
RP Nahm, AL (reprint author), Univ Texas El Paso, Dept Geol Sci, 500 West Univ Ave, El Paso, TX 79968 USA.
EM nahm@uidaho.edu
RI Schultz, Richard/J-4015-2015
OI Schultz, Richard/0000-0003-3198-5263
NR 105
TC 0
Z9 0
U1 0
U2 0
PU GEOLOGICAL SOC PUBLISHING HOUSE
PI BATH
PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON,
ENGLAND
SN 0305-8719
BN 978-1-86239-632-6
J9 GEOL SOC SPEC PUBL
JI Geol. Soc. Spec. Publ.
PY 2015
VL 401
BP 377
EP 394
DI 10.1144/SP401.4
PG 18
WC Geochemistry & Geophysics; Geology
SC Geochemistry & Geophysics; Geology
GA BC9EB
UT WOS:000356369300020
ER
PT J
AU Manney, GL
Lawrence, ZD
Santee, ML
Livesey, NJ
Lambert, A
Pitts, MC
AF Manney, G. L.
Lawrence, Z. D.
Santee, M. L.
Livesey, N. J.
Lambert, A.
Pitts, M. C.
TI Polar processing in a split vortex: Arctic ozone loss in early winter
2012/2013
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID STRATOSPHERIC SUDDEN WARMINGS; LIMB SOUNDER MEASUREMENTS; NITRIC-ACID;
EFFECTIVE DIFFUSIVITY; CHLORINE ACTIVATION; UARS DATA; DEPLETION;
TRANSPORT; CLIMATOLOGY; SATELLITE
AB A sudden stratospheric warming (SSW) in early January 2013 caused the Arctic polar vortex to split and temperatures to rapidly rise above the threshold for chlorine activation. However, ozone in the lower stratospheric polar vortex from late December 2012 through early February 2013 reached the lowest values on record for that time of year. Analysis of Aura Microwave Limb Sounder (MLS) trace gas measurements and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) polar stratospheric cloud (PSC) data shows that exceptional chemical ozone loss early in the 2012/13 Arctic winter resulted from a unique combination of meteorological conditions associated with the early-January 2013 SSW: unusually low temperatures in December 2012, offspring vortices within which air remained well isolated for nearly 1 month after the vortex split, and greater-than-usual vortex sunlight exposure throughout December 2012 and January 2013. Conditions in the two offspring vortices differed substantially, with the one overlying Canada having lower temperatures, lower nitric acid (HNO3), lower hydrogen chloride, more sunlight exposure/higher ClO in late January, and a later onset of chlorine deactivation than the one overlying Siberia. MLS HNO3 and CALIPSO data indicate that PSC activity in December 2012 was more extensive and persistent than at that time in any other Arctic winter in the past decade. Chlorine monoxide (ClO, measured by MLS) rose earlier than previously observed and was the largest on record through mid-January 2013. Enhanced vortex ClO persisted until mid-February despite the cessation of PSC activity when the SSW started. Vortex HNO3 remained depressed after PSCs had disappeared; passive transport calculations indicate vortexaveraged denitrification of about 4 parts per billion by volume. The estimated vortex-averaged chemical ozone loss, similar to 0.7-0.8 parts per million by volume near 500K (similar to 21 km), was the largest December/January loss in the MLS record from 2004/05 to 2014/15.
C1 [Manney, G. L.] NorthWest Res Associates, Socorro, NM 87801 USA.
[Manney, G. L.; Lawrence, Z. D.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA.
[Santee, M. L.; Livesey, N. J.; Lambert, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Pitts, M. C.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Manney, GL (reprint author), NorthWest Res Associates, Socorro, NM 87801 USA.
EM manney@nwra.com
FU National Aeronautics and Space Administration
FX Thanks to the MLS team at JPL (especially Brian Knosp, Ryan Fuller, and
William Daffer) for data processing, management, and analysis support
and to Ken Minschwaner, Joan Alexander, and Sharon Sessions and her
"Research and Communications" class at NMT for helpful
comments/discussions; thanks to the two anonymous referees for their
helpful comments. Thanks to Steven Pawson and the GMAO for their work in
production/distribution of MERRA and GEOS-5.9.1 data. Work at the Jet
Propulsion Laboratory, California Institute of Technology, was done
under contract with the National Aeronautics and Space Administration.
NR 79
TC 8
Z9 8
U1 1
U2 12
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 10
BP 5381
EP 5403
DI 10.5194/acp-15-5381-2015
PG 23
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BM
UT WOS:000355289200004
ER
PT J
AU Jung, E
Albrecht, BA
Jonsson, HH
Chen, YC
Seinfeld, JH
Sorooshian, A
Metcalf, AR
Song, S
Fang, M
Russell, LM
AF Jung, E.
Albrecht, B. A.
Jonsson, H. H.
Chen, Y. -C.
Seinfeld, J. H.
Sorooshian, A.
Metcalf, A. R.
Song, S.
Fang, M.
Russell, L. M.
TI Precipitation effects of giant cloud condensation nuclei artificially
introduced into stratocumulus clouds
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID MARINE STRATOCUMULUS; WARM RAIN; HYGROSCOPIC FLARES; CONVECTIVE CLOUDS;
MODEL; SIMULATION; BALANCE; RADAR
AB To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 mu m diameter salt particles (salt powder) were released from an aircraft while flying near the cloud top on 3 August 2011 off the central coast of California. The seeded area was subsequently sampled from the aircraft that was equipped with aerosol, cloud, and precipitation probes and an upward-facing cloud radar. During post-seeding sampling, made 30-60 min after seeding, the mean cloud droplet size increased, the droplet number concentration decreased, and large drop (e.g., diameter larger than 10 mu m) concentration increased. Average drizzle rates increased from about 0.05 to 0.20 mm h(-1), and the liquid water path decreased from about 52 to 43 g m(-2). Strong radar returns associated with drizzle were observed on the post-seeding cloud-base level-leg flights and were accompanied by a substantial depletion of the cloud liquid water content. The changes were large enough to suggest that the salt particles with concentrations estimated to be 10(-2) to 10(-4) cm(-3) resulted in a four-fold increase in the cloud-base rainfall rate and depletion of the cloud water due to rainout. In contrast, a case is shown where the cloud was already precipitating (on 10 August) and the effect of adding GCCN to the cloud was insignificant.
C1 [Jung, E.; Albrecht, B. A.; Song, S.; Fang, M.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA.
[Jonsson, H. H.] Naval Postgrad Sch, Ctr Interdisciplinary Remotely Piloted Aircraft S, Monterey, CA USA.
[Chen, Y. -C.; Seinfeld, J. H.; Metcalf, A. R.] CALTECH, Pasadena, CA 91125 USA.
[Chen, Y. -C.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Sorooshian, A.] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ USA.
[Sorooshian, A.] Univ Arizona, Dept Atmospher Sci, Tucson, AZ USA.
[Russell, L. M.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
RP Jung, E (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
EM eunsil.jung@gmail.com
RI Metcalf, Andrew/C-5666-2012;
OI Metcalf, Andrew/0000-0003-0385-1356; Sorooshian,
Armin/0000-0002-2243-2264
FU National Science Foundation [AGS-1013423, AGS-1008848, AGS-1013381,
AGS-1013319, ATM-0744636, AGS-0821599, ATM-0349015]; Office of Naval
Research [N00014-11-1-0783, N00014-10-1-0811, N00014-10-1-0200,
N00014-08-1-0465]
FX The E-PEACE field campaign and modeling studies were funded by the
National Science Foundation (AGS-1013423; AGS-1008848; AGS-1013381;
AGS-1013319; ATM-0744636; AGS-0821599; ATM-0349015) and the Office of
Naval Research (N00014-11-1-0783; N00014-10-1-0811; N00014-10-1-0200;
N00014-08-1-0465). The authors gratefully acknowledge the crew of the
CIRPAS Twin Otter for their assistance during the field campaign and
Daniel Rosenfeld for providing the powdered salt. We also appreciate the
outstanding efforts of Tom Snowdon on the design and fabrication of the
salt-powder dispensing system. We greatly appreciate the thoughtful
comments provided by the reviewer Jorgen Jensen.
NR 28
TC 3
Z9 3
U1 2
U2 14
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 10
BP 5645
EP 5658
DI 10.5194/acp-15-5645-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BM
UT WOS:000355289200020
ER
PT J
AU Buchard, V
da Silva, AM
Colarco, PR
Darmenov, A
Randles, CA
Govindaraju, R
Torres, O
Campbell, J
Spurr, R
AF Buchard, V.
da Silva, A. M.
Colarco, P. R.
Darmenov, A.
Randles, C. A.
Govindaraju, R.
Torres, O.
Campbell, J.
Spurr, R.
TI Using the OMI aerosol index and absorption aerosol optical depth to
evaluate the NASA MERRA Aerosol Reanalysis
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID OZONE MONITORING INSTRUMENT; REMOTE-SENSING OBSERVATIONS; SKY RADIANCE
MEASUREMENTS; SPECTRAL DEPENDENCE; GLOBAL DISTRIBUTION;
LIGHT-ABSORPTION; ORGANIC-CARBON; DUST TRANSPORT; GOCART MODEL; AERONET
DATA
AB A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.
C1 [Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Buchard, V.] Univ Space Res Assoc, GESTAR, Columbia, MD USA.
[Randles, C. A.] Morgan State Univ, GESTAR, Baltimore, MD 21239 USA.
[Govindaraju, R.] Sci Syst & Applicat Inc, Lanham, MD USA.
[Campbell, J.] Naval Res Lab, Marine Meteorol Div, Monterey, CA USA.
[Spurr, R.] RT Solut Inc, Cambridge, MA 02138 USA.
RP Buchard, V (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM virginie.buchard@nasa.gov
RI Campbell, James/C-4884-2012; Colarco, Peter/D-8637-2012
OI Campbell, James/0000-0003-0251-4550; Colarco, Peter/0000-0003-3525-1662
FU Office of Naval Research [322]; NASA Langley Research Center Interagency
[RPO201422]
FX Author J. Campbell acknowledges the support of the Office of Naval
Research Code 322 and NASA Langley Research Center Interagency Agreement
RPO201422 on behalf of the CALIPSO Science Team.
NR 67
TC 21
Z9 21
U1 0
U2 16
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 10
BP 5743
EP 5760
DI 10.5194/acp-15-5743-2015
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BM
UT WOS:000355289200026
ER
PT J
AU Pan, X
Chin, M
Gautam, R
Bian, H
Kim, D
Colarco, PR
Diehl, TL
Takemura, T
Pozzoli, L
Tsigaridis, K
Bauer, S
Bellouin, N
AF Pan, X.
Chin, M.
Gautam, R.
Bian, H.
Kim, D.
Colarco, P. R.
Diehl, T. L.
Takemura, T.
Pozzoli, L.
Tsigaridis, K.
Bauer, S.
Bellouin, N.
TI A multi-model evaluation of aerosols over South Asia: common problems
and possible causes
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID INDO-GANGETIC BASIN; BLACK CARBON; OPTICAL-PROPERTIES; NORTH-INDIA;
HYDROLOGICAL CYCLE; PREMONSOON SEASON; LIGHT-ABSORPTION; TIBETAN
PLATEAU; MIXING STATE; GLOBAL-MODEL
AB Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the postmonsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.
C1 [Pan, X.; Chin, M.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Gautam, R.] Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India.
[Gautam, R.] Indian Inst Technol, Interdisciplinary Program Climate Studies, Bombay 400076, Maharashtra, India.
[Bian, H.] Univ Maryland Baltimore City, Joint Ctr Earth Syst Technol, Baltimore, MD USA.
[Kim, D.; Diehl, T. L.] Univ Space Res Assoc, Columbia, MD USA.
[Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka 812, Japan.
[Pozzoli, L.] Istanbul Tech Univ, Eurasia Inst Earth Sci, TR-80626 Istanbul, Turkey.
[Tsigaridis, K.; Bauer, S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Tsigaridis, K.; Bauer, S.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA.
[Bellouin, N.] Univ Reading, Dept Meteorol, Reading, Berks, England.
RP Pan, X (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM xiaohua.pan@nasa.gov
RI U-ID, Kyushu/C-5291-2016; Takemura, Toshihiko/C-2822-2009; Kim,
Dongchul/H-2256-2012; Kyushu, RIAM/F-4018-2015; Chin, Mian/J-8354-2012;
Colarco, Peter/D-8637-2012;
OI Takemura, Toshihiko/0000-0002-2859-6067; Kim,
Dongchul/0000-0002-5659-1394; Colarco, Peter/0000-0003-3525-1662;
Bellouin, Nicolas/0000-0003-2109-9559
FU NASA Postdoctoral Program at the GSFC; NASA; NASA MAP Program; ACMAP
Program; NASA MAP program [NN-H-04-Z-YS-008-N, NN-H-08-Z-DA-001-N];
PEGASOS [FP7-ENV-2010-265148]; Deutsches Klimarechenzentrum (DKRZ);
Forschungszentrum Juelich
FX We thank the ICARB, ISRO-GBP, and AERONET networks for making their data
available. Site PIs and data managers of those networks are gratefully
acknowledged. We also thank the Goddard Earth Science Data and
Information Services Center for providing gridded satellite products of
Sea-WiFS, MISR, and MODIS through their Giovanni website, and the
AeroCom data management for providing access to the global model output
used in this study. Brigitte Koffi is appreciated for providing L3
CALIOP data. We appreciate that Hiren Jethva conducted Mie calculation
for us. X. Pan is supported by an appointment to the NASA Postdoctoral
Program at the GSFC, administered by Oak Ridge Associated Universities
through a contract with NASA. The work by M. Chin, H. Bian, D. Kim, and
P. R. Colarco are supported by the NASA MAP and ACMAP Programs. S. Bauer
and K. Tsigaridis have been supported by the NASA MAP program
(NN-H-04-Z-YS-008-N and NN-H-08-Z-DA-001-N). L. Pozzoli was supported by
PEGASOS (FP7-ENV-2010-265148). ECHAM5-HAMMOZ simulations were supported
by the Deutsches Klimarechenzentrum (DKRZ) and the Forschungszentrum
Juelich. Resources supporting this work were provided by the NASA
High-End Computing (HEC) Program through the NASA Center for Climate
Simulation (NCCS) at Goddard Space Flight Center. We are grateful to two
reviewers for their constructive and helpful comments.
NR 88
TC 18
Z9 18
U1 6
U2 27
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 10
BP 5903
EP 5928
DI 10.5194/acp-15-5903-2015
PG 26
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BM
UT WOS:000355289200036
ER
PT S
AU Scheidler, JJ
Asnani, VM
Deng, ZX
Dapino, MJ
AF Scheidler, Justin J.
Asnani, Vivake M.
Deng, Zhangxian
Dapino, Marcelo J.
BE Goulbourne, NC
TI Dynamic characterization of Galfenol
SO BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Behavior and Mechanics of Multifunctional Materials and
Composites
CY MAR 09-11, 2015
CL San Diego, CA
SP SPIE, American Soc Mech Engineers, Intelligent Mat Forum, Jet Propuls Lab, Natl Sci Fdn
DE Galfenol; magnetomechanical characterization; dynamic stress; dynamic
sensing
AB A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81.6Ga18.4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.
C1 [Scheidler, Justin J.; Deng, Zhangxian; Dapino, Marcelo J.] Ohio State Univ, Dept Mech & Aerosp Engn, NSF I UCRC Smart Vehicle Concepts, Columbus, OH 43210 USA.
[Asnani, Vivake M.] NASA, Glenn Res Ctr, Div Mat & Struct, Rotating & Dr Syst Branch, Cleveland, OH 44135 USA.
RP Dapino, MJ (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, NSF I UCRC Smart Vehicle Concepts, Columbus, OH 43210 USA.
EM scheidler.8@osu.edu; dapino.1@osu.edu
NR 10
TC 2
Z9 2
U1 2
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-535-3
J9 PROC SPIE
PY 2015
VL 9432
AR 94320J
DI 10.1117/12.2085573
PG 9
WC Materials Science, Multidisciplinary; Materials Science, Composites;
Optics
SC Materials Science; Optics
GA BC8GD
UT WOS:000355651100015
ER
PT J
AU Bhagwat, MJ
Caradonna, FX
Ramasamy, M
AF Bhagwat, Mahendra J.
Caradonna, Francis X.
Ramasamy, Manikandan
TI Wing-vortex interaction: unraveling the flowfield of a hovering rotor
SO EXPERIMENTS IN FLUIDS
LA English
DT Article
AB This paper focuses on one of the most prominent flow features of the hovering rotor wake, the close interaction of the tip vortex with a following blade. Such vortex interactions are fundamental determinants of rotor performance, loads, and noise. Yet, they are not completely understood, largely due to the lack of sufficiently comprehensive experimental data. The present study aims to perform such comprehensive measurements, not on hovering helicopter rotors (which hugely magnifies test complexity) but using fixed-wing models in controlled wind tunnel tests. The experiments were designed to measure, in considerable detail, the aerodynamic loading resulting from a vortex interacting with a semi-span wing, as well as the wake resulting from that interaction. The goal of the present study is to answer fundamental questions such as (a) the influence of a vortex passing below a wing on the lift, drag, tip vortex, and the wake of that wing and (b) the strength of the forming tip vortex and its relation to the wing loading and/or the tip loading. This paper presents detailed wing surface pressure measurements that result from the interaction of the wing with an interacting vortex trailing from an upstream wing. The data show large lift distribution changes for a range of wing-vortex interactions including the effects of close encounter with the vortex core. Significant asymmetry in the vortex-induced lift loading was observed, with the increase in wing sectional lift outboard of the interacting vortex (closer to the tip) being much smaller than the corresponding decrease inboard of the vortex.
C1 [Bhagwat, Mahendra J.; Caradonna, Francis X.] US Army Aviat Dev Directorate AFDD AMRDEC, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Ramasamy, Manikandan] NASA Ames Res Ctr, UARC AFDD, Moffett Field, CA 94035 USA.
RP Bhagwat, MJ (reprint author), US Army Aviat Dev Directorate AFDD AMRDEC, Ames Res Ctr, M-S 215-1, Moffett Field, CA 94035 USA.
EM mahendra.j.bhagwat.civ@mail.mil
NR 9
TC 1
Z9 1
U1 1
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0723-4864
EI 1432-1114
J9 EXP FLUIDS
JI Exp. Fluids
PD JAN
PY 2015
VL 56
IS 1
AR 19
DI 10.1007/s00348-014-1893-3
PG 17
WC Engineering, Mechanical; Mechanics
SC Engineering; Mechanics
GA CJ7JT
UT WOS:000355671900028
ER
PT S
AU Bar-Cohen, Y
Sherrit, S
Bao, XQ
Badescu, M
Lee, HJ
Walkemeyer, P
Lih, SS
AF Bar-Cohen, Yoseph
Sherrit, Stewart
Bao, Xiaoqi
Badescu, Mircea
Lee, Hyeong Jae
Walkemeyer, Phillip
Lih, Shyh-Shiuh
BE Farinholt, KM
Griffin, SF
TI Actuators using piezoelectric stacks and displacement enhancers
SO INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES
2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT SPIE Industrial and Commercial Applications of Smart Structures
Technologies Conference
CY MAR 09-10, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Actuators; Piezoelectric Motors; Rotary Devices; Inchworm motors; Horn
Actuation
ID ULTRASONIC MOTORS
AB Actuators are used to drive all active mechanisms including machines, robots, and manipulators to name a few. The actuators are responsible for moving, manipulating, displacing, pushing and executing any action that is needed by the mechanism. There are many types and principles of actuation that are responsible for these movements ranging from electromagnetic, electroactive, thermo-mechanic, piezoelectric, electrostrictive etc. Actuators are readily available from commercial producers but there is a great need for reducing their size, increasing their efficiency and reducing their weight. Studies at JPL's Non Destructive Evaluation and Advanced Actuators (NDEAA) Laboratory have been focused on the use of piezoelectric stacks and novel designs taking advantage of piezoelectric's potential to provide high torque/force density actuation and high electromechanical conversion efficiency. The actuators/motors that have been developed and reviewed in this paper are operated by various horn configurations as well as the use of pre-stress flexures that make them thermally stable and increases their coupling efficiency. The use of monolithic designs that pre-stress the piezoelectric stack eliminates the use of compression stress bolt. These designs enable the embedding of developed solid-state motors/actuators in any structure with the only macroscopically moving parts are the rotor or the linear translator. Finite element modeling and design tools were used to determine the requirements and operation parameters and the results were used to simulate, design and fabricate novel actuators/motors. The developed actuators and performance will be described and discussed in this paper.
C1 [Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Lee, Hyeong Jae; Walkemeyer, Phillip; Lih, Shyh-Shiuh] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Bar-Cohen, Y (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
NR 21
TC 0
Z9 0
U1 12
U2 25
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-536-0
J9 PROC SPIE
PY 2015
VL 9433
AR 943302
DI 10.1117/12.2084543
PG 12
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8GO
UT WOS:000355668100002
ER
PT S
AU Deng, ZX
Asnani, VM
Dapino, MJ
AF Deng, Zhangxian
Asnani, Vivake M.
Dapino, Marcelo J.
BE Farinholt, KM
Griffin, SF
TI Magnetostrictive vibration damper and energy harvester for rotating
machinery
SO INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES
2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT SPIE Industrial and Commercial Applications of Smart Structures
Technologies Conference
CY MAR 09-10, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Magnetostrictive materials; vibration damper; energy harvester; COMSOL
Multiphysics
ID STRESS
AB Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-irondysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
C1 [Deng, Zhangxian; Dapino, Marcelo J.] Ohio State Univ, Dept Mech & Aerosp Engn, NSF I UCRC Smart Vehicle Concepts, Columbus, OH 43210 USA.
[Asnani, Vivake M.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Dapino, MJ (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, NSF I UCRC Smart Vehicle Concepts, Columbus, OH 43210 USA.
EM deng.92@osu.edu; dapino.1@osu.edu
NR 18
TC 3
Z9 3
U1 1
U2 5
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-536-0
J9 PROC SPIE
PY 2015
VL 9433
AR 94330C
DI 10.1117/12.2085566
PG 11
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8GO
UT WOS:000355668100009
ER
PT J
AU Minchew, B
Simons, M
Hensley, S
Bjornsson, H
Palsson, F
AF Minchew, Brent
Simons, Mark
Hensley, Scott
Bjornsson, Helgi
Palsson, Finnur
TI Early melt season velocity fields of Langjokull and Hofsjokull, central
Iceland
SO JOURNAL OF GLACIOLOGY
LA English
DT Article
DE glacier flow; glaciological instruments and methods; ice cap; ice
velocity; remote sensing
ID ICE STREAM-B; SUBGLACIAL DRAINAGE; SURFACE DEFORMATION; WEST ANTARCTICA;
SOIL-MOISTURE; INSAR; SHEET; GLACIERS; MODELS; FLOW
AB We infer the horizontal velocity fields of the ice caps Langjokull and Hofsjokull, central Iceland, using repeat-pass interferometric synthetic aperture radar (InSAR). NASA's uninhabited aerial vehicle synthetic aperture radar (UAVSAR) acquired airborne InSAR data from multiple vantage points during the early melt season in June 2012. We develop a Bayesian approach for inferring three-dimensional velocity fields from multiple InSAR acquisitions. The horizontal components generally agree with available GPS measurements wherever ice motion is well constrained by InSAR observations. We provide evidence that changes in volumetric moisture content near the glacier surface induce phase offsets that obfuscate the vertical component of the surface velocity fields, an effect that could manifest itself on any glacier that experiences surface melt. Spatial patterns in the InSAR-derived horizontal speeds are broadly consistent with the results of a simple viscous flow model, and the directionality of the InSAR-derived horizontal flow field is nearly everywhere consistent with the ice surface gradient. Significant differences between the InSAR-derived horizontal speed and the speed predicted by the viscous flow model suggest that basal slip accounts for more than half the observed outlet glacier flow.
C1 [Minchew, Brent; Simons, Mark] CALTECH, Seismol Lab, Pasadena, CA 91125 USA.
[Hensley, Scott] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Bjornsson, Helgi; Palsson, Finnur] Univ Iceland, Inst Earth Sci, Reykjavik, Iceland.
RP Minchew, B (reprint author), CALTECH, Seismol Lab, Pasadena, CA 91125 USA.
EM bminchew@caltech.edu
RI Simons, Mark/N-4397-2015; Palsson, Finnur/B-7047-2016
OI Simons, Mark/0000-0003-1412-6395;
FU NASA's Cryospheric Sciences Program; NASA Earth and Space Sciences
fellowship; ARCS Foundation
FX Funding for the UAVSAR campaign was provided by NASA's Cryospheric
Sciences Program. B.M. was supported by a NASA Earth and Space Sciences
fellowship and an ARCS Foundation fellowship. We thank the UAVSAR team
and the NASA-Dryden flight crew who collected and helped process the
InSAR data, T. Johannesson for providing the Hofsjokull surface DEM, S.
Owen for assistance with GIPSY-OASIS and F. Ortega for reviewing the
manuscript.
NR 63
TC 6
Z9 6
U1 2
U2 9
PU INT GLACIOL SOC
PI CAMBRIDGE
PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND
SN 0022-1430
EI 1727-5652
J9 J GLACIOL
JI J. Glaciol.
PY 2015
VL 61
IS 226
BP 253
EP 266
DI 10.3189/2015JoG14J023
PG 14
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CJ8UC
UT WOS:000355778000006
ER
PT J
AU Price, D
Beckers, J
Ricker, R
Kurtz, N
Rack, W
Haas, C
Helm, V
Hendricks, S
Leonard, G
Langhorne, PJ
AF Price, D.
Beckers, J.
Ricker, R.
Kurtz, N.
Rack, W.
Haas, C.
Helm, V.
Hendricks, S.
Leonard, G.
Langhorne, P. J.
TI Evaluation of CryoSat-2 derived sea-ice freeboard over fast ice in
McMurdo Sound, Antarctica
SO JOURNAL OF GLACIOLOGY
LA English
DT Article
DE remote sensing; sea ice; sea-ice growth and decay
ID PLATELET ICE; THICKNESS; SNOW; MISSION; LAND; VARIABILITY; ALTIMETER;
RETRIEVAL; ELEVATION; TRENDS
AB Using in situ data from 2011 and 2013, we evaluate the ability of CryoSat-2 (CS-2) to retrieve sea-ice freeboard over fast ice in McMurdo Sound. This provides the first systematic validation of CS-2 in the coastal Antarctic and offers insight into the assumptions currently used to process CS-2 data. European Space Agency Level 2 (ESAL2) data are compared with results of a Waveform Fitting (WfF) procedure and a Threshold-First-Maximum-Retracker-Algorithm employed at 40% (TFMRA40). A supervised freeboard retrieval procedure is used to reduce errors associated with sea surface height identification and radar velocity in snow. We find ESAL2 freeboards located between the ice and snow freeboard rather than the frequently assumed snow/ice interface. WfF is within 0.04 m of the ice freeboard but is influenced by variable snow conditions causing increased radar backscatter from the air/snow interface. Given such snow conditions and additional uncertainties in sea surface height identification, a positive bias of 0.14 m away from the ice freeboard is observed. TFMRA40 freeboards are within 0.03 m of the snow freeboard. The separation of freeboard estimates is primarily driven by the different assumptions of each retracker, although waveform alteration by variations in snow properties and surface roughness is evident. Techniques are amended where necessary, and automatic freeboard retrieval procedures for ESAL2, WfF and TFMRA40 are presented. CS-2 detects annual fast-ice freeboard trends using all three automatic procedures that are in line with known sea-ice growth rates in the region.
C1 [Price, D.; Rack, W.] Univ Canterbury, Gateway Antarctica, Christchurch 1, New Zealand.
[Beckers, J.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada.
[Ricker, R.; Helm, V.; Hendricks, S.] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany.
[Kurtz, N.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
[Haas, C.] York Univ, Dept Earth Space Sci & Engn, Toronto, ON M3J 2R7, Canada.
[Leonard, G.] Univ Otago, Sch Surveying, Dunedin, New Zealand.
[Langhorne, P. J.] Univ Otago, Dept Phys, Dunedin, New Zealand.
RP Price, D (reprint author), Univ Canterbury, Gateway Antarctica, Christchurch 1, New Zealand.
EM daniel.price@pg.cantethury.ac.nz
RI Leonard, Greg/F-7157-2010; Ricker, Robert/H-8874-2016; Beckers,
Justin/I-2806-2014; Hendricks, Stefan/D-5168-2011; Haas,
Christian/L-5279-2016
OI Ricker, Robert/0000-0001-6928-7757; Beckers, Justin/0000-0003-0751-3995;
Hendricks, Stefan/0000-0002-1412-3146; Haas,
Christian/0000-0002-7674-3500
FU European Space Agency [AOCRY2CAL-4512]; DLR (German Aerospace Center)
[OCE1592]; German Ministry of Economics and Technology [50EE1008]; Air
New Zealand; National Institute of Water and Atmospheric Research, New
Zealand [CO1X1226]
FX We thank all participants in the 2011 and 2013 Antarctica New Zealand
field event K063 as well as Scott Base staff for their support. CS-2
data were provided by the European Space Agency for project
AOCRY2CAL-4512. The Terra-SAR-X image was provided through DLR (German
Aerospace Center) project OCE1592. The work of V. Helm and S. Hendricks
was funded by the German Ministry of Economics and Technology (grant
50EE1008). We appreciate the efforts of Alec Casey who provided
technical assistance in data processing. A research stay for the first
author at the University of Alberta was supported by Air New Zealand.
Further research support was provided by the National Institute of Water
and Atmospheric Research, New Zealand, under contract CO1X1226. We thank
Trimble NZ for the use of GNSS equipment, and Wolfgang Dierking for
fruitful discussions. We are very grateful for the contributions of Nick
Key and Justin Harrison in the design and preparation of field
equipment. The comments of two anonymous reviewers and the sea-ice
editor contributed to the manuscript. This work was collated at Gateway
Antarctica, University of Canterbury, New Zealand.
NR 48
TC 1
Z9 1
U1 1
U2 5
PU INT GLACIOL SOC
PI CAMBRIDGE
PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND
SN 0022-1430
EI 1727-5652
J9 J GLACIOL
JI J. Glaciol.
PY 2015
VL 61
IS 226
BP 285
EP 300
DI 10.3189/2015JoG14J157
PG 16
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CJ8UC
UT WOS:000355778000009
ER
PT J
AU Voytenk, D
Stern, A
Holland, DM
Dixon, TH
Christianson, K
Walker, RT
AF Voytenk, Denis
Stern, Alon
Holland, David M.
Dixon, Timothy H.
Christianson, Knut
Walker, Ryan T.
TI Tidally driven ice speed variation at Helheim Glacier, Greenland,
observed with terrestrial radar interferometry
SO JOURNAL OF GLACIOLOGY
LA English
DT Article
DE glacier flow; glaciological instruments and methods; ice dynamics;
ice/ocean interactions; remote sensing
ID TIDEWATER GLACIER; WEST ANTARCTICA; EAST GREENLAND; TIME-SERIES;
VELOCITY; SHEET; TIDE; STREAM; SHELF; DYNAMICS
AB We used a terrestrial radar interferometer (TRI) at Helheim Glacier, Greenland, in August 2013, to study the effects of tidal forcing on the terminal zone of this tidewater glacier. During our study period, the glacier velocity was up to 25 m d(-1). Our measurements show that the glacier moves out of phase with the semi-diurnal tides and the densely packed melange in the fjord. Here detrended glacier displacement lags behind the forecasted tidal height by similar to 8 hours. The transition in phase lag between the glacier and the melange happens within a narrow (similar to 500 m) zone in the fjord in front of the ice cliff. The TRI data also suggest that the impact of tidal forcing decreases rapidly up-glacier of the terminus. A flowline model suggests this pattern of velocity perturbation is consistent with weak ice flowing over a weakly nonlinear bed.
C1 [Voytenk, Denis; Dixon, Timothy H.] Univ S Florida, Sch Geosci, Tampa, FL 33612 USA.
[Stern, Alon; Holland, David M.; Christianson, Knut] NYU, Courant Inst Math Sci, New York, NY USA.
[Walker, Ryan T.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
[Walker, Ryan T.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
RP Voytenk, D (reprint author), Univ S Florida, Sch Geosci, Tampa, FL 33612 USA.
EM dvoytenk@mail.usf.edu
FU NYU Abu Dhabi grant [G1204]; US National Science Foundation (NSF) Office
of Polar Programs [ARC-0806393]; NASA [NNX12AB69G, NNX12AK29G];
University of South Florida
FX Field support for this project was provided by NYU Abu Dhabi grant G1204
and US National Science Foundation (NSF) Office of Polar Programs grant
ARC-0806393. Analysis was supported in part by NASA grant NNX12AB69G to
D.M.H. and NNX12AK29G to T.H.D. Denise Holland is thanked for organizing
the field logistics and project meetings. Additional support to D.V. and
T.H.D. was provided by start-up funds from the University of South
Florida. We thank Martin Truffer, Ted Scambos and an anonymous reviewer,
along with two anonymous reviewers of an earlier version of the
manuscript, for their valuable comments.
NR 35
TC 4
Z9 4
U1 3
U2 10
PU INT GLACIOL SOC
PI CAMBRIDGE
PA LENSFIELD RD, CAMBRIDGE CB2 1ER, ENGLAND
SN 0022-1430
EI 1727-5652
J9 J GLACIOL
JI J. Glaciol.
PY 2015
VL 61
IS 226
BP 301
EP 308
DI 10.3189/2015JoG14J173
PG 8
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CJ8UC
UT WOS:000355778000010
ER
PT J
AU Hennessy, J
Jewell, AD
Greer, F
Lee, MC
Nikzad, S
AF Hennessy, John
Jewell, April D.
Greer, Frank
Lee, Michael C.
Nikzad, Shouleh
TI Atomic layer deposition of magnesium fluoride via
bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
ID MGF2 THIN-FILMS; OPTICAL-CONSTANTS; COATINGS; ULTRAVIOLET; LITHOGRAPHY;
FABRICATION; EVAPORATION; MAGNETRON; VACUUM; TIF4
AB A new process has been developed to deposit magnesium fluoride (MgF2) thin films via atomic layer deposition (ALD) for use as optical coatings in the ultraviolet. MgF2 was deposited in a showerhead style ALD reactor using bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride (HF) as precursors at substrate temperatures from 100 to 250 degrees C. The use of HF was observed to result in improved morphology and reduced impurity content compared to other reported MgF2 ALD approaches that use metal fluoride precursors as the fluorine-containing chemistry. Characterization of these films has been performed using spectroscopic ellipsometry, atomic force microscopy, and x-ray photoelectron spectroscopy for material deposited on silicon substrates. Films at all substrate temperatures were transparent at wavelengths down to 190 nm and the low deposition temperature combined with low surface roughness makes these coatings good candidates for a variety of optical applications in the far ultraviolet. (C) 2014 American Vacuum Society.
C1 [Hennessy, John; Jewell, April D.; Greer, Frank; Lee, Michael C.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Hennessy, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM hennessy@caltech.edu
FU National Aeronautics and Space Administration; NASA
FX This research has been performed in part at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. Financial support for
A. D. Jewell was provided through the NASA Postdoctoral Program,
administered by Oak Ridge Associated Universities. The authors
acknowledge S. George at the University of Colorado for helpful
discussions regarding precursor chemistry, and A. Carver, D. Wilson, and
R. Muller at JPL for assisting with the development of the mirror and
grating coatings. The authors also acknowledge Evans Analytical Group
for the XRD measurements.
NR 28
TC 9
Z9 9
U1 8
U2 25
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
EI 1520-8559
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD JAN
PY 2015
VL 33
IS 1
AR 01A125
DI 10.1116/1.4901808
PG 6
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA CJ8FK
UT WOS:000355735400025
ER
PT S
AU Chao, TH
Lu, T
Reyes, G
AF Chao, Tien-Hsin
Lu, Thomas
Reyes, George
BE Casasent, D
Alam, MS
TI Holographic Content Addressable Storage
SO OPTICAL PATTERN RECOGNITION XXVI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Optical Pattern Recognition XXVI
CY APR 22-23, 2015
CL Baltimore, MA
SP SPIE
DE Holographic Content Addressable Storage (HCAS); Holography; Correlation
AB We have developed a Holographic Content Addressable Storage (HCAS) architecture. The HCAS systems consists of a DMD (Digital Micromirror Array) as the input Spatial Light Modulator (SLM), a CMOS (Complementary Metal-oxide Semiconductor) sensor as the output photodetector and a photorefractive crystal as the recording media. The HCAS system is capable of performing optical correlation of an input image/feature against massive reference data set stored in the holographic memory. Detailed system analysis will be reported in this paper.
C1 [Chao, Tien-Hsin; Lu, Thomas; Reyes, George] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Chao, TH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
NR 4
TC 0
Z9 0
U1 1
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-593-3
J9 PROC SPIE
PY 2015
VL 9477
AR 94770S
DI 10.1117/12.2182224
PG 5
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8EY
UT WOS:000355583800021
ER
PT S
AU Lu, T
Costello, C
Ginley-Hidinger, M
Chao, TH
AF Lu, Thomas
Costello, Colin
Ginley-Hidinger, Matthew
Chao, Tien-Hsin
BE Casasent, D
Alam, MS
TI Adaptive threshold and error-correction coding for robust data retrieval
in optical media
SO OPTICAL PATTERN RECOGNITION XXVI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Optical Pattern Recognition XXVI
CY APR 22-23, 2015
CL Baltimore, MA
SP SPIE
DE Optical communication; noise reduction; binarization; local adaptive
multi-level thresholding; crosstalk; neural network
ID SYSTEMS
AB Thresholding techniques that account for noise are essential for the efficiency and accuracy of an optical communication or optical data storage system. Various types of noise in the system can result in error. To recover the data from the noisy signal, the error must be corrected by a fast and accurate signal processing algorithm. By considering the crosstalk effect of the neighboring channels, we have devised a multi-level thresholding method to set the threshold values based on the neighboring channel values. We compare the binary characterization performance of a neural network and the local multi-level adaptive thresholding method for decoding noisy transmission images. We show that the multi-thresholding implementation results in an average of 57.42% less binary characterization errors than the artificial neural network across twenty unique mixed noise optical conditions.
C1 [Lu, Thomas; Chao, Tien-Hsin] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Costello, Colin] CALTECH, Pomona, CA USA.
[Ginley-Hidinger, Matthew] Occidental Coll, Los Angeles, CA 90041 USA.
RP Lu, T (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM Thomas.T.Lu@jpl.nasa.gov
NR 8
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-593-3
J9 PROC SPIE
PY 2015
VL 9477
AR 94770O
DI 10.1117/12.2180402
PG 13
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8EY
UT WOS:000355583800020
ER
PT S
AU Schubert, M
Moore, AJ
Dolph, C
Woodell, G
AF Schubert, Matthew
Moore, Andrew J.
Dolph, Chester
Woodell, Glenn
BE Casasent, D
Alam, MS
TI Machine Vision for Airport Runway Identification
SO OPTICAL PATTERN RECOGNITION XXVI
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Optical Pattern Recognition XXVI
CY APR 22-23, 2015
CL Baltimore, MA
SP SPIE
DE geolocation; navigation; machine vision; image recognition
ID REPRESENTATION; V2
AB For rigid objects and fixed scenes, current machine vision technology is capable of identifying imagery rapidly and with specificity over a modest range of camera viewpoints and scene illumination. We applied that capability to the problem of runway identification using video of sixteen runway approaches at nine locations, subject to two simplifying assumptions. First, by using approach video from just one of the several possible seasonal variations (no snow cover and full foliage), we artificially removed one source of scene variation in this study. Secondly, by not using approach video at dawn and dusk, we limited the study to two illumination variants (day and night). We did allow scene variation due to atmospheric turbidity by using approach video from rainy and foggy days in some daytime approaches. With suitable ensemble statistics to account for temporal continuity in video, we observed high location specificity (>90% Bayesian posterior probability). We also tested repeatability, i.e., identification of a given runway across multiple videos, and observed robust repeatability only if illumination (day vs. night) was the same and approach visibility was good. Both specificity and repeatability degraded in poor weather conditions. The results of this simplified study show that geolocation via real-time comparison of cockpit image sensor video to a database of runway approach imagery is feasible, as long as the database contains imagery from about the same time of day (complete daylight and nighttime, excluding dawn and dusk) and the weather is clear at the time of the flight.
C1 [Schubert, Matthew; Moore, Andrew J.; Dolph, Chester; Woodell, Glenn] NASA, Computat Vis Lab, Langley Res Ctr, Hampton, VA 23681 USA.
[Schubert, Matthew] Christopher Newport Univ, Newport News, VA 23606 USA.
[Dolph, Chester] Old Domin Univ, Vis Lab, Norfolk, VA 23529 USA.
RP Schubert, M (reprint author), NASA, Computat Vis Lab, Langley Res Ctr, 8 North Dryden St, Hampton, VA 23681 USA.
NR 33
TC 0
Z9 0
U1 0
U2 4
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-593-3
J9 PROC SPIE
PY 2015
VL 9477
AR 94770G
DI 10.1117/12.2177320
PG 15
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8EY
UT WOS:000355583800012
ER
PT J
AU Theis, ML
Candian, A
Tielens, AGGM
Lee, TJ
Fortenberry, RC
AF Theis, Mallory L.
Candian, Alessandra
Tielens, Alexander G. G. M.
Lee, Timothy J.
Fortenberry, Ryan C.
TI Electronically excited states of PANH anions
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; DIFFUSE INTERSTELLAR BANDS;
ACETALDEHYDE ENOLATE ANION; DENSITY-FUNCTIONAL THEORY; COUPLED-CLUSTER
METHOD; INFRARED-SPECTRA; BASIS-SETS; GAS-PHASE; ASTRONOMICAL
IDENTIFICATION; AUTODETACHMENT SPECTROSCOPY
AB The singly deprotonated anion derivatives of nitrogenated polycyclic aromatic hydrocarbons (PANHs) are investigated for their electronically excited state properties. These include single deprotonation of the two unique arrangements of quinoline producing fourteen different isomers. This same procedure is also undertaken for single deprotonation of the three nitrogenation isomers of acridine and the three of pyrenidine. It is shown quantum chemically that the quinoline-class of PANH anion derivatives can only produce a candidate dipole-bound excited state each, a state defined as the interaction of an extra electron with the dipole moment of the corresponding neutral. However, the acridine-and pyrenidine-classes possess valence excited states as well as the possible dipole-bound excited states where the latter is only possible if the dipole moment is sufficiently large to retain the extra electron; the valence excitation is independent of the radical dipolar strength. As a result, the theoretical vertically computed electronic spectra of deprotonated PANH anion derivatives is fairly rich in the 1.5 eV to 2.5 eV range significantly opening the possibilities for these molecules to be applied to longer wavelength studies of visible and near-IR spectroscopy. Lastly, the study of these systems is also enhanced by the inclusion of informed orbital arrangements in a simply constructed basis set that is shown to be more complete and efficient than standard atom-centered functions.
C1 [Theis, Mallory L.; Fortenberry, Ryan C.] Georgia So Univ, Dept Chem, Statesboro, GA 30460 USA.
[Candian, Alessandra; Tielens, Alexander G. G. M.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Fortenberry, RC (reprint author), Georgia So Univ, Dept Chem, Statesboro, GA 30460 USA.
EM rfortenberry@georgiasouthern.edu
RI Lee, Timothy/K-2838-2012;
OI Candian, Alessandra/0000-0002-5431-4449
FU Georgia Southern University (GSU); GSU College of Science and
Mathematics "Interdisciplinary Pilot Grant"; European Research Council
[246976]; National Aeronautics and Space Administration through the NASA
Astrobiology Institute [NNH13ZDA017C]; SARA supercomputer center in
Amsterdam, Netherlands [MP-270-13]
FX Start-up funds provided by Georgia Southern University (GSU) as well as
a GSU College of Science and Mathematics "Interdisciplinary Pilot Grant"
supported the work undertaken by MLT and RCF. Studies of interstellar
PAHs at Leiden Observatory are supported through advanced European
Research Council Grant 246976. This material is based upon work
supported by the National Aeronautics and Space Administration through
the NASA Astrobiology Institute under Cooperative Agreement Notice
NNH13ZDA017C issued through the Science Mission Directorate. Fig. 1-3
are produced with the CheMVP program developed at the Center for
Computational Quantum Chemistry at the University of Georgia, and the
authors are thankful to the developers for the use of this program. Fig.
4 and 5 are generated with the WebMO92 computational
chemistry graphical user interface. Part of the calculations were
performed at the SARA supercomputer center in Amsterdam, Netherlands
(project MP-270-13). We are also grateful for access to the University
of Nottingham High Performance Computing Facility. MLT and RCF would
also like to acknowledge Prof. Clayton Heller of the GSU Department of
Physics and Astronomy for the use of his computer system necessary to
complete many of the initial large excited state computations.
NR 92
TC 7
Z9 7
U1 7
U2 20
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
EI 1463-9084
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2015
VL 17
IS 22
BP 14761
EP 14772
DI 10.1039/c5cp01354b
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CJ6VN
UT WOS:000355633400052
PM 25975430
ER
PT S
AU Bao, XQ
Badescu, M
Bar-Cohen, Y
AF Bao, Xiaoqi
Badescu, Mircea
Bar-Cohen, Yoseph
BE Lynch, JP
Wang, KW
Sohn, H
TI Thermal analysis of brazing seal and sterilizing technique to break
contamination chain for Mars sample return
SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND
AEROSPACE SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE seal; sterilizing; Mars sample return; contamination
AB The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.
C1 [Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Bao, XQ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM xbao@jpl.nasa.gov
NR 5
TC 1
Z9 1
U1 1
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-538-4
J9 PROC SPIE
PY 2015
VL 9435
AR 943527
DI 10.1117/12.2086626
PG 6
WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical;
Remote Sensing; Optics
SC Engineering; Remote Sensing; Optics
GA BC8JE
UT WOS:000355726100065
ER
PT S
AU Sherrit, S
Lee, HJ
Walkemeyer, P
Winn, T
Tosi, LP
Colonius, T
AF Sherrit, Stewart
Lee, Hyeong Jae
Walkemeyer, Phillip
Winn, Tyler
Tosi, Luis Phillipe
Colonius, Tim
BE Lynch, JP
Wang, KW
Sohn, H
TI Fluid flow nozzle energy harvesters
SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND
AEROSPACE SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Actuators; Piezoelectric Devices; Flow Energy Harvesting; bimorphs;
transducers vibrators; piezoelectric power generation; fluid structure
interaction
AB Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
C1 [Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Tosi, Luis Phillipe; Colonius, Tim] CALTECH, Dept Mech Engn, Pasadena, CA 91125 USA.
RP Sherrit, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.
NR 22
TC 1
Z9 1
U1 1
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-538-4
J9 PROC SPIE
PY 2015
VL 9435
AR 943507
DI 10.1117/12.2084574
PG 12
WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical;
Remote Sensing; Optics
SC Engineering; Remote Sensing; Optics
GA BC8JE
UT WOS:000355726100005
ER
PT S
AU Tian, ZH
Leckey, CAC
Yu, LY
Seebo, JP
AF Tian, Zhenhua
Leckey, Cara A. C.
Yu, Lingyu
Seebo, Jeffrey P.
BE Lynch, JP
Wang, KW
Sohn, H
TI Impact Induced Delamination Detection and Quantification with Guided
Wavefield Analysis
SO SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND
AEROSPACE SYSTEMS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems
CY MAR 09-12, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Guided waves; Composites; Delamination; Frequency-wavenumber analysis;
Laser vibrometer
ID LAMB WAVES; COMPOSITE STRUCTURES; DAMAGE
AB This paper studies impact induced delamination detection and quantification methods via guided wavefield data and spatial wavenumber imaging. In this study, the complex geometry impact-like delamination damage in a composite laminate is created through the quasi-static indention technique. To detect and quantify the delamination damage, the guided ultrasonic waves are excited through a piezoelectric actuator, and the guided wavefields are measured by a scanning laser Doppler vibrometer. The acquired guided wavefields contain a wealth of information regarding the wave propagation in the composite plate and complex wave interaction at the delamination region. To process the wavefield data and evaluate the delamination damage, the measured wavefields are analyzed through the spatial wavenumber imaging method which can generate an image containing the dominant local wavenumber at each spatial location. For a proof of concept, the approach is first applied to a single Teflon insert simulating a delamination, and then to the complex geometry impact-like delamination damage. The results show that the spatial wavenumber imaging can not only determine the delamination location, but also provide quantitative information regarding the delamination size and shape. The detection results for the impact induced delamination are compared to an ultrasonic C-scan image and wavenumber images are studied for two different excitation frequencies. Fairly good agreement is observed for portions of the delamination, and differences in wavenumber are observed at the two different frequencies. Results demonstrate that the spatial wavenumber imaging is a promising technique for yielding delamination location and size information.
C1 [Tian, Zhenhua; Yu, Lingyu] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
[Leckey, Cara A. C.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA.
[Seebo, Jeffrey P.] Analyt Mech Associates Inc, Hampton, VA USA.
RP Yu, LY (reprint author), Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA.
EM yu3@cec.sc.edu
RI Tian, Zhenhua/I-6687-2015
OI Tian, Zhenhua/0000-0002-1903-5604
NR 37
TC 0
Z9 0
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-538-4
J9 PROC SPIE
PY 2015
VL 9435
AR 94351P
DI 10.1117/12.2083358
PG 9
WC Engineering, Aerospace; Engineering, Civil; Engineering, Mechanical;
Remote Sensing; Optics
SC Engineering; Remote Sensing; Optics
GA BC8JE
UT WOS:000355726100049
ER
PT S
AU Abdul-Aziz, A
Woike, MR
Clem, M
Baaklini, G
AF Abdul-Aziz, Ali
Woike, Mark R.
Clem, Michelle
Baaklini, George
BE Peters, KJ
TI Engine Rotor Health Monitoring; an Experimental Approach to Fault
Detection and Durability Assessment
SO SMART SENSOR PHENOMENA, TECHNOLOGY, NETWORKS, AND SYSTEMS INTEGRATION
2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Smart Sensor Phenomena, Technology, Networks, and Systems
Integration
CY MAR 09-10, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Disk Rotor; microwave sensor; captive; finite element; bode plot; crack
detection
AB Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital.
This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.
C1 [Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Abdul-Aziz, A (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
NR 23
TC 0
Z9 0
U1 3
U2 8
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-539-1
J9 PROC SPIE
PY 2015
VL 9436
AR 94360A
DI 10.1117/12.2087602
PG 8
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8GN
UT WOS:000355666900008
ER
PT S
AU Abdul-Aziz, A
Wroblewski, AC
Bhatt, RT
Jaskowiak, MH
Gorican, D
Rauser, RW
AF Abdul-Aziz, Ali
Wroblewski, Adam C.
Bhatt, Ramakrishna T.
Jaskowiak, Martha H.
Gorican, Daniel
Rauser, Richard W.
BE Peters, KJ
TI Assessment of NDE methods for detecting cracks and damage in
environmental barrier coated CMC tested under tension
SO SMART SENSOR PHENOMENA, TECHNOLOGY, NETWORKS, AND SYSTEMS INTEGRATION
2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Smart Sensor Phenomena, Technology, Networks, and Systems
Integration
CY MAR 09-10, 2015
CL San Diego, CA
SP SPIE, Amer Soc Mech Engineers
DE Digital image correlation; tensile test; NDE; CMC; EBC; computer
tomography
ID SIC/SIC COMPOSITES; COATINGS; CERAMICS
AB For validating physics based analytical models predicting spallation life of environmental barrier coating (EBC) on fiber reinforced ceramic matrix composites, the fracture strength of EBC and kinetics of crack growth in EBC layers need to be experimentally determined under engine operating conditions. In this study, a multi layered barium strontium aluminum silicate (BSAS) based EBC-coated, melt infiltrated silicon carbide fiber reinforced silicon carbide matrix composite (MI SiC/SiC) specimen was tensile tested at room temperature. Multiple tests were performed on a single specimen with increasing predetermined stress levels until final failure. During loading, the damage occurring in the EBC was monitored by digital image correlation (DIC). After unloading from the predetermined stress levels, the specimen was examined by optical microscopy and computed tomography (CT). Results indicate both optical microscopy and CT could not resolve the primary or secondary cracks developed during tensile loading until failure. On the other hand, DIC did show formation of a primary crack at similar to 50% of the ultimate tensile strength and this crack grew with increasing stress and eventually led to final failure of the specimen.
Although some secondary cracks were seen in the DIC strain plots prior to final failure, the existence of these cracks were not confirmed by other methods. By using a higher resolution camera, it is possible to improve the capability of DIC in resolving secondary cracks and damage in coated specimen tested at room temperature, but use of DIC at high temperature requires significant development. Based on the current data, it appears that both optical microscopy and CT do not offer any hope for detecting crack initiation or determining crack growth in EBC coated CMC tested at room or high temperatures after the specimen has been unloaded. Other methods such as, thermography and optical/SEM of the polished cross section of EBC coated CMC specimens stressed to predetermined levels and cycled to certain time at a given stress need to be explored.
C1 [Abdul-Aziz, Ali; Wroblewski, Adam C.; Bhatt, Ramakrishna T.; Jaskowiak, Martha H.; Gorican, Daniel; Rauser, Richard W.] NASA, Glenn Res Ctr Cleveland, Cleveland, OH 44135 USA.
RP Abdul-Aziz, A (reprint author), NASA, Glenn Res Ctr Cleveland, Cleveland, OH 44135 USA.
NR 11
TC 0
Z9 0
U1 5
U2 10
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-539-1
J9 PROC SPIE
PY 2015
VL 9436
AR 943609
DI 10.1117/12.2087600
PG 9
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC8GN
UT WOS:000355666900007
ER
PT S
AU Waller, JM
Saulsberry, RL
Parker, BH
Hodges, KL
Burke, ER
Taminger, KM
AF Waller, Jess M.
Saulsberry, Regor L.
Parker, Bradford H.
Hodges, Kenneth L.
Burke, Eric R.
Taminger, Karen M.
BE Chimenti, DE
Bond, LJ
TI Summary of NDE of Additive Manufacturing Efforts in NASA
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
AB One of the major obstacles slowing the acceptance of parts made by additive manufacturing (AM) in NASA applications is the lack of a broadly accepted materials and process quality systems; and more specifically, the lack of adequate nondestructive evaluation (NDE) processes integrated into AM. Matching voluntary consensus standards are also needed to control the consistency of input materials, process equipment, process methods, finished part properties, and how those properties are characterized. As for nondestructive characterization, procedures are needed to interrogate features unique to parts made by AM, such as fine-scale porosity, deeply embedded flaws, complex part geometry, and intricate internal features. The NDE methods developed must be tailored to meet materials, design and test requirements encountered throughout the part life cycle, whether during process optimization, real-time process monitoring, finished part qualification and certification (especially of flight hardware), or in situ health monitoring. Restated, individualized process/productspecific NDE methods are needed to satisfy NASA's various quality assurance requirements. To date, only limited data have been acquired by NASA on parts made by AM. This paper summarizes the NASA AM effort, highlights available NDE data, and outlines the approach NASA is taking to apply NDE to its various AM efforts.
C1 [Waller, Jess M.; Saulsberry, Regor L.] NASA Johnson Space Ctr, White Sands Test Facil, Las Cruces, NM 88011 USA.
[Parker, Bradford H.; Hodges, Kenneth L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Burke, Eric R.; Taminger, Karen M.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
RP Waller, JM (reprint author), NASA Johnson Space Ctr, White Sands Test Facil, Las Cruces, NM 88011 USA.
EM jess.m.waller@nasa.gov; regor.l.saulsberry@nasa.gov;
bradford.h.parker@nasa.gov; kenneth.l.hodges@nasa.gov;
eric.r.burke@nasa.gov; karen.m.taminger@nasa.gov
NR 8
TC 0
Z9 0
U1 3
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 51
EP 62
DI 10.1063/1.4914594
PG 12
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100005
ER
PT S
AU Winfree, WP
Howell, PA
Zalameda, JN
AF Winfree, William P.
Howell, Patricia A.
Zalameda, Joseph N.
BE Chimenti, DE
Bond, LJ
TI Determination of Flaw Size from Thermographic Data
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
ID TRANSIENT THERMOGRAPHY; AIRCRAFT COMPOSITES; INVERSE SCATTERING;
DEFECTS; DEPTH
AB Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.
C1 [Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
RP Winfree, WP (reprint author), NASA Langley Res Ctr, Mail Stop 225, Hampton, VA 23681 USA.
NR 19
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 280
EP 289
DI 10.1063/1.4914621
PG 10
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100032
ER
PT S
AU Ojard, G
Doza, D
Ouyang, Z
Angel, P
Smyth, I
Santhosh, U
Ahmad, J
Gowayed, Y
AF Ojard, Greg
Doza, Douglas
Ouyang, Zhong
Angel, Paul
Smyth, Imelda
Santhosh, Unni
Ahmad, Jalees
Gowayed, Yasser
BE Chimenti, DE
Bond, LJ
TI Thermal and Destructive Interrogation of Ceramic Matrix Composites
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
AB Ceramic matrix composites are intended for elevated temperature use and their performance at temperature must be clearly understood as insertion efforts are to be realized. Most efforts to understand ceramic matrix composites at temperature are based on their lifetime at temperature under stress based on fatigue or creep testing or residual testing after some combination of temperature, stress and time. While these efforts can be insightful especially based on their mechanical performance, there is no insight into how other properties are changing with thermal exposure. To gain additional insight into oxidation behavior of CMC samples, a series of fatigue and creep samples tested at two different temperatures were non-destructively interrogated after achieving run-out conditions by multiple thermal methods and limited X-ray CT. After non-destructive analysis, residual tensile tests were undertaken at room temperature. The resulting residual properties will be compared against the non-destructive data. Analysis will be done to see if data trends can be determined and correlated to the level and duration of exposure.
C1 [Ojard, Greg] United Technol Res Ctr, E Hartford, CT 06108 USA.
[Doza, Douglas] Vantage Partners LLC, Brookpark, OH 44142 USA.
[Ouyang, Zhong; Smyth, Imelda] Pratt & Whitney, E Hartford, CT 06108 USA.
[Angel, Paul] NASA Glenn Res Ctr, Cleveland, OH 44135 USA.
[Santhosh, Unni; Ahmad, Jalees] Struct Analyt Inc, Carlsbad, CA 92010 USA.
[Gowayed, Yasser] Auburn Univ, Polymer & Fiber Engn, Auburn, AL 36849 USA.
RP Ojard, G (reprint author), United Technol Res Ctr, 411 Silver Lane, E Hartford, CT 06108 USA.
EM ojardgc@utrc.utc.com
NR 15
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 298
EP 305
DI 10.1063/1.4914623
PG 8
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100034
ER
PT S
AU Kleppe, N
Nurge, MA
Bowler, N
AF Kleppe, Nathan
Nurge, Mark A.
Bowler, Nicola
BE Chimenti, DE
Bond, LJ
TI Dielectric Characterization of High-Performance Spaceflight Materials
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
ID POLY(ETHER ETHER KETONE); CRYSTALLINITY; RELAXATION
AB As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 mu Hz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air-or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.
C1 [Kleppe, Nathan; Bowler, Nicola] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Nurge, Mark A.] NASA, Appl Phys Lab, Kennedy Space Ctr, FL 32899 USA.
[Bowler, Nicola] Iowa State Univ, Ctr Nondestruct Evaluat, Ames, IA 50011 USA.
[Bowler, Nicola] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA.
RP Kleppe, N (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
NR 18
TC 0
Z9 0
U1 4
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 443
EP 452
DI 10.1063/1.4914640
PG 10
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100051
ER
PT S
AU DeHaven, SL
Wincheski, RA
Albin, S
AF DeHaven, S. L.
Wincheski, R. A.
Albin, S.
BE Chimenti, DE
Bond, LJ
TI Alkali Halide Microstructured Optical Fiber for X-ray Detection
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
AB Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.
C1 [DeHaven, S. L.; Wincheski, R. A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Albin, S.] Norfolk State Univ, Norfolk, VA 23504 USA.
RP DeHaven, SL (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
EM stanton.l.dehaven@nasa.gov; russel.a.wincheski@nasa.gov; salbin@nsu.edu
NR 6
TC 0
Z9 0
U1 1
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 571
EP 578
DI 10.1063/1.4914655
PG 8
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100066
ER
PT S
AU Leckey, CAC
Seebo, JP
AF Leckey, Cara A. C.
Seebo, Jeffrey P.
BE Chimenti, DE
Bond, LJ
TI Guided Wave Energy Trapping to Detect Hidden Multilayer Delamination
Damage
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
ID COMPOSITES
AB Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) simulation tools capable of modeling three-dimensional (3D) realistic energy-damage interactions are needed for aerospace composites. Current practice in NDE/SHM simulation for composites commonly involves over-simplification of the material parameters and/or a simplified two-dimensional (2D) approach. The unique damage types that occur in composite materials (delamination, microcracking, etc) develop as complex 3D geometry features. This paper discusses the application of 3D custom ultrasonic simulation tools to study wave interaction with multilayer delamination damage in carbon-fiber reinforced polymer (CFRP) composites. In particular, simulation based studies of ultrasonic guided wave energy trapping due to multilayer delamination damage were performed. The simulation results show changes in energy trapping at the composite surface as additional delaminations are added through the composite thickness. The results demonstrate a potential approach for identifying the presence of hidden multilayer delamination damage in applications where only single-sided access to a component is available. The paper also describes recent advancements in optimizing the custom ultrasonic simulation code for increases in computation speed.
C1 [Leckey, Cara A. C.] NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA.
[Seebo, Jeffrey P.] NASA, Langley Res Ctr, Analyt Mech Associates, Hampton, VA 23665 USA.
RP Leckey, CAC (reprint author), NASA, Langley Res Ctr, Nondestruct Evaluat Sci Branch, Hampton, VA 23665 USA.
EM cara.ac.leckey@nasa.gov
NR 7
TC 5
Z9 5
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 1162
EP 1169
DI 10.1063/1.4914726
PG 8
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100137
ER
PT S
AU Wincheski, B
Kim, JW
Sauti, G
Wainwright, E
Williams, P
Siochi, EJ
AF Wincheski, Buzz
Kim, Jae-Woo
Sauti, Godfrey
Wainwright, Elliot
Williams, Phillip
Siochi, Emile J.
BE Chimenti, DE
Bond, LJ
TI Nondestructive Evaluation Techniques for Development and
Characterization of Carbon Nanotube Based Superstructures
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
ID SHEET/BISMALEIMIDE NANOCOMPOSITES; RAMAN-SPECTROSCOPY; PERFORMANCE
AB Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns [1]. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking [2]. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-to-weight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.
C1 [Wincheski, Buzz; Williams, Phillip; Siochi, Emile J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Kim, Jae-Woo; Sauti, Godfrey] Natl Inst Aerosp, Hampton, VA 23681 USA.
[Wainwright, Elliot] Coll Wooster, Wooster, OH 44691 USA.
RP Wincheski, B (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
EM russell.a.wincheski@nasa.gov
RI Kim, Jae-Woo/A-8314-2008
NR 14
TC 0
Z9 0
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 1203
EP 1210
DI 10.1063/1.4914731
PG 8
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100142
ER
PT S
AU Cramer, KE
Perey, DF
Yost, WT
AF Cramer, K. Elliott
Perey, Daniel F.
Yost, William T.
BE Chimenti, DE
Bond, LJ
TI Ultrasonic Inspection to Quantify Failure Pathologies of Crimped
Electrical Connections
SO 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION, VOL 34
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 41st Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 20-25, 2014
CL Boise, ID
SP Ctr Nondestruct Evaluat, Quantitat Nondestruct Evaluat Programs, Amer Soc Nondestruct Testing, World Federat NDE Ctr, Natl Sci Fdn, Ind Univ Co Operat Res Ctr Program
AB Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, winch is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.
C1 [Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Cramer, KE (reprint author), NASA, Langley Res Ctr, MS231, Hampton, VA 23681 USA.
EM k.elliott.cramer@nasa.gov
NR 5
TC 0
Z9 0
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1292-7
J9 AIP CONF PROC
PY 2015
VL 1650
BP 1820
EP 1825
DI 10.1063/1.4914807
PG 6
WC Physics, Applied
SC Physics
GA BC7JI
UT WOS:000354938100218
ER
PT J
AU Kim, GB
Choi, S
Danevich, FA
Fleischmann, A
Kang, CS
Kim, HJ
Kim, SR
Kim, YD
Kim, YH
Kornoukhov, VA
Lee, HJ
Lee, JH
Lee, MK
Lee, SJ
So, JH
Yoon, WS
AF Kim, G. B.
Choi, S.
Danevich, F. A.
Fleischmann, A.
Kang, C. S.
Kim, H. J.
Kim, S. R.
Kim, Y. D.
Kim, Y. H.
Kornoukhov, V. A.
Lee, H. J.
Lee, J. H.
Lee, M. K.
Lee, S. J.
So, J. H.
Yoon, W. S.
TI A CaMoO4 Crystal Low Temperature Detector for the AMoRE Neutrinoless
Double Beta Decay Search
SO ADVANCES IN HIGH ENERGY PHYSICS
LA English
DT Article
ID METALLIC MAGNETIC CALORIMETER; SCINTILLATION PROPERTIES; BOLOMETERS;
MO-100
AB We report the development of a CaMoO4 crystal low temperature detector for the AMoRE neutrinoless double beta decay (0 nu beta beta) search experiment. The prototype detector cell was composed of a 216 g CaMoO4 crystal and a metallic magnetic calorimeter. An overground measurement demonstrated FWHM resolution of 6-11 keV for full absorption gamma peaks. Pulse shape discrimination was clearly demonstrated in the phonon signals, and 7.6 sigma of discrimination power was found for the alpha and beta/gamma separation. The phonon signals showed rise-times of about 1 ms. It is expected that the relatively fast rise-time will increase the rejection efficiency of two-neutrino double beta decay pile-up events which can be one of the major background sources in 0 nu beta beta searches.
C1 [Kim, G. B.; Kang, C. S.; Kim, S. R.; Kim, Y. D.; Kim, Y. H.; Lee, H. J.; So, J. H.; Yoon, W. S.] Inst for Basic Sci Korea, Daejeon 305811, South Korea.
[Kim, G. B.; Choi, S.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea.
[Kim, G. B.; Kang, C. S.; Kim, S. R.; Kim, Y. H.; Lee, H. J.; Lee, J. H.; Lee, M. K.; Lee, S. J.; So, J. H.; Yoon, W. S.] Korea Res Inst Stand & Sci, Daejeon 305340, South Korea.
[Danevich, F. A.] Inst Nucl Res, UA-03680 Kiev, Ukraine.
[Fleischmann, A.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany.
[Kim, H. J.] Kyungpook Natl Univ, Dept Phys, Daegu 702701, South Korea.
[Kim, Y. D.] Sejong Univ, Dept Phys, Seoul 143747, South Korea.
[Kim, Y. H.] Korea Univ Sci & Technol, Daejeon 305350, South Korea.
[Kornoukhov, V. A.] Inst Theoret & Expt Phys, Moscow 117218, Russia.
[Lee, S. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Kim, YH (reprint author), Inst for Basic Sci Korea, Daejeon 305811, South Korea.
EM yhk@ibs.re.kr
RI Lee, Sang Jun/A-3892-2015
OI Lee, Sang Jun/0000-0002-8199-3993
FU National Research Foundation of Korea - Korean Government
[NRF-2011-220-C00006, NRF-2013K2A5A3000039]; National Academy of
Sciences of Ukraine; [IBS-R016-G1]
FX This research was funded by Grant no. IBS-R016-G1 and partly supported
by the National Research Foundation of Korea Grant funded by the Korean
Government (NRF-2011-220-C00006 and NRF-2013K2A5A3000039). F. A.
Danevich was supported in part by the Space Research Program of the
National Academy of Sciences of Ukraine.
NR 32
TC 4
Z9 4
U1 3
U2 10
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-7357
EI 1687-7365
J9 ADV HIGH ENERGY PHYS
JI Adv. High. Energy Phys.
PY 2015
AR 817530
DI 10.1155/2015/817530
PG 7
WC Physics, Particles & Fields
SC Physics
GA CI9SL
UT WOS:000355110000001
ER
PT J
AU Tsurutani, BT
Hajra, R
Echer, E
Gjerloev, JW
AF Tsurutani, B. T.
Hajra, R.
Echer, E.
Gjerloev, J. W.
TI Extremely intense (SML <=-2500 nT) substorms: isolated events that are
externally triggered?
SO ANNALES GEOPHYSICAE
LA English
DT Article
DE Magnetospheric physics; storms and substorms
ID GEOMAGNETIC-ACTIVITY; MAGNETIC-FIELDS; INTERPLANETARY; SHOCKS; STORMS;
SOLAR; WIND
AB We examine particularly intense substorms (SML <= -2500 nT), hereafter called "supersubstorms" or SSS events, to identify their nature and their magnetic storm dependences. It is found that these intense substorms are typically isolated events and are only loosely related to magnetic storms. SSS events can occur during super (Dst <= -250 nT) and intense (100 nT >= Dst > -250) magnetic storms. SSS events can also occur during nonstorm (Dst >= -50 nT) intervals. SSSs are important because the strongest ionospheric currents will flow during these events, potentially causing power outages on Earth. Several SSS examples are shown. SSS events appear to be externally triggered by small regions of very high density (similar to 30 to 50 cm(-3)) solar wind plasma parcels (PPs) impinging upon the magnetosphere. Precursor southward interplanetary magnetic fields are detected prior to the PPs hitting the magnetosphere. Our hypothesis is that these southward fields input energy into the magnetosphere/magnetotail and the PPs trigger the release of the stored energy.
C1 [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Hajra, R.; Echer, E.] Inst Nacl Pesquisas Espaciais, BR-12201 Sao Jose Dos Campos, SP, Brazil.
[Gjerloev, J. W.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Gjerloev, J. W.] Univ Bergen, Birkeland Ctr, N-5020 Bergen, Norway.
RP Tsurutani, BT (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM bruce.t.tsurutani@jpl.nasa.gov
OI Hajra, Rajkumar/0000-0003-0447-1531
FU FAPESP post-doctoral research fellowship at INPE; Brazilian CNPq agency
[301233/2011-0]
FX Portions of this research were performed by the Jet Propulsion
Laboratory, California Institute of Technology under contract with NASA.
The work of R. Hajra is financially supported by FAPESP post-doctoral
research fellowship at INPE. E. Echer would like to thank to the
Brazilian CNPq (301233/2011-0) agency for financial support. The
SuperMAG data were collected from the following website:
http://supermag.jhuapl.edu/. The solar wind/interplanetary data were
collected from the OMNI website: http://omniweb.gsfc.nasa.gov/.
NR 22
TC 7
Z9 7
U1 0
U2 6
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 0992-7689
EI 1432-0576
J9 ANN GEOPHYS-GERMANY
JI Ann. Geophys.
PY 2015
VL 33
IS 5
BP 519
EP 524
DI 10.5194/angeocom-33-519-2015
PG 6
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA CJ2BI
UT WOS:000355288800001
ER
PT J
AU Huang, J
Liu, H
Crawford, JH
Chan, C
Considine, DB
Zhang, Y
Zheng, X
Zhao, C
Thouret, V
Oltmans, SJ
Liu, SC
Jones, DBA
Steenrod, SD
Damon, MR
AF Huang, J.
Liu, H.
Crawford, J. H.
Chan, C.
Considine, D. B.
Zhang, Y.
Zheng, X.
Zhao, C.
Thouret, V.
Oltmans, S. J.
Liu, S. C.
Jones, D. B. A.
Steenrod, S. D.
Damon, M. R.
TI Origin of springtime ozone enhancements in the lower troposphere over
Beijing: in situ measurements and model analysis
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID MOZAIC AIRBORNE PROGRAM; NORTH-AMERICA; HONG-KONG; INTERANNUAL
VARIABILITY; VERTICAL-DISTRIBUTION; BACKGROUND OZONE; MOIST CONVECTION;
AIR-POLLUTION; SURFACE OZONE; WATER-VAPOR
AB Ozone (O-3) concentrations in the lower troposphere (LT) over Beijing have significantly increased over the past 2 decades as a result of rapid industrialization in China, with important implications for regional air quality and the photochemistry of the background troposphere. We characterize the vertical distribution of lower-tropospheric (0-6 km) O-3 over Beijing using observations from 16 ozonesonde soundings during a field campaign in April-May 2005 and MOZAIC (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft) over 13 days in the same period. We focus on the origin of LT O-3 enhancements observed over Beijing, particularly in May. We use a global 3-D chemistry and transport model (GEOS-Chem CTM; GEOS - Goddard Earth Observing System) driven by assimilated meteorological fields to examine the transport pathways for O-3 pollution and to quantify the sources contributing to O-3 and its enhancements in the springtime LT over Beijing. Out-put from the Global Modeling Initiative (GMI) CTM is also used. High O-3 concentrations (up to 94.7 ppbv) were frequently observed at the altitude of similar to 1.5-2 km. The CTMs captured the timing of the occurrences but significantly underestimated their magnitude. GEOS-Chem simulations and a case study showed that O-3 produced in the Asian troposphere (especially from Asian anthropogenic pollution) made major contributions to the observed O-3 enhancements. Contributions from anthropogenic pollution in the European and North American troposphere were reduced during these events, in contrast with days without O-3 enhancements when contributions from Europe and North America were substantial. The O-3 enhancements typically occurred under southerly wind and warmer conditions. It is suggested that an earlier onset of the Asian summer monsoon would cause more O-3 enhancement events in the LT over the North China Plain in late spring and early summer.
C1 [Huang, J.; Liu, H.] Natl Inst Aerosp, Hampton, VA 23681 USA.
[Crawford, J. H.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Chan, C.; Considine, D. B.] Chinese Acad Sci, Inst Earth Environm, Xian, Peoples R China.
[Considine, D. B.] NASA Headquarters, Washington, DC USA.
[Zhang, Y.] South China Inst Environm Sci, Guangzhou, Guangdong, Peoples R China.
[Zheng, X.] Chinese Acad Meteorol Sci, Beijing, Peoples R China.
[Zhao, C.] Peking Univ, Dept Atmospher Sci, Beijing 100871, Peoples R China.
[Thouret, V.] Lab Aerol, UMR5560, Toulouse, France.
[Oltmans, S. J.] Univ Colorado, CIRES, Boulder, CO 80309 USA.
[Oltmans, S. J.] NOAA, ESRL, Boulder, CO USA.
[Liu, S. C.] Acad Sinica, Res Ctr Environm Changes, Taipei 115, Taiwan.
[Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Steenrod, S. D.] Univ Space Res Assoc, Columbia, MD USA.
[Steenrod, S. D.; Damon, M. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Damon, M. R.] Sci Syst & Applicat Inc, Lanham, MD USA.
RP Liu, H (reprint author), Natl Inst Aerosp, Hampton, VA 23681 USA.
EM hongyu.liu-1@nasa.gov
RI Zhao, Chunsheng/D-1176-2011; Chem, GEOS/C-5595-2014
OI Zhao, Chunsheng/0000-0003-1951-379X;
FU NASA Atmospheric Composition Modeling and Analysis Program (ACMAP); NASA
Modeling, Analysis, and Prediction Program (MAP); National Science
Foundation of China; INSU-CNRS (France); Meteo-France; CNES; Universite
Paul Sabatier (Toulouse, France); Research Center Julich (FZJ, Julich,
Germany); EU project IAGOS-DS; EU project IAGOS-ERI; NASA ACMAP; MAP
FX This work was supported by the NASA Atmospheric Composition Modeling and
Analysis Program (ACMAP) and NASA Modeling, Analysis, and Prediction
Program (MAP). Ozonesonde data were obtained with support from the
National Science Foundation of China. We thank the personnel at the
Beijing ozonesonde station for helping with the launching of
ozonesondes. The authors acknowledge the strong support of the European
Commission, Airbus, and the airlines (Lufthansa, Air France, Austrian,
Air Namibia, China Airlines, and Cathay Pacific so far) who have carried
the MOZAIC or IAGOS equipment and performed the maintenance since 1994.
MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, CNES,
Universite Paul Sabatier (Toulouse, France), and the Research Center
Julich (FZJ, Julich, Germany). IAGOS has been and is additionally funded
by the EU projects IAGOS-DS and IAGOS-ERI. The MOZAIC-IAGOS data are
available via the CNES/CNRS-INSU Ether web site
http://www.pole-ether.fr. The NASA Center for Computational Sciences
(NCCS) provided supercomputing resources. The GEOS-Chem model is managed
by the Atmospheric Chemistry Modeling Group at Harvard University with
support from NASA ACMAP and MAP. The GMI model is managed by Jose
Rodriguez (Project Scientist) and Susan Strahan (Project Manager) at the
NASA Goddard Space Flight Center with support from MAP. We thank Meiyun
Lin and two anonymous reviewers for their comments and suggestions,
which helped improve the manuscript.
NR 75
TC 6
Z9 6
U1 7
U2 35
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 9
BP 5161
EP 5179
DI 10.5194/acp-15-5161-2015
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BL
UT WOS:000355289100012
ER
PT J
AU van Gijsel, JAE
Zurita-Milla, R
Stammes, P
Godin-Beekmann, S
Leblanc, T
Marchand, M
McDermid, IS
Stebel, K
Steinbrecht, W
Swart, DPJ
AF van Gijsel, J. A. E.
Zurita-Milla, R.
Stammes, P.
Godin-Beekmann, S.
Leblanc, T.
Marchand, M.
McDermid, I. S.
Stebel, K.
Steinbrecht, W.
Swart, D. P. J.
TI Using self-organising maps to explore ozone profile validation results -
SCIAMACHY limb compared to ground-based lidar observations
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID NEURAL-NETWORK; SATELLITE; SPECTROMETER; TEMPERATURE; ALGORITHM
AB Traditional validation of atmospheric profiles is based on the intercomparison of two or more data sets in pre-defined ranges or classes of a given observational characteristic such as latitude or solar zenith angle. In this study we trained a self-organising map (SOM) with a full time series of relative difference profiles of SCIAMACHY limb v5.02 and lidar ozone profiles from seven observation sites. Each individual observation characteristic was then mapped to the obtained SOM to investigate to which degree variation in this characteristic is explanatory for the variation seen in the SOM map. For the studied data sets, altitude-dependent relations for the global data set were found between the difference profiles and studied variables. From the lowest altitude studied (18 km) ascending, the most influencing factors were found to be longitude, followed by solar zenith angle and latitude, sensor age and again solar zenith angle together with the day of the year at the highest altitudes studied here (up to 45 km). After accounting for both latitude and longitude, residual partial correlations with a reduced magnitude are seen for various factors. However, (partial) correlations cannot point out which (combination) of the factors drives the observed differences between the ground-based and satellite ozone profiles as most of the factors are inter-related. Clustering into three classes showed that there are also some local dependencies, with for instance one cluster having a much stronger correlation with the sensor age (days since launch) between 36 and 42 km. The proposed SOM-based approach provides a powerful tool for the exploration of differences between data sets without being limited to a priori defined data subsets.
C1 [van Gijsel, J. A. E.; Stammes, P.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
[Zurita-Milla, R.] Univ Twente, NL-7500 AE Enschede, Netherlands.
[Godin-Beekmann, S.; Marchand, M.] LATMOS IPSL CNRS UPMC UVSQ, Paris, France.
[Leblanc, T.; McDermid, I. S.] CALTECH, NASA JPL, Wrightwood, CA USA.
[Stebel, K.] Norwegian Inst Air Res NILU, Oslo, Norway.
[Steinbrecht, W.] German Weather Serv DWD, Potsdam, Germany.
[Swart, D. P. J.] Natl Inst Publ Hlth & Environm RIVM, Bilthoven, Netherlands.
RP van Gijsel, JAE (reprint author), Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
EM anne.van.gijsel@knmi.nl
RI Zurita-Milla, Raul/E-9333-2010; Steinbrecht, Wolfgang/G-6113-2010; van
Gijsel, Joanna/F-8087-2010
OI Steinbrecht, Wolfgang/0000-0003-0680-6729;
FU European Space Agency (ESA) through the VALID-2 project; Netherlands
Space Office (NSO)
FX The authors would like to acknowledge financial support from the
European Space Agency (ESA) through the VALID-2 project and the
Netherlands Space Office (NSO) through the NL-SCIAvisie project led by
Ilse Aben (Netherlands Institute for Space Research (SRON)). We would
also like to thank the two anonymous reviewers for their feedback.
NR 34
TC 0
Z9 0
U1 0
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 5
BP 1951
EP 1963
DI 10.5194/amt-8-1951-2015
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BJ
UT WOS:000355288900003
ER
PT J
AU Volkamer, R
Baidar, S
Campos, TL
Coburn, S
DiGangi, JP
Dix, B
Eloranta, EW
Koenig, TK
Morley, B
Ortega, I
Pierce, BR
Reeves, M
Sinreich, R
Wang, S
Zondlo, MA
Romashkin, PA
AF Volkamer, R.
Baidar, S.
Campos, T. L.
Coburn, S.
DiGangi, J. P.
Dix, B.
Eloranta, E. W.
Koenig, T. K.
Morley, B.
Ortega, I.
Pierce, B. R.
Reeves, M.
Sinreich, R.
Wang, S.
Zondlo, M. A.
Romashkin, P. A.
TI Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O-2-O-2 and aerosol
extinction profiles in the tropics: comparison with aircraft-/ship-based
in situ and lidar measurements
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID MULTIAXIS DOAS MEASUREMENTS; ABSORPTION CROSS-SECTIONS;
SPECTRAL-RESOLUTION LIDAR; MARINE BOUNDARY-LAYER; TROPOSPHERIC BRO;
ATMOSPHERIC AEROSOLS; ORGANIC-COMPOUNDS; TRACE GASES; INSTRUMENT
CHARACTERIZATION; SATELLITE-OBSERVATIONS
AB Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O-2-O-2 collision complexes (O-4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VC-SEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O-4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2-0.55 pptv IO and 32-36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and air-craft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6 degrees N; 101.2 to 97.4 degrees W). At 14.5 km, 5-10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12-20 degrees of freedom (DoF) and up to 500m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 x 10(13) molec cm(-2) (RF12) and at least 0.5 x 10(13) molec cm(-2) (RF17, 0-10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 x 10(12) molec cm(-2) (RF12) and 2.5 x 10(12) molec cm 2 (RF17) and glyoxal VCDs of 2.6 x 10(14) molec cm(-2) (RF12) and 2.7 x 1014 molec cm 2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 x 5 %, 0.1-0.2 pptv; glyoxal: 52 x 5 %, 3-20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed.
Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.
C1 [Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B.; Koenig, T. K.; Ortega, I.; Sinreich, R.; Wang, S.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Volkamer, R.; Baidar, S.; Coburn, S.; Koenig, T. K.; Ortega, I.; Wang, S.] Univ Colorado, CIRES, Boulder, CO 80309 USA.
[Campos, T. L.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA.
[DiGangi, J. P.; Zondlo, M. A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.
[Eloranta, E. W.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA.
[Morley, B.; Reeves, M.; Romashkin, P. A.] RAF EOL, NCAR, Broomfield, CO USA.
[Pierce, B. R.] Natl Environm Satellite Data & Informat Serv, NOAA, Madison, WI USA.
[DiGangi, J. P.] NASA, Langley Res Ctr, Hampton, VA USA.
[Wang, S.] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Hong Kong, Peoples R China.
RP Volkamer, R (reprint author), Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
EM rainer.volkamer@colorado.edu
RI Pierce, Robert Bradley/F-5609-2010; Volkamer, Rainer/B-8925-2016;
Zondlo, Mark/R-6173-2016
OI Pierce, Robert Bradley/0000-0002-2767-1643; Volkamer,
Rainer/0000-0002-0899-1369; Zondlo, Mark/0000-0003-2302-9554
FU National Science Foundation [AGS-1104104]; NSF; Fulbright Junior
Research Award; ESRL/CIRES graduate fellowship; National Science
Foundation Faculty Early Career Development (CAREER) award
[ATM-0847793]; Department of Energy [DE-SC0006080]; Electric Power
Research Institute (EPRI) [EP-P27450/C13049, EP-P32238/C14974]
FX The TORERO project is funded by the National Science Foundation under
award AGS-1104104 (PI: R. Volkamer). The involvement of the
NSF-sponsored Lower Atmospheric Observing Facilities, managed and
operated by the National Center for Atmospheric Research (NCAR) Earth
Observing Laboratory (EOL), is acknowledged. We thank Jorgen Jensen and
Mathew Hayman for helpful discussions. S. Wang is a recipient of the
Fulbright Junior Research Award; S. Baidar is a recipient of ESRL/CIRES
graduate fellowship. R. Volkamer acknowledges financial support from
National Science Foundation Faculty Early Career Development (CAREER)
award ATM-0847793, Department of Energy award DE-SC0006080 and Electric
Power Research Institute (EPRI) contracts EP-P27450/C13049 and
EP-P32238/C14974 that supported the development of the AMAX-DOAS
instrument and software/data analysis tools used in this study.
NR 122
TC 32
Z9 33
U1 10
U2 58
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 5
BP 2121
EP 2148
DI 10.5194/amt-8-2121-2015
PG 28
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BJ
UT WOS:000355288900013
ER
PT J
AU Christensen, M
Zhang, J
Reid, JS
Zhang, X
Hyer, EJ
Smirnov, A
AF Christensen, M.
Zhang, J.
Reid, J. S.
Zhang, X.
Hyer, E. J.
Smirnov, A.
TI A theoretical study of the effect of subsurface oceanic bubbles on the
enhanced aerosol optical depth band over the southern oceans as detected
from MODIS and MISR
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID BREAKING WIND-WAVES; NATURAL MICROBUBBLES; DATA-ASSIMILATION;
AQUEOUS-MEDIA; SEA FOAM; REFLECTANCE; RETRIEVALS; AERONET; WATER;
ENTRAINMENT
AB Submerged oceanic bubbles, which have a much longer life span than whitecaps or bubble rafts, have been hypothesized to increase the water-leaving radiance and thus affect satellite-based estimates of water-leaving radiance to non-trivial levels. This study explores this effect further to determine whether such bubbles are of sufficient magnitude to impact satellite aerosol optical depth (AOD) retrievals through perturbation of the lower boundary conditions. There has been significant discussion in the community regarding the high positive biases in retrieved AODs in many remote ocean regions. In this study, for the first time, the effects of oceanic bubbles on satellite retrievals of AOD are studied by using a linked Second Simulation of a Satellite Signal in the Solar Spectrum (6S) atmospheric and HydroLight oceanic radiative transfer models. The results suggest an insignificant impact on AOD retrievals in regions with near-surface wind speeds of less than 12ms(-1). However, the impact of bubbles on aerosol retrievals could be on the order of 0.02-0.04 for higher wind conditions within the scope of our simulations (e. g., winds < 20m s(-1). This bias is propagated to global scales using 1 year of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data to investigate the possible impacts of oceanic bubbles on an enhanced AOD belt observed over the high-latitude southern oceans (also called the enhanced southern oceans anomaly, or ESOA) by some passive satellite sensors. Ultimately, this study is supportive of the null hypothesis: submerged bubbles are not the major contributor to the ESOA feature. This said, as retrievals progress to higher and higher resolutions, such as from airborne platforms, the uniform bubble correction in clean marine conditions should probably be separately accounted for against individual bright whitecaps and bubble rafts.
C1 [Christensen, M.; Zhang, J.] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA.
[Reid, J. S.; Hyer, E. J.] Naval Res Lab, Marine Meteorol Div, Monterey, CA USA.
[Zhang, X.] Univ N Dakota, Dept Earth Syst Sci & Policy, Grand Forks, ND 58201 USA.
[Smirnov, A.] Sci Syst & Applicat Inc, Lanham, MD USA.
[Smirnov, A.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Zhang, J (reprint author), Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA.
EM jzhang@atmos.und.edu
RI Hyer, Edward/E-7734-2011; Reid, Jeffrey/B-7633-2014; Smirnov,
Alexander/C-2121-2009
OI Hyer, Edward/0000-0001-8636-2026; Reid, Jeffrey/0000-0002-5147-7955;
Smirnov, Alexander/0000-0002-8208-1304
FU Office of Naval Research Codes 322 [N00014-10-0816, N0001414AF00002];
NASA project [NNX14AJ13G]; NASA EPSCoR [NNX13AB20A]; NSF [IIA-1355466]
FX Jianglong Zhang and Jeffrey Reid acknowledge the support from the Office
of Naval Research Codes 322 (N00014-10-0816 and N0001414AF00002).
Matthew Christensen and Jianglong Zhang acknowledge the support of the
NASA project (NNX14AJ13G). Xiaodong Zhang acknowledges the support of a
NASA EPSCoR grant NNX13AB20A as well as NSF IIA-1355466. MODIS data were
obtained from the Level 1 and Atmosphere Archive and Distribution System
(LAADS). We also thank individual PIs from the AERONET sites for the
sunphotometer data. We also thank Andrew Sayer and another reviewer for
their constructive comments/suggestions.
NR 57
TC 0
Z9 0
U1 1
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 5
BP 2149
EP 2160
DI 10.5194/amt-8-2149-2015
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CJ2BJ
UT WOS:000355288900014
ER
PT J
AU Molod, A
Takacs, L
Suarez, M
Bacmeister, J
AF Molod, A.
Takacs, L.
Suarez, M.
Bacmeister, J.
TI Development of the GEOS-5 atmospheric general circulation model:
evolution from MERRA to MERRA2
SO GEOSCIENTIFIC MODEL DEVELOPMENT
LA English
DT Article
ID ARAKAWA-SCHUBERT; PARAMETERIZATION; IMPACT; RESOLUTION; CLIMATE;
STRATOSPHERE; CONVECTION; SIMULATIONS; SENSITIVITY; SCALES
AB The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the Goddard Earth Observing System-5 (GEOS-5) atmospheric general circulation model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO MERRA2 reanalysis, global mesoscale simulations at 10 km resolution through 1.5 km resolution, the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations.
The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of resolution-aware parameters related to the moist physics was shown to result in improvements at higher resolutions and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.
C1 [Molod, A.] Univ Maryland, College Pk, MD 20742 USA.
[Takacs, L.] Sci Syst & Applicat Inc, Lanham, MD USA.
[Suarez, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bacmeister, J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
RP Molod, A (reprint author), Univ Maryland, College Pk, MD 20742 USA.
EM andrea.molod@nasa.gov
FU NASA [WBS 802678.02.17.01.211, 802678.02.17.01.25]; NSF [0620087]
FX The GEOS-5 AGCM development in the Global Modeling and Assimilation
Office is funded by NASA's Modeling, Analysis and Prediction (MAP)
program under WBS 802678.02.17.01.211 and 802678.02.17.01.25. The
authors gratefully acknowledge the support of David Considine, the MAP
project manager. We appreciate the contribution of the many others in
the GMAO who participated in various key ways to the development of the
GEOS-5 AGCM. The analysis of GEOS-5 AGCM simulations at many spatial and
temporal scales was performed by Siegfried Schubert, Yehui Chang, and
Myong-In Lee, and the analysis of the GCM performance in data
assimilation and numerical weather prediction modes was performed by
Stephen Bloom, Gary Partyka, and Austin Conaty. The feedback from
William Putman about the performance of the AGCM at very high horizontal
resolution was critical in the ability to run the GEOS-5 AGCM seamlessly
across a wide range of resolutions, and the analysis of the transport of
tracers done by Lesley Ott aided in the understanding of model errors.
In addition, the feedback to AGCM development from GMAO scientists
involved in the development of the other component models of the GEOS-5
GCM, including Yury Vikhaelev, Bin Zhao, J. Eric Nielsen, Arlindo da
Silva, Randal Koster, Rolf Reichle, and Sarith Mahanama, was invaluable.
In addition, the efforts of Peter Norris in the development and testing
of the satellite simulator component of the GCM are appreciated. The
authors also gratefully acknowledge the contributions of Atanas Tryanov,
Matt Thompson, and Ben Auer to the AGCM infrastructure that made the
AGCM tractable and portable to different platforms. All of these
contributions made the simulations possible. The simulations were
performed at the NASA Center for Climate Simulation (NCCS) at Goddard
Space Flight Center and at the NASA Advanced Supercomputing (NAS)
Division at Ames Research Center. The authors gratefully acknowledge the
support of personnel at both of those computing centers. Finally, author
A. Molod prepared the manuscript at two GAIN writing retreats, sponsored
by NSF grant number 0620087.
NR 45
TC 37
Z9 37
U1 3
U2 20
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1991-959X
EI 1991-9603
J9 GEOSCI MODEL DEV
JI Geosci. Model Dev.
PY 2015
VL 8
IS 5
BP 1339
EP 1356
DI 10.5194/gmd-8-1339-2015
PG 18
WC Geosciences, Multidisciplinary
SC Geology
GA CJ2BK
UT WOS:000355289000006
ER
PT J
AU Kendall, CG
Stockton, AM
Leicht, S
McCaig, H
Chung, S
Scott, V
Zhong, F
Lin, Y
AF Kendall, Christian G.
Stockton, Amanda M.
Leicht, Stephen
McCaig, Heather
Chung, Shirley
Scott, Valerie
Zhong, Fang
Lin, Ying
TI Amine Analysis Using AlexaFluor 488 Succinimidyl Ester and Capillary
Electrophoresis with Laser-Induced Fluorescence
SO JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY
LA English
DT Article
ID LIQUID-CHROMATOGRAPHY; ACIDS; SEARCH
AB Fluorescent probes enable detection of otherwise nonfluorescent species via highly sensitive laser-induced fluorescence. Organic amines are predominantly nonfluorescent and are of analytical interest in agricultural and food science, biomedical applications, and biowarfare detection. Alexa Fluor 488 N-hydroxysuccinimidyl ester (AF488 NHS-ester) is an amine-specific fluorescent probe. Here, we demonstrate low limit of detection of long-chain (C-9 to C-18) primary amines and optimize AF488 derivatization of long-chain primary amines. The reaction was found to be equally efficient in all solvents studied (dimethylsulfoxide, ethanol, and N,N-dimethylformamide). While an organic base (N,N-diisopropylethylamine) is required to achieve efficient reaction between AF488 NHS-ester and organic amines with longer hydrophobic chains, high concentrations (>5mM) result in increased levels of ethylamine and propylamine in the blank. Optimal incubation times were found to be >12 hrs at room temperature. We present an initial capillary electrophoresis separation for analysis using a simple micellar electrokinetic chromatography (MEKC) buffer consisting of 12 mM sodium dodecylsulfate (SDS) and 5 mM carbonate, pH 10. Limits of detection using the optimized labeling conditions and these separation conditions were 5-17 nM. The method presented here represents a novel addition to the arsenal of fluorescent probes available for highly sensitive analysis of small organic molecules.
C1 [Kendall, Christian G.; Stockton, Amanda M.; Leicht, Stephen; McCaig, Heather; Chung, Shirley; Scott, Valerie; Zhong, Fang; Lin, Ying] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Kendall, Christian G.] Weill Cornell Grad Sch Med Sci, New York, NY 10065 USA.
[Stockton, Amanda M.] Georgia Inst Technol, Atlanta, GA 30332 USA.
[Leicht, Stephen] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
RP Zhong, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM fang.zhong@jpl.nasa.gov; ying.lin@jpl.nasa.gov
FU NASA Astrobiology Science and Technology Instrument Development program;
Government sponsorship
FX The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration (NASA)
and was supported by the NASA Astrobiology Science and Technology
Instrument Development program. The JPL author's copyright for this
paper is held by the California Institute of Technology. Government
sponsorship is acknowledged.
NR 13
TC 0
Z9 0
U1 3
U2 5
PU HINDAWI PUBLISHING CORPORATION
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 2090-8865
EI 2090-8873
J9 J ANAL METHODS CHEM
JI J. Anal. Methods Chem.
PY 2015
AR 368362
DI 10.1155/2015/368362
PG 6
WC Chemistry, Analytical; Engineering, Civil
SC Chemistry; Engineering
GA CJ5TE
UT WOS:000355551500001
ER
PT B
AU Kovitz, JM
Rahmat-Samii, Y
AF Kovitz, Joshua M.
Rahmat-Samii, Yahya
BE Yu, W
Li, W
Elsherbeni, A
RahmatSamii, Y
TI Novelties of Spectral Domain Analysis in Antenna Characterizations:
Concept, Formulation, and Applications
SO ADVANCED COMPUTATIONAL ELECTROMAGNETIC METHODS AND APPLICATIONS
LA English
DT Article; Book Chapter
ID REFLECTOR ANTENNAS; FIELD; COMPUTATION; APERTURES; RANGE
C1 [Rahmat-Samii, Yahya] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA.
[Rahmat-Samii, Yahya] CALTECH, Pasadena, CA 91125 USA.
[Rahmat-Samii, Yahya] NASA, Jet Prop Lab, Pasadena, CA USA.
RP Kovitz, JM (reprint author), Univ Calif Los Angeles, Antenna Res Anal & Measurement Lab, Los Angeles, CA 90024 USA.
NR 30
TC 0
Z9 0
U1 0
U2 0
PU ARTECH HOUSE
PI NORWOOD
PA 685 CANTON ST, NORWOOD, MA 02062 USA
BN 978-1-60807-896-7
PY 2015
BP 1
EP 81
PG 81
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA BC4TK
UT WOS:000352920600001
ER
PT S
AU Ballachey, BE
Bodkin, JL
Esler, D
Rice, SD
AF Ballachey, Brenda E.
Bodkin, James L.
Esler, Daniel
Rice, Stanley D.
BE Alford, JB
Peterson, MS
Green, CC
TI Lessons from the 1989 Exxon Valdez Oil Spill: A Biological Perspective
SO IMPACTS OF OIL SPILL DISASTERS ON MARINE HABITATS AND FISHERIES IN NORTH
AMERICA
SE CRC Marine Biology Series
LA English
DT Article; Book Chapter
ID PRINCE-WILLIAM-SOUND; SALMON ONCORHYNCHUS-GORBUSCHA; WHALES
ORCINUS-ORCA; LONG-TERM PERSISTENCE; PINK SALMON; SEA OTTERS; CRUDE-OIL;
HARLEQUIN DUCKS; JUVENILE PINK; CYTOCHROME-P4501A INDUCTION
C1 [Ballachey, Brenda E.; Bodkin, James L.; Esler, Daniel] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99508 USA.
[Rice, Stanley D.] Natl Marine Fisheries Serv, Auke Bay Lab, Juneau, AK USA.
RP Ballachey, BE (reprint author), US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99508 USA.
NR 105
TC 3
Z9 3
U1 4
U2 18
PU CRC PRESS-TAYLOR & FRANCIS GROUP
PI BOCA RATON
PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA
SN 2154-7769
BN 978-1-4665-5721-5; 978-1-4665-5720-8
J9 CRC MAR BIOL SER
JI CRC Mar. Biol. Ser.
PY 2015
BP 181
EP 197
PG 17
WC Fisheries; Marine & Freshwater Biology
SC Fisheries; Marine & Freshwater Biology
GA BC7CH
UT WOS:000354736900010
ER
PT J
AU Chanakian, S
Zevalkink, A
Aydemir, U
Gibbs, ZM
Pomrehn, G
Fleurial, JP
Bux, S
Snyder, GJ
AF Chanakian, Sevan
Zevalkink, Alex
Aydemir, Umut
Gibbs, Zachary M.
Pomrehn, Gregory
Fleurial, Jean-Pierre
Bux, Sabah
Snyder, G. Jeffrey
TI Enhanced thermoelectric properties of Sr5In2Sb6 via Zn-doping
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID POWER-GENERATION; ZINTL COMPOUND; SUBSTITUTION; PERFORMANCE; CA5IN2SB6
AB Zintl phases exhibit inherently low thermal conductivity and adjustable electronic properties, which are integral to designing high-efficiency thermoelectric materials. Inspired by the promising thermoelectric figure of merit of optimized A(5)M(2)Sb(6) Zintl phases (A = Ca or Sr, M = Al, Ga, In), Zn-doped Sr5In2-xZnxSb6 (x = 0, 0.025, 0.05, 0.1) compounds were investigated. Optical absorption measurements combined with band structure calculations indicate two distinct energy transitions for Sr5In2Sb6, one direct (E-g similar to 0.3 eV) and the other from a lower valence band manifold to the conduction band edge (E-g similar to 0.55 eV). Sr5In2Sb6 exhibits nondegenerate p-type semiconducting behavior with low carrier concentration (similar to 4 x 10(18) h(+) cm(-3) at 300 K). Charge carrier tuning was achieved by Zn2+ substitution on the In3+ site, increasing carrier concentrations to up to 10(20) h(+) cm(-3). All samples displayed relatively low thermal conductivities (similar to 0.7 W m(-1) K-1 at 700 K). The Zn-doped samples exhibited significantly higher zT values compared to the undoped sample, reaching a value of similar to 0.4 at 750 K for Sr5In1.9Zn0.1Sb6.
C1 [Chanakian, Sevan; Zevalkink, Alex; Aydemir, Umut; Pomrehn, Gregory; Snyder, G. Jeffrey] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA.
[Zevalkink, Alex; Fleurial, Jean-Pierre; Bux, Sabah] CALTECH, Jet Prop Lab, Thermal Energy Convers Technol Grp, Pasadena, CA USA.
[Gibbs, Zachary M.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA.
RP Snyder, GJ (reprint author), CALTECH, Dept Appl Phys & Mat Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM jsnyder@caltech.edu
RI Snyder, G/I-2263-2015; Snyder, G. Jeffrey/E-4453-2011; Aydemir,
Umut/P-8424-2015
OI Snyder, G. Jeffrey/0000-0003-1414-8682; Aydemir,
Umut/0000-0003-1164-1973
FU National Aeronautics and Space Administration; NASA Science Missions
Directorate's Radioisotope Power Systems Technology Advancement Program;
Scientific and Technological Research Council of Turkey
FX This research was carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration and was supported by the NASA
Science Missions Directorate's Radioisotope Power Systems Technology
Advancement Program. S. C. would like to thank Jan-Hendrik Poehls,
Stephen Dongmin Kang, and Saneyuki Ohno for their helpful discussions.
U. A. acknowledges the financial assistance of The Scientific and
Technological Research Council of Turkey. We would like to acknowledge
the Molecular Materials Research Center (MMRC) at Caltech for allowing
use of their instruments for the optical measurements obtained in this
work.
NR 36
TC 2
Z9 2
U1 5
U2 20
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2015
VL 3
IS 19
BP 10289
EP 10295
DI 10.1039/c5ta01967b
PG 7
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA CH7GS
UT WOS:000354204500021
ER
PT J
AU Hudson, RL
Gerakines, PA
Loeffler, MJ
AF Hudson, R. L.
Gerakines, P. A.
Loeffler, M. J.
TI Activation of weak IR fundamentals of two species of astrochemical
interest in the T-d point group - the importance of amorphous ices
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID INFRARED INTENSITY MEASUREMENTS; SOLAR-SYSTEM ICES; OPTICAL-CONSTANTS;
PLANETARY-ATMOSPHERES; AMMONIUM HYDROSULFIDE; SELECTION RULES;
THIN-FILMS; SPECTRA; METHANE; CH4
AB New measurements are reported on the weak v(1) and v(2) fundamentals of frozen CH4, a solid of considerable astrochemical interest. Infrared spectra in the v(1) and v(2) regions are presented for three CH4-ice phases at 10-30 K with new absorption coefficients and band strengths to quantify the results. In contrast to the situation with the two crystalline phases of CH4, both v(1) and v(2) were seen clearly in methane's amorphous phase. To support our CH4 work, we also present new results for NH4SH, a component of Jupiter's atmosphere, showing that the v(2) vibration of NH4+ undergoes a dramatic loss of intensity during an amorphous-to-crystalline phase transition, but is regenerated in equally-dramatic fashion by radiation-induced amorphization of the sample. Results are compared to work recently published in this journal and elsewhere.
C1 [Hudson, R. L.; Gerakines, P. A.; Loeffler, M. J.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA.
RP Hudson, RL (reprint author), NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA.
EM reggie.hudson@nasa.gov
RI Gerakines, Perry/D-2226-2012; Loeffler, Mark/C-9477-2012
OI Gerakines, Perry/0000-0002-9667-5904;
FU NASA; NASA Astrobiology Institute through Goddard Center for
Astrobiology
FX NASA funding through the Outer Planets Research, Cassini Data Analysis,
and Astrophysical Research and Analysis programs is acknowledged, as is
partial support from the NASA Astrobiology Institute through the Goddard
Center for Astrobiology. Chris Bennett, first author of Bennett et
al.,18 is thanked for a copy of the original spectrum on
which Fig. 1 of that paper is based. The proton accelerator we used was
maintained by Steve Brown, Tom Ward, and Eugene Gerashchenko, engineers
in the NASA Goddard Radiation Effects Facility.
NR 53
TC 5
Z9 5
U1 2
U2 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
EI 1463-9084
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2015
VL 17
IS 19
BP 12545
EP 12552
DI 10.1039/c5cp00975h
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CH7DH
UT WOS:000354195300016
PM 25899062
ER
PT J
AU Brocchini, M
Calantoni, J
Reed, AH
Postacchini, M
Lorenzoni, C
Russo, A
Mancinelli, A
Corvaro, S
Moriconi, G
Soldini, L
AF Brocchini, Maurizio
Calantoni, Joseph
Reed, Allen H.
Postacchini, Matteo
Lorenzoni, Carlo
Russo, Aniello
Mancinelli, Alessandro
Corvaro, Sara
Moriconi, Giacomo
Soldini, Luciano
TI Summertime conditions of a muddy estuarine environment: the EsCoSed
project contribution
SO WATER SCIENCE AND TECHNOLOGY
LA English
DT Article
DE bed evolution; currents; estuarine; muddy environment; riverine; waves
ID SYSTEM; WAVE
AB As part of the Estuarine Cohesive Sediments (EsCoSed) project, a field experiment was performed in a highly engineered environment, acting as a natural laboratory, to study the physico-chemical properties of estuarine sediments and the associated hydro-morphodynamics during different seasons. The present contribution focuses on the results obtained from the summertime monitoring of the most downstream part of the Misa River (Senigallia, Italy). The measured hydrodynamics suggested a strong interaction between river current, wave forcing and tidal motion; flow velocities, affected by wind waves traveling upstream, changed significantly along the water column in both direction and magnitude. Surficial salinities in the estuary were low in the upper reaches of the estuary and exceeded 10 psu before the river mouth. Montmorillonite dominated the clay mineral assemblage, suggesting that large, low density flocs with high settling velocities (> 1 mms(-1)) may dominate the suspended aggregate materials.
C1 [Brocchini, Maurizio; Postacchini, Matteo; Lorenzoni, Carlo; Mancinelli, Alessandro; Corvaro, Sara; Soldini, Luciano] Univ Politecn Marche, Dept ICEA, I-60131 Ancona, Italy.
[Calantoni, Joseph; Reed, Allen H.] Stennis Space Ctr, Marine Geosci Div, Maval Res Lab, Jackson, MS 39556 USA.
[Russo, Aniello] Univ Politecn Marche, Dept ISVA, I-60131 Ancona, Italy.
[Moriconi, Giacomo] Univ Politecn Marche, Dept SIMAU, I-60131 Ancona, Italy.
RP Postacchini, M (reprint author), Univ Politecn Marche, Dept ICEA, Via Brecce Bianche 12, I-60131 Ancona, Italy.
EM m.postacchini@univpm.it
RI Russo, Aniello/A-2319-2010;
OI Russo, Aniello/0000-0003-3651-8146; Postacchini,
Matteo/0000-0002-3208-9922
FU ONR Global (UK), through the NICOP Research Grant [N62909-13-1-N020];
Italian RITMARE Flagship Project (SP3-WP4); Italian Ministry of
University and Research; Office of Naval Research
FX Financial support from the ONR Global (UK), through the NICOP Research
Grant (N62909-13-1-N020) and from the Italian RITMARE Flagship Project
(SP3-WP4), a National Research Programme funded by the Italian Ministry
of University and Research, are gratefully acknowledged. JC and AHR were
supported under base funding to the Naval Research Laboratory from the
Office of Naval Research. The authors would like to thank the following
authorities: the Municipality of Senigallia, the Capitaneria di Porto of
Senigallia and of Ancona, MARIDIPART La Spezia and MARIFARI Venezia.
Acknowledgments go also to: GESTIPORT (Senigallia), Club Nautico
(Senigallia), NOTA srl (Senigallia), Carmar Sub (Ancona), Sena Gallica
(Senigallia), METIS S. R. L. (Senigallia). Special thanks go to Dr P.
Paroncini and Mr A. Coluccelli for their help in the maritime
operations, to Mr O. Favoni for his help in the analysis of the
sediments, to Prof E. S. Malinverni, for the use of a total station, to
Mr M. Trinchera for his continued help in all operations and to all the
staff working at the lighthouse of Senigallia. Mr Coluccelli is also
acknowledged for the COAWST setup in the northern Adriatic and its
operational management, and the Hydro-Meteo-Clima Service of the
Emilia-Romagna Environmental Agency (SIMC-ARPA-EMR, Bologna, Italy) for
operationally providing boundary conditions (from AdriaROMS, SWAN Italia
and COSMO-I7 forecasts, and Po River discharge measurements) to COAWST.
NR 12
TC 1
Z9 1
U1 2
U2 13
PU IWA PUBLISHING
PI LONDON
PA ALLIANCE HOUSE, 12 CAXTON ST, LONDON SW1H0QS, ENGLAND
SN 0273-1223
EI 1996-9732
J9 WATER SCI TECHNOL
JI Water Sci. Technol.
PY 2015
VL 71
IS 10
BP 1451
EP 1457
DI 10.2166/wst.2015.116
PG 7
WC Engineering, Environmental; Environmental Sciences; Water Resources
SC Engineering; Environmental Sciences & Ecology; Water Resources
GA CI4NR
UT WOS:000354728000004
PM 26442485
ER
PT B
AU Denninghoff, G
Bias, S
AF Denninghoff, George
Bias, Sheri
BE Sims, RR
Sauser, WI
TI ALIGNING RESPECT AND DIGNITY WITH ORGANIZATIONAL INFRASTRUCTURE AND
EXTERNAL REGULATION
SO LEGAL AND REGULATORY ISSUES IN HUMAN RESOURCES MANAGEMENT
SE Contemporary Human Resource Management Issues Challenges and
Opportunities
LA English
DT Article; Book Chapter
C1 [Denninghoff, George] NASA, Strateg Relationships Off Designing Workpl Future, Washington, DC USA.
[Denninghoff, George] NASA, TEDex 1, Washington, DC USA.
[Denninghoff, George] George Washington Univ, Grad Sch Human Resource Dev & Law Consulting Skil, Washington, DC 20052 USA.
[Denninghoff, George] Human Resource Certificat Inst, Board Directors, Alexandria, VA USA.
[Bias, Sheri] St Leo Univ, St Leo, FL USA.
[Bias, Sheri] Philip Morris Inc, St Louis, MO USA.
[Bias, Sheri] Anheuser Busch, St Louis, MO USA.
[Bias, Sheri] Coll William & Mary, Business & Human Resources Course, Williamsburg, VA 23187 USA.
[Bias, Sheri] George Washington Univ, Business & Human Resources Course, Washington, DC 20052 USA.
[Bias, Sheri] Univ Virginia, Business & Human Resources Course, Charlottesville, VA 22903 USA.
[Bias, Sheri] Hampton Univ, Business & Human Resources Course, Hampton, VA 23668 USA.
NR 7
TC 0
Z9 0
U1 0
U2 0
PU INFORMATION AGE PUBLISHING-IAP
PI CHARLOTTE
PA PO BOX 79049, CHARLOTTE, NC 28271-7047 USA
BN 978-1-62396-841-0; 978-1-62396-842-7
J9 CONT HUM RES MANAG
PY 2015
BP 73
EP 95
PG 23
WC Law; Management
SC Government & Law; Business & Economics
GA BC0TB
UT WOS:000349502400004
ER
PT J
AU Henderson, JM
Eluszkiewicz, J
Mountain, ME
Nehrkorn, T
Chang, RYW
Karion, A
Miller, JB
Sweeney, C
Steiner, N
Wofsy, SC
Miller, CE
AF Henderson, J. M.
Eluszkiewicz, J.
Mountain, M. E.
Nehrkorn, T.
Chang, R. Y. -W.
Karion, A.
Miller, J. B.
Sweeney, C.
Steiner, N.
Wofsy, S. C.
Miller, C. E.
TI Atmospheric transport simulations in support of the Carbon in Arctic
Reservoirs Vulnerability Experiment (CARVE)
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID OZONE DEPOSITION; WEATHER RESEARCH; MODELING SYSTEM; STILT MODEL;
SEA-ICE; DISPERSION; SUMMER; SENSITIVITY; EMISSIONS; LAND
AB This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s(-1) in 2012 and 0.3 ms(-1) in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1 degrees grid show increased spatial detail compared with those on the more common 0.5 degrees grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF-STILT footprints are of high quality and will support accurate estimates of CO2 and CH4 surface-atmosphere fluxes using CARVE observations.
C1 [Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.] Atmospher & Environm Res, Lexington, MA 02421 USA.
[Chang, R. Y. -W.; Wofsy, S. C.] Harvard Univ, Cambridge, MA 02138 USA.
[Karion, A.; Miller, J. B.; Sweeney, C.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA.
[Steiner, N.] CUNY City Coll, New York, NY 10031 USA.
[Miller, C. E.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Henderson, JM (reprint author), Atmospher & Environm Res, Lexington, MA 02421 USA.
EM jhenders@aer.com
OI Nehrkorn, Thomas/0000-0003-0637-3468
NR 75
TC 8
Z9 8
U1 1
U2 15
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 8
BP 4093
EP 4116
DI 10.5194/acp-15-4093-2015
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CH2EH
UT WOS:000353838000008
ER
PT J
AU Nedoluha, GE
Siskind, DE
Lambert, A
Boone, C
AF Nedoluha, G. E.
Siskind, D. E.
Lambert, A.
Boone, C.
TI The decrease in mid-stratospheric tropical ozone since 1991
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID CHEMISTRY EXPERIMENT ACE; SAGE-II; TRENDS; MODEL; VARIABILITY;
CIRCULATION; VALIDATION; PROFILE; GASES; HALOE
AB While global stratospheric O-3 has begun to recover, there are localized regions where O-3 has decreased since 1991. Specifically, we use measurements from the Halogen Occultation Experiment (HALOE) for the period 1991-2005 and the NASA Aura Microwave Limb Sounder (MLS) for the period 2004-2013 to demonstrate a significant decrease in O-3 near similar to 10 hPa in the tropics. O-3 in this region is very sensitive to variations in NOy, and the observed decrease can be understood as a spatially localized, yet long-term increase in NOy. In turn, using data from MLS and from the Atmospheric Chemistry Experiment (ACE), we show that the NOy variations are caused by decreases in N2O which are likely linked to long-term variations in dynamics. To illustrate how variations in dynamics can affect N2O and O-3, we show that by decreasing the upwelling in the tropics, more of the N2O can photodissociate with a concomitant increase in NOy production (via N2O + O(D-1) -> 2NO) at 10 hPa. Ultimately, this can cause an O-3 decrease of the observed magnitude.
C1 [Nedoluha, G. E.; Siskind, D. E.] Naval Res Lab, Washington, DC 20375 USA.
[Lambert, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Boone, C.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada.
RP Nedoluha, GE (reprint author), Naval Res Lab, Washington, DC 20375 USA.
EM nedoluha@nrl.navy.mil
FU NASA under the Upper Atmosphere Research Program; Naval Research
Laboratory; Office of Naval Research
FX This project was funded by NASA under the Upper Atmosphere Research
Program, by the Naval Research Laboratory, and by the Office of Naval
Research. Work at the Jet Propulsion Laboratory, California Institute of
Technology, was carried out under a contract with the National
Aeronautics and Space Administration. MLS and HALOE data are available
from the NASA Goddard Earth Science Data Information and Services Center
(acdisc.gsfc.nasa.gov). ACE-FTS data is available at
www.ace.uwaterloo.ca.
NR 32
TC 2
Z9 2
U1 0
U2 2
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 8
BP 4215
EP 4224
DI 10.5194/acp-15-4215-2015
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CH2EH
UT WOS:000353838000015
ER
PT J
AU Van Wyngarden, AL
Perez-Montano, S
Bui, JVH
Li, ESW
Nelson, TE
Ha, KT
Leong, L
Iraci, LT
AF Van Wyngarden, A. L.
Perez-Montano, S.
Bui, J. V. H.
Li, E. S. W.
Nelson, T. E.
Ha, K. T.
Leong, L.
Iraci, L. T.
TI Complex chemical composition of colored surface films formed from
reactions of propanal in sulfuric acid at upper troposphere/lower
stratosphere aerosol acidities
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; UV MOLAR ABSORPTIVITIES; AQUEOUS AEROSOL;
ALIPHATIC-ALDEHYDES; ALDOL CONDENSATION; HETEROGENEOUS HYDROLYSIS;
ORGANOSULFATE FORMATION; CATALYZED REACTIONS; PARTICULATE MATTER; N2O5
HYDROLYSIS
AB Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and H-1 nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.
C1 [Van Wyngarden, A. L.; Perez-Montano, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.] San Jose State Univ, Dept Chem, San Jose, CA 95192 USA.
[Iraci, L. T.] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA.
RP Van Wyngarden, AL (reprint author), San Jose State Univ, Dept Chem, San Jose, CA 95192 USA.
EM annalise.vanwyngarden@sjsu.edu
FU NASA [NNX10AU97A]; Bay Area Environmental Research Institute; San Jose
State University; NIH RISE [5R25GM71381]; CSU-LSAMP programs at SJSU;
National Science Foundation (NSF) [HRD-1302873]; Chancellor's Office of
the California State University; NASA postdoctoral program (NPP)
fellowship
FX We gratefully acknowledge support from NASA (grant no. NNX10AU97A to A.
L. Van Wyngarden), the Bay Area Environmental Research Institute (grant
to A. L. Van Wyngarden) and San Jose State University (start-up release
time/funds and internal grants to A. L. Van Wyngarden). T. E. Nelson was
supported by the NIH RISE (grant no. 5R25GM71381) and CSU-LSAMP programs
at SJSU. CSU-LSAMP is funded through the National Science Foundation
(NSF) under grant no. HRD-1302873 and the Chancellor's Office of the
California State University. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF or the Chancellor's
Office of the CSU. Some early pilot studies were performed while A. L.
Van Wyngarden held a NASA postdoctoral program (NPP) fellowship. We
thank Jeffrey Berry, Cecilia Dalle Ore, Nathan Feick and Carlos Valencia
for preliminary laboratory work and/or compilation of data from survey
experiments.
NR 96
TC 1
Z9 1
U1 4
U2 26
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 8
BP 4225
EP 4239
DI 10.5194/acp-15-4225-2015
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CH2EH
UT WOS:000353838000016
PM 27212937
ER
PT J
AU Kim, S
Kim, SY
Lee, M
Shim, H
Wolfe, GM
Guenther, AB
He, A
Hong, Y
Han, J
AF Kim, S.
Kim, S. -Y.
Lee, M.
Shim, H.
Wolfe, G. M.
Guenther, A. B.
He, A.
Hong, Y.
Han, J.
TI Impact of isoprene and HONO chemistry on ozone and OVOC formation in a
semirural South Korean forest
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID VOLATILE ORGANIC-COMPOUNDS; PEARL RIVER DELTA; RADICAL PROPAGATION
EFFICIENCY; OH REACTIVITY MEASUREMENTS; REACTION MASS-SPECTROMETRY;
METHYL VINYL KETONE; NITROUS-ACID; FIELD CAMPAIGN; AIR-QUALITY;
TROPOSPHERIC DEGRADATION
AB Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Guangzhou, and Beijing are surrounded by densely forested areas, and recent research has consistently demonstrated the importance of biogenic volatile organic compounds (VOCs) from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical, undermine our ability to assess regional photochemical air pollution problems. We present an observational data set of CO, NOx, SO2, ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa research forest (TRF) near the Seoul metropolitan area in early June 2012. The data show that TRF is influenced both by aged pollution and fresh biogenic volatile organic compound emissions. With the data set, we diagnose HOx (OH, HO2, and RO2) distributions calculated using the University of Washington chemical box model (UWCM v2.1) with near-explicit VOC oxidation mechanisms from MCM v3.2 (Master Chemical Mechanism). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HOx distributions, especially OH levels (up to 2.5 times), and (2) radical destruction (HO2 + HO2 or HO2 + RO2) could be more efficient than radical recycling (RO2 + NO), especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone-VOC-NOx sensitivity and VOC oxidation product formation rates. Overall, the NOx limited regime is assessed except for the morning hours (8 a.m. to 12 p.m. local standard time), but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO2 levels are positively correlated with oxygenated VOCs (OVOCs) production that is not routinely constrained by observations. These unconstrained OVOCs can cause higher-than-expected OH loss rates (missing OH reactivity) and secondary organic aerosol formation. The series of modeling experiments constrained by observations strongly urge observational constraint of the radical pool to enable precise understanding of regional photochemical pollution problems in the East Asian megacity region.
C1 [Kim, S.; He, A.] Univ Calif Irvine, Sch Phys Sci, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Kim, S. -Y.; Hong, Y.; Han, J.] Natl Inst Environm Res, Inchon, South Korea.
[Lee, M.; Shim, H.] Korean Univ, Dept Earth & Environm Sci, Seoul, South Korea.
[Wolfe, G. M.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA.
[Wolfe, G. M.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA.
[Guenther, A. B.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
RP Kim, S (reprint author), Univ Calif Irvine, Sch Phys Sci, Dept Earth Syst Sci, Irvine, CA 92697 USA.
EM saewungk@uci.edu
RI Kim, Saewung/E-4089-2012; Wolfe, Glenn/D-5289-2011
FU National Institute of Environmental Research of South Korea
FX This research is financially supported by the National Institute of
Environmental Research of South Korea. The authors appreciate logistical
support from the research and supporting staff at Taehwa research forest
operated by Seoul National University.
NR 91
TC 5
Z9 5
U1 22
U2 73
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 8
BP 4357
EP 4371
DI 10.5194/acp-15-4357-2015
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CH2EH
UT WOS:000353838000023
ER
PT J
AU Schoen, N
Zammit-Mangion, A
Rougier, JC
Flament, T
Remy, F
Luthcke, S
Bamber, JL
AF Schoen, N.
Zammit-Mangion, A.
Rougier, J. C.
Flament, T.
Remy, F.
Luthcke, S.
Bamber, J. L.
TI Simultaneous solution for mass trends on the West Antarctic Ice Sheet
SO CRYOSPHERE
LA English
DT Article
ID GLACIAL-ISOSTATIC-ADJUSTMENT; SEA-LEVEL RISE; ELEVATION CHANGES; UPLIFT
RATES; GRACE; SURFACE; GREENLAND; BALANCE; RADAR; MODEL
AB The Antarctic Ice Sheet is the largest potential source of future sea-level rise. Mass loss has been increasing over the last 2 decades for the West Antarctic Ice Sheet (WAIS) but with significant discrepancies between estimates, especially for the Antarctic Peninsula. Most of these estimates utilise geophysical models to explicitly correct the observations for (unobserved) processes. Systematic errors in these models introduce biases in the results which are difficult to quantify. In this study, we provide a statistically rigorous error-bounded trend estimate of ice mass loss over the WAIS from 2003 to 2009 which is almost entirely data driven. Using altimetry, gravimetry, and GPS data in a hierarchical Bayesian framework, we derive spatial fields for ice mass change, surface mass balance, and glacial isostatic adjustment (GIA) without relying explicitly on forward models. The approach we use separates mass and height change contributions from different processes, reproducing spatial features found in, for example, regional climate and GIA forward models, and provides an independent estimate which can be used to validate and test the models. In addition, spatial error estimates are derived for each field. The mass loss estimates we obtain are smaller than some recent results, with a time-averaged mean rate of -76 +/- 15 Gt yr(-1) for the WAIS and Antarctic Peninsula, including the major Antarctic islands. The GIA estimate compares well with results obtained from recent forward models (IJ05-R2) and inverse methods (AGE-1). The Bayesian framework is sufficiently flexible that it can, eventually, be used for the whole of Antarctica, be adapted for other ice sheets and utilise data from other sources such as ice cores, accumulation radar data, and other measurements that contain information about any of the processes that are solved for.
C1 [Schoen, N.; Zammit-Mangion, A.; Bamber, J. L.] Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol BS8 1TH, Avon, England.
[Zammit-Mangion, A.; Rougier, J. C.] Univ Bristol, Dept Math, Bristol BS8 1TH, Avon, England.
[Flament, T.; Remy, F.] LEGOS, Toulouse, France.
[Luthcke, S.] NASA, Greenbelt, MD USA.
RP Bamber, JL (reprint author), Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol BS8 1TH, Avon, England.
EM j.bamber@bristol.ac.uk
RI Bamber, Jonathan/C-7608-2011; Zammit Mangion, Andrew/I-5356-2016
OI Bamber, Jonathan/0000-0002-2280-2819; Zammit Mangion,
Andrew/0000-0002-4164-6866
FU UK NERC [NE/I027401/1]
FX The authors would like to thank the following colleagues for helpful
discussions: Volker Klemann, Ingo Sasgen, Matt King, Liz Petrie, Pete
Clarke, Martin Horwath, Finn Lindgren, and Valentina Barletta. This work
was funded by UK NERC grant NE/I027401/1.
NR 58
TC 3
Z9 3
U1 0
U2 10
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1994-0416
EI 1994-0424
J9 CRYOSPHERE
JI Cryosphere
PY 2015
VL 9
IS 2
BP 805
EP 819
DI 10.5194/tc-9-805-2015
PG 15
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CH2TU
UT WOS:000353878400027
ER
PT J
AU Moustafa, SE
Rennermalm, AK
Smith, LC
Miller, MA
Mioduszewski, JR
Koenig, LS
Hom, MG
Shuman, CA
AF Moustafa, S. E.
Rennermalm, A. K.
Smith, L. C.
Miller, M. A.
Mioduszewski, J. R.
Koenig, L. S.
Hom, M. G.
Shuman, C. A.
TI Multi-modal albedo distributions in the ablation area of the
southwestern Greenland Ice Sheet
SO CRYOSPHERE
LA English
DT Article
ID REGIONAL CLIMATE MODEL; SURFACE MASS-BALANCE; IN-SITU MEASUREMENTS;
DAILY SNOW ALBEDO; SUPRAGLACIAL STREAMS; FIELD-MEASUREMENTS;
ENERGY-BALANCE; DARK REGION; MODIS; MELT
AB Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between similar to 10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function of bare ice expansion at the expense of snow, surface meltwater ponding, and melting of outcropped ice layers enriched with mineral materials, enabling dust and impurities to accumulate. As climate change continues in the Arctic region, understanding the seasonal evolution of ice sheet surface types in Greenland's ablation area is critical to improve projections of mass loss contributions to sea level rise.
C1 [Moustafa, S. E.; Rennermalm, A. K.; Mioduszewski, J. R.] Rutgers State Univ, Dept Geog, Piscataway, NJ 08854 USA.
[Smith, L. C.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA.
[Miller, M. A.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA.
[Koenig, L. S.; Shuman, C. A.] NASA, Goddard Space Flight Ctr, Cryospher Sci Lab, Greenbelt, MD 20771 USA.
[Hom, M. G.] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA.
[Hom, M. G.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
[Shuman, C. A.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol JCET, Baltimore, MD 21250 USA.
RP Moustafa, SE (reprint author), Rutgers State Univ, Dept Geog, 54 Joyce Kilmer Ave, Piscataway, NJ 08854 USA.
EM samiah.moustafa@rutgers.edu
RI Smith, Laurence/E-7785-2012
OI Smith, Laurence/0000-0001-6866-5904
FU NASA [NNX11AQ38G, NNX14AH93G]; NASA Earth and Space Science Fellowship
Program [NNX12AN98H]; Rutgers University faculty research grant
FX S. E. Moustafa, A. K. Rennermalm, L. C. Smith and J. R. Mioduszewski
were funded by NASA grant NNX11AQ38G and NNX14AH93G. S. E. Moustafa was
also funded by NASA Earth and Space Science Fellowship Program
NNX12AN98H. Additional funding was provided by Rutgers University
faculty research grant. Field logistical support was provided by CH2M
Hill Polar Field Services and the Kangerlussuaq International Science
Station. The authors would like to thank A. Pope M. S. Pelto, and K.
Casey as well as two anonymous reviewers for valuable feedback and
commentary.
NR 57
TC 2
Z9 2
U1 4
U2 17
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1994-0416
EI 1994-0424
J9 CRYOSPHERE
JI Cryosphere
PY 2015
VL 9
IS 3
BP 905
EP 923
DI 10.5194/tc-9-905-2015
PG 19
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CI0QK
UT WOS:000354442400006
ER
PT J
AU Abdul-Aziz, A
Bhatt, RT
Grady, JE
AF Abdul-Aziz, Ali
Bhatt, Ramakrishna T.
Grady, Joseph E.
TI Criteria for Crack Deflection-Penetration in EBC Coated Ceramics: A
Parametric Study
SO MECHANICS OF ADVANCED MATERIALS AND STRUCTURES
LA English
DT Article
DE fracture mechanics; Silicon nitride; ceramics; EBC coating; crack
penetration; deflection
ID DISSIMILAR ELASTIC-MATERIALS; BIMATERIAL INTERFACE; PROPAGATION
AB This article discusses results obtained from a parametric study to analytically evaluate the impingement of a crack at the interface of an environmental barrier coating (EBC) and a monolithic Silicon nitride (Si3N4) layered ceramics substrate. The study establishes a correlation that leads to determine if the crack is arrested or advanced by either penetrating or deflecting along the EBC/substrate interface. A finite-element-based fracture mechanics methodology is utilized to perform these calculations. Critical parameters determining penetration-deflection conditions in relation to EBC's physical characteristics, such as porosity level, voids, and mini cracks, are determined for a single layer and multi-layered coating system coordinating the interactions between the EBCs (Mullite, Mullite mixture, Silicon nitride, etc.) and the substrate structure. Results showing thermo-mechanical stresses and stress/strain energy release relations with respect to crack penetration-deflection are presented and discussed as the crack is advanced.
C1 [Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Grady, Joseph E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Abdul-Aziz, A (reprint author), NASA, Glenn Res Ctr, Opt Instrumentat & NDE Branch, 21000 Brook Pk Rd MS 6-1, Cleveland, OH 44135 USA.
EM ali.abdul-aziz-1@nasa.gov
NR 25
TC 0
Z9 0
U1 2
U2 7
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1537-6494
EI 1537-6532
J9 MECH ADV MATER STRUC
JI Mech. Adv. Mater. Struct.
PY 2015
VL 22
IS 12
BP 1039
EP 1047
DI 10.1080/15376494.2014.918223
PG 9
WC Materials Science, Multidisciplinary; Mechanics; Materials Science,
Characterization & Testing; Materials Science, Composites
SC Materials Science; Mechanics
GA CH5IW
UT WOS:000354069900009
ER
PT J
AU Reddy, SN
Nanda, S
Hegde, UG
Hicks, MC
Kozinski, JA
AF Reddy, Sivamohan N.
Nanda, Sonil
Hegde, Uday G.
Hicks, Michael C.
Kozinski, Janusz A.
TI Ignition of hydrothermal flames
SO RSC ADVANCES
LA English
DT Review
ID SUPERCRITICAL WATER OXIDATION; TRANSPIRING-WALL REACTOR; DIFFUSION
FLAMES; HIGH-PRESSURES; OPERATING CHARACTERISTICS; TEMPERATURE PROFILES;
1000 BAR; COMBUSTION; PARAMETERS; METHANOL
AB Supercritical water oxidation is one of the most promising technologies for complete oxidation of complex organic compounds. Flames in supercritical water, often referred to as hydrothermal flames, improve the oxidation rates of reactants in an organic waste stream. The ignition and control of flames in supercritical water could potentially be used to reduce the reaction time (from seconds to milliseconds) and enhance the thermochemical decomposition rates of recalcitrant molecules without the release of any harmful intermediates. This provides a platform to design compact reactors for processing complex organic waste followed by their conversion to valuable compounds. This paper reviews some notable work focused on the ignition and qualitative observations of hydrothermal flames as an environmentally friendly technology. More specifically, the review highlights the classification and characterization of hydrothermal flames with several demonstrations of laboratory scale (e.g., visual flame cell) and pilot scale (e.g., transpiring wall reactor) reactor configurations. The process parameters such as feed concentration, reaction temperature, oxidant temperature, oxidant flow rate, and transpiration flow properties (in the case of transpiring reactors) are comprehensively discussed for their influence on the ignition and stability of hydrothermal flames, and total organic carbon removal. In addition, the impact of these parameters on the performance of various flame reactors is presented. Finally, the paper also outlines some wide-ranging applications and challenges concerning the industrial utilization of hydrothermal flames.
C1 [Reddy, Sivamohan N.] Indian Inst Technol Roorkee, Dept Chem Engn, Roorkee, Uttarakhand, India.
[Reddy, Sivamohan N.; Nanda, Sonil; Kozinski, Janusz A.] York Univ, Lassonde Sch Engn, Dept Earth & Space Sci & Engn, Toronto, ON M3J 2R7, Canada.
[Hegde, Uday G.] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Cleveland, OH 44106 USA.
[Hicks, Michael C.] NASA, Glenn Res Ctr, Cleveland, OH USA.
RP Kozinski, JA (reprint author), York Univ, Lassonde Sch Engn, Dept Earth & Space Sci & Engn, Toronto, ON M3J 2R7, Canada.
EM janusz.kozinski@lassonde.yorku.ca
NR 52
TC 3
Z9 3
U1 3
U2 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2015
VL 5
IS 46
BP 36404
EP 36422
DI 10.1039/c5ra02705e
PG 19
WC Chemistry, Multidisciplinary
SC Chemistry
GA CG9QF
UT WOS:000353651200024
ER
PT S
AU Krainak, MA
Yu, AW
Stephen, MA
Merritt, S
Glebov, L
Glebova, L
Ryasnyanskiy, A
Smirnov, V
Mu, XD
Meissner, S
Meissner, H
AF Krainak, Michael A.
Yu, Anthony W.
Stephen, Mark A.
Merritt, Scott
Glebov, Leon
Glebova, Larissa
Ryasnyanskiy, Aleksandr
Smirnov, Vadim
Mu, Xiaodong
Meissner, Stephanie
Meissner, Helmuth
BE Clarkson, WA
Shori, RK
TI Monolithic solid-state lasers for spaceflight
SO SOLID STATE LASERS XXIV: TECHNOLOGY AND DEVICES
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Solid State Lasers XXIV - Technology and Devices
CY FEB 08-10, 2015
CL San Francisco, CA
SP SPIE
DE Solid-state lasers; Q-switch; Space flight lasers
ID WAVE-GUIDE LASER; EVANESCENT-FIELD INTERACTION; FIBER LASER; POWER;
GLASS; PERFORMANCE; PULSES; NM
AB A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.
C1 [Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Glebov, Leon; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim] Optigrate Corp, Oviedo, FL 32765 USA.
[Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth] Onyx Opt Inc, Dublin, CA 94568 USA.
RP Krainak, MA (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 554, Greenbelt, MD 20771 USA.
EM michael.a.krainak@nasa.gov
NR 40
TC 2
Z9 2
U1 2
U2 8
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-432-5
J9 PROC SPIE
PY 2015
VL 9342
AR 93420K
DI 10.1117/12.2077812
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6FA
UT WOS:000353888400017
ER
PT S
AU Yu, AW
Abshire, JB
Storm, M
Betin, A
AF Yu, Anthony W.
Abshire, James B.
Storm, Mark
Betin, Alexander
BE Clarkson, WA
Shori, RK
TI Laser Amplifier Development for IPDA Lidar measurements of CO2 from
Space
SO SOLID STATE LASERS XXIV: TECHNOLOGY AND DEVICES
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Solid State Lasers XXIV - Technology and Devices
CY FEB 08-10, 2015
CL San Francisco, CA
SP SPIE
DE CO2 lidar; laser spectroscopy; solid-state laser amplifier; space laser
transmitter; fiber amplifier
ID DIFFERENTIAL ABSORPTION LIDAR; COLUMN ABSORPTION; NM
AB Accurate global measurements of tropospheric CO2 mixing ratios are needed to better understand the global carbon cycle and the CO2 exchange between land, oceans and atmosphere. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar as a candidate for the NASA's planned ASCENDS mission to allow global measurements of atmospheric CO2 column densities from space. Our group has developed and demonstrated an airborne IPDA lidar for this purpose. It uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O-2 line pair in the oxygen A-band (765 nm), and atmospheric backscatter profiles in the same path. In the airborne lidar, both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate.
A space version of this lidar must have a much larger laser power-telescope rea product to compensate for the signal losses in the similar to 40x longer range. An analysis of signal to noise ratios indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, that 1.5 to 2 mJ laser energy is required to attain the needed measurement precision. To meet the laser energy requirements we have pursued two parallel power-scaling approaches for the space laser. These include a single-amplifier approach consists of a multi-pass Er: Yb: Phosphate glass based planar waveguide amplifier (PWA) and a parallel amplifier approach using multiple (typically 8) large mode area (LMA) fiber amplifiers. In this paper we summarize the laser amplifier design approaches and preliminary results.
C1 [Yu, Anthony W.; Abshire, James B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Storm, Mark] Fibertek, Herndon, VA 20171 USA.
[Betin, Alexander] Raytheon Space & Airborne Syst, El Segundo, CA 90245 USA.
RP Yu, AW (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
NR 25
TC 2
Z9 2
U1 1
U2 7
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-432-5
J9 PROC SPIE
PY 2015
VL 9342
AR 93420M
DI 10.1117/12.2080792
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6FA
UT WOS:000353888400019
ER
PT J
AU Kim, HJ
Park, Y
Bae, HB
Choi, SH
AF Kim, Hyun Jung
Park, Yeonjoon
Bae, Hyung Bin
Choi, Sang H.
TI High-Electron-Mobility SiGe on Sapphire Substrate for Fast Chipsets
SO ADVANCES IN CONDENSED MATTER PHYSICS
LA English
DT Article
ID METAL-OXIDE-SEMICONDUCTOR; FIELD-EFFECT TRANSISTORS; STRAINED SI;
SILICON; GE; DENSITY; ALLOYS; GROWTH
AB High-quality strain-relaxed SiGe films with a low twin defect density, high electron mobility, and smooth surface are critical for device fabrication to achieve designed performance. The mobilities of SiGe can be a few times higher than those of silicon due to the content of high carrier mobilities of germanium (p-type Si: 430 cm(2)/V.s, p-type Ge: 2200 cm(2)/V.s, n-type Si: 1300 cm(2)/V.s, and n-type Ge: 3000 cm(2)/V.s at 10(16) per cm 3 doping density). Therefore, radio frequency devices which are made with rhombohedral SiGe on c-plane sapphire can potentially run a few times faster than RF devices on SOS wafers. NASA Langley has successfully grown highly ordered single crystal rhombohedral epitaxy using an atomic alignment of the [111] direction of cubic SiGe on top of the [0001] direction of the sapphire basal plane. Several samples of rhombohedrally grown SiGe on c-plane sapphire show high percentage of a single crystalline over 95% to 99.5%. The electron mobilities of the tested samples are between those of single crystals Si and Ge. The measured electron mobility of 95% single crystal SiGe was 1538 cm(2)/V.s which is between 350 cm(2)/V.s (Si) and 1550 cm(2)/V.s (Ge) at 6 x 10(17)/cm(3) doping concentration.
C1 [Kim, Hyun Jung; Park, Yeonjoon] NIA, Hampton, VA 23666 USA.
[Bae, Hyung Bin] Korea Adv Inst Sci & Technol, KAIST Res Anal Ctr KARA, Taejon 305701, South Korea.
[Choi, Sang H.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
RP Kim, HJ (reprint author), NIA, 100 Explorat Way, Hampton, VA 23666 USA.
EM hyunjung.kim@nasa.gov
NR 42
TC 0
Z9 0
U1 1
U2 5
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 315 MADISON AVE 3RD FLR, STE 3070, NEW YORK, NY 10017 USA
SN 1687-8108
EI 1687-8124
J9 ADV COND MATTER PHYS
JI Adv. Condens. Matter Phys.
PY 2015
AR 785415
DI 10.1155/2015/785415
PG 9
WC Physics, Condensed Matter
SC Physics
GA CH1MF
UT WOS:000353785100001
ER
PT J
AU Vergados, P
Mannucci, AJ
Ao, CO
Jiang, JH
Su, H
AF Vergados, P.
Mannucci, A. J.
Ao, C. O.
Jiang, J. H.
Su, H.
TI On the comparisons of tropical relative humidity in the lower and middle
troposphere among COSMIC radio occultations and MERRA and ECMWF data
sets
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID WATER-VAPOR; ERA-INTERIM; VALIDATION; TEMPERATURE; AIRS; SENSITIVITY;
IMPROVEMENT; RETRIEVALS; ATMOSPHERE; FORECASTS
AB The spatial variability of the tropical tropospheric relative humidity (RH) throughout the vertical extent of the troposphere is examined using Global Positioning System Radio Occultation (GPSRO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. These high vertical resolution observations capture the detailed structure and moisture budget of the Hadley Cell circulation. We compare the COSMIC observations with the European Center for Medium-range Weather Forecast (ECMWF) Reanalysis Interim (ERA-Interim) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) climatologies. Qualitatively, the spatial pattern of RH in all data sets matches up remarkably well, capturing distinct features of the general circulation. However, RH discrepancies exist between ERA-Interim and COSMIC data sets that are noticeable across the tropical boundary layer. Specifically, ERA-Interim shows a drier Intertropical Convergence Zone (ITCZ) by 15-20% compared to both COSMIC and MERRA data sets, but this difference decreases with altitude. Unlike ECMWF, MERRA shows an excellent agreement with the COSMIC observations except above 400 hPa, where GPSRO observations capture drier air by 5-10 %. RH climatologies were also used to evaluate intraseasonal variability. The results indicate that the tropical middle troposphere at +/- 5-25 degrees is most sensitive to seasonal variations. COSMIC and MERRA data sets capture the same magnitude of the seasonal variability, but ERA-Interim shows a weaker seasonal fluctuation up to 10% in the middle troposphere inside the dry air subsidence regions of the Hadley Cell. Over the ITCZ, RH varies by maximum 9% between winter and summer.
C1 [Vergados, P.; Mannucci, A. J.; Ao, C. O.; Jiang, J. H.; Su, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Vergados, P (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM panagiotis.vergados@jpl.nasa.gov
FU National Aeronautics and Space Administration
FX This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. We thank the Giovanni Interactive
Visualization and Analysis project for making publicly available the
MERRA data sets and the University Corporation for Atmospheric Research
(UCAR) for providing the COSMIC and ECMWF data sets. We would like to
thank the associate editor and the two anonymous reviews, whose critical
evaluation of our manuscript helped us strengthen our results.
NR 44
TC 4
Z9 4
U1 0
U2 21
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 4
BP 1789
EP 1797
DI 10.5194/amt-8-1789-2015
PG 9
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CH2ET
UT WOS:000353839200011
ER
PT J
AU Scheepmaker, RA
Frankenberg, C
Deutscher, NM
Schneider, M
Barthlott, S
Blumenstock, T
Garcia, OE
Hase, F
Jones, N
Mahieu, E
Notholt, J
Velazco, V
Landgraf, J
Aben, I
AF Scheepmaker, R. A.
Frankenberg, C.
Deutscher, N. M.
Schneider, M.
Barthlott, S.
Blumenstock, T.
Garcia, O. E.
Hase, F.
Jones, N.
Mahieu, E.
Notholt, J.
Velazco, V.
Landgraf, J.
Aben, I.
TI Validation of SCIAMACHY HDO/H2O measurements using the TCCON and
NDACC-MUSICA networks
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID COLUMN OBSERVING NETWORK; ATMOSPHERIC WATER-VAPOR; DELTA-D;
INFRARED-SPECTRA; RETRIEVALS; IASI/METOP; CALIBRATION; (H2O)-O-16;
RESOLUTION; DEUTERIUM
AB Measurements of the atmospheric HDO/H2O ratio help us to better understand the hydrological cycle and improve models to correctly simulate tropospheric humidity and therefore climate change. We present an updated version of the column-averaged HDO/H2O ratio data set from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The data set is extended with 2 additional years, now covering 2003-2007, and is validated against co-located ground-based total column (delta D) over bar measurements from Fourier transform spectrometers (FTS) of the Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC, produced within the framework of the MUSICA project). Even though the time overlap among the available data is not yet ideal, we determined a mean negative bias in SCIAMACHY (delta D) over bar of -35 +/- 30% compared to TCCON and -69 +/- 15% compared to MUSICA (the uncertainty indicating the station-to-station standard deviation). The bias shows a latitudinal dependency, being largest (similar to-60 to -80 parts per thousand) at the highest latitudes and smallest (similar to-20 to -30%) at the lowest latitudes. We have tested the impact of an offset correction to the SCIAMACHY HDO and H2O columns. This correction leads to a humidity-and latitude-dependent shift in (delta D) over bar and an improvement of the bias by 27 parts per thousand, although it does not lead to an improved correlation with the FTS measurements nor to a strong reduction of the latitudinal dependency of the bias. The correction might be an improvement for dry, high-altitude areas, such as the Tibetan Plateau and the Andes region. For these areas, however, validation is currently impossible due to a lack of ground stations. The mean standard deviation of single-sounding SCIAMACHY-FTS differences is similar to 115 parts per thousand, which is reduced by a factor similar to 2 when we consider monthly means. When we relax the strict matching of individual measurements and focus on the mean seasonalities using all available FTS data, we find that the correlation coefficients between SCIAMACHY and the FTS networks improve from 0.2 to 0.7-0.8. Certain ground stations show a clear asymmetry in (delta D) over bar during the transition from the dry to the wet season and back, which is also detected by SCIAMACHY. This asymmetry points to a transition in the source region temperature or location of the water vapour and shows the added information that HDO/H2O measurements provide when used in combination with variations in humidity.
C1 [Scheepmaker, R. A.; Landgraf, J.; Aben, I.] SRON Netherlands Inst Space Res, Utrecht, Netherlands.
[Frankenberg, C.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Deutscher, N. M.; Notholt, J.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany.
[Deutscher, N. M.; Jones, N.; Velazco, V.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia.
[Schneider, M.; Barthlott, S.; Blumenstock, T.; Hase, F.] Karlsruhe Inst Technol KIT, Inst Meteorol & Climate Res IMK ASF, Karlsruhe, Germany.
[Schneider, M.; Garcia, O. E.] Agencia Estatal Meteorol AEMET, IARC, Santa Cruz De Tenerife, Spain.
[Mahieu, E.] Univ Liege, Inst Astrophys & Geophys, Liege, Belgium.
RP Scheepmaker, RA (reprint author), SRON Netherlands Inst Space Res, Utrecht, Netherlands.
EM r.a.scheepmaker@sron.nl
RI Barthlott, Sabine/B-1439-2013; Velazco, Voltaire/H-2280-2011; Jones,
Nicholas/G-5575-2011; Garcia, Omaira/M-2896-2014; Schneider,
Matthias/B-1441-2013; Frankenberg, Christian/A-2944-2013; Notholt,
Justus/P-4520-2016;
OI Barthlott, Sabine/0000-0003-0258-9421; Velazco,
Voltaire/0000-0002-1376-438X; Jones, Nicholas/0000-0002-0111-2368;
Frankenberg, Christian/0000-0002-0546-5857; Notholt,
Justus/0000-0002-3324-885X; Mahieu, Emmanuel/0000-0002-5251-0286
FU Netherlands Space Office as part of the User Support Programme Space
Research [GO-AO/16]; NASA's Terrestrial Ecology Program [NNX11AG01G];
Orbiting Carbon Observatory Program; Atmospheric CO2
Observations from Space (ACOS) Program; DOE/ARM Program; OCO project;
OCO-2 project; Australian Research Council [LE0668470, DP0879468,
DP110103118, LP0562346, DE140100178]; New Zealand Foundation of Research
Science and Technology [CO1X0204, CO1X0703, CO1X0406]; NIWA's Atmosphere
Research Programme 3 (Statement of Corporate Intent); Senate of Bremen;
European Research Council under the European Community [256961];
F.R.S.-FNRS; Federation Wallonie-Bruxelles
FX This researched was funded by the Netherlands Space Office as part of
the User Support Programme Space Research under project GO-AO/16. US
funding for TCCON comes from NASA's Terrestrial Ecology Program, grant
number NNX11AG01G, the Orbiting Carbon Observatory Program, the
Atmospheric CO2 Observations from Space (ACOS) Program and
the DOE/ARM Program. The Darwin TCCON site was built at Caltech with
funding from the OCO project and is operated by the University of
Wollongong, with travel funds for maintenance and equipment costs funded
by the OCO-2 project. We acknowledge funding to support Darwin from the
Australian Research Council, projects LE0668470, DP0879468, DP110103118
and LP0562346, while N. M. Deutscher is supported by Australian Research
Council grant DE140100178. The Lauder TCCON programme is funded by New
Zealand Foundation of Research Science and Technology contracts
CO1X0204, CO1X0703 and CO1X0406 and NIWA's Atmosphere Research Programme
3 (2011/13 Statement of Corporate Intent). The Bremen and Ny-Alesund FTS
sites acknowledge funding support by the Senate of Bremen. MUSICA is
funded by the European Research Council under the European Community's
Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number
256961. The observational program at Jungfraujoch has been supported by
the F.R.S.-FNRS and the Federation Wallonie-Bruxelles. We further thank
the International Foundation High Altitude Research Stations
Jungfraujoch and Gornergrat (HFSJG, Bern). We thank V. Sherlock, P.
Wennberg and D. Wunch, as well as the referees K. Gribanov and N.
Rokotyan, for useful comments that improved this paper.
NR 38
TC 6
Z9 6
U1 1
U2 10
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 4
BP 1799
EP 1818
DI 10.5194/amt-8-1799-2015
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CH2ET
UT WOS:000353839200012
ER
PT S
AU Troupaki, E
Denny, ZH
Wu, S
Bradshaw, HN
Smith, KA
Hults, JA
Ramos-Izquierdo, LA
Cook, WB
AF Troupaki, E.
Denny, Z. H.
Wu, S.
Bradshaw, H. N.
Smith, K. A.
Hults, J. A.
Ramos-Izquierdo, L. A.
Cook, W. B.
BE Glebov, AL
Leisher, PO
TI Space Qualification of the Optical Filter Assemblies for the
ICESat-2/ATLAS Instrument
SO COMPONENTS AND PACKAGING FOR LASER SYSTEMS
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Components and Packaging for Laser Systems
CY FEB 09-12, 2015
CL San Francisco, CA
SP SPIE
DE ATLAS; ICESat-2; etalon; receiver; solar background
AB The Advanced Topographic Laser Altimeter System (ATLAS) will be the only instrument on the Ice, Cloud, and Land Elevation Satellite -2 (ICESat-2). ICESat-2 is the 2nd-generation of the orbiting laser altimeter ICESat, which will continue polar ice topography measurements with improved precision laser-ranging techniques. In contrast to the original ICESat design, ICESat-2 will use a micro-pulse, multi-beam approach that provides dense cross-track sampling to help scientists determine a surface's slope with each pass of the satellite. The ATLAS laser will emit visible, green laser pulses at a wavelength of 532 nm and a rate of 10kHz and will be split into 6 beams. A set of six identical, thermally tuned optical filter assemblies (OFA) will be used to remove background solar radiation from the collected signal while transmitting the laser light to the detectors. A seventh assembly will be used to monitor the laser center wavelength during the mission. In this paper, we present the design and optical performance measurements of the ATLAS OFA in air and in vacuum prior to their integration on the ATLAS instrument.
C1 [Troupaki, E.; Wu, S.; Bradshaw, H. N.; Ramos-Izquierdo, L. A.; Cook, W. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Denny, Z. H.] SSAI Inc, Lanham, MD USA.
[Smith, K. A.; Hults, J. A.] Orbital Sci Corp, Dulles, VA USA.
RP Troupaki, E (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM elisavet.troupaki-1@nasa.gov
NR 3
TC 0
Z9 0
U1 3
U2 5
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-436-3
J9 PROC SPIE
PY 2015
VL 9346
AR 93460H
DI 10.1117/12.2077839
PG 9
WC Engineering, Electrical & Electronic; Optics
SC Engineering; Optics
GA BC6AD
UT WOS:000353681400012
ER
PT S
AU Abrahamson, MJ
Oaida, BV
Sindiy, O
Biswas, A
AF Abrahamson, Matthew J.
Oaida, Bogdan V.
Sindiy, Oleg
Biswas, Abhijit
BE Hemmati, H
Boroson, DM
TI Achieving operational two-way laser acquisition for OPALS payload on the
International Space Station
SO FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Free-Space Laser Communication and Atmospheric Propagation
XXVII
CY FEB 08-09, 2015
CL San Francisco, CA
SP SPIE
DE OPALS; optical communications; lasercomm; ISS; OCTL; acquisition;
tracking
AB The Optical PAyload for Lasercomm Science (OPALS) experiment was installed on the International Space Station (ISS) in April 2014. Developed as a technology demonstration, its objective was to experiment with space-to-ground optical communications transmissions from Low Earth Orbit. More than a dozen successful optical links were established between a Wrightwood, California-based ground telescope and the OPALS flight terminal from June 2014 to September 2014. Each transmission required precise bi-directional pointing to be maintained between the space-based transmitter and ground-based receiver. This was accomplished by acquiring and tracking a laser beacon signal transmitted from the ground telescope to the OPALS flight terminal on the ISS. OPALS demonstrated the ability to nominally acquire the beacon within three seconds at 25 degrees elevation and maintain lock within 140 mu rad (3 sigma) for the full 150-second transmission duration while slewing at rates up to 1 degrees/sec. Additional acquisition attempts in low elevation and weather-challenged conditions provided valuable insight on the optical link robustness under off-nominal operational conditions.
C1 [Abrahamson, Matthew J.; Oaida, Bogdan V.; Sindiy, Oleg; Biswas, Abhijit] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Abrahamson, MJ (reprint author), Mail 4800 Oak Grove Dr,M-S 301-121, Pasadena, CA 91109 USA.
EM Matthew.Abrahamson@jpl.nasa.gov
NR 5
TC 1
Z9 1
U1 2
U2 5
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-444-8
J9 PROC SPIE
PY 2015
VL 9354
AR 935408
DI 10.1117/12.2182473
PG 21
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AR
UT WOS:000353710100006
ER
PT S
AU Biswas, A
Oaida, BV
Andrews, KS
Kovalik, JM
Abrahamson, MJ
Wright, MW
AF Biswas, Abhijit
Oaida, Bogdan V.
Andrews, Kenneth S.
Kovalik, Joseph M.
Abrahamson, Matthew J.
Wright, Malcolm W.
BE Hemmati, H
Boroson, DM
TI Optical Payload for Lasercomm Science (OPALS) Link Validation During
Operations from the ISS
SO FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Free-Space Laser Communication and Atmospheric Propagation
XXVII
CY FEB 08-09, 2015
CL San Francisco, CA
SP SPIE
DE ISS; lasercomm; downlink; bit-error-rate; beacon; 1550 nm; atmospheric
transmission
AB In mid-2014 several day and nighttime links under diverse atmospheric conditions were completed using the Optical Payload for Lasercomm Science (OPALS) flight system on-board the International Space Station (ISS). In this paper we compare measured optical power and its variance at either end of the link with predictions that include atmospheric propagation models. For the 976 nm laser beacon mean power transmitted from the ground to the ISS the predicted mean irradiance of tens of microwatts per square meter close to zenith and its decrease with range and increased air mass shows good agreement with predictions. The irradiance fluctuations sampled at 100 Hz also follow the expected increase in scintillation with air mass representative of atmospheric coherence lengths at zenith at 500 nm in the 3-8 cm range. The downlink predicted power of hundreds of nanowatts was also reconciled within the uncertainty of the atmospheric losses. Expected link performance with uncoded bit-error rates less than 1E-4 required for the Reed-Solomon code to correct errors for video, text and file transmissions was verified. The results of predicted and measured powers and fluctuations suggest the need for further study and refinement.
C1 [Biswas, Abhijit; Oaida, Bogdan V.; Andrews, Kenneth S.; Kovalik, Joseph M.; Abrahamson, Matthew J.; Wright, Malcolm W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Biswas, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dive, Pasadena, CA 91109 USA.
EM Abhijit.Biswas@jl.nasa.gov
NR 8
TC 2
Z9 2
U1 0
U2 3
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-444-8
J9 PROC SPIE
PY 2015
VL 9354
AR 93540F
DI 10.1117/12.2084964
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AR
UT WOS:000353710100012
ER
PT S
AU Biswas, A
Kovalik, JM
Oaida, B
Abrahamson, MJ
Wright, MW
AF Biswas, Abhijit
Kovalik, Joseph M.
Oaida, Bogdan
Abrahamson, Matthew J.
Wright, Malcolm W.
BE Hemmati, H
Boroson, DM
TI Upwelling Radiance at 976 nm Measured from Space Using the OPALS CCD
Camera on the ISS
SO FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Free-Space Laser Communication and Atmospheric Propagation
XXVII
CY FEB 08-09, 2015
CL San Francisco, CA
SP SPIE
DE Upwelling radiance; 976 nm; CCD Camera; OPALS
AB The Optical Payload for Lasercomm Science (OPALS) Flight System on-board the International Space Station uses a charge coupled device (CCD) camera to detect a beacon laser from Earth. Relative measurements of the background contributed by upwelling radiance under diverse illumination conditions and varying surface terrain is presented. In some cases clouds in the field-of-view allowed a comparison of terrestrial and cloud-top upwelling radiance. In this paper we will report these measurements and examine the extent of agreement with atmospheric model predictions.
C1 [Biswas, Abhijit; Kovalik, Joseph M.; Oaida, Bogdan; Abrahamson, Matthew J.; Wright, Malcolm W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Biswas, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Div, Pasadena, CA 91109 USA.
EM Abhijit.Biswas@jl.nasa.gov
NR 5
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-444-8
J9 PROC SPIE
PY 2015
VL 9354
AR 93540A
DI 10.1117/12.2084965
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AR
UT WOS:000353710100008
ER
PT S
AU Cornwell, DM
AF Cornwell, Donald M.
BE Hemmati, H
Boroson, DM
TI NASA's Optical Communications Program for 2015 and Beyond
SO FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Free-Space Laser Communication and Atmospheric Propagation
XXVII
CY FEB 08-09, 2015
CL San Francisco, CA
SP SPIE
DE Free-space laser communications; optical communications; high data-rate;
deep space; near-Earth
AB NASA's Space Communications and Navigation (SCaN) Program at NASA Headquarters is pursuing a vibrant and wide-ranging optical communications program for future planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the Moon in 2013. This invited paper will discuss NASA's new laser communications missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks.
C1 NASA Headquarters, Space Commun & Nav SCaN Program, Div Technol, Washington, DC 20546 USA.
RP Cornwell, DM (reprint author), NASA Headquarters, Space Commun & Nav SCaN Program, Div Technol, 300 E St Southwest, Washington, DC 20546 USA.
NR 7
TC 6
Z9 6
U1 7
U2 16
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-444-8
J9 PROC SPIE
PY 2015
VL 9354
AR 93540E
DI 10.1117/12.2087132
PG 6
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AR
UT WOS:000353710100011
ER
PT S
AU Manning, RM
Vyhnalek, B
AF Manning, Robert M.
Vyhnalek, Brian
BE Hemmati, H
Boroson, DM
TI A microwave radiometric method to obtain the average path profile of
atmospheric temperature and humidity structure parameters and its
application to optical propagation system assessment
SO FREE-SPACE LASER COMMUNICATION AND ATMOSPHERIC PROPAGATION XXVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Free-Space Laser Communication and Atmospheric Propagation
XXVII
CY FEB 08-09, 2015
CL San Francisco, CA
SP SPIE
DE Atmospheric turbulence; Optical propagation; Profiling radiometer;
Turbulence theory; Atmospheric Remote Sensing
ID SPECTRUM
AB The values of the key atmospheric propagation parameters C-T(2), C-Q(2), and C-TQ are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain C-n(2) profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.
C1 [Manning, Robert M.; Vyhnalek, Brian] Glenn Res Ctr, Natl Aeronaut & Space Adm, Cleveland, OH 44135 USA.
RP Manning, RM (reprint author), Glenn Res Ctr, Natl Aeronaut & Space Adm, Cleveland, OH 44135 USA.
NR 16
TC 0
Z9 0
U1 1
U2 2
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-444-8
J9 PROC SPIE
PY 2015
VL 9354
AR 935406
DI 10.1117/12.2080258
PG 19
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AR
UT WOS:000353710100004
ER
PT J
AU Wilson, MD
Durand, M
Jung, HC
Alsdorf, D
AF Wilson, M. D.
Durand, M.
Jung, H. C.
Alsdorf, D.
TI Swath-altimetry measurements of the main stem Amazon River: measurement
errors and hydraulic implications
SO HYDROLOGY AND EARTH SYSTEM SCIENCES
LA English
DT Article
ID SUSPENDED SEDIMENT; SURFACE-WATER; DISCHARGE; MODEL; MISSION; SLOPE;
BASIN; VARIABILITY; ELEVATION; BRAZIL
AB The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a similar to 260 km reach of the central Amazon (Solimoes) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimoes and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimoes and 0.88 for the Purus, with 2.6 and 19.1% average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).
C1 [Wilson, M. D.] Univ W Indies, Dept Geog, St Augustine, Trinid & Tobago.
[Durand, M.; Alsdorf, D.] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA.
[Durand, M.; Alsdorf, D.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Jung, H. C.] NASA, Goddard Space Flight Ctr, Off Appl Sci, Greenbelt, MD 20771 USA.
[Jung, H. C.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA.
RP Wilson, MD (reprint author), Univ W Indies, Dept Geog, St Augustine, Trinid & Tobago.
EM matthew.wilson@sta.uwi.edu
OI Wilson, Matthew/0000-0001-9459-6981
FU NASA SWOT Science Definition Team Grant [NNX13AD96G]
FX This research was completed while M. D. Wilson was a visiting researcher
at the School of Earth Sciences, Ohio State University. M. Durand is
supported by a NASA SWOT Science Definition Team Grant (no. NNX13AD96G).
The authors would like to thank R. Romanowicz and one anonymous referee
for their careful reviews and valuable recommendations which have
improved the quality of this manuscript.
NR 39
TC 0
Z9 0
U1 0
U2 2
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1027-5606
EI 1607-7938
J9 HYDROL EARTH SYST SC
JI Hydrol. Earth Syst. Sci.
PY 2015
VL 19
IS 4
BP 1943
EP 1959
DI 10.5194/hess-19-1943-2015
PG 17
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA CH2TH
UT WOS:000353877000021
ER
PT S
AU Davis, SR
Rommel, SD
Johnson, S
Anderson, MH
Yu, AW
AF Davis, Scott R.
Rommel, Scott D.
Johnson, Seth
Anderson, Michael H.
Yu, Anthony W.
BE Broquin, JE
Conti, GN
TI Liquid Crystal Clad Waveguide Laser Scanner and Waveguide Amplifier for
LADAR and Sensing Applications
SO INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XIX
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 19th Photonics West Conference on Integrated Optics - Devices,
Materials, and Technologies
CY FEB 09-11, 2015
CL San Francisco, CA
SP SPIE
DE EO laser scanner; non-mechanical laser scanner; liquid crystal
waveguide; laser beamsteerer; LC waveguide; LADAR; methane sensing
ID WIDE-ANGLE
AB We will describe the construction and performance of a prototype high speed, non-mechanically scanned, laser system that is coupled to a custom planar waveguide optical amplifier. The system provides high speed (10 kHz) scanning of >200 far-field resolvable spots, with a path toward >500 spots at 10 kHz demonstrated. An enabling component for this system is the new EO scanner that provides previously unrealizable performance such as sub-millisecond scanning, full 2-D operation with only three control electrodes, fully refractive (no side-lobes) scanning, no blind spot within the field of view (FOV), and a large continuous scan angle. Scanners with near perfect Gaussian output beams, throughputs greater than 50%, and a 50(0) x 15 degrees continuous field-of-view will be discussed. Furthermore, a path toward much larger FOVs will also be presented. We will also present the design and construction of custom planar waveguide amplifiers to which our EO scanner can be free space end-fire coupled. The amplifiers and scanners were designed for operation at 1.645 microns. This will enable long-range, eye-safe LADAR and sensing applications, such as CH4 sensors.
C1 [Davis, Scott R.; Rommel, Scott D.; Johnson, Seth; Anderson, Michael H.] Vescent Photon Inc, Golden, CO 80401 USA.
[Yu, Anthony W.] NASA, Laser & Electroopt Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Davis, SR (reprint author), Vescent Photon Inc, 14998 W 6th Ave,Suite 700, Golden, CO 80401 USA.
EM davis@vescent.com
NR 16
TC 0
Z9 0
U1 1
U2 8
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-455-4
J9 PROC SPIE
PY 2015
VL 9365
AR 93650N
DI 10.1117/12.2077061
PG 12
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AN
UT WOS:000353703500010
ER
PT S
AU Grudinin, IS
Yu, N
AF Grudinin, Ivan S.
Yu, Nan
BE Kudryashov, AV
Paxton, AH
Ilchenko, VS
Aschke, L
Washio, K
TI Towards efficient octave-spanning comb with micro-structured crystalline
resonator
SO LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XVII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Laser Resonators, Microresonators, and Beam Control XVII
CY FEB 09-12, 2015
CL San Francisco, CA
SP SPIE
DE dispersion; combs; fluoride; whispering; microstructured; belt
ID WHISPERING-GALLERY MODES; KERR-FREQUENCY COMBS; SILICON-NITRIDE;
MICRORESONATOR; GENERATION; DISPERSION; SPECTRUM; LASER; CHIP
AB Optical frequency combs, typically produced by mode locked lasers, have revolutionized many applications in science and technology. Frequency combs were recently generated by micro resonators through nonlinear Kerr processes. However, the comb span from micro resonators was found to be limited by resonator dispersion and mode spectrum. While dispersion engineering has been reported in on-chip devices, monolithic crystalline resonators offer an advantage of high optical quality factor. Moreover, most resonators used for comb generation support many mode families, leading to unavoidable crossings in resonator spectrum. Such crossings strongly influence comb dynamics and may prevent stable coherent mode-locking and soliton states. We report a new crystalline resonator approach supporting dispersion control and single mode spectrum while maintaining high quality factor. Dispersion engineering by waveguide micro-structuring is used to flatten the dispersion in our MgF2 resonator. Both absolute magnitude of dispersion and its slopes can be altered over a wavelength span exceeding an octave. Dispersion flattening leads to generation of an octave-spanning frequency comb with repetition rate of 46 GHz and coupled pump power below 100 mW. We also demonstrate that the microstructuring dispersion engineering approach can be used to achieve flattened and anomalous dispersion in a CaF2 resonator near 1550 nm wavelength. In addition, we describe observation of discrete steps between the modulation instability states of the primary comb and on the three-stage comb unfolding dynamics. The micro-structured resonators may enable efficient low repetition rate coherent octave spanning frequency combs without external broadening, ideal for applications in optical frequency synthesis, metrology, spectroscopy, and communications.
C1 [Grudinin, Ivan S.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Grudinin, IS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr M-S 298-100, Pasadena, CA 91109 USA.
EM nan.yu@jpl.nasa.gov
NR 42
TC 2
Z9 2
U1 8
U2 11
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-433-2
J9 PROC SPIE
PY 2015
VL 9343
AR 93430F
DI 10.1117/12.2085420
PG 9
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AK
UT WOS:000353695900005
ER
PT S
AU Merritt, S
AF Merritt, Scott
BE Soskind, YG
Olson, C
TI Thermal Signature Identification System (TheSIS): A Spread Spectrum
Temperature Cycling Method
SO PHOTONIC INSTRUMENTATION ENGINEERING II
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Photonic Instrumentation Engineering II
CY FEB 11-12, 2015
CL San Francisco, CA
SP SPIE
DE Temperature cycling; thermal signature; thermality pole; direct sequence
spread-spectrum; Barker code; autoregressive; Akaike Information
Criterion; Figure of Merit
AB NASA GSFC's Thermal Signature Identification System (TheSIS) 1) measures the high order dynamic responses of optoelectronic components to direct sequence spread-spectrum temperature cycling, 2) estimates the parameters of multiple autoregressive moving average (ARMA) or other models the of the responses, 3) and selects the most appropriate model using the Akaike Information Criterion (AIC). Using the AIC-tested model and parameter vectors from TheSIS, one can 1) select high-performing components on a multivariate basis, i.e., with multivariate Figures of Merit (FOMs), 2) detect subtle reversible shifts in performance, and 3) investigate irreversible changes in component or subsystem performance, e.g. aging. We show examples of the TheSIS methodology for passive and active components and systems, e.g. fiber Bragg gratings (FBGs) and DFB lasers with coupled temperature control loops, respectively.
C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Merritt, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM scott.a.merritt@nasa.gov
NR 3
TC 0
Z9 0
U1 0
U2 0
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-459-2
J9 PROC SPIE
PY 2015
VL 9369
AR 93690M
DI 10.1117/12.2080159
PG 12
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC6AQ
UT WOS:000353708800015
ER
PT B
AU Ross-Nazzal, J
AF Ross-Nazzal, Jennifer
BE Turner, EH
Cole, S
Sharpless, R
TI Mae C. Jemison The Right Stuff
SO TEXAS WOMEN: THEIR HISTORIES, THEIR LIVES
LA English
DT Article; Book Chapter
C1 Nasa Johnson Space Ctr, Houston, TX 77058 USA.
RP Ross-Nazzal, J (reprint author), Nasa Johnson Space Ctr, Houston, TX 77058 USA.
NR 67
TC 0
Z9 0
U1 0
U2 0
PU UNIV GEORGIA PRESS
PI ATHENS
PA ATHENS, GA 30602 USA
BN 978-0-8203-4720-2; 978-0-8203-4790-5; 978-0-8203-3744-9
PY 2015
BP 457
EP 480
PG 24
WC History; Women's Studies
SC History; Women's Studies
GA BC2UZ
UT WOS:000351381400024
ER
PT J
AU Meyer, M
Mulholland, GW
Bryg, V
Urban, DL
Yuan, ZG
Ruff, GA
Cleary, T
Yang, JA
AF Meyer, Marit
Mulholland, George W.
Bryg, Victoria
Urban, David L.
Yuan, Zeng-guang
Ruff, Gary A.
Cleary, Thomas
Yang, Jiann
TI Smoke Characterization and Feasibility of the Moment Method for
Spacecraft Fire Detection
SO AEROSOL SCIENCE AND TECHNOLOGY
LA English
DT Article
ID SIZE DISTRIBUTIONS; EMISSIONS; INSTRUMENTS; COMBUSTION; PARTICLES
AB The Smoke Aerosol Measurement Experiment (SAME) has been conducted twice by the National Aeronautics and Space Administration and provided real-time aerosol data in a spacecraft micro-gravity environment. Flight experiment results have been recently analyzed with respect to comparable ground-based experiments. The ground tests included an electrical mobility analyzer as a reference instrument for measuring particle size distributions of the smoke produced from overheating five common spacecraft materials. Repeatable sample surface temperatures were obtained with the SAME ground-based hardware, and measurements were taken with the aerosol instruments returned from the International Space Station comprising two commercial smoke detectors, three aerosol instruments, which measure moments of the particle size distribution, and a thermal precipitator for collecting smoke particles for transmission electron microscopy (TEM). Moment averages from the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment) allowed calculation of the count mean diameter and the diameter of average mass of smoke particles. Additional size distribution information, including geometric mean diameter and geometric standard deviations, can be calculated if the particle size distribution is assumed to be lognormal. Both unaged and aged smoke particle size distributions from ground experiments were analyzed to determine the validity of lognormal assumption. Comparisons are made between flight experiment particle size distribution statistics generated by moment calculations and microscopy particle size distributions (using projected area equivalent diameter) from TEM grids, which have been returned to the Earth.
C1 [Meyer, Marit; Urban, David L.; Ruff, Gary A.] NASA, Glenn Res Ctr, Combust Phys & Reacting Proc Branch, Cleveland, OH 44135 USA.
[Mulholland, George W.] Univ Maryland, College Pk, MD 20742 USA.
[Mulholland, George W.; Cleary, Thomas; Yang, Jiann] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA.
[Bryg, Victoria; Yuan, Zeng-guang] Natl Ctr Space Explorat Res, Cleveland, OH USA.
RP Meyer, M (reprint author), NASA, Glenn Res Ctr, Combust Phys & Reacting Proc Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM marit.meyer@nasa.gov
NR 20
TC 1
Z9 1
U1 4
U2 8
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0278-6826
EI 1521-7388
J9 AEROSOL SCI TECH
JI Aerosol Sci. Technol.
PY 2015
VL 49
IS 5
BP 299
EP 309
DI 10.1080/02786826.2015.1025124
PG 11
WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences;
Meteorology & Atmospheric Sciences
SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric
Sciences
GA CG3GE
UT WOS:000353165900003
ER
PT J
AU Mulholland, GW
Meyer, M
Urban, DL
Ruff, GA
Yuan, ZG
Bryg, V
Cleary, T
Yang, JA
AF Mulholland, George W.
Meyer, Marit
Urban, David L.
Ruff, Gary A.
Yuan, Zeng-guang
Bryg, Victoria
Cleary, Thomas
Yang, Jiann
TI Pyrolysis Smoke Generated Under Low-Gravity Conditions
SO AEROSOL SCIENCE AND TECHNOLOGY
LA English
DT Article
ID THERMAL-DEGRADATION; ORGANIC-COMPOUNDS; MECHANISM; PARTICLES
AB A series of smoke experiments were carried out in the Microgravity Science Glovebox on the International Space Station (ISS) Facility to assess the impact of low-gravity conditions on the properties of the smoke aerosol. The smokes were generated by heating five different materials commonly used in space vehicles. This study focuses on the effects of flow and heating temperature for low-gravity conditions on the pyrolysis rate, the smoke plume structure, the smoke yield, the average particle size, and particle structure. Low-gravity conditions allowed a unique opportunity to study the smoke plume for zero external flow without the complication of buoyancy. The diameter of average mass increased on average by a factor of 1.9 and the morphology of the smoke changed from agglomerate with flow to spherical at no flow for one material. The no flow case is an important scenario in spacecraft where smoke could be generated by the overheating of electronic components in confined spaces. From electron microcopy of samples returned to earth, it was found that the smoke can form an agglomerate shape as well as a spherical shape, which had previously been the assumed shape. A possible explanation for the shape of the smoke generated by each material is presented.
C1 [Mulholland, George W.] Univ Maryland, College Pk, MD 20742 USA.
[Mulholland, George W.; Cleary, Thomas; Yang, Jiann] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA.
[Meyer, Marit; Urban, David L.; Ruff, Gary A.] NASA, Glenn Res Ctr, Cleveland, OH USA.
[Yuan, Zeng-guang; Bryg, Victoria] Natl Ctr Space Explorat Res, Cleveland, OH USA.
RP Mulholland, GW (reprint author), Univ Maryland, Dept Mech Engn, 2181 Glenn L Martin Hall, College Pk, MD 20742 USA.
EM georgewm@umd.edu
NR 24
TC 1
Z9 1
U1 1
U2 2
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0278-6826
EI 1521-7388
J9 AEROSOL SCI TECH
JI Aerosol Sci. Technol.
PY 2015
VL 49
IS 5
BP 310
EP 321
DI 10.1080/02786826.2015.1025125
PG 12
WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences;
Meteorology & Atmospheric Sciences
SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric
Sciences
GA CG3GE
UT WOS:000353165900004
ER
PT J
AU Remsberg, EE
AF Remsberg, E. E.
TI Methane as a diagnostic tracer of changes in the Brewer-Dobson
circulation of the stratosphere
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID HALOGEN OCCULTATION EXPERIMENT; MIDDLE ATMOSPHERE; WATER-VAPOR;
INTERANNUAL VARIABILITY; RESIDUAL CIRCULATION; SATELLITE DATA; MEAN AGE;
TRANSPORT; AIR; CONSTITUENTS
AB This study makes use of time series of methane (CH4) data from the Halogen Occultation Experiment (HALOE) to detect whether there were any statistically significant changes of the Brewer-Dobson circulation (BDC) within the stratosphere during 1992-2005. The HALOE CH4 profiles are in terms of mixing ratio versus pressure altitude and are binned into latitude zones within the Southern Hemisphere and the Northern Hemisphere. Their separate time series are then analyzed using multiple linear regression (MLR) techniques. The CH4 trend terms for the Northern Hemisphere are significant and positive at 10 degrees N from 50 to 7 hPa and larger than the tropospheric CH4 trends of about 3% decade 1 from 20 to 7 hPa. At 60 degrees N the trends are clearly negative from 20 to 7 hPa. Their combined trends indicate an acceleration of the BDC in the middle stratosphere of the Northern Hemisphere during those years, most likely due to changes from the effects of wave activity. No similar significant BDC acceleration is found for the Southern Hemisphere. Trends from HALOE H2O are analyzed for consistency. Their mutual trends with CH4 are anti-correlated qualitatively in the middle and upper stratosphere, where CH4 is chemically oxidized to H2O. Conversely, their mutual trends in the lower stratosphere are dominated by their trends upon entry to the tropical stratosphere. Time series residuals for CH4 in the lower mesosphere also exhibit structures that are anti-correlated in some instances with those of the tracer-like species HCl. Their occasional aperiodic structures indicate the effects of transport following episodic, wintertime wave activity. It is concluded that observed multi-year, zonally averaged distributions of CH4 can be used to diagnose major instances of wave-induced transport in the middle atmosphere and to detect changes in the stratospheric BDC.
C1 NASA, Sci Directorate, Langley Res Ctr, Hampton, VA 23681 USA.
RP Remsberg, EE (reprint author), NASA, Sci Directorate, Langley Res Ctr, 21 Langley Blvd,Mail Stop 401B, Hampton, VA 23681 USA.
EM ellis.e.remsberg@nasa.gov
NR 69
TC 2
Z9 2
U1 4
U2 12
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 7
BP 3739
EP 3754
DI 10.5194/acp-15-3739-2015
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG0LF
UT WOS:000352957400007
ER
PT J
AU Tan, F
Lim, HS
Abdullah, K
Yoon, TL
Holben, B
AF Tan, F.
Lim, H. S.
Abdullah, K.
Yoon, T. L.
Holben, B.
TI Monsoonal variations in aerosol optical properties and estimation of
aerosol optical depth using ground-based meteorological and air quality
data in Peninsular Malaysia
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID BIOMASS-BURNING AEROSOLS; TROPICAL COASTAL STATION; SUN-PHOTOMETER DATA;
ATMOSPHERIC AEROSOL; ANGSTROM EXPONENT; TEMPORAL HETEROGENEITY; MODEL
EVALUATION; SOUTHEAST-ASIA; VISIBILITY; AERONET
AB Obtaining continuous aerosol-optical-depth (AOD) measurements is a difficult task due to the cloud-cover problem. With the main motivation of overcoming this problem, an AOD-predicting model is proposed. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the Angstrom exponent against the AOD. A new empirical algorithm was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET due to frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The calibrated model coefficients have a coefficient of determination, R-2, of 0.72. The predicted AOD of the model was generated based on these calibrated coefficients and compared against the measured data through standard statistical tests, yielding a R-2 of 0.68 as validation accuracy. The error in weighted mean absolute percentage error (wMAPE) was less than 0.40% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Performance of our model was compared against selected LIDAR data to yield good correspondence. The predicted AOD can enhance measured short- and long-term AOD and provide supplementary information for climatological studies and monitoring aerosol variation.
C1 [Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.] Univ Sains Malaysia, Sch Phys, George Town 11800, Malaysia.
[Holben, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Tan, F (reprint author), Univ Sains Malaysia, Sch Phys, George Town 11800, Malaysia.
EM fuyitan@yahoo.com
RI Lim, Hwee San/F-6580-2010;
OI Lim, Hwee San/0000-0002-4835-8015; Tan, Fuyi/0000-0002-9655-3608
FU RU [1001/PFIZIK/811228]; RUI-PRGS [1001/PFIZIK/846083]
FX The authors gratefully acknowledge the financial support provided by RU
(grant no. 1001/PFIZIK/811228) and RUI-PRGS grants (grant no.
1001/PFIZIK/846083). The authors would like to thank the members of the
NASA Goddard Space Flight Center for setup assembly, as well as the site
members who maintained the AERONET in Penang. The authors also
acknowledge A. Smirnov from NASA for fruitful discussions on certain
issues.
NR 92
TC 3
Z9 3
U1 1
U2 4
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 7
BP 3755
EP 3771
DI 10.5194/acp-15-3755-2015
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG0LF
UT WOS:000352957400008
ER
PT J
AU Lawrence, ZD
Manney, GL
Minschwaner, K
Santee, ML
Lambert, A
AF Lawrence, Z. D.
Manney, G. L.
Minschwaner, K.
Santee, M. L.
Lambert, A.
TI Comparisons of polar processing diagnostics from 34 years of the
ERA-Interim and MERRA reanalyses
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID ARCTIC OZONE DEPLETION; METEOROLOGICAL ANALYSES; STRATOSPHERIC CLOUDS;
WINTER; VORTEX; ASSIMILATION; CHEMISTRY; MODEL; DENITRIFICATION; EVENTS
AB We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 to 2013 in both hemispheres and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher-quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (V-PSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis data sets. We still, however, see fairly large differences in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see overall good agreement among the diagnostics, which demonstrates that the ERA-Interim and MERRA reanalyses are equally appropriate choices for polar processing studies of recent Arctic and Antarctic winters.
C1 [Lawrence, Z. D.; Manney, G. L.; Minschwaner, K.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA.
[Manney, G. L.] NorthWest Res Associates, Socorro, NM USA.
[Santee, M. L.; Lambert, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Lawrence, ZD (reprint author), New Mexico Inst Min & Technol, Socorro, NM 87801 USA.
EM zlawrenc@nmt.edu
FU National Aeronautics and Space Administration
FX The authors would like to thank the personnel responsible for producing
the ERA-Interim and MERRA reanalysis data sets. ERA-Interim data were
made available by ECMWF, Shinfield Park, Reading, UK; MERRA data were
provided by the GMAO, Greenbelt, Maryland, USA. Thanks to David Tan,
Steven Pawson, and our reviewers, S. Chabrillat and C. Long, for their
helpful comments and suggestions regarding this work; N. Livesey for
help with setting up the trajectory code; and B. Knosp, W. Daffer, and
the JPL Microwave Limb Sounder team for computing and data management
support. Work at the Jet Propulsion Laboratory, California Institute of
Technology, was done under contract with the National Aeronautics and
Space Administration.
NR 57
TC 11
Z9 11
U1 2
U2 7
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 7
BP 3873
EP 3892
DI 10.5194/acp-15-3873-2015
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG0LF
UT WOS:000352957400015
ER
PT S
AU Arbabi, A
Horie, Y
Ball, AJ
Bagheri, M
Faraon, A
AF Arbabi, Amir
Horie, Yu
Ball, Alexander J.
Bagheri, Mahmood
Faraon, Andrei
BE ChangHasnain, CJ
Fattal, D
Koyama, F
Zhou, W
TI Efficient high NA flat micro-lenses realized using high contrast
transmitarrays
SO HIGH CONTRAST METASTRUCTURES IV
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on High Contrast Metastructures IV
CY FEB 11-12, 2015
CL San Francisco, CA
SP SPIE
DE Flat micro-lens; high numerical aperture; metasurface; transmitarray;
high index contrast; grating; diffractive lens
ID ELECTRON-BEAM LITHOGRAPHY; FRESNEL LENSES; VISIBLE WAVELENGTHS; ORDER
GRATINGS; ARRAYS; METASURFACES; REFLECTORS; ELEMENTS
AB We present design, fabrication, and characterization results of high numerical aperture (NA) micro-lenses based on a high contrast transmitarray platform. The high contrast transmitarray is created by periodic arrangement of amorphous silicon posts with different diameters on a fused silica substrate. We report near infrared high NA micro-lenses with spot sizes as small as 0.57 lambda and focusing efficiencies in excess of 80%. We demonstrate a trade-off relation between NA and efficiency of high contrast array flat micro-lenses, and attribute it to the spatial discretization of their phase profiles.
C1 [Arbabi, Amir; Horie, Yu; Ball, Alexander J.; Faraon, Andrei] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA.
[Bagheri, Mahmood] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Arbabi, A (reprint author), CALTECH, Thomas J Watson Lab Appl Phys, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM amir@caltech.edu
NR 32
TC 0
Z9 0
U1 2
U2 16
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-462-2
J9 PROC SPIE
PY 2015
VL 9372
AR 93720P
DI 10.1117/12.2079509
PG 7
WC Optics
SC Optics
GA BC5JG
UT WOS:000353321800016
ER
PT S
AU Arbabi, A
Horie, Y
Bagheri, M
Faraon, A
AF Arbabi, Amir
Horie, Yu
Bagheri, Mahmood
Faraon, Andrei
BE ChangHasnain, CJ
Fattal, D
Koyama, F
Zhou, W
TI Highly efficient polarization control using subwavelength high contrast
transmitarrays
SO High Contrast Metastructures IV
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on High Contrast Metastructures IV
CY FEB 11-12, 2015
CL San Francisco, CA
SP SPIE
DE Wave plate; metasurface; transmitarray; high index contrast; grating;
cylindrical vector beams; radial and azimuthal polarizations;
polarization control
ID DIELECTRICS; GRATINGS
AB We report efficient wave plates with different retardations and orientations of fast axes realized using transmitarrays composed of a periodic arrangement of amorphous silicon elliptical cylinders on glass. We show that novel polarization devices which locally rotate the polarization by different angles while preserving the wavefront can be demonstrated using such a high contrast transmitarray. We present design, fabrication and experimental characterization results for near infrared transmissive wave retarders with efficiencies in excess of 90%, and discuss the potential applications of atwill local polarization control enabled by this technology.
C1 [Arbabi, Amir; Horie, Yu; Faraon, Andrei] CALTECH, TJ Watson Lab Appl Phys, Pasadena, CA 91125 USA.
[Bagheri, Mahmood] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Arbabi, A (reprint author), CALTECH, TJ Watson Lab Appl Phys, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM amir@caltech.edu
NR 13
TC 0
Z9 0
U1 3
U2 12
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-462-2
J9 PROC SPIE
PY 2015
VL 9372
AR 93720H
DI 10.1117/12.2079559
PG 6
WC Optics
SC Optics
GA BC5JG
UT WOS:000353321800011
ER
PT J
AU McDermid, KJ
Lefebvre, JA
Balazs, GH
AF McDermid, Karla J.
Lefebvre, James A.
Balazs, George H.
TI Nonnative Seashore Paspalum, Paspalum vaginatum (Poaceae), Consumed by
Hawaiian Green Sea Turtles (Chelonia mydas): Evidence for Nutritional
Benefits
SO PACIFIC SCIENCE
LA English
DT Article
ID SODIC DRAINAGE WATER; ISLANDS; DIET; QUALITY; PLANTS; FOOD; BAY
AB The Hawaiian green turtle, Chelonia mydas Linnaeus, is a marine herbivore known to feed on sea grasses and seaweeds. On the east side of the island of Hawai'i, at high tide, green turtles have been observed feeding on a terrestrial, salt-tolerant turfgrass: seashore paspalum, Paspalum vaginatum Swartz, first introduced to the Hawaiian Islands in the 1930s. The role of this grass in green turtle nutrition is unknown. Paspalum vaginatum samples were collected at Keaukaha Beach Park, Hilo, and analyzed for nutritional composition (percentage water, percentage ash, caloric value, C : N ratio, percentage protein, and percentage lignin). In addition, two red seaweeds, Pterocladiella capillacea (Gmelin) Santelices & Hommersand, a common food source for green turtles, and Ahnfeltiopsis concinna (J. Agardh) Silva & DeCew, an abundant high-intertidal species sometimes consumed by turtles, were analyzed for comparison. In contrast to the two seaweed species, Paspalum vaginatum contained approximately half the ash; 300-1,500 more calories/g ash-free dry weight; three to four times greater total protein; and 3-19 times higher lignin content. Green turtles in Hawai` i may opportunistically consume P. vaginatum because of its local abundance and /or its high protein and caloric content. In foraging areas where native macroalgal species have declined and/or turtle carrying capacity has been reached, green turtles may exploit new foods, such as seashore paspalum, and perhaps mitigate decline in somatic growth rates and body condition.
C1 [McDermid, Karla J.; Lefebvre, James A.] Univ Hawaii, Dept Marine Sci, Hilo, HI 96720 USA.
[Balazs, George H.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96818 USA.
RP McDermid, KJ (reprint author), Univ Hawaii, Dept Marine Sci, 200 West Kawili St, Hilo, HI 96720 USA.
EM mcdermid@hawaii.edu
FU National Science Foundation [EPS-0903833]
FX We thank University of Hawai'i at Hilo professors Jason Adolf, Steven
Colbert, Marta deMaintenon, and Grant Gerrish for their input. Mahalo to
Lucas Mead and Tara Holitzki for use of the UH Hilo Analytical
Laboratory, and Clyde Imada of Bernice P. Bishop Museum for help
tracking down herbarium specimens. Thank you to Kathryn Podorsek and
Megan Santos for assisting with collections. We are grateful to those
who kindly reviewed drafts and helped to improve this article: Karen
Bjorndal, Audrey Rivero, Jeff Seminoff, Hannah Vander Zanden, and Rick
Warshauer. Analytical analyses conducted by the UH Hilo Analytical
Laboratory for this project were supported in part by National Science
Foundation award no. EPS-0903833. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation.
NR 43
TC 1
Z9 2
U1 5
U2 17
PU UNIV HAWAII PRESS
PI HONOLULU
PA 2840 KOLOWALU ST, HONOLULU, HI 96822 USA
SN 0030-8870
EI 1534-6188
J9 PAC SCI
JI Pac. Sci.
PD JAN
PY 2015
VL 69
IS 1
BP 49
EP 57
DI 10.2984/69.1.3
PG 9
WC Marine & Freshwater Biology; Zoology
SC Marine & Freshwater Biology; Zoology
GA CG3HR
UT WOS:000353171100003
ER
PT J
AU Errico, RM
Prive, NC
Gu, W
AF Errico, Ronald M.
Prive, Nikki C.
Gu, Wei
TI Use of an OSSE to evaluate background-error covariances estimated by the
NMC method
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE OSSE; data assimilation; background error; NMC method
ID RADIO OCCULTATION MEASUREMENTS; SYSTEM SIMULATION EXPERIMENT; SINGULAR
VECTORS; ASSIMILATION OFFICE; FORECAST SKILL; BENDING ANGLE; MODEL;
VALIDATION
AB The NMC method has proven utility for prescribing approximate background-error covariances required by variational data assimilation systems. Here, untuned NMC method estimates are compared with explicitly determined error covariances produced within an OSSE context by exploiting availability of the true simulated states. Such a comparison provides insights into what kind of rescaling is required to render the NMC method estimates usable. It is shown that rescaling of variances and directional correlation lengths depends greatly on both pressure and latitude. In particular, some scaling coefficients appropriate in the Tropics are the reciprocal of those in the Extratropics. Also, the degree of dynamic balance is grossly overestimated by the NMC method. These results agree with previous examinations of the NMC method which used ensembles as an alternative for estimating background-error statistics.
C1 [Errico, Ronald M.; Prive, Nikki C.] Morgan State Univ, Goddard Earth Sci Technol & Res Ctr, Baltimore, MD 21239 USA.
[Errico, Ronald M.; Prive, Nikki C.; Gu, Wei] NASA, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
[Gu, Wei] Sci Syst & Applicat Inc, Greenbelt, MD USA.
RP Errico, RM (reprint author), NASA, Global Modeling & Assimilat Off, GSFC, Code 610-1, Greenbelt, MD 20771 USA.
EM ronald.m.errico@nasa.gov
OI Prive, Nikki/0000-0001-8309-8741
FU GMAO
FX The ECMWF nature run was provided by Erik Andersson through arrangements
made by Michiko Masutani. The software for simulating GPSRO observations
was provided by the Radio Occultation Processing Package with the
assistance of Sean Healy at ECMWF. Support for this project was
encouraged by Michele Rienecker and provided by GMAO core funding.
Attention to Berre et al. (2006) and Belo Pereira and Berre (2006) was
suggested by two anonymous reviewers, which was very helpful in revising
the manuscript.
NR 29
TC 2
Z9 2
U1 3
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-9009
EI 1477-870X
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD JAN
PY 2015
VL 141
IS 687
BP 611
EP 618
DI 10.1002/qj.2384
PN B
PG 8
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CG6LV
UT WOS:000353413500022
ER
PT S
AU Wilson, MA
Pohorille, A
AF Wilson, Michael A.
Pohorille, Andrew
BE Vagenas, EC
Vlachos, DS
Bastos, C
Hofer, T
Kominis, Y
Kosmas, O
LeLay, G
DePadova, P
Rode, B
Suraud, E
Varga, K
TI Calculating Conductance of Ion Channels - Linking Molecular Dynamics and
Electrophysiology
SO 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL
SCIENCES (IC-MSQUARE 2014)
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 3rd International Conference on Mathematical Modeling in Physical
Sciences (IC-MSQUARE)
CY AUG 28-31, 2014
CL Madrid, SPAIN
ID SIMULATION
AB Molecular dynamics computer simulations were combined with an electrodiffusion model to compute conduction of simple ion channels. The main assumptions of the model, and the consistency, efficiency and accuracy of the ion current calculations were tested and found satisfactory. The calculated current-voltage dependence for a synthetic peptide channel is in agreement with experiments and correctly captures the asymmetry of current with respect to applied field.
C1 [Wilson, Michael A.; Pohorille, Andrew] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94132 USA.
[Wilson, Michael A.; Pohorille, Andrew] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA.
RP Wilson, MA (reprint author), Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94132 USA.
EM Michael.A.Wilson@nasa.gov
NR 7
TC 0
Z9 0
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 574
AR 012009
DI 10.1088/1742-6596/574/1/012009
PG 4
WC Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary
SC Mathematics; Physics
GA BC4LF
UT WOS:000352595600009
ER
PT J
AU Li, ZZ
Zhang, Y
Wang, S
Li, LH
Mclinden, M
AF Li, Zhengzheng
Zhang, Yan
Wang, Shang
Li, Lihua
Mclinden, Matthew
TI Fast Adaptive Pulse Compression Based on Matched Filter Outputs
SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
LA English
DT Article
ID SURFACE CLUTTER; RADAR; SUPPRESSION; DESIGN
AB An adaptive pulse compression (APC) algorithm is developed, based on the concept of minimum mean square error (MMSE), that utilizes matched filter (MF) output as its input and is termed Matched-Filter-Reiterative-MMSE (MF-RMMSE). MF-RMMSE allows the use of a smaller processing window than traditional reiterative-MMSE (RMMSE) but achieves identical performance at side-lobe suppression, and thus the computational load is reduced. MF-RMMSE also facilitates the implementation of APC to current radar sensors, since the existing MF implementations can be untouched. The derivation of MF-RMMSE is provided in detail, and its performance is validated through both simulations and actual airborne radar measurements for "mixed-target" observations, which includes both hard targets and distributed weather targets.
C1 [Li, Zhengzheng; Zhang, Yan; Wang, Shang] Adv Radar Res Ctr, Norman, OK USA.
[Li, Lihua; Mclinden, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Li, ZZ (reprint author), Radar Innovat Lab, Norman, OK 73019 USA.
EM rockee@ou.edu
FU NASA Goddard Center [NNX09CF64P, NNX11AM10A]
FX The authors appreciate the support provided by NASA Goddard Center
through grants NNX09CF64P and NNX11AM10A.
NR 27
TC 4
Z9 4
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9251
EI 1557-9603
J9 IEEE T AERO ELEC SYS
JI IEEE Trans. Aerosp. Electron. Syst.
PD JAN
PY 2015
VL 51
IS 1
BP 548
EP 564
DI 10.1109/TAES.2014.130544
PG 17
WC Engineering, Aerospace; Engineering, Electrical & Electronic;
Telecommunications
SC Engineering; Telecommunications
GA CF6XT
UT WOS:000352700900043
ER
PT J
AU Seo, M
Hacker, J
Urteaga, M
Skalare, A
Rodwell, M
AF Seo, Munkyo
Hacker, John
Urteaga, Miguel
Skalare, Anders
Rodwell, Mark
TI A 529 GHz dynamic frequency divider in 130 nm InP HBT process
SO IEICE ELECTRONICS EXPRESS
LA English
DT Article
DE dynamic frequency divider; regenerative frequency divider; InP
heterojunction bipolar transistors; terahertz
AB This letter presents a 529 GHz 2:1 dynamic frequency divider in a 130 nm InP HBT process, which, to the best of authors' knowledge, is the fastest frequency divider reported thus far. The presented divider is based on a novel structure to overcome bandwidth limitations of traditional dynamic frequency divider design. On-wafer measurement shows that the divider operates with the input frequency from 528.0 GHz to 529.2 GHz with bias voltage tuning, while consuming P-DC <= 196 mW. A driver amplifier, integrated for testing purpose, dissipates 348 mW of dc power.
C1 [Seo, Munkyo] Sungkyunkwan Univ, Coll Informat & Commun Engn, Suwon 440746, South Korea.
[Hacker, John; Urteaga, Miguel] Teledyne Sci Co, Thousand Oaks, CA 91360 USA.
[Skalare, Anders] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Rodwell, Mark] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA.
RP Seo, M (reprint author), Sungkyunkwan Univ, Coll Informat & Commun Engn, Suwon 440746, South Korea.
EM mkseo@skku.edu
FU Defense Advanced Research Projects Agency under THz Electronics Program
[HR0011-09-060]; National Research Foundation of Korea (NRF) - Korean
government (MSIP) [2014R1A5A1011478]; MEST [2013-056424]
FX This work was supported by the Defense Advanced Research Projects Agency
under the THz Electronics Program under Contract HR0011-09-060, the
National Research Foundation of Korea (NRF) grant funded by the Korean
government (MSIP) (2014R1A5A1011478), and MEST (2013-056424).
NR 7
TC 1
Z9 1
U1 1
U2 2
PU IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG
PI TOKYO
PA KIKAI-SHINKO-KAIKAN BLDG, 3-5-8, SHIBA-KOEN, MINATO-KU, TOKYO, 105-0011,
JAPAN
SN 1349-2543
J9 IEICE ELECTRON EXPR
JI IEICE Electron. Express
PY 2015
VL 12
IS 3
AR 20141118
DI 10.1587/elex.12.20141118
PG 6
WC Engineering, Electrical & Electronic
SC Engineering
GA CF6HK
UT WOS:000352657600009
ER
PT J
AU Del Zanna, L
Matteini, L
Landi, S
Verdini, A
Velli, M
AF Del Zanna, L.
Matteini, L.
Landi, S.
Verdini, A.
Velli, M.
TI Parametric decay of parallel and oblique Alfven waves in the expanding
solar wind
SO JOURNAL OF PLASMA PHYSICS
LA English
DT Article
ID TURBULENCE-DRIVEN MODEL; HYBRID SIMULATIONS; INNER HELIOSPHERE;
FINITE-AMPLITUDE; RADIAL EVOLUTION; MAGNETIC-FIELD; MHD TURBULENCE;
INSTABILITY; FLUCTUATIONS; ORIGIN
AB The long-term evolution of large-amplitude Alfven waves propagating in the solar wind is investigated by performing two-dimensional MHD simulations within the expanding box model. The linear and nonlinear phases of the parametric decay instability are studied for both circularly polarized waves in parallel propagation and for arc-polarized waves in oblique propagation. The non-monochromatic case is also considered. In the oblique case, the direct excitation of daughter modes transverse to the local background field is found for the first time in an expanding environment, and this transverse cascade seems to be favored for monochromatic mother waves. The expansion effect reduces the instability growth rate, and it can even suppress its onset for the lowest frequency modes considered here, possibly explaining the persistence of these outgoing waves in the solar wind.
C1 [Del Zanna, L.; Matteini, L.; Landi, S.; Verdini, A.; Velli, M.] Univ Florence, Dipartimento Fis & Astron, I-50121 Florence, Italy.
[Del Zanna, L.; Landi, S.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy.
[Del Zanna, L.] Ist Nazl Fis Nucl, Sez Firenze, Milan, Italy.
[Matteini, L.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London SW7 2AZ, England.
[Verdini, A.] Royal Observ Belgium, Solar Terr Ctr Excellence, Brussels, Belgium.
[Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Del Zanna, L (reprint author), Univ Florence, Dipartimento Fis & Astron, I-50121 Florence, Italy.
EM luca.delzanna@unifi.it
RI Landi, Simone/G-7282-2015; Del Zanna, Luca/N-5598-2015
OI Landi, Simone/0000-0002-1322-8712; Del Zanna, Luca/0000-0001-5200-882X
FU European Commission's Seventh Framework Program (FP7) [284515]; UK
Science and Technology Facilities Council [ST/K001051/1];
Interuniversity Attraction Poles Programme; Belgian Science Policy
Office [IAP P7/08 CHARM]; Italian Space Agency; NASA
FX The authors thank Roland Grappin for stimulating discussions and two
anonymous referees for their useful suggestions. The research leading to
these results has received funding from the European Commission's
Seventh Framework Program (FP7/2007-2013) under the grant agreement
SHOCK (project number 284515). The research described in this paper was
also supported by the UK Science and Technology Facilities Council grant
ST/K001051/1, and by a grant from the Interuniversity Attraction Poles
Programme initiated by the Belgian Science Policy Office (IAP P7/08
CHARM). This work was carried out in part at the Jet Propulsion
Laboratory under a contract with NASA. We also acknowledge support from
the Italian Space Agency.
NR 55
TC 2
Z9 2
U1 1
U2 6
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-3778
EI 1469-7807
J9 J PLASMA PHYS
JI J. Plasma Phys.
PD JAN
PY 2015
VL 81
AR 325810102
DI 10.1017/S0022377814000579
PN 1
PG 21
WC Physics, Fluids & Plasmas
SC Physics
GA CE9WF
UT WOS:000352193400010
ER
PT S
AU Burlaga, L
Ness, N
AF Burlaga, L.
Ness, N.
BE Zank, GP
TI Voyager 1 Observations of the Interstellar Magnetic Field and the
Transition from the Heliosheath
SO 13TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE: VOYAGER, IBEX, AND
THE INTERSTELLAR MEDIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 13th Annual International Astrophysics Conference on Voyager, IBEX, and
the Interstellar Medium
CY MAR 10-14, 2014
CL Myrtle Beach, SC
ID DYNAMICAL HELIOSPHERE; SOLAR-WIND; HELIOPAUSE; REGION; CYCLE
AB Voyager 1 (V1) has been observing interstellar magnetic fields (ISMF) for more than one year, from 2012/209 to at least 2013.6. From 2013.0 to 2013.6 the difference between the azimuthal angle of the ISMF and the Parker spiral angle at the latitude 34.6 degrees of V1 was (22 +/- 3)degrees and the corresponding difference of the elevation angle was (0 +/- 8)degrees. During 2012 the deviation from the Parker spiral angle was somewhat smaller. The interstellar magnetic field has a West to East polarity, opposite to the direction of planetary motions. The magnitude of the ISMF varied smoothly in the range 0.38 nT to 0.59 nT with an average strength 0.49nT. The strongest interstellar fields were observed behind a shock at 2012/297 that was preceded by 2.2 KHz plasma oscillations, which implies an interstellar electron density n(e) = 0.05/cm(-3). The ISMF was observed after V1 crossed a current sheet CS0 having the structure of a tangential discontinuity. The inclination of this current sheet is consistent with an interstellar magnetic field draped on a blunt heliopause. Two other current sheets (sector boundaries) were observed earlier in the heliosheath at 2012/167 and 2011/276 with high inclinations (99 +/-10)degrees and (89 +/- 10)degrees, respectively). The transition from heliosheath to interstellar magnetic fields is related to a two-step increase in the cosmic ray intensity observed by V1 from 2012.30 to 2012.65. The first step-increase began near the end of an unusual away-polarity sector, and it reached a plateau when V1 moved into a toward-polarity sector that ended at CS0. The second step-increase began slowly after V1 crossed CS0, and it ended abruptly at 2012/237.728.
C1 [Burlaga, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ness, N.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA.
RP Burlaga, L (reprint author), NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA.
EM lburlagahsp@verizon.net
NR 27
TC 0
Z9 0
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 577
AR 012005
DI 10.1088/1742-6596/577/1/012005
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BC3YZ
UT WOS:000352101600005
ER
PT S
AU Randol, BM
Christian, ER
AF Randol, B. M.
Christian, E. R.
BE Zank, GP
TI Suprathermal ions in the solar wind from the Voyager spacecraft:
Instrument modeling and background analysis
SO 13TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE: VOYAGER, IBEX, AND
THE INTERSTELLAR MEDIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 13th Annual International Astrophysics Conference on Voyager, IBEX, and
the Interstellar Medium
CY MAR 10-14, 2014
CL Myrtle Beach, SC
ID ENERGETIC PARTICLES; PICKUP IONS; ACCELERATION; SPECTRA; HELIOSPHERE;
REGIONS; SHOCK; RECONNECTION; PROTONS; TAILS
AB Using publicly available data from the Voyager Low Energy Charged Particle (LECP) instruments, we investigate the form of the solar wind ion suprathermal tail in the outer heliosphere inside the termination shock. This tail has a commonly observed form in the inner heliosphere, that is, a power law with a particular spectral index. The Voyager spacecraft have taken data beyond 100 AU, farther than any other spacecraft. However, during extended periods of time, the data appears to be mostly background. We have developed a technique to self-consistently estimate the background seen by LECP due to cosmic rays using data from the Voyager cosmic ray instruments and a simple, semi-analytical model of the LECP instruments.
C1 [Randol, B. M.; Christian, E. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Randol, BM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM brentrandol@gmail.com
NR 34
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 577
AR 012020
DI 10.1088/1742-6596/577/1/012020
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BC3YZ
UT WOS:000352101600020
ER
PT S
AU Schwadron, NA
Adams, FC
Christian, E
Desiati, P
Frisch, P
Funsten, HO
Jokipii, JR
McComas, DJ
Moebius, E
Zank, GP
AF Schwadron, N. A.
Adams, F. C.
Christian, E.
Desiati, P.
Frisch, P.
Funsten, H. O.
Jokipii, J. R.
McComas, D. J.
Moebius, E.
Zank, G. P.
BE Zank, GP
TI Anisotropies in TeV Cosmic Rays Related to the Local Interstellar
Magnetic Field from the IBEX Ribbon
SO 13TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE: VOYAGER, IBEX, AND
THE INTERSTELLAR MEDIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 13th Annual International Astrophysics Conference on Voyager, IBEX, and
the Interstellar Medium
CY MAR 10-14, 2014
CL Myrtle Beach, SC
ID BOUNDARY-EXPLORER RIBBON; ARRIVAL DIRECTIONS; LO OBSERVATIONS; ENA FLUX;
CLOUD; SCINTILLATION; HELIOSPHERE; SPECTRUM; ICECUBE; SIRIUS
AB The Interstellar Boundary Explorer (IBEX) observes enhanced Energetic Neutral Atoms (ENAs) emission in the keV energy range from a narrow (similar to 20 degrees wide) "ribbon" in the sky that appears to be centered on the direction of the local interstellar (LIS) magnetic field. The Milagro collaboration, the As gamma collaboration and the Ice Cube observatory have recently made global maps of cosmic ray fluxes in the TeV energy range, revealing anisotropic structures ordered in part by the local interstellar magnetic field and the interstellar flow. This paper following from a recent publication in Science makes the link between these disparate observations by developing a simple model of the magnetic structure surrounding the heliosphere in the Local Interstellar Medium (LISM) that is consistent with both IBEX ENA fluxes and TeV cosmic ray anisotropies. The model also employs the revised velocity direction of the LIC derived from neutral He observations by IBEX. By modeling the propagation of cosmic rays through this magnetic field structure, we specifically show that (1) the large-scale TeV anisotropy provides a roughly consistent orientation for the local interstellar magnetic field at the center of the IBEX Ribbon and corroborates the 3,uG magnitude of the local interstellar magnetic field derived from IBEX observations of the global heliosphere; (2) and small-scale structures in cosmic rays (over < 30 angular scales) are influenced by the interstellar field interaction with the heliosphere at energies < 10 TeV. Thus, we provide a link between IBEX ENA observations, IBEX neutral observations of interstellar He, and TeV cosmic ray anisotropies, which are strongly influenced by the interactions between the local interstellar magnetic field, the flow of the local interstellar plasma, and the global heliosphere.
C1 [Schwadron, N. A.; Moebius, E.] Univ New Hampshire, Durham, NH 03824 USA.
[Schwadron, N. A.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA.
[Adams, F. C.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Christian, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Frisch, P.] Univ Wisconsin, IceCube Res Ctr, Madison, WI 53706 USA.
[Desiati, P.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Frisch, P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Jokipii, J. R.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA.
[McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78228 USA.
[Zank, G. P.] Univ Alabama, Huntsville, AL 35805 USA.
RP Schwadron, NA (reprint author), Univ New Hampshire, Durham, NH 03824 USA.
EM n.schwadron@unh.edu
OI Funsten, Herbert/0000-0002-6817-1039; Moebius,
Eberhard/0000-0002-2745-6978
NR 34
TC 1
Z9 1
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 577
AR 012023
DI 10.1088/1742-6596/577/1/012023
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BC3YZ
UT WOS:000352101600023
ER
PT S
AU Snowden, SL
AF Snowden, S. L.
BE Zank, GP
TI Diffuse X-ray Background Constraints on Models of the Local Interstellar
Medium
SO 13TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE: VOYAGER, IBEX, AND
THE INTERSTELLAR MEDIUM
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 13th Annual International Astrophysics Conference on Voyager, IBEX, and
the Interstellar Medium
CY MAR 10-14, 2014
CL Myrtle Beach, SC
ID ROSAT SURVEY; GAS; MAPS; BUBBLE; SUN
AB There is a flux of soft X-rays (0.07-0.284 keV) of diffuse origin observable over the entire sky. As X-rays of this energy are strongly absorbed by the interstellar medium (ISM), one optical depth is 10(19) -10(20) H cm(-2), they provide a unique probe of neutral material in the solar vicinity. However, to be an effective probe requires that the distribution of emission be well understood, a requirement that is currently unfulfilled (although progress is being made), with unclear fractions originating in the Galactic halo, Local Hot Bubble, heliosphere, and Earth's magnetosheath. The various available data, their consistency (or lack thereof), and their implications for understanding the very local ISM are briefly discussed.
C1 NASA, GSFC, Greenbelt, MD 20771 USA.
RP Snowden, SL (reprint author), NASA, GSFC, Code 662, Greenbelt, MD 20771 USA.
EM steven.l.snowden@nasa.gov
NR 20
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2015
VL 577
AR 012022
DI 10.1088/1742-6596/577/1/012022
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BC3YZ
UT WOS:000352101600022
ER
PT J
AU Loughman, R
Flittner, D
Nyaku, E
Bhartia, PK
AF Loughman, R.
Flittner, D.
Nyaku, E.
Bhartia, P. K.
TI Gauss-Seidel limb scattering (GSLS) radiative transfer model development
in support of the Ozone Mapping and Profiler Suite (OMPS) limb profiler
mission
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID STRATOSPHERIC AEROSOL; RAYLEIGH-SCATTERING; O-3 PROFILES; ATMOSPHERE;
RETRIEVAL; ALGORITHM; PERFORMANCE; INSTRUMENT; SCIAMACHY; SATELLITE
AB The Gauss-Seidel limb scattering (GSLS) radiative transfer (RT) model simulates the transfer of solar radiation through the atmosphere and is imbedded in the retrieval algorithm used to process data from the Ozone Mapping and Profiler Suite (OMPS) limb profiler (LP), which was launched on the Suomi NPP satellite in October 2011. A previous version of this model has been compared with several other limb scattering RT models in previous studies, including Siro, MCC++, CDIPI, LIMBTRAN, SASKTRAN, VECTOR, and McSCIA. To address deficiencies in the GSLS radiance calculations revealed in earlier comparisons, several recent changes have been added that improve the accuracy and flexibility of the GSLS model, including
1. improved treatment of the variation of the extinction coefficient with altitude, both within atmospheric layers and above the nominal top of the atmosphere;
2. addition of multiple-scattering source function calculations at multiple solar zenith angles along the line of sight (LOS);
3. introduction of variable surface properties along the limb LOS, with minimal effort required to add variable atmospheric properties along the LOS as well;
4. addition of the ability to model multiple aerosol types within the model atmosphere.
The model improvements 1 and 2 are verified by comparison to previously published results (using standard radiance tables whenever possible), demonstrating significant improvement in cases for which previous versions of the GSLS model performed poorly. The single-scattered radiance errors that were as high as 4% in earlier studies are now generally reduced to 0.3%, while total radiance errors generally decline from 10% to 1-3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.
C1 [Loughman, R.; Nyaku, E.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA.
[Flittner, D.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23665 USA.
[Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD 20771 USA.
RP Loughman, R (reprint author), Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA.
EM robert.loughman@hamptonu.edu
RI Bhartia, Pawan/A-4209-2016
OI Bhartia, Pawan/0000-0001-8307-9137
FU NASA GSFC through SSAI [21205-12-043]
FX The majority of the material presented in this paper first appeared as a
poster at the 7th Atmospheric Limb Conference, which was hosted by the
University of Bremen, Germany, in June 2013. This research was supported
by NASA GSFC through SSAI subcontract 21205-12-043. The authors thank
NASA and NOAA for supporting limb scattering research and particularly
recognize Didier Rault for years of leadership developing the OMPS LP
algorithms. Larry Thomason and Terry Deshler shared helpful insights
into the stratospheric aerosol problem. The NASA, SSAI, and NOAA OMPS
teams supported this research and contributed many useful discussions,
including Ghassan Taha, Larry Flynn, Zhong Chen, Philippe Xu, Tong Zhu,
Steve Taylor, Matt DeLand, Nick Gorkavyi, Al Fleig, Jack Larsen, Mike
Linda, Leslie Moy, and Peter Hall. Several Hampton University students
contributed to studies that have improved the GSLS model, including
Daryl Ludy, Simone Hyater-Adams, Ricardo Uribe, Curtis Driver, Jonathan
Geasey, Nicholas Carletta, and Darel Davidson. Two anonymous reviewers
provided valuable comments that improved this paper. We appreciate the
OSIRIS, SCIAMACHY, SAGE II, SAGE III, and University of Wyoming
measurement teams for maintaining and sharing their high-quality data
sets. Finally, we thank Alexei Rozanov and the University of Bremen team
for enabling remote participation in the 7th Atmospheric Limb
Conference.
NR 38
TC 2
Z9 2
U1 4
U2 11
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 6
BP 3007
EP 3020
DI 10.5194/acp-15-3007-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IN
UT WOS:000352157600002
ER
PT J
AU Tummon, F
Hassler, B
Harris, NRP
Staehelin, J
Steinbrecht, W
Anderson, J
Bodeker, GE
Bourassa, A
Davis, SM
Degenstein, D
Frith, SM
Froidevaux, L
Kyrola, E
Laine, M
Long, C
Penckwitt, AA
Sioris, CE
Rosenlof, KH
Roth, C
Wang, HJ
Wild, J
AF Tummon, F.
Hassler, B.
Harris, N. R. P.
Staehelin, J.
Steinbrecht, W.
Anderson, J.
Bodeker, G. E.
Bourassa, A.
Davis, S. M.
Degenstein, D.
Frith, S. M.
Froidevaux, L.
Kyrola, E.
Laine, M.
Long, C.
Penckwitt, A. A.
Sioris, C. E.
Rosenlof, K. H.
Roth, C.
Wang, H. -J.
Wild, J.
TI Intercomparison of vertically resolved merged satellite ozone data sets:
interannual variability and long-term trends
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID STRATOSPHERIC OZONE; SAGE-II; TEMPERATURE TRENDS; HALOE MEASUREMENTS;
DIURNAL-VARIATIONS; TECHNICAL NOTE; CLIMATE MODEL; COLUMN OZONE;
PROFILES; OSIRIS
AB In the framework of the SI2N (SPARC (Stratosphere-troposphere Processes And their Role in Climate)/IO3C (International Ozone Commission)/IGACO-O3 (Integrated Global Atmospheric Chemistry Observations - Ozone)/NDACC (Network for the Detection of Atmospheric Composition Change)) initiative, several long-term vertically resolved merged ozone data sets produced from satellite measurements have been analysed and compared. This paper presents an overview of the methods, assumptions, and challenges involved in constructing such merged data sets, as well as the first thorough intercomparison of seven new long-term satellite data sets. The analysis focuses on the representation of the annual cycle, interannual variability, and long-term trends for the period 1984-2011, which is common to all data sets. Overall, the best agreement amongst data sets is seen in the mid-latitude lower and middle stratosphere, with larger differences in the equatorial lower stratosphere and the upper stratosphere globally. In most cases, differences in the choice of underlying instrument records that were merged produced larger differences between data sets than the use of different merging techniques. Long-term ozone trends were calculated for the period 1984-2011 using a piecewise linear regression with a change in trend prescribed at the end of 1997. For the 1984-1997 period, trends tend to be most similar between data sets (with largest negative trends ranging from -4 to -8% decade(-1) in the mid-latitude upper stratosphere), in large part due to the fact that most data sets are predominantly (or only) based on the SAGE-II record. Trends in the middle and lower stratosphere are much smaller, and, particularly for the lower stratosphere, large uncertainties remain. For the later period (1998-2011), trends vary to a greater extent, ranging from approximately -1 to +5% decade(-1) in the upper stratosphere. Again, middle and lower stratospheric trends are smaller and for most data sets not significantly different from zero. Overall, however, there is a clear shift from mostly negative to mostly positive trends between the two periods over much of the profile.
C1 [Tummon, F.; Staehelin, J.] Swiss Fed Inst Technol, Zurich, Switzerland.
[Hassler, B.; Davis, S. M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Hassler, B.; Davis, S. M.; Rosenlof, K. H.] NOAA, Earth Syst Res Lab, Chem Sci Div, Boulder, CO USA.
[Harris, N. R. P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England.
[Steinbrecht, W.] Deutsch Wetterdienst, Hohenpeissenberg, Germany.
[Anderson, J.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA.
[Bodeker, G. E.; Penckwitt, A. A.] Bodeker Sci, Alexandra, New Zealand.
[Bourassa, A.; Degenstein, D.; Sioris, C. E.; Roth, C.] Univ Saskatchewan, Inst Space & Atmospher Studies, Saskatoon, SK S7N 0W0, Canada.
[Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD USA.
[Froidevaux, L.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Kyrola, E.; Laine, M.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland.
[Long, C.; Wild, J.] NOAA, NWS, NCEP, Climate Predict Ctr, College Pk, MD USA.
[Wang, H. -J.] Georgia Inst Technol, Atlanta, GA 30332 USA.
[Wild, J.] Innovim, Greenbelt, MD USA.
RP Tummon, F (reprint author), Swiss Fed Inst Technol, Zurich, Switzerland.
EM fiona.tummon@env.ethz.ch
RI Rosenlof, Karen/B-5652-2008; Hassler, Birgit/E-8987-2010; Steinbrecht,
Wolfgang/G-6113-2010; Davis, Sean/C-9570-2011; Manager, CSD
Publications/B-2789-2015;
OI Rosenlof, Karen/0000-0002-0903-8270; Hassler,
Birgit/0000-0003-2724-709X; Steinbrecht, Wolfgang/0000-0003-0680-6729;
Davis, Sean/0000-0001-9276-6158; Sioris,
Christopher/0000-0003-1168-8755; Harris, Neil/0000-0003-1256-3006
FU Swiss National Science Foundation; UK Natural Environment Research
Council
FX The authors thank all those involved in the SI2N initiative whose
research underlies the results presented here. Fiona Tummon thanks the
Swiss National Science Foundation for funding. Neil Harris thanks the UK
Natural Environment Research Council for an Advanced Research
Fellowship. Work at the Jet Propulsion Laboratory, California Institute
of Technology, was performed under contract with the National
Aeronautics and Space Administration. The use of MERRA data from GMAO is
also acknowledged. We thank the two reviewers for helpful comments and
suggestions.
NR 74
TC 14
Z9 14
U1 2
U2 16
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 6
BP 3021
EP 3043
DI 10.5194/acp-15-3021-2015
PG 23
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IN
UT WOS:000352157600003
ER
PT J
AU Dawson, KW
Meskhidze, N
Josset, D
Gasso, S
AF Dawson, K. W.
Meskhidze, N.
Josset, D.
Gasso, S.
TI Spaceborne observations of the lidar ratio of marine aerosols
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SPECTRAL-RESOLUTION LIDAR; TO-BACKSCATTER RATIO; WIND-SPEED;
OPTICAL-PROPERTIES; RAMAN LIDAR; ATMOSPHERIC AEROSOLS; BOUNDARY-LAYER;
AIRBORNE HSRL; EXTINCTION; CLOUD
AB Retrievals of aerosol optical depth (AOD) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite sensor require the assumption of the extinction-to-backscatter ratio, also known as the lidar ratio. This paper evaluates a new method to calculate the lidar ratio of marine aerosols using two independent sources: the AOD from the Synergized Optical Depth of Aerosols (SODA) project and the integrated attenuated backscatter from CALIOP. With this method, the particulate lidar ratio can be derived for individual CALIOP retrievals in single aerosol layer, cloud-free columns over the ocean. Global analyses are carried out using CALIOP level 2, 5 km marine aerosol layer products and the collocated SODA nighttime data from December 2007 to November 2010. The global mean lidar ratio for marine aerosols was found to be 26 sr, roughly 30% higher than the current value prescribed by the CALIOP standard retrieval algorithm. Data analysis also showed considerable spatiotemporal variability in the calculated lidar ratio over the remote oceans. The calculated marine aerosol lidar ratio is found to vary with the mean ocean surface wind speed (U-10). An increase in U-10 reduces the mean lidar ratio for marine regions from 32 +/- 17 sr (for 0 < U-10 < 4 m s(-1)) to 22 +/- 7 sr (for U-10 > 15 m s(-1)). Such changes in the lidar ratio are expected to have a corresponding effect on the marine AOD from CALIOP. The outcomes of this study are relevant for future improvements of the SODA and CALIOP operational product and could lead to more accurate retrievals of marine AOD.
C1 [Dawson, K. W.; Meskhidze, N.] N Carolina State Univ, Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA.
[Josset, D.] NASA, Langley Res Ctr, Sci Syst & Applicat Inc, Hampton, VA 23665 USA.
[Gasso, S.] Morgan State Univ, GESTAR, Goddard Space Flight Ctr, Greenbelt, MD USA.
RP Meskhidze, N (reprint author), N Carolina State Univ, Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA.
EM nmeskhidze@ncsu.edu
RI Gasso, Santiago/H-9571-2014
OI Dawson, Kyle/0000-0003-3175-0456; Gasso, Santiago/0000-0002-6872-0018
FU National Aeronautics and Space Administration (NASA) [NNX11AG72G,
NNX14AL89G]; National Science Foundation [AGS-1249273]; NASA Earth
Science MEaSUREs DISCOVER Project; Advanced Microwave Scanning
Radiometer (AMSR-E) Science Team
FX This research was supported by the National Aeronautics and Space
Administration (NASA) through grant numbers NNX11AG72G and NNX14AL89G
and by the National Science Foundation through the grant AGS-1249273.
The authors gratefully acknowledge the CALIPSO, CloudSat, and NASA
Langley HSRL Teams for their support and effort in making the data
available. CALIPSO data were obtained from the NASA Langley Research
Center Atmospheric Science Data Center. CloudSat data are produced by
remote sensing systems and sponsored by the NASA Earth Science MEaSUREs
DISCOVER Project and the Advanced Microwave Scanning Radiometer (AMSR-E)
Science Team. The SODA product is developed at the ICARE data and
services center (http://www.icare.univ-lille1.fr) in Lille (France) in
the frame of the CALIPSO mission and supported by CNES.
NR 66
TC 3
Z9 3
U1 0
U2 6
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 6
BP 3241
EP 3255
DI 10.5194/acp-15-3241-2015
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IN
UT WOS:000352157600017
ER
PT J
AU Fytterer, T
Mlynczak, MG
Nieder, H
Perot, K
Sinnhuber, M
Stiller, G
Urban, J
AF Fytterer, T.
Mlynczak, M. G.
Nieder, H.
Perot, K.
Sinnhuber, M.
Stiller, G.
Urban, J.
TI Energetic particle induced intra-seasonal variability of ozone inside
the Antarctic polar vortex observed in satellite data
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SOLAR PROTON EVENTS; ATMOSPHERIC SOUNDING MIPAS; LIMB EMISSION-SPECTRA;
OCTOBER-NOVEMBER 2003; MIDDLE ATMOSPHERE; ION CHEMISTRY; MICHELSON
INTERFEROMETER; PRECIPITATION EVENTS; STRATOSPHERIC OZONE; ODD NITROGEN
AB Measurements from 2002 to 2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the intra-seasonal variability of stratospheric and mesospheric O-3 volume mixing ratio (vmr) inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O-3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, >= 2 MeV electron flux). The indices are 26-day averages centred at 1 April, 1 May, and 1 June while O-3 is based on 26-day running means from 1 April to 1 November at altitudes from 20 to 70 km. During solar quiet time from 2005 to 2010, the composite of all three instruments reveals an apparent negative O-3 signal associated to the geomagnetic activity (Ap index) around 1 April, on average reaching amplitudes between -5 and -10% of the respective O-3 background. The O-3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to similar to 25 km. These observed results are in good qualitative agreement with the O-3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.
C1 [Fytterer, T.; Nieder, H.; Sinnhuber, M.; Stiller, G.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Eggenstein Leopoldshafen, Germany.
[Mlynczak, M. G.] NASA, Langley Res Ctr, Div Atmospher Sci, Hampton, VA 23665 USA.
[Perot, K.; Urban, J.] Chalmers, Dept Earth & Space Sci, S-41296 Gothenburg, Sweden.
RP Fytterer, T (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Eggenstein Leopoldshafen, Germany.
EM tilo.fytterer@kit.edu
RI Perot, Kristell/D-3839-2013
OI Perot, Kristell/0000-0002-4267-8560
FU Helmholtz Association of German Research Centres (HGF) [VH-NG-624];
Deutsche Forschungsgemeinschaft; Karlsruhe Institute of Technology;
Swedish National Space Board (SNSB); Canadian Space Agency (CSA);
National Technology Agency of Finland (Tekes); Centre National d'Etudes
Spatiales (CNES) in France; European Space Agency (ESA)
FX T. Fytterer, H. Nieder, and M. Sinnhuber gratefully acknowledge funding
by the Helmholtz Association of German Research Centres (HGF), grant
VH-NG-624. The authors also acknowledge support by Deutsche
Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe
Institute of Technology. Odin is a Swedish-led satellite project funded
jointly by the Swedish National Space Board (SNSB), the Canadian Space
Agency (CSA), the National Technology Agency of Finland (Tekes), the
Centre National d'Etudes Spatiales (CNES) in France and the third party
mission program of the European Space Agency (ESA). We further like to
thank the ERA-Interim for free provision of data and related support.
NR 37
TC 4
Z9 4
U1 0
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 6
BP 3327
EP 3338
DI 10.5194/acp-15-3327-2015
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IN
UT WOS:000352157600022
ER
PT J
AU Wang, T
Dessler, AE
Schoeberl, MR
Randel, WJ
Kim, JE
AF Wang, T.
Dessler, A. E.
Schoeberl, M. R.
Randel, W. J.
Kim, J. -E.
TI The impact of temperature vertical structure on trajectory modeling of
stratospheric water vapor
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID TROPICAL TROPOPAUSE LAYER; RADIO OCCULTATION; TRANSPORT; DEHYDRATION;
SIMULATIONS; CIRCULATION; ATMOSPHERE; OZONE; CHAMP
AB Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapor (H2O) in the stratosphere, in which the tropical cold-point temperatures regulate the amount of H2O entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for understanding stratospheric H2O abundances. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective - analysis for Research and Applications), only provide temperatures with similar to 1.2 km vertical resolution in the TTL, which has been argued to miss finer vertical structure in the tropopause and therefore introduce uncertainties in our understanding of stratospheric H2O. In this paper, we quantify this uncertainty by comparing the Lagrangian trajectory prediction of H2O using MERRA temperatures on standard model levels (traj.MER-T) to those using GPS temperatures at finer vertical resolution (traj.GPS-T), and those using adjusted MERRA temperatures with finer vertical structures induced by waves (traj.MER-Twave). It turns out that by using temperatures with finer vertical structure in the tropopause, the trajectory model more realistically simulates the dehydration of air entering the stratosphere. But the effect on H2O abundances is relatively minor: compared with traj.MER-T, traj.GPS-T tends to dry air by similar to 0.1 ppmv, while traj.MER-Twave tends to dry air by 0.2-0.3 ppmv. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that a tropopause temperature with finer vertical structure has limited impact on predicted stratospheric H2O.
C1 [Wang, T.; Dessler, A. E.] Texas A&M Univ, College Stn, TX 77840 USA.
[Wang, T.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA USA.
[Schoeberl, M. R.] Sci & Technol Corp, Columbia, MD USA.
[Randel, W. J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Kim, J. -E.] Univ Colorado, Boulder, CO 80309 USA.
RP Wang, T (reprint author), Texas A&M Univ, College Stn, TX 77840 USA.
EM tao.wang@jpl.nasa.gov
RI Randel, William/K-3267-2016; Dessler, Andrew/G-8852-2012; Wang,
Tao/C-2381-2011
OI Randel, William/0000-0002-5999-7162; Dessler,
Andrew/0000-0003-3939-4820; Wang, Tao/0000-0003-3430-8508
FU NSF [AGS-1261948]; NASA [NNX13AK25G, NNX14AF15G]; NASA Aura Science
Program; Graduate Student Visitor Program under the Advanced Study
Program (ASP) at the National Center for Atmospheric Research (NCAR);
National Science Foundation
FX The authors thank Kenneth Bowman, Joan Alexander, Sun Wong, and Eric
Jensen for their helpful discussions and comments. This work was
supported by NSF AGS-1261948, NASA grant NNX13AK25G and NNX14AF15G, and
partially by the NASA Aura Science Program. This work was partially
carried out during visits of Tao Wang funded by the Graduate Student
Visitor Program under the Advanced Study Program (ASP) at the National
Center for Atmospheric Research (NCAR), which is operated by the
University Corporation for Atmospheric Research, under the sponsorship
of the National Science Foundation.
NR 42
TC 6
Z9 6
U1 1
U2 4
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 6
BP 3517
EP 3526
DI 10.5194/acp-15-3517-2015
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IN
UT WOS:000352157600033
ER
PT J
AU Monks, SA
Arnold, SR
Emmons, LK
Law, KS
Turquety, S
Duncan, BN
Flemming, J
Huijnen, V
Tilmes, S
Langner, J
Mao, J
Long, Y
Thomas, JL
Steenrod, SD
Raut, JC
Wilson, C
Chipperfield, MP
Diskin, GS
Weinheimer, A
Schlager, H
Ancellet, G
AF Monks, S. A.
Arnold, S. R.
Emmons, L. K.
Law, K. S.
Turquety, S.
Duncan, B. N.
Flemming, J.
Huijnen, V.
Tilmes, S.
Langner, J.
Mao, J.
Long, Y.
Thomas, J. L.
Steenrod, S. D.
Raut, J. C.
Wilson, C.
Chipperfield, M. P.
Diskin, G. S.
Weinheimer, A.
Schlager, H.
Ancellet, G.
TI Multi-model study of chemical and physical controls on transport of
anthropogenic and biomass burning pollution to the Arctic
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID ATMOSPHERIC CARBON-MONOXIDE; LOWERMOST STRATOSPHERE; TROPOSPHERIC
CHEMISTRY; SATELLITE-OBSERVATIONS; AIRCRAFT OBSERVATIONS;
STATISTICAL-ANALYSIS; OZONE MEASUREMENTS; SOURCE ATTRIBUTION;
HIGH-RESOLUTION; BOUNDARY-LAYER
AB Using observations from aircraft, surface stations and a satellite instrument, we comprehensively evaluate multi-model simulations of carbon monoxide (CO) and ozone (O-3) in the Arctic and over lower latitude emission regions, as part of the POLARCAT Model Inter-comparison Project (POLMIP). Evaluation of 11- atmospheric models with chemistry shows that they generally underestimate CO throughout the Arctic troposphere, with the largest biases found during winter and spring. Negative CO biases are also found throughout the Northern Hemisphere, with multi-model mean gross errors (9-12%) suggesting models perform similarly over Asia, North America and Europe. A multi-model annual mean tropospheric OH (10.8 +/- 0.6 x 10(5) molec cm(-3)) is found to be slightly higher than previous estimates of OH constrained by methyl chloroform, suggesting negative CO biases in models may be improved through better constraints on OH. Models that have lower Arctic OH do not always show a substantial improvement in their negative CO biases, suggesting that Arctic OH is not the dominant factor controlling the Arctic CO burden in these models. In addition to these general biases, models do not capture the magnitude of CO enhancements observed in the Arctic free troposphere in summer, suggesting model errors in the simulation of plumes that are transported from anthropogenic and biomass burning sources at lower latitudes. O-3 in the Arctic is also generally underestimated, particularly at the surface and in the upper troposphere. Summer O-3 comparisons over lower latitudes show several models overestimate upper tropospheric concentrations.
Simulated CO, O-3 and OH all demonstrate a substantial degree of inter-model variability. Idealised CO-like tracers are used to quantitatively compare the impact of inter-model differences in transport and OH on CO in the Arctic troposphere. The tracers show that model differences in transport from Europe in winter and from Asia throughout the year are important sources of model variability at Barrow. Unlike transport, inter-model variability in OH similarly affects all regional tracers at Barrow. Comparisons of fixed-lifetime and OH-loss idealised CO-like tracers throughout the Arctic troposphere show that OH differences are a much larger source of inter-model variability than transport differences. Model OH concentrations are correlated with H2O concentrations, suggesting water vapour concentrations are linked to differences in simulated concentrations of CO and OH at high latitudes in these simulations. Despite inter-model differences in transport and OH, the relative contributions from the different source regions (North America, Europe and Asia) and different source types (anthropogenic and biomass burning) are comparable across the models. Fire emissions from the boreal regions in 2008 contribute 33, 43 and 19% to the total Arctic CO-like tracer in spring, summer and autumn, respectively, highlighting the importance of boreal fire emissions in controlling pollutant burdens in the Arctic.
C1 [Monks, S. A.; Arnold, S. R.; Wilson, C.; Chipperfield, M. P.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England.
[Emmons, L. K.; Tilmes, S.; Weinheimer, A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Law, K. S.; Thomas, J. L.; Raut, J. C.; Ancellet, G.] Univ Versailles St Quentin, Univ Paris 06, Sorbonne Univ, CNRS,INSU,LATMOS,IPSL, Paris, France.
[Turquety, S.; Long, Y.] Ecole Polytech, CNRS, UMR8539, Lab Meteorol Dynam,IPSL, F-91128 Palaiseau, France.
[Duncan, B. N.; Steenrod, S. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Flemming, J.] European Ctr Medium Range Weather Forecasting, Reading, Berks, England.
[Huijnen, V.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
[Langner, J.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden.
[Mao, J.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
[Mao, J.] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Diskin, G. S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23665 USA.
[Schlager, H.] Deutsches Zentrum Luft & Raumfahrt DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany.
RP Monks, SA (reprint author), Univ Colorado, Inst Res Environm Sci, Boulder, CO 80309 USA.
EM s.a.monks@leeds.ac.uk
RI Mao, Jingqiu/F-2511-2010; Chipperfield, Martyn/H-6359-2013; Raut,
Jean-Christophe/G-3946-2016; Duncan, Bryan/A-5962-2011; Emmons,
Louisa/R-8922-2016
OI Wilson, Chris/0000-0001-8494-0697; Mao, Jingqiu/0000-0002-4774-9751;
Chipperfield, Martyn/0000-0002-6803-4149; Raut,
Jean-Christophe/0000-0002-3552-2437; Arnold, Steve/0000-0002-4881-5685;
Huijnen, Vincent/0000-0002-2814-8475; MONKS, SARAH/0000-0003-3474-027X;
Emmons, Louisa/0000-0003-2325-6212
FU EurEX project - UK Natural Environmental Research Council
[NE/H020241/1]; European Commission via the FP7 EUFAR Integrating
Activity; US National Science Foundation; National Aeronautics and Space
Administration [NNX08AD22G]; Agence National de Recherche (ANR) Climate
Impact of Short-lived Climate Forcers and Methane in the Arctic
(CLIMSLIP) Blanc SIMI [5-6 021 01]; CLIMSLIP-LEFE (CNRS-INSU); NOAA
Climate Program Office [NA13OAR4310071]; Swedish Environmental
Protection Agency [NV-09414-12]; Swedish Climate and Clean Air research
program, SCAC; French Agence Nationale de la Recherche (ANR); CNES;
CNRS-INSU-LEFE; IPEV; EUFAR
FX This work was supported by the EurEX project, funded by the UK Natural
Environmental Research Council (ref: NE/H020241/1). S. A. Monks and S.
R. Arnold acknowledge support from the European Commission via the FP7
EUFAR Integrating Activity. The National Center for Atmospheric Research
is funded by the US National Science Foundation and operated by the
University Corporation of Atmospheric Research. Author L. K. Emmons
acknowledges support from the National Aeronautics and Space
Administration under award no. NNX08AD22G issued through the Science
Mission Directorate, Tropospheric Composition Program. Authors K. S.
Law, G. Ancellet, J. L. Thomas, J.-C. Raut, S. Turquety and Y. Long
acknowledge support from projects Agence National de Recherche (ANR)
Climate Impact of Short-lived Climate Forcers and Methane in the Arctic
(CLIMSLIP) Blanc SIMI 5-6 021 01 and CLIMSLIP-LEFE (CNRS-INSU). Valuable
help with WRF-Chem simulations from T. Onishi (LATMOS/IPSL) and G.
Pfister (NCAR) and with TOMCAT maintenance from W. Feng (Leeds). J. Mao
acknowledges the NOAA Climate Program Office grant NA13OAR4310071.
Contributions by SMHI were funded by the Swedish Environmental
Protection Agency under contract NV-09414-12 and through the Swedish
Climate and Clean Air research program, SCAC. We thank the POLARCAT
aircraft teams, especially the NASA ARCTAS, DLR-GRACE, and French ATR-42
teams. French ATR-42 campaigns and data analysis were part of
POLARCAT-France, funded by French Agence Nationale de la Recherche
(ANR), CNES, CNRS-INSU-LEFE, IPEV and EUFAR. Thanks is given to all
those involved in the collection and provision of data, specifically
NOAA/ESRL/WDCGG for the surface data, the MOZAIC-IAGOS project for
aircraft data and the MOPITT team for satellite data.
NR 112
TC 17
Z9 18
U1 7
U2 29
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 6
BP 3575
EP 3603
DI 10.5194/acp-15-3575-2015
PG 29
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IN
UT WOS:000352157600037
ER
PT J
AU Sutanto, SJ
Hoffmann, G
Scheepmaker, RA
Worden, J
Houweling, S
Yoshimura, K
Aben, I
Rockmann, T
AF Sutanto, S. J.
Hoffmann, G.
Scheepmaker, R. A.
Worden, J.
Houweling, S.
Yoshimura, K.
Aben, I.
Rockmann, T.
TI Global-scale remote sensing of water isotopologues in the troposphere:
representation of first-order isotope effects
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID STRATOSPHERIC DEUTERATED WATER; GENERAL-CIRCULATION MODEL; DELTA-D;
EMISSION SPECTROMETER; VAPOR ISOTOPOLOGUES; HDO MEASUREMENTS;
STABLE-ISOTOPES; SATELLITE MEASUREMENTS; HDO/H2O MEASUREMENTS; IMG/ADEOS
DATA
AB Over the last decade, global-scale data sets of atmospheric water vapor isotopologues (HDO) have become available from different remote sensing instruments. Due to the observational geometry and the spectral ranges that are used, few satellites sample water isotopologues in the lower troposphere, where the bulk of hydrological processes within the atmosphere take place. Here, we compare three satellite HDO data sets, two from the Tropospheric Emission Spectrometer (TES retrieval version 4 and 5) and one from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), with results from the atmospheric global circulation model ECHAM4 (European Centre HAMburg 4). We examine a list of known isotopologue effects to qualitatively benchmark the various observational data sets. TES version 5 (TESV5), TES version 4 (TESV4), SCIAMACHY, ECHAM, and ECHAM convolved with averaging kernels of TES version 5 (ECHAM(AK5)) successfully reproduced a number of established isotopologue effects such as the latitude effect, the amount effect, and the continental effect. The improvement of TESV5 over TESV4 is confirmed by the steeper latitudinal gradient at higher latitudes in agreement with SCIAMACHY. Also the representation of other features of the water isotopologue cycle, such as the seasonally varying signal in the tropics due to the movement of the Intertropical Convergence Zone (ITCZ), is improved in TESV5 and SCIAMACHY compared to TESV4. A known humidity bias due to the cross correlation of H2O and HDO measurements, which is of particular importance for instruments with low sensitivity close to the surface, was analyzed by applying either a humidity bias correction or a suitable a posteriori analysis. We suggest that the qualitative and quantitative tests carried out in this study could become benchmark tests for evaluation of future satellite isotopologue data sets.
C1 [Sutanto, S. J.; Hoffmann, G.; Houweling, S.; Rockmann, T.] Univ Utrecht, Inst Marine & Atmosphere Res Utrecht, NL-3584 CC Utrecht, Netherlands.
[Sutanto, S. J.] Minist Publ Works, Res Ctr Water Resources, Bandung 40135, Indonesia.
[Hoffmann, G.] CEA Orme Merisiers, LSCE Orme, Lab Sci Climat & Environm, Gif Sur Yvette, France.
[Scheepmaker, R. A.; Houweling, S.; Aben, I.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands.
[Worden, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Yoshimura, K.] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan.
RP Sutanto, SJ (reprint author), Univ Utrecht, Inst Marine & Atmosphere Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands.
EM s.j.sutanto@uu.nl
RI Yoshimura, Kei/F-2041-2010; Rockmann, Thomas/F-4479-2015;
OI Yoshimura, Kei/0000-0002-5761-1561; Rockmann,
Thomas/0000-0002-6688-8968; Sutanto, Samuel Jonson/0000-0003-4903-6445
FU NWO (the Netherlands Organization for Scientific Research)
[ALW-GO-AO/10-11]; Netherlands Space Office as part of the User Support
Program Space Research [GO-AO/16]
FX This study was funded by NWO (the Netherlands Organization for
Scientific Research) project number ALW-GO-AO/10-11. R. A. Scheepmaker
acknowledges funding from the Netherlands Space Office as part of the
User Support Program Space Research under project GO-AO/16. We thank M.
Schneider for a very insightful and helpful review.
NR 82
TC 6
Z9 6
U1 1
U2 18
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 999
EP 1019
DI 10.5194/amt-8-999-2015
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300001
ER
PT J
AU Lednyts'kyy, O
von Savigny, C
Eichmann, KU
Mlynczak, MG
AF Lednyts'kyy, O.
von Savigny, C.
Eichmann, K. -U.
Mlynczak, M. G.
TI Atomic oxygen retrievals in the MLT region from SCIAMACHY nightglow limb
measurements
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID ATMOSPHERIC GRAVITY-WAVES; ROCKET OBSERVATIONS; LOWER THERMOSPHERE;
GREEN LINE; AIRGLOW EMISSION; SABER EXPERIMENT; O(S-1); DENSITY; MODEL;
TEMPERATURE
AB Vertical distributions of atomic oxygen concentration ([O]) in the mesosphere and lower thermosphere (MLT) region were retrieved from sun-synchronous SCIAMACHY/Envisat (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on board the Environmental Satellite) limb measurements of the oxygen 557.7 nm green line emission in the terrestrial nightglow. A band pass filter was applied to eliminate contributions from other emissions, the impact of measurement noise and auroral activity. Vertical volume emission rate profiles were retrieved from integrated limb-emission rate profiles under the assumption that each atmospheric layer is horizontally homogeneous and absorption and scattering can be neglected. The radiative transfer problem was solved using regularized total least squares minimization in the inversion procedure. Atomic oxygen concentration profiles were retrieved from data collected for altitudes in the range 85-105 km with approximately 4 km vertical resolution during the time period from August 2002 to April 2012 at approximately 22:00 local time. The retrieval of [O] profiles was based on the generally accepted two-step Barth transfer scheme including consideration of quenching processes and the use of different available sources of temperature and atmospheric density profiles. A sensitivity analysis was performed for the retrieved [O] profiles to estimate maximum uncertainties assuming independent contributions of uncertainty components. Errors in photochemical model parameters depending on temperature uncertainties and random errors of model parameters contribute less than 50% to the overall [O] retrieval error. The retrieved [O] profiles were compared with reference [O] profiles provided by SABER/TIMED (Sounding of the Atmosphere using Broadband Emission Radiometry instrument on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite) or by the NRLMSISE-00 (Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended model, year: 2000) and SD-WACCM4 (Whole Atmosphere Community Climate Model with Specified Dynamics, version 4). A comparison of the retrieved [O] profiles with the reference [O] profiles led to the conclusion that the photochemical model taking into account quenching of O(S-1) by O-2, O(P-3), and N-2 and the SABER/TIMED model as a source of temperature and density profiles are the most appropriate choices for our case. The retrieved [O] profile time series exhibits characteristic seasonal variations in agreement with satellite observations based on analysis of OH Meinel band emissions and atmospheric models. A pronounced 11-year solar cycle variation can also be identified in the retrieved atomic oxygen concentration time series.
C1 [Lednyts'kyy, O.; von Savigny, C.] Ernst Moritz Arndt Univ Greifswald, Inst Phys, Greifswald, Germany.
[Eichmann, K. -U.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany.
[Mlynczak, M. G.] NASA Langley Res Ctr, Hampton, VA USA.
RP Lednyts'kyy, O (reprint author), Ernst Moritz Arndt Univ Greifswald, Inst Phys, Greifswald, Germany.
EM olexandr.lednytskyy@uni-greifswald.de
RI von Savigny, Christian/B-3910-2014
FU Ernst-Moritz-Arndt-University of Greifswald
FX This work was partly funded by Ernst-Moritz-Arndt-University of
Greifswald. SCIAMACHY is jointly funded by Germany, the Netherlands and
Belgium. SCIAMACHY Level 1 data was kindly provided by the European
Space Agency. We are indebted to the SABER team and NASA for making
SABER data available. The authors thank Ian C. McDade (York University,
Toronto), Stefan Kowalewski (IUP Bremen) and Martin Kaufmann
(Forschungszentrum Julich) for helpful discussions.
NR 58
TC 3
Z9 3
U1 2
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1021
EP 1041
DI 10.5194/amt-8-1021-2015
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300002
ER
PT J
AU Spuler, SM
Repasky, KS
Morley, B
Moen, D
Hayman, M
Nehrir, AR
AF Spuler, S. M.
Repasky, K. S.
Morley, B.
Moen, D.
Hayman, M.
Nehrir, A. R.
TI Field-deployable diode-laser-based differential absorption lidar (DIAL)
for profiling water vapor
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID EMITTED RADIANCE INTERFEROMETER; FUTURE PERFORMANCE; RAMAN LIDAR;
TEMPERATURE; BROADENINGS; SYSTEM; REGION; SHIFTS; AERI
AB A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal stability; multistage optical filtering enabling measurement during daytime bright-cloud conditions; rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions; and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing, and intercomparisons are performed and discussed. In general, the instrument has a 150 m range resolution with a 10 min temporal resolution; 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument is shown capable of autonomous long-term field operation - 50 days with a > 95% uptime - under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.
C1 [Spuler, S. M.; Morley, B.; Hayman, M.] Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80307 USA.
[Repasky, K. S.; Moen, D.] Montana State Univ, Elect & Comp Engn, Bozeman, MT 59717 USA.
[Nehrir, A. R.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
RP Spuler, SM (reprint author), Natl Ctr Atmospher Res, Earth Observing Lab, POB 3000, Boulder, CO 80307 USA.
EM spuler@ucar.edu
FU National Science Foundation [1206166]
FX The authors affiliated with Montana State University would like to
acknowledge the support of the National Science Foundation grant number
1206166. The National Center for Atmospheric Research is sponsored by
the National Science Foundation. Component manufactures were included to
help other researchers reproduce this work but are not meant as an
endorsement by the authors. The NCAR authors thank Rich Erickson for
technician support and Richard E. Carbone and Tammy M. Weckwerth for
helpful discussions pertaining to the atmospheric science applications
and internal review of the paper.
NR 31
TC 10
Z9 10
U1 2
U2 7
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1073
EP 1087
DI 10.5194/amt-8-1073-2015
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300005
ER
PT J
AU Kindel, BC
Pilewskie, P
Schmidt, KS
Thornberry, T
Rollins, A
Bui, T
AF Kindel, B. C.
Pilewskie, P.
Schmidt, K. S.
Thornberry, T.
Rollins, A.
Bui, T.
TI Upper-troposphere and lower-stratosphere water vapor retrievals from the
1400 and 1900 nm water vapor bands
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID OCCULTATION EXPERIMENT HALOE; TROPICAL TROPOPAUSE; AEROSOL; VALIDATION;
TRENDS; CIRCULATION; BOULDER; IMPACT; OZONE
AB Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near-infrared spectra acquired with the Solar Spectral Flux Radiometer (SSFR) during the first science phase of the NASA Airborne Tropical TRopopause EXperiment (ATTREX). From the 1400 and 1900 nm absorption bands we infer water vapor amounts in the tropical tropopause layer and adjacent regions between altitudes of 14 and 18 km. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 x 10(-4) to 4.59 x 10(-4) g cm(-2). A 0.002 difference in absorptance at 1367 nm results in a 3.35 x 10(-5) g cm(-2) change of integrated water vapor amounts; 0.004 absorptance change at 1870 nm results in 5.50 x 10(-5) g cm(-2) of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 x 10(-4) g cm(-2)) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 x 10(-4) g cm(-2)). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere is discussed.
C1 [Kindel, B. C.; Pilewskie, P.; Schmidt, K. S.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA.
[Pilewskie, P.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.
[Thornberry, T.; Rollins, A.] NOAA Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA.
[Thornberry, T.; Rollins, A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Bui, T.] NASA Ames Res Ctr, Moffett Field, CA USA.
RP Kindel, BC (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
EM kindel@lasp.colorado.edu
RI Rollins, Andrew/G-7214-2012; Richards, Amber/K-8203-2015; Manager, CSD
Publications/B-2789-2015;
OI THORNBERRY, TROY/0000-0001-7478-1944
FU NASA [NNX10AO84A]
FX The authors wish to acknowledge the support of the SSFR instrument
during ATTREX by Warren Gore and Tony Trias of NASA Ames Research
Center. We also thank David Fahey of NOAA for his encouragement in
investigating atmospheric water vapor with solar spectral irradiance
during ATTREX and Gail Anderson for advice on the role of water vapor
continuum absorption in the shortwave. The authors also gratefully
acknowledge the expert review by two anonymous referees. This work was
supported by NASA award NNX10AO84A.
NR 34
TC 3
Z9 3
U1 2
U2 9
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1147
EP 1156
DI 10.5194/amt-8-1147-2015
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300010
ER
PT J
AU Li, S
Kahn, R
Chin, M
Garay, MJ
Liu, Y
AF Li, S.
Kahn, R.
Chin, M.
Garay, M. J.
Liu, Y.
TI Improving satellite-retrieved aerosol microphysical properties using
GOCART data
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID MULTIANGLE IMAGING SPECTRORADIOMETER; MATTER COMPONENT CONCENTRATIONS;
SUN PHOTOMETER MEASUREMENTS; REMOTE-SENSING OBSERVATIONS; OPTICAL DEPTH;
AIR-QUALITY; GLOBAL-MODEL; AERONET MEASUREMENTS; ANGSTROM EXPONENT;
UNITED-STATES
AB The Multi-angle Imaging SpectroRadiometer (MISR) aboard the NASA Earth Observing System's Terra satellite can provide more reliable aerosol optical depth (AOD) and better constraints on particle size (Angstrom exponent, or ANG), sphericity, and single-scattering albedo (SSA) than many other satellite instruments. However, many aerosol mixtures pass the algorithm acceptance criteria, yielding a poor constraint, when the particle-type information in the MISR radiances is low, typically at low AOD. We investigate adding value to the MISR aerosol product under these conditions by filtering the list of MISR-retrieved mixtures based on agreement between the mixture ANG and absorbing AOD (AAOD) values, and simulated aerosol properties from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. MISR-GOCART ANG difference and AAOD ratio thresholds for applying GOCART constraints were determined based on coincident AOD, ANG, and AAOD measurements from the AErosol RObotic NETwork (AERONET). The results were validated by comparing the adjusted MISR aerosol optical properties over the contiguous USA between 2006 and 2009 with additional AERONET data. The correlation coefficient (r) between the adjusted MISR ANG derived from this study and AERONET improves to 0.45, compared to 0.29 for the MISR Version 22 standard product. The ratio of the adjusted MISR AAOD to AERONET increases to 0.74, compared to 0.5 for the MISR operational retrieval. These improvements occur primarily when AOD < 0.2 for ANG and AOD < 0.5 for AAOD. Spatial and temporal differences among the aerosol optical properties of MISR V22, GOCART, and the adjusted MISR are traced to (1) GOCART underestimation of AOD and ANG in polluted regions; (2) aerosol mixtures lacking in the MISR Version 22 algorithm climatology; (3) low MISR sensitivity to particle type under some conditions; and (4) parameters and thresholds used in our method.
C1 [Li, S.; Liu, Y.] Emory Univ, Dept Environm Hlth, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA.
[Kahn, R.; Chin, M.] NASA Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD USA.
[Garay, M. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Liu, Y (reprint author), Emory Univ, Dept Environm Hlth, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA.
EM yang.liu@emory.edu
RI Chin, Mian/J-8354-2012
FU NASA Applied Sciences Program [NNX11AI53G]; NASA's Climate and Radiation
Research and Analysis Program; JPL, California Institute of Technology
[1363692]; NASA's Atmospheric Composition Program; EOS-MISR project;
NASA's Modeling, Analysis, and Prediction Program; Atmospheric Chemistry
Modeling and Analysis Program
FX We thank the AERONET principal investigators (PI) and their staff for
establishing and maintaining the AERONET sites used in this
investigation, and our colleagues on the Jet Propulsion Laboratory
(JPL)'s MISR instrument team and at the NASA Langley Research Center's
Atmospheric Sciences Data Center for their roles in producing the MISR
data sets (available at http://eosweb.larc.nasa.gov). The work of S. Li
and Y. Liu is partially supported by the MISR science team at the JPL,
California Institute of Technology, led by D. Diner (subcontract
1363692), and by the NASA Applied Sciences Program, managed by J. Haynes
(grant no. NNX11AI53G, PI: Y. Liu). Portions of this work were carried
out at the JPL under a contract with NASA. The work of R. Kahn is
supported in part by NASA's Climate and Radiation Research and Analysis
Program, under H. Maring; NASA's Atmospheric Composition Program, under
R. Eckman; and the EOS-MISR project. The work of M. Chin and the GOCART
model is supported in part by NASA's Modeling, Analysis, and Prediction
Program and Atmospheric Chemistry Modeling and Analysis Program.
NR 49
TC 8
Z9 8
U1 7
U2 12
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1157
EP 1171
DI 10.5194/amt-8-1157-2015
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300011
ER
PT J
AU Norouzi, H
Temimi, M
Prigent, C
Turk, J
Khanbilvardi, R
Tian, Y
Furuzawa, FA
Masunaga, H
AF Norouzi, H.
Temimi, M.
Prigent, C.
Turk, J.
Khanbilvardi, R.
Tian, Y.
Furuzawa, F. A.
Masunaga, H.
TI Assessment of the consistency among global microwave land surface
emissivity products
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID SOIL-MOISTURE; AMSR-E; TEMPERATURE; ASSIMILATION; SENSITIVITY;
RETRIEVALS; VEGETATION
AB The goal of this work is to intercompare four global land surface emissivity products over various land-cover conditions to assess their consistency. The intercompared land emissivity products were generated over a 5-year period (2003-2007) using observations from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and WindSat. First, all products were reprocessed in the same projection and spatial resolution as they were generated from sensors with various configurations. Then, the mean value and standard deviations of monthly emissivity values were calculated for each product to assess the spatial distribution of the consistencies/inconsistencies among the products across the globe. The emissivity products were also compared to soil moisture estimates and a satellite-based vegetation index to assess their sensitivities to changes in land surface conditions.
Results show the existence of systematic differences among the products. Also, it was noticed that emissivity values in each product have similar frequency dependency over different land-cover types. Monthly means of emissivity values from AMSR-E in the vertical and horizontal polarizations seem to be systematically lower than the rest of the products across various land-cover conditions which may be attributed to the 01:30/13:30 LT overpass time of the sensor and possibly a residual skin temperature effect in the product. The standard deviation of the analyzed products was lowest (less than 0.01) in rain forest regions for all products and highest at northern latitudes, above 0.04 for AMSR-E and SSM/I and around 0.03 for WindSat. Despite differences in absolute emissivity estimates, all products were similarly sensitive to changes in soil moisture and vegetation. The correlation between the emissivity polarization differences and normalized difference vegetation index (NDVI) values showed similar spatial distribution across the products, with values close to the unit except over densely vegetated and desert areas.
C1 [Norouzi, H.] New York City Coll Technol, Dept Construct Management & Civil Engn Technol, Brooklyn, NY 11201 USA.
[Temimi, M.; Khanbilvardi, R.] CUNY City Coll, Dept Civil Engn, NOAA CREST, New York, NY 10031 USA.
[Temimi, M.] Inst Ctr Water & Environm iWater, Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates.
[Prigent, C.] CNRS, Lab Etud Rayonnement & Matiere Astrophys & Atmosp, Paris, France.
[Turk, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Tian, Y.] Univ Maryland, College Pk, MD 20742 USA.
[Tian, Y.] NASAs Goddard Space Flight Ctr, Greenbelt, MD USA.
[Furuzawa, F. A.; Masunaga, H.] Nagoya Univ, Hydrospher Atmospher Res Ctr, Nagoya, Aichi 4648601, Japan.
RP Norouzi, H (reprint author), New York City Coll Technol, Dept Construct Management & Civil Engn Technol, Brooklyn, NY 11201 USA.
EM hnorouzi@citytech.cuny.edu
RI Masunaga, Hirohiko/C-2488-2008; Measurement, Global/C-4698-2015; PMM,
JAXA/K-8537-2016;
OI Masunaga, Hirohiko/0000-0002-6336-5002; Norouzi,
Hamid/0000-0003-0405-5108
FU NOAA, Office of Education Educational Partnership Program
[NA11SEC4810004]
FX This publication was made possible by NOAA, Office of Education
Educational Partnership Program award NA11SEC4810004. Its contents are
solely the responsibility of the award recipient and do not necessarily
represent the official views of the US Department of Commerce, NOAA.
NR 28
TC 6
Z9 6
U1 1
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1197
EP 1205
DI 10.5194/amt-8-1197-2015
PG 9
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300014
ER
PT J
AU Guanter, L
Aben, I
Tol, P
Krijger, JM
Hollstein, A
Kohler, P
Damm, A
Joiner, J
Frankenberg, C
Landgraf, J
AF Guanter, L.
Aben, I.
Tol, P.
Krijger, J. M.
Hollstein, A.
Koehler, P.
Damm, A.
Joiner, J.
Frankenberg, C.
Landgraf, J.
TI Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard
the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll
fluorescence
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID AIRBORNE SPECTROSCOPY DATA; ADJUSTED VEGETATION INDEX; SUN-INDUCED
FLUORESCENCE; DIFFERENCE WATER INDEX; GREEN LAI; RETRIEVAL; SPACE;
CANOPY; LEAF; PHOTOSYNTHESIS
AB Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675-775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km x 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning.
C1 [Guanter, L.; Hollstein, A.; Koehler, P.] Helmholtz Ctr Potsdam, German Res Ctr Geosci GFZ, D-14473 Potsdam, Germany.
[Aben, I.; Tol, P.; Krijger, J. M.; Landgraf, J.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands.
[Damm, A.] Univ Zurich, Remote Sensing Labs, CH-8057 Zurich, Switzerland.
[Joiner, J.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
[Frankenberg, C.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Guanter, L (reprint author), Helmholtz Ctr Potsdam, German Res Ctr Geosci GFZ, Telegrafenberg A17, D-14473 Potsdam, Germany.
EM guanter@gfz-potsdam.de
RI Damm, Alexander/D-1160-2010; Guanter, Luis/I-1588-2015; Frankenberg,
Christian/A-2944-2013
OI Guanter, Luis/0000-0002-8389-5764; Frankenberg,
Christian/0000-0002-0546-5857
FU Emmy Noether Programme of the German Research Foundation [GU 1276/1-1]
FX This research has been funded by the Emmy Noether Programme of the
German Research Foundation (GU 1276/1-1). Jochem Verrelst and Luis
Alonso from the University of Valencia are thanked for the reflectance
and fluorescence simulations produced in the framework of the ESA FLUSS
project. We would also like to thank the Editor and two anonymous
reviewers for their helpful comments.
NR 50
TC 15
Z9 15
U1 1
U2 17
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1337
EP 1352
DI 10.5194/amt-8-1337-2015
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300024
ER
PT J
AU LeBlanc, SE
Pilewskie, P
Schmidt, KS
Coddington, O
AF LeBlanc, S. E.
Pilewskie, P.
Schmidt, K. S.
Coddington, O.
TI A spectral method for discriminating thermodynamic phase and retrieving
cloud optical thickness and effective radius using transmitted solar
radiance spectra
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID EFFECTIVE PARTICLE RADIUS; LIQUID WATER CLOUDS; RADIATIVE-TRANSFER;
SATELLITE DATA; SURFACE; ICE; ALGORITHMS; ABSORPTION; ALBEDO; ATMOSPHERE
AB A new retrieval scheme for cloud optical thickness, effective radius, and thermodynamic phase was developed for ground-based measurements of cloud shortwave solar spectral transmittance. Fifteen parameters were derived to quantify spectral variations in shortwave transmittance due to absorption and scattering of liquid water and ice clouds, manifested by shifts in spectral slopes, curvatures, maxima, and minima. To retrieve cloud optical thickness and effective particle radius, a weighted least square fit that matched the modeled parameters was applied. The measurements for this analysis were made with the ground-based Solar Spectral Flux Radiometer in Boulder, Colorado, between May 2012 and January 2013. We compared the cloud optical thickness and effective radius from the new retrieval to two other retrieval methods. By using multiple spectral features, we find a closer fit (with a root mean square difference over the entire spectra of 3.1% for a liquid water cloud and 5.9% for an ice cloud) between measured and modeled spectra compared to two other retrieval methods which diverge by a root mean square of up to 6.4% for a liquid water cloud and 22.5% for an ice cloud. The new retrieval introduced here has an average uncertainty in effective radius (+/- 1.2 mu m) smaller by factor of at least 2.5 than two other methods when applied to an ice cloud.
C1 [LeBlanc, S. E.; Pilewskie, P.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.
[LeBlanc, S. E.; Pilewskie, P.; Schmidt, K. S.; Coddington, O.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
RP LeBlanc, SE (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM samuel.leblanc@nasa.gov
RI Richards, Amber/K-8203-2015; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013;
Coddington, Odele/F-6342-2012
OI SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Coddington,
Odele/0000-0002-4338-7028
FU NOAA [NA09OAR4310127]; NASA [NNX11AE71G, NNX11AK67G]
FX This work was supported by NOAA award NA09OAR4310127 and NASA awards
NNX11AE71G and NNX11AK67G. We thank Warren Gore from NASA Ames for the
use of the SSFR instrument. The MODIS MCD43B3 surface albedo data were
obtained through the online data pool at the NASA Land Processes
Distributed Active Archive Center (LP DAAC), USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota
(https://lpdaac.usgs.gov/get_data/).
NR 53
TC 4
Z9 4
U1 3
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1361
EP 1383
DI 10.5194/amt-8-1361-2015
PG 23
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300026
ER
PT J
AU Lacour, JL
Clarisse, L
Worden, J
Schneider, M
Barthlott, S
Hase, F
Risi, C
Clerbaux, C
Hurtmans, D
Coheur, PF
AF Lacour, J. -L.
Clarisse, L.
Worden, J.
Schneider, M.
Barthlott, S.
Hase, F.
Risi, C.
Clerbaux, C.
Hurtmans, D.
Coheur, P. -F.
TI Cross-validation of IASI/MetOp derived tropospheric delta D with TES and
ground-based FTIR observations
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; WATER-VAPOR; EMISSION SPECTROMETER; HDO/H2O;
PROFILES; RETRIEVALS; RESOLUTION; H2O; SIMULATIONS; SATELLITE
AB The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (delta D) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI delta D retrieved profiles with other available profiles of delta D, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izana, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to delta D in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3 parts per thousand) between IASI retrieved delta D with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47 parts per thousand. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.
C1 [Lacour, J. -L.; Clarisse, L.; Clerbaux, C.; Hurtmans, D.; Coheur, P. -F.] Univ Libre Bruxelles, Serv Chim Quant & Photophys, Spect Atmosphere, Brussels, Belgium.
[Worden, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Schneider, M.; Barthlott, S.; Hase, F.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res IMK ASF, D-76021 Karlsruhe, Germany.
[Risi, C.] Univ Paris 06, LMD IPSL, CNRS INSU UMR8539, Paris, France.
[Clerbaux, C.] Univ Paris 06, Paris, France.
[Clerbaux, C.] Univ Versailles St Quentin, CNRS INSU, LATMOS IPSL, Paris, France.
RP Lacour, JL (reprint author), Univ Libre Bruxelles, Serv Chim Quant & Photophys, Spect Atmosphere, Brussels, Belgium.
EM jlacour@ulb.ac.be
RI Barthlott, Sabine/B-1439-2013; clerbaux, cathy/I-5478-2013; Schneider,
Matthias/B-1441-2013;
OI Barthlott, Sabine/0000-0003-0258-9421; Lacour,
Jean-Lionel/0000-0003-3642-7439
FU F.R.S.-FNRS; Belgian State Federal Office for Scientific, Technical and
Cultural Affairs [4000111403 IASI.FLOW]; CNES; European Research Council
under the European Community [256961]
FX IASI has been developed and built under the responsibility of the
"Centre National d'Etudes Spatiales" (CNES, France). It is flown onboard
the MetOp satellites as part of the EUMETSAT Polar System. The IASI L1
data are received through the EUMETCast near real-time data distribution
service. The research in Belgium was funded by the F.R.S.-FNRS, the
Belgian State Federal Office for Scientific, Technical and Cultural
Affairs (Prodex arrangement 4000111403 IASI.FLOW). L. Clarisse and P.-F.
Coheur are respectively Research Associate (Chercheur Qualifie) and
Senior Research Associate (Maitre de Recherches) with F.R.S.-FNRS. C.
Clerbaux is grateful to CNES for scientific collaboration and financial
support. The ground-based FTIR retrievals have been performed in the
framework of the project MUSICA, which is funded by the European
Research Council under the European Community's Seventh Framework
Programme (FP7/2007-2013)/ERC Grant agreement number 256961.
NR 49
TC 3
Z9 3
U1 0
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1447
EP 1466
DI 10.5194/amt-8-1447-2015
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300030
ER
PT J
AU Su, W
Corbett, J
Eitzen, Z
Liang, L
AF Su, W.
Corbett, J.
Eitzen, Z.
Liang, L.
TI Next-generation angular distribution models for top-of-atmosphere
radiative flux calculation from CERES instruments: methodology (vol 8,
pg 611, 2015)
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Correction
AB No abstract available.
C1 [Su, W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Corbett, J.; Eitzen, Z.; Liang, L.] Sci Syst & Applicat Inc, Hampton, VA USA.
RP Su, W (reprint author), NASA, Langley Res Ctr, MS420, Hampton, VA 23665 USA.
EM wenying.su-1@nasa.gov
NR 1
TC 0
Z9 0
U1 2
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1467
EP 1467
DI 10.5194/amt-8-1467-2015
PG 1
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300031
ER
PT J
AU Knobelspiesse, K
van Diedenhoven, B
Marshak, A
Dunagan, S
Holben, B
Slutsker, I
AF Knobelspiesse, K.
van Diedenhoven, B.
Marshak, A.
Dunagan, S.
Holben, B.
Slutsker, I.
TI Cloud thermodynamic phase detection with polarimetrically sensitive
passive sky radiometers
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID SINGLE-SCATTERING PROPERTIES; GROUND-BASED MEASUREMENTS;
MULTIDIRECTIONAL POLARIZATION MEASUREMENTS; ICE CRYSTALS; PLANETARY
ATMOSPHERES; OPTICAL-PROPERTIES; 22-DEGREES HALO; REMOTE SENSORS; LIGHT;
RETRIEVAL
AB The primary goal of this project has been to investigate if ground-based visible and near-infrared passive radiometers that have polarization sensitivity can determine the thermodynamic phase of overlying clouds, i.e., if they are comprised of liquid droplets or ice particles. While this knowledge is important by itself for our understanding of the global climate, it can also help improve cloud property retrieval algorithms that use total (unpolarized) radiance to determine cloud optical depth (COD). This is a potentially unexploited capability of some instruments in the NASA Aerosol Robotic Network (AERONET), which, if practical, could expand the products of that global instrument network at minimal additional cost.
We performed simulations that found, for zenith observations, that cloud thermodynamic phase is often expressed in the sign of the Q component of the Stokes polarization vector. We chose our reference frame as the plane containing solar and observation vectors, so the sign of Q indicates the polarization direction, parallel (positive) or perpendicular (parallel) to that plane. Since the fraction of linearly polarized to total light is inversely proportional to COD, optically thin clouds are most likely to create a signal greater than instrument noise. Besides COD and instrument accuracy, other important factors for the determination of cloud thermodynamic phase are the solar and observation geometry (scattering angles between 40 and 60A degrees are best), and the properties of ice particles (pristine particles may have halos or other features that make them difficult to distinguish from water droplets at specific scattering angles, while extreme ice crystal aspect ratios polarize more than compact particles).
We tested the conclusions of our simulations using data from polarimetrically sensitive versions of the Cimel 318 sun photometer/radiometer that compose a portion of AERONET. Most algorithms that exploit Cimel polarized observations use the degree of linear polarization (DoLP), not the individual Stokes vector elements (such as Q). Ability to determine cloud thermodynamic phase depends on Q measurement accuracy, which has not been rigorously assessed for Cimel instruments. For this reason, we did not know if cloud phase could be determined from Cimel observations successfully. Indeed, comparisons to ceilometer observations with a single polarized spectral channel version of the Cimel at a site in the Netherlands showed little correlation. Comparisons to lidar observations with a more recently developed, multi-wavelength polarized Cimel in Maryland, USA, show more promise. The lack of well-characterized observations has prompted us to begin the development of a small test instrument called the Sky Polarization Radiometric Instrument for Test and Evaluation (SPRITE). This instrument is specifically devoted to the accurate observation of Q, and the testing of calibration and uncertainty assessment techniques, with the ultimate goal of understanding the practical feasibility of these measurements.
C1 [Knobelspiesse, K.; Dunagan, S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[van Diedenhoven, B.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Marshak, A.; Holben, B.; Slutsker, I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[van Diedenhoven, B.] Columbia Univ, New York, NY USA.
[Slutsker, I.] Sigma Space Corp, Lanham, MD USA.
RP Knobelspiesse, K (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM kirk.knobelspiesse@nasa.gov
RI Marshak, Alexander/D-5671-2012; Knobelspiesse, Kirk/S-5902-2016;
OI Knobelspiesse, Kirk/0000-0001-5986-1751; van Diedenhoven,
Bastiaan/0000-0001-5622-8619
FU Science Innovation Fund (SIF) grants at NASA Ames Research Center; NASA
Goddard Space Flight Center; NASA Earth Observing System and Radiation
Sciences Program
FX This research was supported by Science Innovation Fund (SIF) grants at
NASA Ames Research Center (K. Knobelspiesse, S. Dunagan, B. van
Diedenhoven) and NASA Goddard Space Flight Center (A. Marshak, B.
Holben). Thanks to to John Livingston for his help finding validation
data and to members of the NASA Ames Sunphotometer-Satellite Team for
informally reviewing this manuscript. LD-40 data from the CESAR site,
and radiosonde data from De Bilt, are provided courtesy of the
Koninklijk Nederlands Meteorologisch Instituut (KNMI). Radiosonde data
from Sterling, Virginia, are from the National Weather Service. We thank
the members of the AERONET team at the NASA Goddard Space Flight Center
for providing instrument calibration, data processing, and field
measurement support. The NASA MPLNET is funded by the NASA Earth
Observing System and Radiation Sciences Program. We thank the MPLNET PI
Judd Welton and MPLNET on-site staff member Sebastian Stewart for their
efforts in establishing and maintaining the Goddard Space Flight Center
site.
NR 53
TC 3
Z9 3
U1 2
U2 9
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 3
BP 1537
EP 1554
DI 10.5194/amt-8-1537-2015
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE9IT
UT WOS:000352158300035
ER
PT J
AU Dolan, AM
Hunter, SJ
Hill, DJ
Haywood, AM
Koenig, SJ
Otto-Bliesner, BL
Abe-Ouchi, A
Bragg, F
Chan, WL
Chandler, MA
Contoux, C
Jost, A
Kamae, Y
Lohmann, G
Lunt, DJ
Ramstein, G
Rosenbloom, NA
Sohl, L
Stepanek, C
Ueda, H
Yan, Q
Zhang, Z
AF Dolan, A. M.
Hunter, S. J.
Hill, D. J.
Haywood, A. M.
Koenig, S. J.
Otto-Bliesner, B. L.
Abe-Ouchi, A.
Bragg, F.
Chan, W. -L.
Chandler, M. A.
Contoux, C.
Jost, A.
Kamae, Y.
Lohmann, G.
Lunt, D. J.
Ramstein, G.
Rosenbloom, N. A.
Sohl, L.
Stepanek, C.
Ueda, H.
Yan, Q.
Zhang, Z.
TI Using results from the PlioMIP ensemble to investigate the Greenland Ice
Sheet during the mid-Pliocene Warm Period
SO CLIMATE OF THE PAST
LA English
DT Article
ID SEA-LEVEL RISE; MODEL INTERCOMPARISON PROJECT; SURFACE TEMPERATURES;
EXPERIMENTAL-DESIGN; BOUNDARY-CONDITIONS; LAST INTERGLACIATION; CLIMATE
SIMULATIONS; ATMOSPHERIC CO2; SPECTRAL ALBEDO; COUPLED MODEL
AB During an interval of the Late Pliocene, referred to here as the mid-Pliocene Warm Period (mPWP; 3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the end of this century, and atmospheric carbon dioxide concentrations were higher than pre-industrial levels. Sea level was also higher than today, implying a significant reduction in the extent of the ice sheets. Thus, the mPWP provides a natural laboratory in which to investigate the long-term response of the Earth's ice sheets and sea level in a warmer-than-present-day world.
At present, our understanding of the Greenland ice sheet during the mPWP is generally based upon predictions using single climate and ice sheet models. Therefore, it is essential that the model dependency of these results is assessed. The Pliocene Model Intercomparison Project (PlioMIP) has brought together nine international modelling groups to simulate the warm climate of the Pliocene. Here we use the climatological fields derived from the results of the 15 PlioMIP climate models to force an offline ice sheet model.
We show that mPWP ice sheet reconstructions are highly dependent upon the forcing climatology used, with Greenland reconstructions ranging from an ice-free state to a near-modern ice sheet. An analysis of the surface albedo variability between the climate models over Greenland offers insights into the drivers of inter-model differences. As we demonstrate that the climate model dependency of our results is high, we highlight the necessity of data-based constraints of ice extent in developing our understanding of the mPWP Greenland ice sheet.
C1 [Dolan, A. M.; Hunter, S. J.; Hill, D. J.; Haywood, A. M.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England.
[Hill, D. J.] British Geol Survey, Nottingham NG12 5GG, England.
[Koenig, S. J.] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA.
[Otto-Bliesner, B. L.; Rosenbloom, N. A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Abe-Ouchi, A.; Chan, W. -L.] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan.
[Abe-Ouchi, A.] JAMSTEC, Res Inst Global Change, Yokohama, Kanagawa, Japan.
[Bragg, F.; Lunt, D. J.] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England.
[Chandler, M. A.; Sohl, L.] Columbia Univ, NASA GISS, New York, NY USA.
[Contoux, C.] Aix Marseille Univ, CNRS, IRD, CEREGE UM34, F-13545 Aix En Provence, France.
[Jost, A.] Univ Paris 06, Sorbonne Univ, UMR 7619, F-75005 Paris, France.
[Kamae, Y.; Ueda, H.] Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki, Japan.
[Lohmann, G.; Stepanek, C.] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany.
[Ramstein, G.] Lab Sci Climat & Environm, Saclay, France.
[Yan, Q.; Zhang, Z.] Uni Res Climate, Bjerknes Ctr Climate Res, Bergen, Norway.
[Zhang, Z.] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China.
RP Dolan, AM (reprint author), Univ Leeds, Sch Earth & Environm, Earth & Environm Bldg, Leeds LS2 9JT, W Yorkshire, England.
EM a.m.dolan@leeds.ac.uk
RI Kamae, Youichi/L-6694-2013; Yan, Qing/C-5413-2013; Lunt,
Daniel/G-9451-2011; Ramstein, Gilles/L-3328-2014; Zhang,
Zhongshi/L-2891-2013; Bragg, Fran/C-6198-2015;
OI Kamae, Youichi/0000-0003-0461-5718; Yan, Qing/0000-0001-5299-7824; Lunt,
Daniel/0000-0003-3585-6928; Ramstein, Gilles/0000-0002-1522-917X; Zhang,
Zhongshi/0000-0002-2354-1622; Bragg, Fran/0000-0002-8179-4214; Hill,
Daniel/0000-0001-5492-3925; Abe-Ouchi, Ayako/0000-0003-1745-5952; Dolan,
Aisling/0000-0002-9585-9648
FU European Research Council under the European Union [278636]; Natural
Environment Research Council (NERC); Leverhulme Trust; National Centre
for Atmospheric Science; British Geological Survey; US National Science
Foundation [ATM-0513402, AGS-1203910, OCE-1202632]; NERC [NE/H006273/1];
Helmholtz research programme PACES; Helmholtz Climate Initiative REKLIM;
Helmholtz Graduate School for Polar and Marine Research; REKLIM; NSF
[ATM0323516]; NASA [NNX10AU63A]; US National Science Foundation (NSF);
Japan Society for the Promotion of Science; Statoil, Norway;
[NSF-EAR-1237211]
FX A. M. Dolan, S. J. Hunter and A. M. Haywood acknowledge that the
research leading to these results has received funding from the European
Research Council under the European Union's Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 278636. A. M. Dolan also
acknowledges the Natural Environment Research Council (NERC) for the
receipt of a doctoral training grant. D. J. Hill acknowledges the
Leverhulme Trust for the award of an Early Career Fellowship and the
National Centre for Atmospheric Science and the British Geological
Survey for financial support. S. J. Koenig was supported by the US
National Science Foundation under the awards ATM-0513402, AGS-1203910
and OCE-1202632. D. J. Lunt and F. Bragg acknowledge NERC grant
NE/H006273/1. The HadCM3 simulations were carried out using the
computational facilities of the Advanced Computing Research Centre,
University of Bristol (http://www.bris.ac.uk/acrc/). G. Lohmann received
funding through the Helmholtz research programme PACES and the Helmholtz
Climate Initiative REKLIM. C. Stepanek acknowledges financial support
from the Helmholtz Graduate School for Polar and Marine Research and
from REKLIM. Funding for L. Sohl and M. A. Chandler provided by NSF
Grant ATM0323516 and NASA Grant NNX10AU63A. B. L. Otto-Bliesner and N.
A. Rosenbloom recognise that NCAR is sponsored by the US National
Science Foundation (NSF); this work was also supported through grant
NSF-EAR-1237211, and computing resources were provided by the Climate
Simulation Laboratory at NCAR's Computational and Information Systems
Laboratory (CISL), sponsored by the NSF and other agencies. W.-L. Chan
and A. Abe-Ouchi would like to thank the Japan Society for the Promotion
of Science for financial support and R. Ohgaito for advice on setting up
the MIROC4m experiments on the Earth Simulator, JAMSTEC. The source code
of the MRI-CGCM2.3 model was provided by S. Yukimoto, O. Arakawa and A.
Kitoh of the Meteorological Research Institute, Japan. Z. Zhang
acknowledges that the development of NorESM-L was supported by the Earth
System Modelling (ESM) project funded by Statoil, Norway. We also thank
Richard Hindmarsh of the British Antarctic Survey for the use of BASISM.
NR 125
TC 11
Z9 11
U1 1
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1814-9324
EI 1814-9332
J9 CLIM PAST
JI Clim. Past.
PY 2015
VL 11
IS 3
BP 403
EP 424
DI 10.5194/cp-11-403-2015
PG 22
WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences
SC Geology; Meteorology & Atmospheric Sciences
GA CE9JJ
UT WOS:000352159900004
ER
PT J
AU Aydemir, U
Zevalkink, A
Ormeci, A
Wang, H
Ohno, S
Bux, S
Snyder, GJ
AF Aydemir, Umut
Zevalkink, Alex
Ormeci, Alim
Wang, Heng
Ohno, Saneyuki
Bux, Sabah
Snyder, G. Jeffrey
TI Thermoelectric properties of the Zintl phases Yb5M2Sb6 (M = Al, Ga, In)
SO DALTON TRANSACTIONS
LA English
DT Article
ID ELECTRON LOCALIZATION FUNCTION; POWER-GENERATION; CRYSTAL-STRUCTURE;
MIXED-VALENT; CHAIN ANIONS; REPRESENTATION; EFFICIENCY; CA5IN2SB6;
CHEMISTRY; CA5AL2SB6
AB Zintl compounds with chemical formula Yb5M2Sb6 (M = Al, Ga, and In) form one of two known A(5)M(2)Pn(6) structure types characterized by double chains of corner-linked MPn(4) tetrahedra bridged by Pn(2) dumb-bells. High temperature electronic and thermal transport measurements were used to characterize the thermoelectric properties of Yb5M2Sb6 compounds. All samples were found to exhibit similar high p-type carrier concentrations, low resistivity and low Seebeck coefficients in agreement with the band structure calculations. These results, combined with previous studies, suggest that Yb5M2Sb6 compounds are semi-metals (i.e., they lack an energy gap between the valence and conduction bands), in contrast to the semi-conducting alkaline earth (Ca, Sr, Ba) and Eu based A(5)M(2)Sb(6) compounds. Yb5M2Sb6 compounds have very low lattice thermal conductivity, comparable to other closely related A(5)M(2)Sb(6) and A(3)MSb(3) phases. However, due to the semimetallic behaviour, the figure of merit of investigated samples remains low (zT < 0.15).
C1 [Aydemir, Umut; Wang, Heng; Ohno, Saneyuki; Snyder, G. Jeffrey] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA.
[Zevalkink, Alex; Bux, Sabah] CALTECH, Jet Prop Lab, Thermal Energy Convers Technol Grp, Pasadena, CA USA.
[Ormeci, Alim] Max Planck Inst Chem Phys Solids, Dresden, Germany.
RP Aydemir, U (reprint author), CALTECH, Dept Appl Phys & Mat Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM uaydemir@caltech.edu
RI Snyder, G/I-2263-2015; Snyder, G. Jeffrey/E-4453-2011; Aydemir,
Umut/P-8424-2015; Wang, Heng/O-5418-2014; Ormeci, Alim/F-1082-2012
OI Snyder, G. Jeffrey/0000-0003-1414-8682; Aydemir,
Umut/0000-0003-1164-1973; Ormeci, Alim/0000-0001-5468-3378
FU Scientific and Technological Research Council of Turkey; NASA Science
Missions Directorate's Radioisotope Power Systems Technology Advancement
Program; National Aeronautics and Space Administration
FX U. A. greatly acknowledges the financial assistance of The Scientific
and Technological Research Council of Turkey. This research was
partially carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration and was supported by the NASA Science Missions
Directorate's Radioisotope Power Systems Technology Advancement Program.
A. O. thanks Ulrike Nitzsche from IFW Dresden, Germany for technical
help in computational work.
NR 53
TC 4
Z9 5
U1 5
U2 31
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1477-9226
EI 1477-9234
J9 DALTON T
JI Dalton Trans.
PY 2015
VL 44
IS 15
BP 6767
EP 6774
DI 10.1039/c4dt03773a
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA CF0YY
UT WOS:000352271900012
PM 25670617
ER
PT J
AU Ullman, DJ
Carlson, AE
LeGrande, AN
Anslow, FS
Moore, AK
Caffee, M
Syverson, KM
Licciardi, JM
AF Ullman, David J.
Carlson, Anders E.
LeGrande, Allegra N.
Anslow, Faron S.
Moore, Angus K.
Caffee, Marc
Syverson, Kent M.
Licciardi, Joseph M.
TI Southern Laurentide ice-sheet retreat synchronous with rising boreal
summer insolation
SO GEOLOGY
LA English
DT Article
ID DEGLACIATION; WISCONSIN; TEMPERATURE; DEPOSITS; CO2; USA; YR
AB Establishing the precise timing for the onset of ice-sheet retreat at the end of the Last Glacial Maximum (LGM) is critical for delineating mechanisms that drive deglaciations. Uncertainties in the timing of ice-margin retreat and global ice-volume change allow a variety of plausible deglaciation triggers. Using boulder Be-10 surface exposure ages, we date initial southern Laurentide ice-sheet (LIS) retreat from LGM moraines in Wisconsin (USA) to 23.0 +/- 0.6 ka, coincident with retreat elsewhere along the southern LIS and synchronous with the initial rise in boreal summer insolation 24-23 ka. We show with climate-surface mass balance simulations that this small increase in boreal summer insolation alone is potentially sufficient to drive enhanced southern LIS surface ablation. We also date increased southern LIS retreat after ca. 20.5 ka likely driven by an acceleration in rising isolation. This near-instantaneous southern LIS response to boreal summer insolation before any rise in atmospheric CO 2 supports the Milankovic hypothesis of orbital forcing of deglaciations.
C1 [Ullman, David J.; Carlson, Anders E.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA.
[Ullman, David J.; Carlson, Anders E.; Moore, Angus K.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.
[LeGrande, Allegra N.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[LeGrande, Allegra N.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA.
[Anslow, Faron S.] Univ Victoria, Pacific Climate Impacts Consortium, Victoria, BC V8W 2Y2, Canada.
[Moore, Angus K.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA.
[Caffee, Marc] Purdue Univ, Purdue Rare Isotope Measurement PRIME Lab, Dept Phys, W Lafayette, IN 47907 USA.
[Syverson, Kent M.] Univ Wisconsin, Dept Geol, Eau Claire, WI 54701 USA.
[Licciardi, Joseph M.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA.
RP Ullman, DJ (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA.
EM dullman@coas.oregonstate.edu
RI Caffee, Marc/K-7025-2015
OI Caffee, Marc/0000-0002-6846-8967
FU U.S. National Science Foundation [BCS-1102801, AGS-0753660,
AGS-0753868]; Geological Society of America; PRIME Lab
FX We thank K. Winsor, J. Hoffman, A. Reyes, S. Peters, L. Xu, and K.
Arnold for assistance in the field, and J. Attig, D. Mickelson, E.
Carson, and B. Curry for valuable suggestions on selection of field
sites and discussion of results. This manuscript was significantly
improved by reviews from J. Smith, L. Tarasov, and two anonymous
reviewers. Research was funded by U.S. National Science Foundation
awards BCS-1102801 (Carlson and Ullman), AGS-0753660 (Carlson), and
AGS-0753868 (LeGrande), the Geological Society of America (Ullman), and
PRIME Lab (Carlson and Ullman).
NR 23
TC 13
Z9 13
U1 3
U2 15
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
EI 1943-2682
J9 GEOLOGY
JI Geology
PD JAN
PY 2015
VL 43
IS 1
BP 23
EP 26
DI 10.1130/G36179.1
PG 4
WC Geology
SC Geology
GA CE7KO
UT WOS:000352018600009
ER
PT J
AU Honkonen, I
AF Honkonen, I.
TI A generic simulation cell method for developing extensible, efficient
and readable parallel computational models
SO GEOSCIENTIFIC MODEL DEVELOPMENT
LA English
DT Article
ID FLUID-DYNAMICS; FRAMEWORK
AB I present a method for developing extensible and modular computational models without sacrificing serial or parallel performance or source code readability. By using a generic simulation cell method I show that it is possible to combine several distinct computational models to run in the same computational grid without requiring modification of existing code. This is an advantage for the development and testing of, e.g., geoscientific software as each submodel can be developed and tested independently and subsequently used without modification in a more complex coupled program. An implementation of the generic simulation cell method presented here, generic simulation cell class (gensimcell), also includes support for parallel programming by allowing model developers to select which simulation variables of, e.g., a domain-decomposed model to transfer between processes via a Message Passing Interface (MPI) library. This allows the communication strategy of a program to be formalized by explicitly stating which variables must be transferred between processes for the correct functionality of each submodel and the entire program. The generic simulation cell class requires a C++ compiler that supports a version of the language standardized in 2011 (C++11). The code is available at https://github.com/nasailja/gensimcellfor everyone to use, study, modify and redistribute; those who do are kindly requested to acknowledge and cite this work.
C1 [Honkonen, I.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA.
[Honkonen, I.] Finnish Meteorol Inst, Earth Observat, FIN-00101 Helsinki, Finland.
RP Honkonen, I (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA.
EM ilja.j.honkonen@nasa.gov
FU NASA
FX The author gratefully acknowledges Alex Glocer for insightful
discussions and the NASA Postdoctoral Program for financial support.
NR 24
TC 0
Z9 0
U1 2
U2 4
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1991-959X
EI 1991-9603
J9 GEOSCI MODEL DEV
JI Geosci. Model Dev.
PY 2015
VL 8
IS 3
BP 473
EP 483
DI 10.5194/gmd-8-473-2015
PG 11
WC Geosciences, Multidisciplinary
SC Geology
GA CE9JM
UT WOS:000352160200002
ER
PT J
AU Long, MS
Yantosca, R
Nielsen, JE
Keller, CA
da Silva, A
Sulprizio, MP
Pawson, S
Jacob, DJ
AF Long, M. S.
Yantosca, R.
Nielsen, J. E.
Keller, C. A.
da Silva, A.
Sulprizio, M. P.
Pawson, S.
Jacob, D. J.
TI Development of a grid-independent GEOS-Chem chemical transport model
(v9-02) as an atmospheric chemistry module for Earth system models
SO GEOSCIENTIFIC MODEL DEVELOPMENT
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; ASSIMILATED METEOROLOGY; IMPLEMENTATION;
SIMULATION; SENSITIVITY; EMISSIONS; OXIDATION; FRAMEWORK; COMPONENT;
AEROSOLS
AB The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOS-Chem scientific code, permitting the exact same GEOS-Chem code to be used as an ESM module or as a stand-alone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS-5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.
C1 [Long, M. S.; Yantosca, R.; Keller, C. A.; Sulprizio, M. P.; Jacob, D. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Nielsen, J. E.; da Silva, A.; Pawson, S.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
[Nielsen, J. E.] Sci Syst & Applicat Inc, Lanham, MD USA.
RP Long, MS (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
EM mlong@seas.harvard.edu
RI Pawson, Steven/I-1865-2014; Chem, GEOS/C-5595-2014; Yantosca,
Robert/F-7920-2014
OI Pawson, Steven/0000-0003-0200-717X; Yantosca, Robert/0000-0003-3781-1870
FU NASA
FX This work was supported by the NASA Modeling, Analysis and Prediction
(MAP) Program. The authors thank Ben Auer (NASA-GMAO) and Jack Yatteau
(Harvard University) for technical assistance.
NR 31
TC 1
Z9 1
U1 1
U2 9
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1991-959X
EI 1991-9603
J9 GEOSCI MODEL DEV
JI Geosci. Model Dev.
PY 2015
VL 8
IS 3
BP 595
EP 602
DI 10.5194/gmd-8-595-2015
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA CE9JM
UT WOS:000352160200008
ER
PT J
AU Gantt, B
Johnson, MS
Crippa, M
Prevot, ASH
Meskhidze, N
AF Gantt, B.
Johnson, M. S.
Crippa, M.
Prevot, A. S. H.
Meskhidze, N.
TI Implementing marine organic aerosols into the GEOS-Chem model
SO GEOSCIENTIFIC MODEL DEVELOPMENT
LA English
DT Article
ID SEA-SPRAY AEROSOL; SOURCE APPORTIONMENT; GLOBAL DISTRIBUTION; MATTER
ENRICHMENT; DRY DEPOSITION; ARCTIC-OCEAN; EMISSIONS; ISOPRENE;
PARAMETERIZATION; PARTICLES
AB Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.
C1 [Gantt, B.; Meskhidze, N.] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA.
[Johnson, M. S.] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA.
[Crippa, M.; Prevot, A. S. H.] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland.
RP Gantt, B (reprint author), US EPA, Natl Exposure Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA.
EM bdgantt@gmail.com
RI Prevot, Andre/C-6677-2008; Chem, GEOS/C-5595-2014
OI Prevot, Andre/0000-0002-9243-8194;
FU Office of Science (BER), US Department of Energy [DEFG02-08ER64508];
National Science Foundation [ATM-0826117]; National Aeronautics & Space
Administration (NASA) [NNX11AG72G]; European Community [212520]; Office
of Research and Development, US EPA
FX This research was supported by the Office of Science (BER), US
Department of Energy grant no. DEFG02-08ER64508, National Science
Foundation grant no. ATM-0826117, and National Aeronautics & Space
Administration (NASA) through grant no. NNX11AG72G. The measurements in
Paris were conducted in the MEGAPOLI project, mainly financially
supported by the European Community's Framework Program FP/2007-2011
under grant agreement no. 212520. The authors would like to thank Daniel
Jacob and the Harvard University Atmospheric Chemistry Modeling Group
for providing the base GEOS-Chem model used during our research.
Resources supporting this work were provided by the NASA High-End
Computing (HEC) Program through the NASA Advanced Supercomputing (NAS)
Division at NASA Ames Research Center. B. Gantt is supported by an
appointment to the Research Participation Program at the Office of
Research and Development, US EPA, administered by ORISE.
NR 62
TC 0
Z9 0
U1 6
U2 26
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1991-959X
EI 1991-9603
J9 GEOSCI MODEL DEV
JI Geosci. Model Dev.
PY 2015
VL 8
IS 3
BP 619
EP 629
DI 10.5194/gmd-8-619-2015
PG 11
WC Geosciences, Multidisciplinary
SC Geology
GA CE9JM
UT WOS:000352160200010
ER
PT J
AU Hallock, AK
Martin, AK
Polzin, KA
Kimberlin, AC
Eskridge, RH
AF Hallock, Ashley K.
Martin, Adam K.
Polzin, Kurt A.
Kimberlin, Adam C.
Eskridge, Richard H.
TI Single- and Repetitive-Pulse Conical Theta-Pinch Inductive Pulsed Plasma
Thruster Performance
SO IEEE TRANSACTIONS ON PLASMA SCIENCE
LA English
DT Article
DE Accelerators; inductive accelerators; modeling; plasma engines
ID ACCELERATION
AB Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20 degrees, 38 degrees, and 60 degrees, were quantified for 500-J/pulse operation by direct measurement using a hanging pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38 degrees model producing the highest impulse bits at roughly 1-mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively pulsed thruster operation, permitted testing of the 38 degrees thruster at a repetition rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. For similar conditions, the average thrust measured during repetitive-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate, suggesting that a greater impulse bit per pulse was produced when operating in the repetitive-pulse mode.
C1 [Hallock, Ashley K.] Yetispace Inc, Huntsville, AL 35811 USA.
[Martin, Adam K.; Polzin, Kurt A.; Kimberlin, Adam C.; Eskridge, Richard H.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Hallock, AK (reprint author), OHB Sweden, S-10044 Stockholm, Sweden.
EM ashleyhallock@gmail.com; adam.k.martin@nasa.gov; kurt.a.polzin@nasa.gov;
adam.c.kimberlin@nasa.gov; richard.h.eskridge@nasa.gov
FU In Space Propulsion Project of the Game-Changing Division (GCD) of
NASA's Office of the Chief Technologist
FX The authors would like to thank many individuals for the support and
contributions. They would like to thank J. Martin, P. McRight, T.
Williams, M. B. Koelbl, and T. Brown, from the Propulsion Systems
Department, Marshall Space Flight Center (MSFC), for the continued
support. They would also like to thank J. B. Pearson and M. LaPointe
from MSFC for many technical discussions, G. Emsellem from The Elwing
Company, and A. Finchum from MSFC for the use of the Shimadzu camera to
obtain high-speed images. They would also like to thank T. Reid, D.
Galloway, K. Chavers, D. Wilkie, R. Harper, S. McDonald, and M. Black
for the continuing efforts and contributions of the MSFC technical
support staff from the Propulsion Research and Development Laboratory
and K. Perdue, A. Toftul, A. Wong, K. Bonds, and M. Becnel, who while
working as National Aeronautics and Space Administration (NASA) Interns
at MSFC contributed to bringing this paper to fruition. This work was
funded by the In Space Propulsion Project of the Game-Changing Division
(GCD) of NASA's Office of the Chief Technologist. The GCD Principle
Investigator was C. Taylor from NASA/Langley Research Center and the
Project Manager was T. Smith from NASA/Glenn Research Center.
NR 23
TC 1
Z9 1
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0093-3813
EI 1939-9375
J9 IEEE T PLASMA SCI
JI IEEE Trans. Plasma Sci.
PD JAN
PY 2015
VL 43
IS 1
BP 433
EP 443
DI 10.1109/TPS.2014.2368835
PN 3
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA CE8HQ
UT WOS:000352083000007
ER
PT J
AU Spessa, AC
Field, RD
Pappenberger, F
Langner, A
Englhart, S
Weber, U
Stockdale, T
Siegert, F
Kaiser, JW
Moore, J
AF Spessa, A. C.
Field, R. D.
Pappenberger, F.
Langner, A.
Englhart, S.
Weber, U.
Stockdale, T.
Siegert, F.
Kaiser, J. W.
Moore, J.
TI Seasonal forecasting of fire over Kalimantan, Indonesia
SO NATURAL HAZARDS AND EARTH SYSTEM SCIENCES
LA English
DT Article
ID SEA-SURFACE TEMPERATURE; LAND-COVER CHANGE; BURNED AREA; DANGER
FORECASTS; SOUTHEAST-ASIA; EL-NINO; FOREST; SYSTEM; SATELLITE; BORNEO
AB Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities.
In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire).
The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Nino years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.
C1 [Spessa, A. C.] Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England.
[Field, R. D.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
[Field, R. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Pappenberger, F.; Stockdale, T.; Kaiser, J. W.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England.
[Pappenberger, F.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England.
[Pappenberger, F.] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Jiangsu, Peoples R China.
[Langner, A.] EC Joint Res Ctr, Inst Environm & Sustainabil, Forest Resources & Climate Unit, Ispra, Italy.
[Englhart, S.; Siegert, F.] Remote Sensing Solut GmbH, Munich, Germany.
[Weber, U.] Max Planck Inst Biogeochem, Dept Biogeochem Integrat, D-07745 Jena, Germany.
[Kaiser, J. W.] Max Planck Inst Chem, Dept Atmospher Chem, D-55128 Mainz, Germany.
[Kaiser, J. W.] Kings Coll London, Dept Geog, London WC2R 2LS, England.
[Moore, J.] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England.
[Siegert, F.] Univ Munich, GeoBio Ctr, Munich, Germany.
RP Spessa, AC (reprint author), Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England.
EM allan.spessa@open.ac.uk
RI Kaiser, Johannes/A-7057-2012; Pappenberger, Florian/A-2839-2009;
Englhart Lohberger, Sandra/J-7349-2016
OI Kaiser, Johannes/0000-0003-3696-9123; Pappenberger,
Florian/0000-0003-1766-2898; Englhart Lohberger,
Sandra/0000-0002-6180-7372
FU Open University Research Investment Fellowship scheme; NERC QUEST
programme (FireMAFS: Fire Modelling and Forecasting System project)
[NE/F001681/1]; Copernicus program; EU FP7 project MACC-II [283576]
FX A. Spessa appreciates funding support provided by the Open University
Research Investment Fellowship scheme. The original impetus for this
study was enabled through funding from the NERC QUEST programme
(FireMAFS: Fire Modelling and Forecasting System project; NE/F001681/1).
The work by ECMWF was partially funded by the Copernicus program
(http://www.copernicus.eu/). J. Kaiser was supported by the EU FP7
project MACC-II (grant agreement 283576).
NR 56
TC 8
Z9 8
U1 1
U2 30
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1561-8633
J9 NAT HAZARD EARTH SYS
JI Nat. Hazards Earth Syst. Sci.
PY 2015
VL 15
IS 3
BP 429
EP 442
DI 10.5194/nhess-15-429-2015
PG 14
WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences;
Water Resources
SC Geology; Meteorology & Atmospheric Sciences; Water Resources
GA CE9JT
UT WOS:000352160900006
ER
PT J
AU Finkleman, D
AF Finkleman, Dav
TI Collaborating against space debris
SO AEROSPACE AMERICA
LA English
DT Editorial Material
C1 [Finkleman, Dav] NORAD, Peterson AFB, CO 80914 USA.
[Finkleman, Dav] US Space Command, Peterson AFB, CO USA.
RP Finkleman, D (reprint author), NORAD, Peterson AFB, CO 80914 USA.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0740-722X
J9 AEROSPACE AM
JI Aerosp. Am.
PD JAN
PY 2015
VL 53
IS 1
BP 18
EP 20
PG 3
WC Engineering, Aerospace
SC Engineering
GA CE8XA
UT WOS:000352126200010
ER
PT J
AU Heistermann, M
Collis, S
Dixon, MJ
Giangrande, S
Helmus, JJ
Kelley, B
Koistinen, J
Michelson, DB
Peura, M
Pfaff, T
Wolff, DB
AF Heistermann, M.
Collis, S.
Dixon, M. J.
Giangrande, S.
Helmus, J. J.
Kelley, B.
Koistinen, J.
Michelson, D. B.
Peura, M.
Pfaff, T.
Wolff, D. B.
TI THE EMERGENCE OF OPEN-SOURCE SOFTWARE FOR THE WEATHER RADAR COMMUNITY
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID C-BAND RADAR; REAL-TIME; ATTENUATION CORRECTION; RAINFALL ESTIMATION;
DIFFERENTIAL PHASE; MOUNTAINOUS REGION; BEAM BLOCKAGE; IDENTIFICATION;
ALGORITHMS; RETRIEVAL
AB Weather radar analysis has become increasingly sophisticated over the past 50 years, and efforts to keep software up to date have generally lagged behind the needs of the users. We argue that progress has been impeded by the fact that software has not been developed and shared as a community.
Recently, the situation has been changing. In this paper, the developers of a number of open-source software (OSS) projects highlight the potential of OSS to advance radar-related research. We argue that the community-based development of OSS holds the potential to reduce duplication of efforts and to create transparency in implemented algorithms while improving the quality and scope of the software. We also conclude that there is sufficiently mature technology to support collaboration across different software projects. This could allow for consolidation toward a set of interoperable software platforms, each designed to accommodate very specific user requirements.
C1 [Heistermann, M.] Univ Potsdam, Inst Earth & Environm Sci, D-14476 Potsdam, Germany.
[Collis, S.; Helmus, J. J.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Dixon, M. J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Giangrande, S.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA.
[Kelley, B.; Wolff, D. B.] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA.
[Koistinen, J.; Peura, M.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland.
[Michelson, D. B.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden.
[Pfaff, T.] Univ Stuttgart, Inst Wasser & Umweltsyst Modellie, D-70174 Stuttgart, Germany.
RP Heistermann, M (reprint author), Univ Potsdam, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany.
EM maik.heistermann@uni-potsdam.de
RI Giangrande, Scott/I-4089-2016
OI Giangrande, Scott/0000-0002-8119-8199
FU U.S. Federal Aviation Administration; U.S. National Science Foundation;
European Union (European Regional Development Fund); European Union
(European Neighbourhood and Partnership Instrument); U.S. Department of
Energy, Office of Science, Office of Biological and Environmental
Research [DE-AC02-06CH11357]; Office of Biological and Environmental
Research (OBER) of the U.S. Department of Energy (DOE) as part of ARM;
German Federal Ministry for Research and Education within the PROGRESS
project; NASA's Precipitation Measurement Missions program
FX The development of TITAN was funded by the U.S. Federal Aviation
Administration. The development of LROSE is funded by the U.S. National
Science Foundation. BALTRAD software has been developed as part of the
BALTRAD and BALTRAD+ projects that have been partly financed by the
European Union (European Regional Development Fund and European
Neighbourhood and Partnership Instrument). Argonne National Laboratory's
work was supported by the U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research, under Contract
DE-AC02-06CH11357. This work has been supported by the Office of
Biological and Environmental Research (OBER) of the U.S. Department of
Energy (DOE) as part of ARM. The development of wradlib was partly
funded by the German Federal Ministry for Research and Education within
the PROGRESS project, The development of RSL and RSL-in-IDL were
supported by NASA's Precipitation Measurement Missions program. The
authors thank Jonathan J. Gourley, Norman Donaldson, and Marco Borga who
reviewed this paper and who substantially contributed to its
improvement.
NR 51
TC 7
Z9 7
U1 0
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD JAN
PY 2015
VL 96
IS 1
BP 117
EP 128
DI 10.1175/BAMS-D-13-00240.1
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CE0FA
UT WOS:000351478700016
ER
PT J
AU Sakazaki, T
Shiotani, M
Suzuki, M
Kinnison, D
Zawodny, JM
McHugh, M
Walker, KA
AF Sakazaki, T.
Shiotani, M.
Suzuki, M.
Kinnison, D.
Zawodny, J. M.
McHugh, M.
Walker, K. A.
TI Sunset-sunrise difference in solar occultation ozone measurements (SAGE
II, HALOE, and ACE-FTS) and its relationship to tidal vertical winds
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID EMISSION SOUNDER SMILES; STRATOSPHERIC AEROSOL; DATA SET; VALIDATION;
TEMPERATURE; MESOSPHERE
AB This paper contains a comprehensive investigation of the sunset-sunrise difference (SSD, i.e., the sunsetminus- sunrise value) of the ozone mixing ratio in the latitude range of 10 degrees S-10 degrees N. SSD values were determined from solar occultation measurements based on data obtained from the Stratospheric Aerosol and Gas Experiment (SAGE) II, the Halogen Occultation Experiment (HALOE), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS). The SSD was negative at altitudes of 20-30 km (-0.1 ppmv at 25 km) and positive at 30-50 km (+0.2 ppmv at 40-45 km) for HALOE and ACE-FTS data. SAGE II data also showed a qualitatively similar result, although the SSD in the upper stratosphere was 2 times larger than those derived from the other data sets. On the basis of an analysis of data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and a nudged chemical transport model (the specified dynamics version of the Whole Atmosphere Community Climate Model: SD-WACCM), we conclude that the SSD can be explained by diurnal variations in the ozone concentration, particularly those caused by vertical transport by the atmospheric tidal winds. All data sets showed significant seasonal variations in the SSD; the SSD in the upper stratosphere is greatest from December through February, while that in the lower stratosphere reaches a maximum twice: during the periods March-April and September-October. Based on an analysis of SD-WACCM results, we found that these seasonal variations follow those associated with the tidal vertical winds.
C1 [Sakazaki, T.; Shiotani, M.] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Japan.
[Suzuki, M.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan.
[Kinnison, D.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Zawodny, J. M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[McHugh, M.] Global Atmospher Technol & Sci, Newport News, VA USA.
[Walker, K. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
RP Sakazaki, T (reprint author), Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Japan.
EM takatoshi_sakazaki@rish.kyoto-u.ac.jp
FU Canadian Space Agency; Natural Sciences and Engineering Research Council
of Canada; Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) [25483400]; International Space Science Institute,
Bern, Switzerland (ISSI) [246]; MEXT [25281006]; ISS Science Project
Office of ISAS/JAXA; Human Spaceflight Mission Directorate of JAXA
FX SAGE II data were provided by the NASA Atmospheric Data Center. HALOE
data were provided by GATS, Inc., through their website
(http://haloe.gats-inc.com/home/index.php). ACE-FTS data were provided
by the ACE Science Operations Centre. The Atmospheric Chemistry
Experiment (ACE), also known as SCISAT, is a Canadian-led mission mainly
supported by the Canadian Space Agency and the Natural Sciences and
Engineering Research Council of Canada. SMILES data were provided by the
ISAS/JAXA. Monthly zonal wind data from Singapore were obtained from the
Free University of Berlin through its website (http:
//www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html). SABER
version 2 data were provided by GATS, Inc., through their website
(ftp://saber.gats-inc.com/custom/Temp_O3/). We thank Koji Imai for his
help in working with the ACE-FTS data. We are also grateful to Erkki
Kyrola and Chris Boone for their helpful suggestions and comments. Ellis
Remsberg and an anonymous reviewer gave us instructive comments which
helped us to improve the manuscript. T. Sakazaki was supported in part
by the Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) through a grant-in-aid for JSPS Fellows (25483400). T.
Sakazaki and M. Suzuki were also supported by the International Space
Science Institute, Bern, Switzerland (ISSI Team #246, Characterizing
Diurnal Variations of Ozone for Improving Ozone Trend Estimates,
http://www.issbern.ch/teams/ozonetrend/). This study was supported in
part by the MEXT through a grant-in-aid (25281006), the ISS Science
Project Office of ISAS/JAXA, and the Human Spaceflight Mission
Directorate of JAXA. All figures were drawn with the GFD-Dennou library.
NR 45
TC 3
Z9 3
U1 0
U2 0
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 2
BP 829
EP 843
DI 10.5194/acp-15-829-2015
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD6AI
UT WOS:000351170000007
ER
PT J
AU Millan, L
Wang, S
Livesey, N
Kinnison, D
Sagawa, H
Kasai, Y
AF Millan, L.
Wang, S.
Livesey, N.
Kinnison, D.
Sagawa, H.
Kasai, Y.
TI Stratospheric and mesospheric HO2 observations from the Aura Microwave
Limb Sounder
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SOLAR SPECTRAL IRRADIANCE; LOWER THERMOSPHERE; MODEL-CALCULATIONS;
DEFICIT PROBLEM; OZONE DEFICIT; EOS MLS; SATELLITE; H2O; O-3; OH
AB This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during daytime from 10 to 0.0032 hPa (using day-minus-night differences between 10 and 1 hPa to ameliorate systematic biases) and one during nighttime from 1 to 0.0032 hPa. The vertical resolution of this new data set varies from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as photochemical simulations, demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new data set is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O-3 deficit problem and the "HOx dilemma".
C1 [Millan, L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.
[Millan, L.; Wang, S.; Livesey, N.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Kinnison, D.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Sagawa, H.; Kasai, Y.] Natl Inst Informat & Communicat Technol, Koganei, Tokyo, Japan.
RP Millan, L (reprint author), Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA.
EM lmillan@jpl.nasa.gov
RI Millan, Luis/J-2759-2015
FU NASA Upper Atmosphere Research programme; National Science Foundation;
NASA Atmospheric Composition: Modeling and Analysis [NNH10ZDA001N-ACMAP]
FX We thank M. Allen and K. Willacy for their help with setting up and
running the Caltech/JPL-Kinetics 1-D photochemical model. FIRS-2 data
were funded by the NASA Upper Atmosphere Research programme. JEM/SMILES
mission is a joint project of Japan Aerospace Exploration Agency (JAXA)
and National Institute of Information and Communications Technology
(NICT). The WACCM modelling work was sponsored by the National Science
Foundation and by the NASA Atmospheric Composition: Modeling and
Analysis, solicitation NNH10ZDA001N-ACMAP. The research described in
this paper was carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics
and Space Administration.
NR 50
TC 4
Z9 5
U1 0
U2 7
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 5
BP 2889
EP 2902
DI 10.5194/acp-15-2889-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD6KL
UT WOS:000351197900013
ER
PT J
AU Miller, SM
Hayek, MN
Andrews, AE
Fung, I
Liu, J
AF Miller, S. M.
Hayek, M. N.
Andrews, A. E.
Fung, I.
Liu, J.
TI Biases in atmospheric CO2 estimates from correlated meteorology modeling
errors
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID TRANSPORT MODELS; CARBON-DIOXIDE; FLUX INVERSIONS; KALMAN FILTER;
SIMULATIONS; EXCHANGE
AB Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases.
In the first case study, we estimate uncertainties of 0.57 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 222 %. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate.
In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is not sufficient to characterize uncertainties in atmospheric CO2. Together, these two case studies provide information to improve the setup of future top-down inverse modeling studies, preventing unforeseen biases in estimated CO2 fluxes.
C1 [Miller, S. M.; Hayek, M. N.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Andrews, A. E.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA.
[Fung, I.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Liu, J.] NASA, Earth Sci Div, Jet Prop Lab, Pasadena, CA USA.
RP Miller, SM (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA.
EM scot.m.miller@gmail.com
FU DOE's Office of Science [DE-AC02-05CH11231]
FX This work was conducted at the Department of Energy's (DOE) Lawrence
Berkeley National Laboratory as part of a DOE Computational Science
Graduate Fellowship. The research used resources of the National Energy
Research Scientific Computing Center, which is supported by the DOE's
Office of Science under contract no. DE-AC02-05CH11231. CarbonTracker
CT2011_oi results are provided by NOAA ESRL, Boulder, Colorado, USA,
from the website at http://carbontracker.noaa.gov. We thank Steven Wofsy
for his feedback on the manuscript and thank Ed Dlugokencky of NOAA.
NR 35
TC 1
Z9 1
U1 1
U2 10
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 5
BP 2903
EP 2914
DI 10.5194/acp-15-2903-2015
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD6KL
UT WOS:000351197900014
ER
PT J
AU Bloom, AA
Williams, M
AF Bloom, A. A.
Williams, M.
TI Constraining ecosystem carbon dynamics in a data-limited world:
integrating ecological "common sense" in a model-data fusion framework
SO BIOGEOSCIENCES
LA English
DT Article
ID PRIMARY PRODUCTIVITY; DATA ASSIMILATION; TERRESTRIAL ECOSYSTEMS; EDDY
COVARIANCE; BOREAL FOREST; WATER-VAPOR; OLD-GROWTH; DIOXIDE; CYCLE;
VEGETATION
AB Many of the key processes represented in global terrestrial carbon models remain largely unconstrained. For instance, plant allocation patterns and residence times of carbon pools are poorly known globally, except perhaps at a few intensively studied sites. As a consequence of data scarcity, carbon models tend to be underdetermined, and so can produce similar net fluxes with very different parameters and internal dynamics. To address these problems, we propose a series of ecological and dynamic constraints (EDCs) on model parameters and initial conditions, as a means to constrain ecosystem variable inter-dependencies in the absence of local data. The EDCs consist of a range of conditions on (a) carbon pool turnover and allocation ratios, (b) steady-state proximity, and (c) growth and decay of model carbon pools. We use a simple ecosystem carbon model in a model-data fusion framework to determine the added value of these constraints in a data-poor context. Based only on leaf area index (LAI) time series and soil carbon data, we estimate net ecosystem exchange (NEE) for (a) 40 synthetic experiments and (b) three AmeriFlux tower sites. For the synthetic experiments, we show that EDCs lead to an overall 34% relative error reduction in model parameters, and a 65% reduction in the 3 yr NEE 90% confidence range. In the application at AmeriFlux sites all NEE estimates were made independently of NEE measurements. Compared to these observations, EDCs resulted in a 69-93% reduction in 3 yr cumulative NEE median biases (-0.26 to +0.08 kg Cm-2), in comparison to standard 3 yr median NEE biases (-1.17 to -0.84 kgCm(2)). In light of these findings, we advocate the use of EDCs in future model-data fusion analyses of the terrestrial carbon cycle.
C1 [Bloom, A. A.; Williams, M.] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland.
RP Bloom, AA (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM abloom@jpl.nasa.gov
RI Williams, Mathew/G-6140-2016
OI Williams, Mathew/0000-0001-6117-5208
FU NERC National Centre for Earth Observation, UK; European Union's Seventh
Framework Programme [283080]; AmeriFlux (US Department of Energy,
Biological and Environmental Research, Terrestrial Carbon Program)
[DEFG0204ER63917, DEFG0204ER63911]; CarboEuropeIP; FAOGTOSTCO; iLEAPS;
Max Planck Institute for Biogeochemistry; National Science Foundation;
University of Tuscia; Universite Laval and Environment Canada; US
Department of Energy; United States Department of Energy (DOE - TES);
Department of Commerce (DOC - NOAA); Department of Agriculture (USDA -
Forest Service); National Aeronautics and Space Administration (NASA);
National Science Foundation (NSF); Department of Energy; AmeriFlux
Network Management Project; Department of Energy, Terrestrial Carbon
Processes
FX This project was funded by the NERC National Centre for Earth
Observation, UK. This work has made use of the resources provided by the
Edinburgh Compute and Data Facility (ECDF, http://www.ecdf.ed.ac.uk/).
The research leading to these results has received funding from the
European Union's Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. 283080, project GEOCARBON. This work used eddy covariance
data acquired by the FLUXNET community and in particular by the
AmeriFlux (US Department of Energy, Biological and Environmental
Research, Terrestrial Carbon Program; DEFG0204ER63917 and
DEFG0204ER63911). We acknowledge the financial support to the eddy
covariance data harmonization provided by CarboEuropeIP, FAOGTOSTCO,
iLEAPS, Max Planck Institute for Biogeochemistry, National Science
Foundation, University of Tuscia, Universite Laval and Environment
Canada and US Department of Energy and the database development and
technical support from Berkeley Water Center, Lawrence Berkeley National
Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory,
University of California Berkeley, University of Virginia. AmeriFlux is
funded by the the United States Department of Energy (DOE - TES),
Department of Commerce (DOC - NOAA), the Department of Agriculture (USDA
- Forest Service), the National Aeronautics and Space Administration
(NASA), the National Science Foundation (NSF). US-Syv received funding
support from Department of Energy, AmeriFlux Network Management Project
Support for UW ChEAS Cluster and the Department of Energy, Terrestrial
Carbon Processes. The writing of this paper was partially carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. We
are grateful for feedback from L. Smallman and discussions with J.
Exbrayat and T. Hill.
NR 47
TC 6
Z9 6
U1 3
U2 15
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1726-4170
EI 1726-4189
J9 BIOGEOSCIENCES
JI Biogeosciences
PY 2015
VL 12
IS 5
BP 1299
EP 1315
DI 10.5194/bg-12-1299-2015
PG 17
WC Ecology; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA CD3OK
UT WOS:000350987900002
ER
PT S
AU Horton, R
Bader, D
Kushnir, Y
Little, C
Blake, R
Rosenzweig, C
AF Horton, Radley
Bader, Daniel
Kushnir, Yochanan
Little, Christopher
Blake, Reginald
Rosenzweig, Cynthia
BE Rosenzweig, C
Solecki, W
TI New York City Panel on Climate Change 2015 Report Chapter 1: Climate
Observations and Projections
SO BUILDING THE KNOWLEDGE BASE FOR CLIMATE RESILIENCY: NEW YORK CITY PANEL
ON CLIMATE CHANGE 2015 REPORT
SE Annals of the New York Academy of Sciences
LA English
DT Article; Book Chapter
ID CHANGE ADAPTATION; RISK-MANAGEMENT; STRATEGIES; WEATHER; MODEL; ICE
C1 [Horton, Radley; Bader, Daniel] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA.
[Kushnir, Yochanan] Columbia Univ, Ocean & Climate Phys Dept, Lamont Doherty Earth Observ, Palisades, NY USA.
[Little, Christopher] Atmospher & Environm Res, Lexington, MA USA.
[Blake, Reginald] CUNY, New York City Coll Technol, Dept Phys, Brooklyn, NY 11210 USA.
[Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, Climate Impacts Grp, Washington, DC 20546 USA.
[Rosenzweig, Cynthia] Columbia Univ, Ctr Climate Syst Res, Earth Inst, New York, NY USA.
RP Horton, R (reprint author), Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA.
EM rh142@columbia.edu
NR 38
TC 5
Z9 5
U1 2
U2 6
PU BLACKWELL SCIENCE PUBL
PI OXFORD
PA OSNEY MEAD, OXFORD OX2 0EL, ENGLAND
SN 0077-8923
J9 ANN NY ACAD SCI
JI Ann.NY Acad.Sci.
PY 2015
VL 1336
BP 18
EP 35
DI 10.1111/nyas.12586
PG 18
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA BC3EX
UT WOS:000351586900005
PM 25688943
ER
PT S
AU Solecki, W
Rosenzweig, C
Blake, R
de Sherbinin, A
Matte, T
Moshary, F
Rosenzweig, B
Arend, M
Gaffin, S
Bou-Zeid, E
Rule, K
Sweeny, G
Dessy, W
AF Solecki, William
Rosenzweig, Cynthia
Blake, Reginald
de Sherbinin, Alex
Matte, Tom
Moshary, Fred
Rosenzweig, Bernice
Arend, Mark
Gaffin, Stuart
Bou-Zeid, Elie
Rule, Keith
Sweeny, Geraldine
Dessy, Wendy
BE Rosenzweig, C
Solecki, W
TI New York City Panel on Climate Change 2015 Report Chapter 6: Indicators
and Monitoring
SO BUILDING THE KNOWLEDGE BASE FOR CLIMATE RESILIENCY: NEW YORK CITY PANEL
ON CLIMATE CHANGE 2015 REPORT
SE Annals of the New York Academy of Sciences
LA English
DT Article; Book Chapter
ID MANAGEMENT; SHIFTS
C1 [Solecki, William] CUNY, Inst Sustainable Cities, New York, NY 10021 USA.
[Rosenzweig, Cynthia] Columbia Univ, Climate Impacts Grp, NASA Goddard Inst Space Studies, Ctr Climate Syst Res,Earth Inst, New York, NY USA.
[Blake, Reginald] CUNY, Dept Phys, New York City Coll Technol, Brooklyn, NY 11210 USA.
[Blake, Reginald] NASA, Goddard Inst Space Studies, Climate Impacts Grp, Washington, DC 20546 USA.
[de Sherbinin, Alex] Columbia Univ, CIESIN, Palisades, NY USA.
[Matte, Tom] New York City Dept Hlth & Mental Hyg, New York, NY USA.
[Moshary, Fred; Arend, Mark] CUNY, City Coll New York, NOAA CREST, New York, NY 10021 USA.
[Rosenzweig, Bernice] CUNY, CUNY Environm Crossrd, City Coll New York, New York, NY 10021 USA.
[Gaffin, Stuart] Columbia Univ, Earth Inst, Ctr Climate Syst Res, New York, NY USA.
[Bou-Zeid, Elie] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.
[Rule, Keith] Princeton Univ, Plasma Phys Lab, Princeton, NJ USA.
[Sweeny, Geraldine; Dessy, Wendy] New York City Mayors Off Operat, New York, NY USA.
RP Solecki, W (reprint author), CUNY Hunter Coll, Dept Geog, New York, NY 10021 USA.
OI de Sherbinin, Alex/0000-0002-8875-4864
NR 49
TC 2
Z9 2
U1 0
U2 5
PU BLACKWELL SCIENCE PUBL
PI OXFORD
PA OSNEY MEAD, OXFORD OX2 0EL, ENGLAND
SN 0077-8923
J9 ANN NY ACAD SCI
JI Ann.NY Acad.Sci.
PY 2015
VL 1336
BP 89
EP 106
DI 10.1111/nyas.12587
PG 18
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA BC3EX
UT WOS:000351586900010
PM 25688948
ER
PT J
AU Abdol-Hamid, KS
AF Abdol-Hamid, Khaled S.
TI Assessments of k-kL Turbulence Model Based on Menter's Modification to
Rotta's Two-Equation Model
SO INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING
LA English
DT Article
ID PART 1; FLOW; SEPARATION; SIMULATION; LAYER
AB The main objective of this paper is to construct a turbulence model with a more reliable second equation simulating length scale. In the present paper, we assess the length scale equation based on Menter's modification to Rotta's two-equation model. Rotta shows that a reliable second equation can be formed in an exact transport equation from the turbulent length scale and kinetic energy. Rotta's equation is well suited for a term-by-term modeling and shows some interesting features compared to other approaches. The most important difference is that the formulation leads to a natural inclusion of higher order velocity derivatives into the source terms of the scale equation, which has the potential to enhance the capability of Reynolds-averaged Navier-Stokes to simulate unsteady flows. The model is implemented in the CFD solver with complete formulation, usage methodology, and validation examples to demonstrate its capabilities. The detailed studies include grid convergence. Near-wall and shear flows cases are documented and compared with experimental and large eddy simulation data. The results from this formulation are as good or better than the well-known shear stress turbulence model and much better than k-epsilon results. Overall, the study provides useful insights into the model capability in predicting attached and separated flows.
C1 NASA, Langley Res Ctr, Hampton, VA 23693 USA.
RP Abdol-Hamid, KS (reprint author), NASA, Langley Res Ctr, Hampton, VA 23693 USA.
EM k.s.abdol-hamid@nasa.gov
NR 13
TC 0
Z9 0
U1 1
U2 10
PU HINDAWI PUBLISHING CORPORATION
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-5966
EI 1687-5974
J9 INT J AEROSPACE ENG
JI Int. J. Aerosp. Eng.
PY 2015
AR 987682
DI 10.1155/2015/987682
PG 18
WC Engineering, Aerospace
SC Engineering
GA CD4QY
UT WOS:000351069700001
ER
PT J
AU Watson, AB
Ahumada, AJ
AF Watson, Andrew B.
Ahumada, Albert J.
TI Letter identification and the Neural Image Classifier
SO JOURNAL OF VISION
LA English
DT Article
DE contrast; detection; identification; classification; letter
identification; peripheral vision; contrast difference energy; noise;
efficiency; optics
ID RETINAL GANGLION-CELLS; SPATIAL-FREQUENCY CHARACTERISTICS; CONTRAST
SENSITIVITY; PERIPHERAL-VISION; VISUAL-FIELD; MODEL; NOISE; VISIBILITY;
SUMMATION; CHANNEL
AB Letter identification is an important visual task for both practical and theoretical reasons. To extend and test existing models, we have reviewed published data for contrast sensitivity for letter identification as a function of size and have also collected new data. Contrast sensitivity increases rapidly from the acuity limit but slows and asymptotes at a symbol size of about 1 degree. We recast these data in terms of contrast difference energy: the average of the squared distances between the letter images and the average letter image. In terms of sensitivity to contrast difference energy, and thus visual efficiency, there is a peak around 1/4 degree, followed by a marked decline at larger sizes. These results are explained by a Neural Image Classifier model that includes optical filtering and retinal neural filtering, sampling, and noise, followed by an optimal classifier. As letters are enlarged, sensitivity declines because of the increasing size and spacing of the midget retinal ganglion cell receptive fields in the periphery.
C1 [Watson, Andrew B.; Ahumada, Albert J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Watson, AB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM andrew.b.watson@nasa.gov
FU NASA Space Human Factors Research Project [WBS 466199]
FX We gratefully acknowledge the assistance of Dr. Austin Roorda in the
collection of wavefront aberration data. We thank Jeffrey Mulligan for
helpful comments. This work supported by the NASA Space Human Factors
Research Project WBS 466199.
NR 73
TC 0
Z9 0
U1 1
U2 2
PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC
PI ROCKVILLE
PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA
SN 1534-7362
J9 J VISION
JI J. Vision
PY 2015
VL 15
IS 2
AR 15
DI 10.1167/15.2.15
PG 26
WC Ophthalmology
SC Ophthalmology
GA CC9HQ
UT WOS:000350679800015
ER
PT J
AU Watson, AB
AF Watson, Andrew B.
TI Computing human optical point spread functions
SO JOURNAL OF VISION
LA English
DT Article
DE Zernike; PSF; blur; optics; retinal image; software
ID ZERNIKE EXPANSION COEFFICIENTS; EYE ABERRATION COEFFICIENTS; IMAGE
QUALITY; PUPIL SIZES; MODEL
AB There is renewed interest in the role of optics in human vision. At the same time there have been advances that allow for routine standardized measurement of the wavefront aberrations of the human eye. Computational methods have been developed to convert these measurements to a description of the human visual optical point spread function (PSF), and to thereby calculate the retinal image. However, tools to implement these calculations for vision science are not widely available or widely understood. In this report we describe software to compute the human optical PSF, and we discuss constraints and limitations.
C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Watson, AB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM andrew.b.watson@nasa.gov
FU NASA Space Human Factors Research Project [WBS 466199]
FX I thank Larry Thibos for early advice on optical computations and for
providing the database of wavefront aberrations. I thank Pablo Artal for
useful comments and calculations. I thank Jose Antonio Diaz Navas for
generous assistance with pupil scaling formulas. This work supported by
the NASA Space Human Factors Research Project WBS 466199.
NR 31
TC 0
Z9 0
U1 1
U2 5
PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC
PI ROCKVILLE
PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA
SN 1534-7362
J9 J VISION
JI J. Vision
PY 2015
VL 15
IS 2
AR 26
DI 10.1167/15.2.26
PG 25
WC Ophthalmology
SC Ophthalmology
GA CC9HQ
UT WOS:000350679800026
PM 25724191
ER
PT J
AU Pariat, E
Dalmasse, K
DeVore, CR
Antiochos, SK
Karpen, JT
AF Pariat, E.
Dalmasse, K.
DeVore, C. R.
Antiochos, S. K.
Karpen, J. T.
TI Model for straight and helical solar jets I. Parametric studies of the
magnetic field geometry
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE Sun: corona; magnetic reconnection; magnetohydrodynamics (MHD); Sun:
flares; Sun: magnetic fields
ID X-RAY JETS; H-ALPHA SURGES; CHROMOSPHERIC ANEMONE JETS;
MAGNETOHYDRODYNAMIC NUMERICAL SIMULATIONS; POLAR CORONAL HOLE;
EXTREME-ULTRAVIOLET; FLUX EMERGENCE; BLOWOUT JETS; NULL-POINT; PHYSICAL
PARAMETERS
AB Context. Jets are dynamic, impulsive, well-collimated plasma events developing at many different scales and in different layers of the solar atmosphere.
Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Studying their dynamics can help us to better understand the processes acting in larger eruptive events (e.g., flares and coronal mass ejections) as well as mass, magnetic helicity, and energy transfer at all scales in the solar atmosphere. The relative simplicity of their magnetic geometry and topology, compared with larger solar active events, makes jets ideal candidates for studying the fundamental role of reconnection in energetic events.
Methods. In this study, using our recently developed numerical solver ARMS, we present several parametric studies of a 3D numerical magneto-hydrodynamic model of solar-jet-like events. We studied the impact of the magnetic field inclination and photospheric field distribution on the generation and properties of two morphologically different types of solar jets, straight and helical, which can account for the observed so-called standard and blowout jets.
Results. Our parametric studies validate our model of jets for different geometric properties of the magnetic configuration. We find that a helical jet is always triggered for the range of parameters we tested. This demonstrates that the 3D magnetic null-point configuration is a very robust structure for the energy storage and impulsive release characteristic of helical jets. In certain regimes determined by magnetic geometry, a straight jet precedes the onset of a helical jet. We show that the reconnection occurring during the straight-jet phase influences the triggering of the helical jet.
Conclusions. Our results allow us to better understand the energization, triggering, and driving processes of straight and helical jets. Our model predicts the impulsiveness and energetics of jets in terms of the surrounding magnetic field configuration. Finally, we discuss the interpretation of the observationally defined standard and blowout jets in the context of our model, as well as the physical factors that determine which type of jet will occur.
C1 [Pariat, E.; Dalmasse, K.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, F-92190 Meudon, France.
[Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Pariat, E (reprint author), Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, F-92190 Meudon, France.
EM etienne.pariat@obspm.fr
RI Antiochos, Spiro/D-4668-2012; DeVore, C/A-6067-2015
OI Antiochos, Spiro/0000-0003-0176-4312; DeVore, C/0000-0002-4668-591X
FU NASA's Living With a Star program
FX The authors thank the anonymous referee for his or her careful reading
of the manuscript and remarks that helped to improve its readability.
Authors C.R.D., S.K.A., and J.T.K. thank NASA's Living With a Star
program for supporting their participation in this work. The parametric
studies presented in this work required a cumulated important amount of
numerical resources over several years. We greatly appreciate the HPC
resources of CINES, granted under the allocations 2010-046331,
2011-046331, 2012-046331, and 2013-046331 by GENCI (Grand Equipement
National de Calcul Intensif), without which this work would have been
impossible. Numerous test calculations were also performed on the
quadric-core bi-Xeon computers of the Cluster of the Division
Informatique de l'Observatoire de Paris. ISSI support for the workshops
Understanding Solar Jets and their Role in Atmospheric Structure and
Dynamics and the critical comments of the team members are gratefully
acknowledged.
NR 96
TC 21
Z9 22
U1 0
U2 8
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD JAN
PY 2015
VL 573
AR A130
DI 10.1051/0004-6361/201424209
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CD1AM
UT WOS:000350806000018
ER
PT J
AU Peterson, PK
Simpson, WR
Pratt, KA
Shepson, PB
Friess, U
Zielcke, J
Platt, U
Walsh, SJ
Nghiem, SV
AF Peterson, P. K.
Simpson, W. R.
Pratt, K. A.
Shepson, P. B.
Friess, U.
Zielcke, J.
Platt, U.
Walsh, S. J.
Nghiem, S. V.
TI Dependence of the vertical distribution of bromine monoxide in the lower
troposphere on meteorological factors such as wind speed and stability
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID OZONE DEPLETION EVENTS; ARCTIC BOUNDARY-LAYER; OPTICAL-ABSORPTION
SPECTROSCOPY; POLAR SUNRISE; SEA-ICE; CHEMICAL-COMPOSITION; MAX-DOAS;
BRO; SNOW; ACTIVATION
AB Multiple axis differential absorption spectroscopy (MAX-DOAS) measurements of bromine monoxide (BrO) probed the vertical structure of halogen activation events during March-May 2012 at Barrow, Alaska. An analysis of the BrO averaging kernels and degrees of freedom obtained by optimal-estimation-based inversions from raw MAX-DOAS measurements reveals the information is best represented by reducing the retrieved BrO profile to two quantities: the integrated column from the surface through 200m (VCD200m), and the lower tropospheric vertical column density (LT-VCD), which represents the integrated column of BrO from the surface through 2 km. The percentage of lower tropospheric BrO in the lowest 200m was found to be highly variable ranging from shallow layer events, where BrO is present primarily in the lowest 200 m, to distributed column events where BrO is observed at higher altitudes. The highest observed LT-VCD events occurred when BrO was distributed throughout the lower troposphere, rather than concentrated near the surface. Atmospheric stability in the lowest 200m influenced the percentage of LT-VCD that is in the lowest 200 m, with inverted temperature structures having a first-to-third quartile range (Q1-Q3) of VCD200m/LT-VCD from 15-39 %, while near-neutral-temperature structures had a Q1-Q3 range of 7-13 %. Data from this campaign show no clear influence of wind speed on either lower tropospheric bromine activation (LT-VCD) or the vertical distribution of BrO, while examination of seasonal trends and the temperature dependence of the vertical distribution supported the conclusion that the atmospheric stability affects the vertical distribution of BrO.
C1 [Peterson, P. K.; Simpson, W. R.; Walsh, S. J.] Univ Alaska Fairbanks, Inst Geophys, Dept Chem & Biochem, Fairbanks, AK 99775 USA.
[Pratt, K. A.; Shepson, P. B.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
[Shepson, P. B.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA.
[Friess, U.; Zielcke, J.; Platt, U.] Heidelberg Univ, Inst Environm Phys, Heidelberg, Germany.
[Nghiem, S. V.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Simpson, WR (reprint author), Univ Alaska Fairbanks, Inst Geophys, Dept Chem & Biochem, Fairbanks, AK 99775 USA.
EM wrsimpson@alaska.edu
RI Pratt, Kerri/F-8025-2010;
OI Pratt, Kerri/0000-0003-4707-2290; Simpson, William/0000-0002-8596-7290;
Peterson, Peter/0000-0002-9337-6677
FU National Aeronautics and Space Administration (NASA) Cryospheric
Sciences Program (CSP); National Science Foundation [ARC-1023118]; NSF
[ARC-1107695]; NSF; NASA CSP
FX The research at the University of Alaska was supported by the National
Aeronautics and Space Administration (NASA) Cryospheric Sciences Program
(CSP), and partial financial support for MAX-DOAS analysis methods was
provided by the National Science Foundation under grant ARC-1023118. The
Purdue group recognizes NSF support through grant ARC-1107695. K. A.
Pratt was supported by a NSF Postdoctoral Fellowship in Polar Regions
Research. The Purdue group acknowledges field assistance from Kyle
Custard (Purdue Univ.), David Tanner (Georgia Tech), and L. Gregory Huey
(Georgia Tech). The research at the Jet Propulsion Laboratory,
California Institute of Technology, was supported by the NASA CSP. The
authors gratefully acknowledge Chris Moore (Desert Research Inst.) for
helpful discussions, as well as Alexei Rozanov from IUP Bremen for
providing the SCIATRAN radiative transfer code. The authors also wish to
thank UMIAQ for logistical support, and Bristow Air for providing a
helicopter for the deployment of IL1.
NR 69
TC 6
Z9 6
U1 5
U2 23
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 4
BP 2119
EP 2137
DI 10.5194/acp-15-2119-2015
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CD6KC
UT WOS:000351197000009
ER
PT J
AU Launois, T
Belviso, S
Bopp, L
Fichot, CG
Peylin, P
AF Launois, T.
Belviso, S.
Bopp, L.
Fichot, C. G.
Peylin, P.
TI A new model for the global biogeochemical cycle of carbonyl sulfide -
Part 1: Assessment of direct marine emissions with an oceanic general
circulation and biogeochemistry model
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID AIR-SEA EXCHANGE; PHOTOCHEMICAL PRODUCTION; MEDITERRANEAN SEA; DIMETHYL
SULFIDE; HYDROGEN-SULFIDE; SURFACE WATERS; NATURAL-WATERS;
PACIFIC-OCEAN; COS; COEFFICIENTS
AB The global budget of tropospheric carbonyl sulfide (OCS) is believed to be at equilibrium because background air concentrations have remained roughly stable over at least the last decade. Since the uptake of OCS by leaves (associated with photosynthesis) and soils have been revised significantly upwards recently, an equilibrated budget can only be obtained with a compensatory source of OCS. It has been assumed that the missing source of OCS comes from the low-latitude ocean, following the incident solar flux. The present work uses parameterizations of major production and removal processes of organic compounds in the NEMO-PISCES (Nucleus for European Modelling of the Ocean, Pelagic Interaction Scheme for Carbon and Ecosystem Studies) ocean general circulation and biogeochemistry model to assess the marine source of OCS. In addition, the OCS photo-production rates computed with the NEMO-PISCES model were evaluated independently using the UV absorption coefficient of chromophoric dissolved organic matter (derived from satellite ocean color data) and apparent quantum yields available in the literature. Our simulations show global direct marine emissions of OCS in the range of 5733997 GgS yr(-1), depending mostly on the quantification of the absorption rate of chromophoric dissolved organic matter. The high estimates of that range are unlikely, as they correspond to a formulation that most likely overestimate photo-production process. Low and medium (813 GgS yr(-1)) estimates derived from the NEMO-PISCES model are however consistent spatially and temporally with the suggested missing source of Berry et al. (2013), allowing us thus to close the global budget of OCS given the recent estimates of leaf and soil OCS uptake.
C1 [Launois, T.; Belviso, S.; Bopp, L.; Peylin, P.] CE Saclay, UVSQ, CNRS, LSCE Saclay,IPSL,CEA, F-91191 Gif Sur Yvette, France.
[Fichot, C. G.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Launois, T (reprint author), CE Saclay, UVSQ, CNRS, LSCE Saclay,IPSL,CEA, Bat 703 LOrme Merisiers, F-91191 Gif Sur Yvette, France.
EM thomas.launois@lsce.ipsl.fr
RI Vuichard, Nicolas/A-6629-2011
NR 48
TC 13
Z9 13
U1 1
U2 27
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 5
BP 2295
EP 2312
DI 10.5194/acp-15-2295-2015
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7PE
UT WOS:000350559700004
ER
PT J
AU Lyamani, H
Valenzuela, A
Perez-Ramirez, D
Toledano, C
Granados-Munoz, MJ
Olmo, FJ
Alados-Arboledas, L
AF Lyamani, H.
Valenzuela, A.
Perez-Ramirez, D.
Toledano, C.
Granados-Munoz, M. J.
Olmo, F. J.
Alados-Arboledas, L.
TI Aerosol properties over the western Mediterranean basin: temporal and
spatial variability
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID ROBOTIC NETWORK DATA; SAHARAN DUST EVENTS; 2003 HEAT-WAVE;
OPTICAL-PROPERTIES; SOUTHEASTERN SPAIN; ATMOSPHERIC AEROSOLS;
SUN-PHOTOMETER; GRANADA SPAIN; MARITIME; TRANSPORT
AB This study focuses on the analysis of Aerosol Robotic Network (AERONET) aerosol data obtained over Alboran Island (35.90 degrees N, 3.03 degrees W, 15ma.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from the three nearest AERONET stations (Malaga, Oujda and Palma de Mallorca) and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the temporal and spatial variations of aerosol over this scarcely explored region. High aerosol loads over Alboran were mainly associated with desert dust transport from North Africa and occasional advection of anthropogenic fine particles from central European urban-industrial areas. The fine particle load observed over Alboran was surprisingly similar to that obtained over the other three nearest AERONET stations, suggesting homogeneous spatial distribution of fine particle loads over the four studied sites in spite of the large differences in local sources. The results from MAN acquired over the Mediterranean Sea, Black Sea and Atlantic Ocean from July to November 2011 revealed a pronounced predominance of fine particles during the cruise period.
C1 [Lyamani, H.; Valenzuela, A.; Granados-Munoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.] Andalusian Inst Earth Syst Res IISTA CEAMA, Granada 18006, Spain.
[Lyamani, H.; Valenzuela, A.; Granados-Munoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.] Univ Granada, Dept Appl Phys, E-18071 Granada, Spain.
[Perez-Ramirez, D.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Lab, Greenbelt, MD 20771 USA.
[Perez-Ramirez, D.] Univ Space Res Assoc, GESTAR, Columbia, MD USA.
[Toledano, C.] Univ Valladolid UVA, Atmospher Opt Grp GOA, Valladolid 47071, Spain.
RP Lyamani, H (reprint author), Andalusian Inst Earth Syst Res IISTA CEAMA, Granada 18006, Spain.
EM hlyamani@ugr.es
RI Toledano, Carlos/J-3672-2012; Alados-Arboledas, Lucas/P-5630-2014; Olmo
Reyes, Francisco Jose/F-7621-2016; Perez-Ramirez, Daniel/Q-1129-2016;
Granados-Munoz, Maria Jose/G-9308-2014
OI Toledano, Carlos/0000-0002-6890-6648; Alados-Arboledas,
Lucas/0000-0003-3576-7167; Olmo Reyes, Francisco
Jose/0000-0002-0186-1721; Perez-Ramirez, Daniel/0000-0002-7679-6135;
Granados-Munoz, Maria Jose/0000-0001-8718-5914
FU Andalusia Regional Government [P12-RNM-2409, P10-RNM-6299]; Spanish
Ministry of Science and Technology [CGL2010-18782, CGL2013-45410-R]; EU
through ACTRIS project [EU INFRA-2010-1.1.16-262254]; ACTRIS (European
Union Seventh Framework Program (FP7) [262254]; Royal Institute and
Observatory of the Spanish Navy (ROA)
FX This work was supported by the Andalusia Regional Government through
projects P12-RNM-2409 and P10-RNM-6299, by the Spanish Ministry of
Science and Technology through projects CGL2010-18782, and
CGL2013-45410-R; and by the EU through ACTRIS project (EU
INFRA-2010-1.1.16-262254). CIMEL Calibration was performed at the
AERONET-EUROPE calibration center, supported by ACTRIS (European Union
Seventh Framework Program (FP7/2007-2013) under grant agreement no.
262254. The authors gratefully acknowledge the outstanding support
received from Royal Institute and Observatory of the Spanish Navy (ROA).
The authors are grateful to the AERONET, MAN, and field campaign PIs for
the production of the data used in this research effort. We would like
to express our gratitude to the NASA Goddard Space Flight Center, NOAA
Air Resources Laboratory and Naval Research Laboratory for the HYSPLIT
model. We would like to acknowledge the constructive comments of A.
Smirnov about the AERONET data. Finally, we also thank A. Kowalski for
revising the manuscript.
NR 58
TC 9
Z9 9
U1 0
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 5
BP 2473
EP 2486
DI 10.5194/acp-15-2473-2015
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7PE
UT WOS:000350559700014
ER
PT J
AU Sessions, WR
Reid, JS
Benedetti, A
Colarco, PR
da Silva, A
Lu, S
Sekiyama, T
Tanaka, TY
Baldasano, JM
Basart, S
Brooks, ME
Eck, TF
Iredell, M
Hansen, JA
Jorba, OC
Juang, HMH
Lynch, P
Morcrette, JJ
Moorthi, S
Mulcahy, J
Pradhan, Y
Razinger, M
Sampson, CB
Wang, J
Westphal, DL
AF Sessions, W. R.
Reid, J. S.
Benedetti, A.
Colarco, P. R.
da Silva, A.
Lu, S.
Sekiyama, T.
Tanaka, T. Y.
Baldasano, J. M.
Basart, S.
Brooks, M. E.
Eck, T. F.
Iredell, M.
Hansen, J. A.
Jorba, O. C.
Juang, H. -M. H.
Lynch, P.
Morcrette, J. -J.
Moorthi, S.
Mulcahy, J.
Pradhan, Y.
Razinger, M.
Sampson, C. B.
Wang, J.
Westphal, D. L.
TI Development towards a global operational aerosol consensus: basic
climatological characteristics of the International Cooperative for
Aerosol Prediction Multi-Model Ensemble (ICAP-MME) (vol 15, pg 335,
2015)
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Correction
C1 [Sessions, W. R.; Lynch, P.] CSC Inc, Monterey, CA USA.
[Reid, J. S.; Hansen, J. A.; Sampson, C. B.; Westphal, D. L.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA.
[Benedetti, A.; Morcrette, J. -J.; Razinger, M.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England.
[Colarco, P. R.; da Silva, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Lu, S.; Iredell, M.; Juang, H. -M. H.; Moorthi, S.; Wang, J.] NOAA, NCEP, College Pk, MD USA.
[Sekiyama, T.; Tanaka, T. Y.] Japan Meteorol Agcy, Meteorol Res Inst, Atmospher Environm & Appl Meteorol Res Dept, Tsukuba, Ibaraki, Japan.
[Baldasano, J. M.; Basart, S.; Jorba, O. C.] Ctr Nacl Supercomputac, Barcelona Supercomp Ctr, Earth Sci Dept, Barcelona, Spain.
[Brooks, M. E.; Mulcahy, J.; Pradhan, Y.] Met Off, Exeter, Devon, England.
[Eck, T. F.] NASA, Goddard Space Flight Ctr, USRA, Greenbelt, MD 20771 USA.
[Wang, J.] IM Syst Grp Inc, Rockville, MD USA.
RP Reid, JS (reprint author), Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA.
EM jeffrey.reid@nrlmry.navy.mil
RI Reid, Jeffrey/B-7633-2014; Colarco, Peter/D-8637-2012
OI Reid, Jeffrey/0000-0002-5147-7955; Colarco, Peter/0000-0003-3525-1662
NR 1
TC 0
Z9 0
U1 0
U2 10
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 5
BP 2533
EP 2534
DI 10.5194/acp-15-2533-2015
PG 2
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7PE
UT WOS:000350559700019
ER
PT J
AU Cazorla, M
Wolfe, GM
Bailey, SA
Swanson, AK
Arkinson, HL
Hanisco, TF
AF Cazorla, M.
Wolfe, G. M.
Bailey, S. A.
Swanson, A. K.
Arkinson, H. L.
Hanisco, T. F.
TI A new airborne laser-induced fluorescence instrument for in situ
detection of formaldehyde throughout the troposphere and lower
stratosphere
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID ABSORPTION CROSS-SECTIONS; ATMOSPHERIC FORMALDEHYDE; ISOPRENE EMISSIONS;
OMI OBSERVATIONS; NORTH-AMERICA; TRACE GASES; AIR; OZONE; REGION; SPACE
AB The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas-phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a stand-alone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is +/- 10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal / noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.
C1 [Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Hanisco, T. F.] NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
[Wolfe, G. M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA.
[Swanson, A. K.] Univ Maryland Baltimore Cty, Goddard Earth Sci Technol & Res, Baltimore, MD 21228 USA.
[Arkinson, H. L.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
RP Hanisco, TF (reprint author), NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
EM thomas.hanisco@nasa.gov
RI Wolfe, Glenn/D-5289-2011;
OI Cazorla, Maria/0000-0001-5295-2968
FU Goddard Internal Research and Development (IRAD) program; NASA ROSES
[NNH10ZDA001N-SEAC4RS]; NASA Postdoctoral Program
FX This research was funded by the Goddard Internal Research and
Development (IRAD) program and the NASA ROSES grant
NNH10ZDA001N-SEAC4RS. The NASA Postdoctoral Program provided funding for
M. Cazorla.
NR 33
TC 15
Z9 15
U1 5
U2 21
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 2
BP 541
EP 552
DI 10.5194/amt-8-541-2015
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7OR
UT WOS:000350558300002
ER
PT J
AU Su, W
Corbett, J
Eitzen, Z
Liang, L
AF Su, W.
Corbett, J.
Eitzen, Z.
Liang, L.
TI Next-generation angular distribution models for top-of-atmosphere
radiative flux calculation from CERES instruments: methodology
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID ENERGY SYSTEM INSTRUMENT; BIDIRECTIONAL REFLECTANCE; PART I; MODIS
OBSERVATIONS; SURFACE-ROUGHNESS; TERRA SATELLITE; EARTHS SURFACE; CIRRUS
CLOUDS; AEROSOLS; SNOW
AB The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance, radiative effects of clouds and aerosols, and climate feedback. The Clouds and the Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation ADMs that are developed for Terra and Aqua using all available CERES rotating azimuth plane radiance measurements. Coincident cloud and aerosol retrievals, and radiance measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from Goddard Earth Observing System (GEOS) data assimilation version 5.4.1 are used to define scene type. CERES radiance measurements are stratified by scene type and by other parameters that are important for determining the anisotropy of the given scene type. Anisotropic factors are then defined either for discrete intervals of relevant parameters or as a continuous functions of combined parameters, depending on the scene type. Significant differences between the ADMs described in this paper and the existing ADMs are over clear-sky scene types and polar scene types. Over clear ocean, we developed a set of shortwave (SW) ADMs that explicitly account for aerosols. Over clear land, the SW ADMs are developed for every 1 degrees latitude x 1 degrees longitude region for every calendar month using a kernel-based bidirectional reflectance model. Over clear Antarctic scenes, SW ADMs are developed by accounting the effects of sastrugi on anisotropy. Over sea ice, a sea-ice brightness index is used to classify the scene type. Under cloudy conditions over all surface types, the longwave (LW) and window (WN) ADMs are developed by combining surface and cloud-top temperature, surface and cloud emissivity, cloud fraction, and precipitable water. Compared to the existing ADMs, the new ADMs change the monthly mean instantaneous fluxes by up to 5 W m(-2) on a regional scale of 1 degrees latitude x 1 degrees longitude, but the flux changes are less than 0.5 W m(-2) on a global scale.
C1 [Su, W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Corbett, J.; Eitzen, Z.; Liang, L.] Sci Syst & Applicat Inc, Hampton, VA USA.
RP Su, W (reprint author), NASA, Langley Res Ctr, MS420, Hampton, VA 23665 USA.
EM wenying.su-1@nasa.gov
NR 59
TC 11
Z9 11
U1 0
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 2
BP 611
EP 632
DI 10.5194/amt-8-611-2015
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7OR
UT WOS:000350558300007
ER
PT J
AU Fauchez, T
Dubuisson, P
Cornet, C
Szczap, F
Garnier, A
Pelon, J
Meyer, K
AF Fauchez, T.
Dubuisson, P.
Cornet, C.
Szczap, F.
Garnier, A.
Pelon, J.
Meyer, K.
TI Impacts of cloud heterogeneities on cirrus optical properties retrieved
from space-based thermal infrared radiometry
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID BULK SCATTERING PROPERTIES; RADIATIVE PROPERTIES; ICE CLOUDS;
STRATOCUMULUS CLOUDS; EFFECTIVE EMISSIVITY; SPECTRAL REGION; PART I;
ATMOSPHERE; INHOMOGENEITY; MODEL
AB This paper presents a study, based on simulations, of the impact of cirrus cloud heterogeneities on the retrieval of cloud parameters (optical thickness and effective diameter) for the Imaging Infrared Radiometer (IIR) on board CALIPSO. Cirrus clouds are generated by the stochastic model 3DCLOUD for two different cloud fields and for several averaged cloud parameters. One cloud field is obtained from a cirrus observed on 25 May 2007 during the airborne campaign CIRCLE-2 and the other is a cirrus uncinus. The radiative transfer is simulated with the 3DMCPOL code. To assess the errors due to cloud heterogeneities, two related retrieval algorithms are used: (i) the split-window technique to retrieve the ice crystal effective diameter and (ii) an algorithm similar to the IIR operational algorithm to retrieve the effective emissivity and the effective optical thickness. Differences between input parameters and retrieved parameters are compared as a function of different cloud properties such as the mean optical thickness, the heterogeneity parameter and the effective diameter. The optical thickness heterogeneity for each 1 km x 1 km observation pixel is represented by the optical thickness standard deviation computed using 100 m x 100 m subpixels. We show that optical thickness heterogeneity may have a strong impact on the retrieved parameters, mainly due to the plane-parallel approximation (PPA assumption). In particular, for cirrus clouds with ice crystal diameter of approximately 10 mu m, the averaged error on the retrieved effective diameter and optical thickness is about 2.5 mu m (similar to 25 %) and -0.20 (similar to 12 %), respectively. Then, these biases decrease with increasing effective size due to a decrease of the cloud absorption and, thus, the PPA bias. Cloud horizontal heterogeneity effects are greater than other possible sources of retrieval errors such as those due to cloud vertical heterogeneity impact, surface temperature or atmospheric temperature profile uncertainty and IIR retrieval uncertainty. Cloud horizontal heterogeneity effects are larger than the IIR retrieval uncertainty if the standard deviation of the optical thickness, inside the observation pixel, is greater than 1.
C1 [Fauchez, T.; Dubuisson, P.; Cornet, C.] Univ Lille 1, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France.
[Szczap, F.] Univ Clermont Ferrand, Lab Meteorol Phys, Clermont Ferrand, France.
[Garnier, A.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Garnier, A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Pelon, J.] UVSQ, UPMC, CNRS, Lab Atmospheres, Paris, France.
[Meyer, K.] Univ Space Res Assoc, Goddard Earth Sci Technol & Res GESTAR, Columbia, MD USA.
[Meyer, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Cornet, C (reprint author), Univ Lille 1, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France.
EM celine.cornet@univ-lille1.fr
RI Meyer, Kerry/E-8095-2016
OI Meyer, Kerry/0000-0001-5361-9200
FU Centre National de la Recherche Scientifique; Programme National de
Teledetection Spatiale; Direction Generale de l'Armement
FX The authors acknowledge the Centre National de la Recherche
Scientifique, the Programme National de Teledetection Spatiale and the
Direction Generale de l'Armement for their financial support. We also
thank the use of resources provided by the European Grid Infrastructure.
For more information, please refer to the EGI-InSPIRE paper
(http://go.egi.eu/pdnon).
NR 46
TC 7
Z9 7
U1 0
U2 4
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 2
BP 633
EP 647
DI 10.5194/amt-8-633-2015
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7OR
UT WOS:000350558300008
ER
PT J
AU Liu, C
Liu, X
Kowalewski, MG
Janz, SJ
Abad, GG
Pickering, KE
Chance, K
Lamsal, LN
AF Liu, C.
Liu, X.
Kowalewski, M. G.
Janz, S. J.
Abad, G. Gonzalez
Pickering, K. E.
Chance, K.
Lamsal, L. N.
TI Characterization and verification of ACAM slit functions for trace-gas
retrievals during the 2011 DISCOVER-AQ flight campaign
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID OZONE MONITORING INSTRUMENT; NO2; SPECTROMETER; DOAS
AB The Airborne Compact Atmospheric Mapper (ACAM), an ultraviolet/visible/near-infrared spectrometer, has been flown on board the NASA UC-12 aircraft during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaigns to provide remote sensing observations of tropospheric and boundary-layer pollutants from its radiance measurements. To assure the tracegas retrieval from ACAM measurements we perform detailed characterization and verification of ACAM slit functions. The wavelengths and slit functions of ACAM measurements are characterized for the air-quality channel (similar to 304-500 nm) through cross-correlation with a high-resolution solar irradiance reference spectrum after necessarily accounting for atmospheric gas absorption and the ring effect in the calibration process. The derived slit functions, assuming a hybrid combination of asymmetric Gaussian and top-hat slit functions, agree very well with the laboratory-measured slit functions. Comparisons of trace-gas retrievals between using derived and measured slit functions demonstrate that the cross-correlation technique can be reliably used to characterize slit functions for trace-gas retrievals.
C1 [Liu, C.; Liu, X.; Abad, G. Gonzalez; Chance, K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Kowalewski, M. G.; Lamsal, L. N.] USRA, Goddard Earth Sci Technol & Res, Greenbelt, MD USA.
[Kowalewski, M. G.; Janz, S. J.; Pickering, K. E.; Lamsal, L. N.] NASA, Goddard Space & Flight Ctr, Greenbelt, MD USA.
RP Liu, X (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM xliu@cfa.harvard.edu
RI Liu, Xiong/P-7186-2014; Pickering, Kenneth/E-6274-2012;
OI Liu, Xiong/0000-0003-2939-574X; Gonzalez Abad,
Gonzalo/0000-0002-8090-6480
FU NASA, as part of the NASA Earth Venture-1 DISCOVER-AQ project
[NNX11AH77G, NNX12AJ66G]; Smithsonian Institution
FX Funding for this work at Smithsonian Astrophysical Observatory is
provided by NASA Grants NNX11AH77G and NNX12AJ66G, as part of the NASA
Earth Venture-1 DISCOVER-AQ project, and by the Smithsonian Institution.
We acknowledge James Crawford for his strong support of this work.
NR 19
TC 4
Z9 4
U1 1
U2 3
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 2
BP 751
EP 759
DI 10.5194/amt-8-751-2015
PG 9
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7OR
UT WOS:000350558300016
ER
PT J
AU Spinei, E
Cede, A
Herman, J
Mount, GH
Eloranta, E
Morley, B
Baidar, S
Dix, B
Ortega, I
Koenig, T
Volkamer, R
AF Spinei, E.
Cede, A.
Herman, J.
Mount, G. H.
Eloranta, E.
Morley, B.
Baidar, S.
Dix, B.
Ortega, I.
Koenig, T.
Volkamer, R.
TI Ground-based direct-sun DOAS and airborne MAX-DOAS measurements of the
collision-induced oxygen complex, O2O2, absorption with significant
pressure and temperature differences
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID OZONE UV SPECTROSCOPY; CROSS-SECTIONS; AEROSOL EXTINCTION; PROFILE
MEASUREMENTS; FREE TROPOSPHERE; 477 NM; NO2; O-4; INSTRUMENT; RETRIEVAL
AB The collision-induced O-2 complex, O2O2, is a very important trace gas for understanding remote sensing measurements of aerosols, cloud properties and atmospheric trace gases. Many ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of the O2O2 optical depth require correction factors of 0.75 +/- 0.1 to reproduce radiative transfer modeling (RTM) results for a nearly pure Rayleigh atmosphere. One of the potential causes of this discrepancy is uncertainty in laboratory-measured O2O2 absorption cross section temperature and pressure dependencies due to difficulties in replicating atmospheric conditions in the laboratory environment.
This paper presents ground-based direct-sun (DS) and airborne multi-axis (AMAX) DOAS measurements of O2O2 absorption optical depths under actual atmospheric conditions in two wavelength regions (335-390 and 435-490 nm). DS irradiance measurements were made by the Washington State University research-grade Multi-Function Differential Spectroscopy Instrument instrument from 2007 to 2014 at seven sites with significant pressure (778 to 1013 hPa) and O2O2 profile-weighted temperature (247 to 275 K) differences. Aircraft MAX-DOAS measurements were conducted by the University of Colorado (CU) AMAX-DOAS instrument on 29 January 2012 over the Southern Hemispheric subtropical Pacific Ocean. Scattered solar radiance spectra were collected at altitudes between 9 and 13.2 km, with O2O2 profile-weighted temperatures of 231 to 244K and nearly pure Rayleigh scattering conditions.
Due to the well-defined DS air-mass factors during ground-based measurements and extensively characterized atmospheric conditions during the aircraft AMAX-DOAS measurements, O2O2 "pseudo" absorption cross sections, sigma, are derived from the observed optical depths and estimated O2O2 column densities. Vertical O2O2 columns are calculated from the atmospheric sounding temperature, pressure and specific humidity profiles.
Based on the ground-based atmospheric DS observations, there is no pressure dependence of the O2O2 sigma within the measurement errors (3 %). Two data sets are combined to derive the peak sigma temperature dependence of the 360 and 477 nm dimer absorption bands from 231 to 275 K. DS and AMAX-derived peak sigma (O2O2) as a function of T can be described by a quadratic function at 360 nm and linear function at 477 nm with about 9% +/- 2.5% per 44K rate.
Recent laboratory-measured O2O2 cross sections by Thalman and Volkamer (2013) agree with these "DOAS apparent" peak sigma (O2O2) at 233, 253 and 273K within 3 %. Changes in the O2O2 spectral band shape at colder temperatures are observed for the first time in field data. Temperature effects on spectral band shapes can introduce errors in the retrieved O2O2 column abundances if a single room temperature sigma (O2O2) is used in the DOAS analysis. Simultaneous fitting of sigma (O2O2) at temperatures that bracket the ambient temperature range can reduce such errors.
Our results show that laboratory-measured sigma (O2O2) (Hermans, 2011, at 296K and Thalman and Volkamer, 2013) are applicable for observations over a wide range of atmospheric conditions. Column densities derived using Hermans (2011) sigma at 296K require very small correction factors (0.94 +/- 0.02 at 231 K and 0.99 +/- 0.02 at 275 K) to reproduce theoretically calculated slant column densities for DS and AMAX-DOAS measurements. Simultaneous fitting of sigma (O2O2) at 203 and 293K further improved the results at UV and visible wave-lengths for AMAX-DOAS.
C1 [Spinei, E.] Univ Maryland, ESSIC, College Pk, MD 20742 USA.
[Spinei, E.; Cede, A.; Herman, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cede, A.] Univ Space Res Assoc, Greenbelt, MD USA.
[Herman, J.] Univ Maryland Baltimore Cty, Catonsville, MD USA.
[Spinei, E.; Mount, G. H.] Washington State Univ, Lab Atmospher Res, Pullman, WA 99164 USA.
[Eloranta, E.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI USA.
[Morley, B.] Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO 80307 USA.
[Baidar, S.; Dix, B.; Ortega, I.; Koenig, T.; Volkamer, R.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Baidar, S.; Ortega, I.; Koenig, T.; Volkamer, R.] Univ Colorado, CIRES, Boulder, CO 80309 USA.
RP Spinei, E (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA.
EM espinei@wsu.edu
RI Volkamer, Rainer/B-8925-2016;
OI Volkamer, Rainer/0000-0002-0899-1369; Herman, Jay/0000-0002-9146-1632
FU National Aeronautics and Space Administration [NNX09AJ28G, NNG05GR56G];
National Science Foundation [AGS-1104104]; National Science Foundation;
NSF Faculty Early Career Development (CAREER) award [ATM-0847793];
ESRL/CIRES graduate fellowship; NASA graduate fellowship
FX The WSU MFDOAS instrument development and deployment were supported by
National Aeronautics and Space Administration grants to Washington State
University (NNX09AJ28G and NNG05GR56G). We thank the institutional
support of the Jet Propulsion Laboratory Table Mountain Facility
(Stanley Sander et al.); University of Alaska in Fairbanks (William
Simpson et al.); NASA Goddard Space Flight Center; Cabauw, Netherlands
(CINDI organizers); University of Alabama in Huntsville (M. Newchurch et
al.); and Dept. of Energy Pacific Northwest National Laboratory,
Richland, WA (Jim Mather et al.), where the various field measurements
were made. Ozonesonde measurements were supported through NOAA.; The
TORERO project is funded by the National Science Foundation AGS-1104104
(PI: R. Volkamer) awarded to CU. The involvement of the National Science
Foundation-sponsored Lower Atmospheric Observing Facilities, managed and
operated by the National Center for Atmospheric Research Earth Observing
Laboratory, is acknowledged. RV acknowledges financial support from the
NSF Faculty Early Career Development (CAREER) award ATM-0847793 to
develop the CU AMAX-DOAS instrument. SB is the recipient of a ESRL/CIRES
graduate fellowship. IO is the recipient of a NASA graduate fellowship.
The authors thank Brad Pierce for RAQMS model data used to constrain
McArtim and Tim Deutschman for providing McArtim.
NR 49
TC 11
Z9 11
U1 0
U2 10
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 2
BP 793
EP 809
DI 10.5194/amt-8-793-2015
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7OR
UT WOS:000350558300019
ER
PT J
AU Alvarado, MJ
Payne, VH
Cady-Pereira, KE
Hegarty, JD
Kulawik, SS
Wecht, KJ
Worden, JR
Pittman, JV
Wofsy, SC
AF Alvarado, M. J.
Payne, V. H.
Cady-Pereira, K. E.
Hegarty, J. D.
Kulawik, S. S.
Wecht, K. J.
Worden, J. R.
Pittman, J. V.
Wofsy, S. C.
TI Impacts of updated spectroscopy on thermal infrared retrievals of
methane evaluated with HIPPO data
SO ATMOSPHERIC MEASUREMENT TECHNIQUES
LA English
DT Article
ID TROPOSPHERIC EMISSION SPECTROMETER; TRANSFER MODEL LBLRTM;
SATELLITE-OBSERVATIONS; GLOBAL OBSERVATIONS; CHEMICAL TRACERS;
WATER-VAPOR; GEOS-CHEM; TES; SPACE; IASI
AB Errors in the spectroscopic parameters used in the forward radiative transfer model can introduce spatially, temporally, and altitude-dependent biases in trace gas retrievals. For well-mixed trace gases such as methane, where the variability of tropospheric mixing ratios is relatively small, reducing such biases is particularly important. We use aircraft observations from all five missions of the HIAPER Pole-to-Pole Observations (HIPPO) of the Carbon Cycle and Greenhouse Gases Study to evaluate the impact of updates to spectroscopic parameters for methane (CH4), water vapor (H2O), and nitrous oxide (N2O) on thermal infrared retrievals of methane from the NASA Aura Tropospheric Emission Spectrometer (TES). We find that updates to the spectroscopic parameters for CH4 result in a substantially smaller mean bias in the retrieved CH4 when compared with HIPPO observations. After an N2O-based correction, the bias in TES methane upper tropospheric representative values for measurements between 50 degrees S and 50 degrees N decreases from 56.9 to 25.7 ppbv, while the bias in the lower tropospheric representative value increases only slightly (from 27.3 to 28.4 ppbv). For retrievals with less than 1.6 degrees of freedom for signal (DOFS), the bias is reduced from 26.8 to 4.8 ppbv. We also find that updates to the spectroscopic parameters for N2O reduce the errors in the retrieved N2O profile.
C1 [Alvarado, M. J.; Cady-Pereira, K. E.; Hegarty, J. D.] Atmospher & Environm Res, Lexington, MA 02421 USA.
[Payne, V. H.; Worden, J. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Kulawik, S. S.] Bay Area Environm Res Inst, Mountain View, CA USA.
[Wecht, K. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Pittman, J. V.; Wofsy, S. C.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
RP Alvarado, MJ (reprint author), Atmospher & Environm Res, Lexington, MA 02421 USA.
EM malvarad@aer.com
RI Chem, GEOS/C-5595-2014
FU US National Science Foundation under the HIPPO Program; US National
Science Foundation under NASA
FX This research was supported by the US National Science Foundation under
the HIPPO Program, and under NASA contracts to Atmospheric and
Environmental Research (AER) and the Jet Propulsion Laboratory,
California Institute of Technology (JPL). We thank Eric A. Kort of the
University of Michigan and all the other members of the HIPPO Science
Team for their assistance with the data.
NR 67
TC 6
Z9 6
U1 1
U2 11
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1867-1381
EI 1867-8548
J9 ATMOS MEAS TECH
JI Atmos. Meas. Tech.
PY 2015
VL 8
IS 2
BP 965
EP 985
DI 10.5194/amt-8-965-2015
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CC7OR
UT WOS:000350558300029
ER
PT J
AU Hedrick, A
Marshall, HP
Winstral, A
Elder, K
Yueh, S
Cline, D
AF Hedrick, A.
Marshall, H. -P.
Winstral, A.
Elder, K.
Yueh, S.
Cline, D.
TI Independent evaluation of the SNODAS snow depth product using
regional-scale lidar-derived measurements
SO CRYOSPHERE
LA English
DT Article
ID WATER EQUIVALENT; SPATIAL VARIABILITY; AIRBORNE LIDAR; UPPER TREELINE;
ARCTIC ALASKA; MODEL; COVER; WIND; USA; REDISTRIBUTION
AB Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km(2) lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage.
Within 12 distinctive 500 x 500m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty.
C1 [Hedrick, A.; Marshall, H. -P.] Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA.
[Hedrick, A.; Winstral, A.] ARS, USDA, Northwest Watershed Res Ctr, Boise, ID 83712 USA.
[Elder, K.] US Forest Serv, USDA, Rocky Mt Res Stn, Ft Collins, CO 80526 USA.
[Yueh, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Cline, D.] NWS, NOAA, Hydrol Lab, Off Hydrol Dev, Silver Spring, MD 20910 USA.
RP Hedrick, A (reprint author), Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA.
EM hedrick.ars@gmail.com
OI Hedrick, Andrew/0000-0001-9511-1341
FU NASA [NNX10AO02G, NNX10AN30A]; USDA-ARS CRIS [5362-13610-008-00D]
FX The authors would like to express their gratitude to all the researchers
involved in the intensive ground-based measurement campaign during
CLPX-2. The CLPX-2 lidar data sets were archived and maintained by Fugro
Horizons, Inc. Daily SNODAS model runs from 2003 to the present day are
archived at the National Snow and Ice Data Center in Boulder, Colorado.
This research was funded in part by NASA grant #NNX10AO02G (NASA New
Investigator Program), NASA grant #NNX10AN30A (NASA EPSCoR Program), and
the USDA-ARS CRIS Project 5362-13610-008-00D: "Understanding Snow and
Hydrologic Processes in Mountainous Terrain with a Changing Climate".
NR 43
TC 6
Z9 6
U1 4
U2 16
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1994-0416
EI 1994-0424
J9 CRYOSPHERE
JI Cryosphere
PY 2015
VL 9
IS 1
BP 13
EP 23
DI 10.5194/tc-9-13-2015
PG 11
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CC7NR
UT WOS:000350555400002
ER
PT J
AU Schaefer, M
Machguth, H
Falvey, M
Casassa, G
Rignot, E
AF Schaefer, M.
Machguth, H.
Falvey, M.
Casassa, G.
Rignot, E.
TI Quantifying mass balance processes on the Southern Patagonia Icefield
SO CRYOSPHERE
LA English
DT Article
ID NET ACCUMULATION RATES; GLACIAR JORGE MONTT; PIO-XI GLACIER; CHILEAN
PATAGONIA; ICE-CORE; CALVING GLACIERS; MORENO GLACIER; PERITO MORENO;
AMERICA; SATELLITE
AB We present surface mass balance simulations of the Southern Patagonia Icefield (SPI) driven by downscaled reanalysis data. The simulations were evaluated and interpreted using geodetic mass balances, measured point balances and a complete velocity field of the icefield for spring 2004. The high measured accumulation of snow of up to 15.4m w.e. yr(-1) (meters water equivalent per year) as well as the high measured ablation of up to 11m w.e. yr(-1) is reproduced by the model. The overall modeled surface mass balance was positive and increasing during 1975-2011. Subtracting the surface mass balance from geodetic balances, calving fluxes were inferred. Mass losses of the SPI due to calving were strongly increasing from 1975-2000 to 2000-2011 and higher than losses due to surface melt. Calving fluxes were inferred for the individual glacier catchments and compared to fluxes estimated from velocity data. Measurements of ice thickness and flow velocities at the glaciers' front and spatially distributed accumulation measurements can help to reduce the uncertainties of the different terms in the mass balance of the Southern Patagonia Icefield.
C1 [Schaefer, M.] Univ Austral Chile, Fac Ciencias, Inst Ciencias Fis & Matemat, Valdivia, Chile.
[Schaefer, M.] Univ Austral Chile, Fac Ciencias, Inst Ciencias Marinas & Limnol, Valdivia, Chile.
[Machguth, H.] Tech Univ Denmark, Arctic Technol Ctr, DK-2800 Lyngby, Denmark.
[Falvey, M.] Univ Chile, Dept Geophys, Santiago, Chile.
[Casassa, G.] Geoestudios, Las Vertientes, San Jose De Mai, Chile.
[Casassa, G.] Univ Magallanes, Punta Arenas, Chile.
[Rignot, E.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Rignot, E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
RP Schaefer, M (reprint author), Univ Austral Chile, Fac Ciencias, Inst Ciencias Fis & Matemat, Valdivia, Chile.
EM mschaefer@uach.cl
RI Rignot, Eric/A-4560-2014
OI Rignot, Eric/0000-0002-3366-0481
FU FONDECYT [3140135]; European Union [226375]
FX The authors would like to thank the Chilean Weather Service (DMC) and
the Chilean Water Directory (DGA) for providing meteorological data,
Andres Rivera for sharing the data of his PhD thesis, Mike Willis for
sharing the glacier outlines used in his work and anticipating his
unpublished velocity data, Hernan De Angelis and Martin Stuefer for
sharing their mass balance profile data electronically and the Chilean
Navy Hydrographic and Oceanographic Service (SHOA) for providing
bathymetric data for the Patagonian fjords. We would like to thank
Mauricio Pelto, Helmut Rott and an anonymous reviewer, whose comments
helped to significantly improve the manuscript. M. Schaefer is FONDECYT
Postdoc Fellow (project no. 3140135). This work was partly supported by
funding from the ice2sea programme from the European Union 7th Framework
Programme, grant no. 226375. Ice2sea contribution no. 168.
NR 48
TC 13
Z9 13
U1 5
U2 14
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1994-0416
EI 1994-0424
J9 CRYOSPHERE
JI Cryosphere
PY 2015
VL 9
IS 1
BP 25
EP 35
DI 10.5194/tc-9-25-2015
PG 11
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CC7NR
UT WOS:000350555400003
ER
PT J
AU Luthi, MP
Ryser, C
Andrews, LC
Catania, GA
Funk, M
Hawley, RL
Hoffman, MJ
Neumann, TA
AF Luethi, M. P.
Ryser, C.
Andrews, L. C.
Catania, G. A.
Funk, M.
Hawley, R. L.
Hoffman, M. J.
Neumann, T. A.
TI Heat sources within the Greenland Ice Sheet: dissipation, temperate
paleo-firn and cryo-hydrologic warming
SO CRYOSPHERE
LA English
DT Article
ID ABLATION ZONE; WEST GREENLAND; FAST-FLOW; JAKOBSHAVNS-ISBRAE; DARK
REGION; MECHANISMS; DEFORMATION; BOREHOLES; MOTION; LEVEL
AB Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.
C1 [Luethi, M. P.; Ryser, C.; Funk, M.] ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol VAW, CH-8093 Zurich, Switzerland.
[Andrews, L. C.; Catania, G. A.] Univ Texas Austin, Inst Geophys, Austin, TX 78758 USA.
[Andrews, L. C.; Catania, G. A.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78758 USA.
[Hawley, R. L.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA.
[Hoffman, M. J.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA.
[Neumann, T. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
RP Luthi, MP (reprint author), ETH, Versuchsanstalt Wasserbau Hydrol & Glaziol VAW, CH-8093 Zurich, Switzerland.
EM martin.luethi@geo.uzh.ch
RI Catania, Ginny/B-9787-2008; Neumann, Thomas/D-5264-2012; Andrews,
Lauren/D-8274-2017;
OI Andrews, Lauren/0000-0003-3727-4737; Luthi, Martin
Peter/0000-0003-4419-8496
FU Swiss National Science Foundation [200021_127197]; US-NSF [OPP 0908156,
OPP 0909454, ANT-0424589]; NASA within the US Department of Energy
Office of Science
FX This project was supported by Swiss National Science Foundation Grant
200021_127197, US-NSF Grants OPP 0908156, OPP 0909454 and ANT-0424589
(to CReSIS), NASA Cryospheric Sciences, and Climate Modeling Programs
within the US Department of Energy Office of Science. Logistical support
was provided by CH2MHill Polar Services.
NR 37
TC 10
Z9 10
U1 4
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1994-0416
EI 1994-0424
J9 CRYOSPHERE
JI Cryosphere
PY 2015
VL 9
IS 1
BP 245
EP 253
DI 10.5194/tc-9-245-2015
PG 9
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA CC7NR
UT WOS:000350555400018
ER
PT J
AU Arumugam, DD
AF Arumugam, Darmindra D.
TI Decoupled Range and Orientation Sensing in Long-Range Magnetoquasistatic
Positioning
SO IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS
LA English
DT Article
DE Electromagnetic fields; magnetoquasistatics; radio position measurement
ID COMPLEX IMAGE THEORY
AB A technique using magnetoquasistatic fields has been shown to enable accurate ranging in non-line-of-sight environments. Due to the nonlinear field coupling equations, the technique suffers when extended to 2-D and 3-D due to the coupling of range and orientation errors combined with the nonlinear convergence of the solution. Using a 2-axis transmit receive concept, a theory is presented to decouple range and orientation. The results are linear orientation-invariant ranging and linear range-invariant orientation sensing. Measurements inverted using the decoupled equations demonstrate peak orientation-invariant range errors of 0.2-0.4 m for a range of up to over 40 m, and peak range-invariant orientation errors of 1 degrees-7 degrees.
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Arumugam, DD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM darmindra.d.arumugam@jpl.nasa.gov
NR 9
TC 1
Z9 1
U1 2
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1536-1225
EI 1548-5757
J9 IEEE ANTENN WIREL PR
JI IEEE Antennas Wirel. Propag. Lett.
PY 2015
VL 14
BP 654
EP 657
DI 10.1109/LAWP.2014.2375873
PG 4
WC Engineering, Electrical & Electronic; Telecommunications
SC Engineering; Telecommunications
GA CD2CW
UT WOS:000350882600010
ER
PT J
AU Johnston, CO
Brandis, AM
AF Johnston, Christopher O.
Brandis, Aaron M.
TI Features of Afterbody Radiative Heating for Earth Entry
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
ID LUNAR-RETURN CONDITIONS; SHOCK-LAYER RADIATION; TEMPERATURES;
UNCERTAINTY; NITROGEN; CAPSULE; REENTRY; FLOWS
AB Radiative heating is identified as a major contributor to afterbody heating for Earth entry capsules at velocities above 10km/s. Because of rate-limited electron-ion recombination processes, many of the electronically excited N and O atoms produced in the high-temperature/pressure forebody remain as they expand into the afterbody region, which results in significant afterbody radiation. Large radiative heating sensitivities to electron-impact ionization rates and escape factors are identified. Ablation products from a forebody ablator are shown to increase the afterbody radiation by nearly 40%, due to the influence of CO on the vibrational-electronic temperature. The tangent-slab radiation transport approach is shown to overpredict the radiative flux by as much as 50% in the afterbody, therefore making the more computationally expensive ray-tracing approach necessary for accurate radiative flux predictions. For the Stardust entry, the afterbody radiation is predicted to be nearly twice as large as the convective heating during the peak heating phase of the trajectory. Comparisons between simulations and the Stardust Echelle observation measurements, which are shown to be dominated by afterbody emission, indicate agreement within 20% for various N and O lines. Similarly, calorimeter measurements from the Fire II experiment are identified as a source of validation data for afterbody radiation. For the afterbody calorimeter measurement closest to the forebody, which experiences the largest afterbody radiative heating component, the fully catalytic convective heating prediction alone is shown to underpredict the measurement by up to 60%. Agreement with the measurements is improved to within 20% with the addition of afterbody radiation. These comparisons with Stardust and Fire II measurements confirm that afterbody radiation is a valid heating mechanism that requires consideration in future vehicle designs.
C1 [Johnston, Christopher O.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Brandis, Aaron M.] NASA, Ames Res Ctr, ERC Inc, Moffett Field, CA 94035 USA.
RP Johnston, CO (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
FU NASA Space Technology Mission Directorate Entry Systems and Modeling
project
FX The present work was funded by the NASA Space Technology Mission
Directorate Entry Systems and Modeling project, with tasks leads Michael
Wright and Michael Barnhardt. The authors would like to thank Victor
Lessard for providing the grids and Jarvis Songer at Lockheed Martin and
Todd White at ERC, Inc. at NASA Ames for identifying afterbody radiation
as a potential problem for Stardust-like conditions.
NR 30
TC 1
Z9 1
U1 1
U2 6
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 105
EP 119
DI 10.2514/1.A33084
PG 15
WC Engineering, Aerospace
SC Engineering
GA CD2CP
UT WOS:000350881800010
ER
PT J
AU Chen, YK
Gokcen, T
Edquist, KT
AF Chen, Yih-Kanq
Goekcen, Tahir
Edquist, Karl T.
TI Two-Dimensional Ablation and Thermal Response Analyses for Mars Science
Laboratory Heat Shield
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
AB This paper examines transient simulations performed to predict in-depth thermal response and surface recession of the proposed heat shield material for the Mars Science Laboratory entry capsule, that is, phenolic impregnated carbon ablator. The finite volume material response code used in this paper solves the time-dependent governing equations, including energy conservation and a three-component decomposition model, with a surface energy-balance condition and a moving grid system to predict shape change due to surface recession. The predicted in-depth thermal response of heat shield material generally agrees well with the thermocouple data under various arcjet conditions. Also, two-dimensional computations using aerothermal environment for Mars entry (derived from a proposed three-sigma trajectory) are performed around the heat shield shoulder region, where high heating occurs as the result of angle of attack. Parametric studies are conducted to examine the effects of carbon-fiber orientation, material properties, and surface recession on heat shield bondline temperature history. It is proved that the fiber orientation configuration of the baseline heat shield has the lowest maximum bondline temperature.
C1 [Chen, Yih-Kanq; Goekcen, Tahir] NASA, Ames Res Ctr, Thermal Protect Mat Branch, Moffett Field, CA 94035 USA.
[Edquist, Karl T.] NASA, Langley Res Ctr, Explorat Syst Anal Branch, Hampton, VA 23681 USA.
RP Chen, YK (reprint author), NASA, Ames Res Ctr, Thermal Protect Mat Branch, Mail Stop 234-1, Moffett Field, CA 94035 USA.
FU NASA Mars Science Laboratory project; NASA Ames Space Technology
Division [NNA04BC25C]
FX This work was funded by the NASA Mars Science Laboratory project. The
support from NASA Ames Space Technology Division through contract
NNA04BC25C to ELORET Corporation is gratefully acknowledged. The authors
thank Dave Driver for facility and thermocouple data.
NR 15
TC 2
Z9 2
U1 0
U2 7
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 134
EP 143
DI 10.2514/1.A32868
PG 10
WC Engineering, Aerospace
SC Engineering
GA CD2CP
UT WOS:000350881800012
ER
PT J
AU Goldman, BD
Dowell, EH
Scott, RC
AF Goldman, Benjamin D.
Dowell, Earl H.
Scott, Robert C.
TI Aeroelastic Stability of Thermal Protection System for Inflatable
Aerodynamic Decelerator
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
ID SUPERSONIC FLUTTER; PANEL-FLUTTER; SHELLS
AB A theoretical aeroelastic stability analysis has been performed on the flexible thermal protection system for an inflatable aerodynamic decelerator. Structural models consist of one or more truncated conical shells of the Donnell type, which may be elastically supported along the middle surface. The aerodynamic model is first-order piston theory. The Lagrangian of the system is formulated in terms of the generalized coordinates for all shell displacements, and the Rayleigh-Ritz method is used to derive the equations of motion. The aeroelastic stability boundaries and mode shapes are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the thermal protection system is approximated as a single conical shell, circumferentially asymmetric coalescence flutter between the second and third axial modes is observed. When many circumferential elastic supports are included, the shell flutters symmetrically in zero circumferential waves, with the first, second, and third axial modes being the most critical. In this case, the flutter boundary, flutter mechanism, and critical modes may change significantly with the addition of structural damping. Aeroelastic models that consider the thermal protection system as multiple interacting shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models, with higher axial modes being more critical. It is also found that tension applied at the shell edges, orthotropicity, and elastic support stiffness are important parameters that can dramatically affect the shell's flutter behavior.
C1 [Goldman, Benjamin D.; Dowell, Earl H.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA.
[Scott, Robert C.] NASA, Langley Res Ctr, Aeroelast Branch, Hampton, VA 23681 USA.
RP Goldman, BD (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA.
NR 16
TC 2
Z9 2
U1 3
U2 10
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 144
EP 156
DI 10.2514/1.A33001
PG 13
WC Engineering, Aerospace
SC Engineering
GA CD2CP
UT WOS:000350881800013
ER
PT J
AU Decker, RK
Barbre, RE
AF Decker, Ryan K.
Barbre, Robert E., Jr.
TI Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and
Risk Mitigation
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
ID PROFILES
AB Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit-to-launch decision. These assessments make use of wind profiles measured hours before launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3, and 4 h) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility, are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.
C1 [Decker, Ryan K.] NASA, George C Marshall Space Flight Ctr, Flight Vehicle Atmospher Environm, Nat Environm Branch EV44, Huntsville, AL 35812 USA.
[Barbre, Robert E., Jr.] Jacobs, Nat Environm, Huntsville, AL 35806 USA.
RP Decker, RK (reprint author), NASA, George C Marshall Space Flight Ctr, Flight Vehicle Atmospher Environm, Nat Environm Branch EV44, Huntsville, AL 35812 USA.
EM ryan.k.decker@nasa.gov
FU NASA's Launch Services Program office
FX Thanks to NASA's Launch Services Program office for sponsoring the
study, the staff at NASA's Applied Meteorology Unit for providing
technical review, and members of the MSFC Natural Environments Branch
for the technical discussions on wind statistics and spectral analysis.
Mr. Tyler Brock from USAF provided the Vandenberg Air Force Base
rawinsonde data. Mr. Brian Cunningham from LIT and Associated, Inc.,
provided the Wallops Flight Facility rawinsonde data and answered
questions relating to timestamp discrepancies. Mr. Matt McClelland from
United Launch Alliance provided additional Vandenberg Air Force Base
Jimsphere and rawinsonde data. Dr. Brian Sako from Aerospace Corp.
provided additional Vandenberg Air Force Base Jimsphere data.
NR 14
TC 0
Z9 0
U1 0
U2 0
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 209
EP 216
DI 10.2514/1.A33000
PG 8
WC Engineering, Aerospace
SC Engineering
GA CD2CP
UT WOS:000350881800019
ER
PT J
AU Combs, CS
Clemens, NT
Danehy, PM
Bathel, B
Parker, R
Wadhams, T
Holden, M
Kirk, B
AF Combs, C. S.
Clemens, N. T.
Danehy, P. M.
Bathel, B.
Parker, R.
Wadhams, T.
Holden, M.
Kirk, B.
TI Fluorescence Imaging of Reaction Control Jets and Backshell Aeroheating
of Orion Capsule
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
ID LASER-INDUCED FLUORESCENCE; VISUALIZATION; VEHICLE; FLOW
AB Planar laser-induced fluorescence of nitric oxide was used to visualize the interaction of reaction control system jet flows on the afterbody of a hypersonic capsule reentry vehicle at the Calspan-University at Buffalo Research Center's Large Energy National Shock Tunnel I reflected shock tunnel facility. The interaction of pitch and roll jets with the flowfield was investigated. Additionally, thin-film sensors were used to monitor heat transfer on the surface of the model to detect localized heating resulting from the firing of the reaction control system jets. Visualizations of the capsule shear layer using both planar laser-induced fluorescence and schlieren imaging compared favorably. The structure of the roll jet was found to be significantly altered due to interactions with the flowfield. Additionally, the presence of the roll jet appeared to change the nature of the shear layer from steady laminar to unsteady. The pitch jet structure was only disturbed in the far field. Comparison of the planar laser-induced fluorescence jet-fluid visualizations and the surface heat flux distributions indicate that the regions of enhanced aeroheating are not caused by the jet fluid itself impinging on the surface, but rather by the presence of jet-induced horseshoe vortices and shock wave/boundary-layer interactions.
C1 [Combs, C. S.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA.
[Clemens, N. T.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Engn, Austin, TX 78712 USA.
[Danehy, P. M.; Bathel, B.] NASA, Langley Res Ctr, Adv Sensing & Opt Measurement Branch, Hampton, VA 23681 USA.
[Parker, R.; Wadhams, T.; Holden, M.] Calspan Univ Buffalo, Res Ctr, Buffalo, NY 14225 USA.
[Kirk, B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Combs, CS (reprint author), Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA.
FU NASA Office of the Chief Technologist's Space Technology Research
Fellowship Grant [NNX11AN55H]; NASA's Orion Crew Exploration Vehicle
Aeroscience Program from NASA Langley Research Center; NASA Johnson
Space Center
FX This work was supported by a NASA Office of the Chief Technologist's
Space Technology Research Fellowship Grant (NNX11AN55H). The work was
also supported by NASA's Orion Crew Exploration Vehicle Aeroscience
Program from NASA Langley Research Center and NASA Johnson Space Center.
The authors wish to acknowledge the contribution to this project from
the Calspan-University at Buffalo Research Center's technicians and
engineers.
NR 21
TC 1
Z9 1
U1 1
U2 4
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 243
EP 252
DI 10.2514/1.A32946
PG 10
WC Engineering, Aerospace
SC Engineering
GA CD2CP
UT WOS:000350881800022
ER
PT J
AU Guruswamy, G
AF Guruswamy, Guru
TI Navier-Stokes-Equations-Based Computations of Launch Vehicles
Experiencing Forced Coupled Oscillations
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
C1 NASA, Ames Res Ctr, Fundamental Modeling & Simulat Branch, Moffett Field, CA 94035 USA.
RP Guruswamy, G (reprint author), NASA, Ames Res Ctr, Fundamental Modeling & Simulat Branch, Moffett Field, CA 94035 USA.
NR 13
TC 1
Z9 1
U1 1
U2 1
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
EI 1533-6794
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 299
EP U6
DI 10.2514/1.A33065
PG 4
WC Engineering, Aerospace
SC Engineering
GA CD2CP
UT WOS:000350881800028
ER
PT S
AU Soibel, A
Hill, CJ
Keo, SA
Hoglund, L
Ting, DZY
Gunapala, SD
AF Soibel, Alexander
Hill, Cory J.
Keo, Sam A.
Hoglund, Linda
Ting, David Z. -Y.
Gunapala, Sarath D.
BE Razeghi, M
Tournie, E
Brown, GJ
TI Room temperature performance of Mid-Wavelength Infrared InAsSb nBn
detectors
SO QUANTUM SENSING AND NANOPHOTONIC DEVICES XII
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT Conference on Quantum Sensing and Nanophotonic Devices XII
CY FEB 08-12, 2015
CL San Francisco, CA
SP SPIE
ID DESIGN
AB In this work we investigate the high temperature performance of mid-wavelength infrared InAsSb-AlAsSb nBn detectors with cut-off wavelengths near 4.5 mu m. The quantum efficiency of these devices is 35% without antireflection coatings and does not change with temperature in the 77 - 325K temperature range, indicating potential for room temperature operation. The device dark current stays diffusion limited in the 150K-325K temperature range and becomes dominated by generation-recombination processes at lower temperatures. Detector detectivities of D*(lambda) = 1x10(9) (cm Hz(0.5)/W) at T = 300K and D*(lambda) = 5x10(9) (cm Hz(0.5)/W) at T = 250K, which is easily achievable with a one stage TE cooler.
C1 [Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Hoglund, Linda; Ting, David Z. -Y.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Pasadena, CA 91030 USA.
RP Soibel, A (reprint author), JPL, 4800 Oak Grove Dr,M-S 302-205, Pasadena, CA 91109 USA.
NR 16
TC 1
Z9 1
U1 2
U2 9
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-460-8
J9 PROC SPIE
PY 2015
VL 9370
AR 93700M
DI 10.1117/12.2075771
PG 10
WC Engineering, Electrical & Electronic; Optics; Physics, Applied
SC Engineering; Optics; Physics
GA BC1NA
UT WOS:000350275500014
ER
PT S
AU Gu, Y
Wang, CL
Ma, J
Nemiroff, RJ
Kao, DL
AF Gu, Yi
Wang, Chaoli
Ma, Jun
Nemiroff, Robert J.
Kao, David L.
BE Kao, DL
Hao, MC
Livingston, MA
Wischgoll, T
TI iGraph: A Graph-Based Technique for Visual Analytics of Image and Text
Collections
SO VISUALIZATION AND DATA ANALYSIS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 22nd Annual IS and T/SPIE Conference on Visualization and Data Analysis
(VDA)
CY FEB 09-11, 2015
CL San Francisco, CA
SP Soc Imaging Sci & Technol, SPIE, Kitware Inc
DE large image and text collection; graph layout; progressive drawing; node
comparison; visual recommendation
ID INFORMATION VISUALIZATION; NAVIGATION
AB In our daily lives, images and texts are among the most commonly found data which we need to handle. We present iGraph, a graph-based approach for visual analytics of large image and text collections. Given such a collection, we compute the similarity between images, the distance between texts, and the connection between image and text to construct iGraph, a compound graph representation which encodes the underlying relationships among these images and texts. To enable effective visual navigation and comprehension of iGraph with tens of thousands of nodes and hundreds of millions of edges, we present a progressive solution that offers collection overview, node comparison, and visual recommendation. Our solution not only allows users to explore the entire collection with representative images and keywords, but also supports detailed comparison for understanding and intuitive guidance for navigation. For performance speedup, multiple GPUs and CPUs are utilized for processing and visualization in parallel. We experiment with two image and text collections and leverage a cluster driving a display wall of nearly 50 million pixels. We show the effectiveness of our approach by demonstrating experimental results and conducting a user study.
C1 [Gu, Yi; Wang, Chaoli] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA.
[Ma, Jun] Michigan Technol Univ, Dept Comp Sci, Houghton, MI 49931 USA.
[Nemiroff, Robert J.] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA.
[Kao, David L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Wang, CL (reprint author), Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA.
EM ygu5@nd.edu; chaoli.wang@nd.edu; jumn@mtu.edu; nemiroff@mtu.edu;
david.l.kao@nasa.gov
NR 28
TC 1
Z9 1
U1 1
U2 6
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-487-5
J9 PROC SPIE
PY 2015
VL 9397
AR 939708
DI 10.1117/12.2074198
PG 15
WC Computer Science, Theory & Methods; Engineering, Electrical &
Electronic; Optics
SC Computer Science; Engineering; Optics
GA BC1NC
UT WOS:000350276200007
ER
PT S
AU Kolano, PZ
AF Kolano, Paul Z.
BE Kao, DL
Hao, MC
Livingston, MA
Wischgoll, T
TI Time-Synchronized Visualization of Arbitrary Data Streams
SO VISUALIZATION AND DATA ANALYSIS 2015
SE Proceedings of SPIE
LA English
DT Proceedings Paper
CT 22nd Annual IS and T/SPIE Conference on Visualization and Data Analysis
(VDA)
CY FEB 09-11, 2015
CL San Francisco, CA
SP Soc Imaging Sci & Technol, SPIE, Kitware Inc
DE visualization; time synchronization; parallel data streams; data
analysis; system monitoring
AB Savors is a visualization framework that supports the ingestion of data streams created by arbitrary command pipelines. Multiple data streams can be shown synchronized by time in the same or different views, which can be arranged in any layout. These capabilities combined with a powerful parallelization mechanism and interaction models already familiar to administrators allows Savors to display complex visualizations of data streamed from many different systems with minimal effort. This paper presents the design and implementation of Savors and provides example use cases that illustrate many of the supported visualization types.
C1 NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA.
RP Kolano, PZ (reprint author), NASA, Ames Res Ctr, Adv Supercomp Div, M-S 258-6, Moffett Field, CA 94035 USA.
EM paul.kolano@nasa.gov
NR 20
TC 0
Z9 0
U1 0
U2 1
PU SPIE-INT SOC OPTICAL ENGINEERING
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
SN 0277-786X
BN 978-1-62841-487-5
J9 PROC SPIE
PY 2015
VL 9397
AR 93970P
DI 10.1117/12.2083256
PG 8
WC Computer Science, Theory & Methods; Engineering, Electrical &
Electronic; Optics
SC Computer Science; Engineering; Optics
GA BC1NC
UT WOS:000350276200024
ER
PT J
AU Krysztofiak, G
Te, YV
Catoire, V
Berthet, G
Toon, GC
Jegou, F
Jeseck, P
Robert, C
AF Krysztofiak, Gisele
Te, Yao Veng
Catoire, Valery
Berthet, Gwenael
Toon, Geoffrey C.
Jegou, Fabrice
Jeseck, Pascal
Robert, Claude
TI Carbonyl Sulphide (OCS) Variability with Latitude in the Atmosphere
SO ATMOSPHERE-OCEAN
LA English
DT Article; Proceedings Paper
CT 22nd Quadrennial Ozone Symposium (QOS)
CY AUG, 2012
CL Toronto, CANADA
DE stratosphere; carbonyl sulphide; aerosol precursor; balloon-borne;
ground-based; in situ; infrared spectrometry; atmospheric lifetime
ID STRATOSPHERIC SULFATE AEROSOL; ORGANIC-COMPOUNDS VOCS; SULFUR EMISSIONS;
HIGH-RESOLUTION; LAYER; IMPACT; SPECTROMETERS; DISTRIBUTIONS; ATLANTIC;
BUDGET
AB Carbonyl sulphide (OCS) is an important precursor of sulphate aerosols and consequently a key species in stratospheric ozone depletion. The SPectrometre InfraRouge d'Absorption a Lasers Embarques (SPIRALE) and shortwave infrared (SWIR) balloon-borne instruments have flown in the tropics and in the polar Arctic, and ground-based measurements have been performed by the Qualite de l'Air (QualAir) Fourier Transform Spectrometer in Paris. Partial and total columns and vertical profiles have been obtained to study OCS variability with altitude, latitude, and season. The annual total column variation in Paris reveals a seasonal variation with a maximum in April-June and a minimum in November-January. Total column measurements above Paris and from SWIR balloon-borne instrument are compared with several MkIV measurements, several Network for the Detection of Atmospheric Composition Change (NDACC) stations, aircraft, ship, and balloon measurements to highlight the OCS total column decrease from tropical to polar latitudes. OCS high-resolution in situ vertical profiles have been measured for the first time in the altitude range between 14 and 30 km at tropical and polar latitudes. OCS profiles are compared with Atmospheric Chemistry Experiment (ACE) satellite measurements and show good agreement. Using the correlation between OCS and N2O from SPIRALE, the OCS stratospheric lifetime has been accurately determined. We find a stratospheric lifetime of 68 +/- 20 years at polar latitudes and 58 +/- 14 years at tropical latitudes leading to a global stratospheric sink of 49 +/- 14 Gg S y(-1).
C1 [Krysztofiak, Gisele; Catoire, Valery; Berthet, Gwenael; Jegou, Fabrice; Robert, Claude] Univ Orleans, CNRS, LPC2E, UMR 7328, F-45071 Orleans 2, France.
[Te, Yao Veng; Jeseck, Pascal] Univ Paris 06, IPSL, CNRS, LPMAA,UMR 7092, F-75005 Paris, France.
[Toon, Geoffrey C.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Catoire, V (reprint author), Univ Orleans, CNRS, LPC2E, UMR 7328, F-45071 Orleans 2, France.
EM Valery.Catoire@cnrs-orleans.fr
RI Catoire, Valery/E-9662-2015
OI Catoire, Valery/0000-0001-8126-3096
NR 60
TC 9
Z9 9
U1 2
U2 29
PU CMOS-SCMO
PI OTTAWA
PA BOX 3211, STATION D, OTTAWA, ON K1P 6H7, CANADA
SN 0705-5900
EI 1480-9214
J9 ATMOS OCEAN
JI Atmos.-Ocean
PY 2015
VL 53
IS 1
BP 89
EP 101
DI 10.1080/07055900.2013.876609
PG 13
WC Meteorology & Atmospheric Sciences; Oceanography
SC Meteorology & Atmospheric Sciences; Oceanography
GA CC4ER
UT WOS:000350304200011
ER
PT J
AU Tangborn, A
Kuang, WJ
AF Tangborn, Andrew
Kuang, Weijia
TI Geodynamo model and error parameter estimation using geomagnetic data
assimilation
SO GEOPHYSICAL JOURNAL INTERNATIONAL
LA English
DT Article
DE Numerical solutions; Inverse theory; Dynamo: theories and simulations
ID ROTATING SPHERICAL-SHELL; CONDUCTING INNER-CORE; SECULAR VARIATION;
SURFACE OBSERVATIONS; MAGNETIC-FIELD; MHD SYSTEM; DYNAMO; WEATHER;
CONVECTION; GENERATION
AB We have developed a new geomagnetic data assimilation approach which uses the minimum variance' estimate for the analysis state, and which models both the forecast (or model output) and observation errors using an empirical approach and parameter tuning. This system is used in a series of assimilation experiments using Gauss coefficients (hereafter referred to as observational data) from the GUFM1 and CM4 field models for the years 1590-1990. We show that this assimilation system could be used to improve our knowledge of model parameters, model errors and the dynamical consistency of observation errors, by comparing forecasts of the magnetic field with the observations every 20 yr. Statistics of differences between observation and forecast (O - F) are used to determine how forecast accuracy depends on the Rayleigh number, forecast error correlation length scale and an observation error scale factor. Experiments have been carried out which demonstrate that a Rayleigh number of 30 times the critical Rayleigh number produces better geomagnetic forecasts than lower values, with an Ekman number of E = 1.25 x 10(-6), which produces a modified magnetic Reynolds number within the parameter domain with an 'Earth like' geodynamo. The optimal forecast error correlation length scale is found to be around 90 per cent of the thickness of the outer core, indicating a significant bias in the forecasts. Geomagnetic forecasts are also found to be highly sensitive to estimates of modelled observation errors: Errors that are too small do not lead to the gradual reduction in forecast error with time that is generally expected in a data assimilation system while observation errors that are too large lead to model divergence. Finally, we show that assimilation of L <= 3 (or large scale) gauss coefficients can help to improve forecasts of the L > 5 (smaller scale) coefficients, and that these improvements are the result of corrections to the velocity field in the geodynamo model.
C1 [Tangborn, Andrew] Univ Maryland Baltimore Cty, Joint Ctr Earth Sci Technol, Baltimore, MD 21228 USA.
[Kuang, Weijia] NASA, Goddard Space Flight Ctr, Space Geodesy Lab, Greenbelt, MD 20771 USA.
RP Tangborn, A (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Sci Technol, Baltimore, MD 21228 USA.
EM tangborn@umbc.edu
RI Kuang, Weijia/K-5141-2012
OI Kuang, Weijia/0000-0001-7786-6425
FU NSF [EAR-0757880]; NASA Earth Surface and Interiors program [NNX09AK
70G]
FX This work was funded by grants from NSF (EAR-0757880) and the NASA Earth
Surface and Interiors program (NNX09AK 70G).
NR 42
TC 3
Z9 3
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0956-540X
EI 1365-246X
J9 GEOPHYS J INT
JI Geophys. J. Int.
PD JAN
PY 2015
VL 200
IS 1
BP 664
EP 675
DI 10.1093/gji/ggu409
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CC0QU
UT WOS:000350041600049
ER
PT J
AU Elliott, J
Muller, C
Deryng, D
Chryssanthacopoulos, J
Boote, KJ
Buchner, M
Foster, I
Glotter, M
Heinke, J
Iizumi, T
Izaurralde, RC
Mueller, ND
Ray, DK
Rosenzweig, C
Ruane, AC
Sheffield, J
AF Elliott, J.
Mueller, C.
Deryng, D.
Chryssanthacopoulos, J.
Boote, K. J.
Buechner, M.
Foster, I.
Glotter, M.
Heinke, J.
Iizumi, T.
Izaurralde, R. C.
Mueller, N. D.
Ray, D. K.
Rosenzweig, C.
Ruane, A. C.
Sheffield, J.
TI The Global Gridded Crop Model Intercomparison: data and modeling
protocols for Phase 1 (v1.0)
SO GEOSCIENTIFIC MODEL DEVELOPMENT
LA English
DT Article
ID LAND-SURFACE MODEL; CLIMATE-CHANGE; SYSTEMS SIMULATION; HIGH-RESOLUTION;
WATER; CARBON; YIELD; AGRICULTURE; PATTERNS; GROWTH
AB We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.
C1 [Elliott, J.; Foster, I.] Univ Chicago, Chicago, IL 60637 USA.
[Elliott, J.; Foster, I.] Argonne Natl Lab, Computat Inst, Chicago, IL USA.
[Mueller, C.; Buechner, M.; Heinke, J.] Potsdam Inst Climate Impact Res, Potsdam, Germany.
[Deryng, D.] Univ E Anglia, Tyndall Ctr, Norwich NR4 7TJ, Norfolk, England.
[Chryssanthacopoulos, J.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA.
[Boote, K. J.] Univ Florida, Dept Agron, Gainesville, FL 32611 USA.
[Glotter, M.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Heinke, J.] Int Livestock Res Inst, Nairobi, Kenya.
[Iizumi, T.] Natl Inst Agroenvironm Sci, Tsukuba, Ibaraki 305, Japan.
[Izaurralde, R. C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
[Mueller, N. D.] Harvard Univ, Ctr Environm, Cambridge, MA 02138 USA.
[Ray, D. K.] Univ Minnesota, Inst Environm, St Paul, MN 55108 USA.
[Rosenzweig, C.; Ruane, A. C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Sheffield, J.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.
[Heinke, J.] CSIRO, St Lucia, Qld 4067, Australia.
RP Elliott, J (reprint author), Univ Chicago, Chicago, IL 60637 USA.
EM jelliott@ci.uchicago.edu; cmueller@pik-potsdam.de
RI Mueller, Christoph/E-4812-2016; Deryng, Delphine/F-7417-2010;
OI Mueller, Christoph/0000-0002-9491-3550; Deryng,
Delphine/0000-0001-6214-7241; Boote, Kenneth/0000-0002-1358-5496
FU National Science Foundation [SBE-0951576, GEO-1215910]; KULUNDA project
[01LL0905L]; FACCE MACSUR project through the German Federal Ministry of
Education and Research (BMBF) [031A103B]
FX J. Elliott acknowledges financial support from the National Science
Foundation under grants SBE-0951576 and GEO-1215910. C. Muller
acknowledges financial support from the KULUNDA project (01LL0905L) and
the FACCE MACSUR project (031A103B) funded through the German Federal
Ministry of Education and Research (BMBF). Computing and data resources
provided through the University of Chicago Research Computing Center.
NR 58
TC 21
Z9 21
U1 4
U2 33
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1991-959X
EI 1991-9603
J9 GEOSCI MODEL DEV
JI Geosci. Model Dev.
PY 2015
VL 8
IS 2
BP 261
EP 277
DI 10.5194/gmd-8-261-2015
PG 17
WC Geosciences, Multidisciplinary
SC Geology
GA CC7OM
UT WOS:000350557800008
ER
PT J
AU Berg, LK
Shrivastava, M
Easter, RC
Fast, JD
Chapman, EG
Liu, Y
Ferrare, RA
AF Berg, L. K.
Shrivastava, M.
Easter, R. C.
Fast, J. D.
Chapman, E. G.
Liu, Y.
Ferrare, R. A.
TI A new WRF-Chem treatment for studying regional-scale impacts of cloud
processes on aerosol and trace gases in parameterized cumuli
SO GEOSCIENTIFIC MODEL DEVELOPMENT
LA English
DT Article
ID MODELING ORGANIC AEROSOLS; BASIS-SET APPROACH; CONVECTIVE
PARAMETERIZATION; RADIATIVE IMPACT; CLIMATE SIMULATIONS;
NUMERICAL-MODEL; BOUNDARY-LAYER; AIR-QUALITY; WEATHER; PRECIPITATION
AB A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the columnintegrated BC can be as large as 50% when cloud aerosol interactions are considered (due largely to wet removal), or as large as +40 % for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRFChem, and it is anticipated that they will be included in a future public release of WRF-Chem.
C1 [Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Ferrare, R. A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Berg, LK (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM larry.berg@pnnl.gov
RI Berg, Larry/A-7468-2016
OI Berg, Larry/0000-0002-3362-9492
FU Office of Science of the US Department of Energy as part of the
Atmospheric System Research (ASR) program; NASA Science Mission
Directorate; Department of Energy ASR program; NASA CALIPSO project;
[DE-AC06-76RLO 1830]
FX This research was supported by the Office of Science of the US
Department of Energy as part of the Atmospheric System Research (ASR)
program. The Pacific Northwest National Laboratory is operated by
Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The
funding for the B200 and HSRL operations came from the NASA Science
Mission Directorate, the Department of Energy ASR program, and the NASA
CALIPSO project. The authors would also like to thank the NASA Langley
King Air B-200 and DOE G-1 flight crews for their outstanding work in
supporting these flights and measurements. J. Ogren of NOAA and E.
Andrews of the Cooperative Institute for Research in Environmental
Sciences (CIRES) deployed the CVI during CHAPS. Data from the AMS were
collected by Y.-N. Lee of Brookhaven National Laboratory (BNL), M. L.
Alexander of the Pacific Northwest National Laboratory and J. Jayne of
Aerodyne. Size distribution data were provided by G. Senum of BNL. G.
Grell (NOAA) and R. Leung (PNNL) provided feedback on various aspects of
the manuscript. We also thank three anonymous reviewers for valuable
feedback on the manuscript.
NR 80
TC 6
Z9 6
U1 1
U2 27
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1991-959X
EI 1991-9603
J9 GEOSCI MODEL DEV
JI Geosci. Model Dev.
PY 2015
VL 8
IS 2
BP 409
EP 429
DI 10.5194/gmd-8-409-2015
PG 21
WC Geosciences, Multidisciplinary
SC Geology
GA CC7OM
UT WOS:000350557800015
ER
PT J
AU Hurst, TP
Cooper, DW
Duffy-Anderson, JT
Farley, EV
AF Hurst, Thomas P.
Cooper, Daniel W.
Duffy-Anderson, Janet T.
Farley, Edward V.
TI Contrasting coastal and shelf nursery habitats of Pacific cod in the
southeastern Bering Sea
SO ICES JOURNAL OF MARINE SCIENCE
LA English
DT Article
DE Bering Sea; habitat; juvenile; nursery; pacific cod Gadus macrocephalus
ID NORTHERN ROCK SOLE; STAFF BEAM TRAWL; GADUS-MACROCEPHALUS;
LEPIDOPSETTA-POLYXYSTRA; WALLEYE POLLOCK; LIFE-HISTORY; JUVENILE COD;
ALASKA; FISH; PATTERNS
AB Shallow, subtidal waters of coastal embayments are the primary nursery habitats of juvenile Pacific cod through much of their range. However, the importance of these habitats to the Bering Sea population is poorly understood as the Bering Sea offers relatively little of this habitat. In this study, we examined the use of demersal and pelagic habitats in the southeast Bering Sea by age-0 Pacific cod. In 4 years of demersal beam trawling on the shelf at depths of 20-146 m, fish were most abundant along the Alaska Peninsula (AKP) at depths to 50 m. In addition, 1 year of spatially intensive beam trawl sampling was conducted at depths of 5-30 m in a nearshore focal area along the central AKP. In this survey, age-0 cod were more abundant along the open coastline than they were in two coastal embayments, counter to patterns observed in the Gulf of Alaska. Demersal sampling in 2012 was conducted synoptically with surveys of surface and subsurface waters over the continental shelf. Age-0 cod were captured in pelagic waters over the middle and outer shelf, with maximum catches occurring over depths of 60-80 m. The similar size distributions of fish in coastal-demersal and shelf-surface habitats and the proximity of concentrations in the two habitat types suggests that habitat use in the Bering Sea occurs along a gradient from coastal to pelagic. While capture efficiencies may differ among trawl types, trawl-based estimates of age-0 cod density in demersal waters along the AKP was 10 times that observed in the highest density pelagic-shelf habitats, demonstrating the importance of coastal nursery habitats in this population. Despite representing a much smaller habitat area, the coastal waters along the AKP appear an important nursery area and support a significant fraction of the age-0 Pacific cod in the Bering Sea.
C1 [Hurst, Thomas P.] NOAA, Fisheries Behav Ecol Program, Resource Assessment & Conservat Engn Div,Hatfield, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Newport, OR 97365 USA.
[Cooper, Daniel W.; Duffy-Anderson, Janet T.] NOAA, Recruitment Proc Program, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Seattle, WA 98115 USA.
[Farley, Edward V.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA.
RP Hurst, TP (reprint author), NOAA, Fisheries Behav Ecol Program, Resource Assessment & Conservat Engn Div,Hatfield, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Newport, OR 97365 USA.
EM thomas.hurst@noaa.gov
FU NMFS Alaska Regional Office; NOAA's North Pacific Climate Regimes and
Ecosystems Productivity Program
FX We thank A. Stoner and the crews of the FV Bountiful and NOAA Oscar
Dyson and Miller Freeman for sampling assistance. M. Briski, and the
staff of Peter Pan Seafoods, and R. Murphy of the Alaska Department of
Fish and Game provided logistical assistance with sampling in the
nearshore focal area. C. Hines and M. Ottmar provided laboratory
assistance and M. Spencer prepared maps. This project was supported by a
grant for Essential Fish Habitat Research from the NMFS Alaska Regional
Office and by NOAA's North Pacific Climate Regimes and Ecosystems
Productivity Program. B. Laurel, C. Ryer, J. Miller, and two anonymous
reviewers provided valuable comments on this manuscript. This is
contribution EcoFOCI-N810 to NOAA's North Pacific Climate Regimes and
Ecosystem Productivity research program. The findings and conclusions in
this paper are those of the authors and do not necessarily represent the
views of the National Marine Fisheries Service.
NR 55
TC 3
Z9 3
U1 5
U2 13
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1054-3139
EI 1095-9289
J9 ICES J MAR SCI
JI ICES J. Mar. Sci.
PD JAN-FEB
PY 2015
VL 72
IS 2
BP 515
EP 527
DI 10.1093/icesjms/fsu141
PG 13
WC Fisheries; Marine & Freshwater Biology; Oceanography
SC Fisheries; Marine & Freshwater Biology; Oceanography
GA CC2DC
UT WOS:000350154300019
ER
PT J
AU Schlegel, NJ
Larour, E
Seroussi, H
Morlighem, M
Box, JE
AF Schlegel, N-J.
Larour, E.
Seroussi, H.
Morlighem, M.
Box, J. E.
TI Ice discharge uncertainties in Northeast Greenland from boundary
conditions and climate forcing of an ice flow model
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
DE uncertainty; ice stream; ice flow; mass flux; ice discharge
ID MASS-LOSS; HEAT-FLUX; SHEET; ACCELERATION; GLACIER; STREAM; CORE;
INSTABILITY; ANTARCTICA; RETENTION
AB In order to understand ice sheet response to climate change, it is critical to examine errors associated with ice flow model boundary conditions and forcing. It is also important to understand how these errors propagate through numerical ice sheet models and contribute to uncertainty in model output. Using established uncertainty quantification methods within the Ice Sheet System Model (ISSM), we investigate the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity and basal drag, and compare them with model sensitivity to climate forcing. In addition, we examine how errors in model input manifest as mass flux uncertainties during a forward simulation of the NEGIS from 1989 to 2010. Overall, we find that mass flux is most uncertain in the main outlets, Nioghalvfjerdsbrae and Zachariae IsstrOm, and that mass flux is most sensitive to basal drag, though errors associated with basal drag are poorly constrained and difficult to quantify. Given our knowledge of errors associated with the thermal properties of ice, we estimate that in the ablation area, the effects of cryohydrologic warming contribute over 4 times more mass flux uncertainty that do errors in geothermal heat flux. We find that NEGIS total ice discharge is associated with a 0.7 Gt/yr (2.6%) uncertainty due to errors in geothermal heat flux and a 3.3 Gt/yr (11.6%) uncertainty due to the added effects of cryohydrologic warming. In comparison, errors in surface mass balance contribute 4.5 Gt/yr to NEGIS total discharge uncertainty.
C1 [Schlegel, N-J.; Larour, E.; Seroussi, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Morlighem, M.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA.
[Box, J. E.] Geol Survey Denmark & Greenland, Copenhagen, Denmark.
RP Schlegel, NJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM nschlegel@gmail.com
RI Morlighem, Mathieu/O-9942-2014; Box, Jason/H-5770-2013;
OI Morlighem, Mathieu/0000-0001-5219-1310; Schlegel,
Nicole-Jeanne/0000-0001-8035-448X
FU NSF [ANT-0424589]; NASA [NNX10AT68G]
FX This work was performed at the California Institute of Technology's Jet
Propulsion Laboratory under a contract with the National Aeronautics and
Space Administration's Modeling, Analysis, and Prediction (MAP) Program;
Cryosphere Program; and President's and Director's Fund Program. The
authors would like to acknowledge the data provided by the National Snow
and Ice Data Center DAAC, University of Colorado, Boulder, CO, Operation
IceBridge, as well as CReSIS data generated from NSF grant ANT-0424589
and NASA grant NNX10AT68G [Gogineni, 2012]. They would also like to
thank three anonymous reviewers for their suggestions and comments which
greatly aided in the improvement of this manuscript.
NR 59
TC 4
Z9 4
U1 2
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD JAN
PY 2015
VL 120
IS 1
BP 29
EP 54
DI 10.1002/2014JF003359
PG 26
WC Geosciences, Multidisciplinary
SC Geology
GA CC1NS
UT WOS:000350108500002
ER
PT J
AU Liu, Z
Winker, D
Omar, A
Vaughan, M
Kar, J
Trepte, C
Hu, Y
Schuster, G
AF Liu, Z.
Winker, D.
Omar, A.
Vaughan, M.
Kar, J.
Trepte, C.
Hu, Y.
Schuster, G.
TI Evaluation of CALIOP 532 nm aerosol optical depth over opaque water
clouds
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SPECTRAL-RESOLUTION LIDAR; SAHARAN DUST; CALIPSO LIDAR;
SATELLITE-OBSERVATIONS; TROPOSPHERIC AEROSOLS; INITIAL ASSESSMENT;
CLIMATE RESPONSE; SMOKE PARTICLES; AIRBORNE HSRL; MODIS-AQUA
AB With its height-resolved measurements and near global coverage, the CALIOP lidar onboard the CALIPSO satellite offers a new capability for aerosol retrievals in cloudy skies. Validation of these retrievals is difficult, however, as independent, collocated and co-temporal data sets are generally not available. In this paper, we evaluate CALIOP aerosol products above opaque water clouds by applying multiple retrieval techniques to CALIOP Level 1 profile data and comparing the results. This approach allows us to both characterize the accuracy of the CALIOP above-cloud aerosol optical depth (AOD) and develop an error budget that quantifies the relative contributions of different error sources. We focus on two spatial domains: the African dust transport pathway over the tropical North Atlantic and the African smoke transport pathway over the southeastern Atlantic. Six years of CALIOP observations (2007-2012) from the northern hemisphere summer and early fall are analyzed. The analysis is limited to cases where aerosol layers are located above opaque water clouds so that a constrained retrieval technique can be used to directly retrieve 532 nm aerosol optical depth and lidar ratio. For the moderately dense Sahara dust layers detected in the CALIOP data used in this study, the mean/median values of the lidar ratios derived from a constrained opaque water cloud (OWC) technique are 45.1/44.4 +/- 8.8 sr, which are somewhat larger than the value of 40 +/- 20 sr used in the CALIOP Level 2 (L2) data products. Comparisons of CALIOP L2 AOD with the OWC-retrieved AOD reveal that for nighttime conditions the L2 AOD in the dust region is underestimated on average by similar to 26% (0.183 vs. 0.247). Examination of the error sources indicates that errors in the L2 dust AOD are primarily due to using a lidar ratio that is somewhat too small. The mean/median lidar ratio retrieved for smoke is 70.8/70.4 +/- 16.2 sr, which is consistent with the modeled value of 70 +/- 28 sr used in the CALIOP L2 retrieval. Smoke AOD is found to be underestimated, on average, by similar to 39% (0.191 vs. 0.311). The primary cause of AOD differences in the smoke transport region is the tendency of the CALIOP layer detection scheme to prematurely assign layer base altitudes and thus underestimate the geometric thickness of smoke layers.
C1 [Liu, Z.; Kar, J.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Kar, J.; Trepte, C.; Hu, Y.; Schuster, G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
RP Liu, Z (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
EM zhaoyan.liu@nasa.gov
RI Hu, Yongxiang/K-4426-2012; Omar, Ali/D-7102-2017
OI Omar, Ali/0000-0003-1871-9235
NR 78
TC 14
Z9 14
U1 2
U2 10
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 3
BP 1265
EP 1288
DI 10.5194/acp-15-1265-2015
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB7IF
UT WOS:000349799500009
ER
PT J
AU Jiang, Z
Jones, DBA
Worden, HM
Henze, DK
AF Jiang, Z.
Jones, D. B. A.
Worden, H. M.
Henze, D. K.
TI Sensitivity of top-down CO source estimates to the modeled vertical
structure in atmospheric CO
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID CARBON-MONOXIDE; ISOPRENE EMISSIONS; GEOS-CHEM; CONVECTIVE-TRANSPORT;
SATELLITE DATA; ADJOINT; MOPITT; ASSIMILATION; INSTRUMENT; CONSTRAINT
AB We assessed the sensitivity of regional CO source estimates to the modeled vertical CO distribution by assimilating multi-spectral MOPITT (Measurements of Pollution In The Troposphere) V5J CO retrievals with the GEOS-Chem model. We compared the source estimates obtained by assimilating the CO profiles and the surface layer retrievals from June 2004 to May 2005. Because the surface layer retrievals are less sensitive to CO in the free troposphere, it is expected that they should provide constraints in the CO source estimates that are less sensitive to the vertical structure of CO in the free troposphere. The inferred source estimates all suggest a reduction in CO emissions in the tropics and subtropics, and an increase in the extratropics over the a priori estimates. The tropical decreases were particularly pronounced for regions where the biogenic source of CO was dominant, suggesting an overestimate of the a priori isoprene source of CO in the model. We found that the differences between the regional source estimates inferred from the profile and surface layer retrievals for 2004-2005 were small, generally less than 10% for the main continental regions, except for estimates for southern Asia, North America, and Europe. Because of discrepancies in convective transport in the model, the CO source estimates for India and southeastern Asia inferred from the CO profiles were significantly higher than those estimated from the surface layer retrievals during June-August 2004. On the other hand, the profile inversion underestimated the CO emissions from North America and Europe compared to the assimilation of the surface layer retrievals. We showed that vertical transport of air from the North American and European boundary layers is slower than from other continental regions, and thus air in the free troposphere from North America and Europe in the model is more chemically aged, which could explain the discrepancy between the source estimates inferred from the profile and surface layer retrievals. We also examined the impact of the OH distribution on the source estimates and found that the discrepancies between the source estimates obtained with two OH fields were larger when using the profile data, which is consistent with greater sensitivity to the more chemically aged air in the free troposphere. Our findings indicate that regional CO source estimates are sensitive to the vertical CO structure. They suggest that diagnostics to assess the age of air from the continental source regions should help interpret the results from CO source inversions. Our results also suggest that assimilating a broader range of composition measurements to provide better constraint on tropospheric OH and the biogenic sources of CO is essential for reliable quantification of the regional CO budget.
C1 [Jiang, Z.; Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Jones, D. B. A.] Univ Calif Los Angeles, JIFRESSE, Los Angeles, CA USA.
[Worden, H. M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Henze, D. K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA.
RP Jiang, Z (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
EM zhe.jiang@jpl.nasa.gov
FU Natural Science and Engineering Research Council of Canada; Canadian
Space Agency; NASA [NNX10AT42G]
FX This work was supported by funding from the Natural Science and
Engineering Research Council of Canada, the Canadian Space Agency, and
NASA grant NNX10AT42G. We thank NOAA ESRL for providing their CO flask
data. We also thank the two anonymous reviewers for their thoughtful and
detailed comments on the manuscript.
NR 53
TC 7
Z9 7
U1 2
U2 19
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2015
VL 15
IS 3
BP 1521
EP 1537
DI 10.5194/acp-15-1521-2015
PG 17
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA CB7IF
UT WOS:000349799500025
ER
PT J
AU Le Page, Y
Morton, D
Bond-Lamberty, B
Pereira, JMC
Hurtt, G
AF Le Page, Y.
Morton, D.
Bond-Lamberty, B.
Pereira, J. M. C.
Hurtt, G.
TI HESFIRE: a global fire model to explore the role of anthropogenic and
weather drivers
SO BIOGEOSCIENCES
LA English
DT Article
ID BURNED AREA; FOREST-FIRES; VEGETATION MODEL; EARTH SYSTEM; EMISSIONS;
CLIMATE; DEFORESTATION; SENSITIVITY; DYNAMICS; PATTERNS
AB Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human-Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.
C1 [Le Page, Y.; Bond-Lamberty, B.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Morton, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Pereira, J. M. C.] Univ Lisbon, Inst Super Agron, Ctr Estudos Florestais, P-1349017 Lisbon, Portugal.
[Hurtt, G.] Univ Maryland, Dept Geog Sci, College Pk, MD 20740 USA.
RP Le Page, Y (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
EM yannick.lepage@pnnl.gov
RI Pereira, Jose/I-1283-2014; Bond-Lamberty, Ben/C-6058-2008; Morton,
Douglas/D-5044-2012
OI Pereira, Jose/0000-0003-2583-3669; Bond-Lamberty,
Ben/0000-0001-9525-4633;
FU NASA Terrestrial Ecology and Inter-Disciplinary Studies programs; Office
of Science of the U.S. Department of Energy; DOE [DE-AC05-76RL01830]
FX The authors are grateful for research support provided by the NASA
Terrestrial Ecology and Inter-Disciplinary Studies programs. The authors
also wish to express appreciation to the Integrated Assessment Research
Program in the Office of Science of the U.S. Department of Energy for
partially funding this research. The Pacific Northwest National
Laboratory is operated for DOE by Battelle Memorial Institute under
contract DE-AC05-76RL01830. The views and opinions expressed in this
paper are those of the authors alone.
NR 60
TC 4
Z9 5
U1 4
U2 13
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1726-4170
EI 1726-4189
J9 BIOGEOSCIENCES
JI Biogeosciences
PY 2015
VL 12
IS 3
BP 887
EP 903
DI 10.5194/bg-12-887-2015
PG 17
WC Ecology; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA CB7FU
UT WOS:000349793100019
ER
PT J
AU Forney, KA
Becker, EA
Foley, DG
Barlow, J
Oleson, EM
AF Forney, Karin A.
Becker, Elizabeth A.
Foley, Dave G.
Barlow, Jay
Oleson, Erin M.
TI Habitat-based models of cetacean density and distribution in the central
North Pacific
SO ENDANGERED SPECIES RESEARCH
LA English
DT Article
ID SEA-SURFACE TEMPERATURE; SITE FIDELITY; SPATIAL AUTOCORRELATION;
ASSOCIATION PATTERNS; BEAKED-WHALE; MOVEMENTS; OCEAN; UNCERTAINTY;
POPULATION; ABUNDANCE
AB The central North Pacific Ocean includes diverse temperate and tropical pelagic habitats. Studies of the abundance and distribution of cetaceans within these dynamic marine ecosystems have generally been patchy or conducted at coarse spatial and temporal scales, limiting their utility for pelagic conservation planning. Habitat-based density models provide a tool for identifying pelagic areas of importance to cetaceans, because model predictions are spatially explicit. In this study, we present habitat-based models of cetacean density that were developed and validated for the central North Pacific. Spatial predictions of cetacean densities and measures of uncertainty were derived based on data collected during 15 large-scale shipboard cetacean and ecosystem assessment surveys conducted from 1997 to 2012. We developed generalized additive models using static and remotely sensed dynamic habitat variables, including distance to land, sea-surface temperature (SST), standard deviation of SST, surface chlorophyll concentration, seasurface height (SSH), and SSH root-mean-square variation. The resulting models, developed using new grid-based prediction methods, provide finer scale information on the distribution and density of cetaceans than previously available. Habitat-based abundance estimates around Hawaii are similar to those derived from standard line-transect analyses of the same data and provide enhanced spatial resolution to inform management and conservation of pelagic cetacean species.
C1 [Forney, Karin A.; Becker, Elizabeth A.] NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Santa Cruz, CA 95060 USA.
[Becker, Elizabeth A.] ManTech Int Corp, Solana Beach, CA 92075 USA.
[Barlow, Jay] NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, La Jolla, CA 92037 USA.
[Oleson, Erin M.] NOAA, Protected Resources Div, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI 96814 USA.
RP Forney, KA (reprint author), NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 110 Shaffer Rd, Santa Cruz, CA 95060 USA.
EM karin.forney@noaa.gov
FU NOAA's Southwest Fisheries Science Center and Pacific Islands Fisheries
Science Center
FX This study would not have been possible without the dedication of the
marine mammal observers, cruise leaders, and vessel crew who worked hard
on surveys conducted over the 15 yr period collecting the data that we
used here. Chief Scientists for the survey cruises included Tim
Gerrodette, Lisa Ballance, and 2 of the co-authors (J. B. and E. M.O.).
We thank Chip Johnson, Julie Rivers (US Pacific Fleet, US Navy) and Sean
Hanser (Naval Facilities Engineering Command, Pacific, US Navy), for
providing us with the opportunity and funding to conduct this analysis.
We also thank Jim Carretta and Scott Benson and 3 anonymous reviewers
for their helpful reviews of an earlier draft of this manuscript.
Additional funding for this study was provided by NOAA's Southwest
Fisheries Science Center and Pacific Islands Fisheries Science Center.
Surveys were conducted in accordance with institutional, national and
international guidelines concerning the use of animals in research
and/or the sampling of endangered species, and under the following
permits: National Marine Fisheries Service, Nos. 774-1437, 14097, and
15240; State of Hawaii, No. SH2002-11, and Papa h. hanaumokuakea Marine
National Monument, No. PMNM2010- 053
NR 46
TC 9
Z9 10
U1 8
U2 34
PU INTER-RESEARCH
PI OLDENDORF LUHE
PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY
SN 1863-5407
EI 1613-4796
J9 ENDANGER SPECIES RES
JI Endanger. Species Res.
PY 2015
VL 27
IS 1
BP 1
EP 20
DI 10.3354/esr00632
PG 20
WC Biodiversity Conservation
SC Biodiversity & Conservation
GA CC0AK
UT WOS:000349996800001
ER
PT J
AU Johnston, MC
T'ien, JS
Muff, DE
Zhao, XY
Olson, SL
Ferkul, PV
AF Johnston, Michael C.
T'ien, James S.
Muff, Derek E.
Zhao, Xiaoyang
Olson, Sandra L.
Ferkul, Paul V.
TI Self induced buoyant blow off in upward flame spread on thin solid fuels
SO FIRE SAFETY JOURNAL
LA English
DT Article
DE Buoyant blow off; Material flammability limits; Upward burning limit;
One-sided extinction; Flame spread; SIBAL fuel
ID WIDTH; MICROGRAVITY; COMBUSTION; LIMIT; MODEL
AB Upward flame spread experiments were conducted on long thin composite fabric fuels made of 75% cotton and 25% fiberglass of various widths between 2 and 8.8 cm and lengths greater than 1.5 m. Symmetric ignition at the bottom edge of the fuel resulted in two sided upward flame growth initially. As flame grew to a critical length (15-30 cm depending on sample width) fluctuation or instability of the flame base was observed. For samples 5 cm or less in width, this instability lead to flame blow off on one side of the sample (can be either side in repeated tests). The remaining flame on the other side would quickly shrink in length and spread all the way to the end of the sample with a constant limiting length and steady spread rate. Flame blow off from the increased buoyancy induced air velocity (at the flame base) with increasing flame length is proposed as the mechanism for this interesting phenomenon. Experimental details and the proposed explanation, including sample width effect, are offered in the paper. (C) 2014 Elsevier Ltd. All rights reserved.
C1 [Johnston, Michael C.; T'ien, James S.; Muff, Derek E.; Zhao, Xiaoyang] Case Western Reserve Univ, Cleveland, OH 44106 USA.
[Olson, Sandra L.] NASA Glenn Res Ctr, Cleveland, OH USA.
[Ferkul, Paul V.] Natl Ctr Space Explorat Res, Cleveland, OH USA.
RP Johnston, MC (reprint author), Case Western Reserve Univ, Glennan Bldg MS 418,10900 Euclid Ave, Cleveland, OH 44106 USA.
EM michael.c.johnston@case.edu
OI Zhao, Xiaoyang/0000-0003-2245-6263
FU NASA; Underwriters Laboratories
FX This research was initially funded by a grant from NASA (Dr. Gary Ruff,
technical monitor) and concluded with a grant from the Underwriters
Laboratories (Dr. Pravinray Gandhi, technical monitor).
NR 23
TC 3
Z9 3
U1 0
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0379-7112
EI 1873-7226
J9 FIRE SAFETY J
JI Fire Saf. J.
PD JAN
PY 2015
VL 71
BP 279
EP 286
DI 10.1016/j.firesaf.2014.11.007
PG 8
WC Engineering, Civil; Materials Science, Multidisciplinary
SC Engineering; Materials Science
GA CB6HL
UT WOS:000349728000025
ER
PT J
AU Petryshyn, VA
Lim, D
Laval, BL
Brady, A
Slater, G
Tripati, AK
AF Petryshyn, V. A.
Lim, D.
Laval, B. L.
Brady, A.
Slater, G.
Tripati, A. K.
TI Reconstruction of limnology and microbialite formation conditions from
carbonate clumped isotope thermometry
SO GEOBIOLOGY
LA English
DT Article
ID FRESH-WATER MICROBIALITES; PAVILION LAKE; BODY TEMPERATURES;
BRITISH-COLUMBIA; STROMATOLITE; BIOSIGNATURES; CANADA; GROWTH; MODEL;
PALEOTHERMOMETER
AB Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the O-18/O-16 ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water O-18/O-16 ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters.
C1 [Petryshyn, V. A.; Tripati, A. K.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90089 USA.
[Lim, D.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA.
[Laval, B. L.] Univ British Columbia, Dept Civil Engn, Vancouver, BC, Canada.
[Brady, A.; Slater, G.] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada.
[Tripati, A. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Inst Environm & Sustainabil, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA.
RP Tripati, AK (reprint author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90089 USA.
EM vpetryshyn@ucla.edu; aradhna.tripati@gmail.com
RI Tripati, Aradhna/C-9419-2011
OI Tripati, Aradhna/0000-0002-1695-1754
FU NSF [EAR-1352212, EAR-1325054, OCE-1437166, EAR-0949191, ARC-1215551];
ACS [51182-DNI2]; DOE [DE-FG02-13ER16402]; Hellman Fellowship
FX We wish to thank all those on the Pavilion Lake Research Project,
especially Cara Harwood and Jennifer Biddle, Frank Corsetti for the use
of his microscope, and the Tripati Lab research group. This work was
supported by NSF grants EAR-1352212, EAR-1325054, OCE-1437166,
EAR-0949191 and ARC-1215551, ACS grant 51182-DNI2, DOE grant
DE-FG02-13ER16402, and a Hellman Fellowship. This is PLRP publication
#13-04.
NR 49
TC 4
Z9 4
U1 4
U2 35
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1472-4677
EI 1472-4669
J9 GEOBIOLOGY
JI Geobiology
PD JAN
PY 2015
VL 13
IS 1
BP 53
EP 67
DI 10.1111/gbi.12121
PG 15
WC Biology; Environmental Sciences; Geosciences, Multidisciplinary
SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences &
Ecology; Geology
GA CC0UO
UT WOS:000350053000005
PM 25515686
ER
PT J
AU Bridges, JC
Schwenzer, SP
Leveille, R
Westall, F
Wiens, RC
Mangold, N
Bristow, T
Edwards, P
Berger, G
AF Bridges, J. C.
Schwenzer, S. P.
Leveille, R.
Westall, F.
Wiens, R. C.
Mangold, N.
Bristow, T.
Edwards, P.
Berger, G.
TI Diagenesis and clay mineral formation at Gale Crater, Mars
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE Mars; Mars Science Laboratory; clay; Yellowknife Bay; diagenesis
ID GENERATED HYDROTHERMAL SYSTEMS; ALTERATION ASSEMBLAGES; MARTIAN
METEORITES; SATURATION STATE; YELLOWKNIFE BAY; NATURAL-WATERS; ORIGIN;
DISSOLUTION; EVOLUTION; PHYLLOSILICATES
AB The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50 degrees C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of similar to 7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.
C1 [Bridges, J. C.; Edwards, P.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England.
[Schwenzer, S. P.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England.
[Leveille, R.] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ, Canada.
[Westall, F.] CNRS, Ctr Biophys Mol, Orleans 2, France.
[Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Mangold, N.] CNRS, UMR6112, LPGN, Nantes, France.
[Mangold, N.] Univ Nantes, Nantes, France.
[Bristow, T.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA.
[Berger, G.] Univ Toulouse 3, IRAP, CNRS, F-31062 Toulouse, France.
RP Bridges, JC (reprint author), Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England.
EM j.bridges@le.ac.uk
RI BERGER, Gilles/F-7118-2016;
OI Schwenzer, Susanne Petra/0000-0002-9608-0759
FU UKSA; OU Research Investment Fellowship
FX J.C.B. and S.P.S. are funded by UKSA. S.P.S. was in part funded by an OU
Research Investment Fellowship. The mineralogical data used for modeling
from the Mars Science Laboratory mission in this paper are available in
published articles, referred to in the text [e.g., Vaniman et al.,
2014].
NR 59
TC 12
Z9 12
U1 3
U2 22
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JAN
PY 2015
VL 120
IS 1
BP 1
EP 19
DI 10.1002/2014JE004757
PG 19
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CC0WD
UT WOS:000350058500001
ER
PT J
AU White, OL
Schenk, PM
AF White, Oliver L.
Schenk, Paul M.
TI Topographic mapping of paterae and layered plains on Io using
photoclinometry
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE Io; photoclinometry; patera; layered plains; topography
ID GALILEO VIEW; MOUNTAINS; INTERIOR; VOYAGER; GEOLOGY; LO
AB We have generated regional scale photoclinometry digital elevation models (DEMs) from Voyager and Galileo imagery of Io that resolve small-scale topographic features including paterae and layered plains. Given the difficulty of applying this technique to Io due to its anomalous surface albedo properties, we have experimented extensively with the relevant procedures in order to generate what we consider to be the most reliable DEMs. The DEMs have been used to gauge the depths of 23 paterae and the heights of 12 layered plains outcrops, and we find the very similar relief and frequent close association of the two landforms to support the existence of a mixed silicate-volatile layer covering much of the surface of Io.
C1 [White, Oliver L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Schenk, Paul M.] Lunar & Planetary Inst, Houston, TX 77058 USA.
RP White, OL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM oliver.l.white@nasa.gov; schenk@lpi.usra.edu
FU NASA Outer Planet Research Program; Lunar and Planetary Institute
FX The supporting data included with this paper consist of 29 cube files of
the PC DEMs as well as 8 cube files of the source PC images and 8 cube
files of the source albedo images (which can be viewed by downloading
ISIS3 from the USGS website:
http://isis.astrogeology.usgs.gov/Installation/). The authors wish to
thank Ashley Davies for his comments, which helped to improve this
paper. This research was supported by funding from the NASA Outer Planet
Research Program, as well as the Lunar and Planetary Institute.
NR 23
TC 1
Z9 1
U1 1
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JAN
PY 2015
VL 120
IS 1
BP 51
EP 61
DI 10.1002/2014JE004672
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CC0WD
UT WOS:000350058500004
ER
PT J
AU Wilson, JT
Eke, VR
Massey, RJ
Elphic, RC
Jolliff, BL
Lawrence, DJ
Llewellin, EW
McElwaine, JN
Teodoro, LFA
AF Wilson, J. T.
Eke, V. R.
Massey, R. J.
Elphic, R. C.
Jolliff, B. L.
Lawrence, D. J.
Llewellin, E. W.
McElwaine, J. N.
Teodoro, L. F. A.
TI Evidence for explosive silicic volcanism on the Moon from the extended
distribution of thorium near the Compton-Belkovich Volcanic Complex
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
DE Moon; Compton-Belkovich Volcanic Complex; thorium; CBTA; pyroclastic
ID BAYESIAN IMAGE-RECONSTRUCTION; PROSPECTOR GAMMA-RAY; LUNAR PROSPECTOR;
SURFACE; ABUNDANCES; ERUPTION; REGOLITH; SPECTROMETER; INFORMATION;
NEUTRONS
AB We reconstruct the abundance of thorium near the Compton-Belkovich Volcanic Complex on the Moon, using data from the Lunar Prospector Gamma Ray Spectrometer. We enhance the resolution via a pixon image reconstruction technique and find that the thorium is distributed over a larger (40km x 75 km) area than the (25km x 35 km) high-albedo region normally associated with Compton-Belkovich. Our reconstructions show that inside this region, the thorium concentration is 14-26ppm. We also find additional thorium, spread up to 300km eastward of the complex at approximate to 2 ppm. The thorium must have been deposited during the formation of the volcanic complex, because subsequent lateral transport mechanisms, such as small impacts, are unable to move sufficient material. The morphology of the feature is consistent with pyroclastic dispersal, and we conclude that the present distribution of thorium was likely created by the explosive eruption of silicic magma.
C1 [Wilson, J. T.; Eke, V. R.; Massey, R. J.] Univ Durham, Sci Labs, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England.
[Elphic, R. C.] NASA, Ames Res Ctr, Planetary Syst Branch, Moffett Field, CA 94035 USA.
[Jolliff, B. L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA.
[Jolliff, B. L.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO USA.
[Lawrence, D. J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Llewellin, E. W.; McElwaine, J. N.] Univ Durham, Sci Labs, Dept Earth Sci, Durham DH1 3LE, England.
[Teodoro, L. F. A.] NASA, Ames Res Ctr, BAER, Planetary Syst Branch,Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
RP Wilson, JT (reprint author), Univ Durham, Sci Labs, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England.
EM j.t.wilson@durham.ac.uk
RI Llewellin, Edward/H-7384-2013; Lawrence, David/E-7463-2015; Wilson,
Jack/A-3415-2017
OI Llewellin, Edward/0000-0003-2165-7426; Lawrence,
David/0000-0002-7696-6667; Wilson, Jack/0000-0002-9774-553X
FU Science and Technology Facilities Council [ST/K501979/1, ST/L00075X/1];
Royal Society University Research Fellowship; BIS National
E-infrastructure capital grant [ST/K00042X/1]; STFC [ST/H008519/1]; STFC
DiRAC [ST/K003267/1]; Durham University
FX LP-GRS and LRO data are available from NASA's Planetary Data System at
http://pds-geosciences.wustl.edu. The program STABLE is available from
J. P. Nolan's website: academic2.american.edu/similar to jpnolan. The
work of the Diviner and LROC teams are gratefully acknowledged. J.T.W.
and V.R.E. are supported by the Science and Technology Facilities
Council [grants ST/K501979/1 and ST/L00075X/1]. R.J.M. is supported by a
Royal Society University Research Fellowship. This work used the DiRAC
Data Centric system at Durham University, operated by the Institute for
Computational Cosmology on behalf of the STFC DiRAC HPC Facility
(www.dirac.ac.uk). This equipment was funded by BIS National
E-infrastructure capital grant ST/K00042X/1, STFC capital grant
ST/H008519/1, and STFC DiRAC Operations grant ST/K003267/1 and Durham
University. DiRAC is part of the UK national E-Infrastructure. We would
like to thank two anonymous reviewers for their thoughtful comments that
led to a much improved manuscript. The authors thank Richy Brown and
Iain Neill for helpful discussions.
NR 65
TC 5
Z9 6
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD JAN
PY 2015
VL 120
IS 1
BP 92
EP 108
DI 10.1002/2014JE004719
PG 17
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CC0WD
UT WOS:000350058500006
ER
PT J
AU Fu, YN
Argus, DF
Landerer, FW
AF Fu, Yuning
Argus, Donald F.
Landerer, Felix W.
TI GPS as an independent measurement to estimate terrestrial water storage
variations in Washington and Oregon
SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
LA English
DT Article
DE GPS; water variation; Washington; Oregon; time-variable water change
ID SURFACE LOADS; EARTH; DEFORMATION; CALIFORNIA; MODEL; ASSIMILATION;
MOTION; GRACE; BASIN; FAULT
AB The Global Positioning System (GPS) measures elastic ground loading deformation in response to hydrological mass variations on or near Earth's surface. We present a time series of change in terrestrial water storage as a function of position in Washington and Oregon estimated using GPS measurements of vertical displacement of Earth's surface. The distribution of water variation inferred from GPS is highly correlated with physiographic provinces: the seasonal water is mostly located in the mountain areas, such as the Cascade Range and Olympic Mountains, and is much smaller in the basin and valley areas of the Columbia Basin and Harney Basin. GPS is proven to be an independent measurement to distinguish between hydrological models. The drought period of 2008-2010 (maximum in 2010) and the recovery period of 2011-2012 in the Cascade Range are well recovered with GPS-determined time-variable monthly water mass series. The GPS-inferred water storage variation in the Cascade Range is consistent with that derived from JPL's GRACE monthly mass grid solutions. The percentage of RMS reduction is similar to 62% when we subtract GRACE water series from GPS-derived results. GPS-determined water storage variations can fill gaps in the current GRACE mission, also in the transition period from the current GRACE to the future GRACE Follow-on missions. We demonstrate that the GPS-inferred water storage variations can determine and verify local scaling factors for GRACE measurements; in the Cascade Range, the RMS reduction between GRACE series scaled by GPS and scaled by the hydrological model-based GRACE Tellus gain factors is up to 90.5%.
C1 [Fu, Yuning; Argus, Donald F.; Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Fu, YN (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM Yuning.Fu@jpl.nasa.gov
OI Landerer, Felix/0000-0003-2678-095X
FU NASA Postdoctoral Program at Jet Propulsion Laboratory; National
Aeronautics and Space Administration (NASA)
FX We greatly appreciate Christopher Watson, Tonie van Dam, and the editor
Paul Tregoning for constructive comments that significantly helped to
improve the manuscript. Y.F. thanks Richard Gross and Michael Watkins
for helpful discussions. We are grateful to JPL's GPS data processing
group, A. Moore, S. Owen, M. Heflin, S. Desai, W. Bertiger, and other
members, and the UNAVCO, NSF Plate Boundary Observatory, and NASA
MEaSUREs projects for GPS observations and data organization. All the
data and results derived in this study are available from the authors.
Y.F. is supported through the NASA Postdoctoral Program at Jet
Propulsion Laboratory. The research described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, sponsored by the National Aeronautics and Space
Administration (NASA).
NR 52
TC 13
Z9 13
U1 4
U2 21
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9313
EI 2169-9356
J9 J GEOPHYS RES-SOL EA
JI J. Geophys. Res.-Solid Earth
PD JAN
PY 2015
VL 120
IS 1
BP 552
EP 566
DI 10.1002/2014JB011415
PG 15
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA CC2CH
UT WOS:000350152000030
ER
PT J
AU Share, GH
Murphy, RJ
Tylka, AJ
Dennis, BR
Ryan, JM
AF Share, Gerald H.
Murphy, Ronald J.
Tylka, Allan J.
Dennis, Brian R.
Ryan, James M.
TI Misidentification of the source of a neutron transient detected by
MESSENGER on 4 June 2011
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE Solar neutrons; solar energetic particles; solar flares
ID GAMMA-RAY LINES; ENERGETIC PARTICLE; SOLAR; FLARE; SPECTROMETER;
SPACECRAFT; TELESCOPE; SPECTRA; STEREO; FNIT
AB Low-energy (1-10 MeV) neutrons emanating from the Sun provide unique information about accelerated ions with steep energy spectra that may be produced in weak solar flares. However, observation of these solar neutrons can only be made in the inner heliosphere where measurement is difficult due to high background rates from neutrons produced by energetic ions interacting in the spacecraft. These ions can be from solar energetic particle events or produced in passing shocks associated with fast coronal mass ejections. Therefore, it is of the utmost importance that investigators rule out these secondary neutrons before making claims about detecting neutrons from the Sun. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) neutron spectrometer recorded an hour-long neutron transient beginning at 15:45 UTC on 4 June 2011 for which Lawrence et al. (2014) claim there is strong evidence that the neutrons were produced by the interaction of ions in the solar atmosphere. We studied this event in detail using data from the MESSENGER neutron spectrometer, gamma ray spectrometer, X-ray Spectrometer, and Energetic Particle Spectrometer and from the particle spectrometers on STEREO A. We demonstrate that the transient neutrons were secondaries produced by energetic ions, probably accelerated by a passing shock, that interacted in the spacecraft. We also identify significant faults with the authors' arguments in favor of a solar neutron origin for the transient.
C1 [Share, Gerald H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Murphy, Ronald J.] Naval Res Lab, Div Space Sci, Washington, DE USA.
[Tylka, Allan J.; Dennis, Brian R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ryan, James M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
RP Share, GH (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM share@astro.umd.edu
FU NSF/SHINE [1156092]
FX We thank Anne K. Tolbert for assistance in accessing and plotting
MESSENGER XRS data and Richard Starr (richard.d.starr@nasa.gov) for
explaining how to access these data and the characteristics of the XRS
instrument. All of the other data used in this paper either came from
Lawrence et al. [2014] or open sources such as the STEREO data center.
This work was funded in part by NSF/SHINE grant 1156092 and by the Chief
of Naval Research.
NR 26
TC 2
Z9 2
U1 1
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 1
EP 11
DI 10.1002/2014JA020663
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300001
ER
PT J
AU Verkhoglyadova, OP
Wang, S
Mlynczak, MG
Hunt, LA
Zank, GP
AF Verkhoglyadova, O. P.
Wang, S.
Mlynczak, M. G.
Hunt, L. A.
Zank, G. P.
TI Effects of two large solar energetic particle events on middle
atmosphere nighttime odd hydrogen and ozone content: Aura/MLS and
TIMED/SABER measurements
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE SEP; middle atmosphere; ozone destruction; odd hydrogen
ID PROTON EVENTS; JANUARY 2005; INTERPLANETARY SHOCKS; PRECIPITATION
EVENTS; NORTHERN-HEMISPHERE; ION CHEMISTRY; SEP EVENTS; SATELLITE;
CYCLE; DEPENDENCE
AB It is well established that large solar energetic particle (SEP) events affect ozone in the middle atmosphere through chemical reactions involving odd hydrogen (HOx) species. We analyze global middle atmospheric effects at local nighttime for two large SEP events during the intervals of 7-17 November 2004 and 20-30 August 2005. Properties of the SEP events and concomitant geomagnetic storms are discussed using in situ measurements. Temporal dynamics and latitudinal distribution of HOx and ozone densities inferred from measurements by the Aura/MLS (Microwave Limb Sounder) instrument are analyzed. We show statistically significant increases of nighttime hydroxyl (OH) density in the middle atmosphere up to 5 degrees 10(6)cm(-3) in the latitude range from 70 degrees down to 50 degrees latitude in northern and to -40 degrees latitude in southern hemispheres in connection with peaks in proton fluxes of >10MeV energy range measured by GOES spacecraft. During the storm main phases, the nighttime OH density increases were observed around 50 degrees in southern and northern hemispheres in the altitude range of 65-80km. There is a correspondence between averaged nighttime OH partial column density (in 0.005 to 0.1hPa pressure range) in the polar latitudes and energetic proton (>10MeV) fluxes. Corresponding statistically significant nighttime ozone destructions up to 45% are observed from 70 degrees down to 60 degrees latitude in the northern and southern hemispheres. The SEP impulsive phases correspond to onsets of ozone density depletions. Larger relative ozone destructions are observed in the northern hemisphere in November and in the southern hemisphere in August. Simultaneous measurements of ozone density by the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) instrument independently confirm the MLS results.
C1 [Verkhoglyadova, O. P.; Zank, G. P.] Univ Alabama, Ctr Space & Aeron Res, Huntsville, AL 35899 USA.
[Verkhoglyadova, O. P.; Wang, S.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Hunt, L. A.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Zank, G. P.] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA.
RP Verkhoglyadova, OP (reprint author), Univ Alabama, Ctr Space & Aeron Res, Huntsville, AL 35899 USA.
EM Olga.Verkhoglyadova@jpl.nasa.gov
OI Verkhoglyadova, Olga/0000-0002-9295-9539; Hunt,
Linda/0000-0002-5330-541X
FU NSF SHINE [AGS-0962658]; NASA EPSCoR [EPSCoR NNX09AP74A, NNX11AO64G];
NASA through UAH [PO 13390]; NASA Aura Science Team program; NASA TIMED
project office
FX O.V.'s work was supported by NSF SHINE AGS-0962658 grant and NASA grants
EPSCoR NNX09AP74A and NNX11AO64G, the subaward PO 13390 through UAH.
S.W. acknowledges the support of the NASA Aura Science Team program.
Work at the Jet Propulsion Laboratory, California Institute of
Technology, was done under contract to the National Aeronautics and
Space Administration. Government Sponsorship acknowledged. M.G.M. would
like to acknowledge support from the NASA TIMED project office. The
authors acknowledge use of the GOES Space Environment Monitor data
provided by NOAA and OMNI database supported by NASA GSFC (at
http://omniweb.gsfc.nasa.gov/form/omni_min.html and
http://satdat.ngdc.noaa.gov/sem/goes/data/new_avg/). MLS data are
provided through http://mls.jpl.nasa.gov/. SABER data are available at
http://saber.gats-inc.com/.
NR 47
TC 1
Z9 1
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 12
EP 29
DI 10.1002/2014JA020609
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300002
ER
PT J
AU Ruffenach, A
Lavraud, B
Farrugia, CJ
Demoulin, P
Dasso, S
Owens, MJ
Sauvaud, JA
Rouillard, AP
Lynnyk, A
Foullon, C
Savani, NP
Luhmann, JG
Galvin, AB
AF Ruffenach, A.
Lavraud, B.
Farrugia, C. J.
Demoulin, P.
Dasso, S.
Owens, M. J.
Sauvaud, J. -A.
Rouillard, A. P.
Lynnyk, A.
Foullon, C.
Savani, N. P.
Luhmann, J. G.
Galvin, A. B.
TI Statistical study of magnetic cloud erosion by magnetic reconnection
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE coronal mass ejection; magnetic cloud; magnetic flux rope; solar wind;
magnetic reconnection
ID SOLAR-WIND; FLUX ROPES; BOUNDARY-LAYERS; 1 AU; FIELD; ELECTRON; PLASMA;
RECONSTRUCTION; IDENTIFICATION; QUANTITIES
AB Several recent studies suggest that magnetic reconnection is able to erode substantial amounts of the outer magnetic flux of interplanetary magnetic clouds (MCs) as they propagate in the heliosphere. We quantify and provide a broader context to this process, starting from 263 tabulated interplanetary coronal mass ejections, including MCs, observed over a time period covering 17years and at a distance of 1AU from the Sun with Wind (1995-2008) and the two STEREO (2009-2012) spacecraft. Based on several quality factors, including careful determination of the MC boundaries and main magnetic flux rope axes, an analysis of the azimuthal flux imbalance expected from erosion by magnetic reconnection was performed on a subset of 50 MCs. The results suggest that MCs may be eroded at the front or at rear and in similar proportions, with a significant average erosion of about 40% of the total azimuthal magnetic flux. We also searched for in situ signatures of magnetic reconnection causing erosion at the front and rear boundaries of these MCs. Nearly similar to 30% of the selected MC boundaries show reconnection signatures. Given that observations were acquired only at 1AU and that MCs are large-scale structures, this finding is also consistent with the idea that erosion is a common process. Finally, we studied potential correlations between the amount of eroded azimuthal magnetic flux and various parameters such as local magnetic shear, Alfven speed, and leading and trailing ambient solar wind speeds. However, no significant correlations were found, suggesting that the locally observed parameters at 1AU are not likely to be representative of the conditions that prevailed during the erosion which occurred during propagation from the Sun to 1AU. Future heliospheric missions, and in particular Solar Orbiter or Solar Probe Plus, will be fully geared to answer such questions.
C1 [Ruffenach, A.; Lavraud, B.; Sauvaud, J. -A.; Rouillard, A. P.; Lynnyk, A.] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.
[Ruffenach, A.; Lavraud, B.; Sauvaud, J. -A.; Rouillard, A. P.; Lynnyk, A.] CNRS, UMR, Toulouse, France.
[Farrugia, C. J.; Galvin, A. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
[Demoulin, P.] Observ Paris, CNRS, UMR 8109, LESIA, F-92195 Meudon, France.
[Dasso, S.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina.
[Dasso, S.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ciencias Atmosfera & Oceanos, Buenos Aires, DF, Argentina.
[Dasso, S.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina.
[Owens, M. J.] Univ Reading, Space Environm Phys Grp, Reading, Berks, England.
[Foullon, C.] Univ Exeter, EMPS CGAFD, Exeter, Devon, England.
[Savani, N. P.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA.
[Savani, N. P.] NASA Goddard, Greenbelt, MD USA.
[Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
RP Ruffenach, A (reprint author), Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.
EM alexis.ruffenach@irap.omp.eu; benoit.lavraud@irap.omp.eu
RI Owens, Mathew/B-3006-2010; Foullon, Claire/A-3539-2009;
OI Owens, Mathew/0000-0003-2061-2453; Foullon, Claire/0000-0002-2532-9684;
Demoulin, Pascal/0000-0001-8215-6532
FU NASA [NNX10AQ29G, NNX13AP39G]; STEREO-FARSIDE; European FP7 HELCATS
project
FX All the data are available through the NASA/GSFC's Space Physics Data
Facility's CDAWeb service (www.cdaweb.gsfc.nasa.gov). The authors thank
the Wind and STEREO teams for their work on instrument design, building,
and calibration. A.R. and B.L. are grateful to M. Janvier for fruitful
discussions. Work at UNH is supported by NASA grants NNX10AQ29G,
NNX13AP39G, and STEREO-FARSIDE. This work was in part supported by the
European FP7 HELCATS project.
NR 62
TC 14
Z9 14
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 43
EP 60
DI 10.1002/2014JA020628
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300004
ER
PT J
AU Chen, SH
Le, G
Fok, MC
AF Chen, S-H
Le, G.
Fok, M-C
TI Magnetospheric boundary perturbations on MHD and kinetic scales
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE magnetopause; low-latitude boundary layer; Kelvin-Helmholtz instability;
lower hybrid waves; MHD instabilities; kinetic instabilities
ID HYBRID-DRIFT INSTABILITY; KELVIN-HELMHOLTZ INSTABILITY; INTERPLANETARY
MAGNETIC-FIELD; HIGH-LATITUDE MAGNETOPAUSE; WHISTLER-MODE WAVES;
LOW-FREQUENCY WAVES; PLASMA-WAVES; GEOTAIL OBSERVATIONS; VELOCITY SHEAR;
ION-CYCLOTRON
AB To study the magnetopause on both MHD and kinetic scales, we have analyzed two Time History of Events and Macroscale Interactions during Substorms/Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun magnetopause crossings under steady slow-solar wind and minimum magnetic shear conditions. These events approximate a ground state of the magnetospheric boundary with minimum influences from large-solar wind disturbances and magnetic reconnection. Our observations reveal evidence for the Kelvin-Helmholtz instability, the quasi-periodicity of magnetopause surface waves accompanied by highly asymmetrical plasma signatures between the inbound (from magnetosheath to low-latitude boundary layer (LLBL)) and the outbound (from LLBL to magnetosheath) magnetopause crossings. Stronger plasma and magnetic gradients were observed during the outbound crossings but more gradual and volatile variations at higher frequencies during the inbounds. The scale lengths of the magnetic and plasma gradients were comparable or less than the proton gyroradius. Enhancements of lower hybrid waves occurred at the locations of strong gradients or variations. We interpreted the collocations of the lower hybrid waves and plasma gradients and their variations in terms of (1) lower hybrid instabilities that directly convert solar wind flow energy into lower hybrid waves and other wave modes in the LLBL, or (2) Kelvin-Helmholtz instability and magnetic reconnection which produce the conditions for the lower hybrid instabilities to grow. The rate of ion diffusion across the magnetopause caused by the lower hybrid instability is marginally sufficient to populate the LLBL. The diffusion coefficient of O+ is similar to 30 times larger than that of H+. The lower hybrid waves could contribute to the energy dissipation at plasma gradients in magnetopause surface wave structures and limit Kelvin-Helmholtz instability growth further downstream.
C1 [Chen, S-H] Univ Space Res Assoc, Columbia, MD 21044 USA.
[Chen, S-H; Le, G.; Fok, M-C] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Chen, SH (reprint author), Univ Space Res Assoc, Columbia, MD 21044 USA.
EM Sheng-Hsien.Chen@nasa.gov
RI Le, Guan/C-9524-2012
OI Le, Guan/0000-0002-9504-5214
FU NASA Goddard Space Flight Center; Universities Space Research
Association
FX We thank THEMIS/ARTEMIS team for providing data through UC Berkeley
THEMIS data system and the PI, Vassilis Angelopoulos of UCLA, for his
insightful suggestions during the analysis. We thank D. Fairfield and G.
Khazanov of NASA Goddard Space Flight Center for their comments on the
manuscript during the editing processes. We thank ACE and Wind teams for
providing solar wind data through Space Physics Data Facility of NASA
Goddard Space Flight Center. This work was supported by the NASA Goddard
Space Flight Center internal funding to CRESST consortium consisting of
University of Maryland at College Park, University of Maryland at
Baltimore County, and Universities Space Research Association. The
THEMIS, ARTEMIS, Wind, and ACE data used in the paper can be obtained
through CDAWeb (http://cdaweb.gsfc.nasa.gov) web interface maintained at
the Space Physics Data Facility at NASA Goddard Space Flight Center.
THEMIS and ARTEMIS data and instrument information can be obtained at
the Space Science Center at the University of California at Berkeley
(http://themis.ssl.berkeley.edu).
NR 127
TC 1
Z9 1
U1 1
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 113
EP 137
DI 10.1002/2014JA020141
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300008
ER
PT J
AU Perez, JD
Goldstein, J
McComas, DJ
Valek, P
Buzulukova, N
Fok, MC
Singer, HJ
AF Perez, J. D.
Goldstein, J.
McComas, D. J.
Valek, P.
Buzulukova, N.
Fok, M. -C.
Singer, H. J.
TI TWINS stereoscopic imaging of multiple peaks in the ring current
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE magnetosphere; ring current; ENA imaging
ID PITCH-ANGLE DISTRIBUTIONS; NEUTRAL-ATOM; PLASMA SHEET; INNER
MAGNETOSPHERE; ENA OBSERVATIONS; FLUX TUBES; MISSION; STORM; SUBSTORM;
FLOWS
AB Global, ion equatorial flux distributions and energy spectra are presented from stereoscopic Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) 1 and TWINS 2 energetic neutral atom (ENA) images for two time periods, 29 May 2010, 1330-1430 UT and 26 May 2011, 1645-1715 UT. The first is just after the main phase of a weak (minimum SYM/H approximate to-70 to -80 nT) corotating interaction region-driven geomagnetic storm. The second is during a relatively quiet period. The global ion distributions show multiple spatial peaks that are coincident with peaks in the AE index. The energy spectra have a primary maximum in the 15-20keV range. Below the energy maximum, the flux is Maxwellian. Above the main maximum, the flux is either significantly below that of a Maxwellian or has a second component with a maximum in the 40-50keV range. For the 29 May 2010, 1330-1430 UT time period, the flux from the TWINS stereoscopic images is compared to the results from TWINS 1 and TWINS 2 alone illustrating the advantage of stereoscopic viewing. The flux deconvolved from the TWINS images also shows spatial and temporal correlations with Time History of Events and Macroscale Interactions during Substorms (THEMIS) in situ measurements. Magnetic field dipolarizations observed by GOES support the existence of a peak in the ion flux in the midnight/dawn sector. In summary, increased spatial resolution from TWINS stereoscopic ENA images is demonstrated. Multiple peaks in the ion flux of trapped particles in the ring current are observed. THEMIS electrostatic analyzer in situ ion flux measurements and GOES geosynchronous magnetic field measurements are consistent with the spatial and temporal structure obtained.
C1 [Perez, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
[Goldstein, J.; McComas, D. J.; Valek, P.] SW Res Inst, San Antonio, TX USA.
[Goldstein, J.; McComas, D. J.; Valek, P.] Univ Texas San Antonio, Dept Phys, San Antonio, TX USA.
[Buzulukova, N.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Buzulukova, N.; Fok, M. -C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Singer, H. J.] NOAA, Natl Weather Serv, Natl Ctr Environm Predict, Space Weather Predict Ctr, Boulder, CO USA.
RP Perez, JD (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
EM perez@physics.auburn.edu
OI Valek, Philip/0000-0002-2318-8750
FU TWINS mission part of NASA's Explorer Program
FX The authors would like to acknowledge Natalia Papitashvili at the Space
Physics Data Facility at NASA Goddard Spaceflight Center for use of the
OMNI data set, the instrument teams from ACE, Wind, and other missions
that contribute the data used by OMNI, and the THEMIS ESA team for the
use of the THEMIS data and software. This work was carried out as a part
of and with support from the TWINS mission as a part of NASA's Explorer
Program. Data used in this paper are available from
http://twins.swri.edu/, http://themis.ssl.berkeley.edu/index.shtml, and
http://spdf.gsfc.nasa.gov/data_orbits.html.
NR 52
TC 5
Z9 5
U1 1
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 368
EP 383
DI 10.1002/2014JA020662
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300024
ER
PT J
AU Tsurutani, BT
Falkowski, BJ
Pickett, JS
Santolik, O
Lakhina, GS
AF Tsurutani, Bruce T.
Falkowski, Barbara J.
Pickett, Jolene S.
Santolik, Ondrej
Lakhina, Gurbax S.
TI Plasmaspheric hiss properties: Observations from Polar
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE plasmasphere; hiss; Polar
ID WAVE DISTRIBUTION-FUNCTIONS; DISCRETE CHORUS EMISSIONS; OBSERVED ONBOARD
GEOS-1; ELF HISS; PARTICLE INTERACTIONS; SUDDEN COMMENCEMENTS;
GEOMAGNETIC-ACTIVITY; PONDEROMOTIVE FORCE; MAGNETIC DECREASES; ALFVEN
WAVES
AB In the region between L=2 to 7 at all Magnetic Local Time (MLTs) plasmaspheric hiss was detected 32% of the time. In the limited region of L=3 to 6 and 15 to 21 MLT (dusk sector), the wave percentage detection was the highest (51%). The latter plasmaspheric hiss is most likely due to energetic similar to 10-100 keV electrons drifting into the dusk plasmaspheric bulge region. On average, plasmaspheric hiss intensities are an order of magnitude larger on the dayside than on the nightside. Plasmaspheric hiss intensities are considerably more intense and coherent during high-solar wind ram pressure intervals. A hypothesis for this is generation of dayside chorus by adiabatic compression of preexisting 10-100keV outer magnetospheric electrons in minimum B pockets plus chorus propagation into the plasmasphere. In large solar wind pressure events, it is hypothesized that plasmaspheric hiss can also be generated inside the plasmasphere. These new generation mechanism possibilities are in addition to the well-established mechanism of plasmaspheric hiss generation during substorms and storms. Plasmaspheric hiss under ordinary conditions is of low coherency, with small pockets of several cycles of coherent waves. During high-solar wind ram pressure intervals (positive SYM-H intervals), plasmaspheric hiss and large L hiss can have higher intensities and be coherent. Plasmaspheric hiss in these cases is typically found to be propagating obliquely to the ambient magnetic field with (kB0) similar to 30 degrees to 40 degrees. Hiss detected at large L has large amplitudes (similar to 0.2nT) and propagates obliquely to the ambient magnetic field ((kB0) similar to 70 degrees) with 2:1 ellipticity ratios. A series of schematics for plasmaspheric hiss generation is presented.
C1 [Tsurutani, Bruce T.; Falkowski, Barbara J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Falkowski, Barbara J.] Glendale Community City Coll, Glendale, CA USA.
[Pickett, Jolene S.] Univ Iowa, Iowa City, IA USA.
[Santolik, Ondrej] Acad Sci Czech Republic, Inst Atmospher Phys, Prague, Czech Republic.
[Santolik, Ondrej] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Lakhina, Gurbax S.] Indian Inst Geomagnetism, Navi Mumbai, India.
RP Tsurutani, BT (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM bruce.t.tsurutani@jpl.nasa.gov
RI Santolik, Ondrej/F-7766-2014;
OI Lakhina, Gurbax /0000-0002-8956-486X
FU National Academy of Sciences of India under NASI Senior Scientist
Platinum Jubilee Fellowship; [GACR205-10.2279]; [LH14010]
FX We thank the two referees for their helpful comments and guide to sudden
impulse papers that we were not aware of. Portions of this research were
carried out at the Jet Propulsion Laboratory, California Institute of
Technology under contract with NASA. Polar data can be obtained from
NASA's Space Physics Data Facility. G.S.L. thanks the National Academy
of Sciences of India for their support under the NASI Senior Scientist
Platinum Jubilee Fellowship. O.S. acknowledges funding from
GACR205-10.2279 and LH14010 grants.
NR 79
TC 14
Z9 14
U1 1
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 414
EP 431
DI 10.1002/2014JA020518
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300027
ER
PT J
AU Khazanov, GV
Tripathi, AK
Singhal, RP
Himwich, EW
Glocer, A
Sibeck, DG
AF Khazanov, G. V.
Tripathi, A. K.
Singhal, R. P.
Himwich, E. W.
Glocer, A.
Sibeck, D. G.
TI Superthermal electron magnetosphere-ionosphere coupling in the diffuse
aurora in the presence of ECH waves
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE magnetosphere-ionosphere interactions
ID CYCLOTRON HARMONIC INSTABILITY; WHISTLER-MODE WAVES; ENERGY INTERCHANGE;
CHORUS WAVES; PITCH-ANGLE; PRECIPITATION; DISTRIBUTIONS; PLASMASPHERE;
TRANSPORT; DRIVEN
AB There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.
C1 [Khazanov, G. V.; Himwich, E. W.; Glocer, A.; Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Tripathi, A. K.; Singhal, R. P.] Banaras Hindu Univ, Dept Phys, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India.
[Himwich, E. W.] Yale Univ, Dept Phys, New Haven, CT USA.
RP Himwich, EW (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Himwich@yale.edu
FU NASA Van Allen Probes; NASA LWS Program; Institute of Technology,
Banaras Hindu University, India
FX Funding support for this study was provided by NASA Van Allen Probes
(formerly known as the Radiation Belt Storm Probes (RBSP)) Project, the
NASA LWS Program, and by Institute of Technology, Banaras Hindu
University, India. G.K. also thanks Krivorutsky for useful discussion.
The data for this paper are available from George Khazanov at
george.v.khazanov@nasa.gov.
NR 39
TC 4
Z9 4
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 445
EP 459
DI 10.1002/2014JA020641
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300029
ER
PT J
AU Takahashi, K
Denton, RE
Kurth, W
Kletzing, C
Wygant, J
Bonnell, J
Dai, L
Min, K
Smith, CW
MacDowall, R
AF Takahashi, Kazue
Denton, Richard E.
Kurth, William
Kletzing, Craig
Wygant, John
Bonnell, John
Dai, Lei
Min, Kyungguk
Smith, Charles W.
MacDowall, Robert
TI Externally driven plasmaspheric ULF waves observed by the Van Allen
Probes
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE ULF waves; plasmasphere; multispacecraft observation
ID PC 3-4 PULSATIONS; INTERPLANETARY MAGNETIC-FIELD;
GEOMAGNETIC-PULSATIONS; SPACECRAFT OBSERVATIONS; DAYSIDE MAGNETOSPHERE;
HARMONIC STRUCTURE; ELECTRON-DENSITY; SOLAR-WIND; BOW SHOCK; MODEL
AB We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultralow frequency (ULF) waves. The waves exhibited strong spectral power in the 5-40 mHz band and included multiharmonic toroidal waves visible up to the eleventh harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined by the cross-phase analysis of data from the two spacecraft. We also find that the coherence and phase delay of the azimuthal components of the magnetic field from the two spacecraft strongly depend on the radial separation of the spacecraft and attribute this feature to field line resonance effects. Finally, using the observed toroidal wave frequencies, we estimate the plasma mass density for L = 2.6-5.8. By comparing the mass density with the electron number density that is estimated from the spectrum of plasma waves, we infer that the plasma was dominated by H+ ions and was distributed uniformly along the magnetic field lines. The electron density is higher than the prediction of saturated plasmasphere models, and this super saturated plasmasphere and the uniform ion distribution are consistent with the low geomagnetic activity that prevailed.
C1 [Takahashi, Kazue] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Denton, Richard E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
[Kurth, William; Kletzing, Craig] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Wygant, John; Dai, Lei] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Bonnell, John] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Min, Kyungguk] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
[Smith, Charles W.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Smith, Charles W.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
[MacDowall, Robert] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA.
RP Takahashi, K (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
EM kazue.takahashi@jhuapl.edu
OI Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202
FU National Science Foundation (NSF) [AGS-1106427]; National Aeronautics
and Space Administration (NASA) [NNX13AE02G, NNX14AB97G]; NSF
[AGS-1105790]; NASA [NNX10AQ60G, NNG05GJ70G]; JHU/APL under NASA
[921647, NAS5-01072]
FX Work at the Johns Hopkins University Applied Physics Laboratory
(JHU/APL) was supported by National Science Foundation (NSF) grant
AGS-1106427 and National Aeronautics and Space Administration (NASA)
grants NNX13AE02G and NNX14AB97G. Work at Dartmouth College was
supported by NSF grant AGS-1105790 and by NASA grants NNX10AQ60G and
NNG05GJ70G. Research at the University of Iowa was supported by JHU/APL
contract 921647 under NASAs Prime contract NAS5-01072. The EMFISIS data
were obtained from the University of Iowa at
http://emfisis.physics.uiowa.edu, the EFW data were obtained from the
University of Minnesota at
http://www.space.umn.edu/missions/rbspefw-home-university-of-minnesota,
the solar wind and IMF data were obtained from the Goddard Space Flight
Center Space Physics Data Facility OMNIWeb interface
http://omniweb.gsfc.nasa.gov/ow_min.html, and the Dst index was obtained
from the World Data Center for Geomagnetism, Kyoto, at
http://wdc.kugi.kyoto-u.ac.jp/index.html.
NR 77
TC 11
Z9 11
U1 0
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 526
EP 552
DI 10.1002/2014JA020373
PG 27
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300034
ER
PT J
AU Verkhoglyadova, OP
Mannucci, AJ
Tsurutani, BT
Mlynczak, MG
Hunt, LA
Redmon, RJ
Green, JC
AF Verkhoglyadova, O. P.
Mannucci, A. J.
Tsurutani, B. T.
Mlynczak, M. G.
Hunt, L. A.
Redmon, R. J.
Green, J. C.
TI Localized thermosphere ionization events during the high-speed stream
interval of 29 April to 5 May 2011
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
DE thermosphere; ionosphere; aurora; HSS; particle precipitation
ID SOLAR-WIND STREAMS; GEOMAGNETIC-ACTIVITY; UPPER-ATMOSPHERE; RADIATION
BELT; ATOMIC OXYGEN; NITRIC-OXIDE; STORMS; DENSITY; ENERGY; IONOSPHERE
AB We analyze localized ionospheric-thermospheric (IT) events in response to external driving by a high-speed stream (HSS) during the ascending phase of the Solar Cycle 24. The HSS event occurred from 29 April to 5 May, 2011. The HSS itself (and not the associated corotating interaction region) caused a moderate geomagnetic storm with peak SYM-H=-55 nT and prolonged auroral activity. We analyze TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics)/SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) measurements of nitric oxide (NO) cooling emission during the interval as a measure of thermospheric response to auroral heating. We identify several local cooling emission (LCE) events in high to subauroral latitudes. Individual cooling emission profiles during these LCE events are enhanced at ionospheric E layer altitudes. For the first time, we present electron density profiles in the vicinity of the LCE events using collocated COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) radio occultation (RO) measurements. Measurements at local nighttime show the formation of an enhanced E layer (about 2.5 times increase over the undisturbed value) at 100km altitude. Daytime electron density profiles show relatively smaller enhancements in the E layer. We suggest that the IT response is due to additional ionization caused by medium energy electron (>10keV) precipitation into the subauroral to high-latitude atmosphere associated with geomagnetic activity during the HSS event.
C1 [Verkhoglyadova, O. P.; Mannucci, A. J.; Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Verkhoglyadova, O. P.] Ctr Space & Aeron Res, Huntsville, AL USA.
[Mlynczak, M. G.] NASA Langley Res Ctr, Hampton, VA USA.
[Hunt, L. A.] Sci Syst & Applicat Inc, Hampton, VA USA.
[Redmon, R. J.] NOAA, Boulder, CO USA.
[Green, J. C.] Space Hazards Applicat, Golden, CO USA.
RP Verkhoglyadova, OP (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
EM Olga.Verkhoglyadova@jpl.nasa.gov
OI Verkhoglyadova, Olga/0000-0002-9295-9539; Hunt,
Linda/0000-0002-5330-541X
FU NASA TIMED project office; NASA
FX Portions of this work were done at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. M.G.M.
would like to acknowledge support from the NASA TIMED project office.
SABER data are available at http://saber.gats-inc.com/. The authors
acknowledge use of COSMIC data provided by CDAAC (available through
COSMIC Public Data Access from http://cdaac-
www.cosmic.ucar.edu/cdaac/products.html). Solar wind parameters and
activity indices are taken from the OMNI database
(http://omniweb.gsfc.nasa.gov/form/omni_min.html). Electron count data
were provided through NOAA NGDC
(http://satdat.ngdc.noaa.gov/sem/poes/data/avg/). Hemispheric Power data
were provided by the National Oceanic and Atmospheric Administration
(NOAA), Boulder CO, USA. The authors would like to thank the referees
for the helpful comments.
NR 69
TC 5
Z9 5
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JAN
PY 2015
VL 120
IS 1
BP 675
EP 696
DI 10.1002/2014JA020535
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CB8OX
UT WOS:000349891300044
ER
PT J
AU Besson, DZ
Stockham, J
Sullivan, M
Allison, P
Beatty, JJ
Belov, K
Binns, WR
Chen, C
Chen, P
Clem, JM
Connolly, A
Dowkontt, PF
Gorham, PW
Hoover, S
Israel, MH
Javaid, A
Liewer, KM
Matsuno, S
Miki, C
Mottram, M
Nam, J
Naudet, CJ
Nichol, RJ
Romero-Wolf, A
Ruckman, L
Saltzberg, D
Seckel, D
Shang, RY
Stockham, M
Varner, GS
Vieregg, AG
Wang, Y
AF Besson, D. Z.
Stockham, J.
Sullivan, M.
Allison, P.
Beatty, J. J.
Belov, K.
Binns, W. R.
Chen, C.
Chen, P.
Clem, J. M.
Connolly, A.
Dowkontt, P. F.
Gorham, P. W.
Hoover, S.
Israel, M. H.
Javaid, A.
Liewer, K. M.
Matsuno, S.
Miki, C.
Mottram, M.
Nam, J.
Naudet, C. J.
Nichol, R. J.
Romero-Wolf, A.
Ruckman, L.
Saltzberg, D.
Seckel, D.
Shang, R. Y.
Stockham, M.
Varner, G. S.
Vieregg, A. G.
Wang, Y.
TI Antarctic radio frequency albedo and implications for cosmic ray
reconstruction
SO RADIO SCIENCE
LA English
DT Article
DE Antarctica; surface roughness; albedo; interferometry; cosmic ray
ID ULTRAHIGH-ENERGY NEUTRINOS
AB We describe herein a measurement of the Antarctic surface roughness performed by the balloon-borne ANITA (Antarctic Impulsive Transient Antenna) experiment. Originally purposed for cosmic ray astrophysics, the radio frequency (RF) receiver ANITA gondola, from its 38 km altitude vantage point, can scan a disk of snow surface 600 km in radius. The primary purpose of ANITA is to detect RF emissions from cosmic rays incident on Antarctica, such as neutrinos which penetrate through the atmosphere and interact within the ice, resulting in signal directed upward which then refracts at the ice-air interface and up and out to ANITA, or high-energy nuclei (most likely irons or protons), which interact in the upper atmosphere (at altitudes below ANITA) and produce a spray of down-coming RF which reflects off the snow surface and back up to the gondola. The energy of such high-energy nuclei can be inferred from the observed reflected signal only if the surface reflectivity is known. We describe herein an attempt to quantify the Antarctic surface reflectivity, using the Sun as a constant, unpolarized RF source. We find that the reflectivity of the surface generally follows the expectations from the Fresnel equations, lending support to the use of those equations to give an overall correction factor to calculate cosmic ray energies for all locations in Antarctica. The analysis described below is based on ANITA-II data. After launching from McMurdo Station in December 2008, ANITA-II was aloft for a period of 31 days with a typical instantaneous duty cycle exceeding 95%.
C1 [Besson, D. Z.; Stockham, J.; Sullivan, M.; Stockham, M.] Univ Kansas, Dept Phys, Lawrence, KS 66045 USA.
[Besson, D. Z.] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Moscow, Russia.
[Allison, P.; Beatty, J. J.; Connolly, A.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Belov, K.; Hoover, S.; Saltzberg, D.; Vieregg, A. G.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA.
[Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Chen, C.; Chen, P.; Nam, J.; Shang, R. Y.; Wang, Y.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan.
[Clem, J. M.; Javaid, A.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA.
[Gorham, P. W.; Matsuno, S.; Miki, C.; Romero-Wolf, A.; Ruckman, L.; Varner, G. S.] Dept Phys, Honolulu, HI USA.
[Hoover, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Hoover, S.; Vieregg, A. G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Liewer, K. M.; Naudet, C. J.; Romero-Wolf, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Mottram, M.; Nichol, R. J.] UCL, Dept Phys, London, England.
[Nam, J.] Univ Calif Irvine, Dept Phys, Irvine, CA 92717 USA.
RP Stockham, J (reprint author), Univ Kansas, Dept Phys, Lawrence, KS 66045 USA.
EM jgsnyder21@gmail.com
RI Beatty, James/D-9310-2011
OI Beatty, James/0000-0003-0481-4952
FU NASA (NESSF) [NNX07AO05H]; National Science Foundation [NSF0064451]
FX We express our gratitude to Frederique Remy for kindly providing us with
the Envisat reflectivity data. We also thank the National Aeronautics
and Space Administration, the National Science Foundation Office of
Polar Programs, the Department of Energy Office of Science HEP Division,
the UK Science and Technology Facilities Council, the National Science
Council in Taiwan ROC, Fermilab's QuarkNet Program, the Russian Ministry
of Science and Education, and especially the staff of the Columbia
Scientific Balloon Facility. A. Romero-Wolf would like to thank NASA
(NESSF grant NNX07AO05H) for support for this work. This material is
based upon work supported by the National Science Foundation Graduate
Research Fellowship under grant NSF0064451. Data used for this analysis
and to generate the included figures may be obtained by contacting the
corresponding author, J. Stockham (jegab8@ku.edu).
NR 18
TC 2
Z9 2
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0048-6604
EI 1944-799X
J9 RADIO SCI
JI Radio Sci.
PD JAN
PY 2015
VL 50
IS 1
BP 1
EP 17
DI 10.1002/2013RS005315
PG 17
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences; Remote Sensing; Telecommunications
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences; Remote Sensing; Telecommunications
GA CB8PA
UT WOS:000349891700001
ER
PT J
AU Zheng, YH
Mason, T
Wood, EL
AF Zheng, Yihua
Mason, Tom
Wood, Erin L.
TI Forecasting Space Weather Events for a Neighboring World
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT News Item
C1 [Zheng, Yihua] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Zheng, Yihua] CCMC, Space Weather Res Ctr, Coimbatore, Tamil Nadu, India.
[Mason, Tom] Univ Colorado, Boulders Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
[Mason, Tom] LASP, MAVEN Mission, Boulder, CO USA.
[Wood, Erin L.] Univ Colorado, MAVEN Mission Team, Boulder, CO 80309 USA.
[Wood, Erin L.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
RP Zheng, YH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM Yihua.Zheng@nasa.gov; tmason@colorado.edu; Erin.Wood@lasp.colorado.edu
NR 2
TC 0
Z9 0
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JAN
PY 2015
VL 13
IS 1
BP 2
EP 4
DI 10.1002/2014SW001140
PG 3
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA CB9VJ
UT WOS:000349981300001
ER
PT J
AU Lane, C
Acebal, A
Zheng, YH
AF Lane, Cory
Acebal, Ariel
Zheng, Yihua
TI Assessing predictive ability of three auroral precipitation models using
DMSP energy flux
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
ID STATISTICAL-MODEL; OVATION
AB Our study statistically compares the total energy flux outputs of Newell et al.'s () oval variation, assessment, tracking, intensity, and online nowcasting (OVATION) Prime model, Hardy et al.'s () Kp-based model, and a coupled Space Weather Modeling Framework ring current model to energy flux data obtained from 2198 Defense Meteorological Satellite Program (DMSP) satellite passes in the Northern Hemisphere. Our DMSP data set includes 28days grouped into continuous 3 and 4day periods between 2000 and 2008 and encompasses magnetic local times (MLTs) between 04:00 and 21:00. We obtain the most equatorward magnetic latitude coordinate, where a DMSP satellite energy flux measurement exceeds 0.4erg/cm(2)/s, and use this point as a proxy for the equatorward boundary of the auroral oval in a particular MLT sector. We then calculate a prediction efficiency (PE) score by comparing the DMSP boundary coordinates to each model, using the same energy flux threshold to obtain a model's boundary location. We find that the PE for the OVATION Prime model is 0.55, and the PE for the Hardy Kp model is 0.51. When we accomplish the same analysis using a higher energy flux threshold equal to 0.6erg/cm(2)/s, the OVATION Prime model's PE increases to 0.58, while the Hardy Kp model's score drops to 0.41. Our results indicate that more complex modeling techniques, like those used in OVATION Prime, can more accurately model the auroral oval's equatorward boundary. However, Hardy's discretized Kp model, despite its relative simplicity, is still a competitive and viable modeling option.
C1 [Lane, Cory; Acebal, Ariel] Air Force Inst Technol, Dept Appl Phys, Wright Patterson AFB, OH 45433 USA.
[Zheng, Yihua] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA.
RP Lane, C (reprint author), Air Force Inst Technol, Dept Appl Phys, Wright Patterson AFB, OH 45433 USA.
EM cory.lane@us.af.mil
NR 20
TC 4
Z9 4
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD JAN
PY 2015
VL 13
IS 1
BP 61
EP 71
DI 10.1002/2014SW001085
PG 11
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA CB9VJ
UT WOS:000349981300007
ER
PT J
AU Campbell, LA
Bottom, DL
Volk, EC
Fleming, IA
AF Campbell, Lance A.
Bottom, Daniel L.
Volk, Eric C.
Fleming, Ian A.
TI Correspondence between Scale Morphometrics and Scale and Otolith
Chemistry for Interpreting Juvenile Salmon Life Histories
SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY
LA English
DT Article
ID CHINOOK SALMON; FRESH-WATER; FISH OTOLITHS; ONCORHYNCHUS-TSHAWYTSCHA;
ANADROMOUS SALMONIDS; ELECTRON-MICROPROBE; MASS-SPECTROMETRY; STRONTIUM;
RIVER; MICROCHEMISTRY
AB Fish scales have long been used to reconstruct fine-scale habitat transitions such as the movement of juvenile fish from freshwater, estuary, and ocean environments. Despite the importance of life history information to fisheries management and conservation, few studies have validated that scale morphology accurately describes fish movement between these habitats. Therefore, we tested the accuracy of using scale morphometric criteria to identify the movement of juvenile Chinook Salmon Oncorhynchus tshawytscha from freshwater to marine portions of the Columbia River estuary by comparing scale morphometric classification, scale chemistry, and otolith chemistry. Nearly one-half of all fish collected in the saline portion of the estuary and approximately one-quarter in the freshwater portion exhibited morphometric patterns (i.e., scale checks and intermediate growth) often associated with periods of estuary rearing. Depending upon the criteria used to define scale checks, otolith chemical results indicated that 33-53% of fish would have been misclassified as estuary residents based solely on their scale patterns. Moreover, many individuals who had resided in strontium-rich estuary water did not form a visible check (37%) on their scales to coincide with estuary entry. We estimated from otolith chemistry that these fish had either entered at or near the size at which scale formation occurs (35-42 mm) or had recently migrated to the saline portion of the estuary (<30 d) before new scale material could be formed and calcified. Scale chemistry alone was a good indicator of entrance into the saline portion of the estuary. Scale chemistry responded to the strontium-enriched salt water, and explained 86% of the variation found in otolith chemistry. Scale morphometric classification did not provide the fine-scale resolution that scale and, even more so, otolith chemistry provided for describing the proportion of juvenile Chinook salmon using the saline portion of the Columbia River estuary.
C1 [Campbell, Lance A.; Fleming, Ian A.] Oregon State Univ, Hatfield Marine Sci Ctr, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA.
[Campbell, Lance A.; Fleming, Ian A.] Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Newport, OR 97365 USA.
[Bottom, Daniel L.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Div Ecol, Newport, OR 97365 USA.
[Volk, Eric C.] Alaska Dept Fish & Game, Commercial Fisheries Div, Anchorage, AK 99518 USA.
RP Campbell, LA (reprint author), Washington Dept Fish & Wildlife, Div Sci, 1111 Washington St Southeast, Olympia, WA 98501 USA.
EM campblac@dfw.wa.gov
RI Fleming, Ian/I-7217-2012
FU U.S. Army Corps of Engineers, Portland District; Bonneville Power
Administration; National Oceanic and Atmospheric Administration (NOAA)
Fisheries, Northwest Fisheries Science Center; Washington Department of
Fish and Wildlife
FX This research was supported by the U.S. Army Corps of Engineers,
Portland District; the Bonneville Power Administration; National Oceanic
and Atmospheric Administration (NOAA) Fisheries, Northwest Fisheries
Science Center; and the Washington Department of Fish and Wildlife.
Special thanks to Steven Schroder for advice on most aspects of this
manuscript. Additionally, we thank Gordon Reeves and the U.S. Forest
Service, Forest Science Laboratory, for laboratory space. We thank the
many people who collected and necropsied juvenile Chinook Salmon for
scales and otoliths, especially Curtis Roegner, Susan Hinton, Jen Zamon,
Paul Bentley, Regan McNatt, George McCabe, and Tom Campbell. We also
thank Lang Nguyen and Dana Anderson of the Washington Department of fish
and Wildlife Otolith Laboratory, for assistance in otolith sample
preparation. We thank Adam Kent and Andy Ungerer at the Keck
Collaboratory for Mass Spectrometry, Oregon State University, for
assistance in microchemistry analysis. Lastly we thank Andrew Claiborne,
Paul Chittaro, John Sneva, Brian Wells, and one anonymous reviewer for
their thoughtful critiques that have improved this manuscript.
NR 51
TC 4
Z9 4
U1 2
U2 19
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0002-8487
EI 1548-8659
J9 T AM FISH SOC
JI Trans. Am. Fish. Soc.
PY 2015
VL 144
IS 1
BP 55
EP 67
DI 10.1080/00028487.2014.963253
PG 13
WC Fisheries
SC Fisheries
GA CC0KX
UT WOS:000350025600006
ER
PT J
AU Nearing, GS
Gupta, HV
AF Nearing, Grey S.
Gupta, Hoshin V.
TI The quantity and quality of information in hydrologic models
SO WATER RESOURCES RESEARCH
LA English
DT Article
DE model information; model benchmarking; information theory; induction;
system identification; Bayesian learning
ID ENTROPY; FILTER
AB The role of models in science is to facilitate predictions from hypotheses. Although the idea that models provide information is widely reported and has been used as the basis for model evaluation, benchmarking, and updating strategies, this intuition has not been formally developed and current benchmarking strategies remain ad hoc at a fundamental level. Here we interpret what it means to say that a model provides information in the context of the formal inductive philosophy of science. We show how information theory can be used to measure the amount of information supplied by a model, and derive standard model benchmarking and evaluation activities in this context. We further demonstrate that, via a process of induction, dynamical models store information from hypotheses and observations about the systems that they represent, and that this stored information can be directly measured.
C1 [Nearing, Grey S.] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA.
[Gupta, Hoshin V.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA.
RP Nearing, GS (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA.
EM grey.s.nearing@nasa.gov
RI Gupta, Hoshin/D-1642-2010
OI Gupta, Hoshin/0000-0001-9855-2839
FU NASA ROSES Terrestrial Hydrology Program [NNH10ZDA001N-THP]; Australian
Centre of Excellence for Climate System Science [CE110001028]
FX Data, models, and code may be obtained from the first author on request.
The first author acknowledges support from the NASA ROSES Terrestrial
Hydrology Program (NNH10ZDA001N-THP). The second author acknowledges
support by the Australian Centre of Excellence for Climate System
Science (CE110001028). Thank you to Patrick Reed, Tobias Krueger, Steven
Weijs, and an anonymous reviewer for their very insightful comments.
NR 50
TC 13
Z9 13
U1 5
U2 22
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD JAN
PY 2015
VL 51
IS 1
BP 524
EP 538
DI 10.1002/2014WR015895
PG 15
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA CB8OO
UT WOS:000349889800029
ER
PT J
AU Holzmann, GJ
AF Holzmann, Gerard J.
TI To Code Is Human
SO IEEE SOFTWARE
LA English
DT Article
DE Encoding; Software reliability; Computer programs; Software engineering;
Reliability engineering; program processors; software engineering;
computer programming; programming errors; compilers
C1 Jet Prop Lab, Pasadena, CA 91109 USA.
RP Holzmann, GJ (reprint author), Jet Prop Lab, Pasadena, CA 91109 USA.
EM gholzmann@acm.org
NR 3
TC 0
Z9 0
U1 2
U2 2
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 0740-7459
EI 1937-4194
J9 IEEE SOFTWARE
JI IEEE Softw.
PD JAN-FEB
PY 2015
VL 32
IS 1
BP 14
EP 17
DI 10.1109/MS.2015.19
PG 4
WC Computer Science, Software Engineering
SC Computer Science
GA CB4UU
UT WOS:000349624600003
ER
PT J
AU Autsavapromporn, N
Plante, I
Liu, CH
Konishi, T
Usami, N
Funayama, T
Azzam, EI
Murakami, T
Suzuki, M
AF Autsavapromporn, Narongchai
Plante, Ianik
Liu, Cuihua
Konishi, Teruaki
Usami, Noriko
Funayama, Tomoo
Azzam, Edouard I.
Murakami, Takeshi
Suzuki, Masao
TI Genetic changes in progeny of bystander human fibroblasts after
microbeam irradiation with X-rays, protons or carbon ions: The relevance
to cancer risk
SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY
LA English
DT Article
DE Late effects of radiation; bystander effect; microbeams; secondary
cancers; linear energy transfer; gap junction intercellular
communication
ID MONTE-CARLO-SIMULATION; INDUCED GENOMIC INSTABILITY; MAMMALIAN-CELLS;
ALPHA-PARTICLES; LOW FLUENCES; IONIZING-RADIATION; WATER RADIOLYSIS;
MOLECULAR YIELDS; LIQUID WATER; ENERGY
AB Purpose: Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells.
Materials and methods: Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation.
Results: Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET similar to 6 keV/mu m) or protons (LET similar to 11 keV/mm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET similar to 103 keV/mm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays.
Conclusions: These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.
C1 [Autsavapromporn, Narongchai; Liu, Cuihua; Murakami, Takeshi; Suzuki, Masao] Natl Inst Radiol Sci, Res Program Applicat Heavy Ions Med Sci, Chiba 260, Japan.
[Autsavapromporn, Narongchai] Chiang Mai Univ, Div Therapeut Radiol & Oncol, Dept Radiol, Fac Med, Chiang Mai 50000, Thailand.
[Plante, Ianik] NASA Johnson Space Ctr, Wyle Sci Technol & Engn, Houston, TX USA.
[Konishi, Teruaki] Natl Inst Radiol Sci, Dept Tech Support & Dev, Chiba 260, Japan.
[Usami, Noriko] High Energy Accelerator Res Org, Photon Factory, Ibaraki, Japan.
[Funayama, Tomoo] Japan Atom Energy Agcy, Microbeam Radiat Biol Grp, Med & Biotechnol Applicat Div, Quantum Beam Sci Directorate, Gunma, Japan.
[Azzam, Edouard I.] Rutgers State Univ, New Jersey Med Sch, Ctr Canc, Newark, NJ USA.
RP Autsavapromporn, N (reprint author), Chiang Mai Univ, Div Therapeut Radiol & Oncol, Dept Radiol, Fac Med, Chiang Mai 50000, Thailand.
EM autsavapromporn186@gmail.com
RI Konishi, Teruaki/B-9638-2008
OI Konishi, Teruaki/0000-0002-2485-9659
FU National Institute of Radiological Sciences; Japan Society of Promotion
of Sciences KAKENHI [23-01513, 18310042, 24620014]; Quantum Beam
Technology Program from Japan Sciences and Technology Agency; NIH
[CA049062]
FX We thank Drs Katsumi Kobayashi, Yasuhiko Kobayashi, Yasuko Mutou, Yuya
Hattori, Yuichiro Yokota, Masakazu Oikawa, Ms Hiroko Ikeda, Ms Alisa
Kobayashi and their colleagues for their support during the experiments
at KEK, TIARA-JAEA and SPICE-NIRS. This work was supported by grants
from National Institute of Radiological Sciences, the Japan Society of
Promotion of Sciences KAKENHI (grant number 23-01513, 18310042 and
24620014) and the Quantum Beam Technology Program from the Japan
Sciences and Technology Agency. EIA is supported by NIH grant CA049062.
The authors sincerely apologize to those whose work was not cited due to
space constraints.
NR 47
TC 5
Z9 5
U1 0
U2 5
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0955-3002
EI 1362-3095
J9 INT J RADIAT BIOL
JI Int. J. Radiat. Biol.
PD JAN
PY 2015
VL 91
IS 1
BP 62
EP 70
DI 10.3109/09553002.2014.950715
PG 9
WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Nuclear Science &
Technology; Radiology, Nuclear Medicine & Medical Imaging
GA CB3VS
UT WOS:000349557900007
PM 25084840
ER
PT J
AU Crespo, LG
Kenny, SP
AF Crespo, Luis G.
Kenny, Sean P.
TI Special Edition on Uncertainty Quantification of the AIAA Journal of
Aerospace Computing, Information, and Communication
SO JOURNAL OF AEROSPACE INFORMATION SYSTEMS
LA English
DT Editorial Material
C1 [Crespo, Luis G.; Kenny, Sean P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Crespo, LG (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
NR 0
TC 1
Z9 1
U1 1
U2 3
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 1940-3151
EI 2327-3097
J9 J AEROSP INFORM SYST
JI J. Aerosp. Inf. Syst.
PD JAN
PY 2015
VL 12
IS 1
BP 9
EP 9
DI 10.2514/1.I010359
PG 1
WC Engineering, Aerospace
SC Engineering
GA CB4TI
UT WOS:000349620700002
ER
PT J
AU Grauer, JA
Morelli, EA
AF Grauer, Jared A.
Morelli, Eugene A.
TI Generic Global Aerodynamic Model for Aircraft
SO JOURNAL OF AIRCRAFT
LA English
DT Article
ID DECOMPOSITION; DATABASES
AB Multivariate-orthogonal-function modeling was applied to wind-tunnel databases for eight different aircraft to identify a generic global aerodynamic model structure that could be used for any of the aircraft. For each aircraft database and each nondimensional aerodynamic coefficient, global models were identified from multivariate polynomials in the nondimensional states and controls, using an orthogonalization procedure. A predicted-square-error criterion was used to automatically select the model terms. Modeling terms selected in at least half of the analyses, which totaled 45 terms, were retained to form the generic global aerodynamic model structure. Least squares was used to estimate the model parameters and associated uncertainty that best fit the generic global aerodynamic model structure to each database. The result was a single generic aerodynamic model structure that could be used to accurately characterize the global aerodynamics for any of the eight aircraft, simply by changing the values of the model parameters. Nonlinear flight simulations were used to demonstrate that the generic global aerodynamic model accurately reproduces trim solutions, local dynamic behavior, and global dynamic behavior under large-amplitude excitation. This compact global aerodynamic model can decrease flight-computer memory requirements for implementing onboard fault detection or flight control systems, enable quick changes for conceptual aircraft models, and provide smooth analytical functional representations of the global aerodynamics for control and optimization applications. All information required to construct global aerodynamic models for nonlinear simulations of the eight aircraft is provided in this paper.
C1 [Grauer, Jared A.; Morelli, Eugene A.] NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA.
RP Grauer, JA (reprint author), NASA, Langley Res Ctr, Dynam Syst & Control Branch, MS 308, Hampton, VA 23681 USA.
FU NASA Aviation Safety Program; Vehicle Systems Safety Technologies
project; Subsonic Fixed Wing Project
FX This research was funded by the NASA Aviation Safety Program, the
Vehicle Systems Safety Technologies project, and the Subsonic Fixed Wing
Project.
NR 18
TC 0
Z9 0
U1 2
U2 6
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0021-8669
EI 1533-3868
J9 J AIRCRAFT
JI J. Aircr.
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 13
EP 20
DI 10.2514/1.C032888
PG 8
WC Engineering, Aerospace
SC Engineering
GA CB3VO
UT WOS:000349557500002
ER
PT J
AU Liao, W
Malik, MR
Lee-Rausch, EM
Li, F
Nielsen, EJ
Buning, PG
Choudhari, M
Chang, CL
AF Liao, Wei
Malik, Mujeeb R.
Lee-Rausch, Elizabeth M.
Li, Fei
Nielsen, Eric J.
Buning, Pieter G.
Choudhari, Meelan
Chang, Chau-Lyan
TI Boundary-Layer Stability Analysis of the Mean Flows Obtained Using
Unstructured Grids
SO JOURNAL OF AIRCRAFT
LA English
DT Article
ID TURBULENT FLOWS
AB Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier-Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions for the purpose of stability analysis. Extensive code-to-code validations were performed by comparing the extracted mean flows as well as the corresponding stability characteristics to the predictions based on structured-grid mean flow solutions. Comparisons were made for a set of progressively complex geometric configurations ranging from a simple flat plate to a full aircraft configuration: a modified Gulfstream III with a natural laminar-flow glove. The results for the swept wing flow over the wing-glove assembly point to the need for stability analysis based on Navier-Stokes solutions or possibly fully three-dimensional boundary-layer codes when the underlying flow develops strong three-dimensionality. The effect of grid resolution, mean flow convergence, and low-order interpolation to a stability grid on metrics relevant to linear stability of the boundary-layer flow are also examined to provide guidelines for the use of both structured and unstructured grids in practical applications related to transition prediction for swept wing boundary layers.
C1 Natl Inst Aerosp, Corvid Technol, Hampton, VA 23666 USA.
Computat AeroSciences Branch, NASA Langley Res Ctr, Hampton, VA 23681 USA.
[Liao, Wei] Natl Inst Aerosp, Hampton, VA 23666 USA.
[Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Choudhari, Meelan; Chang, Chau-Lyan] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA.
RP Liao, W (reprint author), Corvid Technol, Mooresville, NC 28117 USA.
EM wei.liao@corvidtec.com; m.r.malik@nasa.gov; e.lee-rausch@nasa.gov;
fei.li@nasa.gov; eric.j.nielsen@nasa.gov; pieter.g.buning@nasa.gov;
m.m.choudhari@nasa.gov; chau-lyan.chang@nasa.gov
RI Choudhari, Meelan/F-6080-2017
OI Choudhari, Meelan/0000-0001-9120-7362
FU NASA's Environmentally Responsible Aviation and Subsonic Fixed Wing
projects
FX The current work was supported by NASA's Environmentally Responsible
Aviation and Subsonic Fixed Wing projects. The authors thank Robert
Biedron, James Thomas, Christopher Rumsey, and Dana Hammond of NASA
Langley Research Center; and Boris Diskin of the National Institute of
Aerospace for their valuable suggestions and fruitful discussions.
NR 13
TC 2
Z9 2
U1 0
U2 4
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0021-8669
EI 1533-3868
J9 J AIRCRAFT
JI J. Aircr.
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 49
EP 63
DI 10.2514/1.C032583
PG 15
WC Engineering, Aerospace
SC Engineering
GA CB3VO
UT WOS:000349557500006
ER
PT J
AU Acosta, DM
Yildiz, Y
Craun, RW
Beard, SD
Leonard, MW
Hardy, GH
Weinstein, M
AF Acosta, Diana M.
Yildiz, Yildiray
Craun, Robert W.
Beard, Steven D.
Leonard, Michael W.
Hardy, Gordon H.
Weinstein, Michael
TI Piloted Evaluation of a Control Allocation Technique to Recover from
Pilot-Induced Oscillations
SO JOURNAL OF AIRCRAFT
LA English
DT Article
ID BOUND-CONSTRAINED OPTIMIZATION; ALGORITHM
AB This paper describes the maturation of a control allocation technique designed to assist pilots in recovery from pilot-induced oscillations. The control allocation technique to recover from pilot-induced oscillations is designed to enable next-generation high-efficiency aircraft designs. Energy-efficient next-generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. A common issue on aircraft with actuator rate limitations is they are susceptible to pilot-induced oscillations caused by the phase lag between the pilot inputs and control surface response. The control allocation technique to recover from pilot-induced oscillations uses real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a nonlinear aircraft model in the NASA Ames Research Center's Vertical Motion Simulator. Results indicate that the control allocation technique to recover from pilot-induced oscillations helps reduce oscillatory behavior introduced by control surface rate limiting, including the pilot-induced oscillation tendencies reported by pilots.
C1 [Acosta, Diana M.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA.
[Yildiz, Yildiray] Univ Affiliated Res Ctr, Moffett Field, CA 94035 USA.
[Craun, Robert W.] Mission Critical Technol Inc, Moffett Field, CA 94035 USA.
[Beard, Steven D.] NASA, Ames Res Ctr, Aerosp Simulat Res & Dev Branch, Moffett Field, CA 94035 USA.
[Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael] Sci Applicat Int Corp, Moffett Field, CA 94035 USA.
[Yildiz, Yildiray] Bilkent Univ, Dept Mech Engn, Ankara 06800, Turkey.
RP Acosta, DM (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, Mail Stop 269-1, Moffett Field, CA 94035 USA.
FU NASA Aeronautics Research Mission Directorate, the Fundamental
Aeronautics Program's Subsonic Fixed Wing Project; NASA Aeronautics
Research Mission Directorate, the Integrated Systems Research Program's
Environmentally Responsible Aviation Project
FX The authors extend their appreciation to two projects within the NASA
Aeronautics Research Mission Directorate, the Fundamental Aeronautics
Program's Subsonic Fixed Wing Project and the Integrated Systems
Research Program's Environmentally Responsible Aviation Project, for
their support of this research. This research was accomplished with the
contributions of many individuals and organizations. The authors thank
our project pilot and coauthor, Gordon H. Hardy, for his guidance
throughout the research and evaluation of the control allocation
technique to recover from pilot-induced oscillations. In addition to
Gordon H. Hardy, the authors thank the pilots who participated in and
provided insight during the preliminary and final simulation
evaluations, including Dana Purifoy, Richard Ewers and Jim Smolka from
the NASA Dryden Flight Research Center; Carl Ott from the U.S. Army
Aeroflightdynamics Directorate; Dan Dugan from NASA Ames Research
Center; Jim Lindsey from Monterey Technologies, Inc., at NASA Ames
Research Center; Jim Martin; and George Tucker. The authors are also
thankful for the exceptional service and assistance provided by the NASA
Ames Research Center Vertical Motion Simulator team.
NR 18
TC 0
Z9 0
U1 1
U2 3
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0021-8669
EI 1533-3868
J9 J AIRCRAFT
JI J. Aircr.
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 130
EP 140
DI 10.2514/1.C032576
PG 11
WC Engineering, Aerospace
SC Engineering
GA CB3VO
UT WOS:000349557500012
ER
PT J
AU Yeo, H
Johnson, W
AF Yeo, Hyeonsoo
Johnson, Wayne
TI Prediction of Maximum Lift Capability of Helicopter Rotors
SO JOURNAL OF AIRCRAFT
LA English
DT Article
ID DYNAMIC STALL; PERFORMANCE
AB Maximum rotor lift capability is investigated using wind-tunnel test data of McHugh (modified 1/10-scale CH-47B rotor) and a full-scale UH-60A rotor. Rotor performance calculations with the comprehensive rotorcraft analysis CAMRAD II are compared with the wind-tunnel test data. The analysis of the McHugh rotor with the Reynolds-number-corrected airfoil table shows good correlation with the measurements for mu = 0.1 to 0.5 and is able to predict the maximum rotor lift reasonably well, especially at 0.2 <= mu <= 0.4. The analysis is also able to predict the maximum lift of the full-scale UH-60A rotor within about 3.5% at mu = 0.24 and 0.3. Calculations with dynamic stall models, in general, show only a small influence on the rotor performance and are not necessary to predict maximum lift. Airfoils have an important role in defining the maximum lift capability of the rotor. The VR-12 airfoil, which has stall characteristics superior to the baseline V23010 airfoil, substantially improves the maximum lift capability of the McHugh rotor, showing the potential to improve the behavior of a rotor by improving the airfoil's static stall characteristics.
C1 [Yeo, Hyeonsoo] NASA, Ames Res Ctr, US Army Aviat Dev Directorate, Moffett Field, CA 94035 USA.
[Johnson, Wayne] NASA, Ames Res Ctr, Aeromech Off, Moffett Field, CA 94035 USA.
RP Yeo, H (reprint author), NASA, Ames Res Ctr, US Army Aviat Dev Directorate, Moffett Field, CA 94035 USA.
EM hyeonsoo.yeo.civ@mail.mil; wayne.johnson@nasa.gov
NR 16
TC 0
Z9 0
U1 1
U2 2
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0021-8669
EI 1533-3868
J9 J AIRCRAFT
JI J. Aircr.
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 257
EP 265
DI 10.2514/1.C032693
PG 9
WC Engineering, Aerospace
SC Engineering
GA CB3VO
UT WOS:000349557500023
ER
PT J
AU Brown, CA
Clem, MM
Fagan, AF
AF Brown, Clifford A.
Clem, Michelle M.
Fagan, Amy F.
TI Investigation of Broadband Shock Noise from a Jet Near a Planar Surface
SO JOURNAL OF AIRCRAFT
LA English
DT Article
AB Many current and future aircraft designs rely on the wing or other aircraft surfaces to shield observers on the ground from the engine noise. However, the available data showing how surfaces interact with a jet to shield and/or enhance the jet noise are currently limited. Therefore, far-field noise data and background-oriented schlieren images were acquired for a round jet, operating in the overexpanded, ideally expanded, and underexpanded supersonic flow regimes, near a planar surface to investigate how airframe surfaces might affect the shock-cell structure in the jet plume and the broadband shock noise produced. These data show that broadband shock noise is produced by the relatively weak shocks far downstream of the nozzle exit; consequently, a surface will be effective at reducing broadband shock noise only if it is long enough to shield the noise produced by shocks. Furthermore, the presence of a surface very near the edge of an underexpanded jet increases the shock-cell spacing, pushing the shock cells farther downstream. Conversely, the surface has a minimal affect on the shock cells in an overexpanded jet.
C1 [Brown, Clifford A.] NASA, Glenn Res Ctr, Acoust Branch, Cleveland, OH 44135 USA.
[Clem, Michelle M.; Fagan, Amy F.] NASA, Glenn Res Ctr, Opt & Photon Branch, Cleveland, OH 44135 USA.
RP Brown, CA (reprint author), NASA, Glenn Res Ctr, Acoust Branch, 21000 Brookpark Raod, Cleveland, OH 44135 USA.
FU NASA
FX This work was supported by the NASA Fundamental Aeronautics Program,
High Speed and Fixed Wing Projects. The authors also greatly appreciate
the help of Gary Podboy reviewing this work and providing insight based
his phased-array data.
NR 7
TC 1
Z9 1
U1 0
U2 3
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0021-8669
EI 1533-3868
J9 J AIRCRAFT
JI J. Aircr.
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 266
EP 273
DI 10.2514/1.C032695
PG 8
WC Engineering, Aerospace
SC Engineering
GA CB3VO
UT WOS:000349557500024
ER
PT J
AU Commo, SA
Lynn, KC
Toro, KG
Landman, D
AF Commo, Sean A.
Lynn, Keith C.
Toro, Kenneth G.
Landman, Drew
TI Development of the In Situ Load System for Internal Wind-Tunnel Balances
SO JOURNAL OF AIRCRAFT
LA English
DT Article
ID FORCE
AB Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics-research applications. Without a standardized process for check loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. The In Situ Load System was developed to provide a standard for facilities in the check-loading process. The system includes both the hardware and a statistically rigorous process that facilitates the ability for the user to make defendable decisions on the performance of the system. The compactness and simplicity of the system reduce customer costs unrelated to achieving the research objectives, while simultaneously improving the knowledge about the accuracy of the test data collected. While the focus is on the check-load process, the hardware and methods are also applicable to the in situ calibration of a balance or wind-tunnel model system.
C1 [Commo, Sean A.] NASA, Langley Res Ctr, Syst Engn & Engn Methods Branch, Hampton, VA 23681 USA.
[Lynn, Keith C.] NASA, Langley Res Ctr, Aeronaut Syst Engn Branch, Hampton, VA 23681 USA.
[Toro, Kenneth G.; Landman, Drew] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA.
RP Commo, SA (reprint author), NASA, Langley Res Ctr, Syst Engn & Engn Methods Branch, MS 131, Hampton, VA 23681 USA.
FU National Force Measurement Technology Capability under NASA's
Aeronautics Test Program
FX This work has been supported and funded by the National Force
Measurement Technology Capability under NASA's Aeronautics Test Program.
The authors would like to express their sincere appreciation to the
individuals that have contributed to the many aspects of this project.
In particular, the authors would like to recognize the following for the
critical contributions: J. Greg Jones for his extensive expertise,
knowledge, and dedication to balance calibrations; Ray Rhew for his
valuable input on force-measurement-system design and characterization;
Peter Parker for his insight on the single-vector system (SVS) and
consultation during the development of the In Situ Load System (ILS);
and Michael Acheson for his initial work with the ILS.
NR 14
TC 1
Z9 1
U1 1
U2 3
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0021-8669
EI 1533-3868
J9 J AIRCRAFT
JI J. Aircr.
PD JAN-FEB
PY 2015
VL 52
IS 1
BP 287
EP 295
DI 10.2514/1.C032691
PG 9
WC Engineering, Aerospace
SC Engineering
GA CB3VO
UT WOS:000349557500026
ER
PT J
AU Bokelmann, KA
Russell, RP
Lantoine, G
AF Bokelmann, Kevin A.
Russell, Ryan P.
Lantoine, Gregory
TI Periodic Orbits and Equilibria Near Jovian Moons Using an Electrodynamic
Tether
SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
LA English
DT Article
ID PLANETARY MOONS; 3-BODY PROBLEM; STABILITY; JUPITER; EUROPA; PLANAR;
POWER
AB Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. In this paper, the effect of tether forces on periodic orbits in the Jupiter-Io system is investigated. A series of simplifications to the Lorentz force-perturbed circular-restricted three-body problem allows the development of a conservative formulation that admits a Jacobi integral. Although the conservative approximation introduces a modest magnitude error in the regions of interest, the correct perturbation direction is preserved. The presence of the Jacobi integral is amenable to the search for equilibria, periodic orbits, and the use of dynamic tools such as zero-velocity curves. The perturbed equations of motion lead to modified equilibrium positions, which are found at both Io and Metis. New families of modified Lyapunov orbits are generated at Io as functions of tether size and Jacobi integral from preexisting families as well as the new modified equilibrium points. Stability analyses are used to evaluate the dynamical properties of tether-modified orbits, and several stable orbits are identified. Multiple new families are archived with unique dynamical properties, including orbits with multiple loops and orbits that directly lead the moon.
C1 [Bokelmann, Kevin A.; Russell, Ryan P.] Univ Texas Austin, Austin, TX 78712 USA.
[Lantoine, Gregory] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Bokelmann, KA (reprint author), Univ Texas Austin, Austin, TX 78712 USA.
EM kbokelmann@utexas.edu; ryan.russell@utexas.edu;
gregory.lantoine@jpl.nasa.gov
FU NASA Innovative Advanced Concepts program [NNH12ZUA002N]
FX This study was funded by NASA Innovative Advanced Concepts program,
under the announcement number NNH12ZUA002N. The authors also express
their gratitude to Hank Garrett, Ira Katz, and Rodney Anderson from the
Jet Propulsion Laboratory for contributing their expertise in tether and
third-body dynamics.
NR 33
TC 1
Z9 1
U1 1
U2 5
PU AMER INST AERONAUTICS ASTRONAUTICS
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0731-5090
EI 1533-3884
J9 J GUID CONTROL DYNAM
JI J. Guid. Control Dyn.
PD JAN
PY 2015
VL 38
IS 1
BP 15
EP 29
DI 10.2514/1.G000428
PG 15
WC Engineering, Aerospace; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA CB3VW
UT WOS:000349558300003
ER
PT J
AU Jackson, KR
Gruber, MR
Buccellato, S
AF Jackson, Kevin R.
Gruber, Mark R.
Buccellato, Salvatore
TI Mach 6-8+Hydrocarbon-Fueled Scramjet Flight Experiment: The HIFiRE
Flight 2 Project
SO JOURNAL OF PROPULSION AND POWER
LA English
DT Article; Proceedings Paper
CT 51st AIAA Aerospace Sciences Meeting and Exhibit Including the New
Horizons Forum and Aerospace Exposition
CY JAN 06-11, 2013
CL Grapevine, TX
SP AIAA
AB The Hypersonic International Flight Research Experimentation (HIFiRE) program is a collaborative international effort designed to study basic hypersonic phenomena through flight experimentation. On 1May2012, the HIFiRE Flight 2 project successfully flew a hydrocarbon-fueled, Mach 8 scramjet experiment and demonstrated the ability to fly an accelerating, constant dynamic pressure trajectory consistent with a scramjet-powered flight vehicle using unguided sounding rocket techniques. The project goals of capturing high-quality flight data from a research scramjet operating through dual-to-scram mode transition up to and beyond Mach 8 were achieved. HIFiRE Flight 2 is unique in its contribution to scramjet research, providing a reference dataset to the hydrocarbon scramjet community while maturing a novel and reduced-cost strategy for performing similar future experiments. This paper describes the programmatic approach, the overall scramjet flight test experiment mission objectives, and the flight test strategy. It also includes an overview of launch system and payload hardware, and brief discussions of flight activities, flight data, and experimental results. Preliminary results from flight indicate a fully successful m