FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Novati, SC Gould, A Udalski, A Menzies, JW Bond, IA Shvartzvald, Y Street, RA Hundertmark, M Beichman, CA Yee, JC Carey, S Poleski, R Skowron, J Kozlowski, S Mroz, P Pietrukowicz, P Pietrzynski, G Szymanski, MK Soszynski, I Ulaczyk, K Wyrzykowski, L Albrow, M Beaulieu, JP Caldwell, JAR Cassan, A Coutures, C Danielski, C Prester, DD Donatowicz, J Loncaric, K McDougall, A Morales, JC Ranc, C Zhu, W Abe, F Barry, RK Bennett, DP Bhattacharya, A Fukunaga, D Inayama, K Koshimoto, N Namba, S Sumi, T Suzuki, D Tristram, PJ Wakiyama, Y Yonehara, A Maoz, D Kaspi, S Friedmann, M Bachelet, E Jaimes, RF Bramich, DM Tsapras, Y Horne, K Snodgrass, C Wambsganss, J Steele, IA Kains, N Bozza, V Dominik, M Jorgensen, UG Alsubai, KA Ciceri, S D'Ago, G Haugbolle, T Hessman, FV Hinse, TC Juncher, D Korhonen, H Mancini, L Popovas, A Rabus, M Rahvar, S Scarpetta, G Schmidt, RW Skottfelt, J Southworth, J Starkey, D Surdej, J Wertz, O Zarucki, M Gaudi, BS Pogge, RW De Poy, DL The OGLE Collaboration AF Novati, S. Calchi Gould, A. Udalski, A. Menzies, J. W. Bond, I. A. Shvartzvald, Y. Street, R. A. Hundertmark, M. Beichman, C. A. Yee, J. C. Carey, S. Poleski, R. Skowron, J. Kozlowski, S. Mroz, P. Pietrukowicz, P. Pietrzynski, G. Szymanski, M. K. Soszynski, I. Ulaczyk, K. Wyrzykowski, L. Albrow, M. Beaulieu, J. P. Caldwell, J. A. R. Cassan, A. Coutures, C. Danielski, C. Prester, D. Dominis Donatowicz, J. Loncaric, K. McDougall, A. Morales, J. C. Ranc, C. Zhu, W. Abe, F. Barry, R. K. Bennett, D. P. Bhattacharya, A. Fukunaga, D. Inayama, K. Koshimoto, N. Namba, S. Sumi, T. Suzuki, D. Tristram, P. J. Wakiyama, Y. Yonehara, A. Maoz, D. Kaspi, S. Friedmann, M. Bachelet, E. Jaimes, R. Figuera Bramich, D. M. Tsapras, Y. Horne, K. Snodgrass, C. Wambsganss, J. Steele, I. A. Kains, N. Bozza, V. Dominik, M. Jorgensen, U. G. Alsubai, K. A. Ciceri, S. D'Ago, G. Haugbolle, T. Hessman, F. V. Hinse, T. C. Juncher, D. Korhonen, H. Mancini, L. Popovas, A. Rabus, M. Rahvar, S. Scarpetta, G. Schmidt, R. W. Skottfelt, J. Southworth, J. Starkey, D. Surdej, J. Wertz, O. Zarucki, M. Gaudi, B. S. Pogge, R. W. De Poy, D. L. Collaboration, The O. G. L. E. CA The PLANET Collaboration The MOA Collaboration The Wise Grp The RoboNet Collaboration The MiNDSTEp Consortium The FUN Collaboration TI PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED SPITZER AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems; planets and satellites: dynamical evolution and stability ID SPACE-TELESCOPE; ISOLATED STAR; MASS; BULGE; COMPANIONS; PHOTOMETRY; FREQUENCY; NETWORK; SYSTEMS; MACHOS AB We present microlens parallax measurements for 21 (apparently) isolated lenses observed toward the Galactic bulge that were imaged simultaneously from Earth and Spitzer, which was similar to 1 AU west of Earth in projection. We combine these measurements with a kinematic model of the Galaxy to derive distance estimates for each lens, with error bars that are small compared to the Sun's galactocentric distance. The ensemble therefore yields a well-defined cumulative distribution of lens distances. In principle, it is possible to compare this distribution against a set of planets detected in the same experiment in order to measure the Galactic distribution of planets. Since these Spitzer observations yielded only one planet, this is not yet possible in practice. However, it will become possible as larger samples are accumulated. C1 [Novati, S. Calchi; Beichman, C. A.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Novati, S. Calchi; Bozza, V.; D'Ago, G.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, SA, Italy. [Novati, S. Calchi; Scarpetta, G.; Zarucki, M.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Gould, A.; Poleski, R.; Zhu, W.; Gaudi, B. S.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Udalski, A.; Poleski, R.; Skowron, J.; Kozlowski, S.; Mroz, P.; Pietrukowicz, P.; Pietrzynski, G.; Szymanski, M. K.; Soszynski, I.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Menzies, J. W.] S African Astron Observ, Observ 7935, Cape Town, South Africa. [Bond, I. A.] Massey Univ, North Shore Mail Ctr, Inst Nat & Math Sci, Auckland, New Zealand. [Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Friedmann, M.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Street, R. A.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Hundertmark, M.; Jorgensen, U. G.; Haugbolle, T.; Juncher, D.; Korhonen, H.; Popovas, A.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hundertmark, M.; Jaimes, R. Figuera; Horne, K.; Dominik, M.; Starkey, D.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Yee, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Carey, S.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Pietrzynski, G.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Albrow, M.; McDougall, A.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Beaulieu, J. P.; Cassan, A.; Coutures, C.; Ranc, C.] UPMC, CNRS, Inst Astrophys, UMR 7095, F-75014 Paris, France. [Beaulieu, J. P.; Morales, J. C.] LESIA, Sect Meudon 5, Observ Paris, F-92195 Meudon, France. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Danielski, C.] Univ Paris 11, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Prester, D. Dominis; Loncaric, K.] Univ Rijeka, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1040 Vienna, Austria. [Abe, F.; Fukunaga, D.; Wakiyama, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Barry, R. K.] NASA Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Bennett, D. P.; Bhattacharya, A.; Suzuki, D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Inayama, K.; Yonehara, A.] Kyoto Sangyo Univ, Fac Sci, Dept Phys, Kyoto 6038555, Japan. [Koshimoto, N.; Namba, S.; Sumi, T.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Tristram, P. J.] Mt John Univ Observ, Lake Tekapo, New Zealand. [Bachelet, E.; Bramich, D. M.; Alsubai, K. A.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Jaimes, R. Figuera; Kains, N.] European So Observ, D-85748 Garching, Germany. [Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Snodgrass, C.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. [Wambsganss, J.; Schmidt, R. W.] Zentrum Astron Univ Heidelberg ZAH, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Bozza, V.; D'Ago, G.; Scarpetta, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ciceri, S.; Mancini, L.; Rabus, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Hessman, F. V.] Univ Gottingen, Inst Astrophys, D-37073 Gottingen, Germany. [Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Korhonen, H.] Turku Univ, Finnish Ctr Astron ESO, FI-21500 Piikkio, Finland. [Rabus, M.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrophys, Santiago 22, Chile. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Surdej, J.; Wertz, O.] Univ Liege, Inst Astrophys & Geophys, B-4000 Cointe Ougree, Belgium. [De Poy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Novati, SC (reprint author), CALTECH, NASA Exoplanet Sci Inst, MS 100-22, Pasadena, CA 91125 USA. RI Hundertmark, Markus/C-6190-2015; Ranc, Clement/B-1958-2016; Skowron, Jan/M-5186-2014; Korhonen, Heidi/E-3065-2016; Morales, Juan Carlos/H-5548-2015; D'Ago, Giuseppe/N-8318-2016; Kozlowski, Szymon/G-4799-2013; OI Snodgrass, Colin/0000-0001-9328-2905; Hundertmark, Markus/0000-0003-0961-5231; Ranc, Clement/0000-0003-2388-4534; Skowron, Jan/0000-0002-2335-1730; Korhonen, Heidi/0000-0003-0529-1161; Morales, Juan Carlos/0000-0003-0061-518X; D'Ago, Giuseppe/0000-0001-9697-7331; Kozlowski, Szymon/0000-0003-4084-880X; Dominik, Martin/0000-0002-3202-0343 FU JPL grant [1500811]; NSF [AST 1103471]; NASA [NNX12AB99G]; European Research Council under the European Community's Seventh Framework Programme (FP7)/ ERC grant [246678]; NASA through the Sagan Fellowship Program; University of Rijeka project [13.12.1.3.02]; Marsden Fund of the Royal Society of New Zealand [MAU1104]; I-CORE program of the Planning and Budgeting Committee; Israel Science Foundation [1829/12]; US-Israel Binational Science Foundation; Danish Natural Science Foundation (FNU); NPRP grants from the Qatar National Research Fund (a member of Qatar Foundation) [09-476-1-078, X-019-1-006]; Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe; Villum Foundation; European Union Seventh Framework Programme (FP7) [268421]; [JSPS23103002]; [JSPS24253004]; [JSPS26247023]; [JSPS25103508]; [JSPS23340064] FX Work by C.A.B. was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Work by J.C.Y. A.G., and S.C. was supported by JPL grant 1500811. A.G. and B.S.G. were supported by NSF grant AST 1103471. A.G., B.S.G., and R. W.P. were supported by NASA grant NNX12AB99G. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement no. 246678 to A.U. Work by J.C.Y. was performed under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. Work by D.D.P. and K.L. was supported by the University of Rijeka project 13.12.1.3.02. Work by T.S. is supported by grants JSPS23103002, JSPS24253004, and JSPS26247023. Work by I.A.B. was supported by the Marsden Fund of the Royal Society of New Zealand, contract no. MAU1104. The MOA project is supported by the grant JSPS25103508 and 23340064. Work by D.M. is supported by the I-CORE program of the Planning and Budgeting Committee and the Israel Science Foundation, Grant 1829/12. D.M. and A.G. acknowledge support by the US-Israel Binational Science Foundation. The operation of the Danish 1.54 m telescope at ESO's La Silla Observatory is financed by a grant to U.G.J. from the Danish Natural Science Foundation (FNU). This publication was made possible by NPRP grants 09-476-1-078 and X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). O.W. (FNRS research fellow) and J. Surdej acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe. M.H. acknowledges support from the Villum Foundation. C.S. received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 268421. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 41 TC 17 Z9 17 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 20 DI 10.1088/0004-637X/804/1/20 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500020 ER PT J AU Pirzkal, N Coe, D Frye, BL Brammer, G Moustakas, J Rothberg, B Broadhurst, TJ Bouwens, R Bradley, L van der Wel, A Kelson, DD Donahue, M Zitrin, A Moustakas, L Barker, E AF Pirzkal, Nor Coe, Dan Frye, Brenda L. Brammer, Gabriel Moustakas, John Rothberg, Barry Broadhurst, Thomas J. Bouwens, Rychard Bradley, Larry van der Wel, Arjen Kelson, Daniel D. Donahue, Megan Zitrin, Adi Moustakas, Leonidas Barker, Elizabeth TI NOT IN OUR BACKYARD: SPECTROSCOPIC SUPPORT FOR THE CLASH z=11 CANDIDATE MACS 0647-JD SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; techniques: spectroscopic ID STAR-FORMING GALAXIES; ULTRA DEEP FIELD; HUBBLE-SPACE-TELESCOPE; EMISSION-LINE; LUMINOSITY FUNCTION; GRISM SPECTROSCOPY; REDSHIFT; UDFJ-39546284; CONSTRAINTS; DENSITY AB We report on our first set of spectroscopic Hubble Space Telescope observations of the z approximate to 11 candidate galaxy, which is strongly lensed by the MACSJ 0647.7+7015 galaxy cluster. The three lensed images are faint and we show that these early slitless grism observations are of sufficient depth to investigate whether this high-redshift candidate, identified by its strong photometric break at approximate to 1.5 mu m, could possibly be an emission line galaxy at a much lower redshift. While such an interloper would imply the existence of a rather peculiar object, we show here that such strong emission lines would clearly have been detected. Comparing realistic, two-dimensional simulations to these new observations, we would expect the necessary emission lines to be detected at >5 sigma, though we see no evidence for such lines in the dispersed data of any of the three lensed images. We therefore exclude that this object could be a low-redshift emission line interloper, which significantly increases the likelihood of this candidate being a bona fide z approximate to 11 galaxy. C1 [Pirzkal, Nor; Coe, Dan; Brammer, Gabriel; Bradley, Larry; Barker, Elizabeth] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Frye, Brenda L.] Univ Arizona, Dept Astron, Steward Observ, Tucson, AZ 85721 USA. [Moustakas, John] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. [Rothberg, Barry] Univ Arizona, Large Binocular Telescope Observ, Tucson, AZ 85721 USA. [Rothberg, Barry] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Broadhurst, Thomas J.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Bouwens, Rychard] Leiden Univ, NL-2300 RA Leiden, Netherlands. [van der Wel, Arjen] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kelson, Daniel D.] Carnegie Inst Sci, Washington, DC USA. [Donahue, Megan] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Zitrin, Adi] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Moustakas, Leonidas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pirzkal, N (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM npirzkal@stsci.edu OI Moustakas, Leonidas/0000-0003-3030-2360 FU NASA through the Hubble Fellowship grant [HST-HF2-51334.001 A]; Space Telescope Science Institute [HST-GO-13317.13]; AURA under the NASA [NAS5-26555] FX We would like to thank the referee for his or her comments and suggestions to improve the quality of this paper. Support for AZ was provided by NASA through the Hubble Fellowship grant #HST-HF2-51334.001 A awarded by STScI. This work was supported in part by grant HST-GO-13317.13 from the Space Telescope Science Institute, which is operated by AURA under the NASA contract NAS5-26555. NR 30 TC 6 Z9 6 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 11 DI 10.1088/0004-637X/804/1/11 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500011 ER PT J AU Raettig, N Klahr, H Lyra, W AF Raettig, Natalie Klahr, Hubert Lyra, Wladimir TI PARTICLE TRAPPING AND STREAMING INSTABILITY IN VORTICES IN PROTOPLANETARY DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; hydrodynamics; instabilities; methods: numerical; turbulence ID DUST GROWTH PEBBLES; CIRCUMSTELLAR DISKS; ACCRETION DISKS; PLANETESIMAL FORMATION; SOLAR NEBULA; CONVECTIVE OVERSTABILITY; ELECTROSTATIC BARRIER; NONLINEAR SATURATION; TURBULENCE DRIVEN; GAS DISKS AB We analyze the concentration of solid particles in vortices created and sustained by radial buoyancy in protoplanetary disks, e.g., baroclinic vortex growth. Besides the gas drag acting on particles, we also allow for back-reaction from dust onto the gas. This becomes important when the local dust-to-gas ratio approaches unity. In our two-dimensional, local, shearing sheet simulations, we see high concentrations of grains inside the vortices for a broad range of Stokes numbers, St. An initial dust-to-gas ratio of 1:100 can easily be reversed to 100:1 for St = 1.0. The increased dust-to-gas ratio triggers the streaming instability, thus counter-intuitively limiting the maximal achievable overdensities. We find that particle trapping inside vortices opens the possibility for gravity assisted planetesimal formation even for small particles (St = 0.01) and a low initial dust-to-gas ratio of 1: 10(4), e.g., much smaller than in the previously studied magnetohydrodynamic zonal flow case. C1 [Raettig, Natalie; Klahr, Hubert] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lyra, Wladimir] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Lyra, Wladimir] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Raettig, N (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM raettig@mpia.de; klahr@mpia.de; wlyra@caltech.edu FU German Federal Ministry of Education and Research (BMBF); German State Ministries for Research of Baden-Wuttemberg (MWK); Bayern (StMWFK); Nordrhein-Westfalen (MIWF) FX The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time for a GCS Large Scale Project on the GCS share of the supercomputer JUQUEEN at Julich Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universitat Stuttgart), JSC (Forschungszentrum Julich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Wuttemberg (MWK), Bayern (StMWFK), and Nordrhein-Westfalen (MIWF). NR 62 TC 9 Z9 9 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 35 DI 10.1088/0004-637X/804/1/35 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500035 ER PT J AU Siana, B Shapley, AE Kulas, KR Nestor, DB Steidel, CC Teplitz, HI Alavi, A Brown, TM Conselice, CJ Ferguson, HC Dickinson, M Giavalisco, M Colbert, JW Bridge, CR Gardner, JP de Mello, DF AF Siana, Brian Shapley, Alice E. Kulas, Kristin R. Nestor, Daniel B. Steidel, Charles C. Teplitz, Harry I. Alavi, Anahita Brown, Thomas M. Conselice, Christopher J. Ferguson, Henry C. Dickinson, Mark Giavalisco, Mauro Colbert, James W. Bridge, Carrie R. Gardner, Jonathan P. de Mello, Duilia F. TI A DEEP HUBBLE SPACE TELESCOPE AND KECK SEARCH FOR DEFINITIVE IDENTIFICATION OF LYMAN CONTINUUM EMITTERS AT z similar to 3.1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; galaxies: starburst; intergalactic medium; ultraviolet: galaxies ID STAR-FORMING GALAXIES; HIGH-REDSHIFT GALAXIES; HOPKINS-ULTRAVIOLET-TELESCOPE; QUASAR LUMINOSITY FUNCTION; SIMILAR-TO 3; IONIZING-RADIATION; STARBURST GALAXIES; ESCAPE FRACTION; BREAK GALAXIES; INTERGALACTIC MEDIUM AB Narrowband imaging of the rest-frame Lyman continuum (LyC) of galaxies at z similar to 3.1 has produced a large number of candidate LyC-emitting galaxies. These samples are contaminated by galaxies at lower redshift. To better understand LyC escape, we need an uncontaminated sample of galaxies that emit strongly in the LyC. Here we present deep Hubble Space Telescope imaging of five bright galaxies at z similar to 3.1 that had previously been identified as candidate LyC emitters with ground-based images. The WFC3 F336W images probe the LyC of galaxies at z > 3.06 and provide an order-of-magnitude increase in spatial resolution over ground-based imaging. The non-ionizing UV images often show multiple galaxies (or components) within similar to 1 '' of the candidate LyC emission seen from the ground. In each case, only one of the components is emitting light in the F336W filter, which would indicate LyC escape if that component is at z > 3.06. We use Keck/NIRSPEC near-IR spectroscopy to measure redshifts of these components to distinguish LyC emitters from foreground contamination. We find that two candidates are low-redshift contaminants, one candidate had a previously misidentified redshift, and the other two cannot be confirmed as LyC emitters. The level of contamination is consistent with previous estimates. For the galaxies with z > 3.06, we derive strong 1 sigma limits on the relative escape fraction between 0.07 and 0.09. We still do not have a sample of definitive LyC emitters, and a much larger study of low-luminosity galaxies is required. The combination of high-resolution imaging and deep spectroscopy is critical for distinguishing LyC emitters from foreground contaminants. C1 [Siana, Brian; Alavi, Anahita] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Shapley, Alice E.; Kulas, Kristin R.; Nestor, Daniel B.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. [Kulas, Kristin R.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Steidel, Charles C.; Bridge, Carrie R.] CALTECH, Pasadena, CA 91125 USA. [Teplitz, Harry I.; Colbert, James W.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Brown, Thomas M.; Ferguson, Henry C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Conselice, Christopher J.] Univ Nottingham, Nottingham NG7 2RD, England. [Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Siana, B (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. OI Brown, Thomas/0000-0002-1793-9968 FU NASA through a grant from the Space Telescope Science Institute; NASA [NAS 5-26555] FX Support for program 11636 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 62 TC 32 Z9 32 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 17 DI 10.1088/0004-637X/804/1/17 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500017 ER PT J AU Skowron, J Shin, IG Udalski, A Han, C Sumi, T Shvartzvald, Y Gould, A Prester, DD Street, RA Jorgensen, UG Bennett, DP Bozza, V Szymanski, MK Kubiak, M Pietrzynski, G Soszynski, I Poleski, R Kozlowski, S Pietrukowicz, P Ulaczyk, K Wyrzykowski, L Abe, F Bhattacharya, A Bond, IA Botzler, CS Freeman, M Fukui, A Fukunaga, D Itow, Y Ling, CH Koshimoto, N Masuda, K Matsubara, Y Muraki, Y Namba, S Ohnishi, K Philpott, LC Rattenbury, N Saito, T Sullivan, DJ Suzuki, D Tristram, PJ Yock, PCM Maoz, D Kaspi, S Friedmann, M Almeida, LA Batista, V Christie, G Choi, JY Depoy, DL Gaudi, BS Henderson, C Hwang, KH Jablonski, F Jung, YK Lee, CU McCormick, J Natusch, T Ngan, H Park, H Pogge, RW Yee, JC Albrow, MD Bachelet, E Beaulieu, JP Brillant, S Caldwell, JAR Cassan, A Cole, A Corrales, E Coutures, CH Dieters, S Donatowicz, J Fouque, P Greenhill, J Kains, N Kane, SR Kubas, D Marquette, JB Martin, R Menzies, J Pollard, KR Ranc, C Sahu, KC Wambsganss, J Williams, A Wouters, D Tsapras, Y Bramich, DM Horne, K Hundertmark, M Snodgrass, C Steele, IA Alsubai, KA Browne, P Burgdorf, MJ Novati, SC Dodds, P Dominik, M Dreizler, S Fang, XS Gu, CH Hardis Harpsoe, K Hessman, FV Hinse, TC Hornstrup, A Jessen-Hansen, J Kerins, E Liebig, C Lund, M Lundkvist, M Mancini, L Mathiasen, M Penny, MT Rahvar, S Ricci, D Scarpetta, G Skottfelt, J Southworth, J Surdej, J Tregloan-Reed, J Wertz, O AF Skowron, J. Shin, I. -G. Udalski, A. Han, C. Sumi, T. Shvartzvald, Y. Gould, A. Prester, D. Dominis Street, R. A. Jorgensen, U. G. Bennett, D. P. Bozza, V. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Soszynski, I. Poleski, R. Kozlowski, S. Pietrukowicz, P. Ulaczyk, K. Wyrzykowski, L. Abe, F. Bhattacharya, A. Bond, I. A. Botzler, C. S. Freeman, M. Fukui, A. Fukunaga, D. Itow, Y. Ling, C. H. Koshimoto, N. Masuda, K. Matsubara, Y. Muraki, Y. Namba, S. Ohnishi, K. Philpott, L. C. Rattenbury, N. Saito, T. Sullivan, D. J. Suzuki, D. Tristram, P. J. Yock, P. C. M. Maoz, D. Kaspi, S. Friedmann, M. Almeida, L. A. Batista, V. Christie, G. Choi, J. -Y. Depoy, D. L. Gaudi, B. S. Henderson, C. Hwang, K. -H. Jablonski, F. Jung, Y. K. Lee, C. -U. McCormick, J. Natusch, T. Ngan, H. Park, H. Pogge, R. W. Yee, J. C. Albrow, M. D. Bachelet, E. Beaulieu, J. -P. Brillant, S. Caldwell, J. A. R. Cassan, A. Cole, A. Corrales, E. Coutures, C. H. Dieters, S. Donatowicz, J. Fouque, P. Greenhill, J. Kains, N. Kane, S. R. Kubas, D. Marquette, J. -B. Martin, R. Menzies, J. Pollard, K. R. Ranc, C. Sahu, K. C. Wambsganss, J. Williams, A. Wouters, D. Tsapras, Y. Bramich, D. M. Horne, K. Hundertmark, M. Snodgrass, C. Steele, I. A. Alsubai, K. A. Browne, P. Burgdorf, M. J. Novati, S. Calchi Dodds, P. Dominik, M. Dreizler, S. Fang, X. -S. Gu, C. -H. Hardis Harpsoe, K. Hessman, F. V. Hinse, T. C. Hornstrup, A. Jessen-Hansen, J. Kerins, E. Liebig, C. Lund, M. Lundkvist, M. Mancini, L. Mathiasen, M. Penny, M. T. Rahvar, S. Ricci, D. Scarpetta, G. Skottfelt, J. Southworth, J. Surdej, J. Tregloan-Reed, J. Wertz, O. CA OGLE Collaboration MOA Collaboration Wise Grp FUN Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Consortium TI OGLE-2011-BLG-0265Lb: A JOVIAN MICROLENSING PLANET ORBITING AN M DWARF SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID SURFACE BRIGHTNESS RELATIONS; GRAVITATIONAL BINARY-LENS; GALACTIC BULGE; MASS PLANET; OGLE-III; JUPITER/SATURN ANALOG; ANGULAR SIZES; GIANT PLANETS; SNOW LINE; STARS AB We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal, combined with extended observations throughout the event, allows us to accurately model the observed light curve. However, the final microlensing solution remains degenerate, yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is M-p = 0.9 +/- 0.3 M-J, and the planet is orbiting a star with a mass M = 0.22 +/- 0.06 M-circle dot. The second possible configuration (2 sigma away) consists of a planet with M-p = 0.6 +/- 0.3M(J) and host star with M = 0.14 +/- 0.06M(circle dot). The system is located in the Galactic disk 3-4 kpc toward the Galactic bulge. In both cases, with an orbit size of 1.5-2.0 AU, the planet is a "cold Jupiter"-located well beyond the "snow line" of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate. C1 [Skowron, J.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Poleski, R.; Kozlowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Shin, I. -G.; Han, C.; Choi, J. -Y.; Hwang, K. -H.; Jung, Y. K.; Park, H.] Chungbuk Natl Univ, Inst Astrophys, Dept Phys, Cheongju 371763, South Korea. [Sumi, T.; Koshimoto, N.; Namba, S.; Suzuki, D.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Friedmann, M.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Gould, A.; Poleski, R.; Batista, V.; Gaudi, B. S.; Henderson, C.; Pogge, R. W.; Yee, J. C.; Penny, M. T.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Prester, D. Dominis] Univ Rijeka, Fac Arts & Sci, Dept Phys, Rijeka 51000, Croatia. [Street, R. A.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Jorgensen, U. G.; Hardis; Harpsoe, K.; Hinse, T. C.; Mathiasen, M.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Ctr Star & Planet Format, Geol Museum, DK-1350 Copenhagen, Denmark. [Bennett, D. P.; Bhattacharya, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bozza, V.; Novati, S. Calchi; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, SA, Italy. [Bozza, V.; Scarpetta, G.] Ist Nazl Fis Nucl, Sezione Napoli, Italy. [Soszynski, I.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bond, I. A.; Ling, C. H.] Massey Univ, Inst Informat & Math Sci, North Shore Mail Ctr, Auckland, New Zealand. [Botzler, C. S.; Freeman, M.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1, New Zealand. [Fukui, A.] Natl Astron Observ Japan, Okayama Astrophys Observ, Okayama 7190232, Japan. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Philpott, L. C.] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC V6T 1Z4, Canada. [Saito, T.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Sullivan, D. J.; Tristram, P. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Almeida, L. A.; Jablonski, F.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Christie, G.; Natusch, T.; Ngan, H.] Auckland Observ, Auckland 1023, New Zealand. [Depoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lee, C. -U.; Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Natusch, T.] AUT Univ, Inst Radiophys & Space Res, Auckland, New Zealand. [Yee, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Albrow, M. D.; Pollard, K. R.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Bachelet, E.; Dieters, S.; Fouque, P.] Univ Toulouse, IRAP, UPS OMP, F-31400 Toulouse, France. [Beaulieu, J. -P.; Cassan, A.; Corrales, E.; Coutures, C. H.; Kubas, D.; Marquette, J. -B.; Ranc, C.; Wouters, D.] UPMC, CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Brillant, S.; Kubas, D.] European So Observ, Santiago 19001 19, Chile. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Cole, A.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Fouque, P.] CFHT Corp, Kamuela, HI 96743 USA. [Kains, N.] European So Observ, D-85748 Garching, Germany. [Kains, N.; Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kane, S. R.; Novati, S. Calchi] CALTECH, Exoplanet Sci Inst, NASA, Pasadena, CA 91125 USA. [Martin, R.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Wambsganss, J.; Williams, A.] Zentrum Astron Univ Heidelberg ZAH, Astron Rech Inst, D-69120 Heidelberg, Germany. [Tsapras, Y.] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England. [Bramich, D. M.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Horne, K.; Hundertmark, M.; Browne, P.; Dodds, P.; Dominik, M.; Liebig, C.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Hundertmark, M.; Dreizler, S.; Hessman, F. V.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. [Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Alsubai, K. A.] Qatar Fdn, Doha, Qatar. [Burgdorf, M. J.] HE Space Operat GmbH, D-28199 Bremen, Germany. [Novati, S. Calchi; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare Salerno, Italy. [Fang, X. -S.; Gu, C. -H.; Hornstrup, A.] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Natl Astron Observat Yunnan Observ, Kunming 650011, Peoples R China. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Kerins, E.; Penny, M. T.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Jessen-Hansen, J.; Lund, M.; Lundkvist, M.] Aarhus Univ, Dept Phys & Astron, Aarhus C, Denmark. [Lundkvist, M.] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Mancini, L.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Rahvar, S.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Ricci, D.] Ist Astrofis Spaziale & Fis Cosm, INAF, Bologna, Italy. [Ricci, D.] UNAM, Inst Astron, Ensenada 22800, Baja California, Mexico. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Tregloan-Reed, J.; Wertz, O.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Tregloan-Reed, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Hundertmark, Markus/C-6190-2015; Almeida, L./G-7188-2012; Ranc, Clement/B-1958-2016; Skowron, Jan/M-5186-2014; Kozlowski, Szymon/G-4799-2013; OI Snodgrass, Colin/0000-0001-9328-2905; Hundertmark, Markus/0000-0003-0961-5231; Ranc, Clement/0000-0003-2388-4534; Skowron, Jan/0000-0002-2335-1730; Kozlowski, Szymon/0000-0003-4084-880X; Philpott, Lydia/0000-0002-5286-8528; Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855 FU European Research Council under the European Community's Seventh Framework Programme (FP7) / ERC [246678]; Polish Ministry of Science and Higher Education (MNiSW) through the program "Iuventus Plus" [IP2011 026771]; Creative Research Initiative Program of National Research Foundation of Korea [2009-0081561]; JSPS [24253004, JSPS23540339, JSPS19340058]; Distinguished University Fellowship from The Ohio State University and in part under contract with the California Institute of Technology (Caltech) - NASA through the Sagan Fellowship Program; NSF [AST 1103471]; NASA [NNX12AB99G]; European Union [268421]; Danish Natural Science Foundation (FNU); German Research Foundation (DFG); Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe; Qatar National Research Fund (QNRF), Qatar Foundation [NPRP 09-476-1-078]; University of Rijeka Project [13.12.1.3.02]; I-CORE program of the Planning and Budgeting Committee; Israel Science Foundation [1829/12]; US-Israel Binational Science Foundation; [JSPS22403003]; [JSPS23340064]; [JSPS23340044]; [JSPS24253004] FX The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 246678 to A.U. This research was partly supported by the Polish Ministry of Science and Higher Education (MNiSW) through the program "Iuventus Plus" award No. IP2011 026771. Work by C.H. was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. The MOA experiment was supported by grants JSPS22403003 and JSPS23340064. T.S. acknowledges the support of JSPS 24253004. T.S. is supported by the grant JSPS23340044. Y.M. acknowledges support from JSPS grants JSPS23540339 and JSPS19340058. Work by J.C.Y. is supported in part by a Distinguished University Fellowship from The Ohio State University and in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. Work by A.G. and B.S.G was supported by NSF grant AST 1103471. Work by A.G., B.S.G., and RWP was supported by NASA grant NNX12AB99G. T.S. acknowledges support from the grants JSPS23340044 and JSPS24253004. C.S. received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 268421. This work is based in part on data collected by MiNDSTEp with the Danish 1.54 m telescope at the ESO La Silla Observatory. The Danish 1.54 m telescope is operated based on a grant from the Danish Natural Science Foundation (FNU). The MiNDSTEp monitoring campaign is powered by ARTEMiS (Automated Terrestrial Exoplanet Microlensing Search; Dominik et al. 2008, AN 329, 248). M.H. acknowledges support by the German Research Foundation (DFG). D.R. (boursier FRIA) and J.S. acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie universitaire Wallonie-Europe. K.A., D.M.B., M.D., K.H., M.H., C.L., C.S., R.A.S., and Y.T. are thankful to the Qatar National Research Fund (QNRF), member of Qatar Foundation, for support by grant NPRP 09-476-1-078. Work by D.D.P. was supported by the University of Rijeka Project 13.12.1.3.02. This research was supported by the I-CORE program of the Planning and Budgeting Committee and the Israel Science Foundation, grant 1829/12. D.M. and A.G. acknowledge support by the US-Israel Binational Science Foundation. NR 63 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 33 DI 10.1088/0004-637X/804/1/33 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500033 ER PT J AU Sturrock, PA Bush, R Gough, DO Scargle, JD AF Sturrock, P. A. Bush, R. Gough, D. O. Scargle, J. D. TI INDICATIONS OF R-MODE OSCILLATIONS IN SOHO/MDI SOLAR RADIUS MEASUREMENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; Sun: oscillations ID POWER-SPECTRUM ANALYSIS; SPACED DATA; ROTATION; DIAMETER; CONSTANCY; TACHOCLINE; INTERIOR AB Analysis of solar radius measurements acquired by the Michelson Doppler Imager on the Solar and Heliospheric Observatory spacecraft supports previously reported evidence of solar internal r-mode oscillations in Mt Wilson radius data and in Sr-90 beta-decay data. The frequencies of these oscillations are compatible with oscillations in a putative inner tachocline that separates a slowly rotating core from the radiative envelope. C1 [Sturrock, P. A.] Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Sturrock, P. A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Bush, R.; Gough, D. O.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Gough, D. O.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gough, D. O.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0HA, England. [Scargle, J. D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sturrock, PA (reprint author), Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. EM sturrock@stanford.edu FU NASA [NAS5-02139] FX We express our appreciation to Marcelo Emilio for help in processing the MDI radius measurements, and to Ephraim Fischbach and Alexander Kosovichev for helpful discussions related to this project. D.O.G. thanks Philip H. Scherrer for his hospitality. This work was supported in part by NASA Contract NAS5-02139. NR 23 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 47 DI 10.1088/0004-637X/804/1/47 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500047 ER PT J AU Vacca, WD Hamilton, RT Savage, M Shenoy, S Becklin, EE McLean, IS Logsdon, SE Marion, GH Ashok, NM Banerjee, DPK Evans, A Fox, OD Garnavich, P Gehrz, RD Greenhouse, M Helton, LA Kirshner, RP Shenoy, D Smith, N Spyromilio, J Starrfield, S Wooden, DH Woodward, CE AF Vacca, William D. Hamilton, Ryan T. Savage, Maureen Shenoy, Sachindev Becklin, E. E. McLean, Ian S. Logsdon, Sarah E. Marion, G. H. Ashok, N. M. Banerjee, D. P. K. Evans, A. Fox, O. D. Garnavich, P. Gehrz, R. D. Greenhouse, M. Helton, L. A. Kirshner, R. P. Shenoy, D. Smith, Nathan Spyromilio, J. Starrfield, S. Wooden, D. H. Woodward, C. E. TI OBSERVATIONS OF TYPE Ia SUPERNOVA 2014J WITH FLITECAM ON SOFIA SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: stars; supernovae: general; supernovae: individual (SN 2014J) ID NEAR-INFRARED SPECTRA; SN 2014J; TELESCOPE FACILITY; M82; SPECTROGRAPH; ULTRAVIOLET; ASTRONOMY; BINARIES; MODELS; TIME AB We present medium-resolution near-infrared (NIR) spectra, covering 1.1-3.4 mu m, of the normal Type Ia supernova (SN Ia) SN 2014J in M82 obtained with the FLITECAM instrument on board Stratospheric Observatory for Infrared Astronomy (SOFIA) between 17 and 26 days after maximum B light. Our 2.8-3.4 mu m spectra may be the first similar to 3 mu m spectra of an SN Ia ever published. The spectra spanning the 1.5-2.7 mu m range are characterized by a strong emission feature at similar to 1.77 mu m with a FWHM of similar to 11,000-13,000 kms(-1). We compare the observed FLITECAM spectra to the recent non-LTE delayed detonation models of Dessart et al. and find that the models agree with the spectra remarkably well in the 1.5-2.7 mu m wavelength range. Based on this comparison we identify the similar to 1.77 mu m emission peak as a blend of permitted lines of Co II. Other features seen in the 2.0-2.5 mu m spectra are also identified as emission from permitted transitions of Co II. However, the models are not as successful at reproducing the spectra in the 1.1-1.4 mu m range or between 2.8 and 3.4 mu m. These observations demonstrate the promise of SOFIA, which allows access to wavelength regions inaccessible from the ground, and serve to draw attention to the usefulness of the regions between the standard ground-based NIR passbands for constraining SN models. C1 [Vacca, William D.; Hamilton, Ryan T.; Savage, Maureen; Shenoy, Sachindev; Becklin, E. E.; Helton, L. A.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [McLean, Ian S.; Logsdon, Sarah E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Marion, G. H.] Univ Texas Austin, Austin, TX 78712 USA. [Ashok, N. M.; Banerjee, D. P. K.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Evans, A.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Fox, O. D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Garnavich, P.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Gehrz, R. D.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Greenhouse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kirshner, R. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Shenoy, D.; Woodward, C. E.] Univ Minnesota, Sch Phys & Astron, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. [Smith, Nathan] Steward Observ, Tucson, AZ 85719 USA. [Spyromilio, J.] European So Observ, D-85748 Garching, Germany. [Starrfield, S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Wooden, D. H.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Vacca, WD (reprint author), NASA, Ames Res Ctr, SOFIA USRA, Mail Stop N232-12, Moffett Field, CA 94035 USA. EM wvacca@sofia.usra.edu FU NSF; NASA; NASA [NAS2-97001]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; SOFIA Cycle 2 GI Research Grant [75-0001, 75-0002, 02-0100]; NASA through USRA [08500-05] FX We would like to thank the USRA/DSI science and mission operations teams and the engineering and support staff at NASA Armstrong and Ames for their pivotal roles in making SOFIA a reality. We also thank Luc Dessart and Stephane Blondin for sharing their SN models with us. R.D.G. thanks R. G. Arendt, E. Dwek, and T. Temim for providing useful input during the formulation of the scientific case for the observing program as members of the DDT proposal team. Similarly, P.G. thanks P. Milne, E. Hsiao, M. Phillips, and N. Suntzeff for their contributions to the science case of the accepted DDT proposal. S.S. acknowledges support from NSF and NASA grants to ASU.; Based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Financial support for R.T.H., R.D.G., and P.G. was provided in part by SOFIA Cycle 2 GI Research Grant #'s 75-0001, 75-0002, and 02-0100, respectively, issued by USRA, on behalf of NASA. I.S.M. and S.E.L. were supported by NASA through grant 08500-05 from USRA for the development of FLITECAM. NR 44 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 66 DI 10.1088/0004-637X/804/1/66 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500066 ER PT J AU Younes, G Kouveliotou, C Grefenstette, BW Tomsick, JA Tennant, A Finger, MH Furst, F Pottschmidt, K Bhalerao, V Boggs, SE Boirin, L Chakrabarty, D Christensen, FE Craig, WW Degenaar, N Fabian, AC Gandhi, P Gogus, E Hailey, CJ Harrison, FA Kennea, JA Miller, JM Stern, D Zhang, WW AF Younes, G. Kouveliotou, C. Grefenstette, B. W. Tomsick, J. A. Tennant, A. Finger, M. H. Fuerst, F. Pottschmidt, K. Bhalerao, V. Boggs, S. E. Boirin, L. Chakrabarty, D. Christensen, F. E. Craig, W. W. Degenaar, N. Fabian, A. C. Gandhi, P. Gogus, E. Hailey, C. J. Harrison, F. A. Kennea, J. A. Miller, J. M. Stern, D. Zhang, W. W. TI SIMULTANEOUS NuSTAR/CHANDRA OBSERVATIONS OF THE BURSTING PULSAR GRO J1744-28 DURING ITS THIRD REACTIVATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: general; stars: individual (GRO J1744-28); X-rays: binaries; X-rays: bursts ID X-RAY PULSARS; SPECTROSCOPIC-TELESCOPE-ARRAY; MAGNETIC NEUTRON-STARS; ACTIVE GALACTIC NUCLEI; ACCRETION DISK CORONA; CYCLOTRON LINE; BLACK-HOLE; KVANT OBSERVATIONS; NUSTAR DISCOVERY; TIMING-EXPLORER AB We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 x 10(7) cm, which translates to a surface dipole field B approximate to 9 x 10(10) G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components. C1 [Younes, G.; Finger, M. H.] Univ Space Res Assoc, Huntsville, AL 35806 USA. [Younes, G.; Kouveliotou, C.; Tennant, A.; Finger, M. H.] NSSTC, Huntsville, AL 35805 USA. [Kouveliotou, C.; Tennant, A.] NASA, George C Marshall Space Flight Ctr, Astrophys Off, Huntsville, AL 35812 USA. [Grefenstette, B. W.; Fuerst, F.; Harrison, F. A.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Bhalerao, V.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Boirin, L.] Observ Astron, F-67000 Strasbourg, France. [Chakrabarty, D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, F. E.; Miller, J. M.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Degenaar, N.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Fabian, A. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gandhi, P.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Gogus, E.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Younes, G (reprint author), Univ Space Res Assoc, 6767 Old Madison Pike, Huntsville, AL 35806 USA. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Bhalerao, Varun/0000-0002-6112-7609 FU NASA [NNG08FD60C]; National Aeronautics and Space Administration FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 96 TC 7 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2015 VL 804 IS 1 AR 43 DI 10.1088/0004-637X/804/1/43 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH7BB UT WOS:000354189500043 ER PT J AU Baars, WJ Ruf, JH Tinney, CE AF Baars, W. J. Ruf, J. H. Tinney, C. E. TI Non-stationary shock motion unsteadiness in an axisymmetric geometry with pressure gradient SO EXPERIMENTS IN FLUIDS LA English DT Article ID TURBULENT-BOUNDARY-LAYER; COMPRESSION RAMP INTERACTION; LOW-FREQUENCY UNSTEADINESS; INDUCED SEPARATION; ROCKET NOZZLES; WAVE STRUCTURE; FLUCTUATIONS; MODEL; OSCILLATION; FLOW AB Shock wave/boundary layer interaction (SWBLI) is studied in a large area-ratio axisymmetric nozzle comprising a design exit Mach number of 5.58. Shock motion unsteadiness is captured by way of the dynamic wall pressure and is evaluated during overexpanded operations up to a nozzle pressure ratio of 65. Stationary SWBLI is first considered at a nozzle pressure ratio of 28.7 such that the internal flow structure is in a restricted shock separated state; the mean position of the annular separation shock resides at a fixed position. Conditional averages of the wall pressure fluctuations show how the motion of the incipient separation shock is out of phase with pressure fluctuations measured in the separated region downstream of the shock; pressure decreases when the shock moves downstream and vice versa. This is indicative of a long intermittent region, in terms of the boundary layer thickness, as the observed phenomena can be explained by translating the static wall pressure profile along with the shock motion. Non-stationary SWBLI is then considered by increasing the nozzle pressure ratio over time (transient start-up). Under these conditions, the shock pattern varies in strength and structure as it sweeps through the nozzle. A time-frequency analyses of the fluctuating wall pressure during the non-stationary operations, and at the same location that the stationary unsteadiness is analyzed, reveals a similar spectral footprint. However, for relatively slower start-ups, the amplitude of the unsteadiness is reduced by a factor of about seven. The findings demonstrate how the rate at which the nozzle pressure ratio increases can have a significant influence on the amplitude of the unsteady shock foot motion. C1 [Baars, W. J.] Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia. [Ruf, J. H.] NASA MSFC, Fluid Dynam Branch, Huntsville, AL 35812 USA. [Tinney, C. E.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. RP Baars, WJ (reprint author), Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia. EM wbaars@unimelb.edu.au RI Baars, Woutijn/F-6600-2016 OI Baars, Woutijn/0000-0003-1526-3084 FU Air Force Office of Scientific Research [FA9550-11-1-0203]; NASA Engineering and Safety Center; Australian Research Council FX Funding for this effort was graciously provided by a grant from the Air Force Office of Scientific Research (FA9550-11-1-0203) with Dr. J. Schmisseur as technical monitor, as well as the NASA Engineering and Safety Center. A great portion of this work was written while WJB was a Post-Doctoral Research Fellow at the University of Melbourne, Australia and being supported by funds of the Australian Research Council. NR 44 TC 0 Z9 0 U1 2 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD MAY PY 2015 VL 56 IS 5 AR 92 DI 10.1007/s00348-015-1958-y PG 18 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CI1BA UT WOS:000354473900006 ER PT J AU Hecht, BC Hard, JJ Thrower, FP Nichols, KM AF Hecht, Benjamin C. Hard, Jeffrey J. Thrower, Frank P. Nichols, Krista M. TI Quantitative Genetics of Migration-Related Traits in Rainbow and Steelhead Trout SO G3-GENES GENOMES GENETICS LA English DT Article DE anadromy; animal model; genetic correlation; heritability; steelhead trout ID SPRING CHINOOK SALMON; ONCORHYNCHUS-MYKISS; LIFE-HISTORY; BROOK CHARR; SALVELINUS-FONTINALIS; ANADROMOUS STEELHEAD; SMOLT TRANSFORMATION; GROWTH MODULATION; BODY MORPHOLOGY; ANIMAL-MODEL AB Rainbow trout (Oncorhynchus mykiss) exhibit remarkable life history diversity throughout their native range, and among the most evident is variation in migratory propensity. Although some populations and ecotypes will remain resident in freshwater habitats throughout their life history, others have the ability to undertake tremendous marine migrations. Those that migrate undergo a suite of behavioral, morphological, and physiological adaptations in a process called smoltification. We describe a quantitative genetic analysis of 22 growth, size, and morphological traits in addition to overall life history classification (resident or migrant) over the temporal process of smoltification in a large multi-generation experimental pedigree (n = 16,139) of migratory and resident rainbow trout derived from a wild population, which naturally segregates for migratory propensity. We identify significant additive genetic variance and covariance among the suite of traits that make up a component of the migratory syndrome in this species. Additionally, we identify high heritability estimates for the life history classifications and observe a strong negative genetic correlation between the migratory and resident life history trajectories. Given the large heritability estimates of all of the traits that segregate between migratory and resident rainbow trout, we conclude that these traits can respond to selection. However, given the high degree of genetic correlation between these traits, they do not evolve in isolation, but rather as a suite of coordinated characters in a predictable manner. C1 [Hecht, Benjamin C.; Nichols, Krista M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Nichols, Krista M.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. [Hecht, Benjamin C.] Univ Idaho, Inst Aquaculture Res, Hagerman Fish Culture Expt Stn, Hagerman, ID 83332 USA. [Hecht, Benjamin C.] Columbia River Intertribal Fish Commiss, Fishery Sci Dept, Hagerman, ID 83332 USA. [Hard, Jeffrey J.; Nichols, Krista M.] NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. [Thrower, Frank P.] NOAA, Ted Stevens Marine Res Inst, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. RP Nichols, KM (reprint author), NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd, Seattle, WA 98112 USA. EM krista.nichols@noaa.gov FU [NSF-DEB-0845265] FX The authors thank T. Cummins, D. Cummins, B. Weinlaeder, N. Goodwin, A. Celewycz, M. Zanis, J. Myers, M. Baird, O. Johnson, J. Miller, P. Malecha, J. Malecha, J. Joyce, K. O'Malley, and C. Waters, who assisted in the rearing, husbandry, and/or data collection of rainbow and steelhead trout at the Little Port Walter Research Station, Baranof Island, Alaska. We thank K. Gray for helpful discussions regarding quantitative genetic analyses, and S. Narum for support during the analysis and writing of the results. We also appreciate the comments from anonymous reviewers, which have strengthened the manuscript. This work was funded in part by a NSF-DEB-0845265 Career Award (to K.M.N.). NR 76 TC 6 Z9 6 U1 15 U2 57 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD MAY 1 PY 2015 VL 5 IS 5 BP 873 EP 889 DI 10.1534/g3.114.016469 PG 17 WC Genetics & Heredity SC Genetics & Heredity GA CH8BX UT WOS:000354262000016 PM 25784164 ER PT J AU Hall, DK Nghiem, SV Rigor, IG Miller, JA AF Hall, Dorothy K. Nghiem, Son V. Rigor, Ignatius G. Miller, Jeffrey A. TI Uncertainties of Temperature Measurements on Snow-Covered Land and Sea Ice from In Situ and MODIS Data during BROMEX SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Snow cover; Temperature; Instrumentation; sensors; Remote sensing; Satellite observations ID SURFACE-TEMPERATURE; SATELLITE; GREENLAND; EMISSIVITY; VALIDATION; PRODUCTS; CLIMATE; WINDOW; OZONE AB The Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted in March and April of 2012 near Barrow, Alaska, to investigate impacts of Arctic sea ice reduction on chemical processes. During BROMEX, multiple sensors were deployed to measure air and surface temperature. The uncertainties in temperature measurement on snow-covered land and sea ice surfaces were examined using in situ data and temperature measurements that were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and are part of the Terra and Aqua ice-surface temperature and land-surface temperature (LST) standard data products. Following an 24-h cross-calibration study, two Thermochrons (small temperature-sensing devices) were deployed at each of three field sites: a sea ice site in the Chukchi Sea, a mixed-cover site, and a homogeneous tundra site. At each site, one Thermochron was shielded from direct sunlight and one was left unshielded, and they were placed on top of the snow or ice. The best agreement between the Thermochron- and MODIS-derived temperatures was found between the shielded Thermochrons and the Aqua MODIS LSTs, with an average agreement of 0.6 degrees +/- 2.0 degrees C (sample size of 84) at the homogeneous tundra site. The results highlight some uncertainties associated with obtaining consistent air and surface temperature measurements in the harsh Arctic environment, using both in situ and satellite sensors. It is important to minimize uncertainties that could introduce biases in long-term temperature trends. C1 [Hall, Dorothy K.; Miller, Jeffrey A.] NASA, Cryospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nghiem, Son V.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Rigor, Ignatius G.] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Miller, Jeffrey A.] Wyle Inc, Houston, TX USA. RP Hall, DK (reprint author), NASA, Cryospher Sci Lab, GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM dorothy.k.hall@nasa.gov FU NASA Cryospheric Sciences Program; NASA FX The research carried out at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and at the Jet Propulsion Laboratory, California Institute of Technology, was supported by the NASA Cryospheric Sciences Program. Author I. Rigor is funded by NASA and other contributors to the U.S. Interagency Arctic Buoy Program. We thank Jody Hoon-Starr for programming help, Paul Morin from the University of Minnesota for high-resolution imagery, and Chris Linder of the University of Washington for the GigaPan photography. We also thank Christopher Shuman of NASA and the University of Maryland, Baltimore County, Joint Center for Earth Systems Technology and Brian Wenny and Jack Xiong of the MCST at NASA/GSFC for discussions about MODIS sensor calibration. In addition, we thank the UMIAQ Company, the Barrow whaling community, and the Barrow Arctic Science Consortium for their assistance during BROMEX. NR 33 TC 2 Z9 2 U1 1 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2015 VL 54 IS 5 BP 966 EP 978 DI 10.1175/JAMC-D-14-0175.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI2FI UT WOS:000354560200004 ER PT J AU Zhou, YP Lau, WKM Huffman, GJ AF Zhou, Yaping Lau, William K. M. Huffman, George J. TI Mapping TRMM TMPA into Average Recurrence Interval for Monitoring Extreme Precipitation Events SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Statistical techniques; Emergency response; Societal impacts ID SATELLITE RAINFALL PRODUCTS; INTENSE PRECIPITATION; CHANGING CLIMATE; UNITED-STATES; FLOOD; STATISTICS; TRENDS; SCALES; RECORD; MODEL AB A prototype online extreme precipitation monitoring system is developed from the TRMM TMPA near-real-time precipitation product. The system utilizes estimated equivalent average recurrence interval (ARI) for up-to-date precipitation accumulations from the past 1, 2, 3, 5, 7, and 10 days to locate locally severe events. The mapping of precipitation accumulations into ARI is based on local statistics fitted into generalized extreme value (GEV) distribution functions. Initial evaluation shows that the system captures historic extreme precipitation events quite well. The system provides additional rarity information for ongoing precipitation events based on local climatology that could be used by the general public and decision makers for various hazard management applications. Limitations of the TRMM ARI due to short record length and data accuracy are assessed through comparison with long-term high-resolution gauge-based rainfall datasets from the NOAA Climate Prediction Center and the Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation of Water Resources (APHRODITE) project. TMPA-based extreme climatology captures extreme distribution patterns from gauge data, but a strong tendency to overestimate from TMPA over regimes of complex orography exists. C1 [Zhou, Yaping] Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA. [Zhou, Yaping; Lau, William K. M.; Huffman, George J.] NASA, Div Earth Sci, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Zhou, YP (reprint author), Morgan State Univ, GESTAR, Climate & Radiat Lab, NASA,GSFC, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM yaping.zhou-1@nasa.gov RI Huffman, George/F-4494-2014; Lau, William /E-1510-2012 OI Huffman, George/0000-0003-3858-8308; Lau, William /0000-0002-3587-3691 FU Precipitation Measuring Mission, NASA Earth Science Division [NNX13AF73G] FX This work is supported by the Precipitation Measuring Mission under Project NNX13AF73G (Headquarters Manager: Dr. R. Kakar), NASA Earth Science Division. The TMPA data are obtained from NASA Goddard Earth Sciences Data and Information Services Center (GES DISC): ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/Derived_Products/3B42RT/Da ily/. We thank Dr. Siegfried Shubert's group for providing sample code for GEV calculation and three anonymous reviewers for providing many constructive suggestions. NR 61 TC 1 Z9 1 U1 1 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2015 VL 54 IS 5 BP 979 EP 995 DI 10.1175/JAMC-D-14-0269.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI2FI UT WOS:000354560200005 ER PT J AU Gatlin, PN Thurai, M Bringi, VN Petersen, W Wolff, D Tokay, A Carey, L Wingo, M AF Gatlin, Patrick N. Thurai, Merhala Bringi, V. N. Petersen, Walter Wolff, David Tokay, Ali Carey, Lawrence Wingo, Matthew TI Searching for Large Raindrops: A Global Summary of Two-Dimensional Video Disdrometer Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Hail; Rainfall; Cloud microphysics; Drop size distribution; Radars; Radar observations; Remote sensing ID DROP-SIZE-DISTRIBUTION; BAND POLARIMETRIC RADAR; SMALL-SCALE VARIABILITY; POLARIZATION RADAR; WIND-TUNNEL; DISTRIBUTION TRUNCATION; DISTRIBUTION PARAMETERS; RAINFALL ESTIMATION; CONVECTIVE CLOUDS; TERMINAL VELOCITY AB A dataset containing 9637 h of two-dimensional video disdrometer observations consisting of more than 240 million raindrops measured at diverse climatological locations was compiled to help characterize underlying drop size distribution (DSD) assumptions that are essential to make precise retrievals of rainfall using remote sensing platforms. This study concentrates on the tail of the DSD, which largely impacts rainfall retrieval algorithms that utilize radar reflectivity. The maximum raindrop diameter was a median factor of 1.8 larger than the mass-weighted mean diameter and increased with rainfall rate. Only 0.4% of the 1-min DSD spectra were found to contain large raindrops exceeding 5 mm in diameter. Large raindrops were most abundant at the tropical locations, especially in Puerto Rico, and were largely concentrated during the spring, especially at subtropical locations. Giant raindrops exceeding 8 mm in diameter occurred at tropical, subtropical, and high-latitude continental locations. The greatest numbers of giant raindrops were found in the subtropical locations, with the largest being a 9.7-mm raindrop that occurred in northern Oklahoma during the passage of a hail-producing thunderstorm. These results suggest large raindrops are more likely to fall from clouds that contain hail, especially those raindrops exceeding 8 mm in diameter. C1 [Gatlin, Patrick N.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Thurai, Merhala; Bringi, V. N.] Colorado State Univ, Ft Collins, CO 80523 USA. [Petersen, Walter; Wolff, David] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Carey, Lawrence; Wingo, Matthew] Univ Alabama, Huntsville, AL 35899 USA. RP Gatlin, PN (reprint author), NASA, MSFC, ZP11,320 Sparkman Dr, Huntsville, AL 35805 USA. EM patrick.gatlin@nasa.gov RI Measurement, Global/C-4698-2015; OI Gatlin, Patrick/0000-0001-9345-1457 FU NASA Marshall Space Flight Center Earth Science Office; NASA Pathways Intern Employment Program; NASA's GPM Project Office; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division FX This work was supported in part by the NASA Marshall Space Flight Center Earth Science Office and the NASA Pathways Intern Employment Program. The NASA GPM GV 2DVDs were funded by Dr. Mathew Schwaller and the late Dr. Arthur Hou of NASA's GPM Project Office. The DOE 2DVD datasets were provided by the Atmospheric Radiation Measurement Program, which is sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. The University of Iowa 2DVD dataset collected during TEFLUN-B and TRMM-LBA was kindly provided by Dr. Witek Krajewski, and the Shimane University (Japan) 2DVD dataset collected in Sumatra was kindly provided by Drs. Toshiaki Kozu and Toyoshi Shimomai. We also thank Pat Kennedy for collecting and providing the CSU-CHILL radar data presented herein. We thank the three anonymous reviewers who provided very helpful suggestions that strengthened this paper as well as Dr. Paul Smith for the insightful discussions on disdrometer sampling of Dmax. The authors are very grateful for the exceptionally gracious, continued customer support of these 2DVDs provided throughout the years by Dr. Michael Schonhuber and Mr. Gunter Lammer of Joanneum Research in Graz, Austria. We are also grateful to the countless others who contributed to the deployment and careful maintenance/calibration of these 2DVDs. NR 93 TC 8 Z9 8 U1 2 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD MAY PY 2015 VL 54 IS 5 BP 1069 EP 1089 DI 10.1175/JAMC-D-14-0089.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI2FI UT WOS:000354560200011 ER PT J AU Roth, DJ Rauser, RW Shin, EE Martin, RE Burke, C AF Roth, D. J. Rauser, R. W. Shin, E. E. Martin, R. E. Burke, C. TI Fine Scale Metrology on Cylindrical Structures using X-ray Micro-computed Tomography SO MATERIALS EVALUATION LA English DT Article DE software; computed tomography; imaging; cylinder; metrology AB The ability to use state-of-the-art X-ray microcomputed tomography to perform fine scale (low tens of microns) external and internal measurements on cylindrical structures is explored. Software was developed to automate the process of rapidly analyzing hundreds of computed tomography slices. First, a model system consisting of various-sized cylindrical steel boring tools placed one inside the other was computed tomography scanned and analyzed for roundness, circularity, concentricity, and radius and gap thickness uniformity. Then, a complex real-world metallic cylindrical structure was computed tomography scanned and analyzed for the same characteristics. The structure was heated to several temperatures to measure thermal expansion using computed tomography. C1 [Roth, D. J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Rauser, R. W.] Univ Toledo, Toledo, OH 43606 USA. [Shin, E. E.] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Martin, R. E.] Cleveland State Univ, Cleveland, OH 44115 USA. [Burke, C.] Sierra Lobo Inc, Milan, OH 44846 USA. RP Roth, DJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD MAY PY 2015 VL 73 IS 5 BP 611 EP 620 PG 10 WC Materials Science, Characterization & Testing SC Materials Science GA CI1MD UT WOS:000354507400042 ER PT J AU Roth, DJ Martin, RE Rauser, RW Nichols, CT Bonacuse, PJ AF Roth, D. J. Martin, R. E. Rauser, R. W. Nichols, C. T. Bonacuse, P. J. TI NDT Software Nondestructive Testing Software Developed at NASA Glenn Research Center SO MATERIALS EVALUATION LA English DT Article C1 [Roth, D. J.; Bonacuse, P. J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Martin, R. E.] Cleveland State Univ, Cleveland, OH 44115 USA. [Rauser, R. W.] Univ Toledo, Toledo, OH 43606 USA. [Nichols, C. T.] NASA, JSC White Sands Test Facil, Las Cruces, NM 88004 USA. RP Roth, DJ (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD MAY PY 2015 VL 73 IS 5 PG 7 WC Materials Science, Characterization & Testing SC Materials Science GA CI1MD UT WOS:000354507400040 ER PT J AU Gockel, J Fox, J Beuth, J Hafley, R AF Gockel, J. Fox, J. Beuth, J. Hafley, R. TI Integrated melt pool and microstructure control for Ti-6Al-4V thin wall additive manufacturing SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE Additive manufacturing; Microstructure control; Melt pool geometry control; Ti-6Al-4V; Process mapping; Finite element modelling; Thin walled deposits ID SOLID FREEFORM FABRICATION; PROCESS MAPS AB In additive manufacturing (AM), melt pool dimension control is needed to accurately build a geometry and determine process precision. Microstructure control is needed for its effect on mechanical properties. This research addresses both for Ti-6Al-4V thin walled structures fabricated by wire feed electron beam AM. Model results show that beam power and beam velocity combinations yielding constant melt pool cross-sectional areas also yield constant solidification cooling rates. Experimental measurements back up this finding and show roughly 20 beta grains across the width of a thin wall deposit which is consistent with an earlier study of single bead deposits, suggesting that links between melt pool geometry and beta grain size are independent of deposition geometry, with significant implications for AM process control. C1 [Gockel, J.; Fox, J.; Beuth, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Hafley, R.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Beuth, J (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM beuth@andrew.cmu.edu FU National Science Foundation [CMMI-1131579]; National Defense Science and Engineering Graduate (NDSEG); Carnegie Mellon University Institute; John and Claire Bertucci Fellowship FX This research was supported by the National Science Foundation under grant CMMI-1131579, by a National Defense Science and Engineering Graduate (NDSEG) Fellowship, by the Carnegie Mellon University Institute for Complex Engineered Systems Northrop Grumman Fellowship, and by the John and Claire Bertucci Fellowship. NR 24 TC 4 Z9 4 U1 12 U2 61 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD MAY PY 2015 VL 31 IS 8 BP 912 EP 916 DI 10.1179/1743284714Y.0000000704 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CI1IQ UT WOS:000354497600005 ER PT J AU Horch, EP van Altena, WF Demarque, P Howell, SB Everett, ME Ciardi, DR Teske, JK Henry, TJ Winters, JG AF Horch, Elliott P. van Altena, William F. Demarque, Pierre Howell, Steve B. Everett, Mark E. Ciardi, David R. Teske, Johanna K. Henry, Todd J. Winters, Jennifer G. TI OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. V. TOWARD AN EMPIRICAL METAL-POOR MASS-LUMINOSITY RELATION SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; binaries: visual; techniques: high angular resolution; techniques: interferometric; techniques: photometric ID LINED SPECTROSCOPIC BINARIES; PROPER-MOTION STARS; PHOTOELECTRIC RADIAL-VELOCITIES; GENEVA-COPENHAGEN SURVEY; CD-ROM; SOLAR NEIGHBORHOOD; DIFFRACTION LIMIT; GLOBULAR-CLUSTERS; ORBITAL SOLUTIONS; HIPPARCOS STARS AB In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit of the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory. C1 [Horch, Elliott P.] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [van Altena, William F.; Demarque, Pierre] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Teske, Johanna K.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Teske, Johanna K.] Carnegie Inst Sci, Carnegie Observ, Washington, DC 20015 USA. [Henry, Todd J.; Winters, Jennifer G.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. RP Horch, EP (reprint author), So Connecticut State Univ, Dept Phys, 501 Crescent St, New Haven, CT 06515 USA. EM horche2@southernct.edu; william.vanaltena@yale.edu; pierre.demarque@yale.edu; steve.b.howell@nasa.gov; everett@noao.edu; ciardi@ipac.caltech.edu; jteske@carnegiescience.edu; thenry@astro.gsu.edu; winters@astro.gsu.edu OI Ciardi, David/0000-0002-5741-3047 FU Kepler Science Office located at the NASA Ames Research Center; Kepler Science Office; NSF [AST-1429015] FX We thank the Kepler Science Office located at the NASA Ames Research Center for providing partial financial support for the upgraded DSSI instrument. It is also a pleasure to thank Steve Hardash, Andy Adamson, Inger Jorgensen, John White, and the entire summit crew for their excellent work in getting the instrument to the telescope and installing it. This work was funded by the Kepler Science Office and NSF grant AST-1429015. It made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory, the SIMBAD database, operated at CDS, Strasbourg, France, and the 9th Catalog of Spectroscopic Orbits of Binary Stars. NR 43 TC 7 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 151 DI 10.1088/0004-6256/149/5/151 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200002 ER PT J AU Keel, WC Maksym, WP Bennert, VN Lintott, CJ Chojnowski, SD Moiseev, A Smirnova, A Schawinski, K Urry, CM Evans, DA Pancoast, A Scott, B Showley, C Flatland, K AF Keel, William C. Maksym, W. Peter Bennert, Vardha N. Lintott, Chris J. Chojnowski, S. Drew Moiseev, Alexei Smirnova, Aleksandrina Schawinski, Kevin Urry, C. Megan Evans, Daniel A. Pancoast, Anna Scott, Bryan Showley, Charles Flatland, Kelsi TI HST IMAGING OF FADING AGN CANDIDATES. I. HOST-GALAXY PROPERTIES AND ORIGIN OF THE EXTENDED GAS SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (NGC 5792, NGC 5252, UGC 7342, UGC 11185, Mkn 1498) galaxies: interactions; galaxies: Seyfert ID DIGITAL-SKY-SURVEY; IONIZATION-CONE STRUCTURES; EMISSION-LINE REGIONS; NGC 5252; ELLIPTIC GALAXIES; HANNYS VOORWERP; SEYFERT-GALAXIES; STAR-FORMATION; IC 2497; QUASAR AB We present narrow- and medium-band Hubble Space Telescope imaging, with additional supporting ground-based imaging, spectrophotometry, and Fabry-Perot interferometric data, for eight galaxies identified as hosting a fading active galactic nucleus (AGN). These are selected to have AGN-ionized gas projected > 10 kpc from the nucleus and energy budgets with a significant shortfall of ionizing radiation between the requirement to ionize the distant gas and the AGN as observed directly, indicating fading of the AGN on approximate to 50,000 yr timescales. This paper focuses on the host-galaxy properties and origin of the gas. In every galaxy, we identify evidence of ongoing or past interactions, including tidal tails, shells, and warped or chaotic dust structures; a similarly selected sample of obscured AGNs with extended ionized clouds shares this high incidence of disturbed morphologies. Several systems show multiple dust lanes in different orientations, broadly fit by differentially precessing disks of accreted material viewed similar to 1.5 Gyr after its initial arrival. The host systems are of early Hubble type; most show nearly pure de Vaucouleurs surface brightness profiles and Sersic indices appropriate for classical bulges, with one S0 and one SB0 galaxy. The gas has a systematically lower metallicity than the nuclei; three systems have abundances uniformly well below solar, consistent with an origin in tidally disrupted low-luminosity galaxies, while some systems have more nearly solar abundances (accompanied by such signatures as multiple Doppler components), which may suggest redistribution of gas by outflows within the host galaxies themselves. These aspects are consistent with a tidal origin for the extended gas in most systems, although the ionized gas and stellar tidal features do not always match closely. Unlike extended emission regions around many radio-loud AGNs, these clouds are kinematically dominated by rotation, in some cases in warped disks. Outflows can play important kinematic roles only in localized regions near some of the AGNs. We find only a few sets of young star clusters potentially triggered by AGN outflows. In UGC 7342 and UGC 11185, multiple luminous star clusters are seen just within the projected ionization cones, potentially marking star formation triggered by outflows. As in the discovery example, Hanny's Voorwerp/IC 2497, there are regions in these clouds where the lack of a strong correlation between Ha surface brightness and ionization parameter indicates that there is unresolved fine structure in the clouds. Together with thin coherent filaments spanning several kpc, persistence of these structures over their orbital lifetimes may require a role for magnetic confinement. Overall, we find that the sample of fading AGNs occur in interacting and merging systems, that the very extended ionized gas is composed of tidal debris rather than galactic winds, and that these host systems are bulge-dominated and show no strong evidence of triggered star formation in luminous clusters. C1 [Keel, William C.; Maksym, W. Peter] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Bennert, Vardha N.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Lintott, Chris J.] Univ Oxford, Astrophys, Chicago, IL 60605 USA. [Chojnowski, S. Drew] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Moiseev, Alexei; Smirnova, Aleksandrina] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Russia. [Schawinski, Kevin] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Urry, C. Megan] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Evans, Daniel A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Pancoast, Anna] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Scott, Bryan; Showley, Charles; Flatland, Kelsi] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Scott, Bryan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Showley, Charles] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. RP Keel, WC (reprint author), Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. EM wkeel@ua.edu; wpmaksym@ua.edu; vbennert@calpoly.edu; cjl@astro.ox.ac.uk; kevin.schawinski@phys.ethz.ch RI Moiseev, Alexey/H-9391-2013; OI Maksym, Walter/0000-0002-2203-7889; Schawinski, Kevin/0000-0001-5464-0888; Urry, Meg/0000-0002-0745-9792; Keel, William/0000-0002-6131-9539 FU NASA [HST-GO-12525.01-A, HST-GO-12525.01-B]; Active Processes in Galactic and Extragalactic Objects basic research programme of the Department of Physical Sciences of the RAS [OFN-17]; Ministry of Education and Science of the Russian Federation [N14.619.21.0004, RFMEFI61914X0004]; University of Alabama Research Stimulation Program; National Science Foundation (NSF) Research at Undergraduate Institutions (RUI) grant [AST-1312296]; Leverhulme Trust; STFC Science in Society Program; Dynasty Foundation; President of the Russian Federation [MD3623.2015.2]; NASA Einstein Fellowship at Yale; Swiss National Science Foundation [PP00P2 138979/1]; Jim Gray Research Fund from Microsoft; National Aeronautics and Space Administration FX This work was supported by NASA through STScI grants HST-GO-12525.01-A and -B. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). This research has made use of NASA's Astrophysics Data System and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank Linda Dressel for advice on setting up the observations, especially reducing intrusive reflections. Giles Novak provided useful pointers on magnetic fields in the ISM. Identification of this galaxy sample was possible through the efforts of nearly 200 Galaxy Zoo volunteers; we are grateful for their contributions, and thank once more the list of participants in Keel et al. (2012a). This work was partly supported by the Active Processes in Galactic and Extragalactic Objects basic research programme of the Department of Physical Sciences of the RAS OFN-17. The observations obtained with the 6 m telescope of the SAO of the RAS were carried out with the financial support of the Ministry of Education and Science of the Russian Federation (contract no. N14.619.21.0004, the project RFMEFI61914X0004). W.P. Maksym is grateful for support by the University of Alabama Research Stimulation Program. V.N. Bennert acknowledges assistance from a National Science Foundation (NSF) Research at Undergraduate Institutions (RUI) grant AST-1312296. Note that findings and conclusions do not necessarily represent views of the NSF. C.J. Lintott acknowledges funding from The Leverhulme Trust and the STFC Science in Society Program. A. Moiseev is also grateful for the financial support of the Dynasty Foundation and a grant from the President of the Russian Federation (MD3623.2015.2). K. Schawinski was supported by a NASA Einstein Fellowship at Yale, and gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2 138979/1. Galaxy Zoo was made possible by funding from a Jim Gray Research Fund from Microsoft and The Leverhulme Trust. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 51 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 155 DI 10.1088/0004-6256/149/5/155 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200006 ER PT J AU Mainzer, A Grav, T Bauer, J Conrow, T Cutri, RM Dailey, J Fowler, J Giorgini, J Jarrett, T Masiero, J Spahr, T Statler, T Wright, EL AF Mainzer, A. Grav, T. Bauer, J. Conrow, T. Cutri, R. M. Dailey, J. Fowler, J. Giorgini, J. Jarrett, T. Masiero, J. Spahr, T. Statler, T. Wright, E. L. TI SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: numerical; minor planets, asteroids: general; surveys; techniques: image processing; telescopes ID INFRARED-ASTRONOMICAL-SATELLITE; MIDCOURSE-SPACE-EXPERIMENT; MAIN BELT ASTEROIDS; THERMAL-MODEL CALIBRATION; MINOR PLANET SURVEY; ALL-SKY SURVEY; WISE/NEOWISE OBSERVATIONS; PHYSICAL-CHARACTERIZATION; SURVEY-EXPLORER; NEOWISE AB We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth-Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinations of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 mu m HgCdTe detector arrays capable of operating at similar to 35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth-Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey. C1 [Mainzer, A.; Bauer, J.; Giorgini, J.; Masiero, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grav, T.] Planetary Sci Inst, Tucson, AZ USA. [Bauer, J.; Conrow, T.; Cutri, R. M.; Dailey, J.; Fowler, J.; Jarrett, T.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Jarrett, T.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Spahr, T.] Harvard Smithsonian Ctr Astrophys, Minor Planet Ctr, Cambridge, MA 02138 USA. [Statler, T.] Ohio Univ, Inst Astrophys, Athens, OH 45701 USA. [Statler, T.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Wright, E. L.] Univ Calif Los Angeles, Dept Astron & Astrophys, Los Angeles, CA USA. RP Mainzer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Masiero, Joseph/0000-0003-2638-720X; Cutri, Roc/0000-0002-0077-2305 FU National Aeronautics and Space Administration FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration. We thank the referee, Dr. Alan Harris of Pasadena, for helpful suggestions that greatly improved the manuscript. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 91 TC 5 Z9 5 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 172 DI 10.1088/0004-6256/149/5/172 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200023 ER PT J AU Ricci, F Massaro, F Landoni, M D'Abrusco, R Milisavljevic, D Stern, D Masetti, N Paggi, A Smith, HA Tosti, G AF Ricci, F. Massaro, F. Landoni, M. D'Abrusco, R. Milisavljevic, D. Stern, D. Masetti, N. Paggi, A. Smith, Howard A. Tosti, G. TI OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. IV. RESULTS OF THE 2014 FOLLOW-UP CAMPAIGN SO ASTRONOMICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; galaxies: active; radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BL LACERTAE OBJECTS; ALL-SKY SURVEY; FERMI UNASSOCIATED SOURCES; SOURCE CATALOG; RADIO; COUNTERPARTS; SAMPLE; I. AB The extragalactic gamma-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified gamma-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate gamma-ray blazar candidates selected according to different procedures. The main goals of our campaign are: (1) to confirm the nature of these candidates, and (2) whenever possible, determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the northern hemisphere with Kitt Peak National Observatory and in the southern hemisphere with the Southern Astrophysical Research telescopes. We also report three sources observed with the Magellan and Palomar telescopes. Our selection of blazar-like sources that could be potential counterparts of UGSs is based on their peculiar infrared colors and on their combination with radio observations both at high and low frequencies (i.e., above and below similar to 1 GHz) in publicly available large radio surveys. We present the optical spectra of 27 objects. We confirm the blazar-like nature of nine sources that appear to be potential low-energy counterparts of UGSs. Then we present new spectroscopic observations of 10 active galaxies of uncertain type associated with Fermi sources, classifying all of them as blazars. In addition, we present the spectra for five known gamma-ray blazars with uncertain redshift estimates and three BL Lac candidates that were observed during our campaign. We also report the case for WISE J173052.85-035247.2, candidate counterpart of the source 2FGL J1730.6-0353, which has no radio counterpart in the major radio surveys. We confirm that our selection of gamma-ray blazars candidates can successfully indentify low-energy counterparts to Fermi unassociated sources and allow us to discover new blazars. C1 [Ricci, F.] Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. [Ricci, F.; D'Abrusco, R.; Milisavljevic, D.; Paggi, A.; Smith, Howard A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Massaro, F.] Univ Turin, Dipartmento Fis, I-10125 Turin, Italy. [Massaro, F.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Landoni, M.] Osservatorio Astronomico Brera, INAF, I-23807 Merate, Italy. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Masetti, N.] Ist Astrofis Spaziale & Fis Cosm Bologna, INAF, I-40129 Bologna, Italy. [Tosti, G.] Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. RP Ricci, F (reprint author), Univ Rome Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy. EM riccif@fis.uniroma3.it RI D'Abrusco, Raffaele/L-2767-2016; Massaro, Francesco/L-9102-2016; Paggi, Alessandro/C-1219-2017; OI D'Abrusco, Raffaele/0000-0003-3073-0605; Massaro, Francesco/0000-0002-1704-9850; Paggi, Alessandro/0000-0002-5646-2410; Ricci, Federica/0000-0001-5742-5980 FU NASA [NNX12AO97G, NNX13AP20G]; MIUR [PRIN 2010-2011, INAF-PRIN 2011]; NASA/JPL grant RSAs [1369566, 1369556, 1369565]; ASI/INAF [I/005/12/0]; National Science Foundation; Australian Research Council; Science Foundation for Physics within the University of Sydney; NASA; NSF FX We are grateful to. D. Hammer and S. Points for their help scheduling, preparing, and performing the KPNO and the SOAR observations, respectively. We are grateful to F. La Franca for the fruitful discussions that significantly improved the paper. This investigation is supported by the NASA grants NNX12AO97G and NNX13AP20G. F. Ricci acknowledges the grants MIUR PRIN 2010-2011 and INAF-PRIN 2011. H. A. Smith acknowledges partial support from NASA/JPL grant RSAs 1369566, 1369556, and 1369565. The work by G. Tosti is supported by the ASI/INAF contract I/005/12/0. Part of this work is based on archival data, software or online services provided by the ASI Science Data Center. This research has made use of data obtained from the high-energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA's Goddard Space Flight Center; the SIMBAD database operated at CDS, Strasbourg, France; the NASA/IPAC Extragalactic Database (NED) operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA. Part of this work is based on the NVSS (NRAO VLA Sky Survey): the National Radio Astronomy Observatory is operated by Associated Universities, Inc., under contract with the National Science Foundation and on the VLA low-frequency Sky Survey (VLSS). The Molonglo Observatory site manager, D. Campbell-Wilson, and the staff, J. Webb, M. White and J. Barry, are responsible for the smooth operation of Molonglo Observatory Synthesis Telescope (MOST) and the day-to-day observing programme of SUMSS. The SUMSS survey is dedicated to M. Large whose expertise and vision made the project possible. The MOST is operated by the School of Physics with the support of the Australian Research Council and the Science Foundation for Physics within the University of Sydney. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by NASA. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and NSF. This research has made use of the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station. 15 Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, the U.S. Department of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions.; r The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the JointInstitute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-PlanckInstitute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. The WENSS project was a collaboration between the Netherlands Foundation for Research in Astronomy and the Leiden Observatory. We acknowledge the WENSS team consisted of G. de Bruyn, Y. Tang, R. Rengelink, G. Miley, H. Rottgering, M. Bremer, M. Bremer, W. Brouw, E. Raimond and D. Fullagar for the extensive work aimed at producing the WENSS catalog. TOPCAT16 (Taylor 2005) for the preparation and manipulation of the tabular data and the images. The Aladin Java applet17 was used to create the finding charts reported in this paper (Bonnarel et al. 2000). It can be started from the CDS (Strasbourg, France), from the CFA (Harvard, USA), from the ADAC (Tokyo, Japan), from the IUCAA (Pune, India), from the UKADC (Cambridge, UK), or from the CADC (Victoria, Canada). NR 62 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2015 VL 149 IS 5 AR 160 DI 10.1088/0004-6256/149/5/160 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH5HC UT WOS:000354065200011 ER PT J AU McGinnis, PT Alencar, SHP Guimaraes, MM Sousa, AP Stauffer, J Bouvier, J Rebull, L Fonseca, NNJ Venuti, L Hillenbrand, L Cody, AM Teixeira, PS Aigrain, S Favata, F Furesz, G Vrba, FJ Flaccomio, E Turner, NJ Gameiro, JF Dougados, C Herbst, W Morales-Calderon, M Micela, G AF McGinnis, P. T. Alencar, S. H. P. Guimaraes, M. M. Sousa, A. P. Stauffer, J. Bouvier, J. Rebull, L. Fonseca, N. N. J. Venuti, L. Hillenbrand, L. Cody, A. M. Teixeira, P. S. Aigrain, S. Favata, F. Furesz, G. Vrba, F. J. Flaccomio, E. Turner, N. J. Gameiro, J. F. Dougados, C. Herbst, W. Morales-Calderon, M. Micela, G. TI CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion; accretion disks; stars: pre-main sequence; techniques: photometric; techniques: spectroscopic ID YOUNG STELLAR OBJECTS; ALPHA LINE EMISSION; LOW-MASS STARS; MAGNETOSPHERIC ACCRETION; MHD SIMULATIONS; SPITZER OBSERVATIONS; CIRCUMSTELLAR DISKS; PROTOSTELLAR DISKS; MAGNETIC TOPOLOGY; LIGHT CURVES AB Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims. The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods. In order to understand the mechanism causing these stars' photometric behavior, we investigate veiling variability in their spectra and u - r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results. AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions. The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M-circle dot less than or similar to M less than or similar to 2.0 M-circle dot. Assuming random inclinations, we estimate that nearly all systems in this mass range likely possess an inner disk warp. We attribute this to a possible change in magnetic field configurations among stars of lower mass. C1 [McGinnis, P. T.; Alencar, S. H. P.; Sousa, A. P.; Fonseca, N. N. J.] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30270901 Belo Horizonte, MG, Brazil. [Guimaraes, M. M.] UFSJ, Dept Fis & Mat, BR-36420000 Ouro Branco, MG, Brazil. [Stauffer, J.; Rebull, L.; Cody, A. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Bouvier, J.; Fonseca, N. N. J.; Venuti, L.; Dougados, C.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bouvier, J.] CNRS, IPAG, F-38000 Grenoble, France. [Hillenbrand, L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Teixeira, P. S.] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria. [Aigrain, S.] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Favata, F.] European Space Agcy, F-75738 Paris 15, France. [Furesz, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Vrba, F. J.] US Naval Observ, Flagstaff Stn, Flagstaff, AZ 86001 USA. [Flaccomio, E.] Observ Astron Palermo, INAF, I-90134 Palermo, Italy. [Turner, N. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gameiro, J. F.] Univ Porto, Inst Astrofis & Ciencias Espaciais, P-4150762 Oporto, Portugal. [Gameiro, J. F.] Univ Porto, Fac Ciencias, P-4150762 Oporto, Portugal. [Herbst, W.] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Morales-Calderon, M.] CSIC, INTA, Dept Astrofis, Ctr Astrobiol, Madrid 28691, Spain. RP McGinnis, PT (reprint author), Univ Fed Minas Gerais, ICEx, Dept Fis, Av Antonio Carlos 6627, BR-30270901 Belo Horizonte, MG, Brazil. EM pauline@fisica.ufmg.br RI Gameiro, Jorge/M-5057-2013; McGinnis, Pauline/F-6490-2015; Teixeira, Paula Stella/O-2289-2013; Guimaraes, Marcelo/H-5897-2012; Morales-Calderon, Maria/C-8384-2017; OI Gameiro, Jorge/0000-0002-1970-7001; McGinnis, Pauline/0000-0001-7476-7253; Teixeira, Paula Stella/0000-0002-3665-5784; Guimaraes, Marcelo/0000-0002-0517-4507; Morales-Calderon, Maria/0000-0001-9526-9499; Micela, Giuseppina/0000-0002-9900-4751; Flaccomio, Ettore/0000-0002-3638-5788; Rebull, Luisa/0000-0001-6381-515X FU NASA; CAPES; CNPq; FAPEMIG; Cofecub; CNES; [ANR 2011 Blanc SIMI5-6 020 01] FX The authors thank the referee V. Grinin for his contribution to the discussion. This work is based on data collected by the CoRoT satellite, and in part on observations made with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. PTM, SHPA, MMG, APS and NNJF acknowledge funding support from CAPES, CNPq, FAPEMIG, and Cofecub. J.B. acknowledges funding support from Cofecub, CNES, and the grant ANR 2011 Blanc SIMI5-6 020 01. NR 64 TC 19 Z9 19 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2015 VL 577 AR A11 DI 10.1051/0004-6361/201425475 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8RT UT WOS:000353579600011 ER PT J AU Rauch, T Werner, K Quinet, P Kruk, JW AF Rauch, T. Werner, K. Quinet, P. Kruk, J. W. TI Stellar laboratories IV. New Ga IV, Ga V, and Ga VI oscillator strengths and the gallium abundance in the hot white dwarfs G191-B2B and RE0503-289 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE atomic data; line: identification; stars: abundances; stars: individual: G191-B2B; stars: individual: RE 0503-289; virtual observatory tools ID SPECTRAL-ANALYSIS; RE 0503-289; GE VI; ZN V; VALIDATION AB Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These atmospheres are strongly dependent on the reliability of the atomic data that are used to calculate them. Aims. Reliable Ga IV-VI oscillator strengths are used to identify Ga lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ga abundances. Methods. We newly calculated Ga IV-VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for analyzing of Ga lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results. We unambiguously detected 20 isolated and 6 blended (with lines of other species) Ga V lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The identification of Ga IV and Ga VI lines is uncertain because they are weak and partly blended by other lines. The determined Ga abundance is 3.5 +/- 0.5 x 10(-5) (mass fraction, about 625 times the solar value). The Ga IV/Ga V ionization equilibrium, which is a very sensitive indicator for the effective temperature, is well reproduced in RE 0503-289. We identified the strongest Ga IV lines (at 1258.801, 1338.129 angstrom) in the HST/STIS spectrum of G191-B2B and measured a Ga abundance of 2.0 +/- 0.5 x 10(-6) (about 22 times solar). Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. The observed Ga IV-V line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed us to determine the photospheric Ga abundance in white dwarfs. C1 [Rauch, T.; Werner, K.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Quinet, P.] Univ Mons, UMONS, Astrophys & Spect, B-7000 Mons, Belgium. [Quinet, P.] Univ Liege, IPNAS, B-4000 Liege, Belgium. [Kruk, J. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rauch, T (reprint author), Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany. EM rauch@astro.uni-tuebingen.de FU German Aerospace Center (DLR) [05 OR 1402]; Belgian FRS-FNRS; NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX T.R. is supported by the German Aerospace Center (DLR, grant 05 OR 1402). Financial support from the Belgian FRS-FNRS is also acknowledged. P.Q. is research director of this organization. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 26 TC 9 Z9 9 U1 2 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2015 VL 577 AR A6 DI 10.1051/0004-6361/201425326 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8RT UT WOS:000353579600006 ER PT J AU Ursini, F Boissay, R Petrucci, PO Matt, G Cappi, M Bianchi, S Kaastra, J Harrison, F Walton, DJ di Gesu, L Costantini, E De Marco, B Kriss, GA Mehdipour, M Paltani, S Peterson, BM Ponti, G Steenbrugge, KC AF Ursini, F. Boissay, R. Petrucci, P. -O. Matt, G. Cappi, M. Bianchi, S. Kaastra, J. Harrison, F. Walton, D. J. di Gesu, L. Costantini, E. De Marco, B. Kriss, G. A. Mehdipour, M. Paltani, S. Peterson, B. M. Ponti, G. Steenbrugge, K. C. TI Anatomy of the AGN in NGC 5548 III. The high-energy view with NuSTAR and INTEGRAL SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SEYFERT-1 GALAXY NGC-5548; X-RAY-SPECTRA; XMM-NEWTON; MRK 509; MULTIWAVELENGTH CAMPAIGN; COMPTON REFLECTION; EMISSION-LINE; BEPPOSAX OBSERVATIONS; PHYSICAL CONDITIONS AB We describe the analysis of the seven broad-band X-ray continuum observations of the archetypal Seyfert 1 galaxy NGC 5548 that were obtained with XMM-Newton or Chandra, simultaneously with high-energy (>10 keV) observations with NuSTAR and INTEGRAL. These data were obtained as part of a multiwavelength campaign undertaken from the summer of 2013 till early 2014. We find evidence of a high-energy cut-off in at least one observation, which we attribute to thermal Comptonization, and a constant reflected component that is likely due to neutral material at least a few light months away from the continuum source. We confirm the presence of strong, partial covering X-ray absorption as the explanation for the sharp decrease in flux through the soft X-ray band. The obscurers appear to be variable in column density and covering fraction on time scales as short as weeks. A fit of the average spectrum over the range 0.3-400 keV with a realistic Comptonization model indicates the presence of a hot corona with a temperature of 40(-10)(+40) keV and an optical depth of 2.7(-1.2)(+0.7) if a spherical geometry is assumed. C1 [Ursini, F.; Petrucci, P. -O.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ursini, F.; Petrucci, P. -O.] CNRS, IPAG, F-38000 Grenoble, France. [Ursini, F.; Matt, G.; Bianchi, S.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Boissay, R.; Paltani, S.] Univ Geneva, Dept Astron, CH-1290 Versoix, Switzerland. [Cappi, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Kaastra, J.; di Gesu, L.; Costantini, E.; Mehdipour, M.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Harrison, F.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Walton, D. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [De Marco, B.; Ponti, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kriss, G. A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kriss, G. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Mehdipour, M.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Peterson, B. M.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Peterson, B. M.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Steenbrugge, K. C.] Univ Catolica Norte, Inst Astron, Antofagasta, Chile. [Steenbrugge, K. C.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. RP Ursini, F (reprint author), Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. EM francesco.ursini@obs.ujf-grenoble.fr RI Bianchi, Stefano/B-4804-2010; OI Bianchi, Stefano/0000-0002-4622-4240; Cappi, Massimo/0000-0001-6966-8920 FU NASA; ESA Member States; USA (NASA); French-Italian International Project of Scientific Collaboration: PICS-INAF project [181542]; CNES; Universite Franco-Italienne (Vinci Ph.D. fellowship); Italian Space Agency [ASI/INAF I/037/12/0-011/13]; NASA [13184, NAS5-26555]; US NSF [AST-1008882]; E.U. Marie Curie Intra-European fellowship [FP-PEOPLE-2012-IEF- 331095]; Fondo Fortalecimiento de la Productividad Cientifica VRIDT; ISSI in Bern; Netherlands Organization for Scientific Research; UK STFC; French CNES; CNRS/PICS; CNRS/PNHE; Swiss SNSF; Italian INAF/PICS; German Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR) [FKZ 50 OR 1408] FX We are grateful to the anonymous referee for his/her helpful comments, which have improved the manuscript. This work is based on observations obtained with: the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory and funded by NASA; INTEGRAL, an ESA project with instrument and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland and with the participation of Russia and the USA; XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). The data used in this research are stored in the public archives of the international space observatories involved. This research has made use of data, software and/or web tools obtained from NASA's High Energy Astrophysics Science Archive Research Center (HEASARC), a service of Goddard Space Flight Center and the Smithsonian Astrophysical Observatory. F.U., P.O.P., G.M., and S.B. acknowledge support from the French-Italian International Project of Scientific Collaboration: PICS-INAF project number 181542. F.U., P.O.P. acknowledge support from CNES. F.U. acknowledges support from Universite Franco-Italienne (Vinci Ph.D. fellowship). F.U., G.M. acknowledges financial support from the Italian Space Agency under grant ASI/INAF I/037/12/0-011/13. G.A.K. was supported by NASA through grants for HST program number 13184 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. B.M.P. acknowledges support from the US NSF through grant AST-1008882. G.P. acknowledges support via an E.U. Marie Curie Intra-European fellowship under contract no. FP-PEOPLE-2012-IEF- 331095. K.C.S. acknowledges financial support from the Fondo Fortalecimiento de la Productividad Cientifica VRIDT 2013. We acknowledge support by ISSI in Bern; The Netherlands Organization for Scientific Research; the UK STFC; the French CNES, CNRS/PICS and CNRS/PNHE; the Swiss SNSF; the Italian INAF/PICS; the German Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft- und Raumfahrt (BMWI/DLR, FKZ 50 OR 1408); we acknowledge support from the Italian Space Agency under grants ASI-INAF I/037/12/P1 and ASI/INAF NuSTAR I/037/12/0. NR 54 TC 12 Z9 12 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2015 VL 577 AR A38 DI 10.1051/0004-6361/201425401 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8RT UT WOS:000353579600038 ER PT J AU Yates, EL Iraci, LT Austerberry, D Pierce, RB Roby, MC Tadic, JM Loewenstein, M Gore, W AF Yates, Emma L. Iraci, Laura T. Austerberry, David Pierce, R. Bradley Roby, Matthew C. Tadic, Jovan M. Loewenstein, Max Gore, Warren TI Characterizing the impacts of vertical transport and photochemical ozone production on an exceedance area SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Tropospheric ozone; Air quality; San Joaquin Valley ID UNITED-STATES; SURFACE OZONE; CALIFORNIA OZONE; NORTHERN MIDLATITUDES; TROPOSPHERIC OZONE; BACKGROUND OZONE; GLOBAL-MODEL; AIR-QUALITY; EMISSIONS; AMERICA AB Offshore and inland vertical profiles of ozone (O-3) were measured from an aircraft during 16 flights from January 2012 to January 2013 over the northern San Joaquin Valley (SJV) and over the Pacific Ocean. Analysis of in situ measurements presents an assessment of the seasonality and magnitude of net O-3 production and transport within the lower troposphere above the SJV. During the high O-3 season (May -October), the Dobson Unit sum of O-3 in the 0-2 km above sea level (km.a.s.l.) layer above the SJV exceeds that above the offshore profile by up to 20.5%, implying net 03 production over the SJV or vertical transport from above. During extreme events (e.g. Stratosphere-to-troposphere transport) vertical features (areas of enhanced or depleted O-3 or water vapor) are observed in the offshore and SJV profiles at different altitudes, demonstrating the scale of vertical mixing during transport. Correlation analysis between offshore O-3 profiles and O-3 surface sites in the SJV lends further support the hypothesis of vertical mixing. Correlation analysis indicates that O-3 mixing ratios at surface sites in the northern and middle SJV show significant correlations to the 1.5-2 km.a.s.l. offshore altitude range. Southern SJV O-3 surface sites show a shift towards maximum correlations at increased time-offsets, and O-3 surface sites at elevated altitudes show significant correlations with higher offshore altitudes (2.5-4 km.a.s.l.). (C) 2014 Elsevier Ltd. All rights reserved. C1 [Yates, Emma L.; Iraci, Laura T.; Austerberry, David; Roby, Matthew C.; Tadic, Jovan M.; Loewenstein, Max; Gore, Warren] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. [Pierce, R. Bradley] NOAA, NESDIS, Adv Satellite Prod Branch, Madison, WI 53706 USA. [Roby, Matthew C.] San Jose State Univ, Dept Meteorol, San Jose, CA 95192 USA. RP Yates, EL (reprint author), NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. EM emma.l.yates@nasa.gov RI Pierce, Robert Bradley/F-5609-2010; Tadic, Jovan/P-3677-2016 OI Pierce, Robert Bradley/0000-0002-2767-1643; FU H211 L.L.C.; San Jose State University Research Foundation; Bay Area Environmental Research Institute; Ames Research Center Director's Funds FX The authors gratefully recognize the support and partnership of H211 L.L.C., with particular thanks to K. Ambrose, R. Simone, B. Quiambao, J. Lee and R. Fisher. Funding was provided by the San Jose State University Research Foundation (E.Y.) and the Bay Area Environmental Research Institute (M.R.). Funding for instrumentation and aircraft integration is acknowledged from Ames Research Center Director's Funds. Technical contributions from Z. Young, E. Quigley, R. Walker, and A. Trias made this project possible. Helpful suggestions from two anonymous reviewers are appreciated. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision. NR 31 TC 3 Z9 3 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2015 VL 109 BP 342 EP 350 DI 10.1016/j.atmosenv.2014.09.002 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CH6MF UT WOS:000354150000036 ER PT J AU Schmidt, GA Sherwood, S AF Schmidt, Gavin A. Sherwood, Steven TI A practical philosophy of complex climate modelling SO EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE LA English DT Article DE Climate models; Complex simulation; Model skill ID CMIP5; PROJECTIONS; PREDICTIONS; OCEAN; CONFIRMATION; UNCERTAINTY; SENSITIVITY; GENERATION; ENSEMBLE; SCIENCE AB We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP). We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work. C1 [Schmidt, Gavin A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Sherwood, Steven] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia. RP Schmidt, GA (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM gavin.a.schmidt@nasa.gov; s.sherwood@unsw.edu.au RI Schmidt, Gavin/D-4427-2012; Sherwood, Steven/B-5673-2008 OI Schmidt, Gavin/0000-0002-2258-0486; Sherwood, Steven/0000-0001-7420-8216 NR 82 TC 2 Z9 2 U1 5 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1879-4912 EI 1879-4920 J9 EUR J PHILOS SCI JI Eur. J. Philos. Sci. PD MAY PY 2015 VL 5 IS 2 BP 149 EP 169 DI 10.1007/s13194-014-0102-9 PG 21 WC History & Philosophy Of Science SC History & Philosophy of Science GA CH9XY UT WOS:000354391200002 ER PT J AU Finch, TK AF Finch, Tehani K. TI Coordinate families for the Schwarzschild geometry based on radial timelike geodesics SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article DE Schwarzschild geometry; Painleve-Gullstrand coordinates; Spacetime slicing; Black hole volume ID SPACETIMES AB We explore the connections between various coordinate systems associated with observers moving inwardly along radial geodesics in the Schwarzschild geometry. Painleve-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from infinity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at infinity with non-zero initial inward velocity; Gautreau-Hoffmann time coordinates are adapted to observers dropped from rest from a finite distance from the black hole horizon. We construct from these an LMP family and a proper-time family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lemaitre coordinates as well. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Finch, TK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM tehani.k.finch@nasa.gov FU Howard University Department of Physics and Astronomy; NASA Postdoctoral Fellowship through the Oak Ridge Associated Universities FX The author gratefully acknowledges fruitful correspondence with Brandon DiNunno and Richard Matzner; commentary from Tristan Hubsch and Bernard Kelly; discussions with James Lindesay that introduced him to Painleve-Gullstrand coordinates; suggestions from an anonymous referee; support from the Howard University Department of Physics and Astronomy, where this work was begun; and support from a NASA Postdoctoral Fellowship through the Oak Ridge Associated Universities. NR 23 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 EI 1572-9532 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD MAY PY 2015 VL 47 IS 5 AR 56 DI 10.1007/s10714-015-1891-7 PG 25 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CH7IC UT WOS:000354208200010 ER PT J AU Chattopadhyay, G Coccetti, F Pierantoni, L Wallis, TM Mehdi, I AF Chattopadhyay, Goutam Coccetti, Fabio Pierantoni, Luca Wallis, Thomas Mitchell Mehdi, Imran TI SPECIAL ISSUE ON TERAHERTZ NANOMATERIALS AND APPLICATIONS SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Chattopadhyay, Goutam; Mehdi, Imran] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Coccetti, Fabio] CNRS, LAAS, F-31077 Toulouse, France. [Pierantoni, Luca] Univ Politech Marche, Dipartimento Ingn Informaz, I-60131 Ancona, Italy. [Wallis, Thomas Mitchell] NIST, Boulder, CO 80305 USA. RP Chattopadhyay, G (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. NR 4 TC 0 Z9 0 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD MAY PY 2015 VL 5 IS 3 SI SI BP 332 EP 334 DI 10.1109/TTHZ.2015.2418573 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA CH3AE UT WOS:000353897000004 ER PT J AU Hartley, TT Veillette, RJ Adams, JL Lorenzo, CF AF Hartley, Tom T. Veillette, Robert J. Adams, Jay L. Lorenzo, Carl F. TI Energy storage and loss in fractional-order circuit elements SO IET CIRCUITS DEVICES & SYSTEMS LA English DT Article AB The efficiency of a general fractional-order circuit element as an energy storage device is analysed. Simple expressions are derived for the proportions of energy that may be transferred into and then recovered from a fractional-order element by either constant-current or constant-voltage charging and discharging. For a half-order element, it is shown that the efficiency of the charging phase of the cycle is equal to the efficiency of the discharging phase. The results demonstrate the duality of the fractional capacitive and inductive elements, in that the efficiency of one under constant-current cycling is the same as the efficiency of the other under constant-voltage cycling, and vice-versa. C1 [Hartley, Tom T.; Veillette, Robert J.; Adams, Jay L.] Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA. [Lorenzo, Carl F.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Hartley, TT (reprint author), Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA. EM veillette@uakron.edu NR 14 TC 7 Z9 7 U1 2 U2 8 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-858X EI 1751-8598 J9 IET CIRC DEVICE SYST JI IET Circ. Devices Syst. PD MAY PY 2015 VL 9 IS 3 BP 227 EP 235 DI 10.1049/iet-cds.2014.0132 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CH4YV UT WOS:000354041400010 ER PT J AU Lee, YG Kim, J Ho, CH An, SI Cho, HK Mao, R Tian, BJ Wu, D Lee, JN Kalashnikova, O Choi, Y Yeh, SW AF Lee, Yun Gon Kim, Jhoon Ho, Chang-Hoi An, Soon-Il Cho, Hi-Ku Mao, Rui Tian, Baijun Wu, Dong Lee, Jae N. Kalashnikova, Olga Choi, Yunsoo Yeh, Sang-Wook TI The effects of ENSO under negative AO phase on spring dust activity over northern China: an observational investigation SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE Asian dust; dust index; Arctic Oscillation; El Nino; Southern Oscillation ID ASIAN WINTER MONSOON; TRANS-PACIFIC TRANSPORT; ARCTIC OSCILLATION; INTERANNUAL VARIABILITY; EXTRATROPICAL CIRCULATION; ATMOSPHERIC CIRCULATION; SIMULATED CLIMATOLOGY; SOUTHERN OSCILLATION; HADLEY CIRCULATION; STORM FREQUENCY AB The effects of El Nino/Southern Oscillation (ENSO) under negative Arctic Oscillation (AO) phase on the Asian dust activity are investigated for springs of the period 1961-2002. The spring dust index (DI) describing the monthly frequencies of three types of dust events (e.g. dust storm, blowing dust, and floating dust) exhibits a significant increase in the years of negative AO phase (hereafter AO-) and El Nino, compared with that in the years of AO- and La Nina. Averaged over all observation stations, the spring DI (49.7) during the El Nino/AO- years is higher by 11.4% or 29.8% than that (38.3) during the La Nina/AO- years. We suggest possible physical mechanism that the anomalous large-scale environments associated with AO- and El Nino are more effective to provide favourable conditions to enhance Asian dust activity. During the El Nino/AO- years, meridional gradients of pressure and temperature over the dust source regions are significantly enhanced by decreasing the geopotential height and warming air temperature that originated from the north and south of source regions, respectively, under the influence of AO- and El Nino. These also intensify the zonal wind shear and atmospheric baroclinicity, thereby producing enhanced cyclogenesis and dust occurrences over the major source regions. At the same time, dust transport paths with the stronger westerly winds are developed by the combined constraints of anomalous cyclone over the Siberia and the Mongolia and anomalous anticyclone over the western North Pacific, and thus strengthen dust transport to the downwind regions. C1 [Lee, Yun Gon; Kim, Jhoon; An, Soon-Il; Cho, Hi-Ku] Yonsei Univ, Dept Atmospher Sci IEAA BK21, Seoul 120749, South Korea. [Lee, Yun Gon; Ho, Chang-Hoi] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151, South Korea. [Mao, Rui] Beijing Normal Univ, State Key Lab Land Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Tian, Baijun; Wu, Dong; Lee, Jae N.; Kalashnikova, Olga] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Choi, Yunsoo] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA. [Yeh, Sang-Wook] Hanyang Univ, Dept Marine Sci & Convergent Technol, Ansan, South Korea. RP Kim, J (reprint author), Yonsei Univ, Dept Atmospher Sci, Global Environm Lab, Seoul 120749, South Korea. EM jkim2@yonsei.ac.kr RI Ho, Chang-Hoi/H-8354-2015; Tian, Baijun/A-1141-2007; mao, rui/C-3499-2013 OI Tian, Baijun/0000-0001-9369-2373; FU GEMS program of the Ministry of Environment, Korea; Eco Innovation Program of KEITI [2012000160002]; National Research Foundation of Korea (NRF) project [NRF-2012R1A1A2039649]; Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA; project 'Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate for the Past and Present of Korea Polar Research Institute' [PE14010] FX This research was supported by the GEMS program of the Ministry of Environment, Korea and the Eco Innovation Program of KEITI (2012000160002). In addition, this research was partially supported by the National Research Foundation of Korea (NRF) project (NRF-2012R1A1A2039649). BT, DW, JNL and OK's contribution was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. R. Mao was supported by project 'Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate for the Past and Present (PE14010) of Korea Polar Research Institute'. NR 55 TC 0 Z9 0 U1 3 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD MAY PY 2015 VL 35 IS 6 BP 935 EP 947 DI 10.1002/joc.4028 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CH4FE UT WOS:000353987800011 ER PT J AU Tompson, SR AF Tompson, Sara R. TI Geek Physics: Surprising Answers to the Planet's Most Interesting Questions, 2d edition SO LIBRARY JOURNAL LA English DT Book Review C1 [Tompson, Sara R.] Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. RP Tompson, SR (reprint author), Jet Prop Lab Lib, Arch & Records Sect, Pasadena, CA 91109 USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD MAY 1 PY 2015 VL 140 IS 8 BP 96 EP 97 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA CH3ND UT WOS:000353936500192 ER PT J AU Radke, CD McManamen, JP Kastengren, AL Halls, BR Meyer, TR AF Radke, Christopher D. McManamen, J. Patrick Kastengren, Alan L. Halls, Benjamin R. Meyer, Terrence R. TI Quantitative time-averaged gas and liquid distributions using x-ray fluorescence and radiography in atomizing sprays SO OPTICS LETTERS LA English DT Article ID DENSE SPRAYS; FUEL SPRAYS AB A method for quantitative measurements of gas and liquid distributions is demonstrated using simultaneous x-ray fluorescence and radiography of both phases in an atomizing coaxial spray. Synchrotron radiation at 10.1 keV from the Advanced Photon Source at Argonne National Laboratory is used for x-ray fluorescence of argon gas and two tracer elements seeded into the liquid stream. Simultaneous time-resolved x-ray radiography combined with time-averaged dual-tracer fluorescence measurements enabled corrections for reabsorption of x-ray fluorescence photons for accurate, line-of-sight averaged measurements of the distribution of the gas and liquid phases originating from the atomizing nozzle. (C) 2015 Optical Society of America C1 [Radke, Christopher D.; McManamen, J. Patrick] NASA, Johnson Space Ctr, Propuls & Power Div, Houston, TX 77058 USA. [Radke, Christopher D.; Halls, Benjamin R.; Meyer, Terrence R.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Kastengren, Alan L.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Radke, CD (reprint author), NASA, Johnson Space Ctr, Propuls & Power Div, Houston, TX 77058 USA. EM Christopher.D.Radke@NASA.gov FU Propulsion and Power Division at the NASA-Johnson Space Center; Army Research Office; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The work was sponsored by the Propulsion and Power Division at the NASA-Johnson Space Center and by the Army Research Office (Dr. Ralph Anthenien, Program Manager). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would like to express gratitude to J.C. Melcher and Robert Morehead for their technical assistance. NR 24 TC 4 Z9 4 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD MAY 1 PY 2015 VL 40 IS 9 BP 2029 EP 2032 DI 10.1364/OL.40.002029 PG 4 WC Optics SC Optics GA CH3IQ UT WOS:000353924600038 PM 25927776 ER PT J AU Newman, K Guyon, O Balasubramanian, K Belikov, R Jovanovic, N Martinache, F Wilson, D AF Newman, K. Guyon, O. Balasubramanian, K. Belikov, R. Jovanovic, N. Martinache, F. Wilson, D. TI An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID PHASE-MASK; STELLAR CORONAGRAPH; PRINCIPLE AB Developments in coronagraph technology are close to achieving the technical requirements necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. We present a new focal plane mask which operates conceptually as an opaque disk occulter, but uses a phase mask technique to improve performance and solve the "size chromaticity- problem. This achromatic focal plane mask would maximize the potential planet detection space without allowing starlight leakage to degrade the system contrast. Compared with a conventional opaque disk focal plane mask, the achromatic mask allows coronagraph operation over a broader range of wavelengths and allows the detection of exoplanets closer to their host star. We present the generalized design for the achromatic focal plane mask, implementation within the Subaru Coronagraph Extreme Adaptive Optics instrument, and laboratory results which demonstrate the size-scaling property of the mask. C1 [Newman, K.; Guyon, O.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Newman, K.; Belikov, R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guyon, O.; Jovanovic, N.; Martinache, F.] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Balasubramanian, K.; Wilson, D.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Newman, K (reprint author), Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA. EM knewman@email.arizona.edu FU National Aeronautics and Space Administration's Ames Research Center; NASA Astrophysics Research and Analysis (APRA) program at NASA's Science Mission Directorate [NNH09ZDA001N-APRA]; NASA Space Technology Research Fellowship FX This work was supported in part by the National Aeronautics and Space Administration's Ames Research Center, as well as the NASA Astrophysics Research and Analysis (APRA) program through solicitation NNH09ZDA001N-APRA at NASA's Science Mission Directorate. It was carried out at the NASA Ames Research Center, Subaru Telescope, and Stanford Nanofabrication Facility. Any opinions, findings, and conclusions or recommendations expressed in this article arc those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration. This work was also supported by a NASA Space Technology Research Fellowship. NR 15 TC 6 Z9 6 U1 2 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2015 VL 127 IS 951 BP 437 EP 444 DI 10.1086/681242 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH3FL UT WOS:000353913600003 ER PT J AU Rice, EL Oppenheimer, R Zimmerman, N Roberts, LC Hinkley, S AF Rice, Emily L. Oppenheimer, Rebecca Zimmerman, Neil Roberts, Lewis C., Jr. Hinkley, Sasha TI A New Method for Characterizing Very Low-Mass Companions with Low-Resolution Near-Infrared Spectroscopy SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID EXTRASOLAR GIANT PLANETS; YOUNG BROWN DWARFS; VERY-LOW MASS; HR 8799; T-DWARFS; EVOLUTIONARY MODELS; TELESCOPE FACILITY; STELLAR COMPANION; ULTRACOOL DWARFS; BETA-PICTORIS AB We present a new and computationally efficient method for characterizing very low-mass companions using low-resolution (R similar to 30), near-infrared (1/JH) spectra from high-contrast imaging campaigns with integral field spectrograph (IFS) units. We conduct a detailed quantitative comparison of the efficacy of this method through tests on simulated data comparable in spectral coverage and resolution to the currently operating direct-imaging systems around the world. In particular, we simulate Project 1640 data as an example of the use, accuracy, and precision of this technique. We present results from comparing simulated spectra of M. L, and T dwarfs with a large and finely sampled grid of synthetic spectra using Markov-chain Monte Carlo techniques. We determine the precision and accuracy of effective temperature and surface gravity inferred from fits to PHOENIX dusty and cond, which we find reproduce the low-resolution spectra of all objects within the adopted flux uncertainties. Uncertainties in effective temperature decrease from +/- 100-500 K for M dwarfs to as small as +/- 30 K for some L and T spectral types. Surface gravity is constrained to within 0.2-0.4 dex for mid-L through T dwarfs, but uncertainties are as large as 1.0 dex or more for M dwarfs. Results for effective temperature from low-resolution Y spectra generally match predictions from published spectral type-temperature relationships except for L T transition objects and young objects. Single-band spectra (i.e., narrower wavelength coverage) result in larger uncertainties and often discrepant results, suggesting that high-contrast IFS observing campaigns can compensate for low spectral resolution by expanding the wavelength coverage for reliable characterization of detected companions. We find that S/N similar to 10 is sufficient to characterize temperature and gravity as well as possible given the model grid. Most relevant for direct-imaging campaigns targeting young primary stars is our finding that low-resolution near-infrared spectra of known young objects, compared to field objects of the same spectral type, result in similar best-fit surface gravities but lower effective temperatures, highlighting the need for better observational and theoretical understanding of the entangled effects of temperature, gravity, and dust on near-infrared spectra in cool low-gravity atmospheres. C1 [Rice, Emily L.] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Rice, Emily L.; Oppenheimer, Rebecca] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Zimmerman, Neil] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hinkley, Sasha] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Hinkley, Sasha] Univ Exeter, Dept Phys & Astron, Exeter EX4 4QL, Devon, England. RP Rice, EL (reprint author), CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. EM emily.rice@csi.cuny.edu OI Oppenheimer, Rebecca/0000-0001-7130-7681; Zimmerman, Neil/0000-0001-5484-1516; Rice, Emily/0000-0002-3252-5886 FU American Astronomical Society's Small Research Grant Program; NASA Astrophysics Data Analysis Program (ADAP) award [11-ADAP11-0169]; National Science Foundation [1211568]; NASA Origins of the Solar System Grant [NMO7100830/102190]; National Aeronautics and Space Administration (NASA); internal Research and Technology Development funds; NASA through Sagan Fellowship Program; Cordelia Corporation [1640]; Vincent Astor Fund FX This research was supported in part by the American Astronomical Society's Small Research Grant Program, NASA Astrophysics Data Analysis Program (ADAP) award 11-ADAP11-0169, and by the National Science Foundation under Grant No. 1211568. A portion of this work was supported by NASA Origins of the Solar System Grant No. NMO7100830/102190. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA) and was funded by internal Research and Technology Development funds. In addition, part of this work was performed under a contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. The members of the Project 1640 team are also grateful for support from the Cordelia Corporation, Hilary and Ethel Lipsitz, the Vincent Astor Fund, Judy Vale, Andrew Goodwin, and an anonymous donor. This research has made use of the IRTF Spectral Library, the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. NR 80 TC 4 Z9 4 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2015 VL 127 IS 951 BP 479 EP 498 DI 10.1086/681765 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH3FL UT WOS:000353913600006 ER PT J AU Davis, JR Richard, EE Keeton, KE AF Davis, Jeffrey R. Richard, Elizabeth E. Keeton, Kathryn E. TI Open Innovation at NASA A New Business Model for Advancing Human Health and Performance Innovations SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Article DE Culture change; Business-model innovation; Open innovation; Crowdsourcing AB This paper describes a new business model for advancing NASA human health and performance innovations and demonstrates how open innovation, including the use of crowdsourcing and technology solution sourcing services, shaped its development. A 45 percent research and technology development budget reduction drove formulation of a strategic plan grounded in collaboration. We describe the strategy execution, including adoption and results of open innovation initiatives, the challenges of culture change, and the development of a knowledge management tool to educate and engage the workforce in the new strategy and promote culture change. C1 [Davis, Jeffrey R.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Davis, Jeffrey R.] Human Hlth & Performance, Houston, TX 77058 USA. [Richard, Elizabeth E.; Keeton, Kathryn E.] Wyles Sci Technol & Engn Grp, Houston, TX USA. [Richard, Elizabeth E.] NASA, Lyndon B Johnson Space Ctr, Human Hlth & Performance Directorate, Houston, TX USA. [Richard, Elizabeth E.] NASA, Human Hlth & Performance Ctr, Houston, TX USA. RP Davis, JR (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM jeffrey.r.davis@nasa.gov; erichard@wylehou.com; kathryn.keeton@nasa.gov NR 10 TC 1 Z9 1 U1 7 U2 52 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2300 CLARENDON BLVD, STE 400, ARLINGTON, VA 22201 USA SN 0895-6308 EI 1930-0166 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAY-JUN PY 2015 VL 58 IS 3 BP 52 EP 58 DI 10.5437/08956308X5803325 PG 7 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA CH3ML UT WOS:000353934700011 ER PT J AU Crusan, J AF Crusan, Jason TI Light-Touch Management with Social Media: Jason Crusan SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Editorial Material C1 NASA, Adv Explorat Syst Div, Washington, DC 20546 USA. RP Crusan, J (reprint author), NASA, Adv Explorat Syst Div, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2300 CLARENDON BLVD, STE 400, ARLINGTON, VA 22201 USA SN 0895-6308 EI 1930-0166 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAY-JUN PY 2015 VL 58 IS 3 BP 68 EP 68 DI 10.5437/08956308X5803006 PG 1 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA CH3ML UT WOS:000353934700016 ER PT J AU Buratti, BJ Hicks, MD Dalba, PA Chu, D O'Neill, A Hillier, JK Masiero, J Banholzer, S Rhoades, H AF Buratti, B. J. Hicks, M. D. Dalba, P. A. Chu, Devin O'Neill, Ariel Hillier, J. K. Masiero, J. Banholzer, Sophianna Rhoades, H. TI PHOTOMETRY OF PLUTO 2008-2014: EVIDENCE OF ONGOING SEASONAL VOLATILE TRANSPORT AND ACTIVITY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Kuiper belt objects: individual (Pluto); planets and satellites: surfaces ID ATMOSPHERE; CONSTRAINTS; LIGHTCURVE; PERIHELION AB The New Horizons. spacecraft will encounter Pluto in 2015 July. As this fast flyby will yield a picture of Pluto frozen in time, ground-based observations are key to understanding this dwarf ice planet, especially with regard to the seasonal transport of surface volatiles. This paper reports on changes in Pluto's rotational light curve as evidence for this transport. Historical observations are consistent with a stable frost pattern, but since 2002, changes began to appear in both light curves and Hubble Space Telescope. maps. Our BVR. observations at Table Mountain Observatory from 2008 to 2014 show evidence for sustained and continued albedo and color changes on Pluto. The B and V albedos are stable, but Pluto is becoming redder in color, particularly on its low-albedo side. This view is consistent with the transport of a bright volatile (nitrogen) with the uncovering of a substrate of red material such as photolyzed methane. As Buie et al. reported a B - V of 0.96 in 2002-2003, and our B - V was higher in 2008-2012, Pluto may have experienced a transient reddening in the 1999-2012 period. We also discovered an opposition supersurge in all three colors at very small solar phase angles (similar to 0.degrees 10). Explosive geysers have been observed on Triton and Mars, the two other celestial bodies with receding polar caps. Because the physical conditions existing on Pluto are similar to those on Triton, we predict that plume deposits and possibly active plumes will be found on its surface. C1 [Buratti, B. J.; Hicks, M. D.; O'Neill, Ariel; Masiero, J.; Banholzer, Sophianna; Rhoades, H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dalba, P. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Chu, Devin] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. [Hillier, J. K.] Grays Harbor Coll, Aberdeen, WA 98520 USA. RP Buratti, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bonnie.buratti@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU NASA Planetary Astronomy Program FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. We acknowledge support from the NASA Planetary Astronomy Program. NR 19 TC 2 Z9 2 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2015 VL 804 IS 1 AR L6 DI 10.1088/2041-8205/804/1/L6 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH1YK UT WOS:000353819400006 ER PT J AU Gopalswamy, N Xie, H Akiyama, S Makela, P Yashiro, S Michalek, G AF Gopalswamy, N. Xie, H. Akiyama, S. Maekelae, P. Yashiro, S. Michalek, G. TI THE PECULIAR BEHAVIOR OF HALO CORONAL MASS EJECTIONS IN SOLAR CYCLE 24 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: coronal mass ejections (CMEs); Sun: flares; sunspots AB We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by similar to 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance >= 60 degrees twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos. C1 [Gopalswamy, N.; Xie, H.; Akiyama, S.; Maekelae, P.; Yashiro, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Xie, H.; Akiyama, S.; Maekelae, P.; Yashiro, S.] Catholic Univ Amer, Washington, DC 20064 USA. [Michalek, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU NASA/LWS program; NSF [AGS-1358274]; NASA [NNX15AB77G, NNX15AB70G]; NCN [UMO-2013/09/B/ST9/00034] FX SOHO is a project of international collaboration between ESA and NASA. STEREO is a mission in NASA's Solar Terrestrial Probes program. The work of N.G., S.Y., and S.A. was supported by NASA/LWS program. P.M. was partially supported by NSF grant AGS-1358274 and NASA grant NNX15AB77G. H.X. was partially supported by NASA grant NNX15AB70G. G.M. was supported by NCN through the grant UMO-2013/09/B/ST9/00034. The authors thank the anonymous referee for helpful comments. NR 15 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2015 VL 804 IS 1 AR L23 DI 10.1088/2041-8205/804/1/L23 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH1YK UT WOS:000353819400023 ER PT J AU Mendel, JT Saglia, RP Bender, R Beifiori, A Chan, J Fossati, M Wilman, DJ Bandara, K Brammer, GB Schreiber, NMF Galametz, A Kulkarni, S Momcheva, IG Nelson, EJ van Dokkum, PG Whitaker, KE Wuyts, S AF Mendel, J. Trevor Saglia, Roberto P. Bender, Ralf Beifiori, Alessandra Chan, Jeffrey Fossati, Matteo Wilman, David J. Bandara, Kaushala Brammer, Gabriel B. Schreiber, Natascha M. Foerster Galametz, Audrey Kulkarni, Sandesh Momcheva, Ivelina G. Nelson, Erica J. van Dokkum, Pieter G. Whitaker, Katherine E. Wuyts, Stijn TI FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF UVJ-SELECTED QUIESCENT GALAXIES AT 1.5 < z < 2 FROM KMOS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: high-redshift ID ABSORPTION-LINE SPECTROSCOPY; EXTRAGALACTIC LEGACY SURVEY; STAR-FORMING GALAXIES; INITIAL MASS FUNCTION; PHOTOMETRIC CATALOGS; SIZE GROWTH; EVOLUTION; POPULATIONS; SEQUENCE; SPECTRA AB We investigate the stellar populations of 25 massive galaxies (log[ M-*/M-circle dot] >= 10.9) at 1.5 C=N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission dearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ali, A.; Sittler, E. C., Jr.; Chornay, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ali, A.; Chornay, D.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Rowe, B. R.] Univ Rennes 1, CNRS, Inst Phys Rennes Equipe Asbochim Expt, F-35042 Rennes, France. [Puzzarini, C.] Univ Bologna, Dipartimento Chim Giacomo Ciamician, I-40126 Bologna, Italy. RP Ali, A (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM ashraf.ali@nasa.gov; cristina.puzzarini@unibo.it RI PUZZARINI, CRISTINA/E-4640-2015 OI PUZZARINI, CRISTINA/0000-0002-2395-8532 FU NASA Goddard Space Flight Center by the Cassini Plasma Spectrometer (CAPS) Project through NASA Jet Propulsion Laboratory Contract [1243218]; Southwest Research Institute in San Antonio, Texas; Italian MIUR (PRIN); University of Bologna (RFO funds) FX This work was supported in part at NASA Goddard Space Flight Center by the Cassini Plasma Spectrometer (CAPS) Project through NASA Jet Propulsion Laboratory Contract 1243218 with Southwest Research Institute in San Antonio, Texas. C.P. acknowledges support by Italian MIUR (PRIN 2012: Project "STAR: Spectroscopic and computational Techniques for Astrophysical and atmospheric Research") and by the University of Bologna (RFO funds). We are grateful to both anonymous referees for a careful reading of the manuscript and of the different perspectives provided. The interested readers may treat the highlighted portion in a bulleted format in the last section of this manuscript as a footnote. NR 147 TC 4 Z9 4 U1 3 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2015 VL 109 BP 46 EP 63 DI 10.1016/j.pss.2015.01.015 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH0YY UT WOS:000353749500005 ER PT J AU Franz, HB Trainer, MG Wong, MH Mahaffy, PR Atreya, SK Manning, HLK Stern, JC AF Franz, Heather B. Trainer, Melissa G. Wong, Michael H. Mahaffy, Paul R. Atreya, Sushil K. Manning, Heidi L. K. Stern, Jennifer C. TI Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mars; Atmosphere; Isotopes; Mars Science Laboratory; Curiosity rover; Sample Analysis at Mars investigation ID PROBE AB The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is a miniature geochemical laboratory designed to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). SAM began sampling the martian atmosphere to measure its chemical and isotopic composition shortly after Curiosity landed in Mars' Gale Crater in August 2012 (Mahaffy et al., 2013). Analytical methods and constants required for atmospheric measurements with SAM's quadrupole mass spectrometer (QMS) were provided in a previous contribution (Franz et al., 2014). Review of results obtained through application of these constants to repeated analyses over a full martian year and supporting studies with laboratory instruments offer new insights into QMS performance that allow refinement of the calibration constants and critical reassessment of their estimated uncertainties. This report describes the findings of these studies, provides updated calibration constants for atmospheric analyses with the SAM QMS, and compares volume mixing ratios for the martian atmosphere retrieved with the revised constants to those initially reported (Mahaffy et al., 2013). Sufficient confidence is enabled by the extended data set to support calculation of precise abundances for CO rather than an upper limit. Reanalysis of data acquired on mission sols 45 and 77 (at solar longitudes of 175 degrees and 193 degrees, respectively) with the revised constants leads to the following average volume mixing ratios: CO2 0.957(+/- 0.016), N-2 0.0203(+/- 0.0003), Ar 0.0207(+/- 0.0002), O-2 1.73(+/- 0.06) x 10(-3), CO 749(+/- 0.026) x 10(-4). (C) 2015 Elsevier Ltd. All rights reserved. C1 [Franz, Heather B.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, UMBC, Greenbelt, MD 20771 USA. [Franz, Heather B.; Trainer, Melissa G.; Mahaffy, Paul R.; Stern, Jennifer C.] NASA, Goddard Space Flight Ctr, Planetary Environm Lab, Greenbelt, MD 20771 USA. [Wong, Michael H.; Atreya, Sushil K.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Manning, Heidi L. K.] Concordia Coll, Moorhead, MN 56562 USA. RP Franz, HB (reprint author), NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Code 699, Greenbelt, MD 20771 USA. EM heather.b.franz@nasa.gov FU NASA FX NASA provided support for the development of SAM. Data from all SAM experiments are archived in the Planetary Data System (pds.nasa.gov). The authors thank J. Fuentes and H.V. Graham for measuring the isotopic composition of SAM calibration gases used in this study and R. Becker and W. Brinckerhoff for insightful discussion. NR 13 TC 4 Z9 4 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2015 VL 109 BP 154 EP 158 DI 10.1016/j.pss.2015.02.014 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH0YY UT WOS:000353749500014 ER PT J AU Dunham, DW Farquhar, RW Loucks, M Roberts, CE Wingo, D Cowing, KL Garcia, LN Craychee, T Nickel, C Ford, A Colleluori, M Folta, DC Giorgini, JD Nace, E Spohr, JE Dove, W Mogk, N Furfaro, R Martin, WL AF Dunham, David W. Farquhar, Robert W. Loucks, Michel Roberts, Craig E. Wingo, Dennis Cowing, Keith L. Garcia, Leonard N. Craychee, Tim Nickel, Craig Ford, Anthony Colleluori, Marco Folta, David C. Giorgini, Jon D. Nace, Edward Spohr, John E. Dove, William Mogk, Nathan Furfaro, Roberto Martin, Warren L. TI The 2014 Earth return of the ISEE-3/ICE spacecraft SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 65th International Astronautical Congress (IAC) CY SEP 29-OCT 03, 2014 CL Toronto, CANADA SP Canadian Aeronaut & Space Inst, Int Astronaut Assoc DE Spinning spacecraft; Maneuver; Libration-point orbit; Gravity assist; Comet; Solar wind AB In 1978, the 3rd International Sun-Earth Explorer (ISEE-3) became the first libration-point mission, about the Sun-Earth L1 point. Four years later, a complex series of lunar swingbys and small propulsive maneuvers ejected ISEE-3 from the Earth-Moon system, to fly by a comet (Giacobini-Zinner) for the first time in 1985, as the rechristened International Cometary Explorer (ICE). In its heliocentric orbit, ISEE-3/ICE slowly drifted around the Sun to return to the Earth's vicinity in 2014. Maneuvers in 1986 targeted a 2014 August 10th lunar swingby to recapture ISEE-3 into Earth orbit In 1999, ISEE-3/ICE passed behind the Sun; after that, tracking of the spacecraft ceased and its control center at Goddard was shut down. In 2013, meetings were held to assess the viability of "re-awakening" ISEE-3. The goal was to target the 2014 lunar swingby, to recapture the spacecraft back into a halo-like Sun-Earth L1 orbit. However, special hardware for communicating with the spacecraft via NASA's Deep Space Network stations was discarded after 1999, and NASA had no funds to reconstruct the lost equipment After ISEE-3's carrier signal was detected on March 1st with the 20 m antenna at Bochum, Germany, Skycorp, Inc. decided to initiate the ISEE-3 Reboot Project, to use software-defined radio with a less costly S-band transmitter that was purchased with a successful RocketHub crowdsourcing effort. NASA granted Skycorp permission to command the spacecraft. Commanding was successfully accomplished using the 300 m radio telescope at Arecibo. New capture trajectories were computed, including trajectories that would target the August lunar swingby and use a second LW (velocity change) that could target later lunar swingbys that would allow capture into almost any desired final orbit, including orbits about either the Sun-Earth L1 or L2 points, a lunar distant retrograde orbit, or targeting a flyby of the Earth-approaching active Comet Wirtanen in 2018. A tiny spinup maneuver was performed on July 2nd, the first since 1987. A 7 m/s Delta V maneuver was attempted on July 8th, to target the August lunar swingby. But the maneuver failed; telemetry showed that only about 0.15 m/s of Delta V was accomplished, then the thrust quickly decayed. The telemetry indicated that the nitrogen pressurant was gone so hydrazine could not be forced to the thrusters. The experience showed how a spacecraft can survive 30 years of space weather. The spacecraft flew 18 thousand km from the Moon, resulting in a heliocentric orbit that will return near the Earth in 2029. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Dunham, David W.; Farquhar, Robert W.] KinetX Inc, Tempe, AZ 85284 USA. [Loucks, Michel] Space Explorat Engn, Friday Harbor, WA 98250 USA. [Roberts, Craig E.] Ai Solut Inc, Lanham, MD 20706 USA. [Wingo, Dennis; Colleluori, Marco] SkyCorp Inc, Moffett Field, CA 94035 USA. [Cowing, Keith L.] SpaceRef Interact Inc, Reston, VA 20195 USA. [Garcia, Leonard N.] Wyle Informat Syst LLC, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Craychee, Tim; Nickel, Craig] Appl Def Solut Inc, Columbia, MD 21044 USA. [Ford, Anthony] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Folta, David C.; Nace, Edward] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giorgini, Jon D.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Dove, William] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Mogk, Nathan; Furfaro, Roberto] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA. [Martin, Warren L.] Commun Consultants, La Canada Flintridge, CA 91011 USA. RP Dunham, DW (reprint author), KinetX Inc, 2050 East ASU Circle,Suite 107, Tempe, AZ 85284 USA. EM david.dunham@kinetx.com; robert.farquhar@kinetx.com; loucks@see.com; Craig.Roberts@ai-solutions.com; wingod@skycorpinc.com; kcowing@spaceref.com; leonard.n.garcia@nasa.gov; tcraychee@applieddefense.com; cnickel@applieddefense.com; aford@naic.edu; colleluorim@skycorpinc.com; david.c.folta@nasa.gov; jdg@tycho.jpl.nasa.gov; edward.m.nace@nasa.gov; ice3js@comcast.net; William.Dove@jhuapl.edu; nmogk@email.arizona.edu; robertof@email.arizona.edu; WLMartin@earthlink.net NR 10 TC 0 Z9 0 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAY-JUN PY 2015 VL 110 BP 29 EP 42 DI 10.1016/j.actaastro.2015.01.002 PG 14 WC Engineering, Aerospace SC Engineering GA CG8YC UT WOS:000353600600004 ER PT J AU Folta, DC Bosanac, N Guzzetti, D Howell, KC AF Folta, David C. Bosanac, Natasha Guzzetti, Davide Howell, Kathleen C. TI An Earth-Moon system trajectory design reference catalog SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 2nd IAA Conference on Dynamics and Control of Space Systems (DYCOSS) CY MAR 24-26, 2014 CL Rome, ITALY SP Int Acad Astronaut DE Trajectory design; Multi-body systems; Three-body problem; Libration points AB As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination. (C) 2014 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Folta, David C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47906 USA. RP Bosanac, N (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, 701 W Stadium Ave, W Lafayette, IN 47906 USA. EM david.c.folta@nasa.gov; nbosanac@purdue.edu; dguzzett@purdue.edu; howell@purdue.edu OI Howell, Kathleen/0000-0002-1298-5017 NR 19 TC 1 Z9 1 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD MAY-JUN PY 2015 VL 110 BP 341 EP 353 DI 10.1016/j.actaastro.2014.07.037 PG 13 WC Engineering, Aerospace SC Engineering GA CG8YC UT WOS:000353600600030 ER PT J AU Moores, JE Lemmon, MT Rafkin, SCR Francis, R Pla-Garcia, J Juarez, MD Bean, K Kass, D Haberle, R Newman, C Mischna, M Vasavada, A Renno, N Bell, J Calef, F Cantor, B Mcconnochie, TH Harri, AM Genzer, M Wong, M Smith, MD Martin-Torres, FJ Zorzano, MP Kemppinen, O McCullough, E AF Moores, John E. Lemmon, Mark T. Rafkin, Scot C. R. Francis, Raymond Pla-Garcia, Jorge Juarez, Manuel de la Torre Bean, Keri Kass, David Haberle, Robert Newman, Claire Mischna, Michael Vasavada, Ashwin Renno, Nilton Bell, Jim Calef, Fred Cantor, Bruce Mcconnochie, Timothy H. Harri, Ari-Matti Genzer, Maria Wong, Michael Smith, Michael D. Javier Martin-Torres, F. Zorzano, Maria-Paz Kemppinen, Osku McCullough, Emily TI Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Mars; Clouds; Atmospheric dynamics; Water cycle ID LANDER SITE; PRECIPITATION; LITHOSPHERE; SURFACE; ROVER AB We report on the first 360 sols (L-s 150 degrees to 5 degrees), representing just over half a Martian year, of atmospheric monitoring movies acquired using the NavCam imager from the Mars Science Laboratory (MSL) Rover Curiosity. Such movies reveal faint clouds that are difficult to discern in single images. The data set acquired was divided into two different classifications depending upon the orientation and intent of the observation. Up to sol 360, 73 Zenith movies and 79 Supra-Horizon movies have been acquired and time-variable features could be discerned in 25 of each. The data set from MSL is compared to similar observations made by the Surface Stereo Imager (SSI) onboard the Phoenix Lander and suggests a much drier environment at Gale Crater (4.6 degrees S) during this season than was observed in Green Valley (68.2 degrees N) as would be expected based on latitude and the global water cycle. The optical depth of the variable component of clouds seen in images with features are up to 0.047 +/- 0.009 with a granularity to the features observed which averages 3.8 degrees. MCS also observes clouds during the same period of comparable optical depth at 30 and 50 km that would suggest a cloud spacing of 2.0 to 3.3 km. Multiple motions visible in atmospheric movies support the presence of two distinct layers of clouds. At Gale Crater, these clouds are likely caused by atmospheric waves given the regular spacing of features observed in many Zenith movies and decreased spacing towards the horizon in sunset movies consistent with clouds forming at a constant elevation. Reanalysis of Phoenix data in the light of the NavCam equatorial dataset suggests that clouds may have been more frequent in the earlier portion of the Phoenix mission than was previously thought. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Moores, John E.] York Univ, CRESS, N York, ON M3J 1P3, Canada. [Lemmon, Mark T.; Bean, Keri] Texas A&M Univ, College Stn, TX 77843 USA. [Rafkin, Scot C. R.] SW Res Inst, San Antonio, TX USA. [Francis, Raymond; McCullough, Emily] Univ Western Ontario, London, ON N6A 3K7, Canada. [Pla-Garcia, Jorge; Zorzano, Maria-Paz] Ctr Astrobiol, Madrid, Spain. [Juarez, Manuel de la Torre; Kass, David; Mischna, Michael; Vasavada, Ashwin; Calef, Fred] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Haberle, Robert] Ames Res Ctr, Mountain View, CA USA. [Newman, Claire] Ashima Res Corp, Tucson, AZ USA. [Renno, Nilton; Wong, Michael] Univ Michigan, Ann Arbor, MI 48109 USA. [Bell, Jim] Arizona State Univ, Tempe, AZ 85287 USA. [Cantor, Bruce] Malin Space Sci Syst, San Diego, CA USA. [Mcconnochie, Timothy H.] GSFC U Maryland, Boston, MA USA. [Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku] Finnish Meteorol Inst, Helsinki, Finland. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Houston, TX USA. [Javier Martin-Torres, F.] CSIC UGR, Inst Andaluz Ciencias Tierra, Granada, Spain. [Javier Martin-Torres, F.] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, Kiruna, Sweden. RP Moores, JE (reprint author), York Univ, CRESS, N York, ON M3J 1P3, Canada. EM jmoores@yorku.ca; lemmon@tamu.edu; rafkin@boulder.swri.edu; Raymond.francis@cpsx.uwo.ca; jpla@cab.inta-csic.es; mtj@jpl.nasa.gov; Keri.Bean@jpl.nasa.gov; David.Kass@jpl.nasa.gov; Robert.M.Haberle@nasa.gov; Claire@ashimaresearch.com; Michael.A.Mischna@jpl.nasa.gov; Ashwin.R.Vasavada@jpl.nasa.gov; nrenno@umich.edu; Jim.Bell@asu.edu; Fred.Calef@jpl.nasa.gov; cantor@msss.com; timothy.h.mcconnochie@nasa.gov; Ari-Matti.Harri@fmi.fi; Maria.Genzer@fmi.fi; mike.wong@umich.edu; michael.d.smith@nasa.gov; javiermt@iact.ugr-csic.es; zorzanomm@cab.inta-csic.es; osku.kemppinen@fmi.fi; emccull2@uwo.ca RI Lemmon, Mark/E-9983-2010; Martin-Torres, Francisco Javier/G-6329-2015; Zorzano, Maria-Paz/C-5784-2015; Harri, Ari-Matti/C-7142-2012; Zorzano, Maria-Paz/F-2184-2015 OI Lemmon, Mark/0000-0002-4504-5136; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Zorzano, Maria-Paz/0000-0002-4492-9650; Harri, Ari-Matti/0000-0001-8541-2802; Zorzano, Maria-Paz/0000-0002-4492-9650 FU Canadian Space Agency; Spanish Ministry of Economy and Competitiveness [AYA2011-25720, AYA2012-38707] FX JEM would like to acknowledge the contributions of the Mars Science Laboratory Participating Scientist Program for access to the science team and to rover operations and of the Canadian Space Agency for providing funding for this work. JP-G, FJM-T, and M.-P.Z would like to acknowledge financial support provided by the Spanish Ministry of Economy and Competitiveness (AYA2011-25720 and AYA2012-38707). The text of this manuscript was substantially improved by the contributions of two anonymous reviewers. NR 50 TC 6 Z9 6 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD MAY 1 PY 2015 VL 55 IS 9 BP 2217 EP 2238 DI 10.1016/j.asr.2015.02.007 PG 22 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CG2AX UT WOS:000353078400005 ER PT J AU Schimel, D Pavlick, R Fisher, JB Asner, GP Saatchi, S Townsend, P Miller, C Frankenberg, C Hibbard, K Cox, P AF Schimel, David Pavlick, Ryan Fisher, Joshua B. Asner, Gregory P. Saatchi, Sassan Townsend, Philip Miller, Charles Frankenberg, Christian Hibbard, Kathy Cox, Peter TI Observing terrestrial ecosystems and the carbon cycle from space SO GLOBAL CHANGE BIOLOGY LA English DT Review DE arctic; boreal; carbon; climate feedback; diversity; fluroescence; spectroscopy; tropics ID EARTH SYSTEM MODELS; CHLOROPHYLL FLUORESCENCE; ATMOSPHERIC CO2; IMAGING SPECTROSCOPY; FOREST PRODUCTIVITY; AMAZONIAN FOREST; GLOBAL PATTERNS; GROWING-SEASON; DATA SET; CLIMATE AB Terrestrial ecosystem and carbon cycle feedbacks will significantly impact future climate, but their responses are highly uncertain. Models and tipping point analyses suggest the tropics and arctic/boreal zone carbon-climate feedbacks could be disproportionately large. In situ observations in those regions are sparse, resulting in high uncertainties in carbon fluxes and fluxes. Key parameters controlling ecosystem carbon responses, such as plant traits, are also sparsely observed in the tropics, with the most diverse biome on the planet treated as a single type in models. We analyzed the spatial distribution of in situ data for carbon fluxes, stocks and plant traits globally and also evaluated the potential of remote sensing to observe these quantities. New satellite data products go beyond indices of greenness and can address spatial sampling gaps for specific ecosystem properties and parameters. Because environmental conditions and access limit in situ observations in tropical and arctic/boreal environments, use of space-based techniques can reduce sampling bias and uncertainty about tipping point feedbacks to climate. To reliably detect change and develop the understanding of ecosystems needed for prediction, significantly, more data are required in critical regions. This need can best be met with a strategic combination of remote and in situ data, with satellite observations providing the dense sampling in space and time required to characterize the heterogeneity of ecosystem structure and function. C1 [Schimel, David; Pavlick, Ryan; Fisher, Joshua B.; Saatchi, Sassan; Miller, Charles; Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. [Asner, Gregory P.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA. [Townsend, Philip] Univ Wisconsin, Madison, WI 53706 USA. [Hibbard, Kathy] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cox, Peter] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. RP Schimel, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. EM dschimel@jpl.nasa.gov RI Cox, Peter/B-3299-2012; Townsend, Philip/B-5741-2008; Frankenberg, Christian/A-2944-2013; OI Townsend, Philip/0000-0001-7003-8774; Frankenberg, Christian/0000-0002-0546-5857; Schimel, David/0000-0003-3473-8065; Fisher, Joshua/0000-0003-4734-9085 FU National Aeronautics and Space Administration; IGBP; European Space Agency FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was under a contract with the National Aeronautics and Space Administration. This study made use of TRENDY terrestrial process model output downloaded in January 2012 (Fig. 3). We thank the TRENDY modelers: Stephen Sitch, Chris Huntingford, Ben Poulter, Anders Ahlstrom, Mark Lomas, Peter Levy, Sam Levis, Sonke Zaehle, Nicolas Viovy and Ning Zeng. We also thank Jens Kattge and the TRY database project participants for access to data and metadata on plant traits, and Bev Law and Dennis Baldocchi for comments and encouragement. This manuscript is in part an outcome of an International Geosphere Biosphere Project workshop held at Merton College, Oxford, and we thank the IGBP and the European Space Agency for their support. NR 88 TC 42 Z9 42 U1 33 U2 174 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD MAY PY 2015 VL 21 IS 5 BP 1762 EP 1776 DI 10.1111/gcb.12822 PG 15 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CG3ZX UT WOS:000353220500003 PM 25472464 ER PT J AU Kuang, D Bar-Sever, Y Haines, B AF Kuang, Da Bar-Sever, Yoaz Haines, Bruce TI Analysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters SO JOURNAL OF GEODESY LA English DT Article DE Geocenter; GPS; LEO; Reference frame; Orbital configuration AB We use a series of simulated scenarios to characterize the observability of geocenter location with GPS tracking data. We examine in particular the improvement realized when a GPS receiver in low Earth orbit (LEO) augments the ground network. Various orbital configurations for the LEO are considered and the observability of geocenter location based on GPS tracking is compared to that based on satellite laser ranging (SLR). The distance between a satellite and a ground tracking-site is the primary measurement, and Earth rotation plays important role in determining the geocenter location. Compared to SLR, which directly and unambiguously measures this distance, terrestrial GPS observations provide a weaker (relative) measurement for geocenter location determination. The estimation of GPS transmitter and receiver clock errors, which is equivalent to double differencing four simultaneous range measurements, removes much of this absolute distance information. We show that when ground GPS tracking data are augmented with precise measurements from a GPS receiver onboard a LEO satellite, the sensitivity of the data to geocenter location increases by more than a factor of two for Z-component. The geometric diversity underlying the varying baselines between the LEO and ground stations promotes improved global observability, and renders the GPS technique comparable to SLR in terms of information content for geocenter location determination. We assess a variety of LEO orbital configurations, including the proposed orbit for the geodetic reference antenna in space mission concept. The results suggest that a retrograde LEO with altitude near 3,000 km is favorable for geocenter determination. C1 [Kuang, Da; Bar-Sever, Yoaz; Haines, Bruce] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Kuang, D (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM dakuang@jpl.nasa.gov FU National Aeronautics and Space Administration FX The work described in this paper is carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Detailed review and valuable suggestions from the anonymous reviewers are very much appreciated. NR 28 TC 2 Z9 2 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD MAY PY 2015 VL 89 IS 5 BP 471 EP 481 DI 10.1007/s00190-015-0792-6 PG 11 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA CF9PX UT WOS:000352898800005 ER PT J AU Peng, TS He, JJ Xiang, YB Liu, YM Saxena, A Celaya, J Goebel, K AF Peng, Tishun He, Jingjing Xiang, Yibing Liu, Yongming Saxena, Abhinav Celaya, Jose Goebel, Kai TI Probabilistic fatigue damage prognosis of lap joint using Bayesian updating SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES LA English DT Article DE Bayesian updating; uncertainties; fatigue; lamb wave; prognosis ID WAFER ACTIVE SENSORS; PIEZOELECTRIC SENSOR/ACTUATOR NETWORK; HEALTH MONITORING-SYSTEM; TRANSDUCERS; DIAGNOSTICS; GENERATION; PLATES AB A general framework for probabilistic prognosis and uncertainty management under fatigue cyclic loading is proposed in this article. First, the general idea using the Bayesian updating in prognosis is introduced. Several sources of uncertainties are discussed and included in the Bayesian updating framework. An equivalent stress level model is discussed for the mechanism-based fatigue crack growth analysis, which serves as the deterministic model for the lap joint fatigue life prognosis. Next, an in situ lap joint fatigue test with pre-installed piezoelectric sensors is designed and performed to collect experimental data. Signal processing techniques are used to extract damage features for crack length estimation. Following this, the proposed methodology is demonstrated using the experimental data under both constant and variable amplitude loadings. Finally, detailed discussion on validation metrics of the proposed prognosis algorithm is given. Several conclusions and future work are drawn based on the proposed study. C1 [Peng, Tishun; Xiang, Yibing; Liu, Yongming] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [He, Jingjing] Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY USA. [Saxena, Abhinav; Celaya, Jose] NASA, SGT, Ames Res Ctr, Moffett Field, CA 94035 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Liu, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM yongming.liu@asu.edu FU NASA ARMD/AvSPIVHM; SSAT projects [NRANNX09AY54A] FX The research reported in this article was supported by the NASA ARMD/AvSPIVHM and SSAT projects under NRANNX09AY54A. NR 47 TC 4 Z9 4 U1 2 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1045-389X EI 1530-8138 J9 J INTEL MAT SYST STR JI J. Intell. Mater. Syst. Struct. PD MAY PY 2015 VL 26 IS 8 BP 965 EP 979 DI 10.1177/1045389X14538328 PG 15 WC Materials Science, Multidisciplinary SC Materials Science GA CG6NT UT WOS:000353419600007 ER PT J AU Balucani, N Ceccarelli, C Taquet, V AF Balucani, Nadia Ceccarelli, Cecilia Taquet, Vianney TI Formation of complex organic molecules in cold objects: the role of gas-phase reactions SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE ISM: abundances; ISM: molecules ID DENSE INTERSTELLAR CLOUDS; GRAIN SURFACE-CHEMISTRY; HOT CORE; METHYL FORMATE; COMPACT RIDGE; DESORPTION; MODELS; DECOMPOSITION; MANTLES AB While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( a parts per thousand(3) 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry. C1 [Balucani, Nadia] Univ Perugia, Dip Chim Biol & Biotecnol, I-06123 Perugia, Italy. [Balucani, Nadia; Ceccarelli, Cecilia] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Balucani, Nadia; Ceccarelli, Cecilia] CNRS, IPAG, F-38000 Grenoble, France. [Taquet, Vianney] NASA, Astrochem Lab, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Taquet, Vianney] NASA, Goddard Ctr Astrobiol, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Balucani, N (reprint author), Univ Perugia, Dip Chim Biol & Biotecnol, I-06123 Perugia, Italy. EM Cecilia.Ceccarelli@obs.ujf-grenoble.fr RI Balucani, Nadia/B-8211-2011 OI Balucani, Nadia/0000-0001-5121-5683 FU Universite Joseph Fourier; Observatoire de Grenoble; French Space Agency CNES; NASA FX NB acknowledges the financial support from the Universite Joseph Fourier and the Observatoire de Grenoble, CC from the French Space Agency CNES, VT from the NASA postdoctoral programme. We thank S.J. Klippenstein for useful discussions on radiative association reactions, and A. Jaber and C. Vastel for exchanges on their work. We also thank an anonymous referee whose comments helped to improve the article. NR 43 TC 29 Z9 29 U1 3 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2015 VL 449 IS 1 BP L16 EP L20 DI 10.1093/mnrasl/slv009 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG8KA UT WOS:000353555000004 ER PT J AU Mesnil, O Leckey, CA Ruzzene, M AF Mesnil, Olivier Leckey, Cara A. C. Ruzzene, Massimo TI Instantaneous and local wavenumber estimations for damage quantification in composites SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Article DE Guided waves; composite materials; nondestructive evaluation; structural health monitoring ID LAMB WAVES AB The continued and expanded use of composite materials in aerospace applications necessitates structural health monitoring and/or nondestructive evaluation techniques that can provide quantitative and detailed damage information for layered plate-like components (such as composite laminates). Guided wavefield methods are at the basis of a number of promising techniques for the detection and the characterization of damage in plate-like structures. Among the processing techniques that have been proposed for guided wavefield analysis, the estimation of instantaneous and local wavenumbers can lead to effective metrics that quantify the size and the depth of delaminations in composite laminates. This article reports the application of both instantaneous and local wavenumber damage quantification techniques to guided wavefield data for delaminated composite laminates. The techniques are applied to experimental data for a simple single delamination case and to simulated data for a more complex multi-ply delamination case. The two techniques are compared in terms of accuracy in damage characterization and computational demand. The proposed methodologies can be considered as steps toward a hybrid structural health monitoring/nondestructive evaluation approach for damage assessment in composites. C1 [Mesnil, Olivier; Ruzzene, Massimo] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Leckey, Cara A. C.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Ruzzene, Massimo] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Mesnil, O (reprint author), Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. EM omesnil3@gatech.edu FU NASA [NRANNH11ZEA001N-VSST1]; Georgia Institute of Technology FX This work was funded by NASA under a collaborative agreement (NRANNH11ZEA001N-VSST1) with Georgia Institute of Technology. NR 31 TC 6 Z9 6 U1 4 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 EI 1741-3168 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD MAY PY 2015 VL 14 IS 3 BP 193 EP 204 DI 10.1177/1475921714560073 PG 12 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CG3WM UT WOS:000353210300001 ER PT J AU Srivastava, PK Mehta, A Gupta, M Singh, SK Islam, T AF Srivastava, Prashant K. Mehta, Abhinav Gupta, Manika Singh, Sudhir Kumar Islam, Tanvir TI Assessing impact of climate change on Mundra mangrove forest ecosystem, Gulf of Kutch, western coast of India: a synergistic evaluation using remote sensing SO THEORETICAL AND APPLIED CLIMATOLOGY LA English DT Article ID SEA-LEVEL RISE; MAXIMUM-LIKELIHOOD CLASSIFICATION; LAND-USE CHANGE; MARINE ECOSYSTEMS; SATELLITE DATA; FUTURE; GIS; MANAGEMENT; RECONSTRUCTION; SALINITY AB Mangrove cover changes have globally raised the apprehensions as the changes influence the coastal climate as well as the marine ecosystem services. The main goals of this research are focused on the monitoring of land cover and mangrove spatial changes particularly for the Mundra forest in the western coast of Gujarat state, India, which is famous for its unique mangrove bio-diversity. The multi-temporal Indian Remote Sensing (IRS) Linear Imaging Self Scanning (LISS)-II (IRS-1B) and III (IRS 136/RESOURCESAT-1) images captured in the year 1994 and 2010 were utilized for the spatio-temporal analysis of the area. The land cover and mangrove density was estimated by a unique hybrid classification which consists of K means unsupervised following maximum likelihood classification (MLC) supervised classification-based approach. The vegetation and non-vegetation layers has been extracted and separated by unsupervised classification technique while the training-based MLC was applied on the separated vegetation and nonvegetation classes to classify them into 11 land use/land cover classes, The climatic variables of the area involves wind, temperature, dew point, precipitation, and mean sea level investigated for the period of 17 years over the site. To understand the driving factors, the anthropogenic variables were also taken into account such as historical population datasets. The overall analysis indicates a significant change in the frequency and magnitude of sea-level rise from 1994 to 2010. The analysis of the meteorological variables indicates a high pressure and changes in mangrove density during the 17 years of time, which reveals that if appropriate actions are not initiated soon, the Mundra mangroves might become the victims of climate change-induced habitat loss. After analyzing all the factors, some recommendations and suggestions are provided for effective mangrove conservation and resilience, which could be used by forest official to protect this precious ecosystem. C1 [Srivastava, Prashant K.] NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Mehta, Abhinav] Birla Inst Technol, Dept Remote Sensing & Geoinformat, Ranchi, Bihar, India. [Mehta, Abhinav] Gujarat Inst Desert Ecol, Bhuj, Gujarat, India. [Gupta, Manika] Indian Inst Technol Delhi, Dept Civil Engn, New Delhi, India. [Singh, Sudhir Kumar] Univ Allahabad, Nehru Sci Ctr, K Banerjee Ctr Atmospher & Ocean Studies, IIDS, Allahabad 211002, Uttar Pradesh, India. [Islam, Tanvir] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. RP Srivastava, PK (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. EM prashant.k.srivastava@nasa.gov OI Islam, Tanvir/0000-0003-2429-3074 NR 84 TC 2 Z9 2 U1 9 U2 53 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-798X EI 1434-4483 J9 THEOR APPL CLIMATOL JI Theor. Appl. Climatol. PD MAY PY 2015 VL 120 IS 3-4 BP 685 EP 700 DI 10.1007/s00704-014-1206-z PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG3ZZ UT WOS:000353220700023 ER PT J AU Lenas, SA Burleigh, SC Tsaoussidis, V AF Lenas, Sotirios-Angelos Burleigh, Scott C. Tsaoussidis, Vassilis TI Bundle streaming service: design, implementation and performance evaluation SO Transactions on Emerging Telecommunications Technologies LA English DT Article ID DELAY-TOLERANT; NETWORKING; INTERNET; SPACE AB We present bundle streaming service (BSS), a communication framework that allows for reliable data streaming over delay/disruptive tolerant networks. BSS improves the reception and storage of data streams through the application of sophisticated forwarding tactics and the exploitation of inherent delay/disruptive tolerant networking (DTN) architecture features. The proposed framework, which targets easy configuration and deployment, comprises two elements: a bundle forwarder and a software library. Both elements were implemented as part of the interplanetary overlay network DTN platform. Using European Space Agency's DTN testbed, we experimentally evaluate BSS performance across a wide range of network scenarios. Based on these emulation results, we discuss the associated performance trade-offs along with potential improvement opportunities and demonstrate BSS's suitability for both terrestrial and space environments. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Lenas, Sotirios-Angelos; Tsaoussidis, Vassilis] Democritus Univ Thrace, Space Internetworking Ctr, Xanthi 67100, Greece. [Burleigh, Scott C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Lenas, SA (reprint author), Democritus Univ Thrace, Space Internetworking Ctr, Xanthi 67100, Greece. EM slenas@ee.duth.gr FU European Community [264226] FX The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013/FP7-REGPOT-2010-1, SP4 Capacities, Coordination and Support Actions) under grant agreement no 264226 (project title: Space Internetworking Center-SPICE). This paper reflects only the authors' views and the community is not liable for any use that may be made of the information contained therein. Also, some of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 31 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2161-3915 J9 T EMERG TELECOMMUN T JI Trans. Emerg. Telecommun. Technol. PD MAY PY 2015 VL 26 IS 5 BP 905 EP 917 DI 10.1002/ett.2762 PG 13 WC Telecommunications SC Telecommunications GA CG6HK UT WOS:000353399700013 ER PT J AU Friedlander, DJ Georgiadis, NJ Turner, MG Orkwis, PD AF Friedlander, David J. Georgiadis, Nicholas J. Turner, Mark G. Orkwis, Paul D. TI Numerical Simulations of the University of Michigan Shock Boundary-Layer Interaction Experiments SO AIAA JOURNAL LA English DT Article ID TURBULENCE AB Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75 degree wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results showed an improvement in agreement with experimental data with key contributions by adding a laminar zone upstream of the wedge (the flow is considered transitional downstream of the nozzle throat) and the necessity of mimicking PIV particle lag for comparisons. All CFD analyses utilized the OVERFLOW solver. C1 [Friedlander, David J.; Georgiadis, Nicholas J.] NASA, Glenn Res Ctr, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. [Turner, Mark G.; Orkwis, Paul D.] Univ Cincinnati, Sch Aerosp Syst, Cincinnati, OH 45221 USA. RP Friedlander, DJ (reprint author), NASA, Glenn Res Ctr, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. EM d.j.friedlander@nasa.gov; georgiadis@nasa.gov; mark.turner@uc.edu; paul.orkwis@uc.edu FU Air Force Research Laboratory, Air Vehicle Directorate, AFRL/RB; U.S. Air Force Collaborative Center for Aeronautical Sciences; NASA Fundamental Aeronautics Program (Supersonics Project) FX The authors would like to acknowledge the support from the Air Force Research Laboratory, Air Vehicle Directorate, AFRL/RB and the interaction with the U.S. Air Force Collaborative Center for Aeronautical Sciences as well as the NASA Fundamental Aeronautics Program (Supersonics Project). Super-computing resources were provided by NASA's High End Computing Program (HECC). Also appreciated is the base grid (of which all grids used were derived from) and grid modification codes that were developed by Marshall Galbraith. NR 21 TC 0 Z9 0 U1 1 U2 14 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD MAY PY 2015 VL 53 IS 5 BP 1134 EP 1145 DI 10.2514/1.J053040 PG 12 WC Engineering, Aerospace SC Engineering GA CF5GK UT WOS:000352585200002 ER PT J AU Kunz, H Bishop, NC Spielmann, G Pistillo, M Reed, J Ograjsek, T Park, Y Mehta, SK Pierson, DL Simpson, RJ AF Kunz, Hawley Bishop, Nicolette C. Spielmann, Guillaume Pistillo, Mira Reed, Justin Ograjsek, Teja Park, Yoonjung Mehta, Satish K. Pierson, Duane L. Simpson, Richard J. TI Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise SO EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY LA English DT Article DE Innate mucosal immunity; Salivary antimicrobial proteins; Exercise intensity; Fitness; Exercise training ID INNATE MUCOSAL IMMUNITY; ALPHA-AMYLASE; IMMUNOGLOBULIN-A; INFECTION RISK; HEART-RATE; PEPTIDES; IGA; DEFENSINS; MARKERS; INTENSITY AB Salivary antimicrobial proteins (sAMPs) protect the upper respiratory tract (URTI) from invading microorganisms and have been linked with URTI infection risk in athletes. While high training volume is associated with increased URTI risk, it is not known if fitness affects the sAMP response to acute exercise. This study compared the sAMP responses to various exercising workloads of highly fit experienced cyclists with those who were less fit. Seventeen experienced cyclists (nine highly fit; eight less fit) completed three 30-min exercise trials at workloads corresponding to -5, +5 and +15 % of the individual blood lactate threshold. Saliva samples were collected pre- and post-exercise to determine the concentration and secretion of alpha-amylase, human neutrophil proteins 1-3 (HNP1-3) lactoferrin, LL-37, lysozyme, and salivary SIgA. The concentration and/or secretion of all sAMPs increased post-exercise, but only alpha-amylase was sensitive to exercise workload. Highly fit cyclists had lower baseline concentrations of alpha-amylase, HNP1-3, and lactoferrin, although secretion rates did not differ between the groups. Highly fit cyclists did, however, exhibit greater post-exercise increases in the concentration and/or secretion of a majority of measured sAMPs (percentage difference between highly fit and less fit in parentheses), including alpha-amylase concentration (+107 %) and secretion (+148 %), HNP1-3 concentration (+97 %) and secretion (+158 %), salivary SIgA concentration (+181 %), lactoferrin secretion (+209 %) and LL-37 secretion (+138 %). We show for the first time that fitness level is a major determinant of exercise-induced changes in sAMPs. This might be due to training-induced alterations in parasympathetic and sympathetic nervous system activation. C1 [Kunz, Hawley; Bishop, Nicolette C.; Spielmann, Guillaume; Pistillo, Mira; Reed, Justin; Ograjsek, Teja; Park, Yoonjung; Pierson, Duane L.; Simpson, Richard J.] Univ Houston, Dept Hlth & Human Performance, Lab Integrated Physiol, Houston, TX 77204 USA. [Bishop, Nicolette C.] Loughborough Univ Technol, Sch Sport Exercise & Hlth Sci, Loughborough LE11 3TU, Leics, England. [Mehta, Satish K.; Pierson, Duane L.] NASA Johnson Space Ctr, Div Biomed & Environm Sci, Houston, TX USA. RP Simpson, RJ (reprint author), Univ Houston, Dept Hlth & Human Performance, Lab Integrated Physiol, 3855 Holman St Rm 104 Garrison, Houston, TX 77204 USA. EM rjsimpson@uh.edu OI Klancic, Teja/0000-0002-1883-9803 FU NASA [NNX12AB48G] FX This work was supported by NASA Grant NNX12AB48G to R.J. Simpson. NR 57 TC 9 Z9 9 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1439-6319 EI 1439-6327 J9 EUR J APPL PHYSIOL JI Eur. J. Appl. Physiol. PD MAY PY 2015 VL 115 IS 5 BP 1015 EP 1027 DI 10.1007/s00421-014-3082-8 PG 13 WC Physiology; Sport Sciences SC Physiology; Sport Sciences GA CF7FL UT WOS:000352721500015 PM 25557386 ER PT J AU Zhang, B Tang, L DeCastro, J Roemer, MJ Goebel, K AF Zhang, Bin Tang, Liang DeCastro, Jonathan Roemer, Michael J. Goebel, Kai TI A Recursive Receding Horizon Planning for Unmanned Vehicles SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS LA English DT Article DE Nonuniform environment; path planning; receding horizon planning (RHP); recursive searching; unmanned robot ID MOBILE ROBOTS; GENETIC ALGORITHM; PATH; SYSTEM; LOCALIZATION; NAVIGATION; SEARCH; TREE AB This paper proposes a recursive receding horizon path planning algorithm for unmanned vehicles in nonuniform environments. In the proposed algorithm, the map is described by grids in which nodes are defined on corners of grids. The planning algorithm considers the map as four areas, namely, implementation, observation, explored, and unknown. The Implementation area is a subset of the Observation area, whereas the Explored area is the union of all the previous Observation areas. The path is planned with a receding horizon planning strategy to generate waypoints and in-between map updates. When a new map update occurs, the path is replanned within the current Observation area if necessary. If no such path exists, the search is extended to the Explored area. Paths can be planned by recursively searching available nodes inside the Explored area that can be connected to available nodes on the boundary of the Explored area. A robot platform is employed to conduct a series of experiments in a laboratory environment to verify the proposed path planning algorithm. C1 [Zhang, Bin] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Tang, Liang] Pratt & Whitney, E Hartford, CT 06118 USA. [DeCastro, Jonathan] Cornell Univ, Dept Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Roemer, Michael J.] Impact Technol LLC, Rochester, NY 14623 USA. [Goebel, Kai] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Zhang, B (reprint author), Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. EM zhangbin@cec.sc.edu; mr.tangliang@gmail.com; jdc1177@gmail.com; mike.roemer@impact-tek.com; kai.goebel@nasa.gov FU NASA [NNX09CB61C] FX This work was supported by NASA under Grant NNX09CB61C. NR 40 TC 5 Z9 5 U1 3 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0046 EI 1557-9948 J9 IEEE T IND ELECTRON JI IEEE Trans. Ind. Electron. PD MAY PY 2015 VL 62 IS 5 BP 2912 EP 2920 DI 10.1109/TIE.2014.2363632 PG 9 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA CF6ZQ UT WOS:000352706000025 ER PT J AU Lin, Z Stamnes, S Jin, Z Laszlo, I Tsay, SC Wiscombe, WJ Stamnes, K AF Lin, Z. Stamnes, S. Jin, Z. Laszlo, I. Tsay, S. -C. Wiscombe, W. J. Stamnes, K. TI Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Radiative transfer model; BRDF; Cox-Munk; Ross-Li; RPV; Single scattering correction ID ATMOSPHERIC RADIATIVE-TRANSFER; BIDIRECTIONAL REFLECTANCE; MULTIPLE-SCATTERING; HOT-SPOT; SURFACE; MODEL; ALGORITHM AB A successor version 3 of DISORT (DISORT3) is presented with important upgrades that improve the accuracy, efficiency, and stability of the algorithm. Compared with version 2 (DISORT2 released in 2000) these upgrades include (a) a redesigned BRDF computation that improves both speed and accuracy, (b) a revised treatment of the single scattering correction, and (c) additional efficiency and stability upgrades for beam sources. In DISORT3 the BRDF computation is improved in the following three ways: (i) the Fourier decomposition is prepared "off-line", thus avoiding the repeated internal computations done in DISORT2; (ii) a large enough number of terms in the Fourier expansion of the BRDF is employed to guarantee accurate values of the expansion coefficients (default is 200 instead of 50 in DISORT2); (iii) in the post-processing step the reflection of the direct attenuated beam from the lower boundary is included resulting in a more accurate single scattering correction. These improvements in the treatment of the BRDF have led to improved accuracy and a several-fold increase in speed. In addition, the stability of beam sources has been improved by removing a singularity occurring when the cosine of the incident beam angle is too close to the reciprocal of any of the eigenvalues. The efficiency for beam sources has been further improved from reducing by a factor of 2 (compared to DISORT2) the dimension of the linear system of equations that must be solved to obtain the particular solutions, and by replacing the LINPAK routines used in DISORT2 by LAPACK 3.5 in DISORT3. These beam source stability and efficiency upgrades bring enhanced stability and an additional 5-7% improvement in speed. Numerical results are provided to demonstrate and quantify the improvements in accuracy and efficiency of DISORT3 compared to DISORT2. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Lin, Z.; Stamnes, K.] Stevens Inst Technol, Dept Phys & Engineer Phys, Hoboken, NJ 07030 USA. [Stamnes, S.; Jin, Z.] NASA, Langley Res Ctr, Hampton, VA USA. [Jin, Z.] Sci Syst & Applicat, Hampton, VA USA. [Laszlo, I.] NOAA, Ctr Satellite Applicat & Res, Natl Environm Satellite Data & Informat Serv, College Pk, MD USA. [Laszlo, I.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Tsay, S. -C.; Wiscombe, W. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lin, Z (reprint author), Stevens Inst Technol, Dept Phys & Engineer Phys, Hoboken, NJ 07030 USA. EM lzhenyi@stevens.edu; snorre.a.stamnes@nasa.gov; zhonghai.jin-1@nasa.gov; Istvan.Laszlo@noaa.gov; Si-Chee.Tsay@nasa.gov; Warren.J.Wiscombe@nasa.gov; Knut.Stamnes@stevens.edu RI Laszlo, Istvan/F-5603-2010; Richards, Amber/K-8203-2015; OI Laszlo, Istvan/0000-0002-5747-9708; Lin, Zhenyi/0000-0002-0237-2727 FU National Aeronautics and Space Administration (NASA) through a grant from NASA's Remote Sensing Theory Program FX Support from the National Aeronautics and Space Administration (NASA) through a grant from NASA's Remote Sensing Theory Program to Stevens Institute of Technology is gratefully acknowledged. NR 28 TC 4 Z9 5 U1 3 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAY PY 2015 VL 157 BP 119 EP 134 DI 10.1016/j.jqsrt.2015.02.014 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CG2CV UT WOS:000353083400009 ER PT J AU Srivastava, PK Islam, T Gupta, M Petropoulos, G Dai, Q AF Srivastava, Prashant K. Islam, Tanvir Gupta, Manika Petropoulos, George Dai, Qiang TI WRF Dynamical Downscaling and Bias Correction Schemes for NCEP Estimated Hydro-Meteorological Variables SO WATER RESOURCES MANAGEMENT LA English DT Article DE Hydro-meteorological variables; Weather research and forecastingmodel; WRF downscaling; RVM, GLM, Bias correction ID NUMERICAL WEATHER PREDICTION; LAND-SURFACE TEMPERATURE; RELEVANCE VECTOR MACHINE; SMOS SOIL-MOISTURE; PRECIPITATION ESTIMATION; RAINFALL ESTIMATION; MODEL; NETWORK; SIMULATIONS; EVAPOTRANSPIRATION AB Rainfall and Reference Evapotranspiration (ETo) are the most fundamental and significant variables in hydrological modelling. However, these variables are generally not available over ungauged catchments. ETo estimation usually needs measurements of weather variables such as wind speed, air temperature, solar radiation and dew point. After the development of reanalysis global datasets such as the National Centre for Environmental Prediction (NCEP) and high performance modelling framework Weather Research and Forecasting (WRF) model, it is now possible to estimate the rainfall and ETo for any coordinates. In this study, the WRF modelling system was employed to downscale the global NCEP reanalysis datasets over the Brue catchment, England, U.K. After downscaling, two statistical bias correction schemes were used, the first was based on sophisticated computing algorithms i.e., Relevance Vector Machine (RVM), while the second was based on the more simple Generalized Linear Model (GLM). The statistical performance indices for bias correction such as %Bias, index of agreement (d), Root Mean Square Error (RMSE), and Correlation (r) indicated that the RVM model, on the whole, displayed a more accomplished bias correction of the variability of rainfall and ETo in comparison to the GLM. The study provides important information on the performance of WRF derived hydro-meteorological variables using NCEP global reanalysis datasets and statistical bias correction schemes which can be used in numerous hydro-meteorological applications. C1 [Srivastava, Prashant K.; Gupta, Manika] NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. [Srivastava, Prashant K.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Islam, Tanvir] NOAA, NESDIS Ctr Satellite Applicat & Res, Greenbelt, MD USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Petropoulos, George] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3FG, Dyfed, Wales. [Dai, Qiang] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. [Gupta, Manika] Univ Space Res Assoc, Columbia, MD USA. RP Srivastava, PK (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci, Greenbelt, MD 20771 USA. EM prashant.k.srivastava@nasa.gov RI Petropoulos, George/F-2384-2013; OI Petropoulos, George/0000-0003-1442-1423; Islam, Tanvir/0000-0003-2429-3074 FU Commonwealth Scholarship Commission, British Council, United Kingdom; Ministry of Human Resource Development, Government of India; European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO"; High Performance Computing Facilities of Wales "PREMIER-EO" projects FX The first authors would like to thank the Commonwealth Scholarship Commission, British Council, United Kingdom and Ministry of Human Resource Development, Government of India for providing the necessary support and funding for this research. The authors are also thankful to Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). The authors would like to acknowledge the British Atmospheric Data Centre, United Kingdom for providing the ground observation datasets. The authors also acknowledge the Advanced Computing Research Centre at University of Bristol for providing the access to supercomputer facility (The Blue Crystal). Dr. Petropoulos's contribution was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO" and the High Performance Computing Facilities of Wales "PREMIER-EO" projects. Authors would also like to thank Gareth Ireland for the language proof reading of the manuscript. Authors are also grateful to the anonymous reviewers for their useful criticism which helped improving the manuscript. The views expressed here are those of the authors solely and do not constitute a statement of policy, decision, or position on behalf of NOAA/NASA or the authors' affiliated institutions. NR 57 TC 9 Z9 9 U1 1 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-4741 EI 1573-1650 J9 WATER RESOUR MANAG JI Water Resour. Manag. PD MAY PY 2015 VL 29 IS 7 BP 2267 EP 2284 DI 10.1007/s11269-015-0940-z PG 18 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA CF8OZ UT WOS:000352822700011 ER PT J AU Peters-Lidard, CD Kemp, EM Matsui, T Santanello, JA Kumar, SV Jacob, JP Clune, T Tao, WK Chin, M Hou, A Case, JL Kim, D Kim, KM Lau, W Liu, YQ Shi, J Starr, D Tan, Q Tao, ZN Zaitchik, BF Zavodsky, B Zhang, SQ Zupanski, M AF Peters-Lidard, Christa D. Kemp, Eric M. Matsui, Toshihisa Santanello, Joseph A., Jr. Kumar, Sujay V. Jacob, Jossy P. Clune, Thomas Tao, Wei-Kuo Chin, Mian Hou, Arthur Case, Jonathan L. Kim, Dongchul Kim, Kyu-Myong Lau, William Liu, Yuqiong Shi, Jainn Starr, David Tan, Qian Tao, Zhining Zaitchik, Benjamin F. Zavodsky, Bradley Zhang, Sara Q. Zupanski, Milija TI Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Earth system modeling; Aerosols; Clouds; Precipitation; Land surface modeling; Satellites; High performance computing; Frameworks; Interoperability; Earth system studies ID DATA ASSIMILATION SYSTEM; WRF NU-WRF; GLOBAL-MODEL; UNITED-STATES; GOCART MODEL; CONVECTIVE SYSTEMS; INFORMATION-SYSTEM; SOIL-MOISTURE; DUST AEROSOLS; AIR-QUALITY AB With support from NASA's Modeling and Analysis Program, we have recently developed the NASA Unified-Weather Research and Forecasting model (NU-WRF). NU-WRF is an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. "Satellite-resolved" scales (roughly 1-25 km), bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the National Center for Atmospheric Research (NCAR) Advanced Research WRF (ARW) dynamical core model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the GOddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (G-SDSU), and custom boundary/initial condition preprocessors into a single software release, with source code available by agreement with NASA/GSFC. Full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local and regional water and energy cycles. Published by Elsevier Ltd. C1 [Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Div, Greenbelt, MD 20771 USA. [Kemp, Eric M.; Jacob, Jossy P.] NASA, Goddard Space Flight Ctr, SSAI, GSFC, Greenbelt, MD 20771 USA. [Matsui, Toshihisa; Liu, Yuqiong] NASA, Goddard Space Flight Ctr, ESSIC UMCP, GSFC, Greenbelt, MD 20771 USA. [Santanello, Joseph A., Jr.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, SAIC, GSFC, Greenbelt, MD 20771 USA. [Clune, Thomas; Tao, Wei-Kuo; Chin, Mian; Hou, Arthur; Kim, Kyu-Myong; Lau, William; Starr, David; Tan, Qian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Case, Jonathan L.] NASA, ENSCO Inc, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Kim, Kyu-Myong; Tao, Zhining] NASA, Goddard Space Flight Ctr, USRA, GSFC, Greenbelt, MD 20771 USA. [Shi, Jainn] Morgan State Univ, NASA, Goddard Space Flight Ctr, GSFC, Greenbelt, MD 20771 USA. [Zaitchik, Benjamin F.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Zavodsky, Bradley] NASA, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Zhang, Sara Q.] NASA, Goddard Space Flight Ctr, SAIC, GSFC, Greenbelt, MD 20771 USA. [Zupanski, Milija] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. RP Peters-Lidard, CD (reprint author), NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Div, Code 610HB, Greenbelt, MD 20771 USA. EM christa.peters@nasa.gov RI Santanello, Joseph/D-4438-2012; Kumar, Sujay/B-8142-2015; Peters-Lidard, Christa/E-1429-2012; Kim, Dongchul/H-2256-2012; Chin, Mian/J-8354-2012 OI Santanello, Joseph/0000-0002-0807-6590; Peters-Lidard, Christa/0000-0003-1255-2876; Kim, Dongchul/0000-0002-5659-1394; FU NASA's Modeling and Analysis Program [NNH08ZDA001N-MAP, NNH12ZDA001N-MAP] FX We thank two anonymous reviewers for constructive comments that helped to improve the manuscript. The development of NU-WRF has been funded by NASA's Modeling and Analysis Program (Solicitations NNH08ZDA001N-MAP and NNH12ZDA001N-MAP PI: Peters-Lidard). This paper is dedicated to Dr. Arthur Y. Hou, who died Nov. 20, 2013. Dr. Hou was the GPM Project Scientist and Co-Principal Investigator of NU-WRF project. We would also like to acknowledge the software engineering contributions of Rob Burns, Shujia Zhou, Phil Hayes, Hamid Oloso, and Jules Kouatchou. NR 80 TC 15 Z9 15 U1 4 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD MAY PY 2015 VL 67 BP 149 EP 159 DI 10.1016/j.envsoft.2015.01.007 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA CE6WI UT WOS:000351978500013 ER PT J AU Saatchi, S Mascaro, J Xu, L Keller, M Yang, Y Duffy, P Espirito-Santo, FDB Baccini, A Chambers, J Schimel, D AF Saatchi, Sassan Mascaro, Joseph Xu, Liang Keller, Michael Yang, Yan Duffy, Paul Espirito-Santo, Fernando D. B. Baccini, Alessandro Chambers, Jeffery Schimel, David TI Seeing the forest beyond the trees SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Letter DE Allometry; biomass; lidar; remote sensing; spatial modelling; tree height; tropical forests; wood density ID ABOVEGROUND LIVE BIOMASS; WOOD SPECIFIC-GRAVITY; TROPICAL FOREST; CARBON-DENSITY; PATTERNS; AMAZONIA; STOCKS; PANAMA; BASIN; LIDAR AB In a recent paper (Mitchard etal. 2014, Global Ecology and Biogeography, 23, 935-946) a new map of forest biomass based on a geostatistical model of field data for the Amazon (and surrounding forests) was presented and contrasted with two earlier maps based on remote-sensing data Saatchi etal. (2011; RS1) and Baccini etal. (2012; RS2). Mitchard etal. concluded that both the earlier remote-sensing based maps were incorrect because they did not conform to Mitchard etal. interpretation of the field-based results. In making their case, however, they misrepresented the fundamental nature of primary field and remote-sensing data and committed critical errors in their assumptions about the accuracy of research plots, the interpolation methodology and the statistical analysis. By ignoring the large uncertainty associated with ground estimates of biomass and the significant under-sampling and spatial bias of research plots, Mitchard etal. reported erroneous trends and artificial patterns of biomass over Amazonia. Because of these misrepresentations and methodological flaws, we find their critique of the satellite-derived maps to be invalid. C1 [Saatchi, Sassan; Espirito-Santo, Fernando D. B.; Schimel, David] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. [Saatchi, Sassan; Xu, Liang; Yang, Yan] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA. [Mascaro, Joseph] Amer Assoc Advancement Sci, Washington, DC 20001 USA. [Keller, Michael] US Forest Serv, USDA, Int Inst Trop Forestry, San Juan, PR USA. [Duffy, Paul] Neptune & Co Inc, Lakewood, CO 80215 USA. [Baccini, Alessandro] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Chambers, Jeffery] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. RP Saatchi, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM saatchi@jpl.nasa.gov RI Keller, Michael/A-8976-2012; Chambers, Jeffrey/J-9021-2014; Espirito-Santo, Fernando/O-4371-2014 OI Keller, Michael/0000-0002-0253-3359; Chambers, Jeffrey/0000-0003-3983-7847; Espirito-Santo, Fernando/0000-0001-7497-3639 NR 39 TC 12 Z9 12 U1 4 U2 48 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1466-822X EI 1466-8238 J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD MAY PY 2015 VL 24 IS 5 BP 606 EP 610 DI 10.1111/geb.12256 PG 5 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA CF4OY UT WOS:000352530900010 ER PT J AU Paine, N Mehling, JS Holley, J Radford, NA Johnson, G Fok, CL Sentis, L AF Paine, Nicholas Mehling, Joshua S. Holley, James Radford, Nicolaus A. Johnson, Gwendolyn Fok, Chien-Liang Sentis, Luis TI Actuator Control for the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID FLEXIBLE-JOINT ROBOTS; IMPEDANCE CONTROL; ROBONAUT; SPACE; DESIGN AB This paper discusses the actuator-level control of Valkyrie, a new humanoid robot designed by NASA's Johnson Space Center in collaboration with several external partners. Several topics pertaining to Valkyrie's series elastic actuators are presented including control architecture, controller design, and implementation in hardware. A decentralized approach is taken in controlling Valkyrie's many series elastic degrees of freedom. By conceptually decoupling actuator dynamics from robot limb dynamics, the problem of controlling a highly complex system is simplified and the controller development process is streamlined compared to other approaches. This hierarchical control abstraction is realized by leveraging disturbance observers in the robot's joint-level torque controllers. A novel analysis technique is applied to understand the ability of a disturbance observer to attenuate the effects of unmodeled dynamics. The performance of this control approach is demonstrated in two ways. First, torque tracking performance of a single Valkyrie actuator is characterized in terms of controllable torque resolution, tracking error, bandwidth, and power consumption. Second, tests are performed on Valkyrie's arm, a serial chain of actuators, to demonstrate the robot's ability to accurately track torques with the presented decentralized control approach. C1 [Paine, Nicholas] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. [Mehling, Joshua S.; Holley, James; Radford, Nicolaus A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Johnson, Gwendolyn; Fok, Chien-Liang; Sentis, Luis] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. RP Paine, N (reprint author), Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. EM npaine@utexas.edu; joshua.s.mehling@nasa.gov; james.j.holley@nasa.gov; nicolaus.a.radford@nasa.gov; gwendolynbrook@gmail.com; liangfok@utexas.edu; lsentis@austin.utexas.edu NR 37 TC 19 Z9 20 U1 6 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAY PY 2015 VL 32 IS 3 SI SI BP 378 EP 396 DI 10.1002/rob.21556 PG 19 WC Robotics SC Robotics GA CF5ZV UT WOS:000352637100005 ER PT J AU Radford, NA Strawser, P Hambuchen, K Mehling, JS Verdeyen, WK Donnan, AS Holley, J Sanchez, J Nguyen, V Bridgwater, L Berka, R Ambrose, R Markee, MM Fraser-Chanpong, NJ McQuin, C Yamokoski, JD Hart, S Guo, R Parsons, A Wightman, B Dinh, P Ames, B Blakely, C Edmondson, C Sommers, B Rea, R Tobler, C Bibby, H Howard, B Niu, L Lee, A Conover, M Truong, L Reed, R Chesney, D Platt, R Johnson, G Fok, CL Paine, N Sentis, L Cousineau, E Sinnet, R Lack, J Powell, M Morris, B Ames, A Akinyode, J AF Radford, Nicolaus A. Strawser, Philip Hambuchen, Kimberly Mehling, Joshua S. Verdeyen, William K. Donnan, A. Stuart Holley, James Sanchez, Jairo Vienny Nguyen Bridgwater, Lyndon Berka, Reginald Ambrose, Robert Markee, Mason Myles Fraser-Chanpong, N. J. McQuin, Christopher Yamokoski, John D. Hart, Stephen Guo, Raymond Parsons, Adam Wightman, Brian Dinh, Paul Ames, Barrett Blakely, Charles Edmondson, Courtney Sommers, Brett Rea, Rochelle Tobler, Chad Bibby, Heather Howard, Brice Niu, Lei Lee, Andrew Conover, Michael Lily Truong Reed, Ryan Chesney, David Platt, Robert, Jr. Johnson, Gwendolyn Fok, Chien-Liang Paine, Nicholas Sentis, Luis Cousineau, Eric Sinnet, Ryan Lack, Jordan Powell, Matthew Morris, Benjamin Ames, Aaron Akinyode, Jide TI Valkyrie: NASA's First Bipedal Humanoid Robot SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID ROBONAUT AB In December 2013, 16 teams from around the world gathered at Homestead Speedway near Miami, FL to participate in the DARPA Robotics Challenge (DRC) Trials, an aggressive robotics competition partly inspired by the aftermath of the Fukushima Daiichi reactor incident. While the focus of the DRC Trials is to advance robotics for use in austere and inhospitable environments, the objectives of the DRC are to progress the areas of supervised autonomy and mobile manipulation for everyday robotics. NASA's Johnson Space Center led a team comprised of numerous partners to develop Valkyrie, NASA's first bipedal humanoid robot. Valkyrie is a 44 degree-of-freedom, series elastic actuator-based robot that draws upon over 18 years of humanoid robotics design heritage. Valkyrie's application intent is aimed at not only responding to events like Fukushima, but also advancing human spaceflight endeavors in extraterrestrial planetary settings. This paper presents a brief system overview, detailing Valkyrie's mechatronic subsystems, followed by a summarization of the inverse kinematics-based walking algorithm employed at the Trials. Next, the software and control architectures are highlighted along with a description of the operator interface tools. Finally, some closing remarks are given about the competition, and a vision of future work is provided. C1 [Radford, Nicolaus A.; Strawser, Philip; Hambuchen, Kimberly; Mehling, Joshua S.; Verdeyen, William K.; Donnan, A. Stuart; Holley, James; Sanchez, Jairo; Vienny Nguyen; Bridgwater, Lyndon; Berka, Reginald; Ambrose, Robert; Markee, Mason Myles; Fraser-Chanpong, N. J.] NASA, Johnson Space Ctr, Washington, DC 20546 USA. [McQuin, Christopher] NASA, Jet Prop Lab, Washington, DC USA. [Platt, Robert, Jr.] Northeastern Univ, Boston, MA USA. [Johnson, Gwendolyn; Fok, Chien-Liang; Paine, Nicholas; Sentis, Luis] Univ Texas Austin, Austin, TX 78712 USA. [Cousineau, Eric; Sinnet, Ryan; Lack, Jordan; Powell, Matthew; Morris, Benjamin; Ames, Aaron] Texas A&M Univ, College Stn, TX 77843 USA. [Akinyode, Jide] Hamilton Sundstrand, Windsor Locks, CT USA. RP Verdeyen, WK (reprint author), NASA, Johnson Space Ctr, Washington, DC 20546 USA. EM william.k.verdeyen@nasa.gov FU DARPA; State of Texas; State of Texas' Emerging Technology Fund; Jacobs Engineering FX The authors would like to send a special thanks to Dr. Gill Pratt who funded and supported this work and all the staff at DARPA who helped organize and run the DRC event's successful execution. It was an amazing opportunity to be a part of this worldwide endeavor. The authors would also like to thank the following: 1) directorate and division management within NASA's Johnson Space Center and especially Dr. Michael Gazarik, Associate Administrator of the Space Technology Mission Directorate at NASA Headquarters, for supporting this work and additionally funding the development in conjunction with DARPA; 2) Laurie Rich, Deputy Director and Special Advisor on Higher Education at the State of Texas, and the State of Texas' Emerging Technology Fund, which funded the Texas universities involvement in NASA's team; and 3) Jacobs Engineering for supporting this work with their Innovation Fund and working through the many challenges of delayed government funding. NR 46 TC 14 Z9 15 U1 4 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD MAY PY 2015 VL 32 IS 3 SI SI BP 397 EP 419 DI 10.1002/rob.21560 PG 23 WC Robotics SC Robotics GA CF5ZV UT WOS:000352637100006 ER PT J AU Zheng, Y Kumar, A Niyogi, D AF Zheng, Yue Kumar, Anil Niyogi, Dev TI Impacts of land-atmosphere coupling on regional rainfall and convection SO CLIMATE DYNAMICS LA English DT Article DE Land-atmosphere interaction; Surface exchange coefficient; Surface coupling strength; Surface fluxes; Mesoscale convection; PBL ID MESOSCALE ETA-MODEL; PART I; OBSERVATIONAL EVIDENCE; MONSOON DEPRESSIONS; DATA ASSIMILATION; SURFACE FLUXES; SOIL-MOISTURE; PRECIPITATION; IHOP-2002; WRF AB By analyzing rainfall events over four landatmosphere coupling hotspot regions, the study assesses the need for adopting a dynamic coupling strength within the land surface model. The study aims to investigate the impacts of land-atmosphere coupling on mesoscale convection and rainfall over different hotspot regions. Impacts of land-atmosphere coupling are analyzed using Noah land model and Weather Research and Forecasting (WRF) model simulations over U.S. Southern Great Plains (SGP), Europe, northern India, and West Africa. The SGP stands out as a region of strong land-atmosphere coupling. While, over India and West Africa the default WRF model leads to too strong coupling effects. The results show improvements by adopting the dynamic coupling coefficient in simulating surface fluxes and resulting atmospheric state. For the four regions, the results indicate that the surface coupling coefficient does not affect the general location but could improve the intensity of the simulated precipitation. There is high uncertainty in land-atmosphere coupling and the results from this and prior studies need to be considered with caution. In particular, zones identified as coupling hotspots in climate studies and their coupling strength would likely change depending on the model formulations and coupling coefficient assigned. Results support the use of the dynamic coupling formulation for use in future studies but with a caution for use over complex terrains. Overall, these results highlight that evaluating and improving land-atmosphere coupling could potentially improve model performance across the globe. C1 [Zheng, Yue; Niyogi, Dev] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Kumar, Anil] NASA GSFC, Hydrol Sci Branch, Greenbelt, MD USA. [Kumar, Anil] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20771 USA. [Kumar, Anil] Purdue Univ, W Lafayette, IN 47907 USA. [Niyogi, Dev] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. RP Niyogi, D (reprint author), Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. EM climate@purdue.edu FU USDA/NIFA Drought Triggers Grant through Texas AM University FX This research benefited through the DOEARM/CLASIC project, NSF CAREER, and USDA/NIFA Drought Triggers Grant through Texas A&M University. NR 50 TC 1 Z9 1 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD MAY PY 2015 VL 44 IS 9-10 BP 2383 EP 2409 DI 10.1007/s00382-014-2442-8 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD9ZE UT WOS:000351459800004 ER PT J AU Daigle, MJ Roychoudhury, I Bregon, A AF Daigle, Matthew J. Roychoudhury, Indranil Bregon, Anibal TI Qualitative event-based diagnosis applied to a spacecraft electrical power distribution system SO CONTROL ENGINEERING PRACTICE LA English DT Article DE Fault diagnosis; Model-based diagnosis; Structural model decomposition; Electrical power systems; ADAPT ID FAULT-DIAGNOSIS; SUPERVISION; CONFLICTS AB Quick, robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A fault detection, isolation, and identification framework is developed for three separate diagnosis algorithms: the first using global model; the second using minimal submodels, which allows the approach to scale easily; and the third using both the global model and minimal submodels, combining the strengths of the first two. The diagnosis framework is applied to the Advanced Diagnostics and Prognostics Testbed that functionally represents spacecraft electrical power distribution systems. The practical implementation of these algorithms is described, and their diagnosis performance using real data is compared. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Daigle, Matthew J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Roychoudhury, Indranil] NASA, Ames Res Ctr, Stinger Ghaffarian Technol Inc, Moffett Field, CA 94035 USA. [Bregon, Anibal] Univ Valladolid, Dept Comp Sci, E-47011 Valladolid, Spain. RP Bregon, A (reprint author), Univ Valladolid, Dept Comp Sci, E-47011 Valladolid, Spain. EM matthew.j.daigle@nasa.gov; indranil.roychoudhury@nasa.gov; anibal@infor.uva.es FU NASA System-wide Safety and Assurance Technologies (SSAT) project; Spanish MINECO [DPI2013-45414-R] FX M. Daigle and I. Roychoudhury's work has been partially supported by the NASA System-wide Safety and Assurance Technologies (SSAT) project.; A. Bregon's funding for this work has been provided by the Spanish MINECO DPI2013-45414-R grant. NR 41 TC 2 Z9 2 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0661 EI 1873-6939 J9 CONTROL ENG PRACT JI Control Eng. Practice PD MAY PY 2015 VL 38 BP 75 EP 91 DI 10.1016/j.conengprac.2015.01.007 PG 17 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA CE4FL UT WOS:000351786400007 ER PT J AU Sandu, C Mukherjee, R AF Sandu, Corina Mukherjee, Rudranarayan TI Special Issue: Multibody Dynamics for Vehicle Systems SO JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS LA English DT Editorial Material C1 [Sandu, Corina] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. [Mukherjee, Rudranarayan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sandu, C (reprint author), Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. EM csandu@vt.edu; rudranarayan.m.mukherjee@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 1 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1555-1423 EI 1555-1415 J9 J COMPUT NONLIN DYN JI J. Comput. Nonlinear Dyn. PD MAY PY 2015 VL 10 IS 3 AR 030301 DI 10.1115/1.4029693 PG 2 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CE4AL UT WOS:000351772500001 ER PT J AU Haldane, DW Casarez, CS Karras, JT Lee, J Li, C Pullin, AO Schaler, EW Yun, D Ota, H Javey, A Fearing, RS AF Haldane, Duncan W. Casarez, Carlos S. Karras, Jaakko T. Lee, Jessica Li, Chen Pullin, Andrew O. Schaler, Ethan W. Yun, Dongwon Ota, Hiroki Javey, Ali Fearing, Ronald S. TI Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots SO JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME LA English DT Article ID DESIGN; ROBOTS AB Inspired by the exoskeletons of insects, we have developed a number of manufacturing methods for the fabrication of structures for attachment, protection, and sensing. This manufacturing paradigm is based on infrared laser machining of lamina and the bonding of layered structures. The structures have been integrated with an inexpensive palm-sized legged robot, the VelociRoACH [Haldane et al., 2013, "Animal-Inspired Design and Aerodynamic Stabilization of a Hexapedal Millirobot," IEEE/RSJ International Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10, pp. 3279-3286]. We also present a methodology to design and fabricate folded robotic mechanisms, and have released an open-source robot, the OpenRoACH, as an example implementation of these techniques. We present new composite materials which enable the fabrication of stronger, larger scale smart composite microstructures (SCM) robots. We demonstrate how thermoforming can be used to manufacture protective structures resistant to water and capable of withstanding terminal velocity falls. A simple way to manufacture traction enhancing claws is demonstrated. An electronics layer can be incorporated into the robot structure, enabling the integration of distributed sensing. We present fabrication methods for binary and analog force sensing arrays, as well as a carbon nanotube (CNT) based strain sensor which can be fabricated in place. The presented manufacturing methods take advantage of low-cost, high accuracy two-dimensional fabrication processes which will enable low-cost mass production of robots integrated with mechanical linkages, an exoskeleton, and body and limb sensing. C1 [Haldane, Duncan W.; Casarez, Carlos S.; Lee, Jessica; Pullin, Andrew O.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Karras, Jaakko T.] NASA, Robot Actuat & Sensing Grp, Jet Prop Lab, Pasadena, CA 91101 USA. [Li, Chen] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. [Li, Chen] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Schaler, Ethan W.; Yun, Dongwon; Ota, Hiroki; Javey, Ali; Fearing, Ronald S.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Haldane, DW (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM dhaldane@berkeley.edu; ronf@eecs.berkeley.edu RI Li, Chen/A-4003-2013; Javey, Ali/B-4818-2013 OI Li, Chen/0000-0001-7516-3646; FU National Science Foundation [DGE-0903711]; Graduate Research Fellowship Program [CNS-0931463]; NSF NASCENT Center; Miller Institute for Basic Research in Science of UC Berkeley; DARPA Maximum Mobility and Manipulation program; United States Army Research Laboratory under the Micro Autonomous Science and Technology Collaborative Technology Alliance FX This material is based upon work supported by the National Science Foundation under IGERT Grant No. DGE-0903711, the Graduate Research Fellowship Program, Grant No. CNS-0931463, the NSF NASCENT Center; also by the Miller Institute for Basic Research in Science of UC Berkeley, the DARPA Maximum Mobility and Manipulation program, and the United States Army Research Laboratory under the Micro Autonomous Science and Technology Collaborative Technology Alliance. NR 45 TC 3 Z9 3 U1 4 U2 26 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1942-4302 EI 1942-4310 J9 J MECH ROBOT JI J. Mech. Robot. PD MAY PY 2015 VL 7 IS 2 SI SI AR 021011 DI 10.1115/1.4029495 PG 19 WC Engineering, Mechanical; Robotics SC Engineering; Robotics GA CE2TX UT WOS:000351672900012 ER PT J AU Mishchenko, MI Dlugach, JM Chowdhary, J Zakharova, NT AF Mishchenko, Michael I. Dlugach, Janna M. Chowdhary, Jacek Zakharova, Nadezhda T. TI Polarized bidirectional reflectance of optically thick sparse particulate layers: An efficient numerically exact radiative-transfer solution SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Particulate media; Polarization; Electromagnetic scattering; Radiative transfer; Stokes parameters; Ambartsumian's nonlinear integral equation; Benchmark results ID T-MATRIX METHOD; DISCRETE-DIPOLE APPROXIMATION; INVARIANT IMBEDDING METHOD; NONSPHERICAL ICE CRYSTALS; LIGHT-SCATTERING; MULTIPLE-SCATTERING; PLANETARY-ATMOSPHERES; ABSORBING MEDIUM; ELECTROMAGNETIC SCATTERING; INHOMOGENEOUS PARTICLES AB We describe a simple yet efficient numerical algorithm for computing polarized bidirectional reflectance of an optically thick (semi-infinite), macroscopically flat layer composed of statistically isotropic and mirror symmetric random particles. The spatial distribution of the particles is assumed to be sparse, random, and statistically uniform. The 4 x 4 Stokes reflection matrix is calculated by iterating the Ambartsumian's vector nonlinear integral equation. The result is a numerically exact solution of the vector radiative transfer equation and as such fully satisfies the energy conservation law and the fundamental reciprocity relation. Since this technique bypasses the computation of the internal radiation field, it is very fast and highly accurate. The FORTRAN implementation of the technique is publicly available on the World Wide Web at http://www.giss.nasa.gov/staff/mmishchenko/brf. It can be combined with several existing computer programs providing the requisite single-scattering properties of spherical or morphologically complex particles and applied to a wide range of optical characterization problems. Benchmark results obtained with this program can be used for testing alternative solvers of the vector radiative transfer equation. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.; Chowdhary, Jacek] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dlugach, Janna M.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. [Chowdhary, Jacek] Columbia Univ, New York, NY 10025 USA. [Zakharova, Nadezhda T.] Trinnovim LLC, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM michael.i.mishchenko@nasa.gov RI Mishchenko, Michael/D-4426-2012 FU NASA ACE Project; National Academy of Sciences of Ukraine FX M.I.M. and J.C. acknowledge support from the NASA ACE Project managed by Hal Maring, Paula Bontempi, and David Starr. J.M.D. was supported by the National Academy of Sciences of Ukraine. NR 83 TC 8 Z9 8 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAY PY 2015 VL 156 BP 97 EP 108 DI 10.1016/j.jqsrt.2015.02.003 PG 12 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CE6SY UT WOS:000351969700011 ER PT J AU Greene, CM Blackhart, K Nohner, J Candelmo, A Nelson, DM AF Greene, Correigh M. Blackhart, Kristan Nohner, Joe Candelmo, Allison Nelson, David Moe TI A National Assessment of Stressors to Estuarine Fish Habitats in the Contiguous USA SO ESTUARIES AND COASTS LA English DT Article DE Estuary; Habitat assessment; River flow; Pollution; Eutrophication; Land cover ID GULF-OF-MEXICO; COASTAL EUTROPHICATION; MARINE ECOSYSTEMS; CHESAPEAKE BAY; UNITED-STATES; HUDSON RIVER; SALT MARSHES; LAND-USE; HYPOXIA; WATER AB Estuaries provide vital habitat to a wide variety of fish species, so understanding how human activities impact estuarine habitats has important implications for management and conservation of fish stocks. We used nationwide datasets on anthropogenic disturbance to perform a quantitative assessment of habitat stressors in US estuaries. Habitat stressors were characterized by four categories of indicator datasets: (1) land cover/land use, (2) alteration of river flows, (3) pollution sources, and (4) eutrophication. These datasets were combined using a multiscale hierarchical spatial framework to provide a composite stressor index for 196 estuaries throughout the contiguous USA. Investigation of indicator patterns among 13 defined USA coastal subregions revealed clear differences across the USA attributable to both natural variation as well as differences in anthropogenic activities. We compared the mean composite scores for each subregion and found the lowest stressor index scores in the Downeast Maine and the Oregon Coast subregions. Subregions with the highest stressor index scores were the Southern California Bight (due to land cover changes, river flow alteration, and pollution) and Mid-Atlantic Bight (due to land cover changes, pollution, and eutrophication). Inland-based measures of pollutants, river flow, and land use all showed strong correlations with eutrophication measured within estuaries. Our approach provides an indicator-based assessment for a larger number of estuaries than has been possible in previous assessments, and in the case of river flow, for variables which previously have not been evaluated at a broad spatial scale. The results of this assessment can be applied to help prioritize watershed and estuarine restoration and protection across the contiguous USA. C1 [Greene, Correigh M.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Blackhart, Kristan] NOAA, Natl Marine Fisheries Serv, Off Sci & Technol, Seattle, WA 98115 USA. [Nohner, Joe] Natl Marine Fisheries Serv, Off Sci & Technol, Silver Spring, MD USA. [Candelmo, Allison] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Highlands, NJ USA. [Nelson, David Moe] NOAA, NOS Ctr Coastal Monitoring & Assessment, Silver Spring, MD USA. RP Greene, CM (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. EM Correigh.Greene@noaa.gov NR 84 TC 5 Z9 5 U1 7 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD MAY PY 2015 VL 38 IS 3 BP 782 EP 799 DI 10.1007/s12237-014-9855-9 PG 18 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA CE1ZY UT WOS:000351613100006 ER PT J AU Bridges, NT Tamppari, LK AF Bridges, Nathan T. Tamppari, Leslie K. TI Dynamic Mars from long-term observations: Introduction SO ICARUS LA English DT Editorial Material C1 [Bridges, Nathan T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Tamppari, Leslie K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bridges, NT (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM nathan.bridges@jhuapl.edu; leslie.tamppari@jpl.nasa.gov RI Bridges, Nathan/D-6341-2016 NR 23 TC 2 Z9 2 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 1 EP 4 DI 10.1016/j.icarus.2015.03.001 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300001 ER PT J AU Shirley, JH McConnochie, TH Kass, DM Kleinbohl, A Schofield, JT Heavens, NG McCleese, DJ Benson, J Hinson, DP Bandfield, JL AF Shirley, James H. McConnochie, Timothy H. Kass, David M. Kleinboehl, Armin Schofield, John T. Heavens, Nicholas G. McCleese, Daniel J. Benson, Jennifer Hinson, David P. Bandfield, Joshua L. TI Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES SO ICARUS LA English DT Article DE Mars, climate; Mars, atmosphere; Tides, atmospheric; Atmospheres, structure ID THERMAL EMISSION SPECTROMETER; RADIO OCCULTATION MEASUREMENTS; GLOBAL SURVEYOR; INTERANNUAL VARIABILITY; MARTIAN ATMOSPHERE; MIDDLE ATMOSPHERE; TES; MISSION AB We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (L-s = 70-80 degrees) and latitudes (55-70 degrees N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 +/- 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 +/- 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 +/- 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70 degrees N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities are dissimilar; TES profiles exhibit colder temperatures when TES water ice opacities are greater than those observed by MCS. Our comparisons reveal a possible systematic offset of TES and MCS temperatures at the highest altitudes resolved in the TES retrievals; TES temperatures are consistently colder than the corresponding MCS temperatures at pressures <= 1 Pa (altitudes >= 58 km). We otherwise find no evidence of systematic bias between TES limb sounding and MCS retrieved atmospheric quantities between 610 Pa and 1 Pa. Inter-annual variability is noted in comparisons of latitudinal temperature gradients from 55 to 70 degrees N, in the amplitude of inversions linked with thermal tides in the middle atmosphere, and in the abundance and vertical distribution of water ice aerosols from 55 to 70 degrees N during the aphelion season. (C) 2014 Elsevier Inc. All rights reserved. C1 [Shirley, James H.; Kass, David M.; Kleinboehl, Armin; Schofield, John T.; McCleese, Daniel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McConnochie, Timothy H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Heavens, Nicholas G.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. [Benson, Jennifer] NASA, Goddard Spaceflight Ctr, Greenbelt, MD 20071 USA. [Hinson, David P.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Bandfield, Joshua L.] Space Sci Inst, Boulder, CO 80301 USA. RP Shirley, JH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM James.H.Shirley@jpl.nasa.gov OI Heavens, Nicholas/0000-0001-7654-503X NR 47 TC 2 Z9 2 U1 1 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 26 EP 49 DI 10.1016/j.icarus.2014.05.011 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300004 ER PT J AU Trokhimovskiy, A Fedorova, A Korablev, O Montmessin, F Bertaux, JL Rodin, A Smith, MD AF Trokhimovskiy, Alexander Fedorova, Anna Korablev, Oleg Montmessin, Franck Bertaux, Jean-Loup Rodin, Alexander Smith, Michael D. TI Mars' water vapor mapping by the SPICAM IR spectrometer: Five martian years of observations SO ICARUS LA English DT Article DE Mars; Spectroscopy; Atmospheres, composition ID MOLECULAR SPECTROSCOPIC DATABASE; EMISSION IMAGING-SYSTEM; ART. NO. 5115; ATMOSPHERIC OBSERVATIONS; VERTICAL-DISTRIBUTION; INFRARED OBSERVATIONS; THARSIS VOLCANOS; OPTICAL DEPTH; DUST STORM; PFS DATA AB The SPICAM IR instrument on the Mars Express mission continuously observes the water vapor in the martian atmosphere starting from 2004 in the 1.38-mu m spectral band. The water vapor column abundance is retrieved from nadir observations to characterize its spatial, seasonal and interannual variations. A reference set of SPICAM water vapor column abundances (zonally averaged) covering the time period from 2004 to 2013 (martian years 27-31) is available for a grid of 2 degrees Ls x 2 degrees latitude, along with an average reference map of water vapor abundance combining all the martian years of Mars Express observations. Compared to the previous data retrieval by Fedorova et al. (Fedorova, A., Korablev, O., Bertaux, J.L., Rodin, A., Kiselev, A., Perrier, S. [2006]. J. Geophys. Res. 111, E09S08) the new processing algorithm includes many improvements concerning the calibration and assumed parameters. A major improvement is the account for aerosol scattering based on dust and water ice cloud optical depths measured by THEMIS/Mars Odyssey (Smith, M.D. [2009]. Icarus 202, 444-452). The account for multiple scattering by aerosol particles increases the retrieved water vapor amount by similar to 10% in polar areas during summer, and up to 60-70% for large solar zenith angles. The sensitivity of the results to aerosol properties, surface albedo, solar spectrum, and water vapor vertical distribution has also been studied. The retrieved water vapor reveals nominal annual cycle with maximum abundance of about 60-70 pr. lam for the Northern summer and similar to 20 pr. mu m for the Southern summer. The annual average amount of water has been estimated to be of 10-20 pr. mu m, in agreement with other measurements. From year to year the seasonal cycle of water vapor abundance is very stable. An observed decrease during the MY 28 global dust storm cannot be fully attributed to the masking effect of dust, and indicates a real decrease of water amount near or above the surface. No evidence of diurnal variation of column water vapor amount was found, even though the 1.38-mu m measurements are sensitive to the few lowermost kilometers above the surface. (C) 2014 Elsevier Inc. All rights reserved. C1 [Trokhimovskiy, Alexander; Fedorova, Anna; Korablev, Oleg; Rodin, Alexander] RAS, Space Res Inst, Moscow 117997, Russia. [Trokhimovskiy, Alexander; Fedorova, Anna; Korablev, Oleg; Rodin, Alexander] MIPT, Dolgoprudnyi 141700, Moscow Region, Russia. [Montmessin, Franck; Bertaux, Jean-Loup] UVSQ UPMC CNRS, LATMOS, F-78280 Guyancourt, France. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Trokhimovskiy, A (reprint author), RAS, Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia. EM trokh@iki.rssi.ru RI Rodin, Alexander/L-1904-2013; OI Rodin, Alexander/0000-0002-3601-7790; Korablev, Oleg/0000-0003-1115-0656 FU CNES; Roscosmos; Russian Government grant [11.G34.31.0074]; Presidium of Russian Academy of Science [22] FX The authors thank Luca Maltagliati and Alexey Pankine for the useful remarks and suggestions that helped to improve this paper. SPICAM operations are funded by CNES and Roscosmos. A.T., A.F., A.R. and O.K. acknowledge support from the Russian Government grant to the Moscow Institute of Physics and Technology No. 11.G34.31.0074, and from the Grant of Presidium of Russian Academy of Science, Program #22. NR 73 TC 12 Z9 12 U1 5 U2 29 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 50 EP 64 DI 10.1016/j.icarus.2014.10.007 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300005 ER PT J AU Montabone, L Forget, F Millour, E Wilson, RJ Lewis, SR Cantor, B Kass, D Klembohl, A Lemmon, MT Smith, MD Wolff, MJ AF Montabone, L. Forget, F. Millour, E. Wilson, R. J. Lewis, S. R. Cantor, B. Kass, D. Klemboehl, A. Lemmon, M. T. Smith, M. D. Wolff, M. J. TI Eight-year climatology of dust optical depth on Mars SO ICARUS LA English DT Article DE Mars, atmosphere; Mars, climate; Data reduction techniques ID IMAGING-SYSTEM THEMIS; MARTIAN ATMOSPHERE; GLOBAL SURVEYOR; MGS TES; INTERANNUAL VARIABILITY; NORTHERN-HEMISPHERE; GENERAL-CIRCULATION; ASSIMILATION; SURFACE; STORMS AB We have produced a multiannual climatology of airborne dust from martian year 24-31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced spatio-temporal grid, using an iterative procedure that is weighted in space, time, and retrieval quality. The lack of observations at certain times and locations introduces missing grid points in the maps, which therefore may result in irregularly gridded (i.e. incomplete) fields. In order to evaluate the strengths and weaknesses of the resulting gridded maps, we compare with independent observations of CDOD by Pan-Cam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability, in addition to provide a basis for instrument intercomparison. Finally, we have produced regularly gridded maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modeling applications. The two datasets for the eight available martian years are publicly available and distributed with open access on the MCD website. (C) 2015 Elsevier Inc. All rights reserved. C1 [Montabone, L.; Forget, F.; Millour, E.] Univ Paris 06, Lab Meteorol Dynam, F-75252 Paris 05, France. [Montabone, L.] Univ Oxford, Dept Phys, Oxford, England. [Montabone, L.; Wolff, M. J.] Space Sci Inst, Boulder, CO 80301 USA. [Wilson, R. J.] NOAA, GFDL, Princeton, NJ 08540 USA. [Lewis, S. R.] Open Univ, Dept Phys Sci, Milton Keynes, Bucks, England. [Cantor, B.] Malin Space Sci Syst, San Diego, CA 92121 USA. [Kass, D.; Klemboehl, A.] JPL, Pasadena, CA 91109 USA. [Lemmon, M. T.] Texas A&M Univ, College Stn, TX 77843 USA. [Smith, M. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Montabone, L (reprint author), Univ Paris 06, Lab Meteorol Dynam, Tour 45-55,3eme Etage,4 Pl Jussieu, F-75252 Paris 05, France. EM lmontabone@SpaceScience.org RI Lemmon, Mark/E-9983-2010; OI Lemmon, Mark/0000-0002-4504-5136; Millour, Ehouarn/0000-0003-4808-9203; Lewis, Stephen/0000-0001-7237-6494 FU European Space Agency; French Centre National de la Recherche Scientifique (CNRS); American National Aeronautics and Space Administration (NASA) [NNX13AK02G] FX The work published in this paper was funded by contracts with the European Space Agency to develop the Mars Climate Database. LM also acknowledges funding from the French Centre National de la Recherche Scientifique (CNRS) and the American National Aeronautics and Space Administration (NASA) under grant no. NNX13AK02G issued through the Mars Data Analysis Program 2012. The authors are indebted to many people whose direct or indirect help made it possible to write this paper. A particular mention is due to Aymeric Spiga, who always believed this paper would be finished one day, and provided time and competence during long discussion sessions. LM is grateful to Mathieu Vincendon, Joachim Audouard, Tanguy Bertrand, Frank Daerden, Melinda Kahre, and Daniel Tyler Jr. for feedback on earlier versions of the dust scenario maps, and to Helen Wang for initially guiding us through the MARCI images. We are also particularly grateful to Mathieu Vincendon and another anonymous reviewer for their comments and suggestions, which greatly helped to improve the paper. Last but not the least, LM wishes to thank his wife, HeloIse, for accepting the loss of many days of vacation during the long period he worked on this paper, and his newborn daughter, Lara, for having given him a good reason to speed up the writing! NR 72 TC 24 Z9 24 U1 4 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 65 EP 95 DI 10.1016/j.icarus.2014.12.034 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300006 ER PT J AU Lemmon, MT Wolff, MJ Bell, JF Smith, MD Cantor, BA Smith, PH AF Lemmon, Mark T. Wolff, Michael J. Bell, James F., III Smith, Michael D. Cantor, Bruce A. Smith, Peter H. TI Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission SO ICARUS LA English DT Article DE Mars, atmosphere; Atmospheres, composition; Meteorology ID MARTIAN ATMOSPHERE; GLOBAL SURVEYOR; ORBITER IMAGES; PATHFINDER; CAMERA; OPACITY; STORMS; TES; SURFACES; ALBEDO AB Dust aerosol plays a fundamental role in the behavior and evolution of the martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 mu m effective radius during northern summer and a 2 mu m effective radius at the onset of a dust lifting event. The solar longitude (L-s) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near Ls = 50 degrees and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site. (C) 2014 Elsevier Inc. All rights reserved. C1 [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Wolff, Michael J.] Space Sci Inst, Boulder, CO 80301 USA. [Bell, James F., III] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cantor, Bruce A.] Malin Space Sci Syst, San Diego, CA 92191 USA. [Smith, Peter H.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. RP Lemmon, MT (reprint author), Texas A&M Univ, Dept Atmospher Sci, TAMU 3150, College Stn, TX 77843 USA. EM lemmon@tamu.edu RI Lemmon, Mark/E-9983-2010 OI Lemmon, Mark/0000-0002-4504-5136 FU NASA through the Mars Exploration Rover Project FX We thank the entire MER science and operations team, whose daily efforts have led to the existence of this data set. We thank David Kass for a helpful review of the manuscript. This work was funded by NASA through the Mars Exploration Rover Project, a portion of which was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 64 TC 27 Z9 28 U1 6 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 96 EP 111 DI 10.1016/j.icarus.2014.03.029 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300007 ER PT J AU Shirley, JH AF Shirley, James H. TI Solar System dynamics and global-scale dust storms on Mars SO ICARUS LA English DT Article DE Mars; Mars, atmosphere; Mars, climate; Planetary dynamics ID INTERANNUAL VARIABILITY; MARTIAN ATMOSPHERE; GENERAL-CIRCULATION; INERTIAL MOTION; MESOSCALE MODEL; SUNS MOTION; CYCLE; SIMULATION; EARTHQUAKES; HISTORY AB Global-scale dust storms occur during the southern summer season on Mars in some Mars years but not in others. We present an updated catalog of Mars years including such storms (n = 9) and Mars years without global-scale storms (n = 11) through the year 2013. A remarkable relationship links the occurrence and non-occurrence of global-scale dust storms on Mars with changes in the orbital angular momentum of Mars with respect to the Solar System barycenter (L-Mars). All of the global-scale dust storms became planet-encircling in both latitude and longitude during periods when L-Mars, was increasing or near maxima. Statistical significance at the 1% level is obtained for the clustering tendency of L-Mars phases for the 5 mid-season storms with L-s ranging from 208 degrees to 262 degrees (1956, 1971, 1982, 1994, and 2007). The II Mars years without global-scale dust storms exhibit mainly decreasing and minimum values of L-Mars during the first half of the dust storm season; this tendency is statistically significant at the 5% level. A systematic progression is present in the phasing of the solar irradiance and L-Mars, waveforms for the global-scale storm years. L-Mars phases for the early season global-scale storms of 1977 and 2001 are advanced in phase with respect to those of the mid-season storms, while the phase for the late season storm of 1973 is delayed with respect to those of the mid-season storms cluster. Factors internal to the Mars climate system, such as a spatial redistribution of surface dust from year to year, must be invoked to account for the non-occurrence of global-scale dust storms in five years (1986, 2003, 2005, 2009, and 2013) when the L-Mars phase was otherwise favorable. Our results suggest that the occurrence of increasing or peak values of L-Mars immediately prior to and during the Mars dust storm season may be a necessary-but-not-sufficient condition for the initiation of global-scale dust storms on Mars. (C) 2014 Elsevier Inc. All rights reserved. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shirley, JH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA FX Nick Heavens and David Kass provided comments on an early version of a portion of this manuscript. I thank Armin Kleinbohl, Dan McCleese, Tim Schofield, Michael Mischna, and Rich Zurek for useful discussions. Critical comments and suggestions from the referees materially improved this presentation. Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 87 TC 2 Z9 2 U1 5 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 128 EP 144 DI 10.1016/j.icarus.2014.09.038 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300009 ER PT J AU Piqueux, S Kleinbohl, A Hayne, PO Kass, DM Schofield, JT McCleese, DJ AF Piqueux, Sylvain Kleinboehl, Armin Hayne, Paul O. Kass, David M. Schofield, John T. McCleese, Daniel J. TI Variability of the martian seasonal CO2 cap extent over eight Mars Years SO ICARUS LA English DT Article DE Mars; Mars, polar caps; Mars, atmosphere; Mars, climate; Ices ID SOUTH POLAR-CAP; THERMAL EMISSION SPECTROMETER; ORBITER CAMERA OBSERVATIONS; HUBBLE-SPACE-TELESCOPE; GLOBAL DUST STORM; WATER ICE; INTERANNUAL VARIABILITY; CARBON-DIOXIDE; VIKING OBSERVATIONS; ATMOSPHERIC OBSERVATIONS AB We present eight Mars Years of nearly continuous tracking of the CO2 seasonal cap edges from Mars Year (MY) 24 to 31 using Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) and Mars Reconnaissance Orbiter (MRO) Mars Climate Sounder (MCS) thermal infrared data. Spatial and temporal resolutions are 1 pixel per degree and 10 degrees L-s (aerocentric longitude of the Sun). The seasonal caps are defined as the regions where the diurnal radiometric temperature variations at similar to 32 mu m wavelength do not exceed 5 K. With this definition, terrains with small areal fraction of defrosted regolith able to experience measurable diurnal temperature cycles are not mapped as part of the cap. This technique is adequate to distinguish CO2 from H2O ices, and effective during the polar night or under low illumination conditions. The present analysis answers outstanding questions stemming from fragmented observations at visible wavelengths: (1) the previously sparsely documented growth of the North seasonal caps (160 degrees < L-s < 270 degrees) is shown to be repeatable within 1-2 degrees equivalent latitude, and monotonic over the MY 24-31 time period; high repeatability is observed during the retreat of the caps in non-dusty years (similar to 1 degrees or less equivalent latitude); (2) the MY 25 storm does not seem to have impacted the growth rate, maximal extents, or recession rate of the North seasonal caps, whereas the MY 28 dust storm clearly sped up the recession of the cap (similar to 2 degrees smaller on average after the storm, during the recession, compared to other years); (3) during non-dusty years, the growth of the South seasonal cap (350 degrees < L-s < 100 degrees) presents noticeable variability (up to 4 equivalent latitude near L-s = 20 degrees) with a maximum extent reached near L-s = 90 degrees; (4) the retreat of the Southern seasonal cap (100 degrees < L-s < 310 degrees) exhibits large inter-annual variability, especially near 190 degrees < L-s < 220 degrees; (5) the recession of the MY 25 South seasonal cap is significantly accelerated during the equinox global dust storm, with surface temperatures suggesting increased patchiness or enhanced dust mantling on the CO2 ice. These results suggest that atmospheric temperatures and dust loading are the primary source of variability in an otherwise remarkably repeatable cycle of seasonal cap growth and recession. (C) 2014 Elsevier Inc. All rights reserved. C1 [Piqueux, Sylvain; Kleinboehl, Armin; Hayne, Paul O.; Kass, David M.; Schofield, John T.; McCleese, Daniel J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Piqueux, S (reprint author), CALTECH, Jet Prop Lab, M-S 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sylvain.Piqueux@jpl.nasa.gov FU National Aeronautics and Space Administration FX SP would like to thank K. Murray at ASU for her help with TES data queries. Comments and suggestions from three reviewers were appreciated and have helped improve this paper. Work at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration. NR 97 TC 9 Z9 9 U1 1 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 164 EP 180 DI 10.1016/j.icarus.2014.10.045 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300011 ER PT J AU Sizemore, HG Zent, AP Rempel, AW AF Sizemore, Hanna G. Zent, Aaron P. Rempel, Alan W. TI Initiation and growth of martian ice lenses SO ICARUS LA English DT Article DE Mars; Mars, climate; Mars, surface; Ices ID GROUND-ICE; FROST HEAVE; PREMELTING DYNAMICS; SUBSURFACE ICE; NEAR-SURFACE; DRY VALLEYS; MARS; WATER; MODEL; PERCHLORATE AB Water ice in the upper meters of the martian regolith is a major volatile reservoir. Although the geographic extent, burial depth, and thermal stability of this shallow ice are well understood, its origin, history, and stratigraphy are not. Over the past decade, a growing body of observational evidence has indicated that shallow ground ice exceeds the pore volume of its host soil over large regions of both martian hemispheres. This is confounding, given that (1) the physical theory that accurately predicts the location of ground ice also assumes that ice should be pore-filling in the upper meter of regolith, and (2) the Phoenix spacecraft uncovered far more pore-filling ice than excess ice at its landing site in the northern hemisphere. The development of ice lenses by low-temperature in situ segregation - analogous to the processes that generate frost heave on Earth - has been hypothesized to explain shallow excess ice on Mars. We have developed a numerical model of ice lens initiation and growth in the martian environment, and used it to test this hypothesis for the first time. We carried out a large suite of numerical simulations in order to place quantitative constraints on the timing and location of ice lens initiation, and on the magnitude of ice lens growth in a variety of host soils. We find that ice lens initiation is a ubiquitous process in the martian high latitudes, but the ultimate magnitude of lens growth, or frost heave, is sensitive to the properties of the host soil. Depending on the specific properties of martian soils, in situ segregation may be a very slow process sufficient to explain the excess ice observed in the Dodo-Goldilocks trench at the Phoenix landing site, but without regionally significant effects. Alternatively, if clay-sized particles or perchlorate salts are present, in situ segregation may be a vigorous process that has significantly affected the stratigraphy of ground ice in the upper meter of regolith throughout the high latitudes. (C) 2014 Elsevier Inc. All rights reserved. C1 [Sizemore, Hanna G.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Zent, Aaron P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rempel, Alan W.] 1272 Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. RP Sizemore, HG (reprint author), Planetary Sci Inst, 1700 East Ft Lowell,Suite 106, Tucson, AZ 85719 USA. EM sizemore@psi.edu; rempel@uoregon.edu FU NASA [MFR-203959-02-02-20-01]; NASA Postdoctoral Program FX This work was funded by NASA Grant MFR-203959-02-02-20-01 and the NASA Postdoctoral Program. The authors would like to thank Shane Byrne and an anonymous reviewer for thoughtful comments that improved the manuscript, as well as Nathaniel Sizemore for technical support with version tracking software and scripting. NR 77 TC 8 Z9 8 U1 3 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 191 EP 210 DI 10.1016/j.icarus.2014.04.013 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300013 ER PT J AU Dundas, CM Diniega, S McEwen, AS AF Dundas, Colin M. Diniega, Serina McEwen, Alfred S. TI Long-term monitoring of martian gully formation and evolution with MRO/HiRISE SO ICARUS LA English DT Article DE Mars, surface; Mars, climate; Geological processes; Ices ID POTENTIAL FORMATION MECHANISMS; LATITUDE-DEPENDENT MANTLE; SURFACE GROUND ICE; DRY-GRANULAR FLOWS; LIQUID WATER; HIGH OBLIQUITY; DEBRIS FLOWS; MARS; DEPOSITS; CONSTRAINTS AB Gully landforms are commonly taken as evidence for surface liquid water in the recent geological history of Mars. Repeat observations with the High Resolution Imaging Science Experiment (HiRISE) instrument on the Mars Reconnaissance Orbiter demonstrate widespread activity in gullies in the southern hemisphere, particularly in those with the freshest morphologies. This activity includes substantial channel incision and large-scale mass movements, and constitutes ongoing gully formation rather than degradation of older landforms. New apron deposits that are bright, dark and neutrally toned have all been observed. The timing of gully activity is seasonally controlled and occurs during the period when seasonal frost is present and defrosting. These observations support a model in which currently active gully formation is driven mainly by seasonal CO2 frost. Gullies in the northern hemisphere are far less active than those in the south. This may be due to the current timing of perihelion near the northern winter solstice. Integrated over time, activity like that observed within the past few years appears capable of forming all of the martian gully landforms on timescales of millions of years. Additionally, the current style and rate of activity is able to erase meter- to decameter-scale surface features that might have been uniquely produced by other processes during the last obliquity high similar to 0.4 Ma. Although it is impossible to rule out a past role for water in the formation of martian gullies, a model in which gullies form only through currently active processes with little or no liquid water is consistent with our observations. Published by Elsevier Inc. C1 [Dundas, Colin M.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Diniega, Serina] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McEwen, Alfred S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Dundas, CM (reprint author), US Geol Survey, Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. EM cdundas@usgs.gov OI Dundas, Colin/0000-0003-2343-7224 FU NASA Mars Data Analysis Program Grant [NNH13AV85I]; MRO Project FX We thank the HiRISE operations team for their work in acquiring the data used in this study, and the CTX team for suggesting several sites of possible activity for HiRISE imaging. Shane Byrne, Candy Hansen, Robin Fergason and Justin Hagerty provided helpful comments and suggestions on early drafts. We also thank Jay Dickson and an anonymous referee for helpful review comments. CMD was funded by NASA Mars Data Analysis Program Grant NNH13AV85I. ASM was funded by the MRO Project. NR 108 TC 18 Z9 18 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 244 EP 263 DI 10.1016/j.icarus.2014.05.013 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300016 ER PT J AU Hansen, CJ Diniega, S Bridges, N Byrne, S Dundas, C McEwen, A Portyankina, G AF Hansen, C. J. Diniega, S. Bridges, N. Byrne, S. Dundas, C. McEwen, A. Portyankina, G. TI Agents of change on Mars' northern dunes: CO2 ice and wind SO ICARUS LA English DT Article DE Mars, polar caps; Mars, surface; Mars ID SEASONAL POLAR-CAP; MARTIAN GULLIES; EOLIAN DUNES; SAND DUNES; HYPOTHESIS; ATMOSPHERE; EROSION; SURFACE; REGION; VOLUME AB Both wind and seasonal CO2 ice sculpt the dunes of Mars in today's climate. The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter has returned extensive temporal coverage of changes on the north polar dunes for nearly four Mars years. The processes driving dune morphology changes such as the formation of new alcoves have been investigated. Considerable interannual variability has been observed. Most changes occur in the period of time when HiRISE cannot image: late summer and fall when light levels are too low to see subtle changes on the dunes and the polar hood obscures the surface, and winter when the cap is in polar night. This is consistent with seasonal control but does not allow us to directly differentiate between eolian processes vs. CO2 ice as the driving agent for alcove formation. Circumstantial evidence and observations of analog processes in the southern mid-latitudes however implicates processes associated with frost emplacement and removal. (C) 2014 Elsevier Inc. All rights reserved. C1 [Hansen, C. J.] Planetary Sci Inst, St George, UT 84770 USA. [Diniega, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bridges, N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Byrne, S.; McEwen, A.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Dundas, C.] US Geol Survey, Flagstaff, AZ 86001 USA. [Portyankina, G.] Univ Colorado, Lab Air & Space Phys, Boulder, CO 80309 USA. RP Hansen, CJ (reprint author), Planetary Sci Inst, 389 N Ind Rd,Suite 5, St George, UT 84770 USA. EM cjhansen@psi.edu FU MRO mission under NASA FX This research was supported by the MRO mission operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. S. Diniega's contribution was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank our two excellent reviewers. NR 47 TC 4 Z9 4 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 264 EP 274 DI 10.1016/j.icarus.2014.11.015 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300017 ER PT J AU Piqueux, S Byrne, S Kieffer, HH Titus, TN Hansen, CJ AF Piqueux, Sylvain Byrne, Shane Kieffer, Hugh H. Titus, Timothy N. Hansen, Candice J. TI Enumeration of Mars years and seasons since the beginning of telescopic exploration SO ICARUS LA English DT Article DE Mars; Mars, polar caps; Mars, atmosphere; Mars, climate ID WATER-ICE CLOUDS; INTERANNUAL VARIABILITY; DUST STORMS; MODEL; CYCLE; TES AB A clarification for the enumeration of Mars years prior to 1955 is presented, along with a table providing the Julian Dates associated with L-s = 0 degrees for Mars years -183 (beginning of the telescopic study of Mars) to 100. A practical algorithm for computing L-s as a function of the Julian Date is provided. No new science results are presented. (C) 2015 Elsevier Inc. All rights reserved. C1 [Piqueux, Sylvain] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Byrne, Shane] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Kieffer, Hugh H.] Celestial Reasonings, Genoa, NV 89411 USA. [Kieffer, Hugh H.] Space Sci Inst, Boulder, CO 80301 USA. [Titus, Timothy N.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Hansen, Candice J.] Planetary Sci Inst, Tucson, AZ 85719 USA. RP Piqueux, S (reprint author), CALTECH, Jet Prop Lab, M-S 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sylvain.Piqueux@jpl.nasa.gov NR 40 TC 8 Z9 8 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAY 1 PY 2015 VL 251 BP 332 EP 338 DI 10.1016/j.icarus.2014.12.014 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0FQ UT WOS:000351480300021 ER PT J AU Bindlish, R Jackson, T Cosh, M Zhao, TJ O'Neill, P AF Bindlish, Rajat Jackson, Thomas Cosh, Michael Zhao, Tianjie O'Neill, Peggy TI Global Soil Moisture From the Aquarius/SAC-D Satellite: Description and Initial Assessment SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Aquarius; microwave radiometer; soil moisture ID VALIDATION AB Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology. Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(3)/m(3), Bias = -0.007 m(3)/m(3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center. C1 [Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [O'Neill, Peggy] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bindlish, R (reprint author), USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. FU National Aeronautics and Space Administration [NNH10AN10I] FX This work was supported by the National Aeronautics and Space Administration under Interagency Agreement NNH10AN10I. NR 15 TC 21 Z9 21 U1 2 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD MAY PY 2015 VL 12 IS 5 BP 923 EP 927 DI 10.1109/LGRS.2014.2364151 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD9IQ UT WOS:000351412200001 ER PT J AU Yanovsky, I Davis, AB AF Yanovsky, Igor Davis, Anthony B. TI Separation of a Cirrus Layer and Broken Cumulus Clouds in Multispectral Images SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Cloud layer separation; image decomposition; multispectral image analysis; passive atmospheric tomography; scale separation; sparse optimization; total variation minimization ID ACTIVE CONTOURS; VARIATIONAL APPROACH; AEROSOLS; ALGORITHM; NOISE; RECONSTRUCTION; APPROXIMATION; MINIMIZATION; RESTORATION; ATMOSPHERE AB We introduce a methodology for separating reflective layers of clouds in Earth remote sensing images. We propose a single-channel layer separation framework and extend it to multispectral layer separation. Efficient alternating minimization and fast operator-splitting methods are used to solve minimization problems. Specifically, we apply our methodology to separate strongly stratified and optically thin upper (cirrus) clouds from optically thick lower convective (cumulus) clouds in atmospheric imagery approximated as additive contributions to the observed signal. After setting up synthetic "truth" scenarios, we evaluate the accuracy of the two-layer separation results while varying the effective opaqueness of each of two types of cloud. We show that multispectral cloud layer separation is consistently more accurate than channel-by-channel cloud layer separation. C1 [Yanovsky, Igor; Davis, Anthony B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Yanovsky, Igor; Davis, Anthony B.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. RP Yanovsky, I (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM igor.yanovsky@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA) Earth Science Technology Office [AIST-QRS-12-0003]; NASA's Radiation Sciences programs; National Science Foundation [DMS 1217239] FX This work was supported by the National Aeronautics and Space Administration (NASA) Earth Science Technology Office AIST-QRS-12-0003 Grant (3D-TRACE project). The work of A. B. Davis was supported by NASA's Radiation Sciences programs. The work of I. Yanovsky was supported by National Science Foundation under Grant DMS 1217239. NR 42 TC 2 Z9 2 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2275 EP 2285 DI 10.1109/TGRS.2014.2352319 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100001 ER PT J AU McIntire, J Moyer, D Efremova, B Oudrari, H Xiong, XX AF McIntire, Jeff Moyer, David Efremova, Boryana Oudrari, Hassan Xiong, Xiaoxiong TI On-Orbit Characterization of S-NPP VIIRS Transmission Functions SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Calibration; Suomi National Polar-orbiting Partnership (S-NPP); Visible Infrared Imager Radiometer Suite (VIIRS); yaw maneuvers ID MODIS AB The Suomi National Polar-orbiting Partnership (S-NPP) spacecraft executed a series of yaw maneuvers on February 15 and 16, 2012. Data collected during these maneuvers were used to characterize the transmission functions of the Visible Infrared Imager Radiometer Suite (VIIRS) instrument solar diffuser (SD) and solar diffuser stability monitor (SDSM) views. On orbit, only the product of the attenuation screen transmittance and SD bidirectional reflectance distribution function (BRDF) can be measured for the VIIRS detector and SDSM SD views. For the SDSM solar view, the attenuation screen transmittance was also measured. The angular sampling provided by the yaw maneuver data of this solar view was too coarse to capture the fine structure of the transmission function; a model was developed to include this structure in the vignetting function by combining solar observation data from the first nine months of the mission with the yaw maneuver-derived vignetting function. The derived transmission functions were delivered for implementation in the operational processing stream (the derived VIIRS detector view transmittance produced up to 0.4% difference in the instrument responsivity, and SDSM transmission functions impacted the BRDF tracking by up to 3.0%). An uncertainty analysis was also conducted on all transmission functions delivered. C1 [McIntire, Jeff; Efremova, Boryana; Oudrari, Hassan] Sigma Space Corp, Lanham, MD 20706 USA. [Moyer, David] Aerosp Corp, El Segundo, CA 90245 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McIntire, J (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. NR 18 TC 12 Z9 12 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2354 EP 2365 DI 10.1109/TGRS.2014.2358935 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100007 ER PT J AU Patel, A Paden, J Leuschen, C Kwok, R Gomez-Garcia, D Panzer, B Davidson, MWJ Gogineni, S AF Patel, Aqsa Paden, John Leuschen, Carl Kwok, Ron Gomez-Garcia, Daniel Panzer, Ben Davidson, Malcolm W. J. Gogineni, Sivaprasad TI Fine-Resolution Radar Altimeter Measurements on Land and Sea Ice SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Airborne radar; frequency-modulated continuous wave (FMCW); radar altimetry review; sea ice; snow; ultrawideband radar ID THRESHOLD RETRACKING ALGORITHM; SATELLITE RADAR; AIRBORNE LASER; SURFACE-PROPERTIES; CHIRP GENERATOR; ENVISAT RADAR; FRAM STRAIT; WIDE-BAND; SHEET; SNOW AB Satellite radar altimeter (RA) measurements are important for continued monitoring of rapidly changing polar regions. In 2010, the European Space Agency launched CryoSat-2 carrying SIRAL, a Ku-band RA with objectives of determining the thickness and extent of sea ice and the topography of the ice sheets. One difficulty with Ku-band radar surveys over snow and ice is unknown penetration of RA signal into snow cover. Improving our understanding of the interactions of RA signals with snow and ice is needed to produce accurate elevation products. To this end, we developed a low-power, ultrawideband (12-18 GHz) RA for airborne surveys to provide fine resolution measurements capable of detecting both scattering from the surface and layers within sea ice and ice sheets. These measurements provide a means of identifying the dominant scattering location of lower resolution RA measurements comparable to satellite-based instruments. We generated two products: a full-bandwidth waveform (FBW) to identify scattering targets at fine resolution and a reduced-bandwidth waveform (RBW) to represent conventional RA measurements. Retrackers are used to generate height estimates over various surface conditions for comparisons. Over ice sheets, the leading-edge tracker provided consistent ice-surface elevation measurements between the FBW and RBW results; however, there were significant differences between the results from the centroid tracker. Over sea ice, the location of the dominant return between the results from snow-covered sea ice is highly variable. This paper provides an overview of RA surveys in polar regions, a description of the CReSIS system, and a discussion of the results. C1 [Patel, Aqsa; Paden, John; Leuschen, Carl; Gomez-Garcia, Daniel; Panzer, Ben; Gogineni, Sivaprasad] Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66044 USA. [Kwok, Ron] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davidson, Malcolm W. J.] European Space Agcy, EOP SMS, NL-2201 AZ Noordwijk, Netherlands. RP Patel, A (reprint author), Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66044 USA. RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU U.S. National Science Foundation [ANT-0424589]; U.S. National Aeronautics and Space Administration [NNX09AR77G, NNG10HP19C, NNX10AT68G, NNX13AD53A] FX This paper was supported in part by the U.S. National Science Foundation under Grant ANT-0424589 and in part by the U.S. National Aeronautics and Space Administration under Grant NNX09AR77G, Grant NNG10HP19C, Grant NNX10AT68G, and Grant NNX13AD53A. NR 72 TC 4 Z9 4 U1 2 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2547 EP 2564 DI 10.1109/TGRS.2014.2361641 PG 18 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100022 ER PT J AU McNairn, H Jackson, TJ Wiseman, G Belair, S Berg, A Bullock, P Colliander, A Cosh, MH Kim, SB Magagi, R Moghaddam, M Njoku, EG Adams, JR Homayouni, S Ojo, ER Rowlandson, TL Shang, JL Goita, K Hosseini, M AF McNairn, Heather Jackson, Thomas J. Wiseman, Grant Belair, Stephane Berg, Aaron Bullock, Paul Colliander, Andreas Cosh, Michael H. Kim, Seung-Bum Magagi, Ramata Moghaddam, Mahta Njoku, Eni G. Adams, Justin R. Homayouni, Saeid Ojo, Emmanuel RoTimi Rowlandson, Tracy L. Shang, Jiali Goita, Kalifa Hosseini, Mehdi TI The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Passive microwave; soil moisture; Soil Moisture Active Passive (SMAP); synthetic aperture radar ID L-BAND; HYDROLOGY EXPERIMENT; RADAR OBSERVATIONS; SAR DATA; RETRIEVAL; SURFACE; SENSOR; ROUGHNESS; SMEX02; BACKSCATTERING AB The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in January 2015. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a need for long-duration combined active and passive L-band microwave observations. In response to this need, a joint Canada-U.S. field experiment (SMAPVEX12) was conducted in Manitoba (Canada) over a six-week period in 2012. Several times per week, NASA flew two aircraft carrying instruments that could simulate the observations the SMAP satellite would provide. Ground crews collected soil moisture data, crop measurements, and biomass samples in support of this campaign. The objective of SMAPVEX12 was to support the development, enhancement, and testing of SMAP soil moisture retrieval algorithms. This paper details the airborne and field data collection as well as data calibration and analysis. Early results from the SMAP active radar retrieval methods are presented and demonstrate that relative and absolute soil moisture can be delivered by this approach. Passive active L-band sensor (PALS) antenna temperatures and reflectivity, as well as backscatter, closely follow dry down and wetting events observed during SMAPVEX12. The SMAPVEX12 experiment was highly successful in achieving its objectives and provides a unique and valuable data set that will advance algorithm development. C1 [McNairn, Heather; Shang, Jiali; Hosseini, Mehdi] Agr & Agri Food Canada, Sci & Technol Branch, Ottawa, ON K1A 0C6, Canada. [Jackson, Thomas J.; Cosh, Michael H.] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Wiseman, Grant] Stantec, Winnipeg, MB R3C 3R6, Canada. [Belair, Stephane] Environm Canada, Meteorol Res Branch, Dorval, PQ H9P 1J3, Canada. [Berg, Aaron; Adams, Justin R.; Rowlandson, Tracy L.] Univ Guelph, Dept Geog, Guelph, ON N1G 2W1, Canada. [Bullock, Paul; Ojo, Emmanuel RoTimi] Univ Manitoba, Dept Soil Sci, Winnipeg, MB R3T 2N2, Canada. [Colliander, Andreas; Kim, Seung-Bum; Njoku, Eni G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Magagi, Ramata; Goita, Kalifa; Hosseini, Mehdi] Univ Sherbrooke, Dept Geomat Appl, Sherbrooke, PQ J1K 2R1, Canada. [Moghaddam, Mahta] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Homayouni, Saeid] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada. RP McNairn, H (reprint author), Agr & Agri Food Canada, Sci & Technol Branch, Ottawa, ON K1A 0C6, Canada. EM heather.mcnairn@agr.gc.ca OI Cosh, Michael/0000-0003-4776-1918; Homayouni, Saeid/0000-0002-0214-5356 FU Canadian Space Agency FX The authors would like to thank the entire SMAPVEX12 crew who worked tirelessly to make the campaign a great success. Canadian participation in SMAPVEX12 was partially funded by the Canadian Space Agency. The U.S. Department of Agriculture is an Equal Opportunity Employer. Finally, we would like to thank the anonymous reviewers who provided many excellent suggestions to improve this manuscript. The research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 55 TC 36 Z9 36 U1 7 U2 59 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2784 EP 2801 DI 10.1109/TGRS.2014.2364913 PG 18 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100039 ER PT J AU Sun, XL Neumann, GA AF Sun, Xiaoli Neumann, Gregory A. TI Calibration of the Mercury Laser Altimeter on the MESSENGER Spacecraft SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Laser ranging; lidar ID MARS; MISSION; PERFORMANCE AB This paper gives a detailed description of the prelaunch and in-orbit calibrations of the Mercury Laser Altimeter (MLA) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which was launched on August 3, 2004 and has been operating in orbit about Mercury since March 2011. A brief summary of the MLA instrument is given, followed by the instrument measurement model and calibration formulas. The prelaunch tests used to determine the values of various calibration coefficients are described. The boresight alignment parameters were verified and recalibrated by special tests, with the MESSENGER spacecraft en route to Mercury. The MLA instrument model and the calibration methods were largely derived from airborne and spaceborne lidar for Earth science observation at the NASA Goddard Space Flight Center and will benefit future space lidar developments for Earth and space science. C1 [Sun, Xiaoli; Neumann, Gregory A.] NASA, Laser Remote Sensing Lab, Greenbelt, MD 20771 USA. RP Sun, XL (reprint author), NASA, Laser Remote Sensing Lab, Greenbelt, MD 20771 USA. EM xiaoli.sun-1@nasa.gov RI Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 NR 25 TC 4 Z9 4 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2860 EP 2874 DI 10.1109/TGRS.2014.2366080 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100045 ER PT J AU Brice, CA Dennis, N AF Brice, Craig A. Dennis, Noah TI Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219 SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID DENDRITE ARM SPACINGS; AL-CU ALLOYS; SOLIDIFICATION; MICROSEGREGATION AB Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 mu m. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 mu m. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification. (C) The Minerals, Metals & Materials Society and ASM International 2015 C1 NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Dennis, Noah] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Brice, CA (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM craig.a.brice@nasa.gov NR 21 TC 1 Z9 1 U1 8 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2015 VL 46A IS 5 BP 2304 EP 2308 DI 10.1007/s11661-015-2775-x PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CE0VP UT WOS:000351527200044 ER PT J AU Palace, MW Sullivan, FB Ducey, MJ Treuhaft, RN Herrick, C Shimbo, JZ Mota-E-Silva, J AF Palace, Michael W. Sullivan, Franklin B. Ducey, Mark J. Treuhaft, Robert N. Herrick, Christina Shimbo, Julia Z. Mota-E-Silva, Jonas TI Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Tropical forest; Biomass; Lorey's height; Lidar; dbh distribution; Remote sensing; Forest model; Field measurement; Costa Rica; La Selva ID LEAF-AREA INDEX; ESTIMATING CANOPY STRUCTURE; NEOTROPICAL RAIN-FOREST; LARGE-FOOTPRINT LIDAR; BIOMASS ESTIMATION; SPECIES-DIVERSITY; AIRBORNE LIDAR; AMAZON FOREST; WAVE-FORMS; ABOVEGROUND BIOMASS AB Tropical forests are huge reservoirs of terrestrial carbon and are experiencing rapid degradation and deforestation. Understanding forest structure proves vital in accurately estimating both forest biomass and also the natural disturbances and remote sensing is an essential method for quantification of forest properties and structure in the tropics. Our objective is to examine canopy vegetation profiles formulated from discrete return Light Detection And Ranging (lidar) data and examine their usefulness in estimating forest structural parameters measured during a field campaign. We developed a modeling procedure that utilized hypothetical stand characteristics to examine lidar profiles. In essence, this is a simple method to further enhance shape characteristics from the lidar profile. In this paper we report the results comparing field data collected at La Selva, Costa Rica (10 degrees 26' N, 83 degrees 59' W) and forest structure and parameters calculated from vegetation height profiles and forest structural modeling. We developed multiple regression models for each measured forest biometric property using forward stepwise variable selection that used Bayesian information criteria (BIC) as selection criteria. Among measures of forest structure, ranging from tree lateral density, diameter at breast height, and crown geometry, we found strong relationships with lidar canopy vegetation profile parameters. Metrics developed from lidar that were indicators of height of canopy were not significant in estimating plot biomass (p-value = 0.31, r(2) = 0.17), but parameters from our synthetic forest model were found to be significant for estimating many of the forest structural properties, such as mean trunk diameter (p-value = 0.004, r(2) = 0.51) and tree density (p-value = 0.002, r(2) = 0.43). We were also able to develop a significant model relating lidar profiles to basal area (p-value = 0.003, r(2) = 0.43). Use of the full lidar profile provided additional avenues for the prediction of field based forest measure parameters. Our synthetic canopy model provides a novel method for examining lidar metrics by developing a look-up table of profiles that determine profile shape, depth, and height. We suggest that the use of metrics indicating canopy height derived from lidar are limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties. (C) 2015 The Authors. Published by Elsevier Inc. C1 [Palace, Michael W.; Sullivan, Franklin B.; Herrick, Christina] Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA. [Ducey, Mark J.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. [Treuhaft, Robert N.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Shimbo, Julia Z.] Univ Brasilia, Inst Ciencias Biol, BR-70910900 Brasilia, DF, Brazil. [Mota-E-Silva, Jonas] Univ Brasilia, Inst Geociencias, BR-70910900 Brasilia, DF, Brazil. RP Palace, MW (reprint author), Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA. RI Ducey, Mark/K-1101-2016 FU NASA Terrestrial Ecology [NNX08AL29G]; NASA New Investigators in Earth Science [NNX10AQ82G]; NASA Carbon Science [NNX08AI24G]; NASA IDS [NNX10AP11G, NNX14AD31G]; USAID [12DG11132762416]; Gordon and Betty Moore Foundation FX This research was supported by NASA Terrestrial Ecology (NNX08AL29G), NASA New Investigators in Earth Science (NNX10AQ82G), NASA Carbon Science (NNX08AI24G), NASA IDS (NNX10AP11G and NNX14AD31G), and USAID (12DG11132762416). Lidar data in this publication were provided by the Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution, and the Wildlife Conservation Society, and partially funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. NR 112 TC 15 Z9 15 U1 5 U2 82 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAY PY 2015 VL 161 BP 1 EP 11 DI 10.1016/j.rse.2015.01.020 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CE2OI UT WOS:000351654500001 ER PT J AU Franch, B Vermote, EF Becker-Reshef, I Claverie, M Huang, J Zhang, J Justice, C Sobrino, JA AF Franch, B. Vermote, E. F. Becker-Reshef, I. Claverie, M. Huang, J. Zhang, J. Justice, C. Sobrino, J. A. TI Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Winter wheat; Yield; Production; GDD; MODIS; NCAR ID REMOTE-SENSING DATA; BIDIRECTIONAL REFLECTANCE; GRAIN-YIELD; SPATIAL-RESOLUTION; CROP PRODUCTION; USE EFFICIENCY; BURKINA-FASO; NDVI DATA; MODEL; REANALYSIS AB Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely production forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) developed an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel (area within the CMG pixel occupied by wheat), and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: the Unites States (US), Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest), while conserving an accuracy of 10% in the production forecast. (C) 2015 Elsevier Inc. All rights reserved. C1 [Franch, B.; Becker-Reshef, I.; Claverie, M.; Justice, C.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Franch, B.; Vermote, E. F.; Claverie, M.; Zhang, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Huang, J.] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China. [Sobrino, J. A.] Univ Valencia, Global Change Unit, Image Proc Lab UCG IPL, E-46003 Valencia, Spain. RP Franch, B (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. FU NASA LCLUC grant [NNX13AB70]; NASA Applied Sciences grant [NNX12AJ91G] FX The authors would like to thank NASA LCLUC grant NNX13AB70 and NASA Applied Sciences grant NNX12AJ91G. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, US, from their Web site at http://www.esrl.noaa.gov/psd/. We would like to acknowledge Melanie Rosenberg for reviewing the English of this manuscript. NR 56 TC 7 Z9 9 U1 5 U2 35 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD MAY PY 2015 VL 161 BP 131 EP 148 DI 10.1016/j.rse.2015.02.014 PG 18 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CE2OI UT WOS:000351654500010 ER PT J AU Bomarito, GF Lin, Y Warner, DH AF Bomarito, G. F. Lin, Y. Warner, D. H. TI An atomistic modeling survey of the shear strength of twist grain boundaries in aluminum SO SCRIPTA MATERIALIA LA English DT Article DE Aluminum; Grain boundary structure; Grain boundary sliding; Plastic deformation; Atomistic simulation ID INTERGRANULAR FRACTURE; MECHANICAL-PROPERTIES; MOLECULAR-DYNAMICS; CONTINUUM; METALS; SIMULATION; ENERGY; COPPER AB A computational survey of the shear strength of 343 unique grain boundaries was performed. For each boundary, the strength was surveyed as a function of shear direction. The results suggest that: (1) the shear strength cannot be comprehensively predicted by common grain boundary descriptors, (2) the shear strength depends significantly and simply on shear direction due to the faceted geometry of boundary planes, and (3) grain boundary shear strengths in an ordinary material can be represented by a simple statistical distribution. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bomarito, G. F.] NASA, Langley Res Ctr, Durabil Damage Tolerance & Reliabil Branch, Hampton, VA 23681 USA. [Bomarito, G. F.; Lin, Y.; Warner, D. H.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Warner, DH (reprint author), Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. EM dhw52@cornell.edu RI Warner, Derek/A-2303-2012 FU ONR [N000141010323] FX Support for this work was provided by Paul Hess at ONR (Grant No. N000141010323). NR 22 TC 3 Z9 3 U1 2 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2015 VL 101 BP 72 EP 75 DI 10.1016/j.scriptamat.2015.01.022 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CD2TV UT WOS:000350932800019 ER PT J AU White, SC Weaver, PM Wu, KC AF White, Simon C. Weaver, Paul M. Wu, K. Chauncey TI Post-buckling analyses of variable-stiffness composite cylinders in axial compression SO COMPOSITE STRUCTURES LA English DT Article DE Shell buckling; Variable-stiffness; Composite materials; Collapse ID CYLINDRICAL-SHELLS; BUCKLING RESPONSE; BEHAVIOR; IMPERFECTIONS; LOCALIZATION AB Variable-stiffness shells are thin composite structures in which the reinforcement direction is a function of its surface co-ordinates. This paper presents a numerical investigation into the buckling and post-buckling of two variable-stiffness cylinders under axial compression. Both shell walls are made from unidirectional carbon fiber slit tapes that are steered to give them a piecewise-continuous fiber-angle variation around the circumference. Dynamic analyses of the complete loading and unloading cycles are computed using a time-integrated finite element model (Abaqus). The numerical results generated herein are compared with test data and are found to be in good agreement, in terms of axial force versus end-shortening and global displacement fields. The analyses provide significant new insight into the mechanisms underpinning collapse behavior of the shells. For example, the development of the initial nonlinear buckle, its dynamic snap-through, and the formation of a post-budded configuration are clearly visible. One effect elucidated by this investigation is the symmetry-breaking mechanism of the circumferential stiffness variation. In contrast to a constant-stiffness cylinder, in which the total strain energy is invariant to the translation of a dimple of fixed dimensions, the present structures exhibit a single dominant post-buckling mode that are associated with the formation of 'trapped' surface dimples. In one case, this dominant mode is found to be stable over a significant amount of further end shortening. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license C1 [White, Simon C.; Weaver, Paul M.] Univ Bristol, Adv Composite Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England. [Wu, K. Chauncey] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23665 USA. RP Weaver, PM (reprint author), Univ Bristol, Adv Composite Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England. EM simon.white@bristol.ac.uk; paul.weaver@bristol.ac.uk; k.c.wu@nasa.gov OI Weaver, Paul/0000-0002-1905-4477 FU Engineering and Physical Sciences Research Council; ACCIS Centre [EP/G036772/1] FX The authors would like to thank Dr. Bret Stanford for his help in the generation of the finite-element models. The authors would also like to thank the Engineering and Physical Sciences Research Council for supporting the ACCIS Centre for Doctoral Training. Grant No. EP/G036772/1. NR 27 TC 5 Z9 5 U1 1 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD MAY PY 2015 VL 123 BP 190 EP 203 DI 10.1016/j.compstruct.2014.12.013 PG 14 WC Materials Science, Composites SC Materials Science GA CD0SJ UT WOS:000350783900020 ER PT J AU Trueba, L Heredia, G Rybicki, D Johannes, LB AF Trueba, Luis, Jr. Heredia, Georgina Rybicki, Daniel Johannes, Lucie B. TI Effect of tool shoulder features on defects and tensile properties of friction stir welded aluminum 6061-T6 SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE Friction stir welding; Aluminum alloy 6061-T6; Surface quality; Weld strength; Defect formation; Additive-manufactured tooling ID MECHANICAL-PROPERTIES AB Six unique tool shoulder designs were produced with the objective of improved metal constraint and flow to the pin. The six tools were made of Ti-6AI-4V by metallic additive manufacturing. Each tool was used to produce butt welds using aluminum 6061-T6 plates. The welds were subjected to nondestructive evaluation and tensile testing to determine weld soundness and strength. A FSW tool shoulder having a raised spiral design produced the weld with the best combination of surface quality and mechanical properties. The additive-manufactured Ti-6AI-4V tooling had good wear characteristics and appears to be a suitable route to rapidly produce unique FSW tool designs. (C) 2015 Elsevier B.V. All rights reserved. C1 [Trueba, Luis, Jr.] Univ Texas Permian Basin, Mech Engn, Odessa, TX 79762 USA. [Heredia, Georgina] Univ Texas El Paso, Dept Met & Mat Engn, El Paso, TX 79968 USA. [Rybicki, Daniel; Johannes, Lucie B.] NASA, Lyndon B Johnson Space Ctr, Mat & Proc Branch, Houston, TX 77058 USA. RP Trueba, L (reprint author), Univ Texas Permian Basin, Mech Engn, 4901 East Univ, Odessa, TX 79762 USA. EM trueba_l@utpb.edu OI Johannes, Lucie/0000-0001-8867-9465 FU Material and Processes Branch at NASA Johnson Space Center FX The authors gratefully acknowledge the financial support of this research provided by the Material and Processes Branch at NASA Johnson Space Center. NR 7 TC 2 Z9 3 U1 6 U2 44 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD MAY PY 2015 VL 219 BP 271 EP 277 DI 10.1016/j.jmatprotec.2014.12.027 PG 7 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA CC7BF UT WOS:000350522000027 ER PT J AU Stysley, PR Coyle, DB Kay, RB Frederickson, R Poulios, D Cory, K Clarke, G AF Stysley, Paul R. Coyle, D. Barry Kay, Richard B. Frederickson, Robert Poulios, Demetrios Cory, Ken Clarke, Greg TI Long term performance of the High Output Maximum Efficiency Resonator (HOMER) laser for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar SO OPTICS AND LASER TECHNOLOGY LA English DT Article DE Laser; Nd:YAG; Altimetry AB We report the results of a 2 year, continuous operational life test of the diode pumped, solid state HOMER laser; a flight-quality prototype, producing over 16 billion, 15 mJ, 10 ns Q-switched laser pulses with an acceptable measured decay rate. Published by Elsevier Ltd. C1 [Stysley, Paul R.; Coyle, D. Barry] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kay, Richard B.; Poulios, Demetrios; Clarke, Greg] Amer Univ, Dept Phys, Washington, DC 20016 USA. [Frederickson, Robert; Cory, Ken] Sci Syst Applicat Inc, Lanham, MD USA. RP Stysley, PR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM paul.stysley@nasa.gov NR 9 TC 8 Z9 8 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0030-3992 EI 1879-2545 J9 OPT LASER TECHNOL JI Opt. Laser Technol. PD MAY PY 2015 VL 68 BP 67 EP 72 DI 10.1016/j.optlastec.2014.11.001 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA CB6HP UT WOS:000349728400012 ER PT J AU Newman, JA Abate, A Abdalla, FB Allam, S Allen, SW Ansari, R Bailey, S Barkhouse, WA Beers, TC Blanton, MR Brodwin, M Brownstein, JR Brunner, RJ Kind, MC Cervantes-Cota, JL Cheu, E Chisari, NE Colless, M Comparat, J Coupons, J Cunha, CE de la Macorra, A Dell'Antonio, IP Frye, BL Gawiser, EJ Gehrels, N Grady, K Hagen, A Hall, PB Hearin, AP Hildebrand, H Hirata, CM Ho, S Honscheid, K Huterer, D Ivezic, Z Kneib, JP Kruk, JW Lahav, O Mandelbaum, R Marshall, JL Matthews, DJ Menard, B Miguel, R Moniez, M Moos, HW Moustakas, J Myers, AD Papovich, C Peacock, JA Park, C Rahman, M Rhodes, J Ricol, JS Sadeh, I Slozar, A Schmidt, SJ Stern, DK Tyson, JA von der Linden, A Wechsler, RH Wood-Vasey, WM Zentner, AR AF Newman, Jeffrey A. Abate, Alexandra Abdalla, Filipe B. Allam, Sahar Allen, Steven W. Ansari, Reza Bailey, Stephen Barkhouse, Wayne A. Beers, Timothy C. Blanton, Michael R. Brodwin, Mark Brownstein, Joel R. Brunner, Robert J. Kind, Matias Carrasco Cervantes-Cota, Jorge L. Cheu, Elliott Chisari, Nora Elisa Colless, Matthew Comparat, Johan Coupons, Jean Cunha, Carlos E. de la Macorra, Axel Dell'Antonio, Ian P. Frye, Brenda L. Gawiser, Eric J. Gehrels, Neil Grady, Kevin Hagen, Alex Hall, Patrick B. Hearin, Andew P. Hildebrand, Hendrik Hirata, Christopher M. Ho, Shirley Honscheid, Klaus Huterer, Dragan Ivezic, Zeljko Kneib, Jean-Paul Kruk, Jeffrey W. Lahav, Ofer Mandelbaum, Rachel Marshall, Jennifer L. Matthews, Daniel J. Menard, Brice Miguel, Ramon Moniez, Marc Moos, H. W. Moustakas, John Myers, Adam D. Papovich, Casey Peacock, John A. Park, Changbom Rahman, Mubdi Rhodes, Jason Ricol, Jean-Stephane Sadeh, Iftach Slozar, Anze Schmidt, Samuel J. Stern, Daniel K. Tyson, J. Anthony von der Linden, Anja Wechsler, Risa H. Wood-Vasey, W. M. Zentner, Andrew R. TI Spectroscopic needs for imaging dark energy experiments (vol 63, pg 81, 2015) SO ASTROPARTICLE PHYSICS LA English DT Correction C1 [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, Jeffrey A.] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Abate, Alexandra] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Abdalla, Filipe B.] UCL, Dept Phys & Astron, Astrophys Grp, London WC1E 6BT, England. [Allam, Sahar] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Allen, Steven W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ansari, Reza] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bailey, Stephen] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Barkhouse, Wayne A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beers, Timothy C.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Beers, Timothy C.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Blanton, Michael R.] NYU, Dept Phys, New York, NY 10003 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Brownstein, Joel R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Brownstein, Joel R.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Brunner, Robert J.] Inst Nacl Invest Nucl, Mexico City 11801, DF, Mexico. [Kind, Matias Carrasco] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cervantes-Cota, Jorge L.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Cheu, Elliott] UAM, CSIC, E-28049 Madrid, Spain. [Chisari, Nora Elisa] Univ Geneva, Astron Observ, CH-1290 Versoix, Switzerland. [Colless, Matthew] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Comparat, Johan] Univ Nacl Autonoma Mexico, Dept Fis Teor, Mexico City, DF, Mexico. [Comparat, Johan] Univ Nacl Autonoma Mexico, IAC, Mexico City, DF, Mexico. [Coupons, Jean] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Cunha, Carlos E.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Cunha, Carlos E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [de la Macorra, Axel] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Dell'Antonio, Ian P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 2077 USA. [Frye, Brenda L.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gawiser, Eric J.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Gehrels, Neil] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT USA. [Grady, Kevin] Argelander Inst Astron, D-53121 Bonn, Germany. [Hagen, Alex] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Hearin, Andew P.] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Hildebrand, Hendrik] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hirata, Christopher M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Hirata, Christopher M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Ho, Shirley] EPFL, Observ Sauverny, Astrophys Lab, CH-1290 Versoix, Switzerland. [Honscheid, Klaus] Univ Aix Marseille, LAM, F-13388 Marseille, France. [Honscheid, Klaus] CNRS, UMR7326, F-13388 Marseille, France. [Huterer, Dragan] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Ivezic, Zeljko] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kneib, Jean-Paul] Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. [Kruk, Jeffrey W.] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. [Marshall, Jennifer L.; Menard, Brice] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Miguel, Ramon; Moniez, Marc; Moos, H. W.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Menard, Brice; Moniez, Marc; Moos, H. W.] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea. [Moos, H. W.; Moustakas, John; Myers, Adam D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Papovich, Casey; Peacock, John A.] Lab Phys Subatom & Cosmol Grenoble, F-38026 Grenoble, France. [Park, Changbom; Rahman, Mubdi; Rhodes, Jason; Ricol, Jean-Stephane] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ricol, Jean-Stephane; Sadeh, Iftach; Slozar, Anze; Schmidt, Samuel J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, Andrew R.] ICREA, E-08010 Barcelona, Spain. RP Newman, JA (reprint author), Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. EM janewman@pitt.edu RI Kneib, Jean-Paul/A-7919-2015; Mandelbaum, Rachel/N-8955-2014; EPFL, Physics/O-6514-2016 OI Kneib, Jean-Paul/0000-0002-4616-4989; Mandelbaum, Rachel/0000-0003-2271-1527; NR 1 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2015 VL 65 BP 112 EP 113 DI 10.1016/j.astropartphys.2014.12.008 PG 2 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB6GK UT WOS:000349725300012 ER PT J AU Rai, AK Schmitt, MP Bhattacharya, RS Zhu, DM Wolfe, DE AF Rai, Amarendra K. Schmitt, Michael P. Bhattacharya, Rabi S. Zhu, Dongming Wolfe, Douglas E. TI Thermal conductivity and stability of multilayered thermal barrier coatings under high temperature annealing conditions SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE TBC; YSZ; Pyrochlore oxides; Thermal conductivity; Sintering AB Pyrochlore oxides have most of the relevant attributes for use as next generation thermal bather coatings (TBCs) such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state of the art TBC material, yttria (6-8 wt.%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz. Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 degrees C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Rai, Amarendra K.; Bhattacharya, Rabi S.] UES Inc, Dayton, OH 45432 USA. [Schmitt, Michael P.; Wolfe, Douglas E.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Zhu, Dongming] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Rai, AK (reprint author), UES Inc, 4401 Dayton Xenia Rd, Dayton, OH 45432 USA. EM arai@ues.com FU Department of Energy (DOE) STTR [DE-SC0004356] FX This research was sponsored by the Department of Energy (DOE) STTR under award number DE-SC0004356 (Dr. Patcharin Burke). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US DOE. NR 15 TC 8 Z9 8 U1 7 U2 88 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD MAY PY 2015 VL 35 IS 5 BP 1605 EP 1612 DI 10.1016/j.jeurceramsoc.2014.11.003 PG 8 WC Materials Science, Ceramics SC Materials Science GA CA1QG UT WOS:000348686200027 ER PT J AU Gould, A Huber, D Penny, M Stello, D AF Gould, Andrew Huber, Daniel Penny, Matthew Stello, Dennis TI WFIRST ULTRA-PRECISE ASTROMETRY II: ASTEROSEISMOLOGY SO JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY LA English DT Article DE astrometry; gravitational microlensing; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; GALACTIC BULGE; RED GIANTS; ECLIPSING BINARY; CHARA ARRAY; KEPLER; STARS; MASS; INTERFEROMETRY; PHOTOMETRY AB WFIRST microlensing observations will return high-precision parallaxes, sigma(pi) less than or similar to 0.3 mu as, for the roughly 1 million stars with H < 14 in its 2.8 deg(2) field toward the Galactic bulge. Combined with its 40,000 epochs of high precision photometry (similar to 0.7 mmag at H-vega = 14 and similar to 0.1 mmag at H = 8), this will yield a wealth of asteroseismic data of giant stars, primarily in the Galactic bulge but including a substantial fraction of disk stars at all Galactocentric radii interior to the Sun. For brighter stars, the astrometric data will yield an external check on the radii derived from the two asteroseismic parameters, the large-frequency separation and the frequency of maximum oscillation power v(max), while for the fainter ones, it will enable a mass measurement from the single measurable asteroseismic parameter v(max). Simulations based on Kepler data indicate that WFIRST will be capable of detecting oscillations in stars from slightly less luminous than the red clump to the tip of the red giant branch, yielding roughly 1 million detections. C1 [Gould, Andrew; Penny, Matthew] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Huber, Daniel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Huber, Daniel] SETI Inst, Mountain View, CA 94043 USA. [Huber, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Stello, Dennis] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. RP Gould, A (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM gould@astronomy.ohio-state.edu; huber@physics.usyd.edu.au; stello@physics.usyd.edu.au FU NSF [AST 1103471]; NASA [NNX12AB99G, NNX14AB92G]; Thomas Jefferson Chair for Discovery and Space Exploration FX Work by AG was supported by NSF grant AST 1103471 and NASA grant NNX12AB99G. MP acknowledges support by The Thomas Jefferson Chair for Discovery and Space Exploration. DH acknowledges support by NASA Grant NNX14AB92G issued through the Kepler Participating Scientist Program. NR 35 TC 7 Z9 7 U1 0 U2 1 PU KOREAN ASTRONOMICAL SOCIETY PI TAEJON PA 61-1 HWA-AM DONG, YUSUNG KU, TAEJON, 305-348, SOUTH KOREA SN 1225-4614 J9 J KOREAN ASTRON SOC JI J. Korean Astron. Soc. PD APR 30 PY 2015 VL 48 IS 2 BP 93 EP 104 DI 10.5303/JKAS.2015.48.2.93 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI0II UT WOS:000354419900001 ER PT J AU Aguilar, M Aisa, D Alpat, B Alvino, A Ambrosi, G Andeen, K Arruda, L Attig, N Azzarello, P Bachlechner, A Barao, F Barrau, A Barrin, L Bartoloni, A Basara, L Battarbee, M Battiston, R Bazo, J Becker, U Behlmann, M Beischer, B Berdugo, J Bertucci, B Bigongiari, G Bindi, V Bizzaglia, S Bizzarri, M Boella, G de Boer, W Bollweg, K Bonnivard, V Borgia, B Borsini, S Boschini, MJ Bourquin, M Burger, J Cadoux, F Cai, XD Capell, M Caroff, S Casaus, J Cascioli, V Castellini, G Cernuda, I Cerreta, D Cervelli, F Chae, MJ Chang, YH Chen, AI Chen, H Cheng, GM Chen, HS Cheng, L Chou, HY Choumilov, E Choutko, V Chung, CH Clark, C Clavero, R Coignet, G Consolandi, C Contin, A Corti, C Gil, EC Coste, B Creus, W Crispoltoni, M Cui, Z Dai, YM Delgado, C Della Torre, S Demirkoz, MB Derome, L Di Falco, S Di Masso, L Dimiccoli, F Diaz, C von Doetinchem, P Donnini, F Du, WJ Duranti, M D'Urso, D Eline, A Eppling, FJ Eronen, T Fan, YY Farnesini, L Feng, J Fiandrini, E Fiasson, A Finch, E Fisher, P Galaktionov, Y Gallucci, G Garcia, B Garcia-Lopez, R Gargiulo, C Gast, H Gebauer, I Gervasi, M Ghelfi, A Gillard, W Giovacchini, F Goglov, P Gong, J Goy, C Grabski, V Grandi, D Graziani, M Guandalini, C Guerri, I Guo, KH Haas, D Habiby, M Haino, S Han, KC He, ZH Heil, M Hoffman, J Hsieh, TH Huang, ZC Huh, C Incagli, M Ionica, M Jang, WY Jinchi, H Kanishev, K Kim, GN Kim, KS Kirn, T Kossakowski, R Kounina, O Kounine, A Koutsenko, V Krafczyk, MS La Vacca, G Laudi, E Laurenti, G Lazzizzera, I Lebedev, A Lee, HT Lee, SC Leluc, C Levi, G Li, HL Li, JQ Li, Q Li, Q Li, TX Li, W Li, Y Li, ZH Li, ZY Lim, S Lin, CH Lipari, P Lippert, T Liu, D Liu, H Lolli, M Lomtadze, T Lu, MJ Lu, SQ Lu, YS Luebelsmeyer, K Luo, JZ Lv, SS Majka, R Mana, C Marin, J Martin, T Martinez, G Masi, N Maurin, D Menchaca-Rocha, A Meng, Q Mo, DC Morescalchi, L Mott, P Muller, M Ni, JQ Nikonov, N Nozzoli, F Nunes, P Obermeier, A Oliva, A Orcinha, M Palmonari, F Palomares, C Paniccia, M Papi, A Pauluzzi, M Pedreschi, E Pensotti, S Pereira, R Picot-Clemente, N Pilo, F Piluso, A Pizzolotto, C Plyaskin, V Pohl, M Poireau, V Postaci, E Putze, A Quadrani, L Qi, XM Qin, X Qu, ZY Raiha, T Rancoita, PG Rapin, D Ricol, JS Rodriguez, I Rosier-Lees, S Rozhkov, A Rozza, D Sagdeev, R Sandweiss, J Saouter, P Sbarra, C Schael, S Schmidt, SM von Dratzig, AS Schwering, G Scolieri, G Seo, ES Shan, BS Shan, YH Shi, JY Shi, XY Shi, YM Siedenburg, T Son, D Spada, F Spinella, F Sun, W Sun, WH Tacconi, M Tang, CP Tang, XW Tang, ZC Tao, L Tescaro, D Ting, SCC Ting, SM Tomassetti, N Torsti, J Turkoglu, C Urban, T Vagelli, V Valente, E Vannini, C Valtonen, E Vaurynovich, S Vecchi, M Velasco, M Vialle, JP Vitale, V Vitillo, S Wang, LQ Wang, NH Wang, QL Wang, RS Wang, X Wang, ZX Weng, ZL Whitman, K Wienkenhover, J Wu, H Wu, X Xia, X Xie, M Xie, S Xiong, RQ Xin, GM Xu, NS Xu, W Yan, Q Yang, J Yang, M Ye, QH Yi, H Yu, YJ Yu, ZQ Zeissler, S Zhang, JH Zhang, MT Zhang, XB Zhang, Z Zheng, ZM Zhuang, HL Zhukov, V Zichichi, A Zimmermann, N Zuccon, P Zurbach, C AF Aguilar, M. Aisa, D. Alpat, B. Alvino, A. Ambrosi, G. Andeen, K. Arruda, L. Attig, N. Azzarello, P. Bachlechner, A. Barao, F. Barrau, A. Barrin, L. Bartoloni, A. Basara, L. Battarbee, M. Battiston, R. Bazo, J. Becker, U. Behlmann, M. Beischer, B. Berdugo, J. Bertucci, B. Bigongiari, G. Bindi, V. Bizzaglia, S. Bizzarri, M. Boella, G. de Boer, W. Bollweg, K. Bonnivard, V. Borgia, B. Borsini, S. Boschini, M. J. Bourquin, M. Burger, J. Cadoux, F. Cai, X. D. Capell, M. Caroff, S. Casaus, J. Cascioli, V. Castellini, G. Cernuda, I. Cerreta, D. Cervelli, F. Chae, M. J. Chang, Y. H. Chen, A. I. Chen, H. Cheng, G. M. Chen, H. S. Cheng, L. Chou, H. Y. Choumilov, E. Choutko, V. Chung, C. H. Clark, C. Clavero, R. Coignet, G. Consolandi, C. Contin, A. Corti, C. Gil, E. Cortina Coste, B. Creus, W. Crispoltoni, M. Cui, Z. Dai, Y. M. Delgado, C. Della Torre, S. Demirkoz, M. B. Derome, L. Di Falco, S. Di Masso, L. Dimiccoli, F. Diaz, C. von Doetinchem, P. Donnini, F. Du, W. J. Duranti, M. D'Urso, D. Eline, A. Eppling, F. J. Eronen, T. Fan, Y. Y. Farnesini, L. Feng, J. Fiandrini, E. Fiasson, A. Finch, E. Fisher, P. Galaktionov, Y. Gallucci, G. Garcia, B. Garcia-Lopez, R. Gargiulo, C. Gast, H. Gebauer, I. Gervasi, M. Ghelfi, A. Gillard, W. Giovacchini, F. Goglov, P. Gong, J. Goy, C. Grabski, V. Grandi, D. Graziani, M. Guandalini, C. Guerri, I. Guo, K. H. Haas, D. Habiby, M. Haino, S. Han, K. C. He, Z. H. Heil, M. Hoffman, J. Hsieh, T. H. Huang, Z. C. Huh, C. Incagli, M. Ionica, M. Jang, W. Y. Jinchi, H. Kanishev, K. Kim, G. N. Kim, K. S. Kirn, Th. Kossakowski, R. Kounina, O. Kounine, A. Koutsenko, V. Krafczyk, M. S. La Vacca, G. Laudi, E. Laurenti, G. Lazzizzera, I. Lebedev, A. Lee, H. T. Lee, S. C. Leluc, C. Levi, G. Li, H. L. Li, J. Q. Li, Q. Li, Q. Li, T. X. Li, W. Li, Y. Li, Z. H. Li, Z. Y. Lim, S. Lin, C. H. Lipari, P. Lippert, T. Liu, D. Liu, H. Lolli, M. Lomtadze, T. Lu, M. J. Lu, S. Q. Lu, Y. S. Luebelsmeyer, K. Luo, J. Z. Lv, S. S. Majka, R. Mana, C. Marin, J. Martin, T. Martinez, G. Masi, N. Maurin, D. Menchaca-Rocha, A. Meng, Q. Mo, D. C. Morescalchi, L. Mott, P. Mueller, M. Ni, J. Q. Nikonov, N. Nozzoli, F. Nunes, P. Obermeier, A. Oliva, A. Orcinha, M. Palmonari, F. Palomares, C. Paniccia, M. Papi, A. Pauluzzi, M. Pedreschi, E. Pensotti, S. Pereira, R. Picot-Clemente, N. Pilo, F. Piluso, A. Pizzolotto, C. Plyaskin, V. Pohl, M. Poireau, V. Postaci, E. Putze, A. Quadrani, L. Qi, X. M. Qin, X. Qu, Z. Y. Raeihae, T. Rancoita, P. G. Rapin, D. Ricol, J. S. Rodriguez, I. Rosier-Lees, S. Rozhkov, A. Rozza, D. Sagdeev, R. Sandweiss, J. Saouter, P. Sbarra, C. Schael, S. Schmidt, S. M. von Dratzig, A. Schulz Schwering, G. Scolieri, G. Seo, E. S. Shan, B. S. Shan, Y. H. Shi, J. Y. Shi, X. Y. Shi, Y. M. Siedenburg, T. Son, D. Spada, F. Spinella, F. Sun, W. Sun, W. H. Tacconi, M. Tang, C. P. Tang, X. W. Tang, Z. C. Tao, L. Tescaro, D. Ting, Samuel C. C. Ting, S. M. Tomassetti, N. Torsti, J. Turkoglu, C. Urban, T. Vagelli, V. Valente, E. Vannini, C. Valtonen, E. Vaurynovich, S. Vecchi, M. Velasco, M. Vialle, J. P. Vitale, V. Vitillo, S. Wang, L. Q. Wang, N. H. Wang, Q. L. Wang, R. S. Wang, X. Wang, Z. X. Weng, Z. L. Whitman, K. Wienkenhoever, J. Wu, H. Wu, X. Xia, X. Xie, M. Xie, S. Xiong, R. Q. Xin, G. M. Xu, N. S. Xu, W. Yan, Q. Yang, J. Yang, M. Ye, Q. H. Yi, H. Yu, Y. J. Yu, Z. Q. Zeissler, S. Zhang, J. H. Zhang, M. T. Zhang, X. B. Zhang, Z. Zheng, Z. M. Zhuang, H. L. Zhukov, V. Zichichi, A. Zimmermann, N. Zuccon, P. Zurbach, C. CA AMS Collaboration TI Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station SO PHYSICAL REVIEW LETTERS LA English DT Article ID ABSORPTION CROSS-SECTIONS; HELIUM SPECTRA; BESS SPECTROMETER; GEV-C; NUCLEI; ORIGIN; AMS-02; FLIGHT; DETECTOR; PHYSICS AB A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities. C1 [Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Mueller, M.; Obermeier, A.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, Inst Phys 1, D-52056 Aachen, Germany. [Bachlechner, A.; Beischer, B.; Chung, C. H.; Gast, H.; Kirn, Th.; Luebelsmeyer, K.; Mueller, M.; Obermeier, A.; Raeihae, T.; Schael, S.; von Dratzig, A. Schulz; Schwering, G.; Siedenburg, T.; Wienkenhoever, J.; Zhukov, V.; Zimmermann, N.] Rhein Westfal TH Aachen, JARA FAME, D-52056 Aachen, Germany. [Demirkoz, M. B.; Postaci, E.; Turkoglu, C.] Middle E Tech Univ, Dept Phys, TR-06800 Ankara, Turkey. [Basara, L.; Caroff, S.; Coignet, G.; Feng, J.; Fiasson, A.; Goy, C.; Kossakowski, R.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Basara, L.; Caroff, S.; Coignet, G.; Feng, J.; Fiasson, A.; Goy, C.; Kossakowski, R.; Poireau, V.; Putze, A.; Rosier-Lees, S.; Tao, L.; Vialle, J. P.] Univ Savoie Mont Blanc, F-74941 Annecy Le Vieux, France. [Li, W.; Shan, B. S.; Shan, Y. H.; Zheng, Z. M.] Beihang Univ BUAA, Beijing 100191, Peoples R China. [Dai, Y. M.; Wang, Q. L.; Yu, Y. J.] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Cheng, G. M.; Chen, H. S.; Li, Z. H.; Lu, Y. S.; Tang, X. W.; Tang, Z. C.; Xu, W.; Yang, M.; Yu, Z. Q.; Zhuang, H. L.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. [Contin, A.; Guandalini, C.; Laurenti, G.; Levi, G.; Lolli, M.; Masi, N.; Palmonari, F.; Quadrani, L.; Sbarra, C.; Zichichi, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Contin, A.; Guandalini, C.; Laurenti, G.; Levi, G.; Lolli, M.; Masi, N.; Palmonari, F.; Quadrani, L.; Sbarra, C.; Zichichi, A.] Univ Bologna, I-40126 Bologna, Italy. [Becker, U.; Behlmann, M.; Burger, J.; Cai, X. D.; Capell, M.; Chen, A. I.; Chen, H.; Choumilov, E.; Choutko, V.; Eline, A.; Eppling, F. J.; Fisher, P.; Galaktionov, Y.; Goglov, P.; Heil, M.; Hsieh, T. H.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Lebedev, A.; Li, Q.; Plyaskin, V.; Rozhkov, A.; Shi, X. Y.; Sun, W.; Sun, W. H.; Ting, Samuel C. C.; Ting, S. M.; Vaurynovich, S.; Wang, X.; Weng, Z. L.; Xie, M.; Xu, W.; Yan, Q.; Zuccon, P.] MIT, Cambridge, MA 02139 USA. [Chang, Y. H.; Chou, H. Y.; Creus, W.; Gillard, W.; Haino, S.; Hoffman, J.] Natl Cent Univ, Chungli 32054, Tao Yuan, Taiwan. [Sagdeev, R.] Univ Maryland, East West Ctr Space Sci, College Pk, MD 20742 USA. [Picot-Clemente, N.; Seo, E. S.] Univ Maryland, IPST, College Pk, MD 20742 USA. [Huh, C.; Jang, W. Y.; Kim, G. N.; Kim, K. S.; Lim, S.; Son, D.] Kyungpook Natl Univ, CHEP, Taegu 702701, South Korea. [Castellini, G.] CNR, IROE, I-50125 Florence, Italy. [Barrin, L.; Coste, B.; Gargiulo, C.; Kanishev, K.; Tacconi, M.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Azzarello, P.; Bourquin, M.; Cadoux, F.; Gil, E. Cortina; Haas, D.; Habiby, M.; Leluc, C.; Li, Y.; Paniccia, M.; Pohl, M.; Rapin, D.; Saouter, P.; Vitillo, S.; Wu, X.] Univ Geneva, DPNC, CH-1211 Geneva 4, Switzerland. [Barrau, A.; Bonnivard, V.; Derome, L.; Ghelfi, A.; Maurin, D.; Ricol, J. S.; Tomassetti, N.] Univ Grenoble Alpes, F-38026 Grenoble, France. [Barrau, A.; Bonnivard, V.; Derome, L.; Ghelfi, A.; Maurin, D.; Ricol, J. S.; Tomassetti, N.] CNRS, IN2P3, LPSC, F-38026 Grenoble, France. [Guo, K. H.; He, Z. H.; Huang, Z. C.; Li, T. X.; Lv, S. S.; Mo, D. C.; Ni, J. Q.; Qi, X. M.; Tang, C. P.; Wang, Z. X.; Xu, N. S.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.] Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China. [Bindi, V.; Consolandi, C.; Corti, C.; von Doetinchem, P.; Pereira, R.; Whitman, K.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Bollweg, K.; Clark, C.; Martin, T.; Mott, P.; Urban, T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bollweg, K.; Clark, C.; Martin, T.; Mott, P.; Urban, T.] Jacobs Sverdrup, Houston, TX 77058 USA. [Attig, N.; Lippert, T.; Schmidt, S. M.] Res Ctr Julich, JARA FAME, D-52425 Julich, Germany. [Attig, N.; Lippert, T.; Schmidt, S. M.] Julich Supercomp Ctr, D-52425 Julich, Germany. [Andeen, K.; de Boer, W.; Gebauer, I.; Nikonov, N.; Vagelli, V.; Zeissler, S.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Clavero, R.; Garcia-Lopez, R.; Tescaro, D.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Spain. [Clavero, R.; Garcia-Lopez, R.; Tescaro, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Arruda, L.; Barao, F.; Nunes, P.; Orcinha, M.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000 Lisbon, Portugal. [Han, K. C.; Jinchi, H.] NCSIST, Taoyuan 325, Taiwan. [Aguilar, M.; Berdugo, J.; Casaus, J.; Cernuda, I.; Delgado, C.; Diaz, C.; Garcia, B.; Giovacchini, F.; Mana, C.; Marin, J.; Martinez, G.; Oliva, A.; Palomares, C.; Rodriguez, I.; Velasco, M.; Xia, X.] CIEMAT, E-28040 Madrid, Spain. [Grabski, V.; Menchaca-Rocha, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Boella, G.; Boschini, M. J.; Della Torre, S.; Gervasi, M.; Grandi, D.; La Vacca, G.; Pensotti, S.; Rancoita, P. G.; Rozza, D.; Tacconi, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Boella, G.; Gervasi, M.; Pensotti, S.; Tacconi, M.] Univ Milano Bicocca, I-20126 Milan, Italy. [Zurbach, C.] CNRS, IN2P3, LUPM, F-34095 Montpellier, France. [Zurbach, C.] Univ Montpellier 2, F-34095 Montpellier, France. [Gong, J.; Li, J. Q.; Li, Q.; Liu, H.; Luo, J. Z.; Meng, Q.; Shi, J. Y.; Wu, H.; Xiong, R. Q.; Yi, H.; Zhang, J. H.] Southeast Univ, Nanjing 210096, Jiangsu, Peoples R China. [Finch, E.; Majka, R.; Sandweiss, J.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Azzarello, P.; Bazo, J.; Bertucci, B.; Bizzaglia, S.; Bizzarri, M.; Borsini, S.; Cascioli, V.; Cerreta, D.; Crispoltoni, M.; Di Masso, L.; Donnini, F.; Duranti, M.; D'Urso, D.; Farnesini, L.; Fiandrini, E.; Graziani, M.; Ionica, M.; Laudi, E.; Nozzoli, F.; Papi, A.; Pauluzzi, M.; Piluso, A.; Pizzolotto, C.; Qin, X.; Scolieri, G.; Vitale, V.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Aisa, D.; Bertucci, B.; Bizzarri, M.; Cerreta, D.; Crispoltoni, M.; Di Masso, L.; Donnini, F.; Duranti, M.; Fiandrini, E.; Graziani, M.; Ionica, M.; Laudi, E.; Pauluzzi, M.; Piluso, A.] Univ Perugia, I-06100 Perugia, Italy. [Bigongiari, G.; Cervelli, F.; Di Falco, S.; Gallucci, G.; Guerri, I.; Incagli, M.; Lomtadze, T.; Morescalchi, L.; Pedreschi, E.; Pilo, F.; Spinella, F.; Vannini, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Bigongiari, G.; Guerri, I.] Univ Pisa, I-56100 Pisa, Italy. [Basara, L.; Battiston, R.; Coste, B.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.; Lu, M. J.] Univ Trent, I-38123 Trento, Italy. [Basara, L.; Battiston, R.; Coste, B.; Dimiccoli, F.; Kanishev, K.; Lazzizzera, I.; Lu, M. J.] Ist Nazl Fis Nucl, TIFPA, I-38123 Trento, Italy. [Bartoloni, A.; Borgia, B.; Lipari, P.; Spada, F.; Valente, E.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Borgia, B.; Valente, E.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Vecchi, M.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil. [Chae, M. J.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Cheng, L.; Cui, Z.; Du, W. J.; Wang, L. Q.; Wang, N. H.; Xin, G. M.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Shi, Y. M.; Wang, R. S.; Xie, S.; Ye, Q. H.] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China. [Fan, Y. Y.; Haino, S.; Lee, H. T.; Lee, S. C.; Li, H. L.; Li, Z. Y.; Lin, C. H.; Liu, D.; Lu, S. Q.; Qu, Z. Y.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Battarbee, M.; Eronen, T.; Torsti, J.; Valtonen, E.] Univ Turku, Lab Space Res, Dept Phys & Astron, FI-20014 Turku, Finland. [Battiston, R.] ASI, I-00133 Rome, Italy. [Gil, E. Cortina] Catholic Univ Louvain, CP3, Louvain, Belgium. [Fan, Y. Y.] Xi An Jiao Tong Univ, Xian 710049, Peoples R China. [Feng, J.; Li, Y.; Li, Z. Y.; Lu, S. Q.] Sun Yat Sen Univ, Guangzhou 510275, Peoples R China. [Haas, D.] SRON, Utrecht, Netherlands. [Laudi, E.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Li, H. L.; Qin, X.; Xia, X.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Li, Q.; Xie, M.] Harbin Inst Technol, Harbin 150001, Peoples R China. [Lu, M. J.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Morescalchi, L.] Univ Siena, I-53100 Siena, Italy. [Putze, A.] Univ Savoie Mont Blanc, F-74941 Annecy Le Vieux, France. [Putze, A.] CNRS, LAPTh, F-74941 Annecy Le Vieux, France. [Qu, Z. Y.] Nankai Univ, Tianjin 300071, Peoples R China. [Shi, X. Y.] Beijing Normal Univ, Beijing 100875, Peoples R China. [Sun, W. H.] Southeast Univ, Nanjing 210096, Jiangsu, Peoples R China. RP Aguilar, M (reprint author), CIEMAT, E-28040 Madrid, Spain. RI Pizzolotto, Cecilia/G-5821-2013; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Orcinha, Miguel/O-2362-2016; Paniccia, Mercedes/A-4519-2017; Lazzizzera, Ignazio/E-9678-2015; Delgado, Carlos/K-7587-2014; Berdugo, Javier/A-2858-2015; Vecchi, Manuela/J-9180-2014; alpat, ali behcet/G-6290-2013; Masi, Nicolo/G-7911-2016; Rancoita, Pier Giorgio/J-9896-2015; Zuccon, Paolo/I-7736-2012; Ye, Qinghao/O-5630-2015; Fiandrini, Emanuele/C-4549-2008; Demirkoz, Bilge/C-8179-2014; Palomares, Carmen/H-7783-2015; Duranti, Matteo/I-7691-2013; Tomassetti, Nicola/K-2380-2016; OI Pizzolotto, Cecilia/0000-0003-0200-2408; Orcinha, Miguel/0000-0003-1874-2144; Paniccia, Mercedes/0000-0001-8482-2703; Lazzizzera, Ignazio/0000-0001-5092-7531; Tacconi, Mauro/0000-0002-9344-6305; Quadrani, Lucio/0000-0003-4830-0259; Rozza, Davide/0000-0002-7378-6353; GILLARD, William/0000-0003-4744-9748; Ambrosi, Giovanni/0000-0001-6977-9559; Delgado, Carlos/0000-0002-7014-4101; Berdugo, Javier/0000-0002-7911-8532; alpat, ali behcet/0000-0002-0116-1506; Masi, Nicolo/0000-0002-3729-7608; Rancoita, Pier Giorgio/0000-0002-1990-4283; Zuccon, Paolo/0000-0002-2728-0167; Palomares, Carmen/0000-0003-4374-9065; Duranti, Matteo/0000-0003-0980-6425; Tomassetti, Nicola/0000-0002-0856-9299; La Vacca, Giuseppe/0000-0002-2168-9447; Della Torre, Stefano/0000-0002-7669-0859; Seo, Eun-Suk/0000-0001-8682-805X; Bigongiari, Gabriele/0000-0003-3691-0826; LI, Qiang/0000-0002-2870-4101; Gallucci, Giovanni/0000-0003-3554-9733; Vagelli, Valerio/0000-0002-4495-9331; Basara, Laurent/0000-0002-5726-9954; Corti, Claudio/0000-0001-9127-7133; Morescalchi, Luca/0000-0002-7819-8139; Bertucci, Bruna/0000-0001-7584-293X; Graziani, Maura/0000-0001-7570-2048 FU Jim Siegrist and Michael Salamon of the DOE; MIT and its School of Science; Sao Paulo Research Foundation (FAPESP), Brazil [2014/19149-7, 2014/50747-8]; CAS, China; NSFC, China; MOST, China; NLAA, China; provincial government of Shandong, China; provincial government of Jiangsu, China; provincial government of Guangdong, China; China Scholarship Council, China; Finnish Funding Agency for Innovation (Tekes), Finland [40361/01, 40518/03]; Academy of Finland, Finland [258963]; CNRS, France; IN2P3, France; CNES, France; Enigmass, France; ANR, France; Forschungszentrum Julich, Germany [JARA0052]; DLR, Germany; INFN, Italy; ASI, Italy; ASI Science Data Center under ASI-INFN [C/011/11/1, 2014-037-R.0]; Trento under ASI-INFN [I/002/13/0, 2013-002-R.0]; Kyungpook National University, Korea [NRF-2009-0080142, NRF-2012-010226]; Womans University, Korea [NRF-2013-004883]; Consejo Nacional de Ciencia y Tecnologia at UNAM, Mexico; CIEMAT, Spain; IAC, Spain; SEIDI MINECO, Spain; CDTI, Spain; CPAN, Spain; Swiss National Science Foundation (SNSF), Switzerland; Academia Sinica, Taiwan; Ministry of Science and Technology (MOST), Taiwan [103-2682-M-008-002]; Turkish Atomic Energy Authority at METU, Turkey; CERN; European Space Agency FX We thank former NASA Administrator Daniel S. Goldin for his dedication to the legacy of the ISS as a scientific laboratory and his decision for NASA to fly AMS as a DOE payload. We also acknowledge the continuous support of the NASA leadership including Charles Bolden and William Gerstenmeier and of the JSC and MSFC flight control teams which has allowed AMS to operate optimally on the ISS for over three years. We are grateful for the support of Jim Siegrist and Michael Salamon of the DOE. We also acknowledge the continuous support from MIT and its School of Science, Michael Sipser, Marc Kastner, Ernest Moniz, and Richard Milner. Research supported by: Sao Paulo Research Foundation (FAPESP) Grants No. 2014/19149-7 and No. 2014/50747-8, Brazil; CAS, NSFC, MOST, NLAA, the provincial governments of Shandong, Jiangsu, Guangdong, and the China Scholarship Council, China; the Finnish Funding Agency for Innovation (Tekes) Grants No. 40361/01 and No. 40518/03 and the Academy of Finland Grant No. 258963, Finland; CNRS, IN2P3, CNES, Enigmass, and the ANR, France; J. Trumper, J. D. Woerner, and DLR and Forschungszentrum Julich under Project No. JARA0052, Germany; INFN and ASI, Italy, including the work of J. Bazo, D. D'Urso, F. Nozzoli, C. Pizzolotto, and V. Vitale at the ASI Science Data Center under ASI-INFN Agreements No. C/011/11/1 and No. 2014-037-R.0, work at INFN Sezioni di Bologna, Milano-Bicocca, Perugia, Pisa, Roma, and Trento under ASI-INFN Contracts No. I/002/13/0 and No. 2013-002-R.0; Grants No. NRF-2009-0080142 and No. NRF-2012-010226 at CHEP, Kyungpook National University and No. NRF-2013-004883 at Ewha Womans University, Korea; the Consejo Nacional de Ciencia y Tecnologia at UNAM, Mexico; CIEMAT, IAC, SEIDI MINECO, CDTI, and CPAN, Spain; the Swiss National Science Foundation (SNSF), federal and cantonal authorities, Switzerland; Academia Sinica and the Ministry of Science and Technology (MOST) under Grant No. 103-2682-M-008-002, former President of Academia Sinica Yuan-Tseh Lee and former Ministers of MOST, Maw-Kuen Wu and Luo-Chuan Lee, Taiwan; and the Turkish Atomic Energy Authority at METU, Turkey. We gratefully acknowledge the strong support from CERN, including Rolf-Dieter Heuer, and from the European Space Agency. We are grateful for important discussions with Barry Barish, Jonathan Ellis, Jonathan Feng, Igor Moskalenko, Steve Olsen, George Smoot, Michael Turner, Steven Weinberg, Frank Wilczek, and Arnold Wolfendale. NR 68 TC 76 Z9 77 U1 23 U2 90 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2015 VL 114 IS 17 AR 171103 DI 10.1103/PhysRevLett.114.171103 PG 9 WC Physics, Multidisciplinary SC Physics GA CH0BR UT WOS:000353684400004 PM 25978222 ER PT J AU Perez, K Hailey, CJ Bauer, FE Krivonos, RA Mori, K Baganoff, FK Barriere, NM Boggs, SE Christensen, FE Craig, WW Grefenstette, BW Grindlay, JE Harrison, FA Hong, J Madsen, KK Nynka, M Stern, D Tomsick, JA Wik, DR Zhang, S Zhang, WW Zoglauer, A AF Perez, Kerstin Hailey, Charles J. Bauer, Franz E. Krivonos, Roman A. Mori, Kaya Baganoff, Frederick K. Barriere, Nicolas M. Boggs, Steven E. Christensen, Finn E. Craig, William W. Grefenstette, Brian W. Grindlay, Jonathan E. Harrison, Fiona A. Hong, Jaesub Madsen, Kristin K. Nynka, Melania Stern, Daniel Tomsick, John A. Wik, Daniel R. Zhang, Shuo Zhang, William W. Zoglauer, Andreas TI Extended hard-X-ray emission in the inner few parsecs of the Galaxy SO NATURE LA English DT Article ID XMM-NEWTON OBSERVATIONS; SAGITTARIUS-A-EAST; GALACTIC-CENTER; BLACK-HOLE; MILLISECOND PULSARS; CANDIDATE; RIDGE; SGR; VARIABILITY; LUMINOSITY AB The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems'. Observations of diffuse hardX-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 X 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population'. This could indicate a significantly more massive population of accreting white dwarfs, large populations of lowmass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre. C1 [Perez, Kerstin; Hailey, Charles J.; Mori, Kaya; Nynka, Melania; Zhang, Shuo] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Perez, Kerstin] Haverford Coll, Haverford, PA 19041 USA. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago 7820436, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Krivonos, Roman A.; Barriere, Nicolas M.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Baganoff, Frederick K.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Grindlay, Jonathan E.; Hong, Jaesub] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wik, Daniel R.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Perez, K (reprint author), Columbia Univ, Columbia Astrophys Lab, 550 West 120th St,Room 1027, New York, NY 10027 USA. EM kperez1@haverford.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Madsen, Kristin/0000-0003-1252-4891; Krivonos, Roman/0000-0003-2737-5673 FU NASA [NNG08FD60C]; Basal-CATA [PFB-06/2007]; CONICYT-Chile [FONDECYT 1141218, EMBIGGEN Anillo ACT1101]; Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009] FX This work was supported by NASA contract no. NNGO8FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). We also than kA. Canipe, J. Dodaro, D. Hong and T.V.T. Luu for assistance with data preparation and analysis. F.E.B. acknowledges support from Basal-CATA PFB-06/2007, CONICYT-Chile (FONDECYT 1141218 and EMBIGGEN Anillo ACT1101), and Project IC120009 "Millennium Institute of Astrophysics (MAS)" funded by the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo. NR 46 TC 15 Z9 15 U1 1 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD APR 30 PY 2015 VL 520 IS 7549 BP 646 EP U138 DI 10.1038/nature14353 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0DQ UT WOS:000353689700043 PM 25925477 ER PT J AU Johnson, SS Chevrette, MG Ehlmann, BL Benison, KC AF Johnson, Sarah Stewart Chevrette, Marc Gerard Ehlmann, Bethany L. Benison, Kathleen Counter TI Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment SO PLOS ONE LA English DT Article ID SOUTHERN WESTERN-AUSTRALIA; COMPLETE GENOME SEQUENCE; SALINE LAKES; CHROMOHALOBACTER-SALEXIGENS; MICROBIAL COMMUNITIES; MINE DRAINAGE; REFLECTANCE SPECTROSCOPY; HALOMONAS-ELONGATA; GEN. NOV.; MARS AB The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed meta-genomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. C1 [Johnson, Sarah Stewart] Georgetown Univ, Sci Technol & Int Affairs, Washington, DC 20057 USA. [Chevrette, Marc Gerard] Harvard Univ Extens, Grad Program Biotechnol & Bioengn, Cambridge, MA USA. [Ehlmann, Bethany L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ehlmann, Bethany L.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Benison, Kathleen Counter] W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. RP Johnson, SS (reprint author), Georgetown Univ, Sci Technol & Int Affairs, Washington, DC 20057 USA. EM sarah.johnson@georgetown.edu RI Chevrette, Marc/N-7895-2016 OI Chevrette, Marc/0000-0002-7209-0717 FU William F. Milton Fund FX This research was supported by a William F. Milton Fund grant to SSJ (http://www.faculty.harvard.edu/scholarship-and-research/grants-enabling -research/william-f-milton-fund). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 78 TC 4 Z9 4 U1 3 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 29 PY 2015 VL 10 IS 4 AR e0122869 DI 10.1371/journal.pone.0122869 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0LO UT WOS:000353711600024 PM 25923206 ER PT J AU Hodson, ME Benning, LG Demarchi, B Penkman, KEH Rodriguez-Blanco, JD Schofield, PF Versteegh, EAA AF Hodson, Mark E. Benning, Liane G. Demarchi, Bea Penkman, Kirsty E. H. Rodriguez-Blanco, Juan D. Schofield, Paul F. Versteegh, Emma A. A. TI Biomineralisation by earthworms - an investigation into the stability and distribution of amorphous calcium carbonate SO GEOCHEMICAL TRANSACTIONS LA English DT Article DE Calcite; ACC; CaCO3; FTIR; Synchrotron; Amino acids; Earthworms; Stability ID INTRA-CRYSTALLINE PROTEINS; STRUCTURAL-CHARACTERIZATION; LUMBRICUS-TERRESTRIS; PRECURSOR PHASE; CLOSED-SYSTEM; GRANULES; ACID; ACC; MECHANISM; GROWTH AB Background: Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based mu-FTIR and EMPA electron microprobe analysis. Results: The milky fluid from which granules form is amino acid-rich (<= 136 +/- 3 nmol mg(-1) (n = 3; +/- std dev) per individual amino acid); the CaCO3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r >= 0.7, p <= 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22-35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based mu-FTIR mapping of granule thin sections and the relative intensity of the nu(2): nu(4) peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the mu-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. Conclusions: ACC present in earthworm CaCO3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components. C1 [Hodson, Mark E.] Univ York, Dept Environm, York YO10 5DD, N Yorkshire, England. [Benning, Liane G.; Rodriguez-Blanco, Juan D.] Univ Leeds, Sch Earth & Environm, Cohen Labs, Leeds LS2 9JT, W Yorkshire, England. [Benning, Liane G.] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany. [Demarchi, Bea; Penkman, Kirsty E. H.] Univ York, BioArCh, Dept Chem, York YO10 5DD, N Yorkshire, England. [Demarchi, Bea; Penkman, Kirsty E. H.] Univ York, BioArCh, Dept Archaeol, York YO10 5DD, N Yorkshire, England. [Rodriguez-Blanco, Juan D.] Univ Copenhagen, Nanosci Ctr, Dept Chem, DK-2100 Copenhagen, Denmark. [Schofield, Paul F.] Nat Hist Museum, Dept Earth Sci, Mineral & Planetary Sci, London SW7 5BD, England. [Versteegh, Emma A. A.] Univ Reading, Soil Res Ctr, Sch Archaeol Geog & Environm Sci, Dept Geog & Environm Sci, Wokingham RG6 6DW, England. [Versteegh, Emma A. A.] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hodson, ME (reprint author), Univ York, Dept Environm, York YO10 5DD, N Yorkshire, England. EM mark.hodson@york.ac.uk RI Rodriguez-Blanco, Juan Diego/D-5197-2013; Penkman, Kirsty/D-1952-2012; OI Rodriguez-Blanco, Juan Diego/0000-0001-5978-3001; Penkman, Kirsty/0000-0002-6226-9799; Demarchi, Beatrice/0000-0002-8398-4409; Benning, Liane G./0000-0001-9972-5578 FU NERC grant [NE/F009623/1, NE/H021914/1A]; White Rose Consortium grant; Diamond Light Source [SM9197, SM8989]; Leverhulme Trust FX The production of granules for the bulk analysis was carried out during NERC grant NE/F009623/1 awarded to MEH, Trevor Piearce (University of Lancaster) and Matt Canti (English Heritage); Denise Lambkin carried out the experiments. We thank Anne Dudley (University of Reading) for assistance with the ICP-OES analysis of these granules. Milky fluid samples were obtained by EAAV as part of NERC grant NE/H021914/1A awarded to MEH and Stuart Black (University of Reading). We thank John Morgan (University of Cardiff) and Trevor Piearce (University of Lancaster), for teaching us how to dissect out calciferous glands from earthworms. A White Rose Consortium grant awarded to MEH, KP, LGB and Andy Brown (School of Process, Environmental and Materials Engineering, University of Leeds), John Harding and Colin Freeman (both Department of Materials Science and Engineering, University of Sheffield) helped support the work on individual granule analyses. We thank the Diamond Light Source for the provision of beamtime under grants SM9197 and SM8989. We thank the beamline scientists Drs Mark Frogley, Katia Wehbe and Gianfelice Cinque for assistance with sample preparation, data acquisition and analysis at Diamond and Stefani Lutz and Beatriz Vallina (Leeds) for help during the beamtime. We thank John Spratt (NHM) for his assistance with the electron microprobe analysis. We thank the Leverhulme Trust for financial support to the NEaar laboratory and Sheila Taylor (University of York) for provision of technical support for amino acid analyses. We thank the three anonymous reviewers and the editors for their helpful suggestions and comments. This study has run on and off since 2008 and MEH thanks everyone for their enthusiasm and patience. NR 74 TC 6 Z9 6 U1 5 U2 33 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD APR 28 PY 2015 VL 16 AR 4 DI 10.1186/s12932-015-0019-z PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CJ0PR UT WOS:000355179700001 ER PT J AU Shuster, JR Chen, LJ Hesse, M Argall, MR Daughton, W Torbert, RB Bessho, N AF Shuster, J. R. Chen, L. -J. Hesse, M. Argall, M. R. Daughton, W. Torbert, R. B. Bessho, N. TI Spatiotemporal evolution of electron characteristics in the electron diffusion region of magnetic reconnection: Implications for acceleration and heating SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; electron diffusion region ID COLLISIONLESS RECONNECTION; X-LINE AB Based on particle-in-cell simulations of collisionless magnetic reconnection, the spatiotemporal evolution of electron velocity distributions in the electron diffusion region (EDR) is reported to illustrate how electrons are accelerated and heated. Approximately when the reconnection rate maximizes, electron distributions in the vicinity of the X line exhibit triangular structures with discrete striations and a temperature (T-e) twice that of the inflow region. T-e increases as the meandering EDR populations mix with inflowing electrons. As the distance from the X line increases within the electron outflow jet, the discrete populations swirl into arcs and gyrotropize by the end of the jet with T-e about 3 times that of the X line. Two dominant processes increase T-e and produce the spatially and temporally evolving EDR distributions: (1) electric field acceleration preferential to electrons which meander in the EDR for longer times and (2) cyclotron turning by the magnetic field normal to the reconnection layer. C1 [Shuster, J. R.; Argall, M. R.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Chen, L. -J.; Hesse, M.; Bessho, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Shuster, JR (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM jrf63@wildcats.unh.edu RI Daughton, William/L-9661-2013; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NSF [PHY-0903923, AGS-1202537]; NASA [NNX11AH03G]; Theory and Modeling Program of the Magnetospheric Multiscale mission FX The work at UNH was supported in part by NSF grants PHY-0903923 and AGS-1202537, and NASA grant NNX11AH03G, and at NASA GSFC by the Theory and Modeling Program of the Magnetospheric Multiscale mission. The simulation data are available upon request from the authors. The authors would like to thank S. Wang for the test particle tracing tools used in this study. NR 20 TC 18 Z9 18 U1 2 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2586 EP 2593 DI 10.1002/2015GL063601 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800004 ER PT J AU Simon, AA Li, L Reuter, DC AF Simon, A. A. Li, L. Reuter, D. C. TI Small-scale waves on Jupiter: A reanalysis of New Horizons, Voyager, and Galileo data SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Jupiter; atmosphere; waves ID PROBE; OSCILLATION; ATMOSPHERE; TEMPERATURES; STRATOSPHERE; CASSINI; IMAGER; WINDS AB Jupiter's equator-encircling mesoscale waves were a distinguishing feature observed during the New Horizons Jupiter flyby. Measured velocities indicated eastward propagation, inconsistent with standing wave models developed after the Voyager encounters. We present revised New Horizons mesoscale wave velocities of 164 to 176m/s, approximately 90m/s higher than the tropospheric zonal winds on that date, while Voyager and Galileo mesoscale waves do not show any apparent motion. This is consistent with an eastward propagating inertia-gravity or Kelvin wave, or a wave propagating with the wind at certain altitudes, given proper vertical wind shears. New Horizons high solar phase angle methane band observations show wave crest shadows or aerosol clearing, implying altitudes above the cloud deck for the observed features. New Horizons and Voyager data also indicate that wave trains have lifetimes exceeding two Jovian rotations. C1 [Simon, A. A.; Reuter, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Li, L.] Univ Houston, Dept Phys, Houston, TX USA. RP Simon, AA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM amy.simon@nasa.gov RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 FU NASA Planetary Atmospheres Program FX Work by A.A.S. was funded in part by the NASA Planetary Atmospheres Program. Data are publicly available and were obtained from the Planetary Data System Atmospheres Node (mapped Galileo data) and Rings Node (Voyager 2 and New Horizons LORRI data). We thank R. Morales-Juberias, Andrew Ingersoll, and an anonymous reviewer for providing constructive comments. NR 21 TC 2 Z9 2 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2612 EP 2618 DI 10.1002/2015GL063433 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800007 ER PT J AU Hakkinen, S Rhines, PB Worthen, DL AF Haekkinen, Sirpa Rhines, Peter B. Worthen, Denise L. TI Heat content variability in the North Atlantic Ocean in ocean reanalyses SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE heat content ID DATA ASSIMILATION; WARMING HIATUS; CLIMATE; TEMPERATURE; TRANSPORT; CIRCULATION; PACIFIC AB Warming of the North Atlantic Ocean from the 1950s to 2012 is analyzed on neutral density surfaces and vertical levels in the upper 2000m. Three reanalyses and two observational data sets are compared. The net gain of 5x10(22)J in the upper 2000m is roughly 30% of the global ocean warming over this period. Upper ocean heat content (OHC) is dominated in most regions by heat transport convergence without widespread changes in the potential temperature/salinity relation. The heat convergence is associated with sinking of midthermocline isopycnals, with maximum sinking occurring at potential densities sigma(0)=26.4-27.3, which contain subtropical mode waters. Water masses lighter than sigma(0)=27.3 accumulate heat by increasing their volume, while heavier waters lose heat by decreasing their volume. Spatially, the OHC trend is nonuniform: the low latitudes, 0-30 degrees N are warming steadily while large multidecadal variability occurs at latitudes 30-65 degrees N. C1 [Haekkinen, Sirpa; Worthen, Denise L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rhines, Peter B.] Univ Washington, Seattle, WA 98195 USA. [Worthen, Denise L.] Wyle STE Grp, Houston, TX USA. RP Hakkinen, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM sirpa.hakkinen@nasa.gov FU NASA FX We thank the NASA Ocean Surface Topography Program and the Physical Oceanography Program for support. We also want to thank the anonymous reviewers for their constructive criticism. All data are publicly available from the www.reanalysis.org website and from NOAA/NODC data center (downloaded February 2014). UK Met Office EN4.0.2 data set is available from www.metoffice.gov.uk/hadobs/en4. NR 31 TC 4 Z9 4 U1 2 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2901 EP 2909 DI 10.1002/2015GL063299 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800043 ER PT J AU Yang, X Tang, JW Mustard, JF Lee, JE Rossini, M Joiner, J Munger, JW Kornfeld, A Richardson, AD AF Yang, Xi Tang, Jianwu Mustard, John F. Lee, Jung-Eun Rossini, Micol Joiner, Joanna Munger, J. William Kornfeld, Ari Richardson, Andrew D. TI Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE plant physiology; remote sensing; spectroscopy; chlorophyll fluorescence; gross primary production; carbon cycle ID GROSS PRIMARY PRODUCTION; SUN-INDUCED FLUORESCENCE; NET PRIMARY PRODUCTION; LIGHT-USE EFFICIENCY; TERRESTRIAL GROSS; SPECTRAL REFLECTANCE; VEGETATION INDEXES; CARBON-DIOXIDE; WATER-STRESS; MODELS AB Previous studies have suggested that solar-induced chlorophyll fluorescence (SIF) is correlated with Gross Primary Production (GPP). However, it remains unclear to what extent this relationship is due to absorbed photosynthetically active radiation (APAR) and/or light use efficiency (LUE). Here we present the first time series of near-surface measurement of canopy-scale SIF at 760nm in temperate deciduous forests. SIF correlated with GPP estimated with eddy covariance at diurnal and seasonal scales (r(2)=0.82 and 0.73, respectively), as well as with APAR diurnally and seasonally (r(2)=0.90 and 0.80, respectively). SIF/APAR is significantly positively correlated with LUE and is higher during cloudy days than sunny days. Weekly tower-based SIF agreed with SIF from the Global Ozone Monitoring Experiment-2 (r(2)=0.82). Our results provide ground-based evidence that SIF is directly related to both APAR and LUE and thus GPP, and confirm that satellite SIF can be used as a proxy for GPP. C1 [Yang, Xi; Tang, Jianwu; Mustard, John F.; Lee, Jung-Eun] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Yang, Xi; Tang, Jianwu] Marine Biol Lab, Ecosyst Ctr, Woods Hole, MA 02543 USA. [Rossini, Micol] Univ Milano Bicocca, Remote Sensing Environm Dynam Lab, DISAT, Milan, Italy. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Munger, J. William] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Munger, J. William] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Kornfeld, Ari] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Richardson, Andrew D.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Tang, JW (reprint author), Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. EM jtang@mbl.edu RI Tang, Jianwu/K-6798-2014; Richardson, Andrew/F-5691-2011; OI Tang, Jianwu/0000-0003-2498-9012; Richardson, Andrew/0000-0002-0148-6714; Rossini, Micol/0000-0002-6052-3140; Yang, Xi/0000-0002-5095-6735; Kornfeld, Ari/0000-0003-1646-307X FU Marine Biological Laboratory; Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences; U.S. Department of Energy Office of Biological and Environmental Research [DE-SC0006951]; National Science Foundation [DBI-959333, AGS-1005663, EF-1065029, DEB-1237491] FX We thank the Editor and three anonymous reviewers for the constructive comments. We thank Joe Berry for insightful suggestions on several versions of the manuscript, Christiaan van der Tol for sharing the SCOPE code, Pablo Zarco-Tejada for the help with the design of FluoSpec, Mark Vanscoy from Harvard Forest and Jerome Girard from MBL with the installation of FluoSpec, and Marc Mayes, Shalanda Grier, Will Werner, and Zhunqiao Liu for the help with fieldwork. We thank Harvard Forest Long-Term Ecological Research site to provide the space and help with the fieldwork, and the weather data used in this study. This research was supported by Marine Biological Laboratory start-up funding for J.T. and the Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences. J.T. was partially supported by the U.S. Department of Energy Office of Biological and Environmental Research grant DE-SC0006951 and the National Science Foundation grants DBI-959333 and AGS-1005663. A.D.R. acknowledges support from the National Science Foundation's Macrosystems Biology (award EF-1065029) and LTER (award DEB-1237491) programs. Meteorological data are downloaded from Harvard Forest LTER (http://harvardforest.fas.harvard.edu/). For the use of solar-induced fluorescence data, please contact Xi Yang (geoxiyang@gmail.com) or Jianwu Tang (jtang@mbl.edu). NR 59 TC 30 Z9 30 U1 28 U2 86 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2977 EP 2987 DI 10.1002/2015GL063201 PG 11 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800052 ER PT J AU Dhomse, SS Chipperfield, MP Feng, W Hossaini, R Mann, GW Santee, ML AF Dhomse, S. S. Chipperfield, M. P. Feng, W. Hossaini, R. Mann, G. W. Santee, M. L. TI Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Pinatubo; ozone; chemical modeling; satellite data ID CHEMICAL-TRANSPORT MODEL; STRATOSPHERIC OZONE; MT. PINATUBO; NORTHERN MIDLATITUDES; NO2; SIMULATIONS; VARIABILITY; SOUTHERN; IMPACT; RECORD AB Following the eruption of Mount Pinatubo, satellite and in situ measurements showed a large enhancement in stratospheric aerosol in both hemispheres, but significant midlatitude column O-3 depletion was observed only in the north. We use a three-dimensional chemical transport model to determine the mechanisms behind this hemispheric asymmetry. The model, forced by European Centre for Medium-Range Weather Forecasts ERA-Interim reanalyses and updated aerosol surface area density, successfully simulates observed large column NO2 decreases and the different extents of ozone depletion in the two hemispheres. The chemical ozone loss is similar in the Northern (NH) and Southern Hemispheres (SH), but the contrasting role of dynamics increases the depletion in the NH and decreases it in the SH. The relevant SH dynamics are not captured as well by earlier ERA-40 reanalyses. Overall, the smaller SH column O-3 depletion can be attributed to dynamical variability and smaller SH background lower stratosphere O-3 concentrations. C1 [Dhomse, S. S.; Chipperfield, M. P.; Feng, W.; Hossaini, R.; Mann, G. W.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Dhomse, S. S.; Chipperfield, M. P.] Univ Leeds, Natl Ctr Earth Observat, Leeds, W Yorkshire, England. [Feng, W.; Mann, G. W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Santee, M. L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Dhomse, SS (reprint author), Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. EM S.S.Dhomse@leeds.ac.uk RI FENG, WUHU/B-8327-2008; Chipperfield, Martyn/H-6359-2013; Dhomse, Sandip/C-8198-2011 OI FENG, WUHU/0000-0002-9907-9120; Chipperfield, Martyn/0000-0002-6803-4149; Dhomse, Sandip/0000-0003-3854-5383 FU NERC SOLCLI project [NE/D002753/1]; NERC MAPLE project [NE/J008621/1]; NCEO; NASA FX This work was supported by the NERC SOLCLI (NE/D002753/1) and MAPLE (NE/J008621/1) projects and NCEO. We thank NASA/NOAA for TOMS, SBUV, MLS, and HALOE data. We are grateful for the use of the Lauder and Jungfraujoch NO2 data which was obtained via the NDACC database and WOUDC for the O3 data. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with NASA. We thank the two anonymous reviewers for their comments. NR 33 TC 6 Z9 6 U1 4 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 3038 EP 3047 DI 10.1002/2015GL063052 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800060 PM 27867234 ER PT J AU Ryoo, JM Waliser, DE Waugh, DW Wong, S Fetzer, EJ Fung, I AF Ryoo, Ju-Mee Waliser, Duane E. Waugh, Darryn W. Wong, Sun Fetzer, Eric J. Fung, Inez TI Classification of atmospheric river events on the US West Coast using a trajectory model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE atmospheric river event; precipitation; West Coast of the US; trajectory model; Potential vorticity; diabatic heating ID WARM CONVEYOR BELTS; EXTRATROPICAL CYCLONES; HEAVY PRECIPITATION; CLUSTER-ANALYSIS; UNITED-STATES; MOISTURE TRANSPORT; TROPICAL MOISTURE; UPPER TROPOSPHERE; SIERRA-NEVADA; NORTH PACIFIC AB We investigate transport pathways of water vapor associated with landfalling atmospheric river (AR) events that result in precipitation along the West Coast of the U.S. for winters of 1997-2010. The water vapor transport pathways are determined by computing back trajectories with a trajectory model using the Modern Era Retrospective analysis for Research and Applications reanalysis data set. The majority of AR events (86%) over the West Coast of the U.S. are grouped into three trajectory types, and two of them are closely associated with the AR events. We designate the first type as Ascending near landfall and of Tropical Origin (AT), the second type as Ascending near landfall and of Extratropical Origin (AE), and the third type as Descending or parallel near landfall and of Extratropical Origin (DE), which is accompanied but not directly associated with the AR events. The magnitude and spatial distribution of precipitation of a given AR event are found to be strongly determined by the type of trajectories. In general, AR events composed of both AT and AE trajectories have more frequent precipitation over a broad region of the western U.S. and AR events composed of both AT and DE trajectories have intense precipitation over the southwestern U.S. due to AT trajectories. AR events of AT-only trajectories have intense precipitation, especially over the northwestern U.S., but are less frequent compared to those of AT+AE trajectories. In addition, different patterns of trajectory types among AR events are closely linked to upper level potential vorticity (PV) anomalies; 66% of AR events are associated with anticyclonic Rossby wave breaking events. C1 [Ryoo, Ju-Mee] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. [Waliser, Duane E.; Wong, Sun; Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Waliser, Duane E.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Waugh, Darryn W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Fung, Inez] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Ryoo, JM (reprint author), NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA. EM ju-mee.ryoo@nasa.gov RI Waugh, Darryn/K-3688-2016 OI Waugh, Darryn/0000-0001-7692-2798 FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The MERRA data used for this study are available at the Modeling and Assimilation Data and information Services Center (MDISC, http://disc.sci.gsfc.nasa.gov/mdisc/), managed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We give sincere thanks to Jonathan Wright for providing the model. We thank Jinwon Kim for providing the Climate Prediction Center (CPC) gridded daily rain gauge precipitation data, and Paul Neiman for providing AR records until 2010. We also thank Bjorn Lambrigtsen for suggestions, Seungbeom Kim for helpful discussion and data processing, and three anonymous reviewers for useful comments. NR 64 TC 4 Z9 4 U1 1 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3007 EP 3028 DI 10.1002/2014JD022023 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100001 ER PT J AU Oaida, CM Xue, YK Flanner, MG Skiles, SM De Sales, F Painter, TH AF Oaida, Catalina M. Xue, Yongkang Flanner, Mark G. Skiles, S. McKenzie De Sales, Fernando Painter, Thomas H. TI Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western US SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE snow; regional climate; aerosols; WRF; dust; black carbon ID GOCART MODEL; TEMPERATURE-GRADIENT; SPECTRAL ALBEDO; UNITED-STATES; GRAIN-GROWTH; SIMULATIONS; PARTICLES; ICE; COVER; CYCLE AB Two important factors that control snow albedo are snow grain growth and presence of light-absorbing impurities (aerosols) in snow. However, current regional climate models do not include such processes in a physically based manner in their land surface models. We improve snow albedo calculations in the Simplified Simple Biosphere (SSiB) land surface model coupled with the Weather Research and Forecasting (WRF) regional climate model (RCM), by incorporating the physically based SNow ICe And Radiative (SNICAR) scheme. SNICAR simulates snow albedo evolution due to snow aging and presence of aerosols in snow. The land surface model is further modified to account for deposition, movement, and removal by meltwater of such impurities in the snowpack. This paper presents model development technique, validation with in situ observations, and preliminary results from RCM simulations investigating the impact of such impurities in snow on surface energy and water budgets. By including snow-aerosol interactions, the new land surface model is able to realistically simulate observed snow albedo, snow grain size, dust in snow, and surface water and energy balances in offline simulations for a location in western U.S. Preliminary results with the fully coupled RCM show that over western U.S., realistic aerosol deposition in snow induces a springtime average radiative forcing of 16W/m(2) due to a 6% albedo reduction, a regional surface warming of 0.84 degrees C, and a snowpack reduction of 11mm. C1 [Oaida, Catalina M.; Xue, Yongkang] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Xue, Yongkang; Skiles, S. McKenzie; De Sales, Fernando; Painter, Thomas H.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA. [Flanner, Mark G.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Oaida, CM (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM oaidac@ucla.edu RI Flanner, Mark/C-6139-2011; Painter, Thomas/B-7806-2016 OI Flanner, Mark/0000-0003-4012-174X; FU NASA [NNX10A097G]; NSF [AGS-1115506, AGS-1346813]; UCLA Graduate Dissertation Year Fellowship FX We thank Mian Chin of NASA Goddard Space Flight Center and her group for providing the GOCART aerosol deposition data set for use in this study. Additional data used in this study are available from the corresponding author (oaidac@ucla.edu). This research was supported by NASA grant NNX10A097G, NSF grant AGS-1115506,, NSF grant AGS-1346813, and the UCLA Graduate Dissertation Year Fellowship. The WRF model simulations were conducted using NCAR supercomputing resources. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 68 TC 4 Z9 4 U1 3 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3228 EP 3248 DI 10.1002/2014JD022444 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100015 ER PT J AU Lang, TJ Cummer, SA Petersen, D Flores-Rivera, L Lyons, WA MacGorman, D Beasley, W AF Lang, Timothy J. Cummer, Steven A. Petersen, Danyal Flores-Rivera, Lizxandra Lyons, Walter A. MacGorman, Donald Beasley, William TI Large charge moment change lightning on 31 May to 1 June 2013, including the El Reno tornadic storm SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE lightning; tornado; mesoscale convective system; charge moment change; supercell ID THUNDERSTORM ELECTRIFICATION; SEVERE WEATHER; MAPPING ARRAY; HIGH-PLAINS; SPRITES; RADAR; STEPS; PRECIPITATION; INITIATION; SUPERCELL AB On 31 May 2013, a line of severe tornadic thunderstorms (the El Reno event) developed during the local afternoon in central Oklahoma, USA. Within range of the Oklahoma Lightning Mapping Array, the evolution of the event can be separated into three distinct periods: an Early period (before 02:00 UTC on 1 June) when the storm consisted of discrete supercells, a Middle period (02:00-05:00 UTC) when the convection began merging into a linear feature and stratiform precipitation developed, and a Late period (after 05:00 UTC) featuring a mature mesoscale convective system (MCS). Each of these periods demonstrated distinct patterns in the large (>100Ckm) charge moment change (CMC) lightning that was produced. During the Early period, large-CMC positive cloud-to-ground (+CG) lightning was produced in the convective cores of supercells. These flashes were small in area (typically <500km(2)) and were commonly associated with a sloping midlevel positive charge region in the echo overhang on the storm's forward flank. The Middle period featured a population of larger +CMCs (>500km(2), >300Ckm) in the developing stratiform, similar to typical sprite-parent lightning in MCSs. During the Late period, convective large CMC +CGs ceased and instead large-CMC negative CGs were produced in and near the MCS convection. These flashes neutralized charge both in convection as well as in adjacent stratiform and anvil precipitation. The results suggest that the CMC metric has potential applications for studying tropospheric weather. C1 [Lang, Timothy J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Cummer, Steven A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA. [Petersen, Danyal; Beasley, William] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Flores-Rivera, Lizxandra] Univ Puerto Rico, Mayaguez, PR USA. [Lyons, Walter A.] FMA Res Inc, Ft Collins, CO USA. [MacGorman, Donald] Natl Severe Storms Lab, Natl Ocean & Atmospher Adm, Norman, OK 73069 USA. RP Lang, TJ (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM timothy.j.lang@nasa.gov RI Cummer, Steven/A-6118-2008; OI Cummer, Steven/0000-0002-0002-0613; Lang, Timothy/0000-0003-1576-572X; MacGorman, Donald/0000-0002-2395-8196 FU Defense Advanced Research Projects Agency via the Nimbus program; NASA Marshall summer internship program; NASA Lightning Imaging Sensor project FX This research is dedicated in memory of Tim Samaras, his son Paul, and his colleague Carl Young, all of whom lost their lives in the El Reno tornado. Tim Samaras was a valuable collaborator on the Physical Origins of Coupling to the upper Atmosphere from Lightning (PhOCAL) project, and his contributions are greatly missed. The research presented here is part of PhOCAL, which is led by Duke University and funded by the Defense Advanced Research Projects Agency via the Nimbus program. Flores-Rivera's work on this case was supported by the NASA Marshall summer 2013 internship program and the NASA Lightning Imaging Sensor project. The authors gratefully acknowledge the valuable contributions of the NLDN data from Vaisala, Inc., which enables the geolocation of large-CMC events by the CMCN. NLDN data are available commercially from Vaisala (http://www.vaisala.com/en/products/thunderstormandlightningdetection-sy stems/Pages/NLDN.aspx). CMCN data are available upon request from co-author Steve Cummer (cummer@ee.duke.edu). OKLMA data are available upon request from co-authors Don MacGorman (don. macgorman@noaa.gov) or William Beasley (whb@ou.edu). MRMS mosaics are available from NSSL (http://www.nssl.noaa.gov). All IDL and Python scripts used to perform the analyses and create the plots in this report are available upon request from lead author Timothy Lang (timothy.j.lang@nasa.gov). IDL is available for purchase from http://www.exelisvis.com/ProductsServices/IDL.aspx. A free distribution of Python may be obtained from https://store.continuum.io/cshop/anaconda/. The views, opinions, and findings in this report are those of the authors and should not be construed as an official NASA, NOAA, or U.S. Government position, policy, or decision. NR 61 TC 2 Z9 2 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3354 EP 3369 DI 10.1002/2014JD022600 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100021 ER PT J AU Fan, JW Liu, YC Xu, KM North, K Collis, S Dong, XQ Zhang, GJ Chen, Q Kollias, P Ghan, SJ AF Fan, Jiwen Liu, Yi-Chin Xu, Kuan-Man North, Kirk Collis, Scott Dong, Xiquan Zhang, Guang J. Chen, Qian Kollias, Pavlos Ghan, Steven J. TI Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cumulus parameterization; scale aware; deep convection; cloud-resolving models; bin and bulk microphysics ID MESOSCALE MODEL MM5; PART I; CUMULUS ENSEMBLES; EXPLICIT SIMULATION; RESOLVING MODELS; SQUALL LINE; MASS FLUX; SENSITIVITY; PRECIPITATION; INTENSITY AB The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Z(e) in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes. C1 [Fan, Jiwen; Liu, Yi-Chin; Kollias, Pavlos; Ghan, Steven J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Liu, Yi-Chin] Air Resources Board, Sacramento, CA USA. [Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [North, Kirk] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Collis, Scott] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Dong, Xiquan] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA. [Zhang, Guang J.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. [Chen, Qian] Nanjing Univ Informat Sci & Technol, China Meteorol Adm, Key Lab Aerosol Cloud Precipitat, Nanjing, Jiangsu, Peoples R China. RP Fan, JW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Jiwen.fan@pnnl.gov RI Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011; Measurement, Global/C-4698-2015; Xu, Kuan-Man/B-7557-2013; OI Ghan, Steven/0000-0001-8355-8699; Xu, Kuan-Man/0000-0001-7851-2629; Dong, Xiquan/0000-0002-3359-6117; North, Kirk/0000-0002-1938-4046 FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) [DE-AC02-06CH11357]; ARM Program; NASA Modeling, Analysis and Prediction program; DOE ASR [DE-SC0008468] FX Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Argonne National Laboratory's (ANL) work was supported by the Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), under contract DE-AC02-06CH11357 as part of the ARM Program. Kuan-Man Xu was supported by NASA Modeling, Analysis and Prediction program. Xiquan Dong was supported by DOE ASR project with award number DE-SC0008468 at University of North Dakota. The modeling data can be obtained by contacting Jiwen Fan (Jiwen.Fan@pnnl.gov). NARR reanalysis data were from the NOAA/OAR/ESRL Colorado, at the website http://www.esrl.noaa.gov/psd/. NCEP FNL Operational Model Global Tropospheric Analyses were obtained by National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2000), http://dx.doi.org/10.5065/D6M043C6. CPOL radar data and derived products were provided by Peter May at the Centre for Australian Weather and Climate Research and the Australian Bureau of Meteorology; 3-D multi-Doppler wind field from the MC3E were provided by Kirk North at McGill University, Canada; 3-D dual-Doppler wind field from the TWP-ICE were developed by Scott Collis at Argonne National Laboratory. Aircraft measurement and NEXRAD radar were provide by Xiquan Dong at University of North Dakota; ABRFC precipitation data were download from ARM Data Archive, http://www.archive.arm.gov/armlogin/login.jsp. NR 81 TC 8 Z9 8 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3485 EP 3509 DI 10.1002/2014JD022142 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100028 ER PT J AU Liu, YC Fan, JW Zhang, GJ Xu, KM Ghan, SJ AF Liu, Yi-Chin Fan, Jiwen Zhang, Guang J. Xu, Kuan-Man Ghan, Steven J. TI Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cumulus parameterization; scale aware; cloud-resolving model; eddy transport; top-hat approach ID BULK MICROPHYSICS PARAMETERIZATION; SCHUBERT CUMULUS PARAMETERIZATION; PART II; EXPLICIT SIMULATION; ENSEMBLE MODEL; AGGREGATION; STATISTICS; DOWNDRAFTS AB Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the midlatitude continental and the tropical regions are conducted and evaluated, we examine the scale dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of midlatitude continental convection. We show that the single-updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as three updrafts can account for the internal variability of updrafts well. Based on the evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales. C1 [Liu, Yi-Chin; Fan, Jiwen; Ghan, Steven J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Guang J.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. [Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Fan, JW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jiwen.fan@pnnl.gov RI Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011; Measurement, Global/C-4698-2015; Xu, Kuan-Man/B-7557-2013 OI Ghan, Steven/0000-0001-8355-8699; Xu, Kuan-Man/0000-0001-7851-2629 FU Scientific Discovery through Advanced Computing program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; NASA Modeling, Analysis and Prediction Program FX Support for this work was provided through Scientific Discovery through Advanced Computing program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Kuan-Man Xu was supported by the NASA Modeling, Analysis and Prediction Program. The authors would like to thank Heng Xiao, Kyo-Sun Lim, and Zhe Feng from PNNL for their valuable discussion. The data used in this study were produced by the Pacific Northwest National Laboratory (PNNL) and are stored on PNNL Olympus. They will be available upon request by contacting the corresponding author. NR 36 TC 7 Z9 7 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3510 EP 3532 DI 10.1002/2014JD022145 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100029 ER PT J AU Huang, M Bowman, KW Carmichael, GR Lee, M Chai, TF Spak, SN Henze, DK Darmenov, AS da Silva, AM AF Huang, Min Bowman, Kevin W. Carmichael, Gregory R. Lee, Meemong Chai, Tianfeng Spak, Scott N. Henze, Daven K. Darmenov, Anton S. da Silva, Arlindo M. TI Improved western US background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review DE background ozone; nonlocal and local source contributions; multi-scale modeling and assimilation; Aura TES and OMI; NASA ARCTAS campaign ID CHEMICAL-DATA ASSIMILATION; LONG-TERM CHANGES; AIR-QUALITY; UNITED-STATES; TROPOSPHERIC OZONE; ATMOSPHERIC COMPOSITION; NORTH-AMERICA; MONITORING INSTRUMENT; EMISSION CONTROLS; OBSERVED RESPONSE AB Western U.S. near-surface ozone (O-3) concentrations are sensitive to transported background O-3 from the eastern Pacific free troposphere, as well as U.S. anthropogenic and natural emissions. The current 75ppbv U.S. O-3 primary standard may be lowered soon, hence accurately estimating O-3 source contributions, especially background O-3 in this region has growing policy-relevant significance. In this study, we improve the modeled total and background O-3, via repartitioning and redistributing the contributions from nonlocal and local anthropogenic/wildfires sources in a multi-scale satellite data assimilation system containing global Goddard Earth Observing System-Chemistry model (GEOS-Chem) and regional Sulfur Transport and dEposition Model (STEM). Focusing on NASA's ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) field campaign period in June-July 2008, we first demonstrate that the negative biases in GEOS-Chem free simulation in the eastern Pacific at 400-900hPa are reduced via assimilating Aura-Tropospheric Emission Spectrometer (TES) O-3 profiles. Using the TES-constrained boundary conditions, we then assimilated into STEM the tropospheric nitrogen dioxide (NO2) columns from Aura-Ozone Monitoring Instrument to indicate U.S. nitrogen oxides (NOx=NO2+NO) emissions at 12x12km(2) grid scale. Improved model skills are indicated from cross validation against independent ARCTAS measurements. Leveraging Aura observations, we show anomalously high wildfire NOx emissions in this summer in Northern California and the Central Valley while lower anthropogenic emissions in multiple urban areas than those representing the year of 2005. We found strong spatial variability of the daily maximum 8h average background O-3 and its contribution to the modeled total O-3, with the mean value of similar to 48ppbv (similar to 77% of the total). C1 [Huang, Min; Bowman, Kevin W.; Lee, Meemong] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Carmichael, Gregory R.; Spak, Scott N.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Chai, Tianfeng] NOAA, Air Resources Lab, College Pk, MD USA. [Spak, Scott N.] Univ Iowa, Publ Policy Ctr, Iowa City, IA USA. [Henze, Daven K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Darmenov, Anton S.; da Silva, Arlindo M.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Huang, M (reprint author), George Mason Univ, Spatial Informat Sci & Syst Ctr, Fairfax, VA 22030 USA. EM mhuang10@gmu.edu RI Spak, Scott/B-7331-2008; Chai, Tianfeng/E-5577-2010; Chem, GEOS/C-5595-2014 OI Spak, Scott/0000-0002-8545-1411; Chai, Tianfeng/0000-0003-3520-2641; FU NASA; NASA Aura-TES project FX This work was mostly carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, supported by the NASA Aura-TES project. We thank the Aura and ARCTAS science teams. G.R.C., D.K.H., and M.H. would like to acknowledge the NASA Air Quality Applied Sciences Team. The DC-8 aircraft measurements used in this study were made by A.J. Weinheimer (NCAR, O3, and NOxy) and R.C. Cohen (UC Berkeley, NO2). We also acknowledge the computational resources at University of Iowa and at NASA Ames Research Center. We also acknowledge open access to the data and model used for this study, downloaded from the following:; AQS: http://www.epa.gov/ttn/airs/airsaqs/detaildata; CASTNET: http://epa.gov/castnet/javaweb/index.html; DC-8: http://www-air.larc.nasa.gov/cgi-bin/arcstat-c; OMI: http://www.temis.nl/airpollution/no2col/data/omi/data_v2/2008/; TES: http://tes.jpl.nasa.gov/data/; M2O2: http://wiki.seas.harvard.edu/geos-chem/index.php/Multi-mission_Observati on_Operator_%28M2O2%29 (C) 2015. All rights reserved.; Ozonesondes: http://www.esrl.noaa.gov/gmd/dv/ftpdata.html NR 120 TC 2 Z9 2 U1 4 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3572 EP 3592 DI 10.1002/2014JD022993 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100032 ER PT J AU Lau, RM Herter, TL Morris, MR Li, Z Adams, D AF Lau, R. M. Herter, T. L. Morris, M. R. Li, Z. Adams, D. TI Old supernova dust factory revealed at the Galactic center SO SCIENCE LA English DT Article ID SAGITTARIUS-A-EAST; PASCHEN-ALPHA SURVEY; II REGION COMPLEX; INTERSTELLAR-MEDIUM; SPACE-TELESCOPE; DATA REDUCTION; EARLY UNIVERSE; HIGH-REDSHIFT; ARRAY CAMERA; EVOLUTION AB Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of similar to 0.02 solar masses of warm (similar to 100 kelvin) dust seen near the center of the similar to 10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density similar to 10(3) centimeters(-3)) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe. C1 [Lau, R. M.; Herter, T. L.; Adams, D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Morris, M. R.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Li, Z.] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Adams, D.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron SOFIA Sci Ctr, Univ Space Res Assoc, Moffett Field, CA 94035 USA. RP Lau, RM (reprint author), Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. EM ryanl@astro.cornell.edu FU Recruitment Program of Global Youth Experts; USRA under NASA [NAS2-97001]; Deutsches SOFIA Institut under DLR [50 OK 0901]; NASA [8500-98-014] FX We thank the rest of the FORCAST team, M. Hankins, G. Gull, J. Schoenwald, and C. Henderson, the Universities Space Research Association (USRA) Science and Mission Ops teams, and the entire SOFIA staff. Additionally, we thank E. Dwek and the anonymous referees for their insightful comments. Z.L. acknowledges support from the Recruitment Program of Global Youth Experts. This work is based on observations made with the NASA/German Aerospace Center (DLR) SOFIA. SOFIA science mission operations are conducted jointly by the USRA (under NASA contract NAS2-97001) and the Deutsches SOFIA Institut (under DLR contract 50 OK 0901). Financial support for FORCAST was provided by NASA through award 8500-98-014 issued by USRA. Data presented in this paper can be accessed from supplementary materials data S1 (23). NR 38 TC 12 Z9 12 U1 0 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 24 PY 2015 VL 348 IS 6233 BP 413 EP 418 DI 10.1126/science.aaa2208 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG5NF UT WOS:000353338000028 PM 25791082 ER PT J AU Wang, DT Gruen, DS Lollar, BS Hinrichs, KU Stewart, LC Holden, JF Hristov, AN Pohlman, JW Morrill, PL Konneke, M Delwiche, KB Reeves, EP Sutcliffe, CN Ritter, DJ Seewald, JS McIntosh, JC Hemond, HF Kubo, MD Cardace, D Hoehler, TM Ono, S AF Wang, David T. Gruen, Danielle S. Lollar, Barbara Sherwood Hinrichs, Kai-Uwe Stewart, Lucy C. Holden, James F. Hristov, Alexander N. Pohlman, John W. Morrill, Penny L. Koenneke, Martin Delwiche, Kyle B. Reeves, Eoghan P. Sutcliffe, Chelsea N. Ritter, Daniel J. Seewald, Jeffrey S. McIntosh, Jennifer C. Hemond, Harold F. Kubo, Michael D. Cardace, Dawn Hoehler, Tori M. Ono, Shuhei TI Nonequilibrium clumped isotope signals in microbial methane SO SCIENCE LA English DT Article ID HYDROTHERMAL FLUIDS; BIOGENIC METHANE; HYDROGEN; FRACTIONATION; CARBON; BASIN; GAS; REDUCTION; WATER; OXIDATION AB Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (CH3D)-C-13) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (CH3D)-C-13 abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H-2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. C1 [Wang, David T.; Gruen, Danielle S.; Reeves, Eoghan P.; Ono, Shuhei] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Wang, David T.; Gruen, Danielle S.; Seewald, Jeffrey S.] Woods Hole Oceanog Inst, Marine Chem & Geochem Dept, Woods Hole, MA 02543 USA. [Lollar, Barbara Sherwood; Sutcliffe, Chelsea N.] Univ Toronto, Dept Earth Sci, Toronto, ON M5S 3B1, Canada. [Hinrichs, Kai-Uwe; Koenneke, Martin] Univ Bremen, MARUM Ctr Marine Environm Sci, D-28359 Bremen, Germany. [Hinrichs, Kai-Uwe; Koenneke, Martin] Univ Bremen, Dept Geosci, D-28359 Bremen, Germany. [Stewart, Lucy C.; Holden, James F.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Hristov, Alexander N.] Penn State Univ, Dept Anim Sci, University Pk, PA 16802 USA. [Pohlman, John W.] US Geol Survey, Woods Hole Coastal & Marine Sci Ctr, Woods Hole, MA 02543 USA. [Morrill, Penny L.] Mem Univ Newfoundland, Dept Earth Sci, St John, NF A1B 3X5, Canada. [Delwiche, Kyle B.; Hemond, Harold F.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Ritter, Daniel J.; McIntosh, Jennifer C.] Univ Arizona, Det Hydrol & Water Resources, Tucson, AZ 85721 USA. [Kubo, Michael D.; Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cardace, Dawn] Univ Rhode Isl, Dept Geosci, Kingston, RI 02881 USA. RP Ono, S (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM sono@mit.edu RI Hinrichs, Kai-Uwe/C-7675-2009; Reeves, Eoghan/M-3542-2013; OI Hinrichs, Kai-Uwe/0000-0002-0739-9291; Reeves, Eoghan/0000-0003-0146-0714; Wang, David/0000-0002-2656-8951; Stewart, Lucy/0000-0001-7352-3329 FU NSF [EAR-1250394, EAR-1322805]; N. R. Braunsdorf and D. J. H. Smit of Shell PTI/EG; Deep Carbon Observatory; Natural Sciences and Engineering Research Council of Canada; Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft [HI 616-14-1]; National Defense Science and Engineering Graduate Fellowship; Neil a nd Anna Rasmussen Foundation Fund; Grayce B. Kerr Fellowship; Shell-MITEI Graduate Fellowship FX We thank J. Hayes, R. Summons, A. Whitehill, S. Zaarur, C. Ruppel, L. T. Bryndzia, N. Blair, D. Vinson, K. Nealson, and M. Schrenk for discussions; W. Olszewski, D. Nelson, G. Lacrampe-Couloume, and B. Topcuoglu for technical assistance; A. Whitehill, G. Luo, A. Apprill, K. Twing, W. Brazelton, A. Wray, J. Oh, A. Rowe, G. Chadwick, and A. Rietze for assistance in the field; R. Michener for the delta Dwater analyses; L. T. Bryndzia (Shell) for providing the shale gas samples; R. Dias (USGS) for sharing the NGS samples; and R. Raiche, D. McCrory, S. Moore (HomestakeMining Co.), the staff of the McLaughlin Natural Reserve, and the well operators for access to samples. Grants from the NSF (EAR-1250394 to S.O. and EAR-1322805 to J.C.M.), N. R. Braunsdorf and D. J. H. Smit of Shell PTI/EG (to S.O.), the Deep Carbon Observatory (to S.O., B. S. L., M.K., and K.-U.H.), the Natural Sciences and Engineering Research Council of Canada (to B. S. L.), and the Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft (HI 616-14-1 to K.-U.H. and M.K.) supported this study. D. T. W. was supported by a National Defense Science and Engineering Graduate Fellowship. D. S. G. was supported by the Neil a nd Anna Rasmussen Foundation Fund, the Grayce B. Kerr Fellowship, and a Shell-MITEI Graduate Fellowship. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government. All data used to support the conclusions in this manuscript are provided in the supplementary materials. Author contributions: D. T. W. and S.O. developed the methods, analyzed data, and performed modeling. D. T. W. and D. S. G. performed isotopic analyses. D. S. G., L.C.S., J.F.H., M.K., K.-U.H., and S.O. designed and/or conducted microbiological experiments. D. T. W., D. S. G., B. S. L., P.L.M., K. B. D., A. N. H., C.N.S., M.D.K., D. J. R., J.C.M., D.C., and S.O. designed and/or executed the field-sampling campaigns. D.T.W. and S.O. wrote the manuscript with input from all authors. NR 34 TC 28 Z9 28 U1 14 U2 109 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 24 PY 2015 VL 348 IS 6233 BP 428 EP 431 DI 10.1126/science.aaa4326 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG5NF UT WOS:000353338000032 PM 25745067 ER PT J AU Zhao, MH Ming, B Kim, JW Gibbons, LJ Gu, XH Nguyen, T Park, C Lillehei, PT Villarrubia, JS Vladar, AE Liddle, JA AF Zhao, Minhua Ming, Bin Kim, Jae-Woo Gibbons, Luke J. Gu, Xiaohong Nguyen, Tinh Park, Cheol Lillehei, Peter T. Villarrubia, J. S. Vladar, Andras E. Liddle, J. Alexander TI New insights into subsurface imaging of carbon nanotubes in polymer composites via scanning electron microscopy (vol 26, 085703, 2015) SO NANOTECHNOLOGY LA English DT Correction C1 [Zhao, Minhua; Liddle, J. Alexander] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Ming, Bin; Villarrubia, J. S.; Vladar, Andras E.] NIST, Phys Measurement Lab, Gaithersburg, MD 20899 USA. [Gu, Xiaohong; Nguyen, Tinh] NIST, Engn Lab, Gaithersburg, MD 20899 USA. [Kim, Jae-Woo; Park, Cheol; Lillehei, Peter T.] NASA Langley Res Ctr, Hampton, VA USA. [Park, Cheol] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA USA. [Gibbons, Luke J.] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Zhao, Minhua] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Zhao, MH (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RI Kim, Jae-Woo/A-8314-2008; Liddle, James/A-4867-2013 OI Liddle, James/0000-0002-2508-7910 NR 1 TC 1 Z9 1 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD APR 24 PY 2015 VL 26 IS 16 AR 169601 DI 10.1088/0957-4484/26/16/169601 PG 1 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CG2MU UT WOS:000353109600019 ER PT J AU Cohen, JD Meenehan, SM MacCabe, GS Groblacher, S Safavi-Naeini, AH Marsili, F Shaw, MD Painter, O AF Cohen, Justin D. Meenehan, Sean M. MacCabe, Gregory S. Groeblacher, Simon Safavi-Naeini, Amir H. Marsili, Francesco Shaw, Matthew D. Painter, Oskar TI Phonon counting and intensity interferometry of a nanomechanical resonator SO NATURE LA English DT Article ID QUANTUM; NOISE; LASER AB In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms(1) to secure quantum communication(2). Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss(3) to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light(4). As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes(5), as well as to develop technologies for precision sensing(6) and quantum information processing(7,8). Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser(9). Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled(10), including the generation and heralding of single-phonon Fock states(11) and the quantum entanglement of remote mechanical elements(12,13). C1 [Cohen, Justin D.; Meenehan, Sean M.; MacCabe, Gregory S.; Groeblacher, Simon; Painter, Oskar] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA. [Cohen, Justin D.; Meenehan, Sean M.; MacCabe, Gregory S.; Groeblacher, Simon; Safavi-Naeini, Amir H.; Painter, Oskar] CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA. [Groeblacher, Simon] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol VCQ, A-1090 Vienna, Austria. [Safavi-Naeini, Amir H.] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. [Marsili, Francesco; Shaw, Matthew D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Painter, O (reprint author), CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA. EM opainter@caltech.edu FU DARPA; Institute for Quantum Information and Matter; NSF Physics Frontiers Center; Gordon and Betty Moore Foundation; Kavli Nanoscience Institute at Caltech; NASA; NSERC; Marie Curie International Out-going Fellowship within the 7th European Community Framework Programme FX We thank F. Marquardt and A. G. Krause for discussions, and V. B. Verma, R. P. Miriam and S. W. Nam for their help with the single-photon detectors used in this work. This work was supported by the DARPA ORCHID and MESO programmes, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with the support of the Gordon and Betty Moore Foundation, and the Kavli Nanoscience Institute at Caltech. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. A.H.S.-N. acknowledges support from NSERC. S.G. was supported by a Marie Curie International Out-going Fellowship within the 7th European Community Framework Programme. NR 28 TC 34 Z9 34 U1 13 U2 68 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD APR 23 PY 2015 VL 520 IS 7548 BP 522 EP 525 DI 10.1038/nature14349 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG5LX UT WOS:000353334500038 PM 25903632 ER PT J AU Marsat, S AF Marsat, Sylvain TI Cubic-order spin effects in the dynamics and gravitational wave energy flux of compact object binaries SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE gravitational waves; black holes; post-Newtonian theory ID POST-NEWTONIAN EXPANSION; ROTATING BLACK-HOLE; GENERAL-RELATIVITY; RADIATION; BODIES; FIELD; PARTICLES; EQUATIONS; MOTION AB We investigate cubic-in-spin effects for inspiralling compact object binaries, both in the dynamics and in the energy flux emitted in gravitational waves, at the leading post-Newtonian order. We use a Lagrangian formalism to implement finite-size effects, and extend it to cubic order in the spins, which corresponds to the octupolar order in a multipolar decomposition. This formalism allows us to derive the equation of motion, equations of precession for the spin, and stress-energy tensor of each body in covariant form, and admits a formal generalization to any multipolar order. For spin-induced multipoles, i.e. in the case where the rotation of the compact object is solely responsible for the additional multipole moments, we find a unique structure for the octupolar moment representing cubic-in-spin effects. We apply these results to compute the associated effects in the dynamics of compact binary systems, and deduce the corresponding terms in the energy loss rate due to gravitational waves. These effects enter at the third-and-a-half post-Newtonian order, and can be important for binaries involving rapidly spinning black holes. We provide simplified results for spin-aligned circular orbits, and discuss the quantitative importance of the new contributions. C1 [Marsat, Sylvain] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Marsat, Sylvain] Univ Maryland, Joint Space Sci Ctr, Dept Phys, College Pk, MD 20742 USA. [Marsat, Sylvain] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. RP Marsat, S (reprint author), Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. EM smarsat@umd.edu FU NASA [11-ATP-046]; NASA at the University of Maryland College Park [NNX12AN10G] FX I am grateful to Luc Blanchet, Alessandra Buonanno, Guillaume Faye, Tanja Hinderer, Jan Steinhoff and Michele Levi for useful discussions and comments. This work was supported by the NASA grant 11-ATP-046, as well as the NASA grant NNX12AN10G at the University of Maryland College Park. Some of our computations were done using Mathematica (R) and the symbolic tensor calculus package xAct [103]. NR 82 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 23 PY 2015 VL 32 IS 8 AR 085008 DI 10.1088/0264-9381/32/8/085008 PG 35 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CF1KW UT WOS:000352305100009 ER PT J AU Trail, MA Tsimpidi, AP Liu, P Tsigaridis, K Hu, YT Rudokas, JR Miller, PJ Nenes, A Russell, AG AF Trail, Marcus A. Tsimpidi, Alexandra P. Liu, Peng Tsigaridis, Kostas Hu, Yongtao Rudokas, Jason R. Miller, Paul J. Nenes, Athanasios Russell, Armistead G. TI Impacts of Potential CO2-Reduction Policies on Air Quality in the United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FUTURE CLIMATE-CHANGE; HUMAN HEALTH; ENERGY; EMISSIONS; POLLUTION; BENEFITS; OZONE; MODEL; SCENARIOS; VERSION AB Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NO reduction technologies, resulting in an O-3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O-3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities. C1 [Trail, Marcus A.; Tsimpidi, Alexandra P.; Liu, Peng; Hu, Yongtao; Russell, Armistead G.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Liu, Peng; Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Tsigaridis, Kostas] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Tsigaridis, Kostas] NASA Goddard Inst Space Studies, New York, NY 10025 USA. [Rudokas, Jason R.; Miller, Paul J.] Northeast States Coordinated Air Use Management, Boston, MA 02111 USA. [Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Trail, MA (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM mcus2rail@gmail.com RI Hu, Yongtao/H-7543-2016 OI Hu, Yongtao/0000-0002-5161-0592 FU US EPA [EPA-G2008-STAR-J1]; CDC; NASA FX Although this work was supported, in part, by grants from the US EPA (EPA-G2008-STAR-J1), CDC and NASA, reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply their endorsement or recommendation. The views and opinions of authors expressed herein are those of the authors and do not necessarily state or reflect those of the United States Government. NR 40 TC 6 Z9 7 U1 7 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 21 PY 2015 VL 49 IS 8 BP 5133 EP 5141 DI 10.1021/acs.est.5b00473 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CG9BV UT WOS:000353610300042 PM 25811418 ER PT J AU Jones, SF Blain, AW Lonsdale, C Condon, J Farrah, D Stern, D Tsai, CW Assef, RJ Bridge, C Kimball, A Lacy, M Eisenhardt, P Wu, JW Jarrett, T AF Jones, Suzy F. Blain, Andrew W. Lonsdale, Carol Condon, James Farrah, Duncan Stern, Daniel Tsai, Chao-Wei Assef, Roberto J. Bridge, Carrie Kimball, Amy Lacy, Mark Eisenhardt, Peter Wu, Jingwen Jarrett, Tom TI Submillimetre observations of WISE/radio-selected AGN and their environments SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: clusters: general; galaxies: high-redshift; quasars: general; infrared: galaxies; submillimetre: galaxies ID ACTIVE GALACTIC NUCLEI; ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; REDSHIFT RADIO GALAXIES; DEGREE EXTRAGALACTIC SURVEY; SUPERMASSIVE BLACK-HOLES; STAR-FORMING GALAXIES; POINT-SOURCE CATALOG; WARM IRAS SOURCES; DEEP FIELD SOUTH AB We present JCMT SCUBA-2 850 mu m submillimetre (submm) observations of 30 mid-infrared (mid-IR) luminous active galactic nuclei (AGNs), detected jointly by the Wide-field Infrared Survey Explorer (WISE) all-sky IR survey and the NVSS/FIRST radio survey. These rare sources are selected by their extremely red mid-IR spectral energy distributions (SEDs) and compact radio counterparts. Further investigations show that they are highly obscured, have abundant warm AGN-heated dust and are thought to be experiencing intense AGN feedback. These galaxies appear to be consistent with a later AGN-dominated phase of merging galaxies, while hot, dust-obscured galaxies are an earlier starburst-dominated phase. When comparing the number of submm galaxies detected serendipitously in the surrounding 1.5 arcmin to those in blank-field submm surveys, there is a very significant overdensity, of order 5, but no sign of radial clustering centred at our primary objects. The WISE/radio-selected AGN thus reside in 10-Mpc-scale overdense environments that could be forming in pre-viralized clusters of galaxies. WISE/radio-selected AGNs appear to be the strongest signposts of high-density regions of active, luminous and dusty galaxies. SCUBA-2 850 mu m observations indicate that their submm fluxes are low compared to many popular AGN SED templates, hence the WISE/radio-selected AGNs have either less cold and/or more warm dust emission than normally assumed for typical AGN. Most of the targets are not detected, only four targets are detected at SCUBA-2 850 mu m, and have total IR luminosities >= 10(13) L-circle dot, if their redshifts are consistent with the subset of the 10 SCUBA-2 undetected targets with known redshifts, z similar to 0.44-2.86. C1 [Jones, Suzy F.; Blain, Andrew W.] Univ Leicester, Dept Phys & Astron, XROA, Leicester LE1 7RH, Leics, England. [Lonsdale, Carol; Condon, James; Lacy, Mark] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Farrah, Duncan] Virginia Polytech Inst & State Univ, Dept Phys MC 0435, Blacksburg, VA 24061 USA. [Stern, Daniel; Tsai, Chao-Wei; Eisenhardt, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Assef, Roberto J.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Santiago, Chile. [Bridge, Carrie] Calif Inst Technol MS249 17, Pasadena, CA 91125 USA. [Kimball, Amy] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Wu, Jingwen] Univ Calif Los Angeles, Div Phys & Astron, Los Angeles, CA 90095 USA. [Jarrett, Tom] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. RP Jones, SF (reprint author), Univ Leicester, Dept Phys & Astron, XROA, Univ Rd, Leicester LE1 7RH, Leics, England. EM sfj8@le.ac.uk FU University of Leicester Physics & Astronomy Department; National Aeronautics and Space Administration; Canada Foundation for Innovation; Gemini-CONICYT [32120009]; [M12BU07]; [M13BU02] FX SFJ gratefully acknowledges support from the University of Leicester Physics & Astronomy Department. This publication makes use of data products from the WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.; The James Clerk Maxwell Telescope has historically been operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada and the Netherlands Organization for Scientific Research. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. The programme IDs under which the data were obtained were M12BU07 and M13BU02.; RJA was supported by Gemini-CONICYT grant number 32120009. NR 101 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2015 VL 448 IS 4 BP 3325 EP 3338 DI 10.1093/mnras/stv214 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0WF UT WOS:000351529500026 ER PT J AU De Marco, O Long, J Jacoby, GH Hillwig, T Kronberger, M Howell, SB Reindl, N Margheim, S AF De Marco, Orsola Long, J. Jacoby, George H. Hillwig, T. Kronberger, M. Howell, Steve B. Reindl, N. Margheim, Steve TI Identifying close binary central stars of PN with Kepler SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; binaries: close; stars: evolution; planetary nebulae: individual: J193110888+4324577; planetary nebulae: individual: Kn 61; planetary nebulae: individual: Pa 5 ID DIGITAL SKY SURVEY; INTERMEDIATE-MASS STARS; COMMON-ENVELOPE PHASE; SUBLUMINOUS-B-STARS; GIANT BRANCH STARS; SOLAR-TYPE STARS; NEBULA NGC 6826; PLANETARY-NEBULAE; WHITE-DWARFS; STELLAR EVOLUTION AB Six planetary nebulae (PN) are known in the Kepler space telescope field of view, three of which are newly identified. Of the five central stars of PN with useful Kepler data, one, J193110888+4324577, is the first short-period, post-common envelope binary exhibiting relativistic beaming effects. A second, the central star of the newly identified PN Pa 5, has a rare O(He) spectral type and a periodic variability consistent with an evolved companion, where the orbital axis is almost aligned with the line of sight. The third PN, NGC 6826, has a fast rotating central star, something that can only be achieved in a merger. Fourth, the central star of the newly identified PN Kn 61, has a PG1159 spectral type and a mysterious semi-periodic light variability which we conjecture to be related to the interplay of binarity with a stellar wind. Finally, the central star of the circular PN A61 does not appear to have a photometric variability above 2 mmag. With the possible exception of the variability of Kn 61, all other variability behaviour, would not easily have been detected from the ground. We conclude, based on very low numbers, that there may be many more close binary or close binary products to be discovered with ultra-high-precision photometry. With a larger number of high-precision photometric observations, we will be able to determine how much higher than the currently known 15 per cent, the short-period binary fraction for central stars of PN is likely to be. C1 [De Marco, Orsola] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [De Marco, Orsola] Macquarie Univ, Astron Astrophys & Astrophoton Res Ctr, Sydney, NSW 2109, Australia. [Long, J.; Jacoby, George H.] Giant Magellan Telescope Carnegie Observ, Pasadena, CA 91101 USA. [Hillwig, T.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Kronberger, M.] Deep Sky Hunters Collaborat, Pasadena, CA USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Reindl, N.] Univ Tubingen, D-72074 Tubingen, Germany. [Reindl, N.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany. [Margheim, Steve] Southern Operat Ctr, Gemini Observ, La Serena, Chile. RP De Marco, O (reprint author), Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. EM orsola.demarco@mq.edu.au OI Hillwig, Todd/0000-0002-0816-1090 FU NASA [NNX12AC86G]; Carnegie Observatories, Pasadena, CA; NASA Science Mission directorate; Australian Research Council [FT120100452]; National Science Foundation [AST-1109683]; German Research Foundation (DFG) [WE 1312/41-1] FX This research was supported in part by NASA grant NNX12AC86G, and by the Carnegie Observatories, Pasadena, CA and includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. This research made use of PYKE (Still & Barclay 2012), a software package for the reduction and analysis of Kepler data. This open source software project is developed and distributed by the NASA Kepler Guest Observer Office. This research also made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This material is based in part upon work supported by the Australian Research Council Future Fellowship (OD; Grant No. FT120100452), the National Science Foundation under Grant No. AST-1109683 (TH and OD). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NRis supported by the German Research Foundation (DFG, grant WE 1312/41-1). NR 103 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2015 VL 448 IS 4 BP 3587 EP 3602 DI 10.1093/mnras/stv249 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0WF UT WOS:000351529500050 ER PT J AU Eardley, E Peacock, JA McNaught-Roberts, T Heymans, C Norberg, P Alpaslan, M Baldry, I Bland-Hawthorn, J Brough, S Cluver, ME Driver, SP Farrow, DJ Liske, J Loveday, J Robotham, ASG AF Eardley, E. Peacock, J. A. McNaught-Roberts, T. Heymans, C. Norberg, P. Alpaslan, M. Baldry, I. Bland-Hawthorn, J. Brough, S. Cluver, M. E. Driver, S. P. Farrow, D. J. Liske, J. Loveday, J. Robotham, A. S. G. TI Galaxy And Mass Assembly (GAMA): the galaxy luminosity function within the cosmic web SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: luminosity function, mass function; cosmology: observations; large-scale structure of Universe ID DARK-MATTER HALOES; DIGITAL SKY SURVEY; REDSHIFT SURVEY; STAR-FORMATION; ENVIRONMENT; DEPENDENCE; EVOLUTION; CLASSIFICATION; STATISTICS; FILAMENTS AB We investigate the dependence of the galaxy luminosity function on geometric environment within the Galaxy And Mass Assembly (GAMA) survey. The tidal tensor prescription, based on the Hessian of the pseudo-gravitational potential, is used to classify the cosmic web and define the geometric environments: for a given smoothing scale, we classify every position of the surveyed region, 0.04 < z < 0.26, as either a void, a sheet, a filament or a knot. We consider how to choose appropriate thresholds in the eigenvalues of the Hessian in order to partition the galaxies approximately evenly between environments. We find a significant variation in the luminosity function of galaxies between different geometric environments; the normalization, characterized by phi* in a Schechter function fit, increases by an order of magnitude from voids to knots. The turnover magnitude, characterized by M*, brightens by approximately 0.5 mag from voids to knots. However, we show that the observed modulation can be entirely attributed to the indirect local-density dependence. We therefore find no evidence of a direct influence of the cosmic web on the galaxy luminosity function. C1 [Eardley, E.; Peacock, J. A.; Heymans, C.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [McNaught-Roberts, T.; Norberg, P.; Farrow, D. J.] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Alpaslan, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Baldry, I.] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool L3 5RF, Merseyside, England. [Bland-Hawthorn, J.] Univ Sydney, Sydney Inst Astron, Sch Phys A28, Sydney, NSW 2006, Australia. [Brough, S.] Australian Astron Observ, N Ryde, NSW 1670, Australia. [Cluver, M. E.] Univ Western Cape, Dept Phys, ZA-7530 Bellville, South Africa. [Driver, S. P.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Farrow, D. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Liske, J.] European So Observ, D-85748 Garching, Germany. [Loveday, J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Driver, S. P.; Robotham, A. S. G.] Univ Western Australia, ICRAR, Crawley, WA 6009, Australia. RP Eardley, E (reprint author), Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM ee@roe.ac.uk RI Driver, Simon/H-9115-2014; OI Driver, Simon/0000-0001-9491-7327; Liske, Jochen/0000-0001-7542-2927; Robotham, Aaron/0000-0003-0429-3579; Alpaslan, Mehmet/0000-0003-0321-1033; Baldry, Ivan/0000-0003-0719-9385 FU Science and Technology Facilities Council; ERC [DEGAS-259586, DEGAS- 259586]; ERC under the EC [240185]; Royal Society through the award of a University Research Fellowship; STFC (UK); ARC (Australia); AAO; Spanish MultiDark Consolider Project [CSD2009-00064] FX EE acknowledges support from the Science and Technology Facilities Council. TMR acknowledges support from a ERC Starting Grant (DEGAS-259586). CH acknowledges support from the ERC under the EC FP7 grant number 240185. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the ERC, through receipt of a Starting Grant (DEGAS- 259586). Data used in this paper will be available through the GAMA DB (http://www.gama-survey.org/) once the associated redshifts are publicly released. GAMA is a joint European-Australian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programmes including GALEX MIS, VST KIDS, VISTA VIKING, WISE, Herschel-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO, and the participating institutions. The GAMA website is littp://www.gama-survey.org/.; The MultiDark Database used in this paper and the web application providing online access to it were constructed as part of the activities of the German Astrophysical Virtual Observatory as result of a collaboration between the Leibniz-Institute for Astrophysics Potsdam (AIP) and the Spanish MultiDark Consolider Project CSD2009-00064. The Bolshoi and MultiDark simulations were run on the NASA's Pleiades supercomputer at the NASA Ames Research Center. The MultiDark-Planck (MDPL) and the BigMD simulation suite have been performed in the Supermuc supercomputer at LRZ using time granted by PRACE. NR 51 TC 14 Z9 14 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2015 VL 448 IS 4 BP 3665 EP 3678 DI 10.1093/mnras/stv237 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0WF UT WOS:000351529500054 ER PT J AU Ancel, E Shih, AT Jones, SM Reveley, MS Luxhoj, JT Evans, JK AF Ancel, Ersin Shih, Ann T. Jones, Sharon M. Reveley, Mary S. Luxhoj, James T. Evans, Joni K. TI Predictive safety analytics: inferring aviation accident shaping factors and causation SO JOURNAL OF RISK RESEARCH LA English DT Article DE object-oriented Bayesian network; aviation safety risk; accident causation AB This paper illustrates the development of an object-oriented Bayesian network (OOBN) to integrate the safety risks contributing to an in-flight loss-of-control aviation accident. With the creation of a probabilistic model, inferences about changes to the states of the accident shaping or causal factors can be drawn quantitatively. These predictive safety inferences derive from qualitative reasoning to conclusions based on data, assumptions, and/or premises, and enable an analyst to identify the most prominent causal factors leading to a risk factor prioritization. Such an approach facilitates a mitigation portfolio study and assessment. The model also facilitates the computation of sensitivity values based on perturbations to the estimates in the conditional probability tables. Such computations lead to identifying the most sensitive causal factors with respect to an accident probability. This approach may lead to vulnerability discovery of emerging causal factors for which mitigations do not yet exist that then informs possible future R&D efforts. To illustrate the benefits of an OOBN in a large and complex aviation accident model, the in-flight loss-of-control accident framework model is presented. C1 [Ancel, Ersin] Natl Inst Aerosp, Hampton, VA 23666 USA. [Shih, Ann T.; Jones, Sharon M.] NASA Langley Res Ctr, Hampton, VA USA. [Reveley, Mary S.] NASA Glenn Res Ctr, Cleveland, OH USA. [Luxhoj, James T.] Luxhoj Consulting & Res LLC, Somerset, NJ USA. [Evans, Joni K.] Analyt Mech Associates Inc, Hampton, VA USA. RP Ancel, E (reprint author), Natl Inst Aerosp, Hampton, VA 23666 USA. EM ersin.ancel@nasa.gov FU NASA Aviation Safety Program [NNL08AA00B] FX This work was supported by NASA Aviation Safety Program [NNL08AA00B]. NR 24 TC 5 Z9 5 U1 0 U2 39 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 1366-9877 EI 1466-4461 J9 J RISK RES JI J. Risk Res. PD APR 21 PY 2015 VL 18 IS 4 BP 428 EP 451 DI 10.1080/13669877.2014.896402 PG 24 WC Social Sciences, Interdisciplinary SC Social Sciences - Other Topics GA CE0PM UT WOS:000351506500002 ER PT J AU Hanu, AR Prestwich, WV Byun, SH AF Hanu, A. R. Prestwich, W. V. Byun, S. H. TI A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Delay-line readout; Image acquisition system; Time-to-digital converter; FPGA; Micropattern gas detectors ID GEM DETECTORS AB We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of similar to 81ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024 x 1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8 x 10(6) Hz without any loses and will report a maximum event rate of 6.11 x 10(5) Hz for events whose arrival Limes follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hanu, A. R.; Prestwich, W. V.; Byun, S. H.] McMaster Univ, Dept Med Phys & Appl Radiat Sci, Hamilton, ON L8S 4K1, Canada. [Hanu, A. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hanu, AR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM hanua@mcmaster.ca NR 12 TC 1 Z9 1 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2015 VL 780 BP 33 EP 39 DI 10.1016/j.nima.2015.01.053 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CB9XH UT WOS:000349987100006 ER PT J AU Tiranov, A Lavoie, J Ferrier, A Goldner, P Verma, VB Nam, SW Mirin, RP Lita, AE Marsili, F Herrmann, H Silberhorn, C Gisin, N Afzelius, M Bussieres, F AF Tiranov, Alexey Lavoie, Jonathan Ferrier, Alban Goldner, Philippe Verma, Varun B. Nam, Sae Woo Mirin, Richard P. Lita, Adriana E. Marsili, Francesco Herrmann, Harald Silberhorn, Christine Gisin, Nicolas Afzelius, Mikael Bussieres, Felix TI Storage of hyperentanglement in a solid-state quantum memory SO OPTICA LA English DT Article ID COMMUNICATION; ENTANGLEMENT AB Two photons can simultaneously share entanglement between several degrees of freedom such as polarization, energy-time, spatial mode and orbital angular momentum. This resource is known as hyperentanglement, and it has been shown to be an important tool for optical quantum information processing. Here we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for transmission in optical fibre. We measured violations of a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for each degree of freedom, independently of the other one, which proves the successful storage and retrieval of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quantum communication in optical fibre, and is in particular suitable for linear-optical entanglement purification for quantum repeaters. (C) 2015 Optical Society of America C1 [Tiranov, Alexey; Lavoie, Jonathan; Gisin, Nicolas; Afzelius, Mikael; Bussieres, Felix] Univ Geneva, Appl Phys Grp, CH-1211 Geneva 4, Switzerland. [Ferrier, Alban] Univ Paris 06, Sorbonne Univ, F-75005 Paris, France. [Ferrier, Alban; Goldner, Philippe] PSL Res Univ, Chim ParisTech CNRS, Inst Rech Chim Paris, F-75005 Paris, France. [Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.] NIST, Boulder, CO 80305 USA. [Marsili, Francesco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Herrmann, Harald; Silberhorn, Christine] Univ Paderborn, Appl Phys Integrated Opt Grp, D-33095 Paderborn, Germany. RP Tiranov, A (reprint author), Univ Geneva, Appl Phys Grp, CH-1211 Geneva 4, Switzerland. EM alexey.tiranov@unige.ch RI Silberhorn, Christine/J-4919-2013; Bussieres, Felix/E-5384-2011; Afzelius, Mikael/N-5825-2016; OI Silberhorn, Christine/0000-0002-2349-5443; Bussieres, Felix/0000-0003-0234-175X; Afzelius, Mikael/0000-0001-8367-6820; Mirin, Richard/0000-0002-4472-4655 FU Swiss National Centres of Competence in Research (NCCR); Natural Sciences and Engineering Research Council of Canada (NSERC); Idex [ANR-10-IDEX-0001-02 PSL*] FX Swiss National Centres of Competence in Research (NCCR); Natural Sciences and Engineering Research Council of Canada (NSERC); Idex ANR-10-IDEX-0001-02 PSL*. NR 38 TC 10 Z9 10 U1 2 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2334-2536 J9 OPTICA JI Optica PD APR 20 PY 2015 VL 2 IS 4 BP 279 EP 287 DI 10.1364/OPTICA.2.000279 PG 9 WC Optics SC Optics GA CI6KG UT WOS:000354867300002 ER PT J AU Boada, S Tilvi, V Papovich, C Quadri, RF Hilton, M Finkelstein, S Guo, YC Bond, N Conselice, C Dekel, A Ferguson, H Giavalisco, M Grogin, NA Kocevski, DD Koekemoer, AM Koo, DC AF Boada, Steven Tilvi, V. Papovich, C. Quadri, R. F. Hilton, M. Finkelstein, S. Guo, Yicheng Bond, N. Conselice, C. Dekel, A. Ferguson, H. Giavalisco, M. Grogin, N. A. Kocevski, D. D. Koekemoer, A. M. Koo, D. C. TI THE ROLE OF BULGE FORMATION IN THE HOMOGENIZATION OF STELLAR POPULATIONS AT Z similar to 2 AS REVEALED BY INTERNAL COLOR DISPERSION IN CANDELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: general; galaxies: stellar content; galaxies: structure ID STAR-FORMING GALAXIES; ULTRA DEEP FIELD; SPECTRAL ENERGY-DISTRIBUTIONS; EXTRAGALACTIC LEGACY SURVEY; KILOPARSEC-SCALE CLUMPS; LYMAN BREAK GALAXIES; MASSIVE GALAXIES; HUBBLE SEQUENCE; CAMERA 3; PHOTOMETRIC REDSHIFTS AB We use data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey to study how the spatial variation in the stellar populations of galaxies relates to the formation of galaxies at 1.5 < z < 3.5. We use the internal color dispersion (ICD), measured between the rest-frame UV and optical bands, which is sensitive to age (and dust attenuation) variations in stellar populations. The ICD shows a relation with the stellar masses and morphologies of the galaxies. Galaxies with the largest variation in their stellar populations as evidenced by high ICD have disk-dominated morphologies (with Sersic indexes < 2) and stellar masses between 10 < log (M/M-circle dot) < 11. There is a marked decrease in the ICD as the stellar mass and/or the Sersic index increases. By studying the relations between the ICD and other galaxy properties including size, total color, star formation rate, and dust attenuation, we conclude that the largest variations in stellar populations occur in galaxies where the light from newly, high star-forming clumps contrasts older stellar disk populations. This phase reaches a peak for galaxies only with a specific stellar mass range, 10 < log (M/M-circle dot) < 11, and prior to the formation of a substantial bulge/spheroid. In contrast, galaxies at higher or lower stellar masses and/or higher Sersic index (n > 2) show reduced ICD values, implying a greater homogeneity of their stellar populations. This indicates that if a galaxy is to have a quiescent bulge along with a star-forming disk, typical of Hubble sequence galaxies, this is most common for stellar masses 10 < log (M/M-circle dot) < 11 and when the bulge component remains relatively small (n < 2). C1 [Boada, Steven; Tilvi, V.; Papovich, C.; Quadri, R. F.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Boada, Steven; Tilvi, V.; Papovich, C.; Quadri, R. F.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Hilton, M.] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Hilton, M.; Conselice, C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Finkelstein, S.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Bond, N.] NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Ferguson, H.; Grogin, N. A.; Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Giavalisco, M.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Guo, Yicheng; Koo, D. C.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Guo, Yicheng; Koo, D. C.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Kocevski, D. D.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Dekel, A.] Hebrew Univ Jerusalem, Racah Inst Phys, Ctr Astrophys & Planetary Sci, IL-91904 Jerusalem, Israel. RP Boada, S (reprint author), Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. EM boada@physics.tamu.edu OI Koekemoer, Anton/0000-0002-6610-2048 FU NASA [NAS5-26555]; NSF [AST-0808133] FX The authors also wish to thank the anonymous referee whose comments and suggestions significantly improved both the quality and clarity of this work. This work is based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. We also make use of partial support from NSF AST-0808133. We utilize the Rainbow Cosmological Surveys Database, which is operated by the Universidad Complutense de Madrid (UCM), partnered with the University of California Observatories at Santa Cruz (UCO/Lick, UCSC). Several open source resources are used to complete this study: Python (van Rossum & de Boer 1991), along with Matplotlib (Hunter 2007) and IPython (Perez & Granger 2007). NR 85 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 104 DI 10.1088/0004-637X/803/2/104 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500055 ER PT J AU Dennis, BR Phillips, KJH Schwartz, RA Tolbert, AK Starr, RD Nittler, LR AF Dennis, Brian R. Phillips, Kenneth J. H. Schwartz, Richard A. Tolbert, Anne K. Starr, Richard D. Nittler, Larry R. TI SOLAR FLARE ELEMENT ABUNDANCES FROM THE SOLAR ASSEMBLY FOR X-RAYS (SAX) ON MESSENGER SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: abundances; Sun: flares; Sun: X-rays, gamma-rays ID EMISSION MEASURE; ATOMIC DATABASE; SPECTRA; MERCURY; MISSION; SPACECRAFT; CALCIUM; CHIANTI; CORONA; LINES AB X-ray spectra in the range 1.5-8.5 keV have been analyzed for 526 large flares detected with the Solar Assembly for X-rays (SAX) on the Mercury MESSENGER spacecraft between 2007 and 2013. For each flare, the temperature and emission measure of the emitting plasma were determined from the spectrum of the continuum. In addition, with the SAX energy resolution of 0.6 keV (FWHM) at 6 keV, the intensities of the clearly resolved Feline complex at 6.7 keV and the Ca-line complex at 3.9 keV were determined, along with those of unresolved line complexes from S, Si, and Ar at lower energies. Comparisons of these line intensities with theoretical spectra allow the abundances of these elements relative to hydrogen to be derived, with uncertainties due to instrument calibration and the unknown temperature distribution of the emitting plasma. While significant deviations are found for the abundances of Fe and Ca from flare to flare, the abundances averaged over all flares are found to be enhanced over photospheric values by factors of 1.66 +/- 0.34 (Fe), 3.89 +/- 0.76 (Ca), 1.23 +/- 0.45 (S), 1.64 +/- 0.66 (Si), and 2.48 +/- 0.90 (Ar). These factors differ from previous reported values for Fe and Si at least. They suggest a more complex relation of abundance enhancement with the first ionization potential (FIP) of the element than previously considered, with the possibility that fractionation occurs in flares for elements with an FIP of less than similar to 7 eV rather than similar to 10 eV. C1 [Dennis, Brian R.; Schwartz, Richard A.; Tolbert, Anne K.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab Code 671, Greenbelt, MD 20771 USA. [Phillips, Kenneth J. H.] Nat Hist Museum, Dept Earth Sci, London SW7 5BD, England. [Schwartz, Richard A.; Tolbert, Anne K.; Starr, Richard D.] Catholic Univ Amer, Washington, DC 20064 USA. [Starr, Richard D.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Astrochem Lab Code 691, Greenbelt, MD 20771 USA. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. RP Dennis, BR (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Solar Phys Lab Code 671, Greenbelt, MD 20771 USA. EM brian.r.dennis@nasa.gov NR 32 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 67 DI 10.1088/0004-637X/803/2/67 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500019 ER PT J AU Lindner, RR Aguirre, P Baker, AJ Bond, JR Crichton, D Devlin, MJ Essinger-Hileman, T Gallardo, P Gralla, MB Hilton, M Hincks, AD Huffenberger, KM Hughes, JP Infante, L Lima, M Marriage, TA Menanteau, F Niemack, MD Page, LA Schmitt, BL Sehgal, N Sievers, JL Sifon, C Staggs, ST Swetz, D Weiss, A Wollack, EJ AF Lindner, Robert R. Aguirre, Paula Baker, Andrew J. Bond, J. Richard Crichton, Devin Devlin, Mark J. Essinger-Hileman, Thomas Gallardo, Patricio Gralla, Megan B. Hilton, Matt Hincks, Adam D. Huffenberger, Kevin M. Hughes, John P. Infante, Leopoldo Lima, Marcos Marriage, Tobias A. Menanteau, Felipe Niemack, Michael D. Page, Lyman A. Schmitt, Benjamin L. Sehgal, Neelima Sievers, J. L. Sifon, Cristobal Staggs, Suzanne T. Swetz, Daniel Weiss, Axel Wollack, Edward J. TI THE ATACAMA COSMOLOGY TELESCOPE: THE LABOCA/ACT SURVEY OF CLUSTERS AT ALL REDSHIFTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; cosmology: observations; submillimeter: galaxies; submillimeter: general ID DEEP FIELD-SOUTH; MASSIVE GALAXY CLUSTERS; X-RAY; SUBMILLIMETER GALAXIES; 1E 0657-56; EL GORDO; PHYSICAL-PROPERTIES; PECULIAR VELOCITY; SCALING RELATIONS; MERGING CLUSTER AB We present a multi-wavelength analysis of 11 Sunyaev-Zel'dovich effect (SZE)-selected galaxy clusters (10 with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345 GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1 GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and 500 mu m; SPIRE) on the Herschel Space Observatory. (24)Spatially resolved 345 GHz SZE increments with integrated signal-to-noise ratio (S/N) > 5 are found in six clusters. We compute 2.1 GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii theta < theta(2500c). By extrapolating in frequency, we predict that the combined signals from 2.1 GHz-selected radio sources and 345 GHz-selected submillimeter galaxies (SMGs) contaminate the 148 GHz SZE decrement signal by similar to 5% and the 345 GHz SZE increment by similar to 18%. After removing radio source and SMG emission from the SZE signals, we use ACT, LABOCA, and (in some cases) new Herschel SPIRE imaging to place constraints on the clusters' peculiar velocities. The sample's average peculiar velocity relative to the cosmic microwave background is < v(p)> = 153 +/- 383 km s(-1). C1 [Lindner, Robert R.; Baker, Andrew J.; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Lindner, Robert R.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Aguirre, Paula] Pontificia Univ Catolica Chile, Sch Engn, Santiago, Chile. [Bond, J. Richard] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Crichton, Devin; Essinger-Hileman, Thomas; Gralla, Megan B.; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Devlin, Mark J.; Schmitt, Benjamin L.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gallardo, Patricio; Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Gallardo, Patricio] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Gralla, Megan B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hilton, Matt; Infante, Leopoldo; Sievers, J. L.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Huffenberger, Kevin M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Lima, Marcos] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-01498 Sao Paulo, SP, Brazil. [Menanteau, Felipe] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Menanteau, Felipe] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Sehgal, Neelima] Dept Phys & Astron, Stony Brook, NY 11794 USA. [Sievers, J. L.] Univ KwaZulu Natal, Natl Inst Theoret Phys NITheP, ZA-4000 Durban, South Africa. [Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Swetz, Daniel] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Weiss, Axel] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lindner, RR (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. EM rlindner@astro.wisc.edu RI Lima, Marcos/E-8378-2010; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534; Sifon, Cristobal/0000-0002-8149-1352 FU U.S. National Science Foundation [AST-0955810, AST-0408698, AST-0965625, PHY-0855887, PHY-1214379, AST-0707731, PIRE-0507768, OISE-0530095]; National Aeronautics and Space Administration (NASA) [GO1-12008X, GO2-13156X]; NASA [NAS8-03060]; Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); CFI under the Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; FONDAP Center for Astrophysics [15010003]; BASAL CATA Center for Astrophysics and Associated Technologies; National Aeronautics and Space Administration (NASA) through JPL/Caltech; Herschel FX R.R.L. and A.J.B. acknowledge significant support for this work from the U.S. National Science Foundation through grant AST-0955810. J.P.H. acknowledges support from the National Aeronautics and Space Administration (NASA) through Chandra Awards numbered GO1-12008X and GO2-13156X issued to Rutgers University by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060, and through an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Programa de Astronomia de la Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, and PHY-0855887, PHY-1214379, AST-0707731, and PIRE-0507768 (award No. OISE-0530095). Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. Computations were performed on the GPC super-computer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence, and the University of Toronto. We acknowledge support from the FONDAP Center for Astrophysics 15010003, BASAL CATA Center for Astrophysics and Associated Technologies. The authors thank the APEX staff for their help in carrying out the observations presented here, as well as Phil Edwards, Robin Wark, and Shane O'Sullivan for their assistance with the ATCA observations. We thank the anonymous referee for helpful feedback that has improved this manuscript. APEX is operated by the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. NR 89 TC 2 Z9 2 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 79 DI 10.1088/0004-637X/803/2/79 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500031 ER PT J AU Quinn, SN White, TR Latham, DW Chaplin, WJ Handberg, R Huber, D Kipping, DM Payne, MJ Jiang, C Aguirre, VS Stello, D Sliski, DH Ciardi, DR Buchhave, LA Bedding, TR Davies, GR Hekker, S Kjeldsen, H Kuszlewicz, JS Everett, ME Howell, SB Basu, S Campante, TL Christensen-Dalsgaard, J Elsworth, YP Karoff, C Kawaler, SD Lund, MN Lundkvist, M Esquerdo, GA Calkins, ML Berlind, P AF Quinn, Samuel N. White, Timothy. R. Latham, David W. Chaplin, William J. Handberg, Rasmus Huber, Daniel Kipping, David M. Payne, Matthew J. Jiang, Chen Aguirre, Victor Silva Stello, Dennis Sliski, David H. Ciardi, David R. Buchhave, Lars A. Bedding, Timothy R. Davies, Guy R. Hekker, Saskia Kjeldsen, Hans Kuszlewicz, James S. Everett, Mark E. Howell, Steve B. Basu, Sarbani Campante, Tiago L. Christensen-Dalsgaard, Jorgen Elsworth, Yvonne P. Karoff, Christoffer Kawaler, Steven D. Lund, Mikkel N. Lundkvist, Mia Esquerdo, Gilbert A. Calkins, Michael L. Berlind, Perry TI KEPLER-432: A RED GIANT INTERACTING WITH ONE OF ITS TWO LONG-PERIOD GIANT PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE asteroseismology; planets and satellites: dynamical evolution and stability; planets and satellites: formation; planets and satellites: gaseous planets; planet-star interactions; stars: individual (Kepler-432) ID STELLAR EVOLUTION CODE; SOLAR-TYPE STARS; SPIN-ORBIT MISALIGNMENT; SUN-LIKE STAR; A-TYPE STARS; HOT-JUPITER; ECCENTRIC ORBIT; TRANSITING PLANETS; ASTEROSEISMIC ANALYSIS; BLEND SCENARIOS AB We report the discovery of Kepler-432b, a giant planet ( M-b = 5.41(-0.18)(+0.32) M-Jup R-b = 1.145(-0.039)(+0.036),R-Jup) transiting an evolved star (M-* = 1.32(-0.07)(+0.10) M-circle dot R-* 4.06(-0.08)(+0.12) R-circle dot) with an orbital period of Pb = 52.501129(-0.000053)(+0.000067) days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e = 0.5134(-0.0089)(+0.0098) , which we also measure independently with asterodensity profiling (AP; e = 0.507(-0.114)(+0.039)), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; = M-c sin i(c) = 2.43(-0.24)(+0.22) M-Jup, P-c = 406.2(-2.5)(+3.9) days), and adaptive optics imaging revealed a nearby (0.'' 87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU. C1 [Quinn, Samuel N.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [White, Timothy. R.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Latham, David W.; Kipping, David M.; Payne, Matthew J.; Sliski, David H.; Buchhave, Lars A.; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chaplin, William J.; Handberg, Rasmus; Davies, Guy R.; Kuszlewicz, James S.; Campante, Tiago L.; Elsworth, Yvonne P.; Lund, Mikkel N.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Chaplin, William J.; Handberg, Rasmus; Huber, Daniel; Jiang, Chen; Aguirre, Victor Silva; Stello, Dennis; Bedding, Timothy R.; Davies, Guy R.; Hekker, Saskia; Kjeldsen, Hans; Kuszlewicz, James S.; Campante, Tiago L.; Christensen-Dalsgaard, Jorgen; Elsworth, Yvonne P.; Karoff, Christoffer; Lund, Mikkel N.; Lundkvist, Mia] Aarhus Univ, Stellar Astrophys Ctr, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Huber, Daniel; Stello, Dennis; Bedding, Timothy R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Huber, Daniel] SETI Inst, Mountain View, CA 94043 USA. [Sliski, David H.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasdena, CA 91125 USA. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Hekker, Saskia] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. [Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Basu, Sarbani] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Karoff, Christoffer] Aarhus Univ, Dept Geosci, DK-8000 Aarhus C, Denmark. [Kawaler, Steven D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kipping, David M.] NASA, Washington, DC USA. [Quinn, Samuel N.] NSF, Arlington, VA USA. RP Quinn, SN (reprint author), Georgia State Univ, Dept Phys & Astron, 25 Pk Pl Suite 605, Atlanta, GA 30303 USA. OI Davies, Guy/0000-0002-4290-7351; Lundkvist, Mia Sloth/0000-0002-8661-2571; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Handberg, Rasmus/0000-0001-8725-4502; Lund, Mikkel Norup/0000-0001-9214-5642 FU NSF Graduate Research Fellowship [DGE-1051030]; NASA's Kepler mission [NNX11AB99A]; Smithsonian Astrophysical Observatory; Australian Research Council [DEI40101364]; NASA [NNX14AB92G]; NASA Origins of Solar Systems Program [NNX13A124G]; Danish National Research Foundation [DNRF106]; ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) - European Research Council [267864]; European Research Council under the European Community's Seventh Framework Programme [338251]; Robert Martin Ayers Sciences Fund; National Aeronautics and Space Administration; National Science Foundation; University of Massachusetts; Infrared Processing and Analysis Center/California Institute of Technology FX We thank Russel White and an anonymous referee for valuable discussion and feedback. S.N.Q. is supported by the NSF Graduate Research Fellowship, Grant DGE-1051030. D.W.L. acknowledges partial support from NASA's Kepler mission under Cooperative Agreement NNX11AB99A with the Smithsonian Astrophysical Observatory. D.H. acknowledges support by the Australian Research Council's Discovery Projects funding scheme (project number DEI40101364) and support by NASA under Grant NNX14AB92G issued through the Kepler Participating Scientist Program. M.J.P. gratefully acknowledges the NASA Origins of Solar Systems Program grant NNX13A124G. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). The research leading to the presented results has also received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 338251 (StellarAges). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the APASS database, located at the AAVSO Web site. Funding for APASS has been provided by the Robert Martin Ayers Sciences Fund. NR 139 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 49 DI 10.1088/0004-637X/803/2/49 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500001 ER PT J AU Reiter, J Rhodes, EJ Kosovichev, AG Schou, J Scherrer, PH Larson, TP AF Reiter, J. Rhodes, E. J., Jr. Kosovichev, A. G. Schou, J. Scherrer, P. H. Larson, T. P. TI A METHOD FOR THE ESTIMATION OF p-MODE PARAMETERS FROM AVERAGED SOLAR OSCILLATION POWER SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; methods: numerical; Sun: helioseismology; Sun: oscillations ID MICHELSON DOPPLER IMAGER; INTENSITY HELIOSEISMIC SPECTRA; TIME-DISTANCE HELIOSEISMOLOGY; HIGH-DEGREE FREQUENCIES; DIFFERENTIAL ROTATION; MERIDIONAL CIRCULATION; LOCAL HELIOSEISMOLOGY; 5-MINUTE OSCILLATION; INVERSION METHODS; EXTENDED MINIMUM AB A new fitting methodology is presented that is equally well suited for the estimation of low-, medium-, and high-degree mode parameters from m-averaged solar oscillation power spectra of widely differing spectral resolution. This method, which we call the "Windowed, MuLTiple-Peak, averaged-spectrum" or WMLTP Method, constructs a theoretical profile by convolving the weighted sum of the profiles of the modes appearing in the fitting box with the power spectrum of the window function of the observing run, using weights from a leakage matrix that takes into account. observational and physical effects, such as the distortion of modes by solar latitudinal differential rotation. We demonstrate that the WMLTP Method makes substantial improvements in the inferences of the properties of the solar oscillations in comparison with a previous method, which employed a single profile to represent each spectral peak. We also present an inversion for the internal solar structure, which is based upon 6366 modes that we computed using the WMLTP method on the 66 day 2010 Solar and Heliospheric Observatory/MDI Dynamics Run. To improve both the numerical stability and reliability of the inversion, we developed a new procedure for the identification and correction of outliers in a frequency dataset. We present evidence for a pronounced departure of the sound speed in the outer half of the solar convection zone and in the subsurface shear layer from the radial sound speed profile contained in Model S of Christensen-Dalsgaard and his collaborators that existed in the rising phase of Solar Cycle 24 during mid-2010. C1 [Reiter, J.] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany. [Rhodes, E. J., Jr.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Kosovichev, A. G.; Schou, J.; Scherrer, P. H.; Larson, T. P.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Rhodes, E. J., Jr.] CALTECH, Jet Prop Lab, Astrophys & Space Sci Sect, Pasadena, CA 91109 USA. [Kosovichev, A. G.] New Jersey Inst Technol, Newark, NJ 07102 USA. [Schou, J.] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany. RP Reiter, J (reprint author), Tech Univ Munich, Zentrum Math, M17, D-85748 Garching, Germany. EM jreiter@lrz.tum.de; erhodes@solar.stanford.edu; sasha@bbso.njit.edu; schou@mps.mpg.de; pscherrer@solar.stanford.edu; tplarson@sun.stanford.edu FU NASA [NAG5-10483, NNX08A24G, NAG5-13510, NAG5-11582, NAG5-11001, NAG5-8545, NAG5-8021, NAG5-6104, NAGW-13]; Stanford University [14405890-126967, 1503169-33789-A, 29056-C, 6914]; USC's Office of Undergraduate Programs FX In this work we utilized data from the Solar Oscillations Investigation/Michelson Doppler Imager (SOI/MDI) on board the Solar and Heliospheric Observatory (SOHO), and we have made use of NASAs Astrophysics Data System. SOHO is a project of international cooperation between ESA and NASA. The SOI/MDI project is supported by NASA grant NAG5-10483 to Stanford University. The portion of the research that was conducted at the University of Southern California was supported in part by NASA Grants NNX08A24G, NAG5-13510, NAG5-11582, NAG5-11001, NAG5-8545, NAG5-8021, NAG5-6104, and NAGW-13, by Stanford University Sub-Awards 14405890-126967, 1503169-33789-A, and 29056-C, by Stanford University Sub-Contract Number 6914, and by USC's Office of Undergraduate Programs. Part of this work is the result of research performed at the Jet Propulsion Laboratory of the California Institute of Technology under a contract with the National Aeronautics and Space Administration. We thank the anonymous referee for his valuable contributions to improve the presentation of this work. J.R. is grateful to R. Bulirsch, P. Rentrop, and B. Vexler of the Technische Universitat Munchen for their generous support and hospitality, and to K. Schittkowski of the University of Bayreuth for providing the source code of his NLPQL optimization technique. NR 97 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 92 DI 10.1088/0004-637X/803/2/92 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500044 ER PT J AU Shu, YP Bolton, AS Brownstein, JR Montero-Dorta, AD Koopmans, LVE Treu, T Gavazzi, R Auger, MW Czoske, O Marshall, PJ Moustakas, LA AF Shu, Yiping Bolton, Adam S. Brownstein, Joel R. Montero-Dorta, Antonio D. Koopmans, Leon V. E. Treu, Tommaso Gavazzi, Raphael Auger, Matthew W. Czoske, Oliver Marshall, Philip J. Moustakas, Leonidas A. TI THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: evolution; gravitational lensing: strong; methods: statistical; techniques: image processing ID EARLY-TYPE GALAXIES; DIGITAL SKY SURVEY; DARK-MATTER HALOS; SPECTROSCOPICALLY SELECTED SAMPLE; LUMINOUS RED GALAXIES; TO-LIGHT RATIOS; GRAVITATIONAL LENSES; DENSITY PROFILES; SWELLS SURVEY; SDSS-III AB We present observational results from a new Hubble Space Telescope (HST) Snapshot program to extend the methods of the Sloan Lens ACS (SLACS) Survey to lower lens-galaxy masses. We discover 40 new galaxy-scale strong lenses, which we supplement with 58 previously discovered SLACS lenses. In addition, we determine the posterior PDFs of the Einstein radius for 33 galaxies (18 new and 15 from legacy SLACS data) based on single lensed images. We find a less-than-unity slope of 0.64 +/- 0.06 for the log(10 sigma*)-log(10 sigma SIE) relation, which corresponds to a 6 sigma evidence that the total mass-density profile of early-type galaxies varies systematically in the sense of being shallower at higher lens-galaxy velocity dispersions. The trend is only significant when single-image systems are considered, highlighting the importance of including both "lenses" and "nonlenses" for an unbiased treatment of the lens population when extending to lower mass ranges. By scaling simple stellar-population models to the HST I-band data, we identify a strong trend of increasing dark-matter fraction at higher velocity dispersions, which can be alternatively interpreted as a trend in the stellar initial mass function (IMF) normalization. Consistent with previous findings and the suggestion of a nonuniversal IMF, we find that a Salpeter IMF is ruled out for galaxies with velocity dispersion less than 180 km s(-1). Considered together, our mass-profile and dark-matter fraction trends with increasing galaxy mass could both be explained by an increasing relative contribution on kiloparsec scales from a dark-matter halo with a spatial profile more extended than that of the stellar component. C1 [Shu, Yiping; Bolton, Adam S.; Brownstein, Joel R.; Montero-Dorta, Antonio D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Koopmans, Leon V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Treu, Tommaso] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Treu, Tommaso] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Gavazzi, Raphael] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Auger, Matthew W.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Czoske, Oliver] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Marshall, Philip J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shu, YP (reprint author), Univ Utah, Dept Phys & Astron, 115 South 1400 East, Salt Lake City, UT 84112 USA. EM yiping.shu@utah.edu; bolton@astro.utah.edu OI Moustakas, Leonidas/0000-0003-3030-2360 FU Center for High Performance Computing at the University of Utah; Packard Foundation through a Packard Research Fellowship; Centre National des Etudes Spatiales; NASA through a grant from the Space Telescope Science Institute [12210]; NASA [NAS 5-26555] FX The authors thank the anonymous referee for insightful comments and suggestions that substantially improved this paper. The support and resources from the Center for High Performance Computing at the University of Utah is gratefully acknowledged. T.T. acknowledges support from the Packard Foundation through a Packard Research Fellowship. R.G. acknowledges support for the Centre National des Etudes Spatiales. The work of L.A.M. was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for Program 12210 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. NR 126 TC 12 Z9 12 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2015 VL 803 IS 2 AR 71 DI 10.1088/0004-637X/803/2/71 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG7YT UT WOS:000353524500023 ER PT J AU Cenko, SB Urban, AL Perley, DA Horesh, A Corsi, A Fox, DB Cao, Y Kasliwal, MM Lien, A Arcavi, I Bloom, JS Butler, NR Cucchiara, A de Diego, JA Filippenko, AV Gal-Yam, A Gehrels, N Georgiev, L Gonzalez, J Graham, JF Greiner, J Kann, DA Klein, CR Knust, F Kulkarni, SR Kutyrev, A Laher, R Lee, WH Nugent, PE Prochaska, JX Ramirez-Ruiz, E Richer, MG Rubin, A Urata, Y Varela, K Watson, AM Wozniak, PR AF Cenko, S. Bradley Urban, Alex L. Perley, Daniel A. Horesh, Assaf Corsi, Alessandra Fox, Derek B. Cao, Yi Kasliwal, Mansi M. Lien, Amy Arcavi, Iair Bloom, Joshua S. Butler, Nat R. Cucchiara, Antonino de Diego, Jose A. Filippenko, Alexei V. Gal-Yam, Avishay Gehrels, Neil Georgiev, Leonid Gonzalez, Jesus Graham, John F. Greiner, Jochen Kann, D. Alexander Klein, Christopher R. Knust, Fabian Kulkarni, S. R. Kutyrev, Alexander Laher, Russ Lee, William H. Nugent, Peter E. Prochaska, J. Xavier Ramirez-Ruiz, Enrico Richer, Michael G. Rubin, Adam Urata, Yuji Varela, Karla Watson, Alan M. Wozniak, Przemek R. TI iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: general; stars: flare; supernovae: general ID ORPHAN AFTERGLOWS; SEARCH; SUPERNOVA; EMISSION; SAMPLE; LIGHT; RATES AB We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (M-r approximate to -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of R-rel = 610 yr(-1) (68% confidence interval of 110-2000 yr(-1)). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets. C1 [Cenko, S. Bradley; Lien, Amy; Cucchiara, Antonino; Gehrels, Neil; Kutyrev, Alexander] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Urban, Alex L.] Univ Wisconsin, Leonard E Parker Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53211 USA. [Perley, Daniel A.; Cao, Yi; Kulkarni, S. R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Horesh, Assaf] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Corsi, Alessandra] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Fox, Derek B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Kasliwal, Mansi M.] Observ Carnegie Inst Sci, Pasadena, CA USA. [Lien, Amy] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Arcavi, Iair] Las Cumbres Observ Global Telescope, Goleta, CA 93111 USA. [Arcavi, Iair] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Filippenko, Alexei V.; Klein, Christopher R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Butler, Nat R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Bloom, Joshua S.; Butler, Nat R.; Georgiev, Leonid; Gonzalez, Jesus; Lee, William H.; Watson, Alan M.] Arizona State Univ, Cosmol Initiat, Tempe, AZ 85287 USA. [de Diego, Jose A.; Nugent, Peter E.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Graham, John F.; Greiner, Jochen; Knust, Fabian] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kann, D. Alexander] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Laher, Russ] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Nugent, Peter E.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Prochaska, J. Xavier; Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Prochaska, J. Xavier; Ramirez-Ruiz, Enrico] Univ Calif Santa Cruz, UCO, Lick Observ, Santa Cruz, CA 95064 USA. [Urata, Yuji] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Wozniak, Przemek R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cenko, SB (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. EM brad.cenko@nasa.gov RI Horesh, Assaf/O-9873-2016; Gonzalez, Jose/L-6687-2014; OI Horesh, Assaf/0000-0002-5936-1156; Gonzalez, Jose/0000-0002-3724-1583; Wozniak, Przemyslaw/0000-0002-9919-3310; Arcavi, Iair/0000-0001-7090-4898; Fox, Derek/0000-0002-3714-672X FU NSF at the UWM Research Growth Initiative [PHY-0970074, PHY-1307429, AST-1211916]; Alexander von Humboldt Foundation Germany; TLS Tautenburg; TABASGO Foundation; Gary and Cynthia Bengier, and the Christopher R. Redlich Fund; NASA [NNX13AP036, NNX14AI95G, NNX09AH71G, NNX09AT02G, NNX10AI27G, NNX12AE66G]; US Department of Energy, Laboratory of Directed Research and Development program; DFG [HA 1850/28-1]; W.M. Keck Foundation; Teledyne Scientific and Imaging; CONACyT [INFR-2009-01-122785, CB-2008-101958]; UNAM PAPIIT [IN113810]; UC MEXUS-CONACyT [CN 09-283] FX We thank David Jewitt for executing our Keck/LRIS ToO observations, and Eran Ofek, Leo Singer, and Eric Bellm for comments on this manuscript. A.L.U. was supported by NSF grants PHY-0970074 and PHY-1307429 at the UWM Research Growth Initiative. J.F.G. acknowledges the Sofja Kovalevskaja award to P. Schady from the Alexander von Humboldt Foundation Germany. D.A.K. thanks TLS Tautenburg for financial support. The work of A.V.F. was made possible by NSF grant AST-1211916, the TABASGO Foundation, Gary and Cynthia Bengier, and the Christopher R. Redlich Fund. J.X.P. received funding from NASA grants NNX13AP036 and NNX14AI95G.; This paper is based in part on observations obtained with the P48 Oschin telescope as part of the Intermediate Palomar Transient Factory project, a scientific collaboration among the Caltech, LANL, UW-Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli IPMU. LANL participation in iPTF is supported by the US Department of Energy as part of the Laboratory of Directed Research and Development program. The National Energy Research Scientific Computing Center provided staff, computational resources, and data storage for this project. Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W.M. Keck Foundation.; We thank the RATIR project team and the staff of the Observatorio Astronomico Nacional on Sierra San Pedro Martir. RATIR is a collaboration between the University of California, the Universidad Nacional Autonoma de Mexico, NASA Goddard Space Flight Center, and Arizona State University, benefiting from the loan of an H2RG detector and hardware and software support from Teledyne Scientific and Imaging. RATIR, the automation of the Harold L. Johnson Telescope of the Observatorio Astronomico Nacional on Sierra San Pedro Martir, and the operation of both are funded through NASA grants NNX09AH71G, NNX09AT02G, NNX10AI27G, and NNX12AE66G, CONACyT grants INFR-2009-01-122785 and CB-2008-101958, UNAM PAPIIT grant IN113810, and UC MEXUS-CONACyT grant CN 09-283. NR 36 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2015 VL 803 IS 2 AR L24 DI 10.1088/2041-8205/803/2/L24 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CH1XW UT WOS:000353818000010 ER PT J AU Friedline, A Zachariah, M Middaugh, A Heiser, M Khanna, N Vaishampayan, P Rice, CV AF Friedline, Anthony Zachariah, Malcolm Middaugh, Amy Heiser, Matt Khanna, Neeraj Vaishampayan, Parag Rice, Charles V. TI Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide SO AMB EXPRESS LA English DT Article DE Bacillus pumilus; Bacillus subtilis; Chlorine dioxide; Spore killing; Spores ID BACILLUS-SUBTILIS SPORULATION; SOLAR UV-RADIATION; DIPICOLINIC ACID; PUMILUS SPORES; SURVIVAL; PEPTIDOGLYCAN; PROTEINS; GERMINATION; ENDOSPORES; CEREUS AB Bacillus pumilus SAFR-032 spores isolated from a clean room environment are known to exhibit enhanced resistance to peroxide, desiccation, UV radiation and chemical disinfection than other spore-forming bacteria. The survival of B. pumilus SAFR-032 spores to standard clean room sterilization practices requires development of more stringent disinfection agents. Here, we report the effects of a stabilized chlorine dioxide-based biocidal agent against spores of B. pumilus SAFR-032 and Bacillus subtilis ATCC 6051. Viability was determined via CFU measurement after exposure. Chlorine dioxide demonstrated efficacy towards sterilization of spores of B. pumilus SAFR-032 equivalent or better than exposure to hydrogen peroxide. These results indicate efficacy of chlorine dioxide delivered through a stabilized chlorine dioxide product as a means of sterilization of peroxide-and UV-resistant spores. C1 [Friedline, Anthony; Zachariah, Malcolm; Middaugh, Amy; Rice, Charles V.] Univ Oklahoma, Dept Chem & Biochem, Stephenson Life Sci Res Ctr, Norman, OK 73019 USA. [Heiser, Matt; Khanna, Neeraj] Biocide Int Inc, Norman, OK USA. [Khanna, Neeraj] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91125 USA. RP Rice, CV (reprint author), Univ Oklahoma, Dept Chem & Biochem, Stephenson Life Sci Res Ctr, Norman, OK 73019 USA. EM rice@ou.edu FU National Institutes of Health [1R01GM090064-01]; NASA EPSCoR Research Infrastructure Development (RID) grant [NN07AL49A]; University of Oklahoma FX This work is supported by the National Institutes of Health (1R01GM090064-01), a NASA EPSCoR Research Infrastructure Development (RID) grant NN07AL49A, and the University of Oklahoma. We also wish to express our gratitude to Dr. Kasthuri Venkateswaran, NASA JPL Biotechnology and Planetary Protection Group for sharing the B. pumilus SAFR-032 strain. NR 52 TC 2 Z9 2 U1 2 U2 14 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2191-0855 J9 AMB EXPRESS JI AMB Express PD APR 17 PY 2015 VL 5 AR 24 DI 10.1186/s13568-015-0109-4 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CN0BK UT WOS:000358076600001 PM 25897406 ER PT J AU Bottke, WF Vokrouhlicky, D Marchi, S Swindle, T Scott, ERD Weirich, JR Levison, H AF Bottke, W. F. Vokrouhlicky, D. Marchi, S. Swindle, T. Scott, E. R. D. Weirich, J. R. Levison, H. TI Dating the Moon-forming impact event with asteroidal meteorites SO SCIENCE LA English DT Article ID TERRESTRIAL PLANET FORMATION; CHONDRITE PARENT BODIES; GIANT IMPACT; HEMISPHERIC DICHOTOMY; HEAVY BOMBARDMENT; DISTRIBUTIONS; EARTH; CHRONOLOGY; COLLISIONS; BELT AB The inner solar system's biggest and most recent known collision was the Moon-forming giant impact between a large protoplanet and proto-Earth. Not only did it create a disk near Earth that formed the Moon, it also ejected several percent of an Earth mass out of the Earth-Moon system. Here, we argue that numerous kilometer-sized ejecta fragments from that event struck main-belt asteroids at velocities exceeding 10 kilometers per second, enough to heat and degas target rock. Such impacts produce similar to 1000 times more highly heated material by volume than do typical main belt collisions at similar to 5 kilometers per second. By modeling their temporal evolution, and fitting the results to ancient impact heating signatures in stony meteorites, we infer that the Moon formed similar to 4.47 billion years ago, which is in agreement with previous estimates. C1 [Bottke, W. F.; Marchi, S.; Levison, H.] SW Res Inst, Boulder, CO 80302 USA. [Bottke, W. F.; Marchi, S.; Levison, H.] NASA, SSERVI, ISET, Boulder, CO USA. [Vokrouhlicky, D.] Charles Univ Prague, Inst Astron, CZ-18000 Prague 8, Czech Republic. [Swindle, T.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Swindle, T.] SSERVI Ctr Lunar Sci Explorat, Houston, TX USA. [Scott, E. R. D.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Weirich, J. R.] Univ Western Ontario, Dept Earth Sci, London, ON, Canada. RP Bottke, WF (reprint author), SW Res Inst, Boulder, CO 80302 USA. EM bottke@boulder.swri.edu FU NASA's SSERVI program [NNA14AB03A, NNA14AB07A]; Czech Grant Agency [P209-13-01308S] FX We thank R. Canup, B. Cohen, A. Jackson, A. Parker, P. Renne, and J. Salmon for many useful discussions and our referees for their numerous constructive comments. W.F.B, S.M., and T.S.'s participation was supported by NASA's SSERVI program through institute grant numbers NNA14AB03A and NNA14AB07A. The work of D.V. was partially supported by research grant P209-13-01308S of the Czech Grant Agency. Resources supporting this work were provided by the NASA High-End Computing Program through the NASA Advanced Supercomputing Division at Ames Research Center. Data are available in the main text, supplementary materials, or upon request. NR 28 TC 13 Z9 14 U1 3 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 17 PY 2015 VL 348 IS 6232 BP 321 EP 323 DI 10.1126/science.aaa0602 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG0YC UT WOS:000352999000040 PM 25883354 ER PT J AU Li, LM Jiang, X Trammell, HJ Pan, YF Hernandez, J Conrath, BJ Gierasch, PJ Achterberg, RK Nixon, CA Flasar, FM Perez-Hoyos, S West, RA Baines, KH Knowles, B AF Li, Liming Jiang, Xun Trammell, Harold J. Pan, Yefeng Hernandez, Joseph Conrath, Barney J. Gierasch, Peter J. Achterberg, Richard K. Nixon, Conor A. Flasar, F. Michael Perez-Hoyos, Santiago West, Robert A. Baines, Kevin H. Knowles, Benjamin TI Saturn's giant storm and global radiant energy SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Saturn; giant storm; radiant energy budget ID CASSINI ISS; JUPITER; EVOLUTION; DYNAMICS AB We analyze the relationship between Saturn's radiant energies and the 2010 giant storm with the Cassini observations. The storm increased the emitted power in a wide latitudinal band (20-55 degrees N) with a maximum change of 9.20.1% around 45 degrees N from 2010 to 2011. Such a regional change caused the global-average emitted power to increase by similar to 2.00.2%. Saturn's giant storm occurs quasiperiodically (i.e., period approximately one Saturnian year), so it is possible that giant storms continuously modify the emitted power if the storm modification has a lifetime close to one Saturnian year. The hemispheric-average emitted power in the southern hemisphere, which was mainly affected by the seasonal change, decreased by 8.50.3% from 2004 to 2013. Our estimates also imply that the 2010 giant storm significantly modified the absorbed solar power of Saturn. The significant temporal variations of radiant powers should be considered in reexamining the value of Saturn's internal heat flux. C1 [Li, Liming; Jiang, Xun; Trammell, Harold J.; Pan, Yefeng; Hernandez, Joseph] Univ Houston, Houston, TX 77004 USA. [Conrath, Barney J.; Gierasch, Peter J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Achterberg, Richard K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Nixon, Conor A.; Flasar, F. Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Perez-Hoyos, Santiago] ETS Ingn UPV EHU, Dept Fis Aplicada 1, Bilbao, Spain. [West, Robert A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Baines, Kevin H.] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI USA. [Knowles, Benjamin] CICLOPS Space Sci Inst, Boulder, CO USA. RP Li, LM (reprint author), Univ Houston, Houston, TX 77004 USA. EM lli7@central.uh.edu RI Flasar, F Michael/C-8509-2012; Nixon, Conor/A-8531-2009; Perez-Hoyos, Santiago/L-7543-2014 OI Nixon, Conor/0000-0001-9540-9121; Perez-Hoyos, Santiago/0000-0002-2587-4682 FU NASA; fondos FEDER, Grupos Gobierno Vasco [AYA2012-36666, IT-765-13]; [UPV/EHU-UFI11/55] FX We gratefully acknowledge the Cassini CIRS and ISS teams for recording the raw data sets. The data sets used in this paper are available at the Planetary Data System (PDS) of the National Aeronautics and Space Administration (NASA) (http://pds.nasa.gov/). We also acknowledge the support from the NASA ROSES Outer Planets Research and Cassini Data Analysis Programs. Santiago Perez-Hoyos was supported by AYA2012-36666 with fondos FEDER, Grupos Gobierno Vasco IT-765-13, and by UPV/EHU-UFI11/55. Finally, two anonymous reviewers provided very constructive suggestions to improve the manuscript. NR 23 TC 1 Z9 1 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 16 PY 2015 VL 42 IS 7 BP 2144 EP 2148 DI 10.1002/2015GL063763 PG 5 WC Geosciences, Multidisciplinary SC Geology GA CH4FL UT WOS:000353988700010 ER PT J AU Minami, T Toh, H Tyler, RH AF Minami, Takuto Toh, Hiroaki Tyler, Robert H. TI Properties of electromagnetic fields generated by tsunami first arrivals: Classification based on the ocean depth SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE tsunami; electromagnetic induction; ocean depth; seafloor observation AB Tsunami flow coupled with the geomagnetic field generates electric currents and associated magnetic fields. Although electromagnetic (EM) tsunami signals can be used for analysis and even forecasting tsunami propagation, the dynamically self-consistent effect of shoaling water depth on the fluid + electrodynamics has not been adequately clarified. In this study, we classify tsunami EM phenomena into three cases based on the ocean depth and find that the deeper ocean results in stronger self-induction due to the increase in both tsunami phase velocity and ocean conductance. In this deep-ocean case, the phase lead of the vertical magnetic variation relative to the sea surface elevation is smaller, while an initial rise in the horizontal magnetic component becomes observable prior to tsunami arrival. Furthermore, we confirm that the enhancement of tsunami height in shallower oceans shifts the ocean depth supplying maximum amplitudes of tsunami magnetic fields from approximately 2.0km to 1.5km. C1 [Minami, Takuto] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. [Minami, Takuto; Tyler, Robert H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toh, Hiroaki] Kyoto Univ, Data Anal Ctr Geomagnetism & Space Magnetism, Kyoto, Japan. RP Minami, T (reprint author), Kyoto Univ, Grad Sch Sci, Kyoto, Japan. EM minami@kugi.kyoto-u.ac.jp FU MEXT, Japan [13J01475, 26282101] FX This work is supported by Grants in Aid for Scientific Research of MEXT, Japan (13J01475 and 26282101). T.M. expresses his sincere thanks to Weijia Kuang and other colleagues in the NASA Goddard Space Flight Center (GSFC) for their warm support to T.M.'s study in GSFC. NR 8 TC 1 Z9 1 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 16 PY 2015 VL 42 IS 7 BP 2171 EP 2178 DI 10.1002/2015GL063055 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CH4FL UT WOS:000353988700014 ER PT J AU Li, C Joiner, J Krotkov, NA Dunlap, L AF Li, Can Joiner, Joanna Krotkov, Nickolay A. Dunlap, Laura TI A new method for global retrievals of HCHO total columns from the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE HCHO; OMPS; retrieval algorithm ID MONITORING INSTRUMENT; SATELLITE-OBSERVATIONS; FORMALDEHYDE COLUMNS; ISOPRENE EMISSIONS; OMI OBSERVATIONS; NORTH-AMERICA; OMPS; TROPOSPHERE; SENSORS; GOME-2 AB We introduce a new method for retrieving formaldehyde (HCHO) based on principal component analysis (PCA) of satellite-measured radiances. Applying the technique to the Suomi National Polar-orbiting Partnership/Ozone Mapping and Profiler Suite (S-NPP/OMPS) radiances between 328.5 and 356.5nm, we extract principal components (PCs) associated with various physical processes (e.g., ozone absorption and rotational Raman scattering) and measurement details (e.g., wavelength shift). These PCs, along with precomputed HCHO Jacobians, are utilized in spectral fitting to estimate HCHO loading and reduce interferences. Comparisons with model simulations and independent Ozone Monitoring Instrument (OMI) retrievals indicate that our algorithm can detect enhanced HCHO signals over source regions such as the southeast U.S., producing HCHO total columns with similar spatial distributions and seasonal patterns. While our OMPS retrievals are similar to 15-20% lower than OMI retrievals from a different algorithm, the differences may be attributed to several instrumental and algorithmic factors. This study demonstrates the potential of PCA algorithms and of OMPS for continuing the long-term satellite HCHO data record. C1 [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Can; Joiner, Joanna; Krotkov, Nickolay A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dunlap, Laura] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. RP Li, C (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM can.li@nasa.gov RI Krotkov, Nickolay/E-1541-2012 OI Krotkov, Nickolay/0000-0001-6170-6750 FU NASA [NNX14AI02G] FX We thank the NASA GSFC GMI group for GMI HCHO model results and two anonymous reviewers for comments that helped improve the manuscript. BIRA OMI HCHO data were downloaded from http://h2co.aeronomy.be.SAO OMI HCHO data were obtained from http://disc.sci.gsfc.nasa.gov. GFED data were downloaded from http://www.globalfiredata.org. OMPS L1B and L2 O3 and cloud research products are available at https://ozoneaq.gsfc.nasa.gov. L.D. acknowledges graduate research assistantship partially supported by the NASA Earth Science New Investigator Program (grant NNX14AI02G). OMPS HCHO retrieval results are available upon request from the corresponding author. NR 28 TC 6 Z9 6 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 16 PY 2015 VL 42 IS 7 BP 2515 EP 2522 DI 10.1002/2015GL063204 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CH4FL UT WOS:000353988700056 ER PT J AU Prigent, C Liang, P Tian, Y Aires, F Moncet, JL Boukabara, SA AF Prigent, C. Liang, P. Tian, Y. Aires, F. Moncet, J. -L. Boukabara, S. A. TI Evaluation of modeled microwave land surface emissivities with satellite-based estimates SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE microwave emissivity ID NUMERICAL WEATHER PREDICTION; SYSTEM; VALIDATION AB An accurate estimate of the microwave surface emissivity is necessary for the retrieval of atmospheric quantities from microwave imagers or sounders. The objective of this study is to evaluate the microwave land surface emissivity modeling of the Community Radiative Transfer Model (CRTM), providing quantitative statistic information for further model improvements. First, the model-simulated emissivity is compared to emissivity estimates derived from satellite observations (TELSEM, Tool to Estimate Land Surface Emissivities at Microwaves). The model simulations agree reasonably well with TELSEM over snow-free vegetated areas, especially at vertical polarization up to 40GHz. For snow-free surfaces, the mean difference between CRTM and TELSEM emissivities at vertical polarization is lower than 0.01 below 40GHz and increases to 0.02 at 89GHz. At horizontal polarization, it increases with frequency, from 0.01 at 10.6GHz to 0.04 at 89GHz. Over deserts and snow, larger differences are observed, which can be due to the lack of quality inputs to the model in these complex environments. A further evaluation is provided by comparing brightness temperature (Tbs) simulations with AMSR-E observations, where CRTM emissivity and TELSEM emissivity are coupled into a comprehensive radiative transfer model to simulate the brightness temperatures, respectively. The comparison shows smaller RMS errors with the satellite-derived estimates than with the model, despite some significant bias at midday with the satellite-derived emissivities at high frequencies. This study confirms and extends to the global scale previous evaluations of land surface microwave emissivity model. It emphasizes the needs for better physical modeling in arid regions and over snow-covered surfaces. Key Points C1 [Prigent, C.] Observ Paris, Lab Etudes Rayonnement & Matiere Astrophys, CNRS, F-75014 Paris, France. [Prigent, C.] Estellus, Paris, France. [Liang, P.; Moncet, J. -L.] Atmospher & Environm Res Inc, Lexington, MA USA. [Tian, Y.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Tian, Y.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Aires, F.] Estellus, Lab Etude Rayonnement & Matiere Astrophy, Paris, France. [Aires, F.] Observ Paris, CNRS, F-75014 Paris, France. [Boukabara, S. A.] NOAA, Joint Ctr Satellite Data Assimilat, NESDIS STAR, College Pk, MD USA. RP Prigent, C (reprint author), Observ Paris, Lab Etudes Rayonnement & Matiere Astrophys, CNRS, F-75014 Paris, France. EM catherine.prigent@obspm.fr RI Boukabara, Sid Ahmed/F-5577-2010; Measurement, Global/C-4698-2015 OI Boukabara, Sid Ahmed/0000-0002-1857-3806; FU NASA/NOAA [NNH12CD07C] FX This study has been supported by a NASA/NOAA contract NNH12CD07C "Development of a common, consistent infrared and microwave emissivity database for use as a priori in the JCSDA." We are very grateful to Fuzong Weng for interesting discussions and suggestions. We thank three anonymous reviewers for their careful reading of the paper and their constructive comments. The modeled emissivity data set is available at http://lis.gsfc.nasa.gov/PMM/le/ and the satellite-derived emissivity (TELSEM) at http://www.estellus.fr/index.php?static12/microwave-emissivity. NR 29 TC 5 Z9 6 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2706 EP 2718 DI 10.1002/2014JD021817 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800008 ER PT J AU Kaspari, S Skiles, SM Delaney, I Dixon, D Painter, TH AF Kaspari, Susan Skiles, S. McKenzie Delaney, Ian Dixon, Daniel Painter, Thomas H. TI Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE black carbon; dust; glacier; melt; fire; ice core ID BLUE GLACIER; RADIATIVE-TRANSFER; FOREST WILDFIRE; SPECTRAL ALBEDO; UNITED-STATES; SURFACE DUST; ANNUAL MASS; AEROSOL; ICE; ACCUMULATION AB Assessing the potential for black carbon (BC) and dust deposition to reduce albedo and accelerate glacier melt is of interest in Washington because snow and glacier melt are an important source of water resources, and glaciers are retreating. In August 2012 on Snow Dome, Mount Olympus, Washington, we measured snow surface spectral albedo and collected surface snow samples and a 7 m ice core. The snow and ice samples were analyzed for iron (Fe, used as a dust proxy) via inductively coupled plasma sector field mass spectrometry, total impurity content gravimetrically, BC using a single-particle soot photometer (SP2), and charcoal through microscopy. In the 2012 summer surface snow, BC (5450 mu g/L), Fe (367236 mu g/L) and gravimetric impurity (3518mg/L) concentrations were spatially variable, and measured broadband albedo varied between 0.67-0.74. BC and dust concentrations in the ice core 2011 summer horizon were a magnitude higher (BC=3120 mu g/L, Fe=22000 mu g/L, and gravimetric impurity=1870mg/L), corresponding to a modeled broadband albedo of 0.45 based on the measured BC and gravimetric impurity concentrations. The Big Hump forest fire is the likely source for the higher concentrations. Modeling constrained by measurements indicates that the all-sky 12h daily mean radiative forcings in summer 2012 and 2011 range between 37-53Wm(-2) and 112-149Wm(-2), respectively, with the greater forcings in 2011 corresponding to a 29-38mm/d enhancement in snowmelt. The timing of the forest fire impurity deposition is coincident with an increase in observed discharge in the Hoh River, highlighting the potential for BC and dust deposition on glaciers from forest fires to accelerate melt. Key Points C1 [Kaspari, Susan; Delaney, Ian] Cent Washington Univ, Dept Geol Sci, Ellensburg, WA 98926 USA. [Skiles, S. McKenzie] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Dixon, Daniel] Univ Maine, Climate Change Inst, Orono, ME USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kaspari, S (reprint author), Cent Washington Univ, Dept Geol Sci, Ellensburg, WA 98926 USA. EM kaspari@geology.cwu.edu RI Painter, Thomas/B-7806-2016 FU United States Geological Survey/State of Washington Water Research Center [2012WA344B]; Office of the Dean, College of the Sciences, Central Washington University, Ellensburg, Washington; NASA [NNX10A097G]; NASA FX This research was supported by the United States Geological Survey/State of Washington Water Research Center (2012WA344B) and the Office of the Dean, College of the Sciences, Central Washington University, Ellensburg, Washington. S.M. Skiles and T.H. Painter were covered under NASA project NNX10A097G. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We thank Bill Baccus at Olympic National Park for help planning field logistics and providing local climate data; Mike Tetreau for assistance in the field; Megan Weyand for ice core processing; Megan Walsch for charcoal analysis; Paul Mayewski and Mike Handley for ICP-SFMS data analysis; Levi Windingstad for conducting the particle size distribution measurement; Joel Barker for epifluorescence analysis; Larry Oolman for access to sounding data; Bryon Free for assistance with mapping; and Twit Conway, Al Rasmussen, and Jon Riedel for valuable conversations about snow accumulation on Washington glaciers. Rasmussen conducted the 2011 and 2012 snowfall calculations presented in section 3.2. The full data set from this study is available by emailing kaspari@geology.cwu.edu. NR 53 TC 6 Z9 8 U1 5 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2793 EP 2807 DI 10.1002/2014JD022676 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800013 ER PT J AU Chen, YC Christensen, MW Diner, DJ Garay, MJ AF Chen, Yi-Chun Christensen, Matthew W. Diner, David J. Garay, Michael J. TI Aerosol-cloud interactions in ship tracks using Terra MODIS/MISR SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE aerosol and clouds ID IMAGING SPECTRORADIOMETER MISR; MARINE STRATOCUMULUS; BOUNDARY-LAYERS; GLOBAL ANALYSIS; RETRIEVAL; ALBEDO; HEIGHT; PARAMETERIZATION; MICROPHYSICS; POLLUTION AB Simultaneous ship track observations from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) have been compiled to investigate how ship-injected aerosols affect marine warm boundary layer clouds for different cloud types and environmental conditions. By taking advantage of the high spatial resolution multiangle observations available from MISR, we utilized the retrieved cloud albedo, cloud top height, and cloud motion vectors to examine cloud property responses in ship-polluted and nearby unpolluted clouds. The strength of the cloud albedo response to increased aerosol level is primarily dependent on cloud cell structure, dryness of the free troposphere, and boundary layer depth, corroborating a previous study by Chen et al. (2012) where A-Train satellite data were utilized. Under open cell cloud structure the cloud properties are more susceptible to aerosol perturbations as compared to closed cells. Aerosol plumes caused an increase in liquid water amount (+38%), cloud top height (+13%), and cloud albedo (+49%) for open cell clouds, whereas for closed cell clouds, little change in cloud properties was observed. Further capitalizing on MISR's unique capabilities, the MISR cross-track cloud speed was used to derive cloud top divergence. Statistically averaging the results from the identified plume segments to reduce random noise, we found evidence of cloud top divergence in the ship-polluted clouds, whereas the nearby unpolluted clouds showed cloud top convergence, providing observational evidence of a change in local mesoscale circulation associated with enhanced aerosols. Furthermore, open cell polluted clouds revealed stronger cloud top divergence as compared to closed cell clouds, consistent with different dynamical mechanisms driving their responses. These results suggest that detailed cloud responses, classified by cloud type and environmental conditions, must be accounted for in global climate modeling studies to reduce uncertainties in calculations of aerosol indirect forcing. Key Points C1 [Chen, Yi-Chun; Diner, David J.; Garay, Michael J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Christensen, Matthew W.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Chen, YC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Jean.Chen@jpl.nasa.gov RI Christensen, Matthew/C-5733-2013 FU National Aeronautics and Space Administration (NASA); MISR Project; NASA FX This work was supported by the National Aeronautics and Space Administration (NASA) Postdoctoral Program (NPP) and the MISR Project and was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. MISR data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center (https://www-misr.jpl.nasa.gov/getData/accessData/), and MODIS data were acquired as part of the NASA's Earth-Sun System Division and archived and distributed by the MODIS Adaptive Processing System (MODAPS) (http://ladsweb.nascom.nasa.gov). Y.-C. Chen thanks David Nelson for his help with the MISR Interactive eXplorer (MINX) tool. We also thank three anonymous reviewers for their insightful comments that improved the quality of the manuscript. NR 43 TC 7 Z9 7 U1 4 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2819 EP 2833 DI 10.1002/2014JD022736 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800015 ER PT J AU Sheyko, BA Sullivan, SC Morales, R Capps, SL Barahona, D Shi, X Liu, X Nenes, A AF Sheyko, B. A. Sullivan, S. C. Morales, R. Capps, S. L. Barahona, D. Shi, X. Liu, X. Nenes, A. TI Quantifying sensitivities of ice crystal number and sources of ice crystal number variability in CAM 5.1 using the adjoint of a physically based cirrus formation parameterization SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cirrus; heterogeneous nucleation; homogeneous nucleation; adjoint; climate model; ice ID COMMUNITY ATMOSPHERE MODEL; CLOUD DROPLET NUMBER; PART I; TROPICAL TROPOPAUSE; AEROSOL; NUCLEATION; NUCLEI; CLIMATE; CCN; MICROPHYSICS AB We present the adjoint of a cirrus formation parameterization that computes the sensitivity of ice crystal number concentration to updraft velocity, aerosol, and ice deposition coefficient. The adjoint is driven by simulations from the National Center for Atmospheric Research Community Atmosphere Model version 5.1 CAM 5.1 to understand the sensitivity of formed ice crystal number concentration to 13 variables and quantify which contribute to its variability. Sensitivities of formed ice crystal number concentration to updraft velocity, sulfate number, and is sufficient but sulfate number concentration is low, indicating a sulfate-limited regime. Outside of the tropics, competition between homogeneous and heterogeneous nucleation may shift annually averaged sensitivities to higher magnitudes, when infrequent strong updrafts shift crystal production away from purely heterogeneous nucleation. Outside the tropics, updraft velocity is responsible for approximately 52.70% of the ice crystal number variability. In the tropics, sulfate number concentration and updraft jointly control variability in formed crystal number concentration. Insoluble aerosol species play a secondary, but still important, role in influencing the variability in crystal concentrations, with coarse-mode dust being the largest contributor at nearly 50% in certain regions. On a global scale, more than 95% of the temporal variability in crystal number concentration can be described by temperature, updraft velocity, sulfate number, and coarse-mode dust number concentration. Key Points C1 [Sheyko, B. A.; Sullivan, S. C.; Capps, S. L.; Nenes, A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Morales, R.; Nenes, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Morales, R.] Univ Los Andes, Dept Civil & Environm Engn, Bogota, Colombia. [Capps, S. L.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Barahona, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Shi, X.; Liu, X.] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Nenes, A (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM athanasios.nenes@gatech.edu RI Liu, Xiaohong/E-9304-2011; Morales Betancourt, Ricardo/A-3827-2016; Capps, Shannon/E-5602-2017 OI Liu, Xiaohong/0000-0002-3994-5955; Morales Betancourt, Ricardo/0000-0002-5475-8605; Capps, Shannon/0000-0002-6872-6604 FU DOE EaSM; National Aeronautics and Space Administration FX This work was made possible through support from DOE EaSM. S.S. and S.L.C. gratefully acknowledge support from National Aeronautics and Space Administration Earth and Space Science Fellowships. The data and results included in this manuscript are available upon contact from the corresponding author as per AGU Data Policy. NR 59 TC 2 Z9 2 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2834 EP 2854 DI 10.1002/2014JD022457 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800016 ER PT J AU Hong, G Minnis, P AF Hong, Gang Minnis, Patrick TI Effects of spherical inclusions on scattering properties of small ice cloud particles SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE scattering; small ice cloud particle; polarization ID DISCRETE-DIPOLE APPROXIMATION; T-MATRIX METHOD; LIGHT-SCATTERING; OPTICAL-PROPERTIES; CIRRUS CLOUDS; RADIATIVE PROPERTIES; CLIMATE MODELS; BLACK CARBON; ACCURATE PARAMETERIZATION; NONSPHERICAL PARTICLES AB The single-scattering properties of small ice crystals containing four types of spherical inclusions, ammonium sulfate (NH4)(2)SO4, ammonium nitrate NH3NO3, air bubbles, and soot, are investigated at 0.65 and 2.13 mu m. Small, randomly oriented hexagonal ice columns with spherical inclusions that are randomly distributed with standard gamma size distributions in the columns are considered in the present study. Ice crystals with inclusions of (NH4)(2)SO4 and NH3NO3 essentially have the same features due to their similar refractive indices. Nonzero scattering matrix elements are sensitive to inclusion type and amount, and show differences between 0.65 and 2.13 mu m. The extinction efficiency Q(e) of small ice crystals at 0.65 mu m is near 2.0 and essentially unaffected by variations in inclusion volume, in contrast to strong influences of inclusion amount on Q(e) at 2.13 mu m. The single-scattering albedo (0) of ice crystals, nearly equal to 1.0, is not affected by inclusions of (NH4)(2)SO4, NH3NO3, and air bubbles. Soot inclusions strongly affect (0), which decreases to about 0.5 with increasing soot amounts. The asymmetry factor g is substantially affected by (NH4)(2)SO4, NH3NO3, and soot and the variations in their amounts. Full Stokes parameters of cirrus clouds consisting of uniform hexagonal ice columns with inclusions are computed using a polarized radiative transfer model. Sensitivities of light intensity and polarization of cirrus clouds to types and amounts of inclusions and cirrus cloud optical thicknesses are found to depend on wavelength. The present results suggest that different types of inclusions for small ice crystals should be considered when developing realistic ice crystal optical properties, and that light intensity and polarization of cirrus clouds and their angular distribution features, in the absence of other effects such as cavities and surface roughness, imply the potential for identifying pure ice crystals from those with aerosol inclusions. Key Points C1 [Hong, Gang] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hong, G (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM gang.hong@nasa.gov FU NASA through the CERES program; Aviation Climate Change Research Initiative (ACCRI); Federal Aviation Administration [DTRT57-10-X-70020] FX The authors thank M.A. Yurkin and J.F. de Haan for use of their well-documented ADDA model and adding-doubling code, respectively. G.H. also thanks Shouben Zhou and Yonghui Weng for help on parallel computing of the ADDA. This research was supported by NASA through the CERES program and by the Aviation Climate Change Research Initiative (ACCRI) sponsored by the Federal Aviation Administration under contract, DTRT57-10-X-70020. Users can access the data from this paper via the authors (gang.hong@nasa.gov). NR 70 TC 2 Z9 2 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2951 EP 2969 DI 10.1002/2014JD022494 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800022 ER PT J AU Bonne, JL Steen-Larsen, HC Risi, C Werner, M Sodemann, H Lacour, JL Fettweis, X Cesana, G Delmotte, M Cattani, O Vallelonga, P Kjaer, HA Clerbaux, C Sveinbjornsdottir, AE Masson-Delmotte, V AF Bonne, Jean-Louis Steen-Larsen, Hans Christian Risi, Camille Werner, Martin Sodemann, Harald Lacour, Jean-Lionel Fettweis, Xavier Cesana, Gregory Delmotte, Marc Cattani, Olivier Vallelonga, Paul Kjaer, Helle Astrid Clerbaux, Cathy Sveinbjornsdottir, Arny Erla Masson-Delmotte, Valerie TI The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE water isotopes; Greenland; atmospheric river ID GENERAL-CIRCULATION MODEL; REGIONAL CLIMATE MODEL; DEUTERIUM EXCESS; ICE-SHEET; RELATIVE-HUMIDITY; DELTA-D; SURFACE; PRECIPITATION; ANTARCTICA; CLOUD AB During 7-12 July 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of this event, we study the water vapor isotopic composition using surface in situ observations in Bermuda Island, South Greenland coast (Ivittuut), and northwest Greenland ice sheet (NEEM), as well as remote sensing observations (Infrared Atmospheric Sounding Interferometer (IASI) instrument on board MetOp-A), depicting propagation of similar surface and midtropospheric humidity and D signals. Simulations using Lagrangian moisture source diagnostic and water tagging in a regional model showed that Greenland was affected by an atmospheric river transporting moisture from the western subtropical North Atlantic Ocean, which is coherent with observations of snow pit impurities deposited at NEEM. At Ivittuut, surface air temperature, humidity, and D increases are observed. At NEEM, similar temperature increase is associated with a large and long-lasting approximate to 100D enrichment and approximate to 15 deuterium excess decrease, thereby reaching Ivittuut level. We assess the simulation of this event in two isotope-enabled atmospheric general circulation models (LMDz-iso and ECHAM5-wiso). LMDz-iso correctly captures the timing of propagation for this event identified in IASI data but depict too gradual variations when compared to surface data. Both models reproduce the surface meteorological and isotopic values during the event but underestimate the background deuterium excess at NEEM. Cloud liquid water content parametrization in LMDz-iso poorly impacts the vapor isotopic composition. Our data demonstrate that during this atmospheric river event the deuterium excess signal is conserved from the moisture source to northwest Greenland. Key Points C1 [Bonne, Jean-Louis; Steen-Larsen, Hans Christian; Delmotte, Marc; Cattani, Olivier; Masson-Delmotte, Valerie] LSCE Lab Sci Climat & Environm, Gif Sur Yvette, France. [Risi, Camille] LMD, Paris, France. [Werner, Martin] Helmholtz Ctr Polar & Marine Res Bremerhaven, Alfred Wegener Inst, Bremerhaven, Germany. [Sodemann, Harald] ETH, Zurich, Switzerland. [Sodemann, Harald] Univ Bergen, Inst Geophys, Bergen, Norway. [Lacour, Jean-Lionel; Clerbaux, Cathy] Univ Libre Bruxelles, Spectroscopie Atmosphere Chim Quant & Photophys, Brussels, Belgium. [Fettweis, Xavier] Univ Liege, Dept Geog, Liege, Belgium. [Cesana, Gregory] NASA, Jet Prop Lab, Pasadena, CA USA. [Vallelonga, Paul; Kjaer, Helle Astrid] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen, Denmark. [Clerbaux, Cathy] Univ Paris 06, Sorbonne Univ, Paris, France. [Clerbaux, Cathy] Univ Versailles St Quentin, Paris, France. [Clerbaux, Cathy] CNRS INSU, LATMOS IPSL, Paris, France. [Sveinbjornsdottir, Arny Erla] Univ Iceland, Inst Earth Sci, Reykjavik, Iceland. RP Bonne, JL (reprint author), LSCE Lab Sci Climat & Environm, Gif Sur Yvette, France. EM jean-louis.bonne@lsce.ipsl.fr RI Steen-Larsen, Hans Christian/F-9927-2013; Bonne, Jean-Louis/C-1577-2015; Werner, Martin/C-8067-2014; Masson-Delmotte, Valerie/G-1995-2011; Vallelonga, Paul/I-9650-2016; clerbaux, cathy/I-5478-2013; OI Steen-Larsen, Hans Christian/0000-0002-7202-5907; Bonne, Jean-Louis/0000-0001-7090-2147; Werner, Martin/0000-0002-6473-0243; Masson-Delmotte, Valerie/0000-0001-8296-381X; Vallelonga, Paul/0000-0003-1055-7235; Fettweis, Xavier/0000-0002-4140-3813; Lacour, Jean-Lionel/0000-0003-3642-7439 FU IPEV; ICOS; CARBOOCEAN project; ANR CEPS Green Greenland project [ANR-10-CEPL-0008]; FNRS-CFB in Belgium; FWO in Belgium; GSC in Canada; CAS in China; FIST in Denmark; IPEV in France; INSU/CNRS in France; ANR VMC NEEM in France; AWI in Germany; RannIs in Iceland; NIPR in Japan; KOPRI in Korea; NWO/ALW in Netherlands; VR in Sweden; SNF in Switzerland; NERC in UK; US NSF, Office of Polar Programs in USA; Danish Council for Independent Research (Natural Sciences) [10-092850]; Carlsberg Foundation; Icelandic Centre for Research [1202340031]; CIRES; AXA FX To access the data used in this publication, please refer to Jean-Louis Bonne (jean-louis.bonne@lsce.ipsl.fr). Ivittuut station is funded by IPEV, ICOS, CARBOOCEAN project, and ANR CEPS Green Greenland project (grant ANR-10-CEPL-0008) and operated by LSCE, France. We greatly thank the people involved in the observations at Ivittuut: Grnland Kommando GLK, Sermersooq Kummuneqarfik. NEEM is directed and organized by the Centre for Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (GSC), China (CAS), Denmark (FIST), France (IPEV, INSU/CNRS and ANR VMC NEEM), Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), the Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), the UK (NERC), and the USA (US NSF, Office of Polar Programs). Bermuda observatory is supported by the Danish Council for Independent Research (Natural Sciences grant 10-092850); the Carlsberg Foundation; the Icelandic Centre for Research (Equipment Fund grant 1202340031); CIRES Visiting Fellowship program: and the AXA Research Fund. LMDZ simulations were performed on the NEC supercomputer of the IDRIS computing center. IASI is a joint mission of EUMETSAT and the Centre National d'Etudes Spatiales (CNES, France). We thank the ULB/LATMOS teams for the IASI data processing. NR 55 TC 16 Z9 17 U1 3 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2970 EP 2989 DI 10.1002/2014JD022602 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800023 ER PT J AU Liao, J Froyd, KD Murphy, DM Keutsch, FN Yu, G Wennberg, PO St Clair, JM Crounse, JD Wisthaler, A Mikoviny, T Jimenez, JL Campuzano-Jost, P Day, DA Hu, WW Ryerson, TB Pollack, IB Peischl, J Anderson, BE Ziemba, LD Blake, DR Meinardi, S Diskin, G AF Liao, Jin Froyd, Karl D. Murphy, Daniel M. Keutsch, Frank N. Yu, Ge Wennberg, Paul O. St. Clair, Jason M. Crounse, John D. Wisthaler, Armin Mikoviny, Tomas Jimenez, Jose L. Campuzano-Jost, Pedro Day, Douglas A. Hu, Weiwei Ryerson, Thomas B. Pollack, Ilana B. Peischl, Jeff Anderson, Bruce E. Ziemba, Luke D. Blake, Donald R. Meinardi, Simone Diskin, Glenn TI Airborne measurements of organosulfates over the continental US SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE organosulfate; IEPOX sulfate; glycolic acid sulfate; free troposphere aerosols; aerosol acidity; relative humidity ID SECONDARY ORGANIC AEROSOL; ISOPRENE-DERIVED ORGANOSULFATES; MASS-SPECTROMETRY; AMBIENT AEROSOL; AQUEOUS PHOTOOXIDATION; ATMOSPHERIC AEROSOLS; REACTIVE UPTAKE; GLYCOLALDEHYDE; PRODUCTS; ACIDS AB Organosulfates are important secondary organic aerosol (SOA) components and good tracers for aerosol heterogeneous reactions. However, the knowledge of their spatial distribution, formation conditions, and environmental impact is limited. In this study, we report two organosulfates, an isoprene-derived isoprene epoxydiols (IEPOX) (2,3-epoxy-2-methyl-1,4-butanediol) sulfate and a glycolic acid (GA) sulfate, measured using the NOAA Particle Analysis Laser Mass Spectrometer (PALMS) on board the NASA DC8 aircraft over the continental U.S. during the Deep Convective Clouds and Chemistry Experiment (DC3) and the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). During these campaigns, IEPOX sulfate was estimated to account for 1.4% of submicron aerosol mass (or 2.2% of organic aerosol mass) on average near the ground in the southeast U.S., with lower concentrations in the western U.S. (0.2-0.4%) and at high altitudes (<0.2%). Compared to IEPOX sulfate, GA sulfate was more uniformly distributed, accounting for about 0.5% aerosol mass on average, and may be more abundant globally. A number of other organosulfates were detected; none were as abundant as these two. Ambient measurements confirmed that IEPOX sulfate is formed from isoprene oxidation and is a tracer for isoprene SOA formation. The organic precursors of GA sulfate may include glycolic acid and likely have both biogenic and anthropogenic sources. Higher aerosol acidity as measured by PALMS and relative humidity tend to promote IEPOX sulfate formation, and aerosol acidity largely drives in situ GA sulfate formation at high altitudes. This study suggests that the formation of aerosol organosulfates depends not only on the appropriate organic precursors but also on emissions of anthropogenic sulfur dioxide (SO2), which contributes to aerosol acidity. Key Points C1 [Liao, Jin; Froyd, Karl D.; Murphy, Daniel M.; Ryerson, Thomas B.; Pollack, Ilana B.; Peischl, Jeff] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Liao, Jin; Froyd, Karl D.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Pollack, Ilana B.; Peischl, Jeff] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Keutsch, Frank N.; Yu, Ge] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Wennberg, Paul O.; St. Clair, Jason M.; Crounse, John D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Wennberg, Paul O.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Wisthaler, Armin; Mikoviny, Tomas] Leopold Franzens Univ Innsbruck, Inst Ionenphys & Angew Phys, Innsbruck, Austria. [Jimenez, Jose L.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Anderson, Bruce E.; Ziemba, Luke D.; Diskin, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Blake, Donald R.; Meinardi, Simone] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. RP Liao, J (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. EM jin.liao@noaa.gov RI Peischl, Jeff/E-7454-2010; Ryerson, Tom/C-9611-2009; Jimenez, Jose/A-5294-2008; Pollack, Ilana/F-9875-2012; Hu, Weiwei/C-7892-2014; Murphy, Daniel/J-4357-2012; Manager, CSD Publications/B-2789-2015; Crounse, John/C-3700-2014 OI Peischl, Jeff/0000-0002-9320-7101; Jimenez, Jose/0000-0001-6203-1847; Murphy, Daniel/0000-0002-8091-7235; Crounse, John/0000-0001-5443-729X FU NASA [NNH12AT29I, NNH12AT30I]; NOAA; National Science Foundation [CHE-1213723] FX The majority of the study is supported by the NASA grant NNH12AT29I from the Upper Atmosphere Research Program, Radiation Sciences Program, and Tropospheric Chemistry Program and by NOAA base funding. The GA sulfate standard is based upon work supported by the National Science Foundation under grant CHE-1213723. IEPOX and ISOPOOH measurements were supported by NASA NNX12AC06G. PTR-MS measurements were supported by BMVIT/FFG-ALR (Austrian Space Applications Programme, ASAP), the NASA Postdoctoral Program (NPP), and the National Institute of Aerospace (NIA). NO and O3 measurements were supported by NASA grant NNH12AT30I. AMS measurements were supported by NASA NNX12AC03G, NSF AGS-1243354, and NOAA NA13OAR4310063. We thank Barbara Ervens at NOAA and University of Colorado, Boulder for helpful discussion. We also would like to thank all the NASA DC8 crew for their assistance to integrate, maintain, and deintegrate the instrument on the airplane. The data are publicly available at NASA data achieve https://www-air.larc.nasa.gov/cgi-bin/ArcView/dc3-seac4rs and http://www-air.larc.nasa.gov/missions/seac4rs/index.html. The analysis results are available upon requested from jin.liao@noaa.gov and karl.froyd@noaa.gov. NR 77 TC 21 Z9 22 U1 10 U2 74 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2015 VL 120 IS 7 BP 2990 EP 3005 DI 10.1002/2014JD022378 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LY UT WOS:000353413800024 ER PT J AU Radhakrishnan, S Bellan, J AF Radhakrishnan, Senthilkumaran Bellan, Josette TI Explicitly-filtered LES for the grid-spacing-independent and discretization-order-independent prediction of a conserved scalar SO COMPUTERS & FLUIDS LA English DT Article DE Large Eddy Simulation predictability; Passive scalar; Mixing layer ID LARGE-EDDY SIMULATION; BOUNDARY-CONDITIONS; FLOWS; MODELS; ERRORS AB The previously proposed methodology of Explicitly Filtered Large Eddy Simulation (EFLES) predicts velocity fields that are grid-spacing and discretization-order independent for single-phase, and for two-phase compressible flows. In the current study, EFLES is tested for determining the predictability of a passive scalar evolution in turbulent flows, and the EFLES results are also compared to equivalent ones obtained with conventional Large Eddy Simulation (LES). A single Direct Numerical Simulation (DNS) realization of a temporal mixing layer is conducted with an initial Reynolds number of 1800. After an initial transient, the mixing-layer momentum thickness grows linearly with time. The DNS is continued during the linear growth period and until the momentum thickness Reynolds number reaches 6405. The filtered and coarsened DNS (FDNS) database is considered the template to be reached by LES or EFLES. Both LES and EFLES are conducted using the dynamic Smagorinsky model. Three grids - coarse, medium and fine - and three discretization orders - fourth, sixth and eighth - are used for each LES and EFLES. In contrast to conventional LES where the grid spacing and the filter width are proportionally related, in EFLES the filter width is set beforehand and independent of the grid spacing. The criteria for comparing LES and EFLES results to the FDNS encompass both averages and second-order quantities that characterize the passive scalar behavior. Homogeneous plane averages combined with time averaging past the time when the mixing layer becomes turbulent, enabled the computation of smooth statistics for comparison between FDNS and LES or EFLES. It is found that the conventional LES results are not predictive in that refining the grid or increasing the discretization order, or both, does not lead to coincidence of the results. In contrast, refining the grid past the medium spacing for the sixth- and eighth-order discretizations leads to the EFLES results collapsing on a single curve. Thus, the medium grid spacing and sixth discretization order is the most computationally economic predictive simulation. Based on these findings, EFLES computations, the predictions of which are unaffected by numerical errors, are recommended for model validation with experimental data. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Radhakrishnan, Senthilkumaran; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM josette.bellan@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); NASA Exploration Systems Mission Directorate/Advanced Capabilities Division FX This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology and sponsored by the National Aeronautics and Space Administration (NASA) under the Fundamental Aeronautics Program, Subsonic Wing Program with Drs. Dan Bulzan, Nan-Suey Liu and Jeff Moder serving as program monitors and by the NASA Exploration Systems Mission Directorate/Advanced Capabilities Division under the LASER program. The computational resources were provided by the NASA AMES Super-computing Center. NR 27 TC 0 Z9 0 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD APR 16 PY 2015 VL 111 BP 137 EP 149 DI 10.1016/j.compfluid.2015.01.003 PG 13 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA CE7VW UT WOS:000352051000012 ER PT J AU Chilvery, AK Guggilla, P Batra, AK Gaikwad, DD Curried, JR AF Chilvery, Ashwith Kumar Guggilla, Padmaja Batra, Ashok K. Gaikwad, Dyaneshwar D. Curried, James R. TI Efficient planar perovskite solar cell by spray and brush solution-processing methods SO JOURNAL OF PHOTONICS FOR ENERGY LA English DT Article DE perovskite; solution-processed; spray; brush ID LEAD IODIDE PEROVSKITE; ORGANOMETAL HALIDE PEROVSKITES; CHARGE-TRANSPORT; RECOMBINATION; HYSTERESIS; CH3NH3PBI3; MECHANISM; LAYER; FILMS AB Perovskite compounds have the potential to transform photovoltaics technology, as they are easy to fabricate, have better stability, and possess superior power conversion efficiency. In this research, a versatile solution-processing method called "spray+brush" (SB) has been adopted to achieve a power-conversion efficiency of 3.52% for pure organometal halide perovskite devices. It has been observed that this method is more efficient and cost effective than the perovskite devices fabricated by spray (1.95%) and brush (1.17%) methods alone. The SB method of solution processing can be promising for various other organic coatings. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Chilvery, Ashwith Kumar] Talladega Coll, Dept Phys, Talladega, AL 35610 USA. [Chilvery, Ashwith Kumar; Guggilla, Padmaja; Batra, Ashok K.] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA. [Gaikwad, Dyaneshwar D.] Ahmednagar Coll, Dept Chem, Pune 414001, Maharashtra, India. [Curried, James R.] NASA, Marshall Space Flight Ctr, Div Mat Sci, Huntsville, AL 35811 USA. RP Chilvery, AK (reprint author), Talladega Coll, Dept Phys, 627 West Battle St, Talladega, AL 35610 USA. EM akchilvery@talladega.edu NR 39 TC 1 Z9 1 U1 8 U2 40 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1947-7988 J9 J PHOTON ENERGY JI J. Photonics Energy PD APR 15 PY 2015 VL 5 AR 053093 DI 10.1117/1.JPE.5.053093 PG 9 WC Materials Science, Multidisciplinary; Optics; Physics, Applied SC Materials Science; Optics; Physics GA CK5FH UT WOS:000356247500001 ER PT J AU Bilitza, D Reinisch, B AF Bilitza, Dieter Reinisch, Bodo TI Preface: International Reference Ionosphere and Global Navigation Satellite Systems SO ADVANCES IN SPACE RESEARCH LA English DT Editorial Material C1 [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliospher Sci Lab, Code 672, Greenbelt, MD 20771 USA. [Reinisch, Bodo] Univ Massachusetts, Ctr Atmospher Res, Lowell, MA 01854 USA. [Reinisch, Bodo] Lowell Digisonde Int LLC, Lowell, MA 01854 USA. RP Bilitza, D (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22020 USA. EM dieter.bilitza-l@nasa.gov; bodo.reinisch@digisonde.com NR 0 TC 1 Z9 1 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 1913 EP 1913 DI 10.1016/j.asr.2015.02.021 PG 1 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100001 ER PT J AU Bilitza, D AF Bilitza, Dieter TI The International Reference Ionosphere - Status 2013 SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; IRI; Forecast; Space Weather; Real-Time ID SOLAR-CYCLE VARIATIONS; ELECTRON-TEMPERATURE; EMPIRICAL-MODEL; ION COMPOSITION; PROFILE PARAMETERS; IRI MODEL; COORDINATE SYSTEM; OUTER IONOSPHERE; B1 PARAMETERS; GLOBAL-MODEL AB This paper describes the latest version of the International Reference Ionosphere (IRI) model. IRI-2012 includes new models for the electron density and ion densities in the region below the F-peak, a storm-time model for the auroral E-region, an improved electron temperature model that includes variations with solar activity, and for the first time a description of auroral boundaries. In addition, the thermosphere model required for baseline neutral densities and temperatures was upgraded from MSIS-86 to the newer NRLMSIS-00 model and Corrected Geomagnetic coordinates (CGM) were included in IRI as an additional coordinate system for a better representation of auroral and polar latitudes. Ongoing IRI activities towards the inclusion of an improved model for the F2 peak height hmF2 are discussed as are efforts to develop a "Real-Time IRI". The paper is based on an IRI status report presented at the 2013 IRI Workshop in Olsztyn, Poland. The IRI homepage is at IRImodel.org. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Bilitza, Dieter] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. RP Bilitza, D (reprint author), George Mason Univ, Sch Phys Astron & Computat Sci, 4400 Univ Dr, Fairfax, VA 22030 USA. EM dbilitza@gmu.edu NR 88 TC 9 Z9 10 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 1914 EP 1927 DI 10.1016/j.asr.2014.07.032 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100002 ER PT J AU Liang, WJ Limberger, M Schmidt, M Dettmering, D Hugentobler, U Bilitza, D Jakowski, N Hoque, MM Wilken, V Gerzen, T AF Liang, Wenjing Limberger, Marco Schmidt, Michael Dettmering, Denise Hugentobler, Urs Bilitza, Dieter Jakowski, Norbert Hoque, M. Mainul Wilken, Volker Gerzen, Tatjana TI Regional modeling of ionospheric peak parameters using GNSS data-An update for IRI SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; F2 peak; IRI; GNSS; B-splines ID ELECTRON-DENSITY PROFILES; SATELLITE DATA; PREDICTIONS; IRI-2001; HMF2; IGS AB The F2 layer of the ionosphere plays an essential role in radio communication and positioning applications as well as in space weather research. In particular, the characteristics of the F2 layer are defined by the F2 peak density NmF2, the F2 peak height hmF2 as well as the scale height HF2. The International Reference Ionosphere (IRI) is the internationally recognized and recommended standard for predicting these critical parameters. However, IRI provides median monthly values of these parameters based on the International Radio Consultative Committee (CCIR) or the International Union of Radio Science (URSI) models, which were developed from data of the worldwide network of ionosondes during the years 1954 to 1958. These models provide monthly averages, and therefore, they are required to be updated with up-to-date measurements to get more accurate predictions. In this contribution, we provide a procedure to improve the parameters NmF2, hmF2 and HF2 from modern space geodetic measurements, which can serve to update IRI. Specifically, we model these key parameters spatio-temporally by tensor product of B-spline expansions, and estimate the model coefficients using two types of GNSS data, namely, ground-based two-frequency GPS observations of total electron content and electron density profiles retrieved from ionospheric GPS radio occultation measurements acquired by the FORMOSAT-3/COSMIC mission. In this manner, the solution of the model parameters benefits from different sensitivities as well as from different spatio-temporal resolutions of the two observation techniques. The model is applied exemplarily over a South American region on three selected days under high solar activity (1 July 2012), moderate solar activity (16 July 2011) and low solar activity (16 July 2008), respectively. A comparison of our results with ionosonde data, a comparison of vertical total electron content (VTEC) values and a cross validation show the strengths of our approach and the potential to update the IRI model. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Liang, Wenjing; Limberger, Marco; Schmidt, Michael] Deutsch Geodat Forschungsinst DGFI, D-80539 Munich, Germany. [Hugentobler, Urs] Tech Univ Munich, IAPG, D-80333 Munich, Germany. [Bilitza, Dieter] George Mason Univ, Space Weather Lab, Fairfax, VA 22030 USA. [Bilitza, Dieter] NASA, Heliospher Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jakowski, Norbert; Hoque, M. Mainul; Wilken, Volker; Gerzen, Tatjana] German Aerosp Ctr, Inst Commun & Nav, D-17235 Neustrelitz, Germany. RP Liang, WJ (reprint author), Deutsch Geodat Forschungsinst DGFI, Alfons Goppel Str 11, D-80539 Munich, Germany. EM liang@dgfi.badw.de; marco.limberger@dgfi.badw.de; schmidt@dgfi.badw.de; dettmering@dgfi.badw.de; urs.hugentobler@bv.tu-muenchen.de; dbilitza@gmu.edu; Norbert.Jakows-ki@dlr.de; Mainul.Hoque@dlr.de; Volker.Wilken@dlr.de; Tatjana.Gerzen@dlr.de RI Dettmering, Denise/C-6337-2012; Hugentobler, Urs/H-5605-2011 OI Dettmering, Denise/0000-0002-8940-4639; NR 48 TC 0 Z9 0 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 1981 EP 1993 DI 10.1016/j.asr.2014.12.006 PG 13 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100008 ER PT J AU Brunini, C Azpilicueta, F Janches, D AF Brunini, Claudio Azpilicueta, Francisco Janches, Diego TI An attempt to establish a statistical model of the day-to-day variability of the N(m)F2 and h(m)F2 parameters computed from IRI SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ionosphere; IRI; N(m)F2 and h(m)F2 variability ID INTERNATIONAL REFERENCE IONOSPHERE; ELECTRON-DENSITY PROFILES; OCCULTATION AB In this work we explore the possibility of using COSMIC/FORMOSAT-3 radio occultation profiles (ROP) to establish a statistical model of the deviations that can be expected between the monthly median values of N(m)F2 and h(m)F2 computed with the International Reference Ionosphere (IRI) and the actual values of these parameters. The actual values are retrieved from the ROP after an interactively re-weighted Least Square fit that, complemented with a statistical test, allows filtering of unreliable data and estimating the errors of the retrieved values. The differences between the retrieved values and the monthly median values computed from IRI are interpreted as the superposition of a systematic bias (attributed to both, IRI and ROP), random errors in ROP, and the day-to-day variability, which is unaccounted for by IRI. This variability is described with a five-dimensional function that depends on: the month, the solar activity, the geomagnetic conditions, the modip latitude, and the local time. Empirical values of this function are estimated in the form of regular grids. Since this research is restricted to low solar activity and quiet geomagnetic conditions, the grid is reduced from five to three dimensions: month, local time, and modip (modified dip latitude). We found that the standard deviation of the day-to-day variability varies according to (in percent of the monthly median value computed with IRI): (i) N(m)F2 at noontime: +/-10% to +/-30% with maxima over the northern and southern peaks of the Equatorial Anomaly; (ii) N(m)F2 at midnight: +/-20% to +/-45%, with the greatest values in the equatorial region during the months of May and September; (iii) h(m)F2 at noontime: +/-2% to +/-10% with minima over the modip equator; and (iv) h(m)F2 at midnight: +/-3% to +/-11% with the greatest values in the equatorial region from January to May and from September to January. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Brunini, Claudio; Azpilicueta, Francisco] Univ Nacl La Plata, CONICET, GESA, Fac Ciencias Astron & Geofis, RA-1900 La Plata, Buenos Aires, Argentina. [Janches, Diego] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Brunini, C (reprint author), Univ Nacl La Plata, CONICET, GESA, Fac Ciencias Astron & Geofis, Paseo Bosque S-N, RA-1900 La Plata, Buenos Aires, Argentina. EM claudiobrunini@yahoo.com RI Janches, Diego/D-4674-2012 OI Janches, Diego/0000-0001-8615-5166 NR 22 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 2033 EP 2040 DI 10.1016/j.asr.2014.07.023 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100013 ER PT J AU Truhlik, V Bilitza, D Triskova, L AF Truhlik, V. Bilitza, D. Triskova, L. TI Towards better description of solar activity variation in the International Reference Ionosphere topside ion composition model SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Ion composition; Topside ionosphere; Solar activity; Empirical model; International Reference Ionosphere ID EUV AB We present a revision of the ion composition model that is included in the International Reference Ionosphere (IRI) as the TTS-03 option. We employed a better description of the solar activity variation based on the assumption that the dependence of the logarithm of absolute densities of the individual ion species (H+, O+, He+ and N+) on the F10.7 index is linear. Unlike the TTS-03 model using the relative ion densities, the revised model employs absolute ion densities measured by the Atmosphere Explorer C&E and Intercosmos-24 satellites. Results of the revised ion composition model are presented, with special emphasis on the upper transition height (H-T) during low solar activity. Equatorial H-T produced by the model for a very low solar activity is similar to 800 km at daytime (14 h LT) and similar to 520 km at nighttime (2 h LT). These values are closer to H-T observed by the Coupled Ion-Neutral Dynamics Investigations (CINDI) on the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the years 2008 and 2009 (minimum solar activity of the 23rd solar cycle) than the IRI-2007 and IRI-2012 options for the ion composition. A comparison of the options for the ion composition with the Sheffield University Plasmasphere-Ionosphere Model (SUPIM) is also shown. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Truhlik, V.; Triskova, L.] Acad Sci Czech Republic, Inst Atmospher Phys, Prague 14131, Czech Republic. [Bilitza, D.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Bilitza, D.] NASA, Goddard Space Flight Ctr, Heliospher Phys Lab, Greenbelt, MD 20771 USA. RP Truhlik, V (reprint author), Acad Sci Czech Republic, Inst Atmospher Phys, Bocni II, Prague 14131, Czech Republic. EM vtr@ufa.cas.cz; dbilitza@gmu.edu; ltr@ufa.cas.cz RI Truhlik, Vladimir/H-6971-2014; Triskova, Ludmila/H-6503-2014 OI Truhlik, Vladimir/0000-0002-6624-4388; FU NASA [NAS5-01068]; MSMT of the Czech Republic [LH11123] FX We are grateful to NASA's Space Physics Data Facility (SPDF) and to the experiment PIs J. H. Hoffmann and H. C. Brinton for providing the AE-C, and AE-E ion mass spectrometer data and J. Smilauer for providing IK-24 Bennett ion mass spectrometer data. CINDI data are provided through the support of the CINDI team at the University of Texas at Dallas supported by NASA grant NAS5-01068. This work was supported by grant LH11123 of MSMT of the Czech Republic. NR 19 TC 1 Z9 2 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 EI 1879-1948 J9 ADV SPACE RES JI Adv. Space Res. PD APR 15 PY 2015 VL 55 IS 8 BP 2099 EP 2105 DI 10.1016/j.asr.2014.07.033 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CE6QD UT WOS:000351962100020 ER PT J AU Meromy, L Molotch, NP Williams, MW Musselman, KN Kueppers, LM AF Meromy, Leah Molotch, Noah P. Williams, Mark W. Musselman, Keith N. Kueppers, Lara M. TI Snowpack-climate manipulation using infrared heaters in subalpine forests of the Southern Rocky Mountains, USA SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Snow; Subalpine; Modeling; Climate change; Climate manipulation experiment; IR heaters ID WESTERN UNITED-STATES; ECOSYSTEM WARMING METHODS; NORTHERN HARDWOOD FOREST; SOIL-MOISTURE; WARMER WORLD; NIWOT RIDGE; MODEL; SNOWMELT; TEMPERATURE; ACCUMULATION AB Effects of infrared heaters on snow accumulation, snowmelt, and snow-atmosphere energy exchange were examined at Niwot Ridge, Colorado (CO) and compared to a naturally warmer, but otherwise similar subalpine site in the Valles Caldera National Preserve, New Mexico (NM). Observed snow accumulation was 30% lower on average and snow melted out 16 days earlier in the heated plots compared to the controls. Soil temperature during snowmelt was 3 degrees C greater on average and soil moisture was 4% lower on average in heated plots compared to controls. In NM, snow accumulation was 23% lower, snow melted 23 days earlier, soil temperature was 0.6 degrees C greater, and soil moisture was 13% lower on average relative to CO controls. In order to estimate differences in energy and mass balance fluxes at the snow-atmosphere interface in control versus warmer plots, the 1-D, physically based snowmelt model, SNOWPACK, was used. Model results indicated that heaters alter radiative, turbulent and mass fluxes by amounts comparable to the differences between CO and NM fluxes. The proportion of the energy flux associated with latent heat exchange during snowmelt was 9-27% of the total energy flux in heated models and 19-22% of NM models compared to 3-7% in control models. Thus, sublimation loss to the atmosphere was greater in both experimentally and naturally warmer cases relative to the control case. We conclude that IR heaters can provide alterations to the timing and magnitude of snow accumulation and snowmelt consistent with conditions observed at a warmer analog site and with climate and hydrology model projections. Impacts of IR heating on energy partitioning and sublimation should be considered when designing manipulations of the snowpack, as reductions in snowmelt water may alter biological or ecological processes. (C) 2015 Elsevier B.V. All rights reserved. C1 [Meromy, Leah; Molotch, Noah P.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Molotch, Noah P.; Williams, Mark W.] Univ Colorado, Inst Arctic & Alpine Res, Dept Geog, Boulder, CO 80309 USA. [Molotch, Noah P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Musselman, Keith N.] Univ Saskatchewan, Saskatoon, SK S7N 0W0, Canada. [Kueppers, Lara M.] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA. RP Molotch, NP (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Campus Box 450 UCB, Boulder, CO 80309 USA. EM leah.meromy@colorado.edu; noah.molotch@colorado.edu; markw@snobear.colorado.edu; keith.musselman@usask.ca; lkueppers@ucmerced.edu RI Kueppers, Lara/M-8323-2013; Molotch, Noah/C-8576-2009 OI Kueppers, Lara/0000-0002-8134-3579; FU NASA [NNX08AH18G, NNX11AK35A]; NSF [EAR 1032295, EAR 1141764]; USDA [2012-67003-19802]; NOAA RISA Western Water Assessment, U.S. Department of Energy, Office of Science (BER); NSF Niwot Ridge Long Term Ecological Research program FX This research was supported by NASA grants NNX08AH18G, NNX11AK35A, NSF grants EAR 1032295, EAR 1141764, USDA grant 2012-67003-19802, the NOAA RISA Western Water Assessment, U.S. Department of Energy, Office of Science (BER), and the NSF Niwot Ridge Long Term Ecological Research program. Darin Desilets Marcy Litvak, Jen Petrzelka, Michi Lehning, Danielle Perrot, Dominik Schneider, Scott Ferrenberg, and Ethan Brown are acknowledged for providing data sets and field and technical support. NR 93 TC 1 Z9 1 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD APR 15 PY 2015 VL 203 BP 142 EP 157 DI 10.1016/j.agrformet.2014.12.015 PG 16 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CD2UM UT WOS:000350934500014 ER PT J AU Daly, AM Carey, SJ Pejlovas, AM Li, KX Kang, L Kukolich, SG AF Daly, Adam M. Carey, Spencer J. Pejlovas, Aaron M. Li, Kexin Kang, Lu Kukolich, Stephen G. TI Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FLUOROBENZOIC ACID; MICROWAVE-SPECTRA; CARBOXYLIC-ACIDS; PROTON-TRANSFER; MOLECULAR-STRUCTURES; ACRYLIC-ACID; SPECTROSCOPY; BIMOLECULES AB The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0(+)) = 1151.8(5), B(0(+)) = 100.3(5), C(0(+)) = 87.64(3) MHz and A(0(-)) = 1152.2(5), B(0(-)) = 100.7(5), C(0(-)) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (.E) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy. (C) 2015 AIP Publishing LLC. C1 [Daly, Adam M.] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. [Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Kang, Lu] Kennesaw State Univ, Dept Chem & Biochem, Kennesaw, GA 30144 USA. RP Daly, AM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA. EM Kukolich@u.arizona.edu OI Kang, Lu/0000-0002-9059-4812; Carey, Spencer/0000-0002-3010-8181 FU National Science Foundation [CHE-1057796] FX This material is based upon work supported by the National Science Foundation under Grant No. CHE-1057796 at the University of Arizona. We thank Dr. Laszlo Sarkozy for writing LabVIEW programs for data analysis and finding weak lines. NR 26 TC 3 Z9 3 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2015 VL 142 IS 14 AR 144303 DI 10.1063/1.4917031 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CG0PW UT WOS:000352969600021 PM 25877574 ER PT J AU Schwenke, DW AF Schwenke, David W. TI A unified derivation of Hamiltonian and optical transition matrix elements for open shell diatomic and polyatomic molecules using transformation tools of modern quantum mechanics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRIATOMIC-MOLECULES; ENERGY-LEVELS AB In this work, we systematically derive the matrix elements of the nuclear rotation operators for open shell diatomic and polyatomic molecules in a parity adapted Hund's case (a) basis. Our expressions are valid for an arbitrary number of electrons and arbitrary electronic configurations. The common ad hoc sign changes of angular momentum operators are shown to be equivalent to a change in phase of basis functions. We show how to relate this basis to that required for scattering calculations. We also give the expressions for Einstein A coefficients for electric dipole, electric quadrupole, and magnetic dipole transitions. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Schwenke, DW (reprint author), NASA, Ames Res Ctr, Mail Stop 258-2,POB 1, Moffett Field, CA 94035 USA. EM david.w.schwenke@nasa.gov NR 24 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2015 VL 142 IS 14 AR 144107 DI 10.1063/1.4916952 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CG0PW UT WOS:000352969600009 PM 25877562 ER PT J AU Madhavacheril, M Sehgal, N Allison, R Battaglia, N Bond, JR Calabrese, E Caliguiri, J Coughlin, K Crichton, D Datta, R Devlin, MJ Dunkley, J Dunner, R Fogarty, K Grace, E Hajian, A Hasselfield, M Hill, JC Hilton, M Hincks, AD Hlozek, R Hughes, JP Kosowsky, A Louis, T Lungu, M McMahon, J Moodley, K Munson, C Naess, S Nati, F Newburgh, L Niemack, MD Page, LA Partridge, B Schmitt, B Sherwin, BD Sievers, J Spergel, DN Staggs, ST Thornton, R Van Engelen, A Ward, JT Wollack, EJ AF Madhavacheril, Mathew Sehgal, Neelima Allison, Rupert Battaglia, Nick Bond, J. Richard Calabrese, Erminia Caliguiri, Jerod Coughlin, Kevin Crichton, Devin Datta, Rahul Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Fogarty, Kevin Grace, Emily Hajian, Amir Hasselfield, Matthew Hill, J. Colin Hilton, Matt Hincks, Adam D. Hlozek, Renee Hughes, John P. Kosowsky, Arthur Louis, Thibaut Lungu, Marius McMahon, Jeff Moodley, Kavilan Munson, Charles Naess, Sigurd Nati, Federico Newburgh, Laura Niemack, Michael D. Page, Lyman A. Partridge, Bruce Schmitt, Benjamin Sherwin, Blake D. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Thornton, Robert Van Engelen, Alexander Ward, Jonathan T. Wollack, Edward J. CA Atacama Cosmology Telescope Collab TI Evidence of Lensing of the Cosmic Microwave Background by Dark Matter Halos SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; ATACAMA COSMOLOGY TELESCOPE; LARGE-SCALE STRUCTURE; SOUTH-POLE TELESCOPE; SDSS-III; GALAXY CLUSTERS; POWER SPECTRUM; DATA RELEASE; CMB AB We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2 sigma significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos. C1 [Madhavacheril, Mathew; Sehgal, Neelima] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Allison, Rupert; Calabrese, Erminia; Dunkley, Joanna; Louis, Thibaut; Naess, Sigurd] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Battaglia, Nick] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Dept Phys, Pittsburgh, PA 15213 USA. [Bond, J. Richard; Hajian, Amir] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Caliguiri, Jerod; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Datta, Rahul; McMahon, Jeff; Munson, Charles] Univ Michigan, Dept Phys, Ann Arbor, MI 48103 USA. [Crichton, Devin; Fogarty, Kevin] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Devlin, Mark J.; Lungu, Marius; Schmitt, Benjamin; Thornton, Robert; Ward, Jonathan T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Duenner, Rolando] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Grace, Emily; Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Hasselfield, Matthew; Hlozek, Renee; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hill, J. Colin] Princeton Univ, Dept Astron, Princeton, NJ 08544 USA. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hincks, Adam D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6Z 1Z4, Canada. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Nati, Federico] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Newburgh, Laura] Univ Toronto, Dunlap Inst, Toronto, ON M5S 3H4, Canada. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA USA. [Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA USA. [Sievers, Jon] Univ KwaZulu Natal, Sch Chem & Phys, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Sievers, Jon] Univ KwaZulu Natal, Natl Inst Theoret Phys, ZA-4000 Durban, South Africa. [Thornton, Robert] West Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Madhavacheril, M (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RI Wollack, Edward/D-4467-2012; Nati, Federico/I-4469-2016; OI Wollack, Edward/0000-0002-7567-4451; Nati, Federico/0000-0002-8307-5088; Sievers, Jonathan/0000-0001-6903-5074 FU SBU-BNL Research Initiatives Seed [37298, 1111593]; U.S. National Science Foundation for the ACT project [AST-0408698, AST-0965625]; Princeton University; University of Pennsylvania; Cornell University; Canada Foundation for Innovation (CFI); CFI under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; NASA [NNX13AE56G, NNX14AB58G]; ERC [259505]; CONICYT [QUIMAL-120001, FONDECYT-1141113]; Misrahi and Wilkinson research funds; [PHY-0855887]; [PHY-1214379] FX The authors would like to thank Hironao Miyatake, Surhud More, and Anze Slosar for useful discussions regarding CMASS and BOSS galaxies. MM acknowledges support from an SBU-BNL Research Initiatives Seed Grant: Grant No. 37298, Project No. 1111593. This work was supported by the U.S. National Science Foundation through Grants No. AST-0408698 and No. AST-0965625 for the ACT project, as well as Grants No. PHY-0855887 and No. PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, Cornell University, and a Canada Foundation for Innovation (CFI) Grant to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence; and the University of Toronto. The development of multichroic detectors and lenses was supported by NASA Grants No. NNX13AE56G and No. NNX14AB58G. Funding from ERC Grant No. 259505 supports SN, JD, and TL. RD was supported by CONICYT Grants No. QUIMAL-120001 and No. FONDECYT-1141113. We gratefully acknowledge support from the Misrahi and Wilkinson research funds. NR 60 TC 12 Z9 12 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 13 PY 2015 VL 114 IS 15 AR 151302 DI 10.1103/PhysRevLett.114.151302 PG 8 WC Physics, Multidisciplinary SC Physics GA CF6TG UT WOS:000352688500004 PM 25933304 ER PT J AU Evans, PA Osborne, JP Kennea, JA Smith, M Palmer, DM Gehrels, N Gelbord, JM Homeier, A Voge, M Strotjohann, NL Cowen, DF Boser, S Kowalski, M Stasik, A AF Evans, P. A. Osborne, J. P. Kennea, J. A. Smith, M. Palmer, D. M. Gehrels, N. Gelbord, J. M. Homeier, A. Voge, M. Strotjohann, N. L. Cowen, D. F. Boeser, S. Kowalski, M. Stasik, A. TI Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational waves; neutrinos; methods: observational; gamma-ray burst: general; X-rays: general ID GAMMA-RAY BURSTS; NEWTON SLEW SURVEY; SOURCE CATALOG; NEUTRINO BURST; SUPERNOVA SN1987A; TELESCOPE; CURVES; ASTROMETRY; POSITIONS; EVENTS AB Between 2011 March and 2014 August Swift responded to 20 triggers from the IceCube neutrino observatory, observing the IceCube 50 per cent confidence error circle in X-rays, typically within 5 h of the trigger. No confirmed counterpart has been detected. We describe the Swift follow-up strategy and data analysis and present the results of the campaign. We discuss the challenges of distinguishing the X-ray counterpart to a neutrino trigger from serendipitous uncatalogued X-ray sources in the error circle, and consider the implications of our results for future strategies for multimessenger astronomy, with particular reference to the follow-up of gravitational wave triggers from the advanced-era detectors. C1 [Evans, P. A.; Osborne, J. P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Kennea, J. A.; Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Smith, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gelbord, J. M.] Spectral Sci Inc, Burlington, MA 01803 USA. [Gelbord, J. M.] Eureka Sci Inc, Oakland, CA 94602 USA. [Homeier, A.; Voge, M.; Strotjohann, N. L.; Kowalski, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Strotjohann, N. L.; Kowalski, M.; Stasik, A.] DESY, D-15735 Zeuthen, Germany. [Boeser, S.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM pae9@leicester.ac.uk OI Strotjohann, Nora Linn/0000-0002-4667-6730 FU UK Space Agency; NASA [NNH13CH61C] FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. PAE and JPO acknowledge UK Space Agency support. JMG gratefully acknowledges the support from NASA under award NNH13CH61C. We thank the anonymous referee for their helpful and constructive feedback on the manuscript. NR 49 TC 3 Z9 4 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2015 VL 448 IS 3 BP 2210 EP 2223 DI 10.1093/mnras/stv136 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0PQ UT WOS:000351507000017 ER PT J AU Delis, N Efthymiopoulos, C Kalapotharakos, C AF Delis, N. Efthymiopoulos, C. Kalapotharakos, C. TI Effective power-law dependence of Lyapunov exponents on the central mass in galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE chaos; galaxies: kinematics and dynamics; galaxies: structure ID SUPERMASSIVE BLACK-HOLES; TRIAXIAL STELLAR-SYSTEM; SELF-CONSISTENT MODELS; BARRED GALAXIES; ELLIPTIC GALAXIES; SECULAR EVOLUTION; DYNAMICAL EVOLUTION; GALACTIC MODELS; CHAOTIC ORBITS; CENTERS AB Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L. mp between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximate to 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximate to 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed. C1 [Delis, N.] Univ Athens, Dept Phys, Athens 11521, Greece. [Delis, N.; Efthymiopoulos, C.] Acad Athens, Astron & Appl Math Res Ctr, Athens 11527, Greece. [Kalapotharakos, C.] Univ Maryland, Coll Pk UMDCP, CRESST, College Pk, MD 20742 USA. [Kalapotharakos, C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Delis, N (reprint author), Univ Athens, Dept Phys, Athens 11521, Greece. EM cefthim@academyofathens.gr FU Research Committee of the Academy of Athens [200/815]; State Scholarship Foundation of Greece FX This research is supported by the Research Committee of the Academy of Athens (grant 200/815). ND was supported by the State Scholarship Foundation of Greece (IKY). NR 62 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2015 VL 448 IS 3 BP 2448 EP 2468 DI 10.1093/mnras/stv064 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0PQ UT WOS:000351507000036 ER PT J AU Mislis, D Mancini, L Tregloan-Reed, J Ciceri, S Southworth, J D'Ago, G Bruni, I Basturk, O Alsubai, KA Bachelet, E Bramich, DM Henning, T Hinse, TC Iannella, AL Parley, N Schroeder, T AF Mislis, D. Mancini, L. Tregloan-Reed, J. Ciceri, S. Southworth, J. D'Ago, G. Bruni, I. Basturk, O. Alsubai, K. A. Bachelet, E. Bramich, D. M. Henning, Th. Hinse, T. C. Iannella, A. L. Parley, N. Schroeder, T. TI High-precision multiband time series photometry of exoplanets Qatar-1b and TrES-5b SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: photometric; planets and satellites: detection; planets and satellites: fundamental parameters; planetary systems ID TRANSITING EXTRASOLAR PLANETS; STELLAR EVOLUTION DATABASE; SPIN-ORBIT ALIGNMENT; PHYSICAL-PROPERTIES; SYSTEM; MODELS; STAR; ISOCHRONES; STARSPOTS; I. AB We present an analysis of the Qatar-1 and TrES-5 transiting exoplanetary systems, which contain Jupiter-like planets on short-period orbits around K-dwarf stars. Our data comprise a total of 20 transit light curves obtained using five medium-class telescopes, operated using the defocusing technique. The average precision we reach in all our data is RMSQ = 1.1 mmag for Qatar-1 (V = 12.8) and RMST = 1.0 mmag for TrES-5 (V = 13.7). We use these data to refine the orbital ephemeris, photometric parameters, and measured physical properties of the two systems. One transit event for each object was observed simultaneously in three passbands (gri) using the BUSCA imager. The QES survey light curve of Qatar-1 has a clear sinusoidal variation on a period of P-star = 23.697 +/- 0.123 d, implying significant star-spot activity. We searched for star-spot crossing events in our light curves, but did not find clear evidence in any of the new data sets. The planet in the Qatar-1 system did not transit the active latitudes on the surfaces of its host star. Under the assumption that P-star corresponds to the rotation period of Qatar-1A, the rotational velocity of this star is very close to the vsin i(star) value found from observations of the Rossiter-McLaughlin effect. The low projected orbital obliquity found in this system thus implies a low absolute orbital obliquity, which is also a necessary condition for the transit chord of the planet to avoid active latitudes on the stellar surface. C1 [Mislis, D.; Alsubai, K. A.; Bachelet, E.; Bramich, D. M.; Parley, N.] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Mancini, L.; Ciceri, S.; Henning, Th.; Schroeder, T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Tregloan-Reed, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [D'Ago, G.; Iannella, A. L.] Univ Salerno, Dept Phys, I-84084 Fisciano, SA, Italy. [Bruni, I.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Basturk, O.] Ankara Univ, Fac Sci, Dept Astron & Space Sci, TR-06100 Ankara, Turkey. [Hinse, T. C.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. RP Mislis, D (reprint author), Qatar Fdn, Qatar Environm & Energy Res Inst, Tornado Tower,Floor 19,POB 5825, Doha, Qatar. EM dmislis@qf.org.qa RI D'Ago, Giuseppe/N-8318-2016 OI D'Ago, Giuseppe/0000-0001-9697-7331 FU NPRP from the Qatar National Research Fund (a member of Qatar Foundation) [X-019-1-006]; TUBITAK [12CT100-378]; Ankara University (BAP) [13B4240006] FX This publication is supported by NPRP grant no. X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.; We thank to TUBITAK for the partial support in using T100 telescope with project number 12CT100-378. OB acknowledges the support by the research fund of Ankara University (BAP) through the project 13B4240006. NR 26 TC 3 Z9 3 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 11 PY 2015 VL 448 IS 3 BP 2617 EP 2623 DI 10.1093/mnras/stv197 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CE0PQ UT WOS:000351507000049 ER PT J AU Hennessy, J Jewell, AD Hoenk, ME Nikzad, S AF Hennessy, John Jewell, April D. Hoenk, Michael E. Nikzad, Shouleh TI Metal-dielectric filters for solar-blind silicon ultraviolet detectors SO APPLIED OPTICS LA English DT Article ID INTERFERENCE FILTERS; QUANTUM EFFICIENCY; BANDPASS-FILTERS; DESIGN; TRANSMISSION; TRANSPARENT; TELESCOPE; RANGE; FILMS AB We report on the fabrication of metal-dielectric thin film stacks deposited directly onto silicon substrates for use as ultraviolet bandpass filters. Integration of these filters onto silicon improves the admittance matching of the structure when compared to similar designs fabricated on transparent substrates, leading to higher peak transmission or improved out-of-band rejection if used with a Si-based sensor platform. Test structures fabricated with metallic Al and atomic layer deposited Al2O3 were characterized with spectroscopic ellipsometry and agree well with optical models. These models predict transmission as high as 90% the spectral range of 200-300 nm for simple three-layer coatings. C1 [Hennessy, John; Jewell, April D.; Hoenk, Michael E.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hennessy, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM john.j.hennessy@jpl.nasa.gov FU NASA FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract from NASA. NR 23 TC 4 Z9 4 U1 4 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 10 PY 2015 VL 54 IS 11 BP 3507 EP 3512 DI 10.1364/AO.54.003507 PG 6 WC Optics SC Optics GA CG4FP UT WOS:000353240200054 PM 25967344 ER PT J AU Cannizzo, JK Nelemans, G AF Cannizzo, John K. Nelemans, Gijs TI CONSTRAINING THE PHYSICS OF AM CANUM VENATICORUM SYSTEMS WITH THE ACCRETION DISK INSTABILITY MODEL SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: close; novae, cataclysmic variables; stars: individual (AM Canum Venaticorum) ID LIMIT-CYCLE MECHANISM; X-RAY BINARIES; DWARF NOVAE; WHITE-DWARFS; CVN STARS; HZ 29; PERIOD; OUTBURSTS; STABILITY; EVOLUTION AB Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate similar to 5 x 10(-9)M(circle dot) yr(-1)(P-orb/1000 s)(-5.2). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations. C1 [Cannizzo, John K.] NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. [Cannizzo, John K.] NASA, GSFC, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Cannizzo, John K.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Nelemans, Gijs] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Nelemans, Gijs] Katholieke Univ Leuven, Inst Astron, B-3001 Louvain, Belgium. RP Cannizzo, JK (reprint author), NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. EM John.K.Cannizzo@nasa.gov RI Nelemans, Gijs/D-3177-2012 OI Nelemans, Gijs/0000-0002-0752-2974 NR 40 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 19 DI 10.1088/0004-637X/803/1/19 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400019 ER PT J AU Cohen, MH Meier, DL Arshakian, TG Clausen-Brown, E Homan, DC Hovatta, T Kovalev, YY Lister, ML Pushkarev, AB Richards, JL Savolainen, T AF Cohen, M. H. Meier, D. L. Arshakian, T. G. Clausen-Brown, E. Homan, D. C. Hovatta, T. Kovalev, Y. Y. Lister, M. L. Pushkarev, A. B. Richards, J. L. Savolainen, T. TI STUDIES OF THE JET IN BL LACERTAE. II. SUPERLUMINAL ALFVEN WAVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (BL Lac); galaxies: jets; magnetohydrodynamics (MHD); waves ID ACTIVE GALACTIC NUCLEI; SHOCKED RELATIVISTIC JETS; SYNCHROTRON EMISSION; VLBA EXPERIMENTS; BURST EMISSION; BAND QUIESCENT; RADIO-SOURCES; SCALE JETS; MOJAVE; POLARIZATION AB We study the kinematics of ridge lines on the parsec-scale jet of the active galactic nucleus BL Lacertae. We show that the ridge lines display transverse patterns that move superluminally downstream, and that the moving patterns are analogous to waves on a whip. Their apparent speeds beta(app) (units of c) range from 3.9 to 13.5, corresponding to beta(gal)(wave) = 0.981-0.998 in the galaxy frame. We show that the magnetic field in the jet is well ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are Alfven waves propagating downstream on the longitudinal component of the magnetic field. The wave-induced transverse speed of the jet is non-relativistic (beta(gal)(tr) less than or similar to 0.09 ). In 2010 the wave activity subsided and the jet then displayed a mild wiggle that had a complex oscillatory behavior. The Alfven waves appear to be excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking the handle. A simple model of the system with plasma sound speed beta(s) = 0.3 and apparent speed of a slow MHD wave beta(app,) (S) = 4 yields Lorentz factor of the beam Gamma(beam) similar to 4.5, pitch angle of the helix (in the beam frame) alpha similar to 67 degrees, Alfven speed beta(A) similar to 0.64, and magnetosonic Mach number M-ms similar to 4.7. This describes a plasma in which the magnetic field is dominant and in a rather tight helix, and Alfven waves are responsible for the moving transverse patterns. C1 [Cohen, M. H.; Meier, D. L.; Hovatta, T.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Meier, D. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Arshakian, T. G.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Arshakian, T. G.] Byurakan Astrophys Observ, Byurakan 378433, Armenia. [Arshakian, T. G.] Isaac Newton Inst Chile, Armenian Branch, Santiago, Chile. [Clausen-Brown, E.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Homan, D. C.] Denison Univ, Dept Phys, Granville, OH 43023 USA. [Hovatta, T.; Savolainen, T.] Aalto Univ, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Kovalev, Y. Y.] Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Lister, M. L.] Pulkovo Observ, W Lafayette, IN 47907 USA. [Pushkarev, A. B.] Crimean Astrophys Observ, Crimea 98409, Russia. RP Cohen, MH (reprint author), CALTECH, Dept Astron, Pasadena, CA 91125 USA. EM mhc@astro.caltech.edu RI Kovalev, Yuri/J-5671-2013; Pushkarev, Alexander/M-9997-2015; OI Kovalev, Yuri/0000-0001-9303-3263; Savolainen, Tuomas/0000-0001-6214-1085 FU DFG [Os 177/2-1]; Jenny and Antti Wihuri foundation; Academy of Finland [267324, 274477]; Russian Foundation for Basic Research [13-02-12103]; Division of Physics, Russian Academy of Sciences [OFN-17]; Dynasty Foundation; "Non-stationary processes in the universe" Program of the Presidium of the Russian Academy of Sciences; NASA-Fermi grant [NNX12A087G]; NASA through the Fermi Guest Investigator Program FX We thank the referee for comments that have improved the manuscript, M. Perucho for reading the manuscript and offering helpful suggestions, and the MOJAVE team for comments on the manuscript and for years of work in producing the database that makes this work possible. T.G.A. acknowledges support by DFG project number Os 177/2-1. T.H. was partly supported by the Jenny and Antti Wihuri foundation and by the Academy of Finland project number 267324; T.S. was partly supported by the Academy of Finland project 274477. Y.Y.K is partly supported by the Russian Foundation for Basic Research (project 13-02-12103), Research Program OFN-17 of the Division of Physics, Russian Academy of Sciences, and the Dynasty Foundation. A.B.P. was supported by the "Non-stationary processes in the universe" Program of the Presidium of the Russian Academy of Sciences. The VLBA is a facility of the National Radio Astronomy Observatory, a facility of the National Science Foundation that is operated under cooperative agreement with Associated Universities, Inc. The MOJAVE program is supported under NASA-Fermi grant NNX12A087G. This study makes use of 43 GHz VLBA data from the VLBA-BU Blazar Monitoring Program (VLBA-BU-BLAZAR; http://bu.edu/blazars/VLBAproject.html), funded by NASA through the Fermi Guest Investigator Program. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. NR 48 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 3 DI 10.1088/0004-637X/803/1/3 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400003 ER PT J AU Martin, CL Dijkstra, M Henry, A Soto, KT Danforth, CW Wong, J AF Martin, Crystal L. Dijkstra, Mark Henry, Alaina Soto, Kurt T. Danforth, Charles W. Wong, Joseph TI THE Ly alpha LINE PROFILES OF ULTRALUMINOUS INFRARED GALAXIES: FAST WINDS AND LYMAN CONTINUUM LEAKAGE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; hydrodynamics; instabilities; line: profiles; radiative transfer ID STAR-FORMING GALAXIES; SCALE GASEOUS OUTFLOWS; SINS/ZC-SINF SURVEY; FE-II-EMISSION; GALACTIC WINDS; AGN FEEDBACK; FAR-ULTRAVIOLET; X-RAY; COLLAPSING PROTOGALAXIES; INTERSTELLAR-MEDIUM AB We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly alpha emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly alpha profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km s(-1) in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly alpha line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly alpha attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly alpha photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly alpha and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly alpha emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs. C1 [Martin, Crystal L.; Wong, Joseph] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Dijkstra, Mark] Univ Oslo, Inst Theoret Astrophys, N-0858 Oslo, Norway. [Henry, Alaina] Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Soto, Kurt T.] ETH, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland. [Danforth, Charles W.] Univ Colorado, CASA, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. RP Martin, CL (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM cmartin@physics.ucsb.edu FU National Science Foundation [AST-1109288, NSF PHYS-1066293]; Kavli Institute for Theoretical Physics under support from the National Science Foundation [NSF PHY11-25915] FX This research was supported by the National Science Foundation under AST-1109288 (C.L.M.) and was partially carried out at the Aspen Center for Physics which is supported by the National Science Foundation under grant No. NSF PHYS-1066293 and the Kavli Institute for Theoretical Physics under support from the National Science Foundation under grant No. NSF PHY11-25915. We thank Tim Heckman, Norman Murray, and Todd Thompson for stimulating discussions about this work. We also wish to recognize and acknowledge the highly significant cultural role that the summit of Mauna Kea has always had within the indigenous Hawaiian community. It is a privilege to be given the opportunity to conduct observations from this mountain. NR 92 TC 15 Z9 15 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 6 DI 10.1088/0004-637X/803/1/6 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400006 ER PT J AU Pueyo, L Soummer, R Hoffmann, J Oppenheimer, R Graham, JR Zimmerman, N Zhai, C Wallace, JK Vescelus, F Veicht, A Vasisht, G Truong, T Sivaramakrishnan, A Shao, M Roberts, LC Roberts, JE Rice, E Parry, IR Nilsson, R Lockhart, T Ligon, ER King, D Hinkley, S Hillenbrand, L Hale, D Dekany, R Crepp, JR Cady, E Burruss, R Brenner, D Beichman, C Baranec, C AF Pueyo, L. Soummer, R. Hoffmann, J. Oppenheimer, R. Graham, J. R. Zimmerman, N. Zhai, C. Wallace, J. K. Vescelus, F. Veicht, A. Vasisht, G. Truong, T. Sivaramakrishnan, A. Shao, M. Roberts, L. C., Jr. Roberts, J. E. Rice, E. Parry, I. R. Nilsson, R. Lockhart, T. Ligon, E. R. King, D. Hinkley, S. Hillenbrand, L. Hale, D. Dekany, R. Crepp, J. R. Cady, E. Burruss, R. Brenner, D. Beichman, C. Baranec, C. TI RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. II. ASTROMETRY AND ORBITAL MOTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; instrumentation: adaptive optics; instrumentation: spectrographs; methods: data analysis; planetary systems; stars: individual (HR 8799) ID INTEGRAL FIELD SPECTROGRAPH; NEAR-INFRARED SPECTROSCOPY; PUPIL LYOT CORONAGRAPHS; BETA-PICTORIS B; PLANETARY SYSTEM; GIANT PLANET; MU-M; SPECKLE SUPPRESSION; EXTRASOLAR PLANETS; BROWN DWARFS AB We present an analysis of the orbital motion of the four substellar objects orbiting HR 8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph with an integral field spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an extreme adaptive optics system (PALM-3000), a coronagraph, and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectrophotometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR 8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. Although the astrometric history is currently too scarce to formally rule out coplanarity, HR 8799d appears to be misaligned with respect to the most likely planes of HR 8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR 8799de have dynamical masses below 13 M-Jup, using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system. C1 [Pueyo, L.; Soummer, R.; Sivaramakrishnan, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hoffmann, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Oppenheimer, R.; Veicht, A.; Rice, E.; Nilsson, R.; Brenner, D.] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Graham, J. R.] Univ Calif Berkeley, Berkeley Astron Dept, Berkeley, CA 94720 USA. [Zimmerman, N.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Zhai, C.; Wallace, J. K.; Vescelus, F.; Vasisht, G.; Truong, T.; Shao, M.; Roberts, L. C., Jr.; Roberts, J. E.; Lockhart, T.; Ligon, E. R.; Cady, E.; Burruss, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rice, E.] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA. [Parry, I. R.; King, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hinkley, S.] Univ Exeter, Dept Phys & Astron, Exeter EX4 4QL, Devon, England. [Hillenbrand, L.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Hale, D.; Dekany, R.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Crepp, J. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Beichman, C.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Baranec, C.] Univ Hawaii Manoa, Inst Astron, Hilo, HI 96720 USA. RP Pueyo, L (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM pueyo@stsci.edu OI Oppenheimer, Rebecca/0000-0001-7130-7681; Zimmerman, Neil/0000-0001-5484-1516 NR 90 TC 30 Z9 30 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 31 DI 10.1088/0004-637X/803/1/31 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400031 ER PT J AU Slavin, JD Dwek, E Jones, AP AF Slavin, Jonathan D. Dwek, Eli Jones, Anthony P. TI DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: supernova remnants; ISM: abundances; shock waves ID MILKY-WAY; HOT GAS; SOLAR NEIGHBORHOOD; GRAIN DESTRUCTION; SIZE DISTRIBUTION; FILLING FACTOR; EVOLUTION; EMISSION; MODELS; EXTINCTION AB Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities greater than or similar to 200 km s(-1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of similar to 2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of similar to 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of similar to 2-3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM. C1 [Slavin, Jonathan D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Dwek, Eli] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Jones, Anthony P.] Univ Paris 11, CNRS, IAS, UMR 8617, F-91405 Orsay, France. RP Slavin, JD (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jslavin@cfa.harvard.edu OI Slavin, Jonathan/0000-0002-7597-6935; Jones, Anthony/0000-0003-0577-6425 FU NASA Astrophysics Theory Program grant [NNX12AF84G]; NASA Astrophysical Data Analysis Program [ADAP13-0094] FX This research was supported by NASA Astrophysics Theory Program grant NNX12AF84G. ED acknowledges support by NASA Astrophysical Data Analysis Program ADAP13-0094. We thank John Raymond for providing the steady shock model calculations and our collaborator Xander Tielens for helpful discussions. We also wish to thank the developers of matplotlib, a python plotting library, which we used to produce all of the plots in this paper. NR 55 TC 16 Z9 16 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 7 DI 10.1088/0004-637X/803/1/7 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400007 ER PT J AU Troja, E Piro, L Vasileiou, V Omodei, N Burgess, JM Cutini, S Connaughton, V McEnery, JE AF Troja, E. Piro, L. Vasileiou, V. Omodei, N. Burgess, J. M. Cutini, S. Connaughton, V. McEnery, J. E. TI SWIFT AND FERMI OBSERVATIONS OF X-RAY FLARES: THE CASE OF LATE INTERNAL SHOCK SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; radiation mechanisms: non-thermal ID LARGE-AREA TELESCOPE; BURST AFTERGLOWS; FLARING ACTIVITY; LIGHT CURVES; COMPTON EMISSION; ENGINE ACTIVITY; GRB AFTERGLOWS; 1ST SURVEY; SYNCHROTRON; CALIBRATION AB Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (Gamma > 50) outflow at radii R similar to 10(13)-10(14) cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine. C1 [Troja, E.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Piro, L.] INAF IAPS, I-00133 Rome, Italy. [Vasileiou, V.] Univ Montpellier 2, Lab Univ & Particules Montpellier, Montpellier, France. [Vasileiou, V.] CNRS, IN2P3, Montpellier, France. [Omodei, N.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Omodei, N.] Stanford Univ, SLAC, Natl Accelerator Lab, Stanford, CA 94305 USA. [Burgess, J. M.; Connaughton, V.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Cutini, S.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [McEnery, J. E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Troja, E (reprint author), NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. EM eleonora.troja@nasa.gov; luigi.piro@iaps.inaf.it; Vlasios.Vasileiou@lupm.in2p3.fr OI Burgess, James/0000-0003-3345-9515 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 69 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2015 VL 803 IS 1 AR 10 DI 10.1088/0004-637X/803/1/10 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CG1EI UT WOS:000353015400010 ER PT J AU Villanueva, GL Mumma, MJ Novak, RE Kaufl, HU Hartogh, P Encrenaz, T Tokunaga, A Khayat, A Smith, MD AF Villanueva, G. L. Mumma, M. J. Novak, R. E. Kaeufl, H. U. Hartogh, P. Encrenaz, T. Tokunaga, A. Khayat, A. Smith, M. D. TI Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs SO SCIENCE LA English DT Article ID ORBITER LASER ALTIMETER; HYDROGEN ISOTOPES; ANNUAL CYCLE; MARS; DEUTERIUM; EVOLUTION; VAPOR; METEORITES; DEPOSITS; SURFACE AB We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep. C1 [Villanueva, G. L.; Mumma, M. J.; Smith, M. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Villanueva, G. L.] Catholic Univ Amer, Washington, DC 20064 USA. [Novak, R. E.] Iona Coll, New Rochelle, NY 10801 USA. [Kaeufl, H. U.] European So Observ, Munich, Germany. [Hartogh, P.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Encrenaz, T.] Observ Paris, F-92195 Meudon, France. [Tokunaga, A.; Khayat, A.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. RP Villanueva, GL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM geronimo.villanueva@nasa.gov FU NASA's Planetary Astronomy Program [08 PAST08 0034, RTOP 344 32 07]; NASA's Planetary Atmospheres Program [08 PATM08 0031]; NASA's Astrobiology Program [RTOP 344 53 51]; NSF Research in Undergraduate Institutions [AST 0805540]; NASA Keck PI Data Award FX We thank the staff of the Very Large Telescope (runs 83.C-0538 and 92.C-0436), the NASA InfraRed Telescope Facility, and the W. M. Keck Observatory for their exceptional support throughout our long Mars observing Programs. G.L.V. acknowledges support from NASA's Planetary Astronomy Program (08 PAST08 0034) and NASA's Planetary Atmospheres Program (08 PATM08 0031). NASA's Planetary Astronomy Program (RTOP 344 32 07) and NASA's Astrobiology Program (RTOP 344 53 51) supported M.J.M. and G.L.V. NSF Research in Undergraduate Institutions supported R.E.N. through grant AST 0805540. This work was also supported by a NASA Keck PI Data Award. The authors recognize and acknowledge the very important cultural role and reverence that the summit of MaunaKea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 42 TC 33 Z9 35 U1 3 U2 46 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 10 PY 2015 VL 348 IS 6231 BP 218 EP 221 DI 10.1126/science.aaa3630 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5RD UT WOS:000352613700041 PM 25745065 ER PT J AU Clark, DB Hurtado, J Saatchi, SS AF Clark, David B. Hurtado, Johanna Saatchi, Sassan S. TI Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica SO PLOS ONE LA English DT Article ID ALTITUDINAL GRADIENTS; MOUNT-KINABALU; RANGE SHIFTS; CLIMATE; BIOMASS; VEGETATION; MORTALITY; ECOLOGY; BORNEO AB Rapid biological changes are expected to occur on tropical elevational gradients as species migrate upslope or go extinct in the face of global warming. We established a series of 9 1-ha plots in old-growth tropical rainforest in Costa Rica along a 2700 m relief elevational gradient to carry out long-term monitoring of tropical rain forest structure, dynamics and tree growth. Within each plot we mapped, identified, and annually measured diameter for all woody individuals with stem diameters >10 cm for periods of 3-10 years. Wood species diversity peaked at 400-600 m and decreased substantially at higher elevations. Basal area and stem number varied by less than two-fold, with the exception of the 2800 m cloud forest summit, where basal area and stem number were approximately double that of lower sites. Canopy gaps extending to the forest floor accounted for <3% of microsites at all elevations. Height of highest crowns and the coefficient of variation of crown height both decreased with increasing elevation. Rates of turnover of individuals and of stand basal area decreased with elevation, but rates of diameter growth and stand basal area showed no simple relation to elevation. We discuss issues encountered in the design and implementation of this network of plots, including biased sampling, missing key meteorological and biomass data, and strategies for improving species-level research. Taking full advantage of the major research potential of tropical forest elevational transects will require sustaining and extending ground based studies, incorporation of new remotely-sensed data and data-acquisition platforms, and new funding models to support decadal research on these rapidly-changing systems. C1 [Clark, David B.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA. [Hurtado, Johanna] Org Trop Studies, La Selva Biol Stn, Puerto Viejo de Sarapiqui, Heredia, Costa Rica. [Saatchi, Sassan S.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Clark, DB (reprint author), Univ Missouri, Dept Biol, 8001 Nat Bridge Rd, St Louis, MO 63121 USA. EM dbclark50@yahoo.com FU Tropical Ecology Assessment and Monitoring program (TEAM) of Conservational International; NASA Terrestrial Ecology grant [11-TE11-0100] FX JH and DBC received funding from the Tropical Ecology Assessment and Monitoring program (TEAM) of Conservational International (http://www.teamnetwork.org/). DBC and SSS were funded by NASA Terrestrial Ecology grant 11-TE11-0100 (http://cce.nasa.gov/cce/terrestrial.htm). The funders had no role in study design, data collection NR 43 TC 1 Z9 1 U1 8 U2 40 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 9 PY 2015 VL 10 IS 4 AR e0122905 DI 10.1371/journal.pone.0122905 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF5HQ UT WOS:000352588500064 PM 25856163 ER PT J AU Aasi, J Abbott, BP Abbott, R Abbott, T Abernathy, MR Ackley, K Adams, C Adams, T Addesso, P Adhikari, RX Adya, V Affeldt, C Aggarwal, N Aguiar, OD Ain, A Ajith, P Alemic, A Allen, B Amariutei, D Anderson, SB Anderson, WG Arai, K Araya, MC Arceneaux, C Areeda, JS Ashton, G Ast, S Aston, SM Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, PT Ballmer, SW Barayoga, JC Barbet, M Barclay, S Barish, BC Barker, D Barr, B Barsotti, L Bartlett, J Barton, MA Bartos, I Bassiri, R Batch, JC Baune, C Behnke, B Bell, AS Bell, C Benacquista, M Bergman, J Bergmann, G Berry, CPL Betzwieser, J Bhagwat, S Bhandare, R Bilenko, IA Billingsley, G Birch, J Biscans, S Biwer, C Blackburn, JK Blackburn, L Blair, CD Blair, D Bock, O Bodiya, TP Bojtos, P Bond, C Bork, R Born, M Bose, S Brady, PR Braginsky, VB Brau, JE Bridges, DO Brinkmann, M Brooks, AF Brown, DA Brown, DD Brown, NM Buchman, S Buikema, A Buonanno, A Cadonati, L Bustillo, JC Camp, JB Cannon, KC Cao, J Capano, CD Caride, S Caudill, S Cavaglia, M Cepeda, C Chakraborty, R Chalermsongsak, T Chamberlin, SJ Chao, S Charlton, P Chen, Y Cho, HS Cho, M Chow, JH Christensen, N Chu, Q Chung, S Ciani, G Clara, F Clark, JA Collette, C Cominsky, L Constancio, M Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, MW Countryman, S Couvares, P Coward, DM Cowart, MJ Coyne, DC Coyne, R Craig, K Creighton, JDE Creighton, TD Cripe, J Crowder, SG Cumming, A Cunningham, L Cutler, C Dahl, K Dal Canton, T Damjanic, M Danilishin, SL Danzmann, K Dartez, L Dave, I Daveloza, H Davies, GS Daw, EJ Debra, D Del Pozzo, W Denker, T Dent, T Dergachev, V DeRosa, RT DeSalvo, R Dhurandhar, S Diaz, M Di Palma, I Dojcinoski, G Dominguez, E Donovan, F Dooley, KL Doravari, S Douglas, R Downes, TP Driggers, JC Du, Z Dwyer, S Eberle, T Edo, T Edwards, M Edwards, M Effler, A Eggenstein, HB Ehrens, P Eichholz, J Eikenberry, SS Essick, R Etzel, T Evans, M Evans, T Factourovich, M Fairhurst, S Fan, X Fang, Q Farr, B Farr, WM Favata, M Fays, M Fehrmann, H Fejer, MM Feldbaum, D Ferreira, EC Fisher, RP Frei, Z Freise, A Frey, R Fricke, TT Fritschel, P Frolov, VV Fuentes-Tapia, S Fulda, P Fyffe, M Gair, JR Gaonkar, S Gehrels, N Gergely, LA Giaime, JA Giardina, KD Gleason, J Goetz, E Goetz, R Gondan, L Gonzalez, G Gordon, N Gorodetsky, ML Gossan, S Gossler, S Graf, C Graff, PB Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Grote, H Grunewald, S Guido, CJ Guo, X Gushwa, K Gustafson, EK Gustafson, R Hacker, J Hall, ED Hammond, G Hanke, M Hanks, J Hanna, C Hannam, MD Hanson, J Hardwick, T Harry, GM Harry, IW Hart, M Hartman, MT Haster, CJ Haughian, K Hee, S Heintze, M Heinzel, G Hendry, M Heng, IS Heptonstall, AW Heurs, M Hewitson, M Hild, S Hoak, D Hodge, KA Hollitt, SE Holt, K Hopkins, P Hosken, DJ Hough, J Houston, E Howell, EJ Hu, YM Huerta, E Hughey, B Husa, S Huttner, SH Huynh, M Huynh-Dinh, T Idrisy, A Indik, N Ingram, DR Inta, R Islas, G Isler, JC Isogai, T Iyer, BR Izumi, K Jacobson, M Jang, H Jawahar, S Ji, Y Jimenez-Forteza, F Johnson, WW Jones, DI Jones, R Ju, L Haris, K Kalogera, V Kandhasamy, S Kang, G Kanner, JB Katsavounidis, E Katzman, W Kaufer, H Kaufer, S Kaur, T Kawabe, K Kawazoe, F Keiser, GM Keitel, D Kelley, DB Kells, W Keppel, DG Key, JS Khalaidovski, A Khalili, FY Khazanov, EA Kim, C Kim, K Kim, NG Kim, N Kim, YM King, EJ King, PJ Kinzel, DL Kissel, JS Klimenko, S Kline, J Koehlenbeck, S Kokeyama, K Kondrashov, V Korobko, M Korth, WZ Kozak, DB Kringel, V Krishnan, B Krueger, C Kuehn, G Kumar, A Kumar, P Kuo, L Landry, M Lantz, B Larson, S Lasky, PD Lazzarini, A Lazzaro, C Le, J Leaci, P Leavey, S Lebigot, EO Lee, CH Lee, HK Lee, HM Leong, JR Levin, Y Levine, B Lewis, J Li, TGF Libbrecht, K Libson, A Lin, AC Littenberg, TB Lockerbie, NA Lockett, V Logue, J Lombardi, AL Lormand, M Lough, J Lubinski, MJ Luck, H Lundgren, AP Lynch, R Ma, Y Macarthur, J MacDonald, T Machenschalk, B MacInnis, M Macleod, DM Magana-Sandoval, F Magee, R Mageswaran, M Maglione, C Mailand, K Mandel, I Mandic, V Mangano, V Mansell, GL Marka, S Marka, Z Markosyan, A Maros, E Martin, IW Martin, RM Martynov, D Marx, JN Mason, K Massinger, TJ Matichard, F Matone, L Mavalvala, N Mazumder, N Mazzolo, G McCarthy, R McClelland, DE McCormick, S McGuire, SC McIntyre, G McIver, J Mclin, K McWilliams, S Meadors, GD Meinders, M Melatos, A Mendell, G Mercer, RA Meshkov, S Messenger, C Meyers, PM Miao, H Middleton, H Mikhailov, EE Miller, A Miller, J Millhouse, M Ming, J Mirshekari, S Mishra, C Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohanty, SD Mohapatra, SRP Moore, B Moraru, D Moreno, G Morriss, SR Mossavi, K Mow-Lowry, CM Mueller, CL Mueller, G Mukherjee, S Mullavey, A Munch, J Murphy, D Murray, PG Mytidis, A Nash, T Nayak, RK Necula, V Nedkova, K Newton, G Nguyen, T Nielsen, AB Nissanke, S Nitz, AH Nolting, D Normandin, MEN Nuttall, LK Ochsner, E O'Dell, J Oelker, E Ogin, GH Oh, JJ Oh, SH Ohme, F Oppermann, P Oram, R O'Reilly, B Ortega, W O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Padilla, C Pai, A Pai, S Palashov, O Pal-Singh, A Pan, H Pankow, C Pannarale, F Pant, BC Papa, MA Paris, H Patrick, Z Pedraza, M Pekowsky, L Pele, A Penn, S Perreca, A Phelps, M Pierro, V Pinto, IM Pitkin, M Poeld, J Post, A Poteomkin, A Powell, J Prasad, J Predoi, V Premachandra, S Prestegard, T Price, LR Principe, M Privitera, S Prix, R Prokhorov, L Puncken, O Purrer, M Qin, J Quetschke, V Quintero, E Quiroga, G Quitzow-James, R Raab, FJ Rabeling, DS Radkins, H Raffai, P Raja, S Rajalakshmi, G Rakhmanov, M Ramirez, K Raymond, V Reed, CM Reid, S Reitze, DH Reula, O Riles, K Robertson, NA Robie, R Rollins, JG Roma, V Romano, JD Romanov, G Romie, JH Rowan, S Rudiger, A Ryan, K Sachdev, S Sadecki, T Sadeghian, L Saleem, M Salemi, F Sammut, L Sandberg, V Sanders, JR Sannibale, V Santiago-Prieto, I Sathyaprakash, BS Saulson, PR Savage, R Sawadsky, A Scheuer, J Schilling, R Schmidt, P Schnabel, R Schofield, RMS Schreiber, E Schuette, D Schutz, BF Scott, J Scott, SM Sellers, D Sengupta, AS Sergeev, A Serna, G Sevigny, A Shaddock, DA Shahriar, MS Shaltev, M Shao, Z Shapiro, B Shawhan, P Shoemaker, DH Sidery, TL Siemens, X Sigg, D Silva, AD Simakov, D Singer, A Singer, L Singh, R Sintes, AM Slagmolen, BJJ Smith, JR Smith, MR Smith, RJE Smith-Lefebvre, ND Son, EJ Sorazu, B Souradeep, T Staley, A Stebbins, J Steinke, M Steinlechner, J Steinlechner, S Steinmeyer, D Stephens, BC Steplewski, S Stevenson, S Stone, R Strain, KA Strigin, S Sturani, R Stuver, AL Summerscales, TZ Sutton, PJ Szczepanczyk, M Szeifert, G Talukder, D Tanner, DB Tapai, M Tarabrin, SP Taracchini, A Taylor, R Tellez, G Theeg, T Thirugnanasambandam, MP Thomas, M Thomas, P Thorne, KA Thorne, KS Thrane, E Tiwari, V Tomlinson, C Torres, CV Torrie, CI Traylor, G Tse, M Tshilumba, D Ugolini, D Unnikrishnan, CS Urban, AL Usman, SA Vahlbruch, H Vajente, G Valdes, G Vallisneri, M van Veggel, AA Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, PJ Venkateswara, K Vincent-Finley, R Vitale, S Vo, T Vorvick, C Vousden, WD Vyatchanin, SP Wade, AR Wade, L Wade, M Walker, M Wallace, L Walsh, S Wang, H Wang, M Wang, X Ward, RL Warner, J Was, M Weaver, B Weinert, M Weinstein, AJ Weiss, R Welborn, T Wen, L Wessels, P Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Williams, L Williams, R Williamson, AR Willis, JL Willke, B Wimmer, M Winkler, W Wipf, CC Wittel, H Woan, G Worden, J Xie, S Yablon, J Yakushin, I Yam, W Yamamoto, H Yancey, CC Yang, Q Zanolin, M Zhang, F Zhang, L Zhang, M Zhang, Y Zhao, C Zhou, M Zhu, XJ Zucker, ME Zuraw, S Zweizig, J AF Aasi, J. Abbott, B. P. Abbott, R. Abbott, T. Abernathy, M. R. Ackley, K. Adams, C. Adams, T. Addesso, P. Adhikari, R. X. Adya, V. Affeldt, C. Aggarwal, N. Aguiar, O. D. Ain, A. Ajith, P. Alemic, A. Allen, B. Amariutei, D. Anderson, S. B. Anderson, W. G. Arai, K. Araya, M. C. Arceneaux, C. Areeda, J. S. Ashton, G. Ast, S. Aston, S. M. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. T. Ballmer, S. W. Barayoga, J. C. Barbet, M. Barclay, S. Barish, B. C. Barker, D. Barr, B. Barsotti, L. Bartlett, J. Barton, M. A. Bartos, I. Bassiri, R. Batch, J. C. Baune, C. Behnke, B. Bell, A. S. Bell, C. Benacquista, M. Bergman, J. Bergmann, G. Berry, C. P. L. Betzwieser, J. Bhagwat, S. Bhandare, R. Bilenko, I. A. Billingsley, G. Birch, J. Biscans, S. Biwer, C. Blackburn, J. K. Blackburn, L. Blair, C. D. Blair, D. Bock, O. Bodiya, T. P. Bojtos, P. Bond, C. Bork, R. Born, M. Bose, Sukanta Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brinkmann, M. Brooks, A. F. Brown, D. A. Brown, D. D. Brown, N. M. Buchman, S. Buikema, A. Buonanno, A. Cadonati, L. Bustillo, J. Calderon Camp, J. B. Cannon, K. C. Cao, J. Capano, C. D. Caride, S. Caudill, S. Cavaglia, M. Cepeda, C. Chakraborty, R. Chalermsongsak, T. Chamberlin, S. J. Chao, S. Charlton, P. Chen, Y. Cho, H. S. Cho, M. Chow, J. H. Christensen, N. Chu, Q. Chung, S. Ciani, G. Clara, F. Clark, J. A. Collette, C. Cominsky, L. Constancio, M., Jr. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. W. Countryman, S. Couvares, P. Coward, D. M. Cowart, M. J. Coyne, D. C. Coyne, R. Craig, K. Creighton, J. D. E. Creighton, T. D. Cripe, J. Crowder, S. G. Cumming, A. Cunningham, L. Cutler, C. Dahl, K. Dal Canton, T. Damjanic, M. Danilishin, S. L. Danzmann, K. Dartez, L. Dave, I. Daveloza, H. Davies, G. S. Daw, E. J. Debra, D. Del Pozzo, W. Denker, T. Dent, T. Dergachev, V. DeRosa, R. T. DeSalvo, R. Dhurandhar, S. Diaz, M. Di Palma, I. Dojcinoski, G. Dominguez, E. Donovan, F. Dooley, K. L. Doravari, S. Douglas, R. Downes, T. P. Driggers, J. C. Du, Z. Dwyer, S. Eberle, T. Edo, T. Edwards, M. Edwards, M. Effler, A. Eggenstein, H. -B Ehrens, P. Eichholz, J. Eikenberry, S. S. Essick, R. Etzel, T. Evans, M. Evans, T. Factourovich, M. Fairhurst, S. Fan, X. Fang, Q. Farr, B. Farr, W. M. Favata, M. Fays, M. Fehrmann, H. Fejer, M. M. Feldbaum, D. Ferreira, E. C. Fisher, R. P. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Fritschel, P. Frolov, V. V. Fuentes-Tapia, S. Fulda, P. Fyffe, M. Gair, J. R. Gaonkar, S. Gehrels, N. Gergely, L. A. Giaime, J. A. Giardina, K. D. Gleason, J. Goetz, E. Goetz, R. Gondan, L. Gonzalez, G. Gordon, N. Gorodetsky, M. L. Gossan, S. Gossler, S. Graef, C. Graff, P. B. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Grote, H. Grunewald, S. Guido, C. J. Guo, X. Gushwa, K. Gustafson, E. K. Gustafson, R. Hacker, J. Hall, E. D. Hammond, G. Hanke, M. Hanks, J. Hanna, C. Hannam, M. D. Hanson, J. Hardwick, T. Harry, G. M. Harry, I. W. Hart, M. Hartman, M. T. Haster, C-J Haughian, K. Hee, S. Heintze, M. Heinzel, G. Hendry, M. Heng, I. S. Heptonstall, A. W. Heurs, M. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Hollitt, S. E. Holt, K. Hopkins, P. Hosken, D. J. Hough, J. Houston, E. Howell, E. J. Hu, Y. M. Huerta, E. Hughey, B. Husa, S. Huttner, S. H. Huynh, M. Huynh-Dinh, T. Idrisy, A. Indik, N. Ingram, D. R. Inta, R. Islas, G. Isler, J. C. Isogai, T. Iyer, B. R. Izumi, K. Jacobson, M. Jang, H. Jawahar, S. Ji, Y. Jimenez-Forteza, F. Johnson, W. W. Jones, D. I. Jones, R. Ju, L. Haris, K. Kalogera, V. Kandhasamy, S. Kang, G. Kanner, J. B. Katsavounidis, E. Katzman, W. Kaufer, H. Kaufer, S. Kaur, T. Kawabe, K. Kawazoe, F. Keiser, G. M. Keitel, D. Kelley, D. B. Kells, W. Keppel, D. G. Key, J. S. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, C. Kim, K. Kim, N. G. Kim, N. Kim, Y. -M King, E. J. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kline, J. Koehlenbeck, S. Kokeyama, K. Kondrashov, V. Korobko, M. Korth, W. Z. Kozak, D. B. Kringel, V. Krishnan, B. Krueger, C. Kuehn, G. Kumar, A. Kumar, P. Kuo, L. Landry, M. Lantz, B. Larson, S. Lasky, P. D. Lazzarini, A. Lazzaro, C. Le, J. Leaci, P. Leavey, S. Lebigot, E. O. Lee, C. H. Lee, H. K. Lee, H. M. Leong, J. R. Levin, Y. Levine, B. Lewis, J. Li, T. G. F. Libbrecht, K. Libson, A. Lin, A. C. Littenberg, T. B. Lockerbie, N. A. Lockett, V. Logue, J. Lombardi, A. L. Lormand, M. Lough, J. Lubinski, M. J. Lueck, H. Lundgren, A. P. Lynch, R. Ma, Y. Macarthur, J. MacDonald, T. Machenschalk, B. MacInnis, M. Macleod, D. M. Magana-Sandoval, F. Magee, R. Mageswaran, M. Maglione, C. Mailand, K. Mandel, I. Mandic, V. Mangano, V. Mansell, G. L. Marka, S. Marka, Z. Markosyan, A. Maros, E. Martin, I. W. Martin, R. M. Martynov, D. Marx, J. N. Mason, K. Massinger, T. J. Matichard, F. Matone, L. Mavalvala, N. Mazumder, N. Mazzolo, G. McCarthy, R. McClelland, D. E. McCormick, S. McGuire, S. C. McIntyre, G. McIver, J. Mclin, K. McWilliams, S. Meadors, G. D. Meinders, M. Melatos, A. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyers, P. M. Miao, H. Middleton, H. Mikhailov, E. E. Miller, A. Miller, J. Millhouse, M. Ming, J. Mirshekari, S. Mishra, C. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohanty, S. D. Mohapatra, S. R. P. Moore, B. Moraru, D. Moreno, G. Morriss, S. R. Mossavi, K. Mow-Lowry, C. M. Mueller, C. L. Mueller, G. Mukherjee, S. Mullavey, A. Munch, J. Murphy, D. Murray, P. G. Mytidis, A. Nash, T. Nayak, R. K. Necula, V. Nedkova, K. Newton, G. Nguyen, T. Nielsen, A. B. Nissanke, S. Nitz, A. H. Nolting, D. Normandin, M. E. N. Nuttall, L. K. Ochsner, E. O'Dell, J. Oelker, E. Ogin, G. H. Oh, J. J. Oh, S. H. Ohme, F. Oppermann, P. Oram, R. O'Reilly, B. Ortega, W. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Padilla, C. Pai, A. Pai, S. Palashov, O. Pal-Singh, A. Pan, H. Pankow, C. Pannarale, F. Pant, B. C. Papa, M. A. Paris, H. Patrick, Z. Pedraza, M. Pekowsky, L. Pele, A. Penn, S. Perreca, A. Phelps, M. Pierro, V. Pinto, I. M. Pitkin, M. Poeld, J. Post, A. Poteomkin, A. Powell, J. Prasad, J. Predoi, V. Premachandra, S. Prestegard, T. Price, L. R. Principe, M. Privitera, S. Prix, R. Prokhorov, L. Puncken, O. Puerrer, M. Qin, J. Quetschke, V. Quintero, E. Quiroga, G. Quitzow-James, R. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raja, S. Rajalakshmi, G. Rakhmanov, M. Ramirez, K. Raymond, V. Reed, C. M. Reid, S. Reitze, D. H. Reula, O. Riles, K. Robertson, N. A. Robie, R. Rollins, J. G. Roma, V. Romano, J. D. Romanov, G. Romie, J. H. Rowan, S. Ruediger, A. Ryan, K. Sachdev, S. Sadecki, T. Sadeghian, L. Saleem, M. Salemi, F. Sammut, L. Sandberg, V. Sanders, J. R. Sannibale, V. Santiago-Prieto, I. Sathyaprakash, B. S. Saulson, P. R. Savage, R. Sawadsky, A. Scheuer, J. Schilling, R. Schmidt, P. Schnabel, R. Schofield, R. M. S. Schreiber, E. Schuette, D. Schutz, B. F. Scott, J. Scott, S. M. Sellers, D. Sengupta, A. S. Sergeev, A. Serna, G. Sevigny, A. Shaddock, D. A. Shahriar, M. S. Shaltev, M. Shao, Z. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sidery, T. L. Siemens, X. Sigg, D. Silva, A. D. Simakov, D. Singer, A. Singer, L. Singh, R. Sintes, A. M. Slagmolen, B. J. J. Smith, J. R. Smith, M. R. Smith, R. J. E. Smith-Lefebvre, N. D. Son, E. J. Sorazu, B. Souradeep, T. Staley, A. Stebbins, J. Steinke, M. Steinlechner, J. Steinlechner, S. Steinmeyer, D. Stephens, B. C. Steplewski, S. Stevenson, S. Stone, R. Strain, K. A. Strigin, S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sutton, P. J. Szczepanczyk, M. Szeifert, G. Talukder, D. Tanner, D. B. Tapai, M. Tarabrin, S. P. Taracchini, A. Taylor, R. Tellez, G. Theeg, T. Thirugnanasambandam, M. P. Thomas, M. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Tiwari, V. Tomlinson, C. Torres, C. V. Torrie, C. I. Traylor, G. Tse, M. Tshilumba, D. Ugolini, D. Unnikrishnan, C. S. Urban, A. L. Usman, S. A. Vahlbruch, H. Vajente, G. Valdes, G. Vallisneri, M. van Veggel, A. A. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. J. Venkateswara, K. Vincent-Finley, R. Vitale, S. Vo, T. Vorvick, C. Vousden, W. D. Vyatchanin, S. P. Wade, A. R. Wade, L. Wade, M. Walker, M. Wallace, L. Walsh, S. Wang, H. Wang, M. Wang, X. Ward, R. L. Warner, J. Was, M. Weaver, B. Weinert, M. Weinstein, A. J. Weiss, R. Welborn, T. Wen, L. Wessels, P. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Williams, L. Williams, R. Williamson, A. R. Willis, J. L. Willke, B. Wimmer, M. Winkler, W. Wipf, C. C. Wittel, H. Woan, G. Worden, J. Xie, S. Yablon, J. Yakushin, I. Yam, W. Yamamoto, H. Yancey, C. C. Yang, Q. Zanolin, M. Zhang, Fan Zhang, L. Zhang, M. Zhang, Y. Zhao, C. Zhou, M. Zhu, X. J. Zucker, M. E. Zuraw, S. Zweizig, J. CA LIGO Sci Collaboration TI Advanced LIGO SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE gravitational waves; interferometers; seismic isolation; optics ID GRAVITATIONAL-WAVE DETECTORS; MECHANICAL LOSS; FREQUENCY; RADIATION; ALIGNMENT; COATINGS; CAVITIES; READOUT; VIRGO AB The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015. C1 [Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Coyne, D. C.; Dergachev, V.; Driggers, J. C.; Ehrens, P.; Etzel, T.; Gushwa, K.; Gustafson, E. K.; Hall, E. D.; Heptonstall, A. W.; Hodge, K. A.; Jacobson, M.; Kanner, J. B.; Kells, W.; Kondrashov, V.; Korth, W. Z.; Kozak, D. B.; Lazzarini, A.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Mageswaran, M.; Mailand, K.; Maros, E.; Martynov, D.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Osthelder, C.; Pedraza, M.; Phelps, M.; Price, L. R.; Privitera, S.; Quintero, E.; Raymond, V.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Sachdev, S.; Sannibale, V.; Schmidt, P.; Shao, Z.; Singer, A.; Singer, L.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Taylor, R.; Thirugnanasambandam, M. P.; Thrane, E.; Torrie, C. I.; Vajente, G.; Vass, S.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Williams, R.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abbott, T.; Corbitt, T. R.; Cripe, J.; DeRosa, R. T.; Effler, A.; Giaime, J. A.; Gonzalez, G.; Hardwick, T.; Johnson, W. W.; Kokeyama, K.; Macleod, D. M.; Singh, R.; Walker, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Ackley, K.; Amariutei, D.; Barbet, M.; Ciani, G.; Eichholz, J.; Eikenberry, S. S.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Hartman, M. T.; Heintze, M.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, C. L.; Mueller, G.; Mytidis, A.; Necula, V.; Ottens, R. S.; Reitze, D. H.; Tanner, D. B.; Tiwari, V.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Adams, C.; Aston, S. M.; Betzwieser, J.; Birch, J.; Bridges, D. O.; Cowart, M. J.; Doravari, S.; Evans, T.; Feldbaum, D.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C. J.; Hanson, J.; Heintze, M.; Holt, K.; Huynh-Dinh, T.; Katzman, W.; Kinzel, D. L.; Lormand, M.; McCormick, S.; Mullavey, A.; Nolting, D.; Oram, R.; O'Reilly, B.; Overmier, H.; Romie, J. H.; Sellers, D.; Stuver, A. L.; Thomas, M.; Thorne, K. A.; Traylor, G.; Welborn, T.; Yakushin, I.] LIGO, Livingston Observ, Livingston, LA 70754 USA. [Adams, T.; Edwards, M.; Fairhurst, S.; Fays, M.; Hannam, M. D.; Hopkins, P.; Ohme, F.; Pannarale, F.; Predoi, V.; Puerrer, M.; Sathyaprakash, B. S.; Schmidt, P.; Schutz, B. F.; Sutton, P. J.; Williamson, A. R.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Adams, T.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Addesso, P.; Buikema, A.; Denker, T.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio, I-82100 Benevento, Italy. [Addesso, P.; Buikema, A.; Denker, T.; DeSalvo, R.; Pierro, V.; Pinto, I. M.; Principe, M.] INFN, Sez Napoli, I-80100 Naples, Italy. [Adya, V.; Affeldt, C.; Baune, C.; Bergmann, G.; Born, M.; Brinkmann, M.; Dahl, K.; Damjanic, M.; Danzmann, K.; Dooley, K. L.; Eberle, T.; Fricke, T. T.; Gossler, S.; Grote, H.; Hanke, M.; Heinzel, G.; Heurs, M.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Koehlenbeck, S.; Korobko, M.; Kringel, V.; Kuehn, G.; Leong, J. R.; Lueck, H.; Mossavi, K.; Mow-Lowry, C. M.; Oppermann, P.; Pal-Singh, A.; Poeld, J.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schreiber, E.; Schuette, D.; Simakov, D.; Steinke, M.; Steinmeyer, D.; Tarabrin, S. P.; Theeg, T.; Was, M.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Wimmer, M.; Winkler, W.; Wittel, H.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Expt Grp, D-30167 Hannover, Germany. [Aggarwal, N.; Barsotti, L.; Biscans, S.; Bodiya, T. P.; Brown, N. M.; Donovan, F.; Essick, R.; Evans, M.; Fritschel, P.; Gras, S.; Isogai, T.; Katsavounidis, E.; Libson, A.; Lynch, R.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Miller, J.; Mittleman, R.; Mohapatra, S. R. P.; Oelker, E.; Shoemaker, D. H.; Tse, M.; Vaulin, R.; Vitale, S.; Weiss, R.; Wipf, C. C.; Yam, W.; Zhang, Fan; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Aguiar, O. D.; Constancio, M., Jr.; Costa, C. A.; Ferreira, E. C.; Silva, A. D.] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Ain, A.; Bose, Sukanta; Dhurandhar, S.; Gaonkar, S.; Mitra, S.; Prasad, J.; Souradeep, T.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Ajith, P.; Mishra, C.] Tata Inst Fundamental, Int Ctr Theoret Sci, Res, Bangalore 560012, Karnataka, India. [Alemic, A.; Ballmer, S. W.; Bhagwat, S.; Biwer, C.; Brown, D. A.; Couvares, P.; Fisher, R. P.; Isler, J. C.; Kelley, D. B.; Kumar, P.; Magana-Sandoval, F.; Massinger, T. J.; Nitz, A. H.; Pekowsky, L.; Perreca, A.; Saulson, P. R.; Usman, S. A.] Syracuse Univ, Syracuse, NY 13244 USA. [Allen, B.; Aulbert, C.; Bock, O.; Dal Canton, T.; Dent, T.; Eggenstein, H. -B; Fehrmann, H.; Goetz, E.; Indik, N.; Keitel, D.; Keppel, D. G.; Krishnan, B.; Lough, J.; Lundgren, A. P.; Machenschalk, B.; Mazzolo, G.; Nielsen, A. B.; Post, A.; Prix, R.; Salemi, F.; Shaltev, M.; Wette, K.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Data Anal Grp, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Brady, P. R.; Caudill, S.; Chamberlin, S. J.; Creighton, J. D. E.; Downes, T. P.; Huynh, M.; Kline, J.; Mercer, R. A.; Moe, B.; Nuttall, L. K.; Ochsner, E.; Pankow, C.; Papa, M. A.; Sadeghian, L.; Siemens, X.; Stephens, B. C.; Urban, A. L.; Wade, L.; Wade, M.; Walsh, S.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Arceneaux, C.; Cavaglia, M.; Kandhasamy, S.] Univ Mississippi, University, MS 38677 USA. [Areeda, J. S.; Hacker, J.; Islas, G.; Lockett, V.; Padilla, C.; Serna, G.; Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ashton, G.; Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Ast, S.; Aufmuth, P.; Danzmann, K.; Kaufer, H.; Kaufer, S.; Krueger, C.; Lueck, H.; Meinders, M.; Sawadsky, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Aylott, B. E.; Berry, C. P. L.; Bond, C.; Brown, D. D.; Del Pozzo, W.; Farr, W. M.; Freise, A.; Haster, C-J; Mandel, I.; Miao, H.; Middleton, H.; Sidery, T. L.; Stevenson, S.; Vecchio, A.; Veitch, J.; Vousden, W. D.; Wang, H.; Wang, M.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Babak, S.; Behnke, B.; Di Palma, I.; Grunewald, S.; Harry, I. W.; Leaci, P.; Ming, J.; Papa, M. A.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P. T.; Cornish, N.; Millhouse, M.] Montana State Univ, Bozeman, MT 59717 USA. [Ain, A.; Alemic, A.; Barclay, S.; Barr, B.; Bell, A. S.; Bell, C.; Craig, K.; Cunningham, L.; Davies, G. S.; Douglas, R.; Fan, X.; Gordon, N.; Graef, C.; Grant, A.; Hammond, G.; Hart, M.; Haughian, K.; Hendry, M.; Heng, I. S.; Hild, S.; Hough, J.; Houston, E.; Hu, Y. M.; Huttner, S. H.; Jones, R.; Leavey, S.; Logue, J.; Macarthur, J.; Mangano, V.; Martin, I. W.; Messenger, C.; Murray, P. G.; Newton, G.; Pitkin, M.; Powell, J.; Robertson, N. A.; Robie, R.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Steinlechner, J.; Steinlechner, S.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Ain, A.; Alemic, A.; Barker, D.; Bartlett, J.; Barton, M. A.; Batch, J. C.; Bergman, J.; Buikema, A.; Buonanno, A.; Clara, F.; Cook, D.; Corsi, A.; Cumming, A.; Dwyer, S.; Effler, A.; Gray, C.; Hanks, J.; Ingram, D. R.; Izumi, K.; Kawabe, K.; King, P. J.; Kissel, J. S.; Landry, M.; Levine, B.; Lubinski, M. J.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Pele, A.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sadecki, T.; Sandberg, V.; Savage, R.; Sevigny, A.; Sigg, D.; Thomas, P.; Vo, T.; Vorvick, C.; Warner, J.; Weaver, B.; Wilkinson, C.; Worden, J.] LIGO, Hanford Observ, Richland, WA 99352 USA. [Ain, A.; Bartos, I.; McClelland, D. E.; Murphy, D.; Staley, A.] Columbia Univ, New York, NY 10027 USA. [Ain, A.; Bassiri, R.; Buchman, S.; Debra, D.; Fejer, M. M.; Keiser, G. M.; Kim, N.; Lantz, B.; Lin, A. C.; MacDonald, T.; Markosyan, A.; Paris, H.; Patrick, Z.; Shapiro, B.; Stebbins, J.] Stanford Univ, Stanford, CA 94305 USA. [Ain, A.; Alemic, A.; Benacquista, M.; Buikema, A.; Creighton, T. D.; Dartez, L.; Daveloza, H.; Diaz, M.; Fuentes-Tapia, S.; Key, J. S.; Mohanty, S. D.; Morriss, S. R.; Mukherjee, S.; Normandin, M. E. N.; Puncken, O.; Quetschke, V.; Rakhmanov, M.; Ramirez, K.; Romano, J. D.; Stone, R.; Tellez, G.; Torres, C. V.; Valdes, G.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Bhandare, R.; Dave, I.; Pai, S.; Pant, B. C.; Raja, S.] RRCAT, Indore 452013, Madhya Pradesh, India. [Ain, A.; Bilenko, I. A.; Braginsky, V. B.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyatchanin, S. P.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Blackburn, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ain, A.; Blair, C. D.; Blair, D.; Chu, Q.; Chung, S.; Coward, D. M.; Danilishin, S. L.; Fang, Q.; Howell, E. J.; Ju, L.; Kaur, T.; Ma, Y.; Qin, J.; Wen, L.; Zhao, C.; Zhu, X. J.] Univ Western Australia, Crawley, WA 6009, Australia. [Bojtos, P.; Frei, Z.; Gondan, L.; Raffai, P.; Szeifert, G.] Eotvos Lorand Univ, MTA, Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Bose, Sukanta; Magee, R.; Steplewski, S.] Washington State Univ, Pullman, WA 99164 USA. [Brau, J. E.; Frey, R.; Hardwick, T.; Quitzow-James, R.; Roma, V.; Schofield, R. M. S.; Talukder, D.] Univ Oregon, Eugene, OR 97403 USA. [Buonanno, A.; Capano, C. D.; Cho, M.; Shawhan, P.; Taracchini, A.; Yancey, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Clark, J. A.; Hoak, D.; Lazzaro, C.; Lombardi, A. L.; McIver, J.; Nedkova, K.; Zuraw, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Bustillo, J. Calderon; Husa, S.; Jimenez-Forteza, F.; Sintes, A. M.] Univ Illes Balears, IEEC, E-07122 Palma De Mallorca, Spain. [Cannon, K. C.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Cao, J.; Du, Z.; Guo, X.; Ji, Y.; Lebigot, E. O.; Wang, X.; Yang, Q.; Zhang, Fan] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Gustafson, R.; Meadors, G. D.; Riles, K.; Sanders, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chao, S.; Kuo, L.; Pan, H.] Natl Tsing Hua Univ, Hsinchu 300, Taiwan. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Cutler, C.; Gossan, S.; Nissanke, S.; Ott, C. D.; Thorne, K. S.; Vallisneri, M.] Caltech CaRT, Pasadena, CA 91125 USA. [Cho, H. S.; Kim, Y. -M; Lee, C. H.] Pusan Natl Univ, Busan 609735, South Korea. [Chow, J. H.; Mansell, G. L.; Nguyen, T.; Rabeling, D. S.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wade, A. R.; Ward, R. L.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Christensen, N.; Coughlin, M. W.; Edwards, M.] Carleton Coll, Northfield, MN 55057 USA. [Collette, C.; Tshilumba, D.; Xie, S.] Univ Brussels, B-1050 Brussels, Belgium. [Cominsky, L.; Mclin, K.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Corsi, A.; Coyne, R.] Texas Tech Univ, Lubbock, TX 79409 USA. [Crowder, S. G.; Mandic, V.; Meyers, P. M.; Prestegard, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Daw, E. J.; Edo, T.; Tomlinson, C.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dojcinoski, G.; Favata, M.; Moore, B.] Montclair State Univ, Montclair, NJ 07043 USA. [Dominguez, E.; Maglione, C.; Ortega, W.; Quiroga, G.; Reula, O.] Argentinian Gravitat Wave Grp, RA-5000 Cordoba, Argentina. [Farr, B.; Kalogera, V.; Larson, S.; Le, J.; Littenberg, T. B.; Scheuer, J.; Shahriar, M. S.; Yablon, J.; Zhou, M.] Northwestern Univ, Evanston, IL 60208 USA. [Gair, J. R.; Hee, S.] Univ Cambridge, Cambridge CB2 1TN, England. [Gergely, L. A.; Tapai, M.] Univ Szeged, H-6720 Szeged, Hungary. [Greenhalgh, R. J. S.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Hughey, B.; Szczepanczyk, M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hanna, C.; Idrisy, A.; Inta, R.; Owen, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Harry, G. M.] Amer Univ, Washington, DC 20016 USA. [Hollitt, S. E.; Hosken, D. J.; King, E. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Huerta, E.; McWilliams, S.] W Virginia Univ, Morgantown, WV 26506 USA. [Iyer, B. R.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Jang, H.; Kang, G.; Kim, C.; Kim, N. G.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Jawahar, S.; Lockerbie, N. A.] Univ Strathclyde, SUPA, Glasgow G1 1XQ, Lanark, Scotland. [Haris, K.; Mazumder, N.; Pai, A.; Saleem, M.] IISER, TVM, Trivandrum 695016, Kerala, India. [Khazanov, E. A.; Palashov, O.; Poteomkin, A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.; Lee, H. M.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, K.; Lee, H. K.] Hanyang Univ, Seoul 133791, South Korea. [Kumar, A.] Inst Plasma Res, Gandhinagar, India. [Lasky, P. D.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Levin, Y.; Premachandra, S.] Monash Univ, Clayton, Vic 3800, Australia. [McGuire, S. C.; Vincent-Finley, R.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.; Vincent-Finley, R.] A&M Coll, Baton Rouge, LA 70813 USA. [Mikhailov, E. E.; Romanov, G.; Zhang, M.] Coll William & Mary, Williamsburg, VA 23187 USA. [Miller, A.; Willis, J. L.] Abilene Christian Univ, Abilene, TX 79699 USA. [Mirshekari, S.; Sturani, R.] Univ Estadual Paulista, ICTP South Amer, Inst Fundamental Res, Inst Fis Tor, BR-01140070 Sao Paulo, SP, Brazil. [Nayak, R. K.] IISER Kolkata, Mohanpur 741252, W Bengal, India. [Ogin, G. H.] Whitman Coll, Walla Walla, WA 99362 USA. [Oh, J. J.; Oh, S. H.; Son, E. J.] Natl Inst Math Sci, Taejon 305390, South Korea. [O'Shaughnessy, R.; Whelan, J. T.; Zhang, Y.] Rochester Inst Technol, Rochester, NY 14623 USA. [Penn, S.] Hobart & William Smith Colleges, Geneva, NY 14456 USA. [Rajalakshmi, G.; Unnikrishnan, C. S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Reid, S.] Univ West Scotland, SUPA, Paisley PA1 2BE, Renfrew, Scotland. [Schnabel, R.] Univ Hamburg, D-22761 Hamburg, Germany. [Sengupta, A. S.] Indian Inst Technol, Ahmadabad 382424, Gujarat, India. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Venkateswara, K.] Univ Washington, Seattle, WA 98195 USA. RP Aasi, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. EM pf@ligo.mit.edu RI Pinto, Innocenzo/L-3520-2016; Bartos, Imre/A-2592-2017; Costa, Cesar/G-7588-2012; Chow, Jong/A-3183-2008; Frey, Raymond/E-2830-2016; Ciani, Giacomo/G-1036-2011; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Steinlechner, Sebastian/D-5781-2013; Shaddock, Daniel/A-7534-2011; Gehring, Tobias/A-8596-2016; Strain, Kenneth/D-5236-2011; Miao, Haixing/O-1300-2013; Howell, Eric/H-5072-2014; Gorodetsky, Michael/C-5938-2008; Prokhorov, Leonid/I-2953-2012; Khalili, Farit/D-8113-2012; Ott, Christian/G-2651-2011; Zhu, Xingjiang/E-1501-2016; Kumar, Prem/B-6691-2009; Lazzaro, Claudia/L-2986-2016; Bell, Angus/E-7312-2011; Ottaway, David/J-5908-2015; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; M, Manjunath/N-4000-2014; Vecchio, Alberto/F-8310-2015; Iyer, Bala R./E-2894-2012; Mow-Lowry, Conor/F-8843-2015; Strigin, Sergey/I-8337-2012; Danilishin, Stefan/K-7262-2012; Sigg, Daniel/I-4308-2015; Graef, Christian/J-3167-2015; Aggarwal, Nancy/M-7203-2015; OI Chow, Jong/0000-0002-2414-5402; Frey, Raymond/0000-0003-0341-2636; Ciani, Giacomo/0000-0003-4258-9338; Aulbert, Carsten/0000-0002-1481-8319; Denker, Timo/0000-0003-1259-5315; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; O'Shaughnessy, Richard/0000-0001-5832-8517; Steinlechner, Sebastian/0000-0003-4710-8548; Shaddock, Daniel/0000-0002-6885-3494; Gehring, Tobias/0000-0002-4311-2593; Strain, Kenneth/0000-0002-2066-5355; Miao, Haixing/0000-0003-4101-9958; Howell, Eric/0000-0001-7891-2817; Gorodetsky, Michael/0000-0002-5159-2742; Ott, Christian/0000-0003-4993-2055; Zhu, Xingjiang/0000-0001-7049-6468; Lazzaro, Claudia/0000-0001-5993-3372; Bell, Angus/0000-0003-1523-0821; McClelland, David/0000-0001-6210-5842; M, Manjunath/0000-0001-8710-0730; Vecchio, Alberto/0000-0002-6254-1617; Iyer, Bala R./0000-0002-4141-5179; Danilishin, Stefan/0000-0001-7758-7493; Sigg, Daniel/0000-0003-4606-6526; Graef, Christian/0000-0002-4535-2603; Kanner, Jonah/0000-0001-8115-0577; Mandel, Ilya/0000-0002-6134-8946; Murphy, David/0000-0002-8538-815X; Whiting, Bernard F/0000-0002-8501-8669; Pitkin, Matthew/0000-0003-4548-526X; Veitch, John/0000-0002-6508-0713; Davies, Gareth/0000-0002-4289-3439; Principe, Maria/0000-0002-6327-0628; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; Del Pozzo, Walter/0000-0003-3978-2030; Talukder, Dipongkar/0000-0002-9178-8870; Allen, Bruce/0000-0003-4285-6256; Heurs, Michele/0000-0002-5577-2273; Berry, Christopher/0000-0003-3870-7215; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Papa, M.Alessandra/0000-0002-1007-5298; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Collette, Christophe/0000-0002-4430-3703; Pierro, Vincenzo/0000-0002-6020-5521; Addesso, Paolo/0000-0003-0895-184X FU Australian Research Council; International Science Linkages programme of the Commonwealth of Australia; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Economia y Competitividad; Conselleria d'Economia, Hisenda i Innovacio of the Govern de les Illes Balears; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; OTKA of Hungary; National Research Foundation of Korea; Industry Canada; Province of Ontario through the Ministry of Economic Development and Innovation; National Science and Engineering Research Council Canada; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages programme of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Economia y Competitividad, the Conselleria d'Economia, Hisenda i Innovacio of the Govern de les Illes Balears, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, OTKA of Hungary, the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This article has LIGO document number LIGO-P1400177. NR 61 TC 212 Z9 213 U1 30 U2 123 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD APR 9 PY 2015 VL 32 IS 7 AR 074001 DI 10.1088/0264-9381/32/7/074001 PG 41 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CE2ZF UT WOS:000351691300001 ER PT J AU Liu, Y Panesi, M Sahai, A Vinokur, M AF Liu, Yen Panesi, Marco Sahai, Amal Vinokur, Marcel TI General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID VIBRATIONAL RELAXATION; HARMONIC OSCILLATORS; DISSOCIATION; SYSTEM AB This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations. (C) 2015 AIP Publishing LLC. C1 [Liu, Yen; Vinokur, Marcel] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Panesi, Marco; Sahai, Amal] Univ Illinois, Urbana, IL 61801 USA. RP Liu, Y (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM yen.liu@nasa.gov OI Liu, Yen/0000-0001-8516-4968 FU NASA Entry System Modeling Project in the Space Technology Mission Directory FX This work was funded and managed by the NASA Entry System Modeling Project in the Space Technology Mission Directory. The authors would like to acknowledge members of the NASA HyperRad Modeling and Software Development Team, especially Dr. W. M. Huo and Dr. Alan A. Wray, for many helpful discussions during the course of this work. NR 42 TC 3 Z9 3 U1 4 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 7 PY 2015 VL 142 IS 13 AR 134109 DI 10.1063/1.4915926 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CF6DG UT WOS:000352646300013 PM 25854230 ER PT J AU Monk, JD Haskins, JB Bauschlicher, CW Lawson, JW AF Monk, Joshua D. Haskins, Justin B. Bauschlicher, Charles W., Jr. Lawson, John W. TI Molecular dynamics simulations of phenolic resin: Construction of atomistic models SO POLYMER LA English DT Article DE Thermosetting polymer; Phenolic resins; Molecular dynamics ID CROSS-LINKED EPOXY; X-RAY-SCATTERING; MECHANICAL-PROPERTIES; FORCE-FIELD; TRANSPORT-COEFFICIENTS; INHOMOGENEOUS SYSTEMS; COMPUTER-SIMULATION; MATRIX COMPOSITES; ELASTIC MODULI; AB-INITIO AB Algorithms to generate atomistic models of cross-linked phenolic resins suitable for molecular dynamics simulations were investigated. The influence of five parameters (initial volume of uncross-linked material, cross-linking approach, relaxation time, equilibration temperature) on generating cross-linked structures was studied quantitatively using a full factorial sensitivity analysis. The parameters were found to be dependent on the degree of cross linking (D). For low cross-linking, only the equilibration temperature has a significant impact on the final energetics and densities. However, for higher cross-linking (D > 70%), the equilibration temperature, initial volume and cross-linking approach were shown to influence the phenolic structures. Iterative, rather than single step, methods were shown to produce better structures. The initial volume of the uncross-linked material was identified as having the most influence on the final volume of fully cross-linked systems. By optimizing all five parameters, highly cross-linked samples with low energetics and consistent densities could be generated. To validate the models, thermo-mechanical properties of cross-linked phenolic samples were characterized as a function of density and degree of cross-linking. Good agreement with experimental values was obtained for properties such as the glass transition temperature, coefficient of thermal expansion (CTE), elastic moduli, and thermal conductivity. Published by Elsevier Ltd. C1 [Monk, Joshua D.; Haskins, Justin B.; Bauschlicher, Charles W., Jr.; Lawson, John W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lawson, JW (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM John.W.Lawson@nasa.gov FU ESM project of the NASA Space Technology Mission Directorate FX This work was funded by the ESM project of the NASA Space Technology Mission Directorate. We benefited from useful discussions with Eric Bucholz. NR 73 TC 10 Z9 10 U1 3 U2 51 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD APR 7 PY 2015 VL 62 BP 39 EP 49 DI 10.1016/j.polymer.2015.02.003 PG 11 WC Polymer Science SC Polymer Science GA CG2BL UT WOS:000353079800006 ER PT J AU Stern, JC Sutter, B Freissinet, C Navarro-Gonzalez, R McKay, CP Archer, PD Buch, A Brunner, AE Coll, P Eigenbrode, JL Fairen, AG Franz, HB Glavin, DP Kashyap, S McAdam, AC Ming, DW Steele, A Szopa, C Wray, JJ Martin-Torres, FJ Zorzano, MP Conrad, PG Mahaffy, PR AF Stern, Jennifer C. Sutter, Brad Freissinet, Caroline Navarro-Gonzalez, Rafael McKay, Christopher P. Archer, P. Douglas, Jr. Buch, Arnaud Brunner, Anna E. Coll, Patrice Eigenbrode, Jennifer L. Fairen, Alberto G. Franz, Heather B. Glavin, Daniel P. Kashyap, Srishti McAdam, Amy C. Ming, Douglas W. Steele, Andrew Szopa, Cyril Wray, James J. Martin-Torres, F. Javier Zorzano, Maria-Paz Conrad, Pamela G. Mahaffy, Paul R. CA MSL Sci Team TI Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Mars; nitrogen; astrobiology; nitrates; Curiosity ID EARLY EARTH; THERMAL-DECOMPOSITION; MASS-SPECTROMETER; NITRATE DEPOSITS; FIXATION; ATMOSPHERE; SURFACE; SEARCH; METEORITES; EVOLUTION AB The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N-2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. C1 [Stern, Jennifer C.; Brunner, Anna E.; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Conrad, Pamela G.; Mahaffy, Paul R.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Sutter, Brad; Archer, P. Douglas, Jr.] NASA, Johnson Space Ctr, Jacobs Technol Inc, Greenbelt, MD 20771 USA. [Freissinet, Caroline] NASA, Goddard Space Flight Ctr, NASA Postdoctoral Program, Greenbelt, MD 20771 USA. [Navarro-Gonzalez, Rafael] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Buch, Arnaud] Ecole Cent Paris, Lab Genie Proc & Mat, F-92295 Chatenay Malabry, France. [Brunner, Anna E.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA. [Coll, Patrice] Univ Paris Diderot, Univ Paris Est Creteil, Lab Interuniv Syst Atmospher, F-94000 Creteil, France. [Coll, Patrice] CNRS, F-94000 Creteil, France. [Fairen, Alberto G.; Zorzano, Maria-Paz] Ctr Astrobiol, Madrid 28850, Spain. [Fairen, Alberto G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Franz, Heather B.] Univ Maryland, Ctr Res & Explorat Space Sci & Technol, College Pk, MD 20742 USA. [Kashyap, Srishti] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. [Steele, Andrew] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Szopa, Cyril] Univ Versailles St Quentin, Univ Paris 06, Lab Atmospheres Milieux & Observat Spatiales, F-75005 Paris, France. [Szopa, Cyril] CNRS, F-75005 Paris, France. [Wray, James J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Martin-Torres, F. Javier] Univ Granada, CSIC, Inst Andaluz Ciencias Tierra, Granada 18100, Spain. [Martin-Torres, F. Javier] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Div Space Technol, S-98128 Kiruna, Sweden. [MSL Sci Team] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stern, JC (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. EM jennifer.c.stern@nasa.gov RI Ramos, Miguel/K-2230-2014; Lemmon, Mark/E-9983-2010; szopa, cyril/C-6865-2015; Wray, James/B-8457-2008; Gonzalez, Rafael/D-1748-2009; Martin-Torres, Francisco Javier/G-6329-2015; Rodriguez-Manfredi, Jose/L-8001-2014; Zorzano, Maria-Paz/C-5784-2015; Glavin, Daniel/D-6194-2012; Harri, Ari-Matti/C-7142-2012; Zorzano, Maria-Paz/F-2184-2015; Dworkin, Jason/C-9417-2012; OI Ramos, Miguel/0000-0003-3648-6818; Lemmon, Mark/0000-0002-4504-5136; szopa, cyril/0000-0002-0090-4056; Wray, James/0000-0001-5559-2179; Martin-Torres, Francisco Javier/0000-0001-6479-2236; Rodriguez-Manfredi, Jose/0000-0003-0461-9815; Zorzano, Maria-Paz/0000-0002-4492-9650; Glavin, Daniel/0000-0001-7779-7765; Harri, Ari-Matti/0000-0001-8541-2802; Zorzano, Maria-Paz/0000-0002-4492-9650; Dworkin, Jason/0000-0002-3961-8997; Stern, Jennifer/0000-0002-0162-8807; Kashyap, Srishti/0000-0003-4950-9636 FU French Space Agency (Centre National d'Etudes Spatiales); National Aeronautics and Space Administration Mars Exploration Program; Goddard Space Flight Center FX We are grateful for support from the entire Sample Analysis at Mars and Mars Science Laboratory operations, engineering, and scientific teams. The National Aeronautics and Space Administration Mars Exploration Program and Goddard Space Flight Center provided support for the development and operation of SAM. SAM-GC was supported by funds from the French Space Agency (Centre National d'Etudes Spatiales). Data from these SAM experiments are archived in the Planetary Data System (pds.nasa.gov). NR 42 TC 12 Z9 12 U1 8 U2 59 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 7 PY 2015 VL 112 IS 14 BP 4245 EP 4250 DI 10.1073/pnas.1420932112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CF1EZ UT WOS:000352287800034 PM 25831544 ER PT J AU Kundan, A Plawsky, JL Wayner, PC Chao, DF Sicker, RJ Motil, BJ Lorik, T Chestney, L Eustace, J Zoldak, J AF Kundan, Akshay Plawsky, Joel L. Wayner, Peter C., Jr. Chao, David F. Sicker, Ronald J. Motil, Brian J. Lorik, Tibor Chestney, Louis Eustace, John Zoldak, John TI Thermocapillary Phenomena and Performance Limitations of a Wickless Heat Pipe in Microgravity SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPREADING FILMS; DRIVEN; THICKNESS; BUBBLES; GROOVES; DRYOUT; FLOWS; MODEL AB A counterintuitive, thermocapillary-induced limit to heat-pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface. C1 [Kundan, Akshay; Plawsky, Joel L.; Wayner, Peter C., Jr.] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. [Chao, David F.; Sicker, Ronald J.; Motil, Brian J.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Lorik, Tibor; Chestney, Louis; Eustace, John; Zoldak, John] Zin Technol, Cleveland, OH 44130 USA. RP Plawsky, JL (reprint author), Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA. EM plawsky@rpi.edu FU National Aeronautics and Space Administration [NNX09AL98G, NNX13AQ78G] FX This material is based on the work supported by the National Aeronautics and Space Administration under Grants No. NNX09AL98G and No. NNX13AQ78G. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NASA. NR 33 TC 7 Z9 7 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 7 PY 2015 VL 114 IS 14 AR 146105 DI 10.1103/PhysRevLett.114.146105 PG 5 WC Physics, Multidisciplinary SC Physics GA CF0UR UT WOS:000352260300010 PM 25910141 ER PT J AU Scott, JM Haykowsky, MJ AF Scott, Jessica M. Haykowsky, Mark J. TI Cardiovascular Function and Exercise Capacity in Patients With Colorectal Cancer Does Anticancer Therapy Matter? SO JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY LA English DT Letter ID CARDIOTOXICITY C1 [Scott, Jessica M.] NASA, Exercise Physiol & Countermeasures, Johnson Space Ctr, Univ Space Res Assoc, Houston, TX 77058 USA. RP Scott, JM (reprint author), NASA, Exercise Physiol & Countermeasures, Johnson Space Ctr, Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jessica.m.scott@nasa.gov NR 5 TC 0 Z9 0 U1 1 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0735-1097 EI 1558-3597 J9 J AM COLL CARDIOL JI J. Am. Coll. Cardiol. PD APR 7 PY 2015 VL 65 IS 13 BP 1380 EP 1381 DI 10.1016/j.jacc.2014.10.081 PG 3 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA CE4ZO UT WOS:000351839500019 PM 25835454 ER PT J AU Wu, TJ Schriml, LM Chen, QR Colbert, M Crichton, DJ Finney, R Hu, Y Kibbe, WA Kincaid, H Meerzaman, D Mitraka, E Pan, Y Smith, KM Srivastava, S Ward, S Yan, C Mazumder, R AF Wu, Tsung-Jung Schriml, Lynn M. Chen, Qing-Rong Colbert, Maureen Crichton, Daniel J. Finney, Richard Hu, Ying Kibbe, Warren A. Kincaid, Heather Meerzaman, Daoud Mitraka, Elvira Pan, Yang Smith, Krista M. Srivastava, Sudhir Ward, Sari Yan, Cheng Mazumder, Raja TI Generating a focused view of disease ontology cancer terms for pan-cancer data integration and analysis SO DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION LA English DT Article ID PROGRAMMED CELL-DEATH; MOLECULAR CLASSIFICATION; GENE ONTOLOGY; APOPTOSIS; NOMENCLATURE; MUTATIONS; NECROSIS; BIOLOGY AB Bio-ontologies provide terminologies for the scientific community to describe biomedical entities in a standardized manner. There are multiple initiatives that are developing biomedical terminologies for the purpose of providing better annotation, data integration and mining capabilities. Terminology resources devised for multiple purposes inherently diverge in content and structure. A major issue of biomedical data integration is the development of overlapping terms, ambiguous classifications and inconsistencies represented across databases and publications. The disease ontology (DO) was developed over the past decade to address data integration, standardization and annotation issues for human disease data. We have established a DO cancer project to be a focused view of cancer terms within the DO. The DO cancer project mapped 386 cancer terms from the Catalogue of Somatic Mutations in Cancer (COSMIC), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, Therapeutically Applicable Research to Generate Effective Treatments, Integrative Oncogenomics and the Early Detection Research Network into a cohesive set of 187 DO terms represented by 63 top-level DO cancer terms. For example, the COSMIC term 'kidney, NS, carcinoma, clear_cell_renal_cell_carcinoma' and TCGA term 'Kidney renal clear cell carcinoma' were both grouped to the term 'Disease Ontology Identification (DOID): 4467 / renal clear cell carcinoma' which was mapped to the TopNodes_DOcancerslim term 'DOID: 263 / kidney cancer'. Mapping of diverse cancer terms to DO and the use of top level terms (DO slims) will enable pan-cancer analysis across datasets generated from any of the cancer term sources where pan-cancer means including or relating to all or multiple types of cancer. The terms can be browsed from the DO web site (http://www.disease-ontology.org) and downloaded from the DO's Apache Subversion or GitHub repositories. C1 [Wu, Tsung-Jung; Pan, Yang; Smith, Krista M.; Yan, Cheng; Mazumder, Raja] George Washington Univ, Dept Biochem & Mol Med, Washington, DC 20037 USA. [Schriml, Lynn M.; Mitraka, Elvira] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Chen, Qing-Rong; Finney, Richard; Hu, Ying; Kibbe, Warren A.; Meerzaman, Daoud] NCI, Ctr Bioinformat & Informat Technol, Rockville, MD 20892 USA. [Colbert, Maureen; Crichton, Daniel J.; Kincaid, Heather] NASA, Jet Prop Lab, Pasadena, CA USA. [Srivastava, Sudhir] NCI, Canc Prevent Div, Rockville, MD 20892 USA. [Ward, Sari] Wellcome Trust Sanger Inst, Cambridge, England. [Mazumder, Raja] George Washington Univ, McCormick Genom & Prote Ctr, Washington, DC 20037 USA. RP Mazumder, R (reprint author), George Washington Univ, Dept Biochem & Mol Med, Washington, DC 20037 USA. EM mazumder@gwu.edu OI Mitraka, Elvira/0000-0003-0719-3485; Schriml, Lynn/0000-0001-8910-9851; Pan, Yang/0000-0003-3487-7233 FU National Cancer Institute EDRN (NCI) [156620] FX This project was partially funded by National Cancer Institute EDRN (NCI) Associate Member, agreement (156620) to R.M. Funding for open access charge: EDRN (NCI) Associate Member, agreement #156620 to R.M. NR 47 TC 1 Z9 1 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1758-0463 J9 DATABASE-OXFORD JI Database PD APR 4 PY 2015 AR bav032 DI 10.1093/database/bav032 PG 10 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA CR0XX UT WOS:000361048100002 ER PT J AU Knipp, DJ Kilcommons, LM Gjerloev, J Redmon, RJ Slavin, J Le, G AF Knipp, D. J. Kilcommons, L. M. Gjerloev, J. Redmon, R. J. Slavin, J. Le, G. TI A large-scale view of Space Technology 5 magnetometer response to solar wind drivers SO EARTH AND SPACE SCIENCE LA English DT Article ID FIELD; ELECTRODYNAMICS; MAGNETOSPHERE; IONOSPHERE; EVENTS; SYSTEM; DMSP AB In this data report we discuss reprocessing of the Space Technology 5 (ST5) magnetometer database for inclusion in NASA's Coordinated Data Analysis Web (CDAWeb) virtual observatory. The mission consisted of three spacecraft flying in elliptical orbits, from 27 March to 27 June 2006. Reprocessing includes (1) transforming the data into the Modified Apex Coordinate System for projection to a common reference altitude of 110 km, (2) correcting gain jumps, and (3) validating the results. We display the averaged magnetic perturbations as a keogram, which allows direct comparison of the full-mission data with the solar wind values and geomagnetic indices. With the data referenced to a common altitude, we find the following: (1) Magnetic perturbations that track the passage of corotating interaction regions and high-speed solar wind; (2) unexpectedly strong dayside perturbations during a solstice magnetospheric sawtooth oscillation interval characterized by a radial interplanetary magnetic field (IMF) component that may have enhanced the accompanying modest southward IMF; and (3) intervals of reduced magnetic perturbations or "calms," associated with periods of slow solar wind, interspersed among variable-length episodic enhancements. These calms are most evident when the IMF is northward or projects with a northward component onto the geomagnetic dipole. The reprocessed ST5 data are in very good agreement with magnetic perturbations from the Defense Meteorological Satellite Program (DMSP) spacecraft, which we also map to 110 km. We briefly discuss the methods used to remap the ST5 data and the means of validating the results against DMSP. Our methods form the basis for future intermission comparisons of space-based magnetometer data. C1 [Knipp, D. J.; Kilcommons, L. M.] Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA. [Knipp, D. J.] NCAR, High Altitude Observ, Boulder, CO USA. [Gjerloev, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Gjerloev, J.] Univ Bergen, Birkeland Ctr Excellence, Bergen, Norway. [Redmon, R. J.] NOAA, Natl Geophys Data Ctr, Boulder, CO 80303 USA. [Slavin, J.] Univ Michigan, Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Le, G.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Knipp, DJ (reprint author), Univ Colorado, Aerosp Engn Sci, Boulder, CO 80309 USA. EM delores.knipp@colorado.edu RI Le, Guan/C-9524-2012; Slavin, James/H-3170-2012 OI Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X NR 38 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2333-5084 J9 Earth Space Sci JI Earth Space Sci. PD APR PY 2015 VL 2 IS 4 BP 115 EP 124 DI 10.1002/2014EA000057 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DE6NC UT WOS:000370749600004 PM 27981071 ER PT J AU Greenwood, E Schmitz, FH Sickenberger, RD AF Greenwood, Eric Schmitz, Fredric H. Sickenberger, Richard D. TI A Semiempirical Noise Modeling Method for Helicopter Maneuvering Flight Operations SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article ID ROTOR AB A new model for blade-vortex interaction (BVI) noise generation during maneuvering flight is developed. Acoustic and performance data from both flight and wind tunnel tests are used to derive a nondimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasi-steady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient BVI noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission planning tool. C1 [Greenwood, Eric] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Schmitz, Fredric H.; Sickenberger, Richard D.] Univ Maryland, College Pk, MD 20742 USA. RP Greenwood, E (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM eric.greenwood@nasa.gov RI Greenwood, Eric/Q-7642-2016 OI Greenwood, Eric/0000-0002-0427-539X NR 29 TC 0 Z9 0 U1 0 U2 1 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 EI 2161-6027 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD APR PY 2015 VL 60 IS 2 AR 022007 DI 10.4050/JAHS.60.022007 PG 13 WC Engineering, Aerospace SC Engineering GA DE1LD UT WOS:000370387600007 ER PT J AU Putnam, JB Untaroiu, CD Littell, J Annett, M AF Putnam, Jacob B. Untaroiu, Costin D. Littell, Justin Annett, Martin TI Finite Element Model of the THOR-NT Dummy under Vertical Impact Loading for Aerospace Injury Prediction: Model Evaluation and Sensitivity Analysis SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article AB Anthropometric test devices, commonly referred to as crash test dummies, are effective tools used to conduct aerospace safety evaluations. In this study, the latest finite element (FE) model of the Test Device for Human Occupant Restraint (THOR) dummy was simulated under vertical impact conditions based on data recorded in a series of drop tests conducted at the NASA Langley Research Center. The purpose of this study was threefold. The first was to improve and then evaluate this FE model for use in a vertical loading environment through kinematic and kinetic response comparisons. The second was to evaluate dummy injury criteria under variable impact conditions. The last was to determine the response sensitivity of the FE model with respect to its preimpact postural position. Results demonstrate that the updated FE model performs well under vertical loading and predicts injury criteria values close to those recorded in testing. In the postural sensitivity study, the head injury criteria response and peak lumbar load show to be primarily sensitive to the preimpact head angle and thorax angle, respectively. The promising results shown by the dummy model recommends its use in impact simulations with vertical deceleration pulses close to those used in this study. In addition, it is believed that assigning accurate viscoelastic material properties to the deformable parts of the model may further increase the model fidelity for a larger range of impacts. C1 [Putnam, Jacob B.; Untaroiu, Costin D.] Virginia Tech, Blacksburg, VA USA. [Littell, Justin; Annett, Martin] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Untaroiu, CD (reprint author), Virginia Tech, Blacksburg, VA USA. EM costin@vt.edu RI Untaroiu, Costin/D-4106-2009 OI Untaroiu, Costin/0000-0002-1813-669X NR 31 TC 1 Z9 1 U1 1 U2 1 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 EI 2161-6027 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD APR PY 2015 VL 60 IS 2 AR 022004 DI 10.4050/JAHS.60.022004 PG 10 WC Engineering, Aerospace SC Engineering GA DE1LD UT WOS:000370387600004 ER PT J AU Bryant, LW AF Bryant, Larry W. TI Situational Awareness: a Cornerstone of Operational Excellence in Space SO JOURNAL OF AEROSPACE TECHNOLOGY AND MANAGEMENT LA English DT Editorial Material C1 [Bryant, Larry W.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Bryant, LW (reprint author), CALTECH, Jet Prop Lab, NASA, Off Safety & Mission Success, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM larry.w.bryant@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU INST AERONAUTICA & ESPACO-IAE PI SAO PAULO PA PRACA MAL EDUARDO GOMES 50, VILA ACACIAS, SAO JOSE DOS CAMPOS, SAO PAULO, 122228-901, BRAZIL SN 1984-9648 EI 2175-9146 J9 J AEROSP TECHNOL MAN JI J. Aerosp. Technol. Manag. PD APR-JUN PY 2015 VL 7 IS 2 BP 141 EP 142 DI 10.5028/jatm.v7i2.479 PG 2 WC Engineering, Aerospace SC Engineering GA CY5XN UT WOS:000366481000001 ER PT J AU Gould, A Komatsu, T DeVore, E Harman, P Koch, D AF Gould, Alan Komatsu, Toshi DeVore, Edna Harman, Pamela Koch, David TI Kepler's Third Law and NASA's Kepler Mission SO PHYSICS TEACHER LA English DT Editorial Material ID PLANETS C1 [Gould, Alan; Komatsu, Toshi] Univ Calif Berkeley, Lawrence Hall Sci, Berkeley, CA 94720 USA. [DeVore, Edna; Harman, Pamela] SETI Inst, Mountain View, CA 94043 USA. [Koch, David] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP DeVore, E (reprint author), SETI Inst, 189 Bernardo Ave,Suite 100, Mountain View, CA 94043 USA. EM edevore@seti.org NR 7 TC 0 Z9 0 U1 1 U2 2 PU AMER ASSN PHYSICS TEACHERS PI COLLEGE PK PA 5110 ROANOKE PLACE SUITE 101, COLLEGE PK, MD 20740 USA SN 0031-921X J9 PHYS TEACH JI Phys. Teach. PD APR PY 2015 VL 53 IS 4 BP 201 EP 204 DI 10.1119/1.4914556 PG 4 WC Physics, Multidisciplinary SC Physics GA CX5ZB UT WOS:000365779900006 ER PT J AU Xu, HF Shen, ZZ Konishi, H AF Xu, Huifang Shen, Zhizhang Konishi, Hiromi TI Natural occurrence of monoclinic Fe3S4 nano-precipitates in pyrrhotite from the Sudbury ore deposit: a Z-contrast imaging and density functional theory study SO MINERALOGICAL MAGAZINE LA English DT Article DE iron sulfide; greigite; pyrrhotite; monoclinic Fe3S4; Sudbury; Z-contrast imaging; density functional theory; vacancy ordering; aberration-corrected scanning transmission electron microscopy; magnetic mineral ID CRYSTAL-STRUCTURES; AB-INITIO AB A monoclinic form of Fe3S4, a polymorph of cubic greigite, occurs as precipitates in a sample of pyrrhotite collected from the Sudbury ore deposit. The nano-crystal precipitates are in a topotaxial relationship with the host pyrrhotite-4C (Fe7S8). The precipitate and the host pyrrhotite have a coherent (001) interface. Half of the octahedral layers in the crystal structure are fully occupied by Fe, while the other half of the octahedral layers are occupied by Fe atoms and vacancies in an ordered manner along the a axis. The crystal structure of the Fe3S4 nano-precipitates has monoclinic symmetry with a space group of I2/m. Its c dimension is 6% smaller than that of the host pyrrhotite due to the large number of vacancies in the structure. Fractional coordinates for S and Fe atoms within the unit cell are determined from Z-contrast images and density functional theory (DFT). The calculated results match the measured values very well. It is proposed that the monoclinic Fe3S4 nano-precipitates formed through ordering of vacancies in pyrrhotite with a low Fe/S ratio (i.e. <0.875) at low temperature. C1 [Xu, Huifang; Shen, Zhizhang; Konishi, Hiromi] Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, Madison, WI 53706 USA. RP Xu, HF (reprint author), Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, 1215 W Dayton St, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu FU NSF [EAR-095800, EAR-0810150, DMR-0619368]; NASA Astrobiology Institute [N07-5489] FX This work is supported by NSF (EAR-095800, EAR-0810150 and DMR-0619368, MRI) and NASA Astrobiology Institute (N07-5489). The authors thank Prof. Izabela Szlufarska for advice on DFT modelling and Dr Alex Kivit for optimizing instrument conditions. They also thank the Major Research Instrumentation (MRI) program of NSF for funding the aberration-corrected STEM at the Univeristy of Wisconsin-Madison. Nick Levitt, Peter Williams and an anonymous reviewer are thanked for helpful comments and suggestions. NR 24 TC 0 Z9 0 U1 4 U2 15 PU MINERALOGICAL SOC PI TWICKENHAM PA 12 BAYLIS MEWS, AMYAND PARK ROAD,, TWICKENHAM TW1 3HQ, MIDDLESEX, ENGLAND SN 0026-461X EI 1471-8022 J9 MINERAL MAG JI Mineral. Mag. PD APR PY 2015 VL 79 IS 2 BP 377 EP 385 DI 10.1180/minmag.2015.079.2.15 PG 9 WC Mineralogy SC Mineralogy GA CV3VM UT WOS:000364194500014 ER PT J AU Brann, M Marcu, O AF Brann, Michelle Marcu, Oana TI The Role of Copper in the Oxidative Stress Response of Chlamydomonas reinhardtii to heat shock SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY MAR 28-APR 01, 2015 CL Boston, MA SP Amer Assoc Anatomists, Amer Physiol Soc, Amer Soc Biochem & Mol Biol, ASIP, ASN, ASPET C1 [Brann, Michelle] Wellesley Coll, Chem, Wellesley, MA 02181 USA. [Marcu, Oana] NASA, Ames Res Ctr, Space Sci Exobiol, Moffett Field, CA 94035 USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 EI 1530-6860 J9 FASEB J JI Faseb J. PD APR PY 2015 VL 29 SU 1 MA 887.27 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA CS0BT UT WOS:000361722705058 ER PT J AU Zwart, S Heer, M Shackelford, L Smith, S AF Zwart, Sara Heer, Martina Shackelford, Linda Smith, Scott TI Dietary and Urinary Sulfur Can Predict Changes in Bone Metabolism During Space Flight SO FASEB JOURNAL LA English DT Meeting Abstract CT Experimental Biology Meeting CY MAR 28-APR 01, 2015 CL Boston, MA SP Amer Assoc Anatomists, Amer Physiol Soc, Amer Soc Biochem & Mol Biol, ASIP, ASN, ASPET C1 [Zwart, Sara] USRA, Biomed Res Environm Sci, Washington, DC USA. [Heer, Martina] Univ Bonn, Nutr, Bonn, Germany. [Shackelford, Linda; Smith, Scott] NASA, Biomed Res Environm Sci, JSC, New York, NY USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 EI 1530-6860 J9 FASEB J JI Faseb J. PD APR PY 2015 VL 29 SU 1 MA 738.14 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA CS0BT UT WOS:000361722702099 ER PT J AU Smith, S Gregory, J Zeisel, S Ueland, P Gibson, C Mader, T Kinchen, J Ploutz-Snyder, R Zwart, S AF Smith, Scott Gregory, Jesse Zeisel, Steven Ueland, Per Gibson, C. Mader, Thomas Kinchen, Jason Ploutz-Snyder, Robert Zwart, Sara TI Vision Issues and Space Flight: Evaluation of One-Carbon Metabolism Polymorphisms SO FASEB JOURNAL LA English DT Meeting Abstract C1 [Smith, Scott] NASA, Biomed Res Environ Sci Div, Houston, TX USA. [Gregory, Jesse] UF, Gainesville, FL USA. [Zeisel, Steven] UNC, Chapel Hill, NC USA. [Ueland, Per] Univ Bergen, N-5020 Bergen, Norway. [Mader, Thomas] US Army, Washington, DC USA. [Kinchen, Jason] Metabolon, Durham, NC USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU FEDERATION AMER SOC EXP BIOL PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0892-6638 EI 1530-6860 J9 FASEB J JI Faseb J. PD APR PY 2015 VL 29 SU 1 MA 134.1 PG 1 WC Biochemistry & Molecular Biology; Biology; Cell Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics; Cell Biology GA CR6PV UT WOS:000361470501477 ER PT J AU Lu, P Cerimele, CJ Tigges, MA Matz, DA AF Lu, Ping Cerimele, Christopher J. Tigges, Michael A. Matz, Daniel A. TI Optimal Aerocapture Guidance SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article ID PREDICTOR-CORRECTOR; FLIGHT EXPERIMENT; ENTRY GUIDANCE; ALGORITHM AB Aerocapture is the maneuver by an interplanetary spacecraft to fly through the atmosphere of a planet with the aim of attaining a specified orbit around the planet. By appropriately controlling the aerodynamic lift and/or drag force vectors, the spacecraft can exit the atmosphere and enter the target orbit without the need for large propellant consumption in post-atmospheric orbital correction burns. The focus of this paper is to develop an algorithm to guide the spacecraft accurately and reliably during the aerocapture maneuver with lift vector control while ensuring the least possible post-atmospheric propellant expenditure for inserting into the target orbit. The analysis of optimal aerocapture flight in this work shows that the optimal aerocapture trajectory in general has a bang-bang control structure in which the spacecraft first flies with the largest possible vertical lift up, then the largest possible vertical lift down. Based on this understanding, a two-phase numerical predictor-corrector guidance algorithm is developed. It is demonstrated that this algorithm not only exhibits the strengths of adaptivity and high accuracy of predictor-corrector guidance algorithms, but also produces an optimal performance in terms of propellant consumption that is significantly better than existing aerocapture numerical predictor-corrector guidance algorithms. C1 [Lu, Ping] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA. [Cerimele, Christopher J.] NASA, Lyndon B Johnson Space Ctr, Flight Mech & Trajectory Design Branch, Houston, TX 77058 USA. [Tigges, Michael A.; Matz, Daniel A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Lu, P (reprint author), Iowa State Univ, Dept Aerosp Engn, 2271 Howe Hall, Ames, IA 50011 USA. EM plu@iastate.edu FU NASA [NNX13AL88A] FX The support to this research by NASA Cooperative Agreement NNX13AL88A is gratefully acknowledged. NR 18 TC 4 Z9 4 U1 1 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 EI 1533-3884 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD APR PY 2015 VL 38 IS 4 BP 553 EP 565 DI 10.2514/1.G000713 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CQ0BZ UT WOS:000360261400001 ER PT J AU Havelund, K AF Havelund, Klaus TI Rule-based runtime verification revisited SO INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER LA English DT Article DE Runtime verification; Rule-based systems; Rete algorithm; Internal DSL; Scala ID SYSTEMS; EAGLE AB Runtime verification (RV) consists in part of checking execution traces against user-provided formalized specifications. Throughout the last decade many new systems have emerged, most of which support specification notations based on state machines, regular expressions, temporal logic, or grammars. The field of artificial intelligence (AI) has for an even longer period of time studied rule-based production systems, which at a closer look appear to be relevant for RV, although seemingly focused on slightly different application domains, such as, for example, business processes and expert systems. The core algorithm in many of these systems is the Rete algorithm. We have implemented a rule-based system, named LOGFIRE, for runtime verification, founded on the Rete algorithm, as an internal DSL in the Scala programming language (in essence a library). Using Scala's support for defining DSLs allows to write rules elegantly as part of Scala programs. This combination appears attractive from a practical point of view. Our contribution is part conceptual in arguing that such rule-based frameworks originating from AI are suited for RV. Our contribution is technical by implementing an internal rule DSL in Scala; by illustrating how specification patterns can easily be encoded that generate rules, and by adapting and optimizing the Rete algorithm for RV purposes. An experimental evaluation is performed comparing to six other trace analysis systems. LogFire is currently being used to process telemetry from the Mars Curiosity rover at NASA's Jet Propulsion Laboratory. C1 CALTECH, Jet Prop Lab, Lab Reliable Software, Pasadena, CA 91125 USA. RP Havelund, K (reprint author), CALTECH, Jet Prop Lab, Lab Reliable Software, Pasadena, CA 91125 USA. EM klaus.havelund@jpl.nasa.gov NR 50 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1433-2779 EI 1433-2787 J9 INT J SOFTW TOOLS TE JI Int. J. Softw. Tools Technol. Transf. PD APR PY 2015 VL 17 IS 2 BP 143 EP 170 DI 10.1007/s10009-014-0309-2 PG 28 WC Computer Science, Software Engineering SC Computer Science GA CJ7NI UT WOS:000355682200003 ER PT J AU Mielikainen, J Huang, B Huang, HLA Lee, T AF Mielikainen, Jarno Huang, Bormin Huang, Hung-Lung Allen Lee, Tsengdar TI Performance and Scalability of the JCSDA Community Radiative Transfer Model (CRTM) on NVIDIA GPUs SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE CUDA; graphics processing unit (GPU); parallel computing; radiative transfer ID ATMOSPHERIC SOUNDING INTERFEROMETER; ABSORBING GAS; TRANSMITTANCE; IMPROVEMENTS; ACCELERATION AB An atmospheric radiative transfer model calculates radiative transfer of electromagnetic radiation through earth's atmosphere. The community radiative transfer model (CRTM) is a fast radiative transfer model for calculating the satellite infrared (IR) and microwave (MW) radiances of a given state of the Earth's atmosphere and its surface. The CRTM takes into account the radiance emission and absorption of various atmospheric gasses as well as the emission and the reflection of various surface types. Two different transmittance algorithms are currently available in the CRTM OPTRAN: optical depth in absorber space (ODAS) and optical depth in pressure space (ODPS). ODAS in the current CRTM allows two variable absorbers (water vapor and ozone). In this paper, we examine the feasibility of using graphics processing units (GPUs) to accelerate the CRTM with the ODAS transmittance model. Using commodity GPUs for accelerating CRTM means that the hardware costs of adding high-performance accelerators to computation hardware configuration are significantly reduced. Our results show that GPUs can provide significant speedup over conventional processors for the 8461-channel IASI sounder. In particular, a GPU on the dual-GPU NVIDIA GTX 590 card can provide a speedup 375x for the single-precision version of the CRTM ODAS compared to its single-threaded Fortran counterpart running on Intel i7 920 CPU, whereas the speedup for 1 CPU socket with respect to 1 CPU core is only 6.3x. Furthermore, two NVIDIA GTX 590s provided speedups of 201x and 1367x for double precision and single precision versions of ODAS compared to single threaded Fortran code. C1 [Mielikainen, Jarno; Huang, Bormin; Huang, Hung-Lung Allen] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA. [Lee, Tsengdar] NASA Headquarters, Washington, DC 20546 USA. RP Mielikainen, J (reprint author), Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA. EM bormin@ssec.wisc.edu FU National Aeronautics and Space Administration (NASA) [NNX11AL83G] FX This work was supported by the National Aeronautics and Space Administration (NASA) under Grant NNX11AL83G. NR 25 TC 0 Z9 0 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD APR PY 2015 VL 8 IS 4 BP 1519 EP 1527 DI 10.1109/JSTARS.2015.2398849 PG 9 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA CN6UD UT WOS:000358568900013 ER PT J AU Jung, HS Yun, SH Jo, MJ AF Jung, Hyung-Sup Yun, Sang-Ho Jo, Min-Jeong TI An Improvement of Multiple-Aperture SAR Interferometry Performance in the Presence of Complex and Large Line-of-Sight Deformation SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Along-track deformation measurement; filtering boundary artifacts; large deformation; line-of-sight (LOS); multiple-aperture SAR interferometry (MAI); SAR interferometry (InSAR); synthetic aperture radar (SAR) ID SURFACE DEFORMATION; AFAR AB Synthetic Aperture Radar Interferometry (InSAR) provides one-dimensional measurements on ground displacement in the radar line-of-sight (LOS) direction. Multiple-Aperture Interferometry (MAI) technique has been successfully used to measure along-track ground displacement. However, the technique occasionally shows filtering boundary artifacts along the boundary of incoherent areas and a loss of MAI coherence in the presence of large and complex LOS deformation. In this study, we propose an efficient MAI processing method to mitigate them and improve computational efficiencies as well. We validated the performance of the proposed MAI method using ALOS PALSAR interferometric pair acquired from the ascending orbits on June 12, 2007 and August 2, 2009. The test pair includes large and complex LOS deformation signals accumulated from several dike intrusions and fissure eruptions. Through the proposed MAI processing method, we have generated the InSAR and MAI interferograms with the pixel spacing of about 45 and 40 m in ground range and azimuth directions, respectively. Close to surface rupture, we found that our proposed method improved the MAI coherence from 0.33 to 0.96 and reduced the filtering boundary artifacts from 0.068 to 0.040 rad. The results demonstrate the potential of the proposed method to measure along-track ground displacement in regions of decorrelation. C1 [Jung, Hyung-Sup] Univ Seoul, Dept Geoinformat, Seoul 130743, South Korea. [Yun, Sang-Ho] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jo, Min-Jeong] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. RP Jung, HS (reprint author), Univ Seoul, Dept Geoinformat, Seoul 130743, South Korea. EM hsjung@uos.ac.kr; Sang-Ho.Yun@jpl.nasa.gov; owen009@yonsei.ac.kr OI Jung, Hyung-Sup/0000-0003-2335-8438 FU University of Seoul under Space Core Technology Development Program through National Research Foundation of Korea - Ministry of Education, Science and Technology [2012M1A3A3A02033465]; Jet Propulsion Laboratory, California Institute of Technology under NASA's Earth Surface and Interior Program [NNN13D775T] FX This work was supported in part by the University of Seoul under financial support from Space Core Technology Development Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant 2012M1A3A3A02033465) and in part by the Jet Propulsion Laboratory, California Institute of Technology under the support from NASA's Earth Surface and Interior Program (Grant NNN13D775T). NR 24 TC 4 Z9 4 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD APR PY 2015 VL 8 IS 4 BP 1743 EP 1752 DI 10.1109/JSTARS.2015.2399249 PG 10 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA CN6UD UT WOS:000358568900033 ER PT J AU Ade, PAR Aghanim, N Alina, D Alves, MIR Aniano, G Annitage-Caplan, C Arnaud, M Arzoumanian, D Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPE Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Falgarone, E Fanciullo, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Huffenberger, KM Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Larnarre, JM Lasenby, A Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Pelkonen, VM Perdereau, O Perotto, L Perrotta, F Piacentini, E Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rusholme, B Sandri, M Scott, D Soler, JD Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, EA Wandelt, BD Zonca, A AF Ade, P. A. R. Aghanim, N. Alina, D. Alves, M. I. R. Aniano, G. Annitage-Caplan, C. Arnaud, M. Arzoumanian, D. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. E. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fanciullo, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Larnarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Pelkonen, V. -M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rusholme, B. Sandri, M. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, E. A. Wandelt, B. D. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; dust, extinction; ISM: magnetic fields; ISM: clouds; infrared: ISM; submillimeter: ISM ID RADIATIVE TORQUE ALIGNMENT; ADAPTIVE MESH REFINEMENT; MAGNETIC-FIELDS; INTERSTELLAR POLARIZATION; GRAIN ALIGNMENT; SUBMILLIMETER EMISSION; MOLECULAR CLOUDS; EFFICIENCY; TAURUS; ASSOCIATIONS AB Polarized emission observed by Planck HFI at 353GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles psi. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction p(max) decreases with column density N-H in the more opaque fields with N-H > 10(21) cm(-2); and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction p(max) in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function S. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, APC,AstroParticule & Cosmol,Sorbonne Paris Cite, CNRS,IN2P3,CEA Irfu, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Pelkonen, V. -M.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Alves, M. I. R.; Aniano, G.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Douspis, M.; Fanciullo, E.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A; Pajot, F.; Puget, J-L; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Colombo, L. P. E.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, E. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Annitage-Caplan, C.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Catalano, A.; Coulais, A.; Falgarone, E.; Larnarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. RP Levrier, F (reprint author), Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. EM francois.levrier@ens.fr RI Pelkonen, Veli-Matti/R-4646-2016; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Remazeilles, Mathieu/N-1793-2015; OI Pelkonen, Veli-Matti/0000-0002-8898-1047; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Masi, Silvia/0000-0001-5105-1439; Galeotta, Samuele/0000-0002-3748-5115; Matarrese, Sabino/0000-0002-2573-1243; Lopez-Caniego, Marcos/0000-0003-1016-9283; de Bernardis, Paolo/0000-0001-6547-6446; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Juvela, Mika/0000-0002-5809-4834; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); European Research Council under European Union / ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. Some of the results in this paper have been derived using the HEALPix package. The authors would like to thank Charles Beichman for his careful reading of the manuscript and useful comments. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 267934. NR 55 TC 15 Z9 15 U1 3 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A105 DI 10.1051/0004-6361/201424086 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600040 ER PT J AU Ade, PAR Alves, MIR Aniano, G Armitage-Caplan, C Arnaud, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Cardoso, JF Catalano, A Chamballu, A Chiang, HC Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Leahy, JP Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Magalhaes, AM Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Piacentini, F Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Rachen, JP Reach, WT Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rubino-Martin, JA Rusholme, B Salerno, E Sandri, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wandelt, BD Zacchei, A Zonca, A AF Ade, P. A. R. Alves, M. I. R. Aniano, G. Armitage-Caplan, C. Arnaud, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leahy, J. P. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Magalhaes, A. M. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Rachen, J. P. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Salerno, E. Sandri, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wandelt, B. D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; ISM: general; Galaxy: general; radiation mechanisms: general; submillimeter: ISM; infrared: ISM ID MICROWAVE-ANISOTROPY-PROBE; H-ALPHA EMISSION; DMR SKY MAPS; SPINNING DUST; WMAP OBSERVATIONS; INTERSTELLAR DUST; SUBMILLIMETER POLARIZATION; MAGNETIC NANOPARTICLES; COMPONENT SEPARATION; FOREGROUND EMISSION AB Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10 degrees radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. The results are corrected for the chance correlation between the templates and the anisotropies of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably constant over the sky. The mean values, 1.59 +/- 0.02 for polarization and 1.51 +/- 0.01 for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different (3.6 sigma). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky patches. We find that the mean SED increases for decreasing frequencies at v < 60 GHz for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction (p) of the dust emission decreases by (21 +/- 6)% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize the separation between Galactic and cosmological polarization. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, APC,AstroParticule & Cosmol,Sorbonne Paris Cite, CNRS,IN2P3,CEA,Irfu, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00133 Rome, Italy. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, Toronto, ON M55 3H8, Canada. [Salerno, E.] CNR ISTI, Area Ric, Pisa, Italy. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bock, J. J.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble 1, IPAG, CNRS, UMR 5274,INSU, F-38041 Grenoble, France. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Alves, M. I. R.; Aniano, G.; Aumont, J.; Boulanger, F.; Chamballu, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Magalhaes, A. M.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, SP, Brazil. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, Paris, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Armitage-Caplan, C.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Ghosh, T (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM tuhin.ghosh@ias.u-psud.fr RI Remazeilles, Mathieu/N-1793-2015; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; Salerno, Emanuele/A-2137-2010; Toffolatti, Luigi/K-5070-2014; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016 OI Savini, Giorgio/0000-0003-4449-9416; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; De Zotti, Gianfranco/0000-0003-2868-2595; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Frailis, Marco/0000-0002-7400-2135; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Salerno, Emanuele/0000-0002-3433-3634; Toffolatti, Luigi/0000-0003-2645-7386; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); J.A. (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); European Research Council under the European Union [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and J.A. (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A detailed description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. Some of the results in this paper have been derived using the HEALPix package. NR 104 TC 25 Z9 25 U1 2 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A107 DI 10.1051/0004-6361/201424088 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600042 ER PT J AU Ade, PAR Aghanim, N Alina, D Aniano, G Armitage-Caplan, C Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Beichman, C Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Falgarone, E Fanciullo, L Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Gana, K Ghosh, T Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Huffenberger, KM Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Magalhaes, AM Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Piacentini, F Piot, M Pietrobon, D Plaszczynski, S Poidevin, F Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rusholme, B Sandri, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Zonca, A AF Ade, P. A. R. Aghanim, N. Alina, D. Aniano, G. Armitage-Caplan, C. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Beichman, C. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fanciullo, L. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Magalhaes, A. M. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piot, M. Pietrobon, D. Plaszczynski, S. Poidevin, F. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rusholme, B. Sandri, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; dust, extinction; ISM: clouds; ISM: magnetic fields; submillimeter: ISM ID PROBE WMAP OBSERVATIONS; LINEAR-POLARIZATION; SUBMILLIMETER POLARIZATION; WAVELENGTH DEPENDENCE; INFRARED POLARIZATION; MOLECULAR CLOUD; MU-M; EXTINCTION; STARS; SPECTRUM AB The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust. In addition to the information on the direction of the Galactic magnetic field, this also brings new constraints on the properties of dust. The dust grains that emit the radiation seen by Planck in the submillimetre also extinguish and polarize starlight in the visible. Comparison of the polarization of the emission and of the interstellar polarization on selected lines of sight probed by stars provides unique new diagnostics of the emission and light scattering properties of dust, and therefore of the important dust model parameters, composition, size, and shape. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, p(V), and the optical depth in the V band to the star, tau(V). Toward these stars we measure the submillimetre polarized intensity, P-S, and total intensity, I-S,I- in the Planck 353 GHz channel. We compare the column density measure in the visible, E(B - V), with that inferred from the Planck product map of the submillimetre dust optical depth and compare the polarization direction (position angle) in the visible with that in the submillimetre. For those lines of sight through the di ff use interstellar medium with comparable values of the estimated column density and polarization directions close to orthogonal, we correlate properties in the submillimetre and visible to find two ratios, R-S/V = (P-S/I-S) = (p(V)/tau(V)) and R-P/p = P-S/p(V), the latter focusing directly on the polarization properties of the aligned grain population alone. We find R-S/V = 4.2, with statistical and systematic uncertainties 0.2 and 0.3, respectively, and R-P/p = 5.4 MJy sr(-1), with uncertainties 0.2 and 0.3 MJy sr(-1), respectively. Our estimate of R-S/V is compatible with predictions based on a range of polarizing dust models that have been developed for the di ff use interstellar medium. This estimate provides new empirical validation of many of the common underlying assumptions of the models, but is not yet very discriminating among them. However, our estimate of R-P/p is not compatible with predictions, which are too low by a factor of about 2.5. This more discriminating diagnostic, R-P/p, indicates that changes to the optical properties in the models of the aligned grain population are required. These new diagnostics, together with the spectral dependence in the submillimetre from Planck, will be important for constraining and understanding the full complexity of the grain models, and for interpreting the Planck thermal dust polarization and refinement of the separation of this contamination of the cosmic microwave background. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piot, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, CEA,Irfu,Sorbonne Paris Cite, APC,AstroParticule & Cosmol,CNRS,IN2P3, F-75205 Paris, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M55 3H8, Canada. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Beichman, C.; Bock, J. J.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Poidevin, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Poidevin, F.; Rebolo, R.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Poidevin, F.; Rebolo, R.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, ESAC, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aniano, G.; Aumont, J.; Boulanger, F.; Chamballu, A.; Douspis, M.; Fanciullo, L.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Pratt, G. W.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Poidevin, F.; Rebolo, R.] Inst Astrofis Canarias, Tenerife, Spain. [Magalhaes, A. M.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Sao Paulo, Brazil. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Kisner, T. S.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Armitage-Caplan, C.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Alina, D.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.; Benoit-Levy, A.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Guillet, V (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM vincent.guillet@ias.u-psud.fr RI Remazeilles, Mathieu/N-1793-2015; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Nati, Federico/I-4469-2016; Lahteenmaki, Anne/L-5987-2013; Toffolatti, Luigi/K-5070-2014; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; OI Sandri, Maura/0000-0003-4806-5375; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Polenta, Gianluca/0000-0003-4067-9196; Morgante, Gianluca/0000-0001-9234-7412; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Finelli, Fabio/0000-0002-6694-3269; De Zotti, Gianfranco/0000-0003-2868-2595; Savini, Giorgio/0000-0003-4449-9416; Reach, William/0000-0001-8362-4094; Juvela, Mika/0000-0002-5809-4834; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Gruppuso, Alessandro/0000-0001-9272-5292; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); European Research Council under the European Union [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php ? project=planck&page=Planck_Collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013) / ERC grant agreement No. 267934. This research has made use of the SIMBAD database and the VizieR catalogue access tool, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System Service. NR 68 TC 10 Z9 10 U1 3 U2 15 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A106 DI 10.1051/0004-6361/201424087 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600041 ER PT J AU Ade, PAR Aghanim, N Alina, D Alves, MIR Armitage-Caplan, C Amaue, M Arzoumanian, D Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banda, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Butler, RC Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, E Coulais, A Crill, BP Curto, A Cuttaia, E Danese, L Davies, RD Davis, RJ de Bernardis, P Dal Pino, EMD De Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Falgarone, E Ferflere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuse, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Huffenberger, KM Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leaiy, JP Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, IF Maffei, B Magalhaes, AM Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, N Migliaccio, M Mivile-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, A Naselsky, P Nati, E Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, E Paadini, R Paoletti, D Pasian, E Pearson, TJ Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Poidevin, F Pointecouteau, E Polenta, G Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rubino-Martin, A Rusholme, B Sandri, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alina, D. Alves, M. I. R. Armitage-Caplan, C. Amaue, M. Arzoumanian, D. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banda, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Butler, R. C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, E. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Gouveia Dal Pino, E. M. De Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferflere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuse, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leaiy, J. P. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, I. F. Maffei, B. Magalhaes, A. M. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, N. Migliaccio, M. Mivile-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, A. Naselsky, P. Nati, E. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paadini, R. Paoletti, D. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Poidevin, F. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rubino-Martin, A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; dust, extinction; ISM: magnetic fields; ISM: clouds; submillimeter: ISM ID PROBE WMAP OBSERVATIONS; RADIATIVE TORQUE ALIGNMENT; FORMING MOLECULAR CLOUDS; MAGNETIC-FIELD GEOMETRY; GRAIN ALIGNMENT; INTERSTELLAR TURBULENCE; ROTATION MEASURES; SOUTHERN SKY; EXTRAGALACTIC SOURCES; 1.4 GHZ AB This paper presents an overview of the polarized sky as seen by Planck HFI at 353GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1 degrees resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (p(max) = 19.8%), in particular in some regions of moderate hydrogen column density (N-H < 2 x 10(21) cm(-2)). The polarization fraction displays a large scatter at NH below a few 10(21) cm(-2). There is a general decrease in the dust polarization fraction with increasing column density above N-H similar or equal to 1 x 10(21) cm(-2) and in particular a sharp drop above N-H similar or equal to 1.5 x 10(22) cm(-2). We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1 degrees, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Observ Paris, AstroParticule & Cosmol,Sorbonne Paris Cite, APC,CNRS IN2P3,CEA Irfu, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, ZA-7950 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago 0355, Chile. [Bond, J. R.; Martin, P. G.; Mivile-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Alina, D.; Banda, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferflere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bock, J. J.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAAP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 121, Canada. [Scott, D.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Poidevin, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, E.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, N.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Poidevin, F.; Rebolo, R.; Rubino-Martin, A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, E.; De Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuse, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, N.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Paadini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Mivile-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Poidevin, F.; Rebolo, R.; Rubino-Martin, A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [de Gouveia Dal Pino, E. M.; Magalhaes, A. M.] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, Brazil. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Leaiy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Couchot, F.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, LAL, F-91400 Orsay, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Amaue, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, I. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep, Zelenchukskiy R, Russia. [Armitage-Caplan, C.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Alina, D.; Banda, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferflere, K.; Forni, O.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.; Giard, M.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Comp 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Bernard, JP (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM Jean-Philippe.Bernard@irap.omp.eu RI Butler, Reginald/N-4647-2015; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Pearson, Timothy/N-2376-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Lahteenmaki, Anne/L-5987-2013; Toffolatti, Luigi/K-5070-2014; Novikov, Dmitry/P-1807-2015; Valiviita, Jussi/A-9058-2016; Mazzotta, Pasquale/B-1225-2016; Kurki-Suonio, Hannu/B-8502-2016; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; de Gouveia Dal Pino, Elisabete/H-9560-2013; Gruppuso, Alessandro/N-5592-2015; Remazeilles, Mathieu/N-1793-2015 OI Juvela, Mika/0000-0002-5809-4834; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Lopez-Caniego, Marcos/0000-0003-1016-9283; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Nati, Federico/0000-0002-8307-5088; Vielva, Patricio/0000-0003-0051-272X; Pearson, Timothy/0000-0001-5213-6231; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Gregorio, Anna/0000-0003-4028-8785; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Toffolatti, Luigi/0000-0003-2645-7386; Valiviita, Jussi/0000-0001-6225-3693; Mazzotta, Pasquale/0000-0002-5411-1748; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; de Gouveia Dal Pino, Elisabete/0000-0001-8058-4752; Gruppuso, Alessandro/0000-0001-9272-5292; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Umana, Grazia/0000-0002-6972-8388; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; De Zotti, Gianfranco/0000-0003-2868-2595; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Cuttaia, Francesco/0000-0001-6608-5017; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN, J.A. (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/M CTES (Portugal); PRACE (EU); European Research Council under the European Union/ERC [267934]; University of Sao Paulo, Brazil [USP 2007.1.433.14.2, COFECUB Uc Te 114/08]; COFECUB, France [USP 2007.1.433.14.2, COFECUB Uc Te 114/08] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/M CTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 267934 and from a joint agreement between University of Sao Paulo, Brazil, and COFECUB, France (grant nos. USP 2007.1.433.14.2 and COFECUB Uc Te 114/08). We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. Some of the results in this paper have been derived using the HEALPix package. NR 119 TC 44 Z9 44 U1 2 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A104 DI 10.1051/0004-6361/201424082 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600039 ER PT J AU Adrian-Martinez, S Albert, A Andre, M Anton, G Ardid, M Aubert, JJ Baret, B Barrios, J Basa, S Bertin, V Biagi, S Bogazzi, C Bormuth, R Bou-Cabo, M Bouwhuis, MC Brujin, R Brunner, J Busto, J Capone, A Caramete, L Cane, J Chiarusim, T Circella, M Coniglione, R Costantini, H Coyle, P Creusot, A De Rosa, G Dekeyser, I Deschamps, A De Bonis, G Distefano, C Donzaud, C Dornic, D Dorosti, Q Drouhin, D Dumas, A Eberl, T Enzenhofer, A Escoffier, S Fehn, K Felis, I Fermani, P Folger, F Fusco, LA Galata, S Gay, P Geisselsoder, S Geyer, K Giordano, V Gleixner, A Gomez-Gonzalez, JP Gracia-Ruiz, R Graf, K van Haren, H Heijboer, AJ Hello, Y Hernandez-Rey, JJ Herrero, A Hossl, J Hofestadt, J Hugon, C James, CW de Jong, M Kalekin, O Katz, U Kiessling, D Kooijman, P Kouchner, A Kulikovskiy, V Lahmann, R Lattuada, D Lefevre, D Leonora, E Loehner, H Loucatos, S Mangano, S Marcelin, M Margiotta, A Martinez-Mora, JA Martini, S Mathieu, A Michael, T Migliozzi, P Neff, M Nezri, E Palioselitis, D Pavalas, GE Perrina, C Piattelli, P Popa, V Pradier, T Racca, C Riccobene, G Richter, R Roensch, K Rostovtsev, A Saldana, M Samtleben, DFE Sanchez-Losa, A Sanguineti, M Sapienza, P Schmid, J Schnabel, J Schulte, S Schussler, F Seitz, T Sieger, C Spies, A Spurio, M Steijger, JJM Stolarczyk, T Taiuti, M Tamburini, C Tayalati, Y Trovato, A Tselengidou, M Tonnis, C Vallage, B Vallee, C Van Elewyck, V Visser, E Vivolo, D Wagner, S de Wolf, E Yepes, H Zornoza, JD Zuniga, J Krauss, F Kadler, M Mannheim, K Schulz, R Trustedt, J Wilms, J Ojha, R Ros, E Baumgartner, W Beuchert, T Blanchard, J Burke, C Carpenter, B Edwards, PG Glawion, DE Elsasser, D Fritsch, U Gehrels, N Grafe, C Grossberger, C Hase, H Horiuchi, S Kappes, A Kreikenbohm, A Kreykenbohm, I Langejahn, M Leiter, K Litzinger, E Lovell, JEJ Muller, C Phillips, C Plotz, C Quick, J Steinbring, T Stevens, J Thompson, DJ Tzioumis, AK AF Adrian-Martinez, S. Albert, A. Andre, M. Anton, G. Ardid, M. Aubert, J. -J. Baret, B. Barrios, J. Basa, S. Bertin, V. Biagi, S. Bogazzi, C. Bormuth, R. Bou-Cabo, M. Bouwhuis, M. C. Brujin, R. Brunner, J. Busto, J. Capone, A. Caramete, L. Cane, J. Chiarusim, T. Circella, M. Coniglione, R. Costantini, H. Coyle, P. Creusot, A. De Rosa, G. Dekeyser, I. Deschamps, A. De Bonis, G. Distefano, C. Donzaud, C. Dornic, D. Dorosti, Q. Drouhin, D. Dumas, A. Eberl, T. Enzenhoefer, A. Escoffier, S. Fehn, K. Felis, I. Fermani, P. Folger, F. Fusco, L. A. Galata, S. Gay, P. Geisselsoeder, S. Geyer, K. Giordano, V. Gleixner, A. Gomez-Gonzalez, J. P. Gracia-Ruiz, R. Graf, K. van Haren, H. Heijboer, A. J. Hello, Y. Hernandez-Rey, J. J. Herrero, A. Hoessl, J. Hofestaedt, J. Hugon, C. James, C. W. de Jong, M. Kalekin, O. Katz, U. Kiessling, D. Kooijman, P. Kouchner, A. Kulikovskiy, V. Lahmann, R. Lattuada, D. Lefevre, D. Leonora, E. Loehner, H. Loucatos, S. Mangano, S. Marcelin, M. Margiotta, A. Martinez-Mora, J. A. Martini, S. Mathieu, A. Michael, T. Migliozzi, P. Neff, M. Nezri, E. Palioselitis, D. Pavalas, G. E. Perrina, C. Piattelli, P. Popa, V. Pradier, T. Racca, C. Riccobene, G. Richter, R. Roensch, K. Rostovtsev, A. Saldana, M. Samtleben, D. F. E. Sanchez-Losa, A. Sanguineti, M. Sapienza, P. Schmid, J. Schnabel, J. Schulte, S. Schuessler, F. Seitz, T. Sieger, C. Spies, A. Spurio, M. Steijger, J. J. M. Stolarczyk, Th. Taiuti, M. Tamburini, C. Tayalati, Y. Trovato, A. Tselengidou, M. Toennis, C. Vallage, B. Vallee, C. Van Elewyck, V. Visser, E. Vivolo, D. Wagner, S. de Wolf, E. Yepes, H. Zornoza, J. D. Zuniga, J. Krauss, F. Kadler, M. Mannheim, K. Schulz, R. Truestedt, J. Wilms, J. Ojha, R. Ros, E. Baumgartner, W. Beuchert, T. Blanchard, J. Buerke, C. Carpenter, B. Edwards, P. G. Glawion, D. Eisenacher Elsaesser, D. Fritsch, U. Gehrels, N. Graefe, C. Grossberger, C. Hase, H. Horiuchi, S. Kappes, A. Kreikenbohm, A. Kreykenbohm, I. Langejahn, M. Leiter, K. Litzinger, E. Lovell, J. E. J. Mueller, C. Phillips, C. Ploetz, C. Quick, J. Steinbring, T. Stevens, J. Thompson, D. J. Tzioumis, A. K. CA ANTARES Collaboration TANAMI Collaboration TI ANTARES constrains a blazar origin of two IceCube PeV neutrino events SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE neutrinos; galaxies: active; quasars: general ID HIGH-ENERGY NEUTRINOS; COSMIC-RAYS; TELESCOPE; QUASARS; CATALOG; NUCLEI AB Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons - and hence their neutrino progenitors - from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin. Results. Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653-329 and 1714-336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC 14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than -2.4. C1 [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain. [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, F-68008 Colmar, France. [Andre, M.] Tech Univ Catalonia, Lab Appl Bioacoust, Barcelona 08800, Spain. [Hugon, C.; Sanguineti, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hoessl, J.; Hofestaedt, J.; James, C. W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Spies, A.; Tselengidou, M.; Wagner, S.; Fritsch, U.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Cane, J.; Costantini, H.; Coyle, P.; Dornic, D.; Escoffier, S.; Mathieu, A.; Vallee, C.] Aix Marseille Univ, CNRS IN2P3, CPPM, F-13009 Marseille, France. [Baret, B.; Creusot, A.; Donzaud, C.; Galata, S.; Gracia-Ruiz, R.; Kouchner, A.; Van Elewyck, V.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,CNRS IN2P3,CEA IRFU, F-75205 Paris, France. [Barrios, J.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Sanchez-Losa, A.; Toennis, C.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Valencia 46071, Spain. [Basa, S.; Marcelin, M.; Nezri, E.] Pole Etoile Site Chateau Gombert, LAM, F-13388 Marseille 13, France. [Chiarusim, T.; Fusco, L. A.; Margiotta, A.; Spurio, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Fusco, L. A.; Margiotta, A.; Spurio, M.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy. [Bogazzi, C.; Bormuth, R.; Bouwhuis, M. C.; Brujin, R.; Heijboer, A. J.; de Jong, M.; Kooijman, P.; Michael, T.; Palioselitis, D.; Samtleben, D. F. E.; Schulte, S.; Steijger, J. J. M.; Visser, E.; de Wolf, E.] Nikhef, NL-1098 XG Amsterdam, Netherlands. [Bormuth, R.; de Jong, M.; Samtleben, D. F. E.] Leiden Univ, Huygens Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. [Brujin, R.; Kooijman, P.; de Wolf, E.] Univ Amsterdam, Inst Hoge Energie Fys, NL-1098 XG Amsterdam, Netherlands. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Caramete, L.; Pavalas, G. E.; Popa, V.] Inst Space Sci, Bucharest 077125, Magurele, Romania. [Circella, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [De Rosa, G.; Migliozzi, P.; Vivolo, D.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Rosa, G.; Vivolo, D.] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy. [Dekeyser, I.; Lefevre, D.; Martini, S.; Tamburini, C.] Aix Marseille Univ, MIO, F-13288 Marseille 9, France. [Dekeyser, I.; Lefevre, D.; Martini, S.; Tamburini, C.] Univ Sud Toulon Var, CNRS INSU IRD UM 110, F-83957 La Garde, France. [Biagi, S.; Coniglione, R.; Distefano, C.; Kulikovskiy, V.; Lattuada, D.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.] Univ Nice Sophia Antipolis, CNRS INSU, Observ Cote Azur, Geoazur,IRD, Sophia Antipolis, France. [Biagi, S.; Coniglione, R.; Distefano, C.; Kulikovskiy, V.; Lattuada, D.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.] Ist Nazl Fis Nucl, LNS, I-95123 Catania, Italy. [Donzaud, C.] Univ Paris 11, F-91405 Orsay, France. [Dorosti, Q.; Loehner, H.] Univ Groningen, KVI, NL-9747 AA Groningen, Netherlands. [Dumas, A.; Gay, P.] Univ Clermont Ferrand, Clermont Univ, CNRS IN2P3, Laboratoire Phys Corpusculaire, F-63000 Clermont Ferrand, France. [Giordano, V.; Leonora, E.] Ist Nazl Fis Nucl, Sez Catania, I-95125 Catania, Italy. [van Haren, H.] Royal Netherlands Inst Sea Res NIOZ, NL-1797 SZ T Horntje, Texel, Netherlands. [Kooijman, P.] Univ Utrecht, Fac Betawetenschappen, NL-3584 CC Utrecht, Netherlands. [Krauss, F.; Schulz, R.; Truestedt, J.; Wilms, J.; Beuchert, T.; Buerke, C.; Graefe, C.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Mueller, C.; Steinbring, T.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, D-96049 Bamberg, Germany. [Krauss, F.; Schulz, R.; Truestedt, J.; Wilms, J.; Beuchert, T.; Buerke, C.; Graefe, C.; Kreikenbohm, A.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Litzinger, E.; Mueller, C.; Steinbring, T.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. [Leonora, E.] Univ Catania, Dipartimento Fis & Astron, I-95125 Catania, Italy. [Loucatos, S.; Schuessler, F.; Stolarczyk, Th.; Vallage, B.] CEA Saclay, Direct Sci Mat, Inst Rech Lois Fondament Univers, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Pradier, T.] Univ Strasbourg, IPHC, F-67037 Strasbourg, France. [Pradier, T.] CNRS, IN2P3, F-67037 Strasbourg 2, France. [Rostovtsev, A.] ITEP, Moscow 117218, Russia. [Hugon, C.; Sanguineti, M.; Taiuti, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Tayalati, Y.] Univ Mohammed 1, Lab Phys Matter & Radiat, Oujda 6000, Morocco. [Krauss, F.; Kadler, M.; Mannheim, K.; Schulz, R.; Truestedt, J.; Beuchert, T.; Buerke, C.; Glawion, D. Eisenacher; Elsaesser, D.; Graefe, C.; Kappes, A.; Kreikenbohm, A.; Langejahn, M.; Leiter, K.; Litzinger, E.; Mueller, C.; Steinbring, T.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Ojha, R.; Baumgartner, W.; Gehrels, N.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ojha, R.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Ojha, R.; Carpenter, B.] Catholic Univ Amer, Washington, DC 20064 USA. [Ros, E.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Ros, E.] Univ Valencia, Observ Astron, Valencia 46980, Spain. [Blanchard, J.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Edwards, P. G.; Phillips, C.; Stevens, J.; Tzioumis, A. K.] CSIRO Astron & Space Sci, ATNF, Epping, NSW 1710, Australia. [Grossberger, C.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Ploetz, C.] Bundesamt Kartog & Geodasie, D-93444 Bad Kotzting, Germany. [Horiuchi, S.] CSIRO Astron & Space Sci, Tuggeranong, ACT 2901, Australia. [Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Quick, J.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa. RP James, CW (reprint author), Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany. EM clancy.james@physik.uni-erlangen.de; kadler@physik.uni-wuerzburg.edu RI Piattelli, Paolo/J-2958-2012; Caramete, Laurentiu/C-2328-2011; Katz, Uli/E-1925-2013; James, Clancy/G-9178-2015; Ardid, Miguel/H-9544-2015; Migliozzi, Pasquale/I-6427-2015; Zuniga, Juan/P-4385-2014; Schussler, Fabian/G-5313-2013; Wilms, Joern/C-8116-2013; De Rosa, Gianfranca/E-8737-2012; cabo, bou/N-2076-2014; Anton, Gisela/C-4840-2013; Trovato, Agata/F-4160-2016; Biagi, Simone/G-4557-2016; Distefano, Carla/G-5213-2016; Riccobene, Giorgio Maria/A-4502-2010; Zornoza, Juan de Dios/L-1604-2014; Eberl, Thomas/J-4826-2016; Hernandez-Rey, Juan Jose/N-5955-2014; Capone, Antonio/F-1098-2010 OI Ros, Eduardo/0000-0001-9503-4892; Piattelli, Paolo/0000-0003-4748-6485; Sanguineti, Matteo/0000-0002-7206-2097; Krauss, Felicia/0000-0001-6191-1244; Sanchez Losa, Agustin/0000-0001-9596-7078; Fusco, Luigi Antonio/0000-0001-8254-3372; Kadler, Matthias/0000-0001-5606-6154; Katz, Uli/0000-0002-7063-4418; James, Clancy/0000-0002-6437-6176; Ardid, Miguel/0000-0002-3199-594X; Migliozzi, Pasquale/0000-0001-5497-3594; Zuniga, Juan/0000-0002-1041-6451; vivolo, daniele/0000-0002-4773-2116; Escoffier, Stephanie/0000-0002-2847-7498; Spurio, Maurizio/0000-0002-8698-3655; Schussler, Fabian/0000-0003-1500-6571; Wilms, Joern/0000-0003-2065-5410; De Rosa, Gianfranca/0000-0002-2197-511X; Anton, Gisela/0000-0003-2039-4724; Trovato, Agata/0000-0002-9714-1904; Biagi, Simone/0000-0001-8598-0017; Distefano, Carla/0000-0001-8632-1136; Riccobene, Giorgio Maria/0000-0002-0600-2774; Zornoza, Juan de Dios/0000-0002-1834-0690; Eberl, Thomas/0000-0002-5301-9106; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; FU Centre National de la Recherche Scientifique (CNRS); Commissariat a l'enegie atomique et aux energies alternatives (CEA); Commission Europeenne (FEDER fund); Commission Europeenne (Marie Curie Program); Region Alsace (contrat CPER); Region Provence-Alpes-Cote d'Azur; Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO); Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Deutsche Forschungsgemeinschaft [WI 1860-10/1, GRK 1147]; Deutsches Zentrum fur Luft- und Raumfahrt [50 OR1311/50 OR1303/50 OR1401]; Spanish MINECO project [AYA2012-38491-C02-01]; Generalitat Valenciana project [PROMETEOII/2014/057]; COST action "Black Holes in a Violent Universe" [MP0905]; Helmholtz Alliance for Astroparticle Physics (HAP) FX The authors would like to thank A. Kappes for helpful discussions regarding the IceCube analysis. The ANTARES authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'enegie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia e Innovacion (MICINN), Prometeo of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The TANAMI authors acknowledge support and partial funding by the Deutsche Forschungsgemeinschaft grant WI 1860-10/1 (TANAMI) and GRK 1147, Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR1311/50 OR1303/50 OR1401, the Spanish MINECO project AYA2012-38491-C02-01, the Generalitat Valenciana project PROMETEOII/2014/057, the COST MP0905 action "Black Holes in a Violent Universe" and the Helmholtz Alliance for Astroparticle Physics (HAP). NR 30 TC 4 Z9 4 U1 4 U2 32 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR L8 DI 10.1051/0004-6361/201525670 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600079 ER PT J AU Aleksic, J Ansokli, S Antonelli, LA Antoranz, P Babic, A Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Berger, K Bernardini, E Bilandli, A Bianch, O Bock, RK Bonnefoy, S Bonnoli, G Borracci, F Bretzi, T Carmona, E Carosi, A Fidalgo, DC Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Caneva, G De Lotto, B Mendez, CD Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Einecke, S Eisenacher, D Elsaesser, D Farina, E Ferenc, D Fonseca, MV Font, L Frantzen, K Fruck, C Lopez, RJG Garczarczyki, M Terrats, DG Gaug, M Giavitto, G Godinovic, N Munoz, AG Gozzini, SR Hadamek, A Hadasch, D Herrero, A Hildebrand, D Hose, J Hrupec, D Idec, W Kadenius, V Kellermann, H Knoetig, ML Krause, J Kushida, J La Barbera, A Lelas, D Lewandowska, N Lindfors, E Longo, F Lombardi, S Lopez, M Lopez-Coto, R Lopez-Oramas, A Lorenz, E Lozano, I Makariev, M Mallot, K Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazin, D Menzel, U Meucci, M Miranda, JM Mirzoyan, R Moralejo, A Munar-Adrover, P Nakajima, D Niedzwiecki, A Nilsson, K Nowak, N Orito, R Overkemping, A Paiano, S Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Partini, S Persic, M Prada, F Moroni, PGP Prandini, E Preziuso, S Puljak, I Reinthal, R Rhode, W Ribo, M Rico, J Garcia, JR Rugamer, S Saggion, A Saito, K Salvati, M Satalecka, K Scalzotto, V Scapin, V Schuliz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Spanier, F Stamatescu, V Stamerra, A Steinbring, T Storz, J Sun, S Suric, T Takalo, L Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Thaele, J Tibolla, O Torres, DF Toyama, T Treves, A Uellenbeck, M Vogler, P Wagner, RM Zandanel, F Zanin, R Archambault, S Behera, B Beilicke, M Benbow, W Bird, R Buckley, JH Bugaev, V Cerruti, M Chen, X Ciupik, L Collins-Hughes, E Cui, W Dumm, J Eisch, JD Falcone, A Federici, S Feng, Q Finley, JP Fleischhack, H Fortin, P Fortson, L Furniss, A Griffin, S Griffiths, ST Grube, J Gyuk, G Hanna, D Holder, J Hughes, G Humensky, TB Johnson, CA Kaaret, P Kertzman, M Khassen, Y Kieda, D Krawczynski, H Krennrich, F Kumar, S Lang, MJ Maier, G McArthur, S Meagher, K Moriarty, P Mukherjee, R Ong, RA Otte, AN Park, N Pichel, A Pohl, M Popkow, A Prokoph, H Quinn, MJ Ragan, K Rajotte, J Reynolds, PT Richards, GT Roache, E Rovero, AC Sembroski, GH Shahinyan, K Staszak, D Telezhinsky, I Theiling, M Tucci, JV Tyler, J Varlotta, A Wakely, SP Weekes, TC Weinstein, A Welsing, R Wilhelm, A Williams, DA Zitzer, B Villata, M Raiteri, C Aller, HD Aller, MF Chen, WP Jordan, B Koptelova, E Kurtanidze, OM Lahteenmak, A McBreen, B Larionov, VM Lin, CS Nikolashvili, MG Angelakis, E Capalbi, M Carraminana, A Carrasco, L Cassaro, P Cesarini, A Fuhrmann, L Giroletti, M Hovatta, T Krichbaum, TP Krimm, HA Max-Moerbeck, W Moody, JW Maccaferri, G Mori, Y Nestoras, I Orlati, A Pace, C Pearson, R Perri, M Readhead, ACS Richards, JL Sadun, AC Sakamoto, T Tammi, J Tornikoski, M Yatsu, Y Zook, A AF Aleksic, J. Ansokli, S. Antonelli, L. A. Antoranz, P. Babic, A. Bangale, P. de Almeida, U. Barres Barrio, J. A. Gonzalez, J. Becerra Bednarek, W. Berger, K. Bernardini, E. Bilandli, A. Bianch, O. Bock, R. K. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Fidalgo, D. Carreto Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Caneva, G. De Lotto, B. Delgado Mendez, C. Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Einecke, S. Eisenacher, D. Elsaesser, D. Farina, E. Ferenc, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Garcia Lopez, R. J. Garczarczyki, M. Garrido Terrats, D. Gaug, M. Giavitto, G. Godinovic, N. Gonzalez Munoz, A. Gozzini, S. R. Hadamek, A. Hadasch, D. Herrero, A. Hildebrand, D. Hose, J. Hrupec, D. Idec, W. Kadenius, V. Kellermann, H. Knoetig, M. L. Krause, J. Kushida, J. La Barbera, A. Lelas, D. Lewandowska, N. Lindfors, E. Longo, F. Lombardi, S. Lopez, M. Lopez-Coto, R. Lopez-Oramas, A. Lorenz, E. Lozano, I. Makariev, M. Mallot, K. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazin, D. Menzel, U. Meucci, M. Miranda, J. M. Mirzoyan, R. Moralejo, A. Munar-Adrover, P. Nakajima, D. Niedzwiecki, A. Nilsson, K. Nowak, N. Orito, R. Overkemping, A. Paiano, S. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Partini, S. Persic, M. Prada, F. Moroni, P. G. Prada Prandini, E. Preziuso, S. Puljak, I. Reinthal, R. Rhode, W. Ribo, M. Rico, J. Garcia, J. Rodriguez Ruegamer, S. Saggion, A. Saito, K. Salvati, M. Satalecka, K. Scalzotto, V. Scapin, V. Schuliz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Spanier, F. Stamatescu, V. Stamerra, A. Steinbring, T. Storz, J. Sun, S. Suric, T. Takalo, L. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Thaele, J. Tibolla, O. Torres, D. F. Toyama, T. Treves, A. Uellenbeck, M. Vogler, P. Wagner, R. M. Zandanel, F. Zanin, R. Archambault, S. Behera, B. Beilicke, M. Benbow, W. Bird, R. Buckley, J. H. Bugaev, V. Cerruti, M. Chen, X. Ciupik, L. Collins-Hughes, E. Cui, W. Dumm, J. Eisch, J. D. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Fleischhack, H. Fortin, P. Fortson, L. Furniss, A. Griffin, S. Griffiths, S. T. Grube, J. Gyuk, G. Hanna, D. Holder, J. Hughes, G. Humensky, T. B. Johnson, C. A. Kaaret, P. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Krennrich, F. Kumar, S. Lang, M. J. Maier, G. McArthur, S. Meagher, K. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Park, N. Pichel, A. Pohl, M. Popkow, A. Prokoph, H. Quinn, M. J. Ragan, K. Rajotte, J. Reynolds, P. T. Richards, G. T. Roache, E. Rovero, A. C. Sembroski, G. H. Shahinyan, K. Staszak, D. Telezhinsky, I. Theiling, M. Tucci, J. V. Tyler, J. Varlotta, A. Wakely, S. P. Weekes, T. C. Weinstein, A. Welsing, R. Wilhelm, A. Williams, D. A. Zitzer, B. Villata, M. Raiteri, C. Aller, H. D. Aller, M. F. Chen, W. P. Jordan, B. Koptelova, E. Kurtanidze, O. M. Lahteenmak, A. McBreen, B. Larionov, V. M. Lin, C. S. Nikolashvili, M. G. Angelakis, E. Capalbi, M. Carraminana, A. Carrasco, L. Cassaro, P. Cesarini, A. Fuhrmann, L. Giroletti, M. Hovatta, T. Krichbaum, T. P. Krimm, H. A. Max-Moerbeck, W. Moody, J. W. Maccaferri, G. Mori, Y. Nestoras, I. Orlati, A. Pace, C. Pearson, R. Perri, M. Readhead, A. C. S. Richards, J. L. Sadun, A. C. Sakamoto, T. Tammi, J. Tornikoski, M. Yatsu, Y. Zook, A. CA MAGIC Collaboration VERITAS Collaboration MAGIC Collaboration TI The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE BL Lacertae objects: individual: Mrk 421 ID ACTIVE GALACTIC NUCLEI; X-RAY VARIABILITY; LIGHT CURVES; OPTICAL VARIABILITY; POWER SPECTRA; TEV PHOTONS; EMISSION; BLAZARS; MARKARIAN-421; TELESCOPE AB Aims. We perform an extensive characterization of the broadband emission of Mrk 421, as well as its temporal evolution, during the non-flaring (low) state. The high brightness and nearby location (z = 0.031) of Mrk 421 make it an excellent laboratory to study blazar emission. The goal is to learn about the physical processes responsible for the typical emission of Mrk 421, which might also be extended to other blazars that are located farther away and hence are more difficult to study. Methods. We performed a 4.5-month multi-instrument campaign on Mrk 421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. This extensive radio to very-high-energy (VHE; E > 100 GeV) gamma-ray dataset provides excellent temporal and energy coverage, which allows detailed studies of the evolution of the broadband spectral energy distribution. Results. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical /UV and X-rays extending over the duration of the campaign. Conclusions. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multiwavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk 421 during non-flaring activity. Such a temporally extended X-ray /VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies. C1 [Aleksic, J.; Bianch, O.; Cortina, J.; Giavitto, G.; Gonzalez Munoz, A.; Lopez-Coto, R.; Lopez-Oramas, A.; Martinez, M.; Moralejo, A.; Rico, J.; Sitarek, J.; Stamatescu, V.] IFAE, Bellaterra 08193, Spain. [Ansokli, S.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Longo, F.; Mankuzhiyil, N.; Palatiello, M.; Persic, M.] Univ Udine, I-33100 Udine, Italy. [Ansokli, S.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Longo, F.; Mankuzhiyil, N.; Palatiello, M.; Persic, M.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Salvati, M.; Stamerra, A.; Tavecchio, F.; Perri, M.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Preziuso, S.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Preziuso, S.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Prester, D. Dominis; Ferenc, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Suric, T.; Terzic, T.] Univ Rijeka, Rudjer Boskovic Inst, Croatian MAG Consortium, Zagreb 10000, Croatia. [Bangale, P.; de Almeida, U. Barres; Bock, R. K.; Borracci, F.; Colin, P.; Fruck, C.; Hose, J.; Kellermann, H.; Krause, J.; Lorenz, E.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Nowak, N.; Paneque, D.; Garcia, J. Rodriguez; Schweizer, T.; Sun, S.; Teshima, M.; Toyama, T.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fonseca, M. V.; Lopez, M.; Lozano, I.; Satalecka, K.; Scapin, V.] Univ Complutense, E-28040 Madrid, Spain. [Gonzalez, J. Becerra; Berger, K.; Colombo, E.; Garcia Lopez, R. J.; Herrero, A.; Tescaro, D.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; De Caneva, G.; Garczarczyki, M.; Gozzini, S. R.; Mallot, K.; Behera, B.; Fleischhack, H.; Hughes, G.; Maier, G.; Prokoph, H.; Welsing, R.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Bilandli, A.; Hildebrand, D.; Knoetig, M. L.; Vogler, P.] ETH, CH-8093 Zurich, Switzerland. [Bretz, T.; Fidalgo, D. Carreto; Dorner, D.; Eisenacher, D.; Elsaesser, D.; Lewandowska, N.; Mannheim, K.; Ruegamer, S.; Spanier, F.; Steinbring, T.; Storz, J.; Tibolla, O.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [Doert, M.; Einecke, S.; Frantzen, K.; Hadamek, A.; Overkemping, A.; Rhode, W.; Thaele, J.; Uellenbeck, M.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Dominguez, A.; Prada, F.; Zandanel, F.] CSIC, Inst Astrofis Andalucia, Granada 18080, Spain. [Doro, M.; Mariotti, M.; Paiano, S.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schuliz, C.] Univ Padua, I-35131 Padua, Italy. [Doro, M.; Mariotti, M.; Paiano, S.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schuliz, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Farina, E.; Treves, A.] Univ Insubria, I-22100 Como, Como, Italy. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, Bellaterra 08193, Spain. [Font, L.; Garrido Terrats, D.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, Bellaterra 08193, Spain. [Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Bellaterra 08193, Spain. [Kadenius, V.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Tuorla Observ, Finnish MAG Consortium, Oulu 900147, Finland. [Kadenius, V.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, Oulu 900147, Finland. [Kushida, J.; Nakajima, D.; Orito, R.; Saito, K.] Kyoto Univ, Div Phys & Astron, Japanese MAG Consortium, Kyoto 6068501, Japan. [Makariev, M.; Maneva, G.; Temnikov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Marcote, B.; Munar-Adrover, P.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanin, R.] Univ Barcelona ICC IEEC, Barcelona 08028, Spain. [Moroni, P. G. Prada; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Moroni, P. G. Prada; Shore, S. N.] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Rajotte, J.; Staszak, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Chen, X.; Federici, S.; Telezhinsky, I.; Wilhelm, A.] DESY, D-15738 Zeuthen, Germany. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Krawczynski, H.; Tyler, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Benbow, W.; Cerruti, M.; Roache, E.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.; Collins-Hughes, E.; Khassen, Y.; Quinn, M. J.] Natl Univ Ireland Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Chen, X.; Federici, S.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Theiling, M.; Tucci, J. V.; Varlotta, A.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Griffiths, S. T.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Kumar, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Pichel, A.; Rovero, A. C.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Zitzer, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Fortin, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Villata, M.; Raiteri, C.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, TO, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Chen, W. P.; Koptelova, E.; Lin, C. S.] Natl Cent Univ, Grad Inst Astron, Jhongli 32054, Taiwan. [Jordan, B.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Koptelova, E.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Kurtanidze, O. M.; Nikolashvili, M. G.] Abastumani Observ, GE-0301 Mt Kanobili, Abastumani, Rep of Georgia. [Kurtanidze, O. M.] Heidelberg Univ, Zentrum Astron, Landessternwarte, D-69117 Heidelberg, Germany. [Lahteenmak, A.; Hovatta, T.; Tammi, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Lahteenmak, A.; Tammi, J.] Aalto Univ, Dept Radio Sci & Engn, Aalto 00076, Finland. [McBreen, B.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg 196140, Russia. [Larionov, V. M.] Pulkovo Observ, St Petersburg 196140, Russia. [Larionov, V. M.] St Petersburg State Univ, Astron Inst, St Petersburg 198504, Russia. [Angelakis, E.; Fuhrmann, L.; Krichbaum, T. P.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Carraminana, A.; Carrasco, L.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Cassaro, P.] INAF Ist Radioastron, Sez Noto, I-96017 Noto, SR, Italy. [Cesarini, A.] Univ Trento, Dept Phys, I-38050 Povo, Trento, Italy. [Hovatta, T.; Max-Moerbeck, W.; Readhead, A. C. S.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Krimm, H. A.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pace, C.] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA. [Moody, J. W.; Pearson, R.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Maccaferri, G.; Orlati, A.] INAF Ist Radioastron, Stn Radioastron Med, I-40059 Bologna, Italy. [Mori, Y.; Yatsu, Y.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Capalbi, M.; Perri, M.] ASI Sci Data Ctr, I-00133 Rome, Italy. [Richards, J. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80220 USA. [Sakamoto, T.] Aoyama Gakuin Univ, Coll Sci & Engn 952, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan. [Zook, A.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Prada, F.] UAM, CSIC, Inst Fis Teor, Madrid, Spain. RP Nowak, N (reprint author), Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. EM nina.nowak@astro.su.se; dpaneque@mppmu.mpg.de RI Fonseca Gonzalez, Maria Victoria/I-2004-2015; Barrio, Juan/L-3227-2014; Martinez Rodriguez, Manel/C-2539-2017; Cortina, Juan/C-2783-2017; Khassen, Yerbol/I-3806-2015; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Torres, Diego/O-9422-2016; Delgado, Carlos/K-7587-2014; Larionov, Valeri/H-1349-2013; GAug, Markus/L-2340-2014; Miranda, Jose Miguel/F-2913-2013; Stamatescu, Victor/C-9945-2016; Tammi, Joni/G-2959-2012; Font, Lluis/L-4197-2014; Contreras Gonzalez, Jose Luis/K-7255-2014 OI Becerra Gonzalez, Josefa/0000-0002-6729-9022; Covino, Stefano/0000-0001-9078-5507; Bonnoli, Giacomo/0000-0003-2464-9077; Antonelli, Lucio Angelo/0000-0002-5037-9034; Stamerra, Antonio/0000-0002-9430-5264; Prandini, Elisa/0000-0003-4502-9053; Cesarini, Andrea/0000-0002-8611-8610; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; De Lotto, Barbara/0000-0003-3624-4480; Perri, Matteo/0000-0003-3613-4409; Raiteri, Claudia Maria/0000-0003-1784-2784; Otte, Adam Nepomuk/0000-0002-5955-6383; Giroletti, Marcello/0000-0002-8657-8852; Bird, Ralph/0000-0002-4596-8563; Angelakis, Emmanouil/0000-0001-7327-5441; Doro, Michele/0000-0001-9104-3214; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; Orlati, Andrea/0000-0001-8737-255X; Dominguez, Alberto/0000-0002-3433-4610; Farina, Emanuele Paolo/0000-0002-6822-2254; Villata, Massimo/0000-0003-1743-6946; Cassaro, Pietro/0000-0001-5139-9662; Prada Moroni, Pier Giorgio/0000-0001-9712-9916; LA BARBERA, ANTONINO/0000-0002-5880-8913; Cui, Wei/0000-0002-6324-5772; Khassen, Yerbol/0000-0002-7296-3100; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384; Torres, Diego/0000-0002-1522-9065; Delgado, Carlos/0000-0002-7014-4101; Larionov, Valeri/0000-0002-4640-4356; GAug, Markus/0000-0001-8442-7877; Miranda, Jose Miguel/0000-0002-1472-9690; Stamatescu, Victor/0000-0001-9030-7513; Tammi, Joni/0000-0002-9164-2695; Font, Lluis/0000-0003-2109-5961; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394 FU German BMBF and MPG; Italian INFN and INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO; Japanese JSPS; MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; CPAN [CSD2007-00042]; Spanish Consolider-Ingenio [CSD2009-00064]; Academy of Finland [268740, 212656, 210338, 121148]; Croatian Science Foundation [09/176]; University of Rijeka [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0]; US Department of Energy; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STCF in the UK; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; Shota Rustaveli National Science Foundation [FR/577/6-320/13]; Russian RFBR foundation [09-02-00092] FX We would like to thank the referee for the useful comments that helped to improve the manuscript. We also thank Patricia Arevalo for helpful contributions and suggestions. The MAGIC collaboration would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO, and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. The VERITAS collaboration acknowledges support from the US Department of Energy, the US National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STCF in the UK. We acknowledge the excellent work of the technical support at the FLWO and the collaboration institutions in the construction and operation of the instrument. The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. We acknowledge the use of public data from the Swift and RXTE data archives. The OVRO 40 m monitoring program is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (numbers 212656, 210338, 121148, and others). The Abastumani Observatory team acknowledges financial support by the Shota Rustaveli National Science Foundation through project FR/577/6-320/13. The St. Petersburg University team acknowledges support from the Russian RFBR foundation via grant 09-02-00092. AZT-24 observations are made within an agreement between Pulkovo, Rome and Teramo observatories. This research is partly based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut fuer Radioastronomie) at Effelsberg, as well as with the Medicina and Noto telescopes operated by INAF Istituto di Radioastronomia. M. Villata organized the optical-to-radio observations by GASP-WEBT as the president of the collaboration. NR 45 TC 9 Z9 9 U1 3 U2 27 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A126 DI 10.1051/0004-6361/201424216 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600061 ER PT J AU Grinberg, V Leutenegger, MA Hell, N Pottschmidt, K Bock, M Garcia, JA Hanke, M Nowak, MA Sundqvist, JO Townsend, RHD Wilms, J AF Grinberg, V. Leutenegger, M. A. Hell, N. Pottschmidt, K. Boeck, M. Garcia, J. A. Hanke, M. Nowak, M. A. Sundqvist, J. O. Townsend, R. H. D. Wilms, J. TI Long term variability of Cygnus X-1 VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: Cyg X-1; X-rays: binaries; binaries : close; stars: winds, outflows ID RAY-TIMING-EXPLORER; HOT-STAR WINDS; PROPORTIONAL COUNTER ARRAY; LINE-DRIVEN INSTABILITY; LUMINOUS OB STARS; X-RAY; MASS-LOSS; STELLAR WIND; BLACK-HOLE; SUPERORBITAL VARIABILITY AB Binary systems with an accreting compact object off er a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure. C1 [Grinberg, V.; Nowak, M. A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Leutenegger, M. A.; Pottschmidt, K.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Leutenegger, M. A.; Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Hell, N.; Boeck, M.; Hanke, M.; Wilms, J.] FAU Erlangen Nrnberg, Dr Karl Remeis Sternwarte, D-96049 Bamberg, Germany. [Hell, N.; Boeck, M.; Hanke, M.; Wilms, J.] FAU Erlangen Nrnberg, ECAP, D-96049 Bamberg, Germany. [Hell, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boeck, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Garcia, J. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sundqvist, J. O.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Sundqvist, J. O.] Univ Munich, Inst Astron & Astrophys, D-81679 Munich, Germany. [Townsend, R. H. D.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. RP Grinberg, V (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM grinberg@space.mit.edu RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU NASA through the Smithsonian Astrophysical Observatory (SAO) [SV3-73016]; NASA [NAS8-03060, NNX12AE37G, NNX12AC72G]; LLNL [DE-AC52-07NA27344]; NASA/GSFC; Bundesministerium fur Wirtschaft und Technologie through Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 1113] FX Support for this work was provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for Support of the Chandra X-Ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. It was partially completed by LLNL under Contract DE-AC52-07NA27344, and is supported by NASA grants to LLNL and NASA/GSFC. We thank the Bundesministerium fur Wirtschaft und Technologie for funding through Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR 1113. M.A.N. acknowledges support from NASA Grant NNX12AE37G. R.H.D.T. acknowledges support from NASA award NNX12AC72G. This research has made use of NASA's Astrophysics Data System Bibliographic Services. We thank John E. Davis for the development of the slxfig module used to prepare all figures in this work and Fritz-Walter Schwarm, Thomas Dauser, and Ingo Kreykenbohm for their work on the Remeis computing cluster. This research has made use of ISIS functions (isisscripts) provided by ECAP/Remeis observatory and MIT3. Without the hard work by Evan Smith and Divya Pereira to schedule the observations of Cyg X-1 so uniformly for more than a decade, this whole series of papers would not have been possible. NR 87 TC 5 Z9 5 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A117 DI 10.1051/0004-6361/201425418 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600052 ER PT J AU Maire, AL Skemer, AJ Hinz, PM Desidera, S Esposito, S Gratton, R Marzari, F Skrutskie, MF Biller, BA Defrere, D Bailey, VP Leisenring, JM Apai, D Bonnefoy, M Brandner, W Buenzli, E Claudi, RU Close, LM Crepp, JR De Rosa, RJ Eisner, JA Fortney, JJ Henning, T Hofmann, KH Kopytova, TG Males, JR Mesa, D Morzinski, KM Oza, A Patience, J Pinna, E Rajan, A Schertl, D Schlieder, JE Su, KYL Vaz, A Ward-Duong, K Weigelt, G Woodward, CE AF Maire, A. -L. Skemer, A. J. Hinz, P. M. Desidera, S. Esposito, S. Gratton, R. Marzari, F. Skrutskie, M. F. Biller, B. A. Defrere, D. Bailey, V. P. Leisenring, J. M. Apai, D. Bonnefoy, M. Brandner, W. Buenzli, E. Claudi, R. U. Close, L. M. Crepp, J. R. De Rosa, R. J. Eisner, J. A. Fortney, J. J. Henning, T. Hofmann, K. -H. Kopytova, T. G. Males, J. R. Mesa, D. Morzinski, K. M. Oza, A. Patience, J. Pinna, E. Rajan, A. Schertl, D. Schlieder, J. E. Su, K. Y. L. Vaz, A. Ward-Duong, K. Weigelt, G. Woodward, C. E. TI The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual: HR 8799; planetary systems; instrumentation: adaptive optics; methods: data analysis; techniques: high angular resolution; planets and satellites: dynamical evolution and stability ID EXTRASOLAR GIANT PLANETS; BETA-PICTORIS B; LOW-MASS STARS; BROWN DWARFS; ORBITAL MOTION; DEBRIS DISK; EVOLUTIONARY MODELS; COMPUTER-PROGRAM; FOMALHAUT B; 1ST LIGHT AB Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L' band (3.8 mu m), including their system architectures. Aims. We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. Methods. We use observations of HR 8799 and the Theta(1) Ori C field obtained during the same run in October 2013. Results. We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 +/- 0.012 mas /pix and -0.430 +/- 0.076 degrees, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1 '' of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3 sigma with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (similar to 9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (similar to 7.5 AU). C1 [Maire, A. -L.; Desidera, S.; Gratton, R.; Claudi, R. U.; Mesa, D.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Skemer, A. J.; Hinz, P. M.; Defrere, D.; Bailey, V. P.; Leisenring, J. M.; Apai, D.; Close, L. M.; Eisner, J. A.; Males, J. R.; Morzinski, K. M.; Su, K. Y. L.; Vaz, A.] Univ Arizona, Dept Astron, Steward Observ, Tucson, AZ 85721 USA. [Esposito, S.; Pinna, E.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Marzari, F.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Skrutskie, M. F.; Oza, A.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Biller, B. A.] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Biller, B. A.; Bonnefoy, M.; Brandner, W.; Buenzli, E.; Henning, T.; Kopytova, T. G.; Schlieder, J. E.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Bonnefoy, M.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, M.] CNRS, IPAG, F-38000 Grenoble, France. [Crepp, J. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [De Rosa, R. J.; Patience, J.; Rajan, A.; Ward-Duong, K.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [De Rosa, R. J.] Univ Exeter, Sch Phys, Astrophys Grp, Exeter EX4 4QL, Devon, England. [Fortney, J. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Hofmann, K. -H.; Schertl, D.; Weigelt, G.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kopytova, T. G.] Int Max Planck Res Sch Astron & Space Phys, D-69117 Heidelberg, Germany. [Schlieder, J. E.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Woodward, C. E.] Univ Minnesota, Minnesota Inst Astrophys, Minneapolis, MN 55455 USA. RP Maire, AL (reprint author), INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. EM annelise.maire@oapd.inaf.it OI Buenzli, Esther/0000-0003-3306-1486; Skemer, Andrew/0000-0001-6098-3924; Desidera, Silvano/0000-0001-8613-2589; Esposito, Simone/0000-0002-3114-677X; Su, Kate/0000-0002-3532-5580; Pinna, Enrico/0000-0002-6243-5697; Gratton, Raffaele/0000-0003-2195-6805; Morzinski, Katie/0000-0002-1384-0063; Bailey, Vanessa/0000-0002-5407-2806 FU "Progetti Premiali" funding scheme of the Italian Ministry of Education, University, and Research; National Aeronautics and Space Administration through Hubble Fellowship - Space Telescope Science Institute [HST-HF2-51349]; NASA [NAS 5-26555]; Swiss National Science Foundation (SNSF); NASA Postdoctoral Program at NASA Ames Research Center; NASA; NASA Origins of Solar Systems Program [NNX13AJ17G]; NASA as part of its Exoplanet Exploration program; National Science Foundation [NSF AST-0705296] FX We thank the referee for a detailed and constructive report that helped to improve the manuscript. We thank Thayne Currie and Gabriel-Dominique Marleau for useful comments. A.-L.M. thanks Arthur Vigan for helping on distortion correction and Dimitri Mawet for discussions on contrast estimation at small separations. A.-L.M., S.D., R.G., R.U.C., and D.M. acknowledge support from the "Progetti Premiali" funding scheme of the Italian Ministry of Education, University, and Research. Support for A.J.S. provided by the National Aeronautics and Space Administration through Hubble Fellowship grant HST-HF2-51349 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. E.B. was supported by the Swiss National Science Foundation (SNSF). The research of J.E.S. was supported in part by an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. LEECH is funded by the NASA Origins of Solar Systems Program, grant NNX13AJ17G. The Large Binocular Telescope Interferometer is funded by NASA as part of its Exoplanet Exploration program. LMIRCam is funded by the National Science Foundation through grant NSF AST-0705296. NR 87 TC 17 Z9 17 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A133 DI 10.1051/0004-6361/201425185 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600068 ER PT J AU Perrin, G Cotton, WD Millan-Gabet, R Mennesson, B AF Perrin, G. Cotton, W. D. Millan-Gabet, R. Mennesson, B. TI High-resolution IR and radio observations of AGB stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: atmospheres; stars: AGB and post-AGB; stars: mass-loss; masers; techniques: interferometric; infrared: stars ID MIRA VARIABLE-STARS; SPECTRAL IRRADIANCE CALIBRATION; SIO MASER EMISSION; KECK INTERFEROMETER; VLBA OBSERVATIONS; MOLECULAR LAYER; ALPHA-ORIONIS; S-ORIONIS; STELLAR; GIANTS AB Aims. We present the results of observations with interferometers of a sample of pulsating asymptotic giant branch (AGB) stars in the infrared and at radio wavelengths. The goal of these observations is to explore the extended stellar atmospheres and to establish links between the spatial scales of molecular envelopes and of the dust shell. This is the key to better understand the process of dust formation and therefore of mass loss. Methods. We used the ESO VLTI/MIDI interferometer in the N band, the Keck Interferometer in the K band, and NRAO VLBA observations of SiO masers at 7 mm wavelength of a sample of AGB stars: U Ari, W Cnc, RX Tau, RT Tau, RT Aql, S Ser, and V Mon. The various instruments probe different altitudes of the atmosphere of the AGB stars. They are sensitive to regions below the silicate dust condensation distance and provide the opportunity of finding hints about how dust and its precursors form in the extended atmosphere of an AGB star. The K-band observations are sensitive to water and carbon-monoxyde vapors. Unfortunately, we were only able to observe S Ser in this wavelength range. Results. We find a ratio of 2.2 between the molecular envelope radius and the photospheric size, which is consistent with previous results. The N-band observations are mostly sensitive to vapors of SiO and water and to dust (alumina and silicate). The silicate dust shell is fully resolved, and no precise parameters can be deduced from the N-band observations other than a spatial extension of at least 12-16 R-star for our sample. The sizes found for the SiO region are consistent with the radii of the SiO maser rings provided by the VLBA observations. The sizes of the alumina and water vapor regions are systematically found to be larger. There is clear evidence that SiO is absent from regions farther from the star where silicate dust condenses. Conclusions. These observations support a possible scenario in which SiO is adsorbed by species such as corundum. An alternative explanation could be that SiO has chemically disappeared at this range of distances. C1 [Perrin, G.] Paris Sci & Lettres Res Univ, Univ Paris Diderot, UPMC, LESIA,Observ Paris,CNRS, F-92195 Meudon, France. [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Millan-Gabet, R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Mennesson, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Perrin, G (reprint author), Paris Sci & Lettres Res Univ, Univ Paris Diderot, UPMC, LESIA,Observ Paris,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France. EM guy.perrin@obspm.fr NR 36 TC 1 Z9 1 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A70 DI 10.1051/0004-6361/201425110 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600005 ER PT J AU Yildiz, UA Kristensen, LE van Dishoeck, EF Hogerheijde, MR Karska, A Belloche, A Endo, A Frieswijk, W Gusten, R van Kempen, TA Leurini, S Nagy, Z Perez-Beaupuits, JP Risacher, C van der Marel, N van Weeren, RJ Wyrowski, F AF Yildiz, U. A. Kristensen, L. E. van Dishoeck, E. F. Hogerheijde, M. R. Karska, A. Belloche, A. Endo, A. Frieswijk, W. Guesten, R. van Kempen, T. A. Leurini, S. Nagy, Z. Perez-Beaupuits, J. P. Risacher, C. van der Marel, N. van Weeren, R. J. Wyrowski, F. TI APEX-CHAMP(+) high-J CO observations of low-mass young stellar objects IV. Mechanical and radiative feedback SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; stars: formation; stars: protostars; ISM: molecules; techniques: spectroscopic ID STAR-FORMING REGIONS; MOLECULAR OUTFLOWS; HERSCHEL-PACS; NGC 1333; PROTOSTELLAR ENVELOPES; SPITZER C2D; GOULD BELT; EMBEDDED PROTOSTARS; BIPOLAR OUTFLOWS; LINE FORMATION AB Context. During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Aims. Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Methods. Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP(+) instrument on the Atacama Pathfinder EXperiment ((CO)-C-12 and (CO)-C-13 6-5; E-up similar to 100 K), and the HARP-B instrument on the James Clerk Maxwell Telescope ((CO)-C-12 and (CO)-C-13 3-2; E-up similar to 30 K). The maps have high spatial resolution, particularly the CO 6 5 maps taken with a 9 '' beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from (CO)-C-13 6-5 observations. Results. All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, F-CO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI H2O and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock characteristics (density and velocity), whereas CO 3-2 is more sensitive to conditions in the surrounding environment (density). The radiative feedback is responsible for increasing the gas temperature by a factor of two, up to 30-50 K, on scales of a few thousand AU, particularly along the direction of the outflow. The mass of the UV heated gas exceeds the mass contained in the entrained outflow in the inner similar to 3000 AU and is therefore at least as important on small scales. C1 [Yildiz, U. A.; van Dishoeck, E. F.; Hogerheijde, M. R.; van Kempen, T. A.; van der Marel, N.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Yildiz, U. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kristensen, L. E.; van Weeren, R. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [van Dishoeck, E. F.; Karska, A.] Max Planck Inst Extraterr Phys MPE, D-85748 Garching, Germany. [Belloche, A.; Guesten, R.; Leurini, S.; Perez-Beaupuits, J. P.; Risacher, C.; Wyrowski, F.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Endo, A.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Frieswijk, W.; Risacher, C.] Univ Groningen, Kapteyn Inst, NL-9747 AD Groningen, Netherlands. [Frieswijk, W.] ASTRON, NL-7991 PD Dwingeloo, Netherlands. [Nagy, Z.] Univ Cologne, Phys Inst 1, D-50937 Cologne, Germany. RP Yildiz, UA (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM Umut.Yildiz@jpl.nasa.gov RI Yildiz, Umut/C-5257-2011; Kristensen, Lars/F-4774-2011; Karska, Agata/O-5311-2016 OI Yildiz, Umut/0000-0001-6197-2864; Kristensen, Lars/0000-0003-1159-3721; Karska, Agata/0000-0001-8913-925X FU Netherlands Research School for Astronomy (NOVA); Spinoza grant; Netherlands Organisation for Scientific Research (NWO) [614.001.008, 600.063.310.10]; European Community [238258] FX The authors would like to thank the anonymous referee for suggestions and comments, which improved this paper. We are grateful to the APEX and JCMT staff for support with these observations. Astrochemistry in Leiden is supported by the Netherlands Research School for Astronomy (NOVA), by a Spinoza grant and grant 614.001.008 from the Netherlands Organisation for Scientific Research (NWO), and by the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement 238258 (LASSIE). This work was carried out in part at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under contract with NASA. Construction of CHAMP+ is a collaboration between the Max-Planck-Institut fur Radioastronomie Bonn, Germany; SRON Netherlands Institute for Space Research, Groningen, the Netherlands; the Netherlands Research School for Astronomy (NOVA); and the Kavli Institute of Nanoscience at Delft University of Technology, The Netherlands; with support from The Netherlands Organization for Scientific Research (NWO) grant 600.063.310.10. The APEX data was obtained via Max Planck Institute observing time. NR 86 TC 12 Z9 12 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2015 VL 576 AR A109 DI 10.1051/0004-6361/201424538 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CL9DC UT WOS:000357274600044 ER PT J AU Camporeale, E Hogan, EA MacDonald, EA AF Camporeale, E. Hogan, E. A. MacDonald, E. A. TI Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article DE self-similar solutions; plasma contactor; spacecraft charging ID NEAR-FIELD PLUME; PARTICLE-IN-CELL; HALL THRUSTER; SIMULATION; VACUUM; SPACE AB We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979 American Institute of Aeronautics, Astronautics Conf. vol 1), Korsun and Tverdokhlebova (1997 33rd Joint Prop. Conf. (Seattle, WA) AIAA-97-3065), and Ashkenazy and Fruchtman (2001 27th Int. Electric Propulsion Conf. (Pasadena, CA)). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity. C1 [Camporeale, E.] Ctr Math & Comp Sci CWI, Amsterdam, Netherlands. [Hogan, E. A.] Univ Colorado, Boulder, CO 80309 USA. [MacDonald, E. A.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. RP Camporeale, E (reprint author), Ctr Math & Comp Sci CWI, Amsterdam, Netherlands. EM e.camporeale@cwi.nl FU Laboratory Directed Research and Development program (LDRD), under the National Nuclear Security Administration of the US Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank G L Delzanno, J E Borovsky and M F Thomsen for useful discussions. This work was partially funded by the Laboratory Directed Research and Development program (LDRD), under the auspices of the National Nuclear Security Administration of the US Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under contract DE-AC52-06NA25396. NR 26 TC 0 Z9 0 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD APR PY 2015 VL 24 IS 2 AR 025014 DI 10.1088/0963-0252/24/2/025014 PG 14 WC Physics, Fluids & Plasmas SC Physics GA CL2ZB UT WOS:000356816200018 ER PT J AU Anderson, JD Schubert, G Trimble, V Feldman, MR AF Anderson, J. D. Schubert, G. Trimble, V. Feldman, M. R. TI Measurements of Newton's gravitational constant and the length of day SO EPL LA English DT Article ID SOLAR-ACTIVITY; ROTATION AB About a dozen measurements of Newton's gravitational constant, G, since 1962 have yielded values that differ by far more than their reported random plus systematic errors. We find that these values for G are oscillatory in nature, with a period of P = 5.899 +/- 0.062 yr, an amplitude of (1.619 +/- 0.103) x 10(-14) m(3) kg(-1) s(-2), and mean-value crossings in 1994 and 1997. However, we do not suggest that G is actually varying by this much, this quickly, but instead that something in the measurement process varies. Of other recently reported results, to the best of our knowledge, the only measurement with the same period and phase is the Length of Day (LOD-defined as a frequency measurement such that a positive increase in LOD values means slower Earth rotation rates and therefore longer days). The aforementioned period is also about half of a solar activity cycle, but the correlation is far less convincing. The 5.9 year periodic signal in LOD has previously been interpreted as due to fluid core motions and inner-core coupling. We report the G/LOD correlation, whose statistical significance is 0.99764 assuming no difference in phase, without claiming to have any satisfactory explanation for it. Least unlikely, perhaps, are currents in the Earth's fluid core that change both its moment of inertia (affecting LOD) and the circumstances in which the Earth-based experiments measure G. In this case, there might be correlations with terrestrial-magnetic-field measurements. Copyright (C) EPLA, 2015 C1 [Anderson, J. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schubert, G.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Trimble, V.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. OI Feldman, Michael/0000-0003-1567-9725 NR 18 TC 8 Z9 8 U1 0 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD APR PY 2015 VL 110 IS 1 AR 10002 DI 10.1209/0295-5075/110/10002 PG 5 WC Physics, Multidisciplinary SC Physics GA CJ6ET UT WOS:000355587200002 ER PT J AU Tourville, N Stephens, G DeMaria, M Vane, D AF Tourville, Natalie Stephens, Graeme DeMaria, Mark Vane, Deborah TI Remote Sensing of Tropical Cyclones: Observations from CloudSat and A-Train Profilers SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID VERTICAL WIND SHEAR; HURRICANE RAINBAND; INTENSITY CHANGE; MOTION; PREDICTION; EVOLUTION; MODEL AB CloudSat (CS) heralded a new era of profiling the planet's cloud systems and storms with its launch in 2006. This satellite flies the first 94-GHz spaceborne Cloud Profiling Radar, and the data collected have provided a unique perspective on Earth's cloudiness and processes that affect clouds. CS flies in formation with the afternoon satellite constellation, a collection of active and passive satellite sensors offering near-simultaneous observations of the same cloud phenomena. While passes of the nadir-pointing Cloud Profiling Radar (CPR) antenna occur infrequently over tropical cyclones, they happen enough to provide a detailed compilation of the inner structure of clouds and precipitation of these complex storm systems. Nearly 8,000 vertical profiles of TCs have been collected during the period June 2006-December 2013 and observations continue as CS flies in daylight-only mode. These observations have been assembled into a one-of-a-kind dataset of three-dimensional features revealing precipitation areas, moats, and multilayered clouds. Each unique overpass profiled by CS has been compiled with corresponding A-Train sensors, model data, and storm-specific best-track information. The multisensor components of the CS and A-Train TC dataset together with these other data are summarized and cataloged as a function of radial distance from storm center. Example imagery is provided along with stratified reflectivity profiles detailing changes in storm structures across varying environmental shear conditions. The data reported on in this paper offer an unprecedented view of these major storm types and their inner structure. C1 [Tourville, Natalie] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Stephens, Graeme; Vane, Deborah] CALTECH, Jet Prop Lab, Pasadena, CA USA. [DeMaria, Mark] Natl Hurricane Ctr, Technol & Sci Branch, Miami, FL USA. RP Tourville, N (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, 1375 Campus Delivery, Ft Collins, CO 80523 USA. EM natalie.tourville@colostate.edu FU NASA JPL [1439268] FX We would like to acknowledge the Satellite Meteorological Applications Section at the Naval Research Laboratory for its assistance in creating the TC composites and the CS DPC for supplying the data used throughout this study. Special thanks to Cristian Mistrescu, Kim Richardson, and Steve Miller for their assistance on this project. Special thanks to John Knaff and two anonymous reviewers for their thoughtful and helpful feedback. This project is funded under NASA JPL Contract 1439268. NR 41 TC 3 Z9 3 U1 2 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD APR PY 2015 VL 96 IS 4 BP 609 EP 622 DI 10.1175/BAMS-D-13-00282.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ3VS UT WOS:000355412900001 ER PT J AU Siu-Tapia, A Blanco-Cano, X Kajdic, P Aguilar-Rodriguez, E Russell, CT Jian, LK Luhmann, JG AF Siu-Tapia, A. Blanco-Cano, X. Kajdic, P. Aguilar-Rodriguez, E. Russell, C. T. Jian, L. K. Luhmann, J. G. TI Low-frequency waves within isolated magnetic clouds and complex structures: STEREO observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE MCs; kinetic instabilities; LFWs ID CORONAL MASS EJECTION; ION-CYCLOTRON WAVES; EARTHS BOW SHOCK; SOLAR-WIND; ANISOTROPY INSTABILITIES; MIRROR-MODE; 1 AU; VELOCITY DISTRIBUTIONS; INTERPLANETARY SPACE; HYDROMAGNETIC-WAVES AB Complex Structures (CSs) formed by the interaction of magnetic cloud (MC)-like structures with other transients (e.g., another MC, a stream interaction region, or a fast stream of solar wind) were frequently observed in the interplanetary space by STEREO spacecraft during the solar minimum 23 and the rising phase of the solar cycle 24. Here we report the presence of low-frequency waves (LFWs) inside some isolated MCs (IMCs) and inside the CSs observed by STEREO during such period (2007-2011). It is important to study in detail the properties of waves in space plasmas since particle distribution functions can be modified by wave-particle interactions. We compare wave characteristics within IMCs with those waves observed inside CSs. Both left-handed (LH) and right-handed (RH), near-circularly polarized, transverse and almost parallel-propagating LFWs (around the proton cyclotron frequency) were sporadically observed inside both IMCs and CSs. In contrast, compressive mirror-mode waves (MMs) were observed only within CSs. We studied local plasma conditions inside the IMCs and CSs to gain insight about wave origin: most of the MMs within CSs were observed in regions with enhanced plasma beta (>1); the majority of the LH waves were found in low beta plasmas (<1), and the RH waves were predominantly observed at moderate betas (0.4<2). These observations are in agreement with linear kinetic theory predictions for the growth of the mirror, the LH ion cyclotron, and the RH ion firehose instability, respectively. It is possible that the waves were generated locally inside the IMCs and CSs via temperature anisotropies. The plasma beta enhancements that were frequently observed inside the CSs may be the result of compressions and heating taking place inside the interacting structures. C1 [Siu-Tapia, A.; Blanco-Cano, X.; Kajdic, P.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. [Siu-Tapia, A.] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany. [Aguilar-Rodriguez, E.] Univ Nacl Autonoma Mexico, Inst Geofis, Unidad Michoacan, Morelia, Michoacan, Mexico. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Jian, L. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Jian, L. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Siu-Tapia, A (reprint author), Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. EM siu@mps.mpg.de RI Jian, Lan/B-4053-2010; OI Jian, Lan/0000-0002-6849-5527; Russell, Christopher/0000-0003-1639-8298 FU CONACYT BECAS NACIONALES [280413-345389]; DGAPA-PAPIIT project [IN105014, IN109112, IN103615]; ESTEC/ESA; NASA [NNX13AI65G]; STEREO mission; NSF [AGS-1259549] FX A.S.T. thanks CONACYT BECAS NACIONALES 2011-2012 grant 280413-345389. X.B.C. is supported by DGAPA-PAPIIT project (grant IN105014). P.K. acknowledges the research fellowship at ESTEC/ESA. E.A.R. thanks DGAPA-PAPIIT project (grants IN109112 and IN103615). L.K.J. is supported by NASA grant NNX13AI65G and STEREO mission and by NSF grant AGS-1259549. We are grateful to the IMPACT team for the magnetic field data and to the PLASTIC team for the solar wind data. NR 69 TC 0 Z9 0 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2363 EP 2381 DI 10.1002/2014JA020568 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800001 ER PT J AU Navarro, RE Munoz, V Araneda, J F-Vinas, A Moya, PS Valdivia, JA AF Navarro, Roberto E. Munoz, Victor Araneda, Jaime F-Vinas, Adolfo Moya, Pablo S. Valdivia, Juan A. TI Magnetic Alfven-cyclotron fluctuations of anisotropic nonthermal plasmas SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE kappa distributions; spontaneous fluctuations; solar wind; instability thresholds; fluctuation-dissipation theorem; magnetic fluctuations ID PROTON TEMPERATURE ANISOTROPY; ION VELOCITY DISTRIBUTIONS; SOLAR-WIND; DISPERSION FUNCTION; INVERSE CORRELATION; COULOMB COLLISIONS; SPACE PLASMAS; THERMAL NOISE; 1 AU; INSTABILITY AB Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently present deviations from thermal equilibrium. Ion anisotropies seem to be constrained by instability thresholds which are in agreement with linear kinetic theory. For plasma states below these instability thresholds, the quasi-stable solar wind plasma sustains a small but detectable level of magnetic fluctuation power. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness and thermal motion of charged particles. Here we study magnetic Alfven-cyclotron fluctuations propagating along a background magnetic field in a plasma composed of thermal and suprathermal protons and electrons via the fluctuation-dissipation theorem. The total fluctuating magnetic power is estimated in a proton temperature anisotropy-beta diagram for three different families of proton distribution functions, which can be compared to a number of recent measurements in the solar wind. C1 [Navarro, Roberto E.; Munoz, Victor; Moya, Pablo S.; Valdivia, Juan A.] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. [Navarro, Roberto E.; Araneda, Jaime] Univ Concepcion, Dept Fis, Concepcion, Chile. [F-Vinas, Adolfo; Moya, Pablo S.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Moya, Pablo S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Navarro, RE (reprint author), Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. EM roberto.navarro@ug.uchile.cl RI Moya, Pablo/C-3163-2011; Valdivia, Juan/A-3631-2008; Navarro, Roberto/F-7045-2014; Araneda, Jaime/J-9245-2015; Munoz, Victor/A-2255-2008 OI Moya, Pablo/0000-0002-9161-0888; Valdivia, Juan/0000-0003-3381-9904; Navarro, Roberto/0000-0003-0782-1904; FU FONDECyT [1110135, 1110729, 1130273, 1121144, 1110880, 3150262]; CONICYT-Becas Chile; CONICyT [21100691]; CEDENNA; NASA's Wind/SWE program FX This project has been financially supported by FONDECyT under contracts 1110135 (J.A.V.), 1110729 (J.A.V.), 1130273 (J.A.V.), 1121144 (V.M.), 1110880 (J.A), and 3150262 (R.E.N.). P.S.M. thanks a postdoctoral Fellowship from CONICYT-Becas Chile. R.N. thanks a doctoral fellowship from CONICyT 21100691. J.A.V. also thanks CEDENNA, and A.F.V. thanks NASA's Wind/SWE program for their support. Our results do not require any spacecraft data analysis. However, numerical data to reproduce all the figures will be made available on request. NR 72 TC 11 Z9 11 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2382 EP 2396 DI 10.1002/2014JA020550 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800002 ER PT J AU Halford, AJ McGregor, SL Murphy, KR Millan, RM Hudson, MK Woodger, LA Cattel, CA Breneman, AW Mann, IR Kurth, WS Hospodarsky, GB Gkioulidou, M Fennell, JF AF Halford, A. J. McGregor, S. L. Murphy, K. R. Millan, R. M. Hudson, M. K. Woodger, L. A. Cattel, C. A. Breneman, A. W. Mann, I. R. Kurth, W. S. Hospodarsky, G. B. Gkioulidou, M. Fennell, J. F. TI BARREL observations of an ICME-shock impact with the magnetosphere and the resultant radiation belt electron loss SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ICME-shock; chorus waves; electric field impulse; radiation belts; electron precipitation; multipoint observations ID DIFFUSION-COEFFICIENTS; INNER MAGNETOSPHERE; EMIC WAVES; PLASMA; FIELD; PRECIPITATION; ACCELERATION; SIMULATION; STORMS AB The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign, the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014, the shock generated by the coronal mass ejection (CME) originating from the active region hits the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) satellite observed the impact of the interplanetary CME (ICME) shock near the magnetopause, and the Geostationary Operational Environmental Satellites (GOES) were on either side of the BARREL/Van Allen Probe array. The solar interplanetary magnetic field was not ideally oriented to cause a significant geomagnetic storm, but compression from the shock impact led to the loss of radiation belt electrons. We propose that an azimuthal electric field impulse generated by magnetopause compression caused inward electron transport and minimal loss. This process also drove chorus waves, which were responsible for most of the precipitation observed outside the plasmapause. Observations of hiss inside the plasmapause explain the absence of loss at this location. ULF waves were found to be correlated with the structure of the precipitation. We demonstrate how BARREL can monitor precipitation following an ICME-shock impact at Earth in a cradle-to-grave view; from flare, to SEP, to electron precipitation. C1 [Halford, A. J.; McGregor, S. L.; Millan, R. M.; Hudson, M. K.; Woodger, L. A.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Murphy, K. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cattel, C. A.; Breneman, A. W.] Univ Minnesota, Minneapolis, MN USA. [Mann, I. R.] Univ Alberta, Edmonton, AB, Canada. [Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Iowa City, IA USA. [Gkioulidou, M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Fennell, J. F.] Aerosp Corp, Los Angeles, CA 90009 USA. RP Halford, AJ (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM Alexa.J.Halford@Dartmouth.edu RI Gkioulidou, Matina/G-9009-2015; OI Gkioulidou, Matina/0000-0001-9979-2164; Hospodarsky, George/0000-0001-9200-9878; Kurth, William/0000-0002-5471-6202; Halford, Alexa/0000-0002-5383-4602 FU NASA [NNX08AM58G, NAS5-01072, NAS5-02099]; BARREL team for use of BARREL data; National Environmental Research Council (NERC)/British Antarctic Survey; South African National Antarctic Program (SANAP) of the BARREL campaign; NASAs [NAS5-01072]; ECT [967399]; UNH; EFW [922613]; UMN; JHU/APL [967399, 921647, 937836]; Van Allen Probe-ECT; NASA Prime [NAS5-01072]; BARREL team FX The authors acknowledge NASA grant NNX08AM58G and the BARREL team for use of BARREL data. The BARREL team would also like to acknowledge the National Environmental Research Council (NERC)/British Antarctic Survey and the South African National Antarctic Program (SANAP) for their support of the BARREL campaign. We acknowledge the NASA Van Allen Probes, Harlan E. Spence, and John Wygant for use of data ECT and EFW data and support for M. Hudson through JHU/APL under NASAs prime contract NAS5-01072, with work at Dartmouth supported under ECT (967399) subcontract from UNH and EFW (922613) subcontract from UMN. The research at the University of Iowa was supported by JHU/APL contract 921647 under NASA Prime contract NAS5-01072. The authors would like to thank Jeremy Faden and all of the developers of Autoplot. MagEIS efforts were supported by Van Allen Probe-ECT funding provided by JHU/APL contract 967399. The RBSPICE instrument was supported by JHU/APL subcontract 937836 to the New Jersey Institute of Technology under NASA Prime contract NAS5-01072. The authors would like to thank NOAA for the use of GOES data http://www.ngdc.noaa.gov/stp/satellite/goes/documentation.html. We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS Mission. Specifically, we thank D. Larson and R. P. Lin for use of SST data, J. W. Bonnell and F. S. Mozer for use of EFI data, and C. W. Carlson and J. P. McFadden for use of ESA data. We acknowledge the WIND Mission for the use of their data, specifically the SWE and MFI instrument teams. A. Halford would like to thank the Van Allen Probe teams for their continued support and collaborations with the BARREL team. S. McGregor and A. Halford would like to make a special thanks to CISM for encouraging us to look at the larger "Sun to Mud" view and enabling us to form collaborations which led to this paper. All data used in this paper can be found on CDAweb. NR 31 TC 7 Z9 7 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2557 EP 2570 DI 10.1002/2014JA020873 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800015 ER PT J AU Liu, GP England, SL Immel, TJ Frey, HU Mannucci, AJ Mitchell, NJ AF Liu, Guiping England, Scott L. Immel, Thomas J. Frey, Harald U. Mannucci, Anthony J. Mitchell, Nicholas J. TI A comprehensive survey of atmospheric quasi 3day planetary-scale waves and their impacts on the day-to-day variations of the equatorial ionosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ultra fast Kelvin wave; planetary wave; equatorial ionosphere; TEC perturbation; atmosphere-ionosphere coupling; day to day variation ID FAST KELVIN WAVE; LOWER THERMOSPHERE; MESOSPHERE; STRATOSPHERE; EXCITATION; RADAR AB This study reports a comprehensive survey of quasi 3day (2.5-4.5day period) planetary-scale waves in the low-latitude mesosphere and lower thermosphere using the temperature observations from Thermosphere Ionosphere and Mesosphere Electric Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry throughout 2002-2012. Occurrences and properties of the waves, including the eastward propagating zonal wave numbers of 1-3 (E1-E3) and vertical wavelengths, are determined for each case. The impacts of these waves on the equatorial ionosphere are investigated by searching for the corresponding variations with the same periods and wave numbers in total electron content (TEC) from the concurrent observations of the ground-based GPS network. For a threshold amplitude of 4K in temperature, a total of 300 waves are identified, of which there are 186 E1, 63 E2, and 51 E3 events. The mean amplitudes and vertical wavelengths of these waves are calculated to be about 7.9K and 34km for the E1, 5.7K and 29km for the E2, and 5.1K and 27km for the E3, having the standard deviations of 1.5K and 6.5km, 0.6K and 5.6km, and 0.5K and 6.7km. Occurrences of the E1 cases are not observed to depend on season, but the large-amplitude (>8K) cases occur more often during solstices than at equinoxes. Similarly, the E2 and E3 cases are observed to occur most often in January-February and May-August. Among these waves, 199 cases (66%) are found to have the corresponding variations in the equatorial ionosphere with amplitudes 4.2% relative to the mean TEC values (corresponding to 90th percentile). Most of these waves have long vertical wavelengths and large amplitudes (approximate to 3 times more than short vertical wavelength and small-amplitude waves). Because no seasonal or solar cycle dependence on the frequency at which these waves have corresponding variations in the ionosphere at this TEC perturbation threshold is observed, we conclude that there is no seasonal and solar cycle dependence on the propagation of such waves from the mesopause region to higher altitudes. We also identify that only 28 cases (19%) of the E1 TEC variations do not correspond to any E1 waves, which is consistent with the hypothesis that E1 waves are the primary cause of E1 TEC variations. Conditions that are favorable for 3day waves to create ionospheric variations are present approximately two thirds of the time. This study quantifies the importance and frequency of atmospheric quasi 3day planetary-scale waves on the day-to-day variations of the equatorial ionosphere using a statistical rather than case study approach. C1 [Liu, Guiping; England, Scott L.; Immel, Thomas J.; Frey, Harald U.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Mannucci, Anthony J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Mitchell, Nicholas J.] Univ Bath, Dept Elect & Elect Engn, Ctr Space Atmospher & Ocean Sci, Bath BA2 7AY, Avon, England. RP Liu, GP (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM guiping@ssl.berkeley.edu OI Frey, Harald/0000-0001-8955-3282 FU National Aeronautics and Space Administration (NASA) Heliophysics Research program [NNX12AD48G]; NASA FX This research work was supported by the National Aeronautics and Space Administration (NASA) Heliophysics Research program through Award NNX12AD48G. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The SABER data were obtained from GATS Incorporated at http://saber.gats-inc.com, and the TEC maps were obtained from NASA's Space Physics Data Facility at http://cdaweb.gsfc.nasa.gov. The TIDI data were obtained from http://tidi.engin.umich.edu. NR 29 TC 2 Z9 2 U1 11 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2015 VL 120 IS 4 BP 2979 EP 2992 DI 10.1002/2014JA020805 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CI6TL UT WOS:000354894800044 ER PT J AU Kitching, TD Rhodes, J Heymans, C Massey, R Liu, Q Cobzarenco, M Cragin, BL Hassaine, A Kirkby, D Lok, EJ Margala, D Moser, J O'Leary, M Pires, AM Yurgenson, S AF Kitching, T. D. Rhodes, J. Heymans, C. Massey, R. Liu, Q. Cobzarenco, M. Cragin, B. L. Hassaine, A. Kirkby, D. Lok, E. Jin Margala, D. Moser, J. O'Leary, M. Pires, A. M. Yurgenson, S. TI Image analysis for cosmology: Shape measurement challenge review & results from the Mapping Dark Matter challenge SO ASTRONOMY AND COMPUTING LA English DT Article DE Cosmology; Image analysis; Gravitational lensing; Dark energy; Dark matter ID WEAK LENSING SURVEYS; ANALYSIS COMPETITION; GREAT08 CHALLENGE AB In this paper we present results from the Mapping Dark Matter competition that expressed the weak lensing shape measurement task in its simplest form and as a result attracted over 700 submissions in 2 months and a factor of 3 improvement in shape measurement accuracy on high signal to noise galaxies, over previously published results, and a factor 10 improvement over methods tested on constant shear blind simulations. We also review weak lensing shape measurement challenges, including the Shear TEsting Programmes (STEP1 and STEP2) and the GRavitational lEnsing Accuracy Testing competitions (GREAT08 and GREAT10). (C) 2014 Elsevier B.V. All rights reserved. C1 [Kitching, T. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Kitching, T. D.; Heymans, C.] Univ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 1RZ, Midlothian, Scotland. [Rhodes, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rhodes, J.] CALTECH, Pasadena, CA 91106 USA. [Massey, R.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Liu, Q.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Cobzarenco, M.] UCL, Dept Comp Sci, London WC1E 6BT, England. [Cragin, B. L.] Keene State Coll, Dept Phys, Keene, NH 03435 USA. [Hassaine, A.] Qatar Univ, Coll Engn, Dept Comp Sci & Engn, Doha, Qatar. [Kirkby, D.; Margala, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Lok, E. Jin] Deloitte Analyt, Melbourne, Vic 3000, Australia. [Moser, J.] Kaggle, San Francisco, CA 94107 USA. [O'Leary, M.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [O'Leary, M.] Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England. [Pires, A. M.] Univ Tecn Lisboa, IST, Dept Math, P-1049001 Lisbon, Portugal. [Pires, A. M.] Univ Tecn Lisboa, IST, CEMAT, P-1049001 Lisbon, Portugal. [Yurgenson, S.] Harvard Univ, Sch Med, Boston, MA 02115 USA. RP Kitching, TD (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM t.kitching@ucl.ac.uk OI Pires, Ana Maria/0000-0002-2833-6759 NR 34 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2015 VL 10 BP 9 EP 21 DI 10.1016/j.ascom.2014.12.004 PG 13 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA CI6VU UT WOS:000354902700002 ER PT J AU Elliott, J de Souza, RS Krone-Martins, A Cameron, E Ishida, EEO Hilbe, J AF Elliott, J. de Souza, R. S. Krone-Martins, A. Cameron, E. Ishida, E. E. O. Hilbe, J. CA COIN Collaboration TI The overlooked potential of Generalized Linear Models in astronomy-II: Gamma regression and photometric redshifts SO ASTRONOMY AND COMPUTING LA English DT Article DE Techniques: photometric; Methods: statistical; Methods: analytical; Galaxies: distances and redshifts ID DIGITAL SKY SURVEY; ARTIFICIAL NEURAL-NETWORKS; MACHINE; CLASSIFICATION; GALAXIES; PCA AB Machine learning techniques offer a precious tool box for use within astronomy to solve problems involving so-called big data. They provide a means to make accurate predictions about a particular system without prior knowledge of the underlying physical processes of the data. In this article, and the companion papers of this series, we present the set of Generalized Linear Models (GLMs) as a fast alternative method for tackling general astronomical problems, including the ones related to the machine learning paradigm. To demonstrate the applicability of GLMs to inherently positive and continuous physical observables, we explore their use in estimating the photometric redshifts of galaxies from their multi-wavelength photometry. Using the gamma family with a log link function we predict redshifts from the PHoto-z Accuracy Testing simulated catalogue and a subset of the Sloan Digital Sky Survey from Data Release 10. We obtain fits that result in catastrophic outlier rates as low as similar to 1% for simulated and similar to 2% for real data. Moreover, we can easily obtain such levels of precision within a matter of seconds on a normal desktop computer and with training sets that contain merely thousands of galaxies. Our software is made publicly available as a user-friendly package developed in Python, R and via an interactive web application. This software allows users to apply a set of GLMs to their own photometric catalogues and generates publication quality plots with minimum effort. By facilitating their ease of use to the astronomical community, this paper series aims to make GLMs widely known and to encourage their implementation in future large-scale projects, such as the Large Synoptic Survey Telescope. (C) 2015 Elsevier B.V. All rights reserved. C1 [Elliott, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [de Souza, R. S.] MTA Eotvos Univ, EIRSA Lendulet Astrophys Res Grp, H-1117 Budapest, Hungary. [Krone-Martins, A.] Univ Lisbon, Fac Ciencias, SIM, P-1749016 Lisbon, Portugal. [Cameron, E.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England. [Ishida, E. E. O.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Hilbe, J.] Arizona State Univ, Tempe, AZ 85287 USA. [Hilbe, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Elliott, J (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM jonnyelliott@mpe.mpg.de; rafael.2706@gmail.com; algol@sim.ul.pt; dr.ewan.cameron@gmail.com; emille@mpa-garching.mpg.de; j.m.hilbe@gmail.com RI de Souza, Rafael/C-8615-2013; OI Ishida, Emille/0000-0002-0406-076X; de Souza, Rafael/0000-0001-7207-4584; Krone-Martins, Alberto/0000-0002-2308-6623 FU ESA VA4D project [AO 1-6740/11/F/MOS]; Portuguese agency Fundacao pare Ciencia e Tecnologia-FCT [SFRH/BPD/74697/2010]; Brazilian agency CAPES [9229-13-2] FX We thank V. Busti, E.D. Feigelson, M. Killedar, J. Buchner, and A. Trindade for interesting suggestions and comments. JE, RSS and EEOI thank the SIM Laboratory of the Universidade de Lisboa for hospitality during the development of this work. Cosmostatistics Initiative (COIN)11 is a non-profit organisation whose aim is to nourish the synergy between astrophysics, cosmology, statistics and machine learning communities. This work was partially supported by the ESA VA4D project (AO 1-6740/11/F/MOS). AKM thanks the Portuguese agency Fundacao pare Ciencia e Tecnologia-FCT, for financial support (SFRH/BPD/74697/2010). EEOI is partially supported by the Brazilian agency CAPES (grant number 9229-13-2). Work on this paper has substantially benefited from using the collaborative website AWOB12 developed and maintained by the Max-Planck Institute for Astrophysics and the Max-Planck Digital Library. This work was written on the collaborative WriteLatex platform,13 and made use of the GitHub14 a web-based hosting service and git version control software. This work made use of the cloud based hosting platform ShinyApps.io.15 This work used the following public scientific Python packages scikit-learn v0. 1516 (Pedregosa et al., 2011), seaborn v0 . 3 . 1,17 and st at smodels v0 . 6 . 0.18 Funding for SDSS-III19 has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. NR 51 TC 6 Z9 6 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2015 VL 10 BP 61 EP 72 DI 10.1016/j.ascom.2015.01.002 PG 12 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA CI6VU UT WOS:000354902700007 ER PT J AU Rowe, BTP Jarvis, M Mandelbaum, R Bernstein, GM Bosch, J Simet, M Meyers, JE Kacprzak, T Nakajima, R Zuntz, J Miyatake, H Dietrich, JP Armstrong, R Melchior, P Gill, MSS AF Rowe, B. T. P. Jarvis, M. Mandelbaum, R. Bernstein, G. M. Bosch, J. Simet, M. Meyers, J. E. Kacprzak, T. Nakajima, R. Zuntz, J. Miyatake, H. Dietrich, J. P. Armstrong, R. Melchior, P. Gill, M. S. S. TI GALSIM: The modular galaxy image simulation toolkit SO ASTRONOMY AND COMPUTING LA English DT Article DE Methods: data analysis; Techniques: image processing; Gravitational lensing; Cosmology: observations ID DIGITAL SKY SURVEY; CHARGE-TRANSFER INEFFICIENCY; LENSING SHEAR MEASUREMENT; TELESCOPE ADVANCED CAMERA; COSMIC SHEAR; DARK-MATTER; SHAPE MEASUREMENTS; NOISE BIAS; ANALYSIS COMPETITION; GREAT08 CHALLENGE AB GALSIM is a collaborative, open-source project aimed at providing an image simulation tool of enduring benefit to the astronomical community. It provides a software library for generating images of astronomical objects such as stars and galaxies in a variety of ways, efficiently handling image transformations and operations such as convolution and rendering at high precision. We describe the GALSIM software and its capabilities, including necessary theoretical background. We demonstrate that the performance of GALSIM meets the stringent requirements of high precision image analysis applications such as weak gravitational lensing, for current datasets and for the Stage IV dark energy surveys of the Large Synoptic Survey Telescope, ESA's Euclid mission, and NASA's WFIRST-AFTA mission. The GALSIM project repository is public and includes the full code history, all open and closed issues, installation instructions, documentation, and wiki pages (including a Frequently Asked Questions section). The GALSIM repository can be found at https://github.com/GalSim-developers/GalSim. (C) 2015 Elsevier B.V. All rights reserved. C1 [Rowe, B. T. P.; Kacprzak, T.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Rowe, B. T. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rowe, B. T. P.] CALTECH, Pasadena, CA 91106 USA. [Jarvis, M.; Bernstein, G. M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Mandelbaum, R.; Simet, M.] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Bosch, J.; Miyatake, H.; Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Meyers, J. E.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Kacprzak, T.; Zuntz, J.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Nakajima, R.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Miyatake, H.] Univ Tokyo, Kavli IPMU, WPI, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778582, Japan. [Dietrich, J. P.] Univ Sternwarte Munchen, D-81679 Munich, Germany. [Dietrich, J. P.] Excellence Cluster Universe, D-85748 Garching, Germany. [Melchior, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Melchior, P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Gill, M. S. S.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Rowe, BTP (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM browe@star.ucl.ac.uk; michael@jarvis.net; rmandelb@andrew.cmu.edu RI Mandelbaum, Rachel/N-8955-2014; Simet, Melanie/A-3415-2016; OI Mandelbaum, Rachel/0000-0003-2271-1527; Simet, Melanie/0000-0001-8823-8926; Rowe, Barnaby/0000-0002-7042-9174; Dietrich, Jorg/0000-0002-8134-9591 FU NASA via the Strategic University Research Partnership (SURP) Program of the Jet Propulsion Laboratory, California Institute of Technology; European Research Council Starting Grant [240672]; NSF [AST-1138729]; NASA through Space Telescope Science Institute [HST-AR-12857.01-A]; NASA [NAS5-26555]; Sloan Fellowship; Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad; JSPS Research Fellowships for Young Scientists; U.S. Department of Energy [DE- FG02-91ER40690]; National Science Foundation [PHYS-1066293] FX We wish to thank the two anonymous referees whose insightful comments significantly improved the paper. This project was supported in part by NASA via the Strategic University Research Partnership (SURP) Program of the Jet Propulsion Laboratory, California Institute of Technology. Part of BR's work was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. BR, JZ and TK acknowledge support from a European Research Council Starting Grant with number 240672. MJ acknowledges support from NSF award AST-1138729. RM was supported in part by program HST-AR-12857.01-A, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555; and in part by a Sloan Fellowship. HM acknowledges support from Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad and JSPS Research Fellowships for Young Scientists. PM is supported by the U.S. Department of Energy under Contract No. DE- FG02-91ER40690. The authors acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL), and associated support services, in the completion of this work This work was supported in part by the National Science Foundation under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics. NR 106 TC 25 Z9 25 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2015 VL 10 BP 121 EP 150 DI 10.1016/j.ascom.2015.02.002 PG 30 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA CI6VU UT WOS:000354902700013 ER PT J AU Fairen, AG Losa-Adams, E Gil-Lozano, C Gago-Duport, L Uceda, ER Squyres, SW Rodriguez, JAP Davila, AF McKay, CP AF Fairen, Alberto G. Losa-Adams, Elisabeth Gil-Lozano, Carolina Gago-Duport, Luis Uceda, Esther R. Squyres, Steven W. Rodriguez, J. Alexis P. Davila, Alfonso F. McKay, Christopher P. TI Tracking the weathering of basalts on Mars using lithium isotope fractionation models SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Mars; lithium; isotopic fractionation; basalt weathering ID LIGHT LITHOPHILE ELEMENTS; UPPER OCEANIC-CRUST; MINERAL FORMATION; CATION MIGRATION; MARTIAN SURFACE; MAGMATIC WATER; GALE CRATER; LI; GEOCHEMISTRY; DIFFUSION AB Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium(7)Li and (6)Lihave a large relative mass difference (approximate to 15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary mineralsthe source of Liand on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history. C1 [Fairen, Alberto G.] Ctr Astrobiol, Madrid, Spain. [Fairen, Alberto G.; Squyres, Steven W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Losa-Adams, Elisabeth; Gil-Lozano, Carolina; Gago-Duport, Luis] Univ Vigo, Dept Geociencias Marinas, Vigo 36310, Spain. [Uceda, Esther R.] Univ Autonoma Madrid, Dept Biol Mol, Madrid, Spain. [Rodriguez, J. Alexis P.; McKay, Christopher P.] NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Mountain View, CA USA. [Davila, Alfonso F.] SETI Inst, Mountain View, CA USA. RP Fairen, AG (reprint author), Ctr Astrobiol, Madrid, Spain. EM agfairen@cab.inta-csic.es RI Gil Lozano, Carolina/L-5687-2015 OI Gil Lozano, Carolina/0000-0003-3500-2850 FU European Research Council [307496]; European FEDER program; Spanish Ministry of Science (MICINN) [CGL2011-30079] FX Data supporting our models and calculations are available as supporting information. The research leading to these results is a contribution from the Project "icyMARS", funded by the European Research Council, Starting Grant no 307496. This work was also partially supported by the European FEDER program and the Spanish Ministry of Science (MICINN) through the project CGL2011-30079. Comments by R. James and four anonymous reviewers helped us to clarify and strengthen our work. NR 99 TC 3 Z9 3 U1 2 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD APR PY 2015 VL 16 IS 4 BP 1172 EP 1197 DI 10.1002/2015GC005748 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI4TO UT WOS:000354746900012 ER PT J AU Peslier, AH Bizimis, M AF Peslier, Anne H. Bizimis, Michael TI Water in Hawaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE oceanic mantle; water; peridotite; Hawaii; lithosphere; plume; pyroxene ID MID-ATLANTIC RIDGE; EARTHS UPPER-MANTLE; HONOLULU VOLCANIC SERIES; MAGMA ASCENT RATES; SALT-LAKE CRATER; ABYSSAL PERIDOTITES; BASALTIC GLASSES; MIDOCEAN RIDGE; HOT-SPOT; ELECTRICAL-CONDUCTIVITY AB The distribution of water concentrations in the oceanic upper mantle has drastic influence on its melting, rheology, and electrical and thermal conductivities and yet is primarily known indirectly from analyses of OIB and MORB. Here, actual mantle samples, eight peridotite xenoliths from Salt Lake Crater (SLC) and one from Pali in Oahu in Hawaii were analyzed by FTIR. Water contents of orthopyroxene, clinopyroxene, and the highest measured in olivine are 116-222, 246-442, and 10-26 ppm weight H2O, respectively. Although pyroxene water contents correlate with indices of partial melting, they are too high to be explained by simple melting modeling. Mantle-melt interaction modeling reproduces best the SLC data. These peridotites represent depleted oceanic mantle older than the Pacific lithosphere that has been refertilized by nephelinite melts containing <5 weight % H2O. Metasomatism in the Hawaiian peridotites resulted in an apparent decoupling of water and LREE that can be reconciled via assimilation and fractional crystallization. Calculated bulk-rock water contents for SLC (50-96 ppm H2O) are on the low side of that of the MORB source (50-200 ppm H2O). Preceding metasomatism, the SLC peridotites must have been even drier, with a water content similar to that of the Pali peridotite (45 ppm H2O), a relatively unmetasomatized fragment of the Pacific lithosphere. Moreover, our data show that the oceanic mantle lithosphere above plumes is not necessarily enriched in water. Calculated viscosities using olivine water contents allow to estimate the depth of the lithosphere-asthenosphere boundary beneath Hawaii at approximate to 90 km. C1 [Peslier, Anne H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bizimis, Michael] Univ S Carolina, Dept Earth & Ocean Sci, Columbia, SC 29208 USA. RP Peslier, AH (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov FU NSF [OCE-1129072, OCE-1129280, EAR-1347890] FX This work was supported by NSF grants OCE-1129072 to A.H.P. and OCE-1129280, EAR-1347890 to M.B. We are grateful for the comments by Henrik Skogby and an anonymous reviewer and editing by C.T. Lee. All data are available in Table 1 or in the supporting information files. FTIR spectra are available upon request from anne.h.peslier@nasa.gov and will ultimately be stored in the nominally anhydrous FTIR spectral database PULI: http://puli.mfgi.hu/. NR 183 TC 10 Z9 12 U1 3 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD APR PY 2015 VL 16 IS 4 BP 1211 EP 1232 DI 10.1002/2015GC005780 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI4TO UT WOS:000354746900014 ER PT J AU Joshi, NP Mitchard, ETA Schumacher, J Johannsen, VK Saatchi, S Fensholt, R AF Joshi, Neha P. Mitchard, Edward T. A. Schumacher, Johannes Johannsen, Vivian K. Saatchi, Sassan Fensholt, Rasmus TI L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark SO REMOTE SENSING LA English DT Article ID LASER SCANNER DATA; RADAR BACKSCATTER; BOREAL FOREST; ALOS PALSAR; BIOPHYSICAL PARAMETERS; CARBON-DENSITY; AIRBORNE LIDAR; BASIC DENSITY; INVENTORY; STAND AB Mapping forest aboveground biomass (AGB) using satellite data is an important task, particularly for reporting of carbon stocks and changes under climate change legislation. It is known that AGB can be mapped using synthetic aperture radar (SAR), but relationships between AGB and radar backscatter may be confounded by variations in biophysical forest structure (density, height or cover fraction) and differences in the resolution of satellite and ground data. Here, we attempt to quantify the effect of these factors by relating L-band ALOS PALSAR HV backscatter and unique country-wide LiDAR-derived maps of vegetation penetrability, height and AGB over Denmark at different spatial scales (50 m to 500 m). Trends in the relations indicate that, first, AGB retrieval accuracy from SAR improves most in mapping at 100-m scale instead of 50 m, and improvements are negligible beyond 250 m. Relative errors (bias and root mean squared error) decrease particularly for high AGB values (>110 Mg ha(-1)) at coarse scales, and hence, coarse-scale mapping (>= 150 m) may be most suited for areas with high AGB. Second, SAR backscatter and a LiDAR-derived measure of fractional forest cover were found to have a strong linear relation (R-2 = 0.79 at 250-m scale). In areas of high fractional forest cover, there is a slight decline in backscatter as AGB increases, indicating signal attenuation. The two results demonstrate that accounting for spatial scale and variations in forest structure, such as cover fraction, will greatly benefit establishing adequate plot-sizes for SAR calibration and the accuracy of derived AGB maps. C1 [Joshi, Neha P.; Schumacher, Johannes; Johannsen, Vivian K.; Fensholt, Rasmus] Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1350 Copenhagen, Denmark. [Mitchard, Edward T. A.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Joshi, NP (reprint author), Univ Copenhagen, Dept Geosci & Nat Resource Management, Oster Voldgade 10, DK-1350 Copenhagen, Denmark. EM npjo@ign.ku.dk; edward.mitchard@ed.ac.uk; sfw370@alumni.ku.dk; vkj@ign.ku.dk; sasan.s.saatchi@jpl.nasa.gov; rf@ign.ku.dk RI Joshi, Neha/B-6128-2015; OI Joshi, Neha/0000-0002-1178-6809; Mitchard, Edward/0000-0002-5690-4055; Johannsen, Vivian Kvist/0000-0002-1268-9787; Fensholt, Rasmus/0000-0003-3067-4527 FU Danish Nature Agency; University of Copenhagen; Natural Environment Research Council [NE/I021217/1] FX This study was funded by the Danish Nature Agency and University of Copenhagen. E.T.A Mitchard is funded by a Research Fellowship from the Natural Environment Research Council (Grant Ref NE/I021217/1). LiDAR data were provided by COWI to the University of Copenhagen, and ALOS PALSAR datasets were obtained through an ESA Category 1 Proposal from JAXA. Field data were collected as a part of the Danish National Forest Inventory. The high-resolution land use and digital terrain map were provided by the Danish Ministry of Environment (Geodatastyrelsen). The authors thank Thomas Nord-Larsen (University of Copenhagen) and Hector Nieto (University of Copenhagen) for their contributions to the study. NR 74 TC 5 Z9 5 U1 4 U2 15 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD APR PY 2015 VL 7 IS 4 BP 4442 EP 4472 DI 10.3390/rs70404442 PG 31 WC Remote Sensing SC Remote Sensing GA CI5IQ UT WOS:000354789300047 ER PT J AU Singh, RS Reager, JT Miller, NL Famiglietti, JS AF Singh, R. S. Reager, J. T. Miller, N. L. Famiglietti, J. S. TI Toward hyper-resolution land-surface modeling: The effects of fine-scale topography and soil texture on CLM4.0 simulations over the Southwestern US SO WATER RESOURCES RESEARCH LA English DT Article DE hyper-resolution modeling; CLM4; 0 ID DIGITAL ELEVATION MODEL; REGIONAL-CLIMATE MODEL; SPATIAL VARIABILITY; HYDROLOGIC-RESPONSE; RICHARDS EQUATION; DATA ASSIMILATION; WATER-TABLE; GRID SIZE; MOISTURE; SENSITIVITY AB Increasing computational efficiency and the need for improved accuracy are currently driving the development of hyper-resolution land-surface models that can be implemented at continental scales with resolutions of 1 km or finer. Here we report research incorporating fine-scale grid resolutions into the NCAR Community Land Model (CLM v4.0) for simulations at 1, 25, and 100 km resolution using 1 km soil and topographic information. Multiyear model runs were performed over the Southwestern U.S., including the entire state of California and the Colorado River basin. The results show changes in the total amount of CLM-modeled water storage, and changes in the spatial and temporal distributions of water in snow and soil reservoirs, as well as changes in surface fluxes and the energy balance. To inform future model progress and continued development needs and weaknesses, we compare simulation outputs to station and gridded observations of model fields. Although the higher grid-resolution model is not driven by high-resolution forcing, grid resolution changes alone yield significant improvement (reduction in error) between model outputs and observations, where the RMSE decreases by more than 35%, 36%, 34%, and 12% for soil moisture, terrestrial water storage anomaly, sensible heat, and snow water equivalent, respectively. As an additional exercise, we performed a 100 m resolution simulation over a spatial subdomain. Those results indicate that parameters such as drainage, runoff, and infiltration are significantly impacted when hillslope scales of approximate to 100 m or finer are considered, and we show the ways in which limitations of the current model physics, including no lateral flow between grid cells, may affect model simulation accuracy. C1 [Singh, R. S.; Miller, N. L.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Singh, R. S.; Reager, J. T.; Miller, N. L.; Famiglietti, J. S.] Univ Calif Irvine, UC Ctr Hydrol Modeling, Irvine, CA USA. [Reager, J. T.; Famiglietti, J. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Famiglietti, J. S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. RP Singh, RS (reprint author), Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. EM rajshekharsingh@berkeley.edu FU NSF [DEB-1115069]; University of California Office of the President, Multi-Campus Research Programs and Initiatives UCCHM FX Partial support for this project was provided by NSF grant DEB-1115069 for R.S. and N.L.M. and the University of California Office of the President, Multi-Campus Research Programs and Initiatives UCCHM for R.S., N.L.M., J.T.R., and J.S.F. A portion of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. GRACE data are available at grace. jpl.nasa.gov; FLUXNET data from fluxnet.ornl.gov; SNODAS data from nsidc.org; well observations from water.ca.gov. C.L.M. land surface data sets are available at www.cesm.ucar.edu. NR 66 TC 7 Z9 7 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR PY 2015 VL 51 IS 4 BP 2648 EP 2667 DI 10.1002/2014WR015686 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CI4PH UT WOS:000354733500043 ER PT J AU Narkawicz, A Munoz, C Dutle, A AF Narkawicz, Anthony Munoz, Cesar Dutle, Aaron TI Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm's and Tarski's Theorems SO JOURNAL OF AUTOMATED REASONING LA English DT Article DE Non-linear arithmetic; Decision procedure; Prototype Verification System (PVS); polynomial inequalities; Sturm's theorem; Tarski's theorem; Automated theorem proving; Interactive Theorem Proving ID REAL; PROOF AB Sturm's theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, not counting multiplicity. A generalization of Sturm's theorem is known as Tarski's theorem, which provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. The linear system that results from this relationship is in fact invertible and can be used to explicitly count the number of roots of a univariate polynomial on a set defined by a system of polynomial relations. This paper presents a formalization of these results in the PVS theorem prover, including formal proofs of Sturm's and Tarski's theorems. These theorems are at the basis of two decision procedures, which are implemented as computable functions in PVS. The first, based on Sturm's theorem, determines satisfiability of a single polynomial relation over an interval. The second, based on Tarski's theorem, determines the satisfiability of a system of polynomial relations over the real line. The soundness and completeness properties of these decision procedures are formally verified in PVS. The procedures and their correctness properties enable the implementation of PVS strategies for automatically proving existential and universal statements on polynomial systems. Since the decision procedures are formally verified in PVS, the soundness of the strategies depends solely on the internal logic of PVS rather than on an external oracle. C1 [Narkawicz, Anthony; Munoz, Cesar; Dutle, Aaron] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Munoz, C (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM Anthony.Narkawicz@nasa.gov; Cesar.A.Munoz@nasa.gov; Aaron.M.Dutle@nasa.gov NR 42 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-7433 EI 1573-0670 J9 J AUTOM REASONING JI J. Autom. Reasoning PD APR PY 2015 VL 54 IS 4 BP 285 EP 326 DI 10.1007/s10817-015-9320-x PG 42 WC Computer Science, Artificial Intelligence SC Computer Science GA CI1BC UT WOS:000354474100001 ER PT J AU Susanto, RD Song, YT AF Susanto, R. Dwi Song, Y. Tony TI Indonesian throughflow proxy from satellite altimeters and gravimeters SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE Indonesian throughflow; sea level; ocean bottom pressure; throughflow proxy; Makassar transport ID MAKASSAR STRAIT; INDIAN-OCEAN; KELVIN WAVE; SEA-LEVEL; VARIABILITY; PACIFIC; TRANSPORT; REGION AB The Indonesian throughflow (ITF) from the Pacific to the Indian Ocean plays an important role in global ocean circulation and climate. Yet, continuous ITF measurement is difficult and expensive. The longest time series of in situ measurements of the ITF to date were taken in the Makassar Strait, the main pathway of the ITF. Here we have demonstrated a plausible approach to derive the ITF transport proxy using satellite altimetry sea surface height (SSH), gravimetry ocean bottom pressure (OBP) data, in situ measurements from the Makassar Strait from 1996 to 1998 and 2004 to 2011, and a theoretical formulation. We first identified the optimal locations of the correlation between the observed ITF transport through the Makassar Strait and the pressure gradients, represented by the SSH and OBP differences between the Pacific and Indian Oceans at a 1 degrees x 1 degrees horizontal resolution. The optimal locations were found centered at 162 degrees E and 11 degrees N in the Pacific Ocean and 80 degrees E and 0 degrees in the Indian Ocean, then were used in the theoretical formulation to estimate the throughflow. The proxy time series follow the observation time series quite well, with the 1993-2011 mean proxy transport of 11.63.2 Sv southward, varying from 5.6 Sv during the strong 1997 El Nino to 16.9 Sv during the 2007 La Nina period, which are consistent with previous estimates. The observed Makassar mean transport is 13.03.8 Sv southward over 2004-2011, while the SSH proxy (for the same period) gives an ITF mean transport of 13.94.1 Sv and the SSH+OBP proxy (for 2004-2010) is 15.83.2 Sv. C1 [Susanto, R. Dwi] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Susanto, R. Dwi] Surya Univ, Ctr Oceanog & Marine Technol, Tangerang, Indonesia. [Song, Y. Tony] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Susanto, RD (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM dwi@atmos.umd.edu OI SUSANTO, Raden Dwi/0000-0003-1495-5951 FU National Aeronautics and Space Administration (NASA) [JPLCIT-1362354]; NASA FX The SSH and OBP data are freely available at NASA web-site (http://podaac.jpl.nasa.gov) and the altimeter products are distributed by Aviso (http://www.aviso.oceanobs.com/duacs/), while the observation data are available at Lamont Doherty Earth Observatory of Columbia University (http://www.ldeo.columbia.edu/res/div/ocp/projects). R.D. Susanto was sponsored by the National Aeronautics and Space Administration (NASA), under contract JPLCIT-1362354. Y. T. Song carried out research at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We are grateful to our colleagues I. Soesilo, S. Wirasantosa, B. Sulistyo, and R. Adi at the Research and Development Center for Marine and Fisheries (BalitbangKP), Indonesia for their support of the field measurement programs. We appreciate the valuable comments from three anonymous reviewers. NR 48 TC 5 Z9 6 U1 2 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD APR PY 2015 VL 120 IS 4 BP 2844 EP 2855 DI 10.1002/2014JC010382 PG 12 WC Oceanography SC Oceanography GA CI0HH UT WOS:000354417200027 ER PT J AU Williams, JG Boggs, DH AF Williams, James G. Boggs, Dale. H. TI Tides on the Moon: Theory and determination of dissipation SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Moon; tides; tidal dissipation; absorption band model; lunar laser ranging (LLR) ID TIDAL DISSIPATION; LUNAR INTERIOR; VISCOELASTIC RELAXATION; MANTLE ANELASTICITY; SATELLITE TRACKING; FREE LIBRATIONS; MODEL; CONSTRAINTS; RHEOLOGY; EARTHS AB Solid body tides on the Moon vary by about 0.1m each month. In addition to changes in shape, the Moon's gravity field and orientation in space are affected by tides. The tidal expressions for an elastic sphere are compact, but dissipation introduces modifications that depend on the forcing period. Consequently, a Fourier representation of the tide-raising potential is needed. A mathematical model for the distortion-caused tidal potential may be used for the analysis of precise spacecraft tracking data. Since tides affect gravitational torques on the Moon from the Earth's attraction, the lunar orientation is also affected. Expressions for five periodic perturbations of orientation are presented. The rheological properties of lunar materials determine how the Moon responds to different tidal periods. New lunar laser ranging solutions for the tidal orientation terms are presented. The quality factor Q is 384 at 1month, 419 at 1year, 74 at 3years, and 58 at 6years. The ranging results can be matched with absorption band models that peak at similar to 120days and single relaxation time models that peak at similar to 100days. Combined models are possibilities. Dissipation can modify laser ranging solutions; previously reported core flattening is too uncertain to be useful. Strong lunar tidal dissipation, modeled to arise in the deep hot mantle, appears to be from a region with radius 535 km. Classical Maxwell-type dissipation is too weak to detect at 3 and 6year periods. C1 [Williams, James G.; Boggs, Dale. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Williams, JG (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM James.G.Williams@jpl.nasa.gov NR 100 TC 15 Z9 15 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR PY 2015 VL 120 IS 4 BP 689 EP 724 DI 10.1002/2014JE004755 PG 36 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI1WV UT WOS:000354536700004 ER PT J AU Watkins, MM Wiese, DN Yuan, DN Boening, C Landerer, FW AF Watkins, Michael M. Wiese, David N. Yuan, Dah-Ning Boening, Carmen Landerer, Felix W. TI Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE GRACE; time variable gravity; mascons; mass concentrations ID GLACIAL-ISOSTATIC-ADJUSTMENT; NEAREST CORRELATION MATRIX; SEA-LEVEL RISE; GRAVITY-FIELD; ICE-SHEET; GREENLAND; ANTARCTICA; BALANCE; SURFACE; DEPLETION AB We discuss several classes of improvements to gravity solutions from the Gravity Recovery and Climate Experiment (GRACE) mission. These include both improvements in background geophysical models and orbital parameterization leading to the unconstrained spherical harmonic solution JPL RL05, and an alternate JPL RL05M mass concentration (mascon) solution benefitting from those same improvements but derived in surface spherical cap mascons. The mascon basis functions allow for convenient application of a priori information derived from near-global geophysical models to prevent striping in the solutions. The resulting mass flux solutions are shown to suffer less from leakage errors than harmonic solutions, and do not necessitate empirical filters to remove north-south stripes, lowering the dependence on using scale factors (the global mean scale factor decreases by 0.17) to gain accurate mass estimates. Ocean bottom pressure (OBP) time series derived from the mascon solutions are shown to have greater correlation with in situ data than do spherical harmonic solutions (increase in correlation coefficient of 0.08 globally), particularly in low-latitude regions with small signal power (increase in correlation coefficient of 0.35 regionally), in addition to reducing the error RMS with respect to the in situ data (reduction of 0.37 cm globally, and as much as 1 cm regionally). Greenland and Antarctica mass balance estimates derived from the mascon solutions agree within formal uncertainties with previously published results. Computing basin averages for hydrology applications shows general agreement between harmonic and mascon solutions for large basins; however, mascon solutions typically have greater resolution for smaller spatial regions, in particular when studying secular signals. C1 [Watkins, Michael M.; Wiese, David N.; Yuan, Dah-Ning; Boening, Carmen; Landerer, Felix W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Wiese, DN (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM david.n.wiese@jpl.nasa.gov OI Landerer, Felix/0000-0003-2678-095X NR 75 TC 40 Z9 40 U1 6 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD APR PY 2015 VL 120 IS 4 BP 2648 EP 2671 DI 10.1002/2014JB011547 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI2GI UT WOS:000354563200033 ER PT J AU Agram, PS Simons, M AF Agram, P. S. Simons, M. TI A noise model for InSAR time series SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE InSAR; radar; inteferometry; noise budget; time series ID SYNTHETIC-APERTURE RADAR; SMALL BASE-LINE; SAR INTERFEROMETRY; DISPLACEMENT FIELD; LANDERS EARTHQUAKE; PHASE STATISTICS; DEFORMATION; INTERFEROGRAMS; ALGORITHMS; SELECTION AB Interferometric synthetic aperture radar (InSAR) time series methods estimate the spatiotemporal evolution of surface deformation by incorporating information from multiple SAR interferograms. While various models have been developed to describe the interferometric phase and correlation statistics in individual interferograms, efforts to model the generalized covariance matrix that is directly applicable to joint analysis of networks of interferograms have been limited in scope. In this work, we build on existing decorrelation and atmospheric phase screen models and develop a covariance model for interferometric phase noise over space and time. We present arguments to show that the exploitation of the full 3-D covariance structure within conventional time series inversion techniques is computationally challenging. However, the presented covariance model can aid in designing new inversion techniques that can at least mitigate the impact of spatial correlated nature of InSAR observations. C1 [Agram, P. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Agram, P. S.; Simons, M.] CALTECH, Seismol Lab, Pasadena, CA 91125 USA. RP Agram, PS (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM piyush@gps.caltech.edu OI Simons, Mark/0000-0003-1412-6395 FU Keck Institute of Space Studies Postdoctoral fellowship FX This work was supported by the Keck Institute of Space Studies Postdoctoral fellowship. We would also like to thank Scott Hensley from the Jet Propulsion Laboratory and Howard Zebker from Stanford University for helpful discussions. We thank ESA and WIn-SAR for providing the ERS-1 and ERS-2 SAR data. We also thank JAXA and ASF AADN archive for providing ALOS PALSAR data. NR 65 TC 7 Z9 7 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD APR PY 2015 VL 120 IS 4 BP 2752 EP 2771 DI 10.1002/2014JB011271 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI2GI UT WOS:000354563200038 ER PT J AU Tobiska, WK Atwell, W Beck, P Benton, E Copeland, K Dyer, C Gersey, B Getley, I Hands, A Holland, M Hong, S Hwang, J Jones, B Malone, K Meier, MM Mertens, C Phillips, T Ryden, K Schwadron, N Wender, SA Wilkins, R Xapsos, MA AF Tobiska, W. Kent Atwell, William Beck, Peter Benton, Eric Copeland, Kyle Dyer, Clive Gersey, Brad Getley, Ian Hands, Alex Holland, Michael Hong, Sunhak Hwang, Junga Jones, Bryn Malone, Kathleen Meier, Matthias M. Mertens, Chris Phillips, Tony Ryden, Keith Schwadron, Nathan Wender, Stephen A. Wilkins, Richard Xapsos, Michael A. TI Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SINGLE EVENT UPSET; AVIATION ALTITUDES; ENERGETIC PARTICLES; AIRCRAFT ALTITUDES; DOSE-EQUIVALENT; SOLAR STORM; COSMIC-RAYS; EXPOSURE; NEUTRONS; ENVIRONMENT AB Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public. C1 [Tobiska, W. Kent] Space Environm Technol, Pacific Palisades, CA 90272 USA. [Atwell, William] Space Environm Technol, Houston, TX USA. [Beck, Peter] Radiat Hardness Assurance & Space Weather Radiat, Seibersdorf, Austria. [Benton, Eric] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Copeland, Kyle] FAA, Civil Aerosp Med Inst, Oklahoma City, OK USA. [Dyer, Clive; Hands, Alex] Univ Surrey, Surrey Space Ctr, Guildford GU2 5XH, Surrey, England. [Gersey, Brad] Prairie View A&M Univ, Dept Elect & Comp Engn, Radiat Dosimetry, Prairie View, TX USA. [Getley, Ian] Univ New S Wales, Dept Aviat, Sydney, NSW, Australia. [Holland, Michael; Malone, Kathleen] Allied Pilots Assoc, Aeromed Comm, Washington, DC USA. [Hong, Sunhak] Natl Radio Res Agcy, Korean Space Weather Ctr, Jeju, South Korea. [Hwang, Junga] Korea Univ Sci & Technol, Korea Astron & Space Sci Inst, Taejon, South Korea. [Hwang, Junga] Korea Univ Sci & Technol, Dept Astron & Space Sci, Taejon, South Korea. [Jones, Bryn] SolarMetrics, Guildford, Surrey, England. [Meier, Matthias M.] Deutsch Zentrum Luft & Raumfahrt eV, DLR, Cologne, Germany. [Mertens, Chris] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Phillips, Tony] Spaceweather Com, Aspendell, CA USA. [Ryden, Keith] Univ Surrey, Surrey Space Ctr, Space Engn Space Environm & Effects, Guildford GU2 5XH, Surrey, England. [Schwadron, Nathan] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Wender, Stephen A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Wilkins, Richard] Prairie View A&M Univ, Dept Elect & Comp Engn, Prairie View, TX USA. [Xapsos, Michael A.] NASA, Goddard Space Flight Ctr, Radiat Effects & Anal Grp, Greenbelt, MD 20771 USA. RP Tobiska, WK (reprint author), Space Environm Technol, Pacific Palisades, CA 90272 USA. EM ktobis-ka@spacenvironment.net OI Meier, Matthias/0000-0003-0918-6473; Wender, Stephen/0000-0002-2446-5115 FU AGU FX Our authors and co-authors support the data access policy of the AGU and regularly provide data for furthering scientific research related to the aviation radiation environment. References cited herein may contain data links that are of interest to the reader. NR 63 TC 8 Z9 8 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD APR PY 2015 VL 13 IS 4 BP 202 EP 210 DI 10.1002/2015SW001169 PG 9 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CI0YD UT WOS:000354465000002 ER PT J AU Orr, JW Wildes, S Kai, Y Raring, N Nakabo, T Katugin, O Guyon, J AF Orr, James W. Wildes, Sharon Kai, Yoshiaki Raring, Nate Nakabo, T. Katugin, Oleg Guyon, Jeff TI Systematics of North Pacific sand lances of the genus Ammodytes based on molecular and morphological evidence, with the description of a new species from Japan SO FISHERY BULLETIN LA English DT Article ID PERCIFORMES AMMODYTIDAE; MITOCHONDRIAL-DNA; CONTROL REGION; MARINE FISHES; POPULATIONS; ATLANTIC; WESTERN; CANADA AB The systematic status of North Pacific sand lances (genus Ammodytes) was assessed from mitochondrial DNA (cytochrome oxidase c subunit 1) sequence data and morphological data to identify the number of species in the North Pacific Ocean and its fringing seas. Although only 2 species, Ammodytes hexapterus and A. personatus, have been considered valid in the region, haplotype networks and trees constructed with maximum parsimony and genetic distance (neighbor-joining) methods revealed 4 highly divergent monophyletic clades that clearly represent 4 species of Ammodytes in the North Pacific region. On the basis of our material and comparisons with sequence data reported in online databases, A. personatus is found throughout the eastern North Pacific Ocean, Gulf of Alaska, Aleutian Islands, and the eastern Bering Sea where it co-occurs with a northwestern Arctic species, A. hexapterus, that is found throughout the North American Arctic from Hudson Bay, Canada, in the east, through the Beaufort and Chukchi seas, into the northern and western Bering Sea, and to the southern Sea of Okhotsk in the Soya Strait off Hokkaido, Japan. Two other species reside in waters around Japan: A. japonicus throughout the Sea of Japan and the Seto Inland Sea and a new species in the Sea of Japan and the North Pacific Ocean off northern Honshu. We designate neotypes for A. hexapterus and A. personatus because of the absence of type material and the close similarity of these 2 species. Ammodytes ale utensis is a junior synonym of A. japonicus, and A. alascanus is a junior synonym of A. personatus. C1 [Orr, James W.; Raring, Nate] NOAA, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Wildes, Sharon; Guyon, Jeff] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Kai, Yoshiaki] Kyoto Univ, Maizuru Fisheries Res Stn, Field Sci Educ & Res Ctr, Maizuru, Kyoto 6250086, Japan. [Nakabo, T.] Kyoto Univ, Kyoto Univ Museum, Sakyo Ku, Kyoto 6068501, Japan. [Katugin, Oleg] TINRO Ctr, Pacific Res Inst Fisheries & Oceanog, Vladivostok 690950, Primorsky Kray, Russia. RP Orr, JW (reprint author), NOAA, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM james.orr@noaa.gov NR 72 TC 5 Z9 6 U1 0 U2 5 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 EI 1937-4518 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2015 VL 113 IS 2 BP 129 EP 156 DI 10.7755/FB.113.2.3 PG 28 WC Fisheries SC Fisheries GA CH2HE UT WOS:000353845500003 ER PT J AU Weitkamp, LA Hinton, SA Bentley, PJ AF Weitkamp, Laurie A. Hinton, Susan A. Bentley, Paul J. TI Seasonal abundance, size, and host selection of western river (Lampetra ayresii) and Pacific (Entosphenus tridentatus) lampreys in the Columbia River estuary SO FISHERY BULLETIN LA English DT Article ID FRASER-RIVER; JUVENILE SALMONIDS; PARASITIC LAMPREYS; BRITISH-COLUMBIA; NORTH-AMERICA; CONSERVATION; MIGRATION; OREGON; PETROMYZONTIDAE; ENVIRONMENT AB Little is known about the basic biology and ecology of most native lampreys, including the use of estuaries by anadromous lampreys. To address this deficiency, we provide the first analysis of anadromous western river (Lampetra ayresii) and Pacific (Entosphenus tridentatus) lampreys in the Columbia River estuary, using data from 2 fish assemblage studies that span 3 decades (1980-1981 and 2001-2012). Pacific lamprey juveniles and adults in the estuary clearly were separated by size, whereas western river lamprey formed one continuous size distribution. Pacific lamprey juveniles and adults were present in the estuary in winter and spring, and western river lamprey were present from spring through early fall. Depth in the water column also differed by lamprey species and age class. During 2008-2012, we documented wounds from lampreys on 8 fish species caught in the estuary. The most frequently wounded fishes were non-native American shad (Alosa sapidissima), subyearling Chinook salmon (Oncorhynchus tshawytscha), shiner perch (Cymatogaster aggregata), and Pacific herring (Clupea pallasii). This basic information on western river and Pacific lampreys in the Columbia River estuary adds to the growing body of regional research that should aid conservation efforts for these ancient species. C1 [Weitkamp, Laurie A.] NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. [Hinton, Susan A.; Bentley, Paul J.] NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Hammond, OR 97121 USA. RP Weitkamp, LA (reprint author), NOAA, Conservat Biol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2032 Marine Sci Dr, Newport, OR 97365 USA. EM laurie.weitkamp@noaa.gov FU Northwest Fisheries Science Center; Bonneville Power Administration FX This study benefited from an exceptional field crew, which included M. Litz, A. Claiborne, S. Sebring, and A. Claxton, and from boat operators B. Kelly and R. Nelson. M. Moser provided encouragement for the project and guidance on the identification of lamprey wounds. This study was funded by the Northwest Fisheries Science Center and Bonneville Power Administration. The manuscript was greatly improved by constructive comments provided by R. Emmett, M. Moser, and 3 anonymous reviewers. NR 42 TC 0 Z9 0 U1 5 U2 10 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 EI 1937-4518 J9 FISH B-NOAA JI Fish. Bull. PD APR PY 2015 VL 113 IS 2 BP 213 EP 226 DI 10.7755/FB.113.2.9 PG 14 WC Fisheries SC Fisheries GA CH2HE UT WOS:000353845500009 ER PT J AU Higgins, N Hintermann, B Brown, ME AF Higgins, Nathaniel Hintermann, Beat Brown, Molly E. TI A model of West African millet prices in rural markets SO FOOD POLICY LA English DT Article DE Millet; Cereal; West Africa; Price forecasting; Remote sensing; NDVI; Regional panel data ID ESTIMATING CROP YIELDS; NDVI TIME-SERIES; UNIT-ROOT TESTS; PANEL-DATA; AVHRR; VEGETATION; IN